WO2023088384A1 - 一种分体式可精准锚定的介入主动脉瓣系统 - Google Patents

一种分体式可精准锚定的介入主动脉瓣系统 Download PDF

Info

Publication number
WO2023088384A1
WO2023088384A1 PCT/CN2022/132631 CN2022132631W WO2023088384A1 WO 2023088384 A1 WO2023088384 A1 WO 2023088384A1 CN 2022132631 W CN2022132631 W CN 2022132631W WO 2023088384 A1 WO2023088384 A1 WO 2023088384A1
Authority
WO
WIPO (PCT)
Prior art keywords
aortic valve
anchoring
stent
interventional
valve
Prior art date
Application number
PCT/CN2022/132631
Other languages
English (en)
French (fr)
Inventor
金磊
潘湘斌
吴嘉
李丽艳
范志豪
吴康健
Original Assignee
北京佰仁医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佰仁医疗科技股份有限公司 filed Critical 北京佰仁医疗科技股份有限公司
Priority to AU2022389638A priority Critical patent/AU2022389638A1/en
Priority to CA3238584A priority patent/CA3238584A1/en
Publication of WO2023088384A1 publication Critical patent/WO2023088384A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body

Definitions

  • the invention relates to an artificial biological heart valve, in particular to a split-type interventional aortic valve system that can be precisely anchored.
  • interventional aortic valve has gone through two decades. Due to the advantages of minimal invasiveness, no need for extracorporeal circulation, and definite short-term and mid-term effects, it has been recognized as an effective treatment for elderly or high-risk patients with traditional surgical aortic valve replacement.
  • TAVR interventional aortic valve
  • Figure 1 interventional aortic valve
  • aortic regurgitation AR
  • the existing TAVR products cannot meet the requirements of this category.
  • the treatment needs of patients, even patients with severe aortic valve stenosis, are often accompanied by various serious complications, such as valve regurgitation or valve displacement or even falling off due to deformation of the valve after release, coronary artery ostia obstruction, severe Paravalvular leakage, conduction block caused by compression of the injured sinoatrial node necessitated reimplantation of a pacemaker, and valve overexpansion led to valve annulus rupture and even death.
  • the interventional aortic valve system of the present invention provides a split design based on the anatomical structure of the real lesion of the aortic valve after three-dimensional reconstruction of the individualized image data of the patient, including the interventional aortic valve anchoring stent and the interventional artificial
  • the two parts of the biological aortic valve are first intervened with a specific stent and the valve leaflets are clamped, and then the intervening aortic valve is introduced into the stent and released, so that the intervening aortic valve and the anchoring stent are integrated into one, so as to achieve accurate prognosis. set the anchor.
  • the invention relates to a split-type interventional aortic valve system that can be precisely anchored, including a split-type interventional aortic valve anchoring stent, a transcatheter-intervened artificial biological aortic valve prosthesis, and a corresponding delivery system and kit.
  • the shape and structure of the interventional aortic valve anchoring stent are designed to match the real structure of the diseased aortic valve after three-dimensional reconstruction of the patient's image data, and the interventional aortic valve anchoring stent is delivered to the patient's aortic valve position through the catheter.
  • Self-expanding memory alloy stent As the interventional bioprosthetic aortic valve is expanded, the aortic valve anchoring stent is transformed into a cylindrical second anchoring state, realizing the integration with the interventional bioprosthetic aortic valve At the same time, the anchoring wire loops or grids at both ends of the anchoring stent in the second state are closely combined with the aortic valve leaflet and subvalvular tissue, realizing all indications for patients with aortic valve disease (stenosis or regurgitation and stenosis combined reflux) interventional therapy.
  • aortic valve disease stenosis or regurgitation and stenosis combined reflux
  • a split-type interventional aortic valve system capable of precise anchoring includes a split-type interventional aortic valve anchoring stent and an interventional artificial aortic valve.
  • the shape and structure design of the interventional aortic valve anchoring stent is based on the CT and ultrasound image data of the patient's aortic valve position, and the three-dimensional real anatomical structure and shape of the aortic valve are reconstructed by importing proprietary software.
  • the interventional aortic valve anchoring stent is processed and polished by laser cutting, three-dimensional shaping, heat treatment, and polished to form the first state of the interventional aortic valve anchoring stent, which is cleaned, packaged and sterilized for use.
  • the loader to press and hold the loading and anchoring stent into the delivery device and deliver it to the patient's aortic valve for positioning and release.
  • the deformation of the stent presents the first anchoring state and combines with the alignment of the patient's aortic valve leaflet and subvalvular tissue.
  • interventional bioprosthetic aortic valve is loaded into the delivery device and then delivered to the interventional aortic valve anchoring stent for release, and the ball expands the external force valve to expand to a functional state, and at the same time the aortic valve anchoring stent Then the re-deformation is combined with the expanded aortic valve, and the re-deformation of the aortic valve anchoring stent becomes the second anchoring state and completes the final preset anchoring by combining the valve leaflet tissue.
  • the split-type interventional aortic valve system that can be accurately anchored also includes a delivery assembly, which includes an interventional bioprosthetic aortic valve anchoring stent delivery kit and an interventional bioartificial aortic valve delivery kit,
  • the interventional artificial biological aortic valve anchoring stent delivery kit includes a delivery catheter and an interventional artificial biological aortic valve anchoring stent loader.
  • the aortic valve anchoring stent has a compressed state placed in the catheter, a first anchoring state after being released through the catheter, and a second anchoring state after being combined with the intervening aortic valve, in the first anchoring state , the aortic valve anchoring stent is deformed after being released by the delivery device to align with the subvalvular tissue of the patient's aortic valve leaflet and the corresponding inflow surface; in the second anchoring state, the aortic valve anchor The fixed stent undergoes secondary deformation after the intervention of the aortic valve, and combines with the interventional aortic valve to complete the final anchoring combination with the patient's aortic valve tissue.
  • the real structure of the three-dimensional reconstruction is a digital image model or a 3D printed simulation solid model.
  • the anatomical structure of the simulated aortic valve lesion reconstructed based on the three-dimensional image data of the patient is a simulated three-dimensional image model after digital conversion of comprehensive images of CT, ultrasound and MRI of the patient and a corresponding simulated solid model of 3D printing.
  • the aortic valve anchoring stent is an umbrella-shaped stent structure, including the valve leaflet outflow surface, the valve leaflet inflow surface and the connection between the two, and the valve leaflet outflow surface is two or three anchoring silk loops , which matches the real shape of the three-dimensional reconstruction of the image data of the patient's valve leaflet outflow surface;
  • the valve leaflet inflow surface of the anchoring stent is an anchoring silk loop corresponding to the silk loop on the outflow surface, and can be connected with the anchoring silk loop on the outflow surface
  • the connection part of the anchoring stent is a round-mouthed funnel-shaped grid, and the inner diameter of the circle formed is the same as that of the intervening aorta.
  • the outer diameters of the valve stents were matched after release.
  • the outflow surface of the valve leaflet is the outflow end of the distal center, the inflow surface of the leaflet is the inflow end near the heart, the anchoring loop of the outflow end is a quasi-circular fold extended from the grid of the connecting part of the stent, the outflow
  • the shape, size and turning angle of the anchoring wire loop at the end match the simulated shape of the lesion based on the three-dimensional reconstruction of the patient's image data;
  • the anchoring wire loop at the inflow end of the stent is a small turn-like circle or a row of diamond-shaped grid structure , the shape, size, and turnback of the quasi-circular fold at the inflow end or a row of diamond-shaped grid structures match the simulated shape and circumference of the basal portion of the aortic valve inflow end leaflet based on the three-dimensional reconstruction of the patient's image data;
  • the connecting part of the stent is a
  • the taper of the former matches the simulated shape of the aortic valve based on the three-dimensional reconstruction of the patient's image data; the length is measured from the coronary artery of the patient's image.
  • the actual length between the lower edge of the opening and the base of the valve leaflet at the inflow end of the aortic valve is the length of the connecting part of the stent.
  • the interventional aortic valve anchoring stent In the first anchoring state, the interventional aortic valve anchoring stent is released from the compressed state by the catheter, and the anchoring wire loop at the outflow end of the stent is folded back and extends into the valve pocket of the patient's diseased aortic valve leaflet
  • the smaller circular anchoring silk loops corresponding to the inflow end of the stent are everted at the base of the leaflet at the inflow end of the diseased aortic valve, and the corresponding silk loops at both ends form a counter-positioned clamp inside and outside the valve leaflet, and the aortic
  • the grid of the connecting part of the valve anchoring stent is released into a funnel shape at the junction of the diseased aortic valve leaflet, so that the valve leaflet is in an approximate normal opening and closing state; in the second anchoring state, in the first anchoring state , through the catheter, the interventional bioprosthetic aortic valve that is compressed into a cord shape
  • the external force of the ball expansion makes the interventional aortic valve expand from a cord shape to a cylindrical shape (functional state).
  • the secondary deformation of the anchoring stent from the funnel shape is also cylindrical, and it is closely combined with the interventional aortic valve.
  • With the secondary deformation of the interventional aortic valve anchoring stent it is again connected to the patient's diseased aortic valve leaflet and the valve leaflet is attached to the aortic valve.
  • the root tissue of the arterial wall is eventually anchored together.
  • Both the outflow surface and the inflow surface of the connection part of the aortic valve anchoring stent are provided with a fixing strut or a bracket end for embedding into the interventional aortic valve stent, and the bending direction of the fixing strut or the stent end is The axis is bent, and the bending direction of the fixed strut or the end of the stent is axially bent and transformed into a cylindrical shape in the second state. The distance between the rod or stent end bends matches the height of the intervening aortic valve stent.
  • the two ends of the connecting part of the aortic valve anchoring stent are provided for embedding a number of centripetal hooks at the outflow end of the interventional aortic valve stent, and the connection between these centripetal folding hooks and the aortic valve anchoring stent
  • the inflow end of the part is provided with a plurality of fixed struts or stents for embedding the inflow end of the interventional aortic valve stent to be bent up and down to encircle, which can prevent the interventional aortic valve from being displaced when it is released.
  • the grid of the connecting part of the aortic valve anchoring stent is a unit grid composed of a compressible diamond grid, a V-shaped grid and/or a hexagonal or polygonal grid, and the grid part is connected to the two ends
  • the anchoring silk loops are adaptively connected.
  • the circular arc outer peripheral edge of the anchoring wire loop at the inflow end of the aortic valve anchoring stent is in close contact with the subroot of the patient's aortic valve.
  • the connecting part of the aortic valve anchoring stent is cylindrical, and the inner peripheral diameter matches the outer diameter of various sizes and specifications of the interventional artificial biological aortic valve.
  • the surface of the aortic valve anchoring stent is covered with a layer of medical polymer film.
  • the aortic valve anchoring stent is a three-dimensionally formed structure or a split connection structure after integral laser cutting.
  • the anchor bracket is made of nickel-titanium alloy.
  • the interventional bioprosthetic aortic valve of the present invention includes a cobalt-chromium alloy stent that is radially compressible and can be cylindrically expanded by a balloon, or a nickel-titanium alloy stent that is radially compressible and self-expandable to be cylindrically shaped, three
  • the fan-shaped leaflets arranged inside the stent, the three fan-shaped leaflets all have free edges, arc-shaped bottom edges and leaflet junction joints extending on both sides, and the stent is a metal mesh tube.
  • the valve frame is cobalt-based alloy cobalt or chromium alloy or nickel-titanium alloy.
  • the interventional aortic valve anchoring stent is first inserted into the diseased aortic valve through the delivery catheter and released into the first anchoring state, and then the interventional artificial biological aortic valve is sent to the anchoring bracket through the valve delivery catheter, As the valve is expanded, the intervening aortic valve anchoring stent is expanded to the second anchoring state, and finally at the same time the fitting of the stent joint and the intervening aortic valve and the deformation of the stent are in the second state, completing the integration with the perivalvular and Further tight integration of subvalvular tissue forms the final anchor.
  • the interventional artificial biological aortic valve delivery kit includes an interventional aortic valve delivery device, a guide sheath, a valve crimping device and a pressure pump.
  • the system of the present invention is introduced via femoral artery, carotid artery, subclavian artery or apical puncture, and the intervening aortic valve anchoring stent and intervening artificial biological aortic valve can be introduced in the same way anteriorly and posteriorly or in different ways. enter. Every time a treatment process of an interventional aortic valve with personalized presets for precise anchoring is completed, all the above-mentioned relevant data are used as independent data units, accumulating a large amount of personalized data, and the split type can be accurately anchored through artificial intelligence.
  • the intelligence, scale and industrialization of the interventional aortic valve system is introduced via femoral artery, carotid artery, subclavian artery or apical puncture, and the intervening aortic valve anchoring stent and intervening artificial biological aortic valve can be introduced in the same way anteriorly and posteriorly or in different ways. enter. Every time a treatment process of an interventional aor
  • Fig. 1 is a physical diagram of various integrated aortic valves in the prior art.
  • 2A-C are schematic diagrams of different forms of anchoring stents according to embodiments of the present invention.
  • 3A-B are schematic diagrams of an outflow surface and an inflow surface of an anchoring stent according to an embodiment of the present invention.
  • 4A-C are schematic diagrams illustrating the combination of an anchoring stent and an aortic valve according to an embodiment of the present invention.
  • 5A-B are schematic diagrams of the outflow surface and inflow surface after the anchoring stent is combined with the aortic valve according to an embodiment of the present invention.
  • 6A-B are schematic diagrams of the first anchoring state after the interventional aortic valve anchoring stent is released through the catheter according to an embodiment of the present invention.
  • FIGS. 7A-B are schematic diagrams of the second anchoring state after the interventional aortic valve is delivered into the anchoring stent through the catheter according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of an interventional aortic valve according to an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of an interventional bioprosthetic aortic valve delivery system according to an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of loading an interventional aortic valve anchoring stent according to an embodiment of the present invention.
  • 11A-C are schematic diagrams of reproduction of the aortic valve anchoring stent inserted through the femoral artery according to an embodiment of the present invention.
  • FIG. 12A-C are schematic diagrams of accessing the anchoring stent shown in FIG. 11 through a transfemoral approach to the aortic valve according to an embodiment of the present invention.
  • FIGS. 13A-C are schematic diagrams of reproducing the transapical interventional aortic valve anchoring stent according to an embodiment of the present invention.
  • FIG. 14A-C are schematic diagrams of transapical access to the aortic valve into the anchoring stent shown in FIG. 13 according to an embodiment of the present invention.
  • 15A-D are schematic diagrams of an anchoring stent for a patient with a bicuspid valve according to an embodiment of the present invention.
  • 16A-C are schematic diagrams of anchoring stents for patients with different lesions according to an embodiment of the present invention.
  • a split-type interventional aortic valve system that can be accurately anchored in this embodiment includes a split interventional aortic valve anchoring stent 10 and an interventional artificial biological aortic valve 20, the interventional aortic valve anchoring stent
  • the shape and structure of the patient's personalized image data match the real structure of the aortic valve after three-dimensional reconstruction.
  • the interventional aortic valve anchoring stent is delivered to the patient's aortic valve for release, deformation, and patient
  • the leaflets and subvalvular tissue are aligned and combined;
  • the interventional bioprosthetic aortic valve is delivered to the interventional aortic valve anchoring stent for release, and the valve stent deforms and expands the valve to a functional state, making the aortic valve anchoring
  • the fixed stent is deformed again to be embedded and combined with the expanded aortic valve, and at the same time, the aortic valve anchoring stent is deformed and anchored again.
  • the interventional aortic valve anchoring stent of this embodiment is one of the key components of a split-type interventional aortic valve system that can be precisely anchored in the present invention.
  • Its material is nickel-titanium alloy
  • the aortic valve anchoring stent is an umbrella-shaped stent structure, which consists of three parts: 1 the anchoring wire loop 11 on the outflow surface of the stent; Fixed grid 14; and 3 support connection part 13.
  • the valve leaflet outflow surface is two or three outflow surface anchoring silk loops, which match the real shape of the three-dimensional reconstruction of the patient's valve leaflet outflow surface image data;
  • the valve leaflet inflow surface of the anchoring bracket is the The anchoring wire loop corresponds to the anchoring wire loop on the outflow surface to form a structure to clamp the valve leaflet 30, and its shape matches the real shape of the three-dimensional reconstruction of the subvalvular image data of the aortic valve;
  • the connecting part of the anchoring stent is a circle The inner diameter of the formed circle matches the outer diameter of the interventional aortic valve stent after release.
  • the grid of the connecting part of the aortic valve anchoring stent is a unit grid composed of a compressible diamond grid, a V-shaped grid and/or a hexagonal or polygonal grid, and the grid part is connected to the two ends
  • the anchoring silk loops are adaptively connected. Since the anchoring silk loop on the outflow surface is based on the real shape of the 3D reconstruction of the patient's valve leaflet outflow surface image data and the real shape of the 3D reconstruction of the subvalvular image data of the aortic valve, based on the same design principles and concepts above, the anchoring silk loop The specific shape and structure are also slightly different, as shown in the figure, in order to achieve more accurate personalized design and adaptation, and achieve better postoperative results.
  • Both the outflow surface and the inflow surface of the connecting part of the aortic valve anchoring stent are provided with fixing struts 111 for embedding the interventional aortic valve stent or bending 112 at the end of the stent (see FIG. ), the bending direction of the fixed rod or the end of the stent is axial bending, and the bending direction of the fixed rod or the end of the stent is axial bending.
  • the aortic valve When the shape becomes cylindrical in the second state, the aortic valve
  • the distance between the fixed struts at both ends of the outflow surface and the inflow surface of the connection part of the anchoring stent or the bending distance between the ends of the stent matches the height of the interventional aortic valve stent.
  • the two ends of the connecting part of the aortic valve anchoring stent are provided for embedding a number of centripetal hooks at the outflow end of the interventional aortic valve stent, and the connection between these centripetal folding hooks and the aortic valve anchoring stent
  • the inflow end of the part is provided with a plurality of fixed struts or stents for embedding the inflow end of the interventional aortic valve stent to be bent up and down to encircle, which can prevent the interventional aortic valve from being displaced when it is released.
  • the arc outer peripheral edge of the anchoring wire loop at the inflow end of the aortic valve anchoring stent is 1-2 mm away from the subroot of the patient's aortic valve and the aortic wall, preferably 1.5 mm apart.
  • the connecting part of the aortic valve anchoring stent is cylindrical, and the inner peripheral diameter matches the outer diameter of various sizes and specifications of the interventional artificial biological aortic valve.
  • the surface of the aortic valve anchoring stent is covered with a layer of medical polymer film.
  • the interventional bioprosthetic aortic valve includes a radially compressible cobalt-chromium alloy stent that can be balloon-expanded to form a cylindrical shape, or a radially compressible self-expandable nickel-titanium alloy stent that is cylindrically shaped.
  • the fan-shaped leaflets inside the bracket, the three fan-shaped leaflets all have free edges, arc-shaped bottom edges, and leaflet junctions extending on both sides, and the bracket is a metal mesh tube. It is similar to structures well known in the art.
  • the obtained diameter items are matched with the real scale, and the processing drawings of the interventional aortic valve anchoring stent are made.
  • the normal aortic valve is a tricuspid valve structure, and patients with bicuspid leaflet deformity due to birth defects, as well as senile degeneration, valve calcification and rheumatic aortic valve disease.
  • the morphology of various aortic valve lesions matches the real structure of the aortic valve after three-dimensional reconstruction of the image data.
  • the aortic valve anchoring stent processed and manufactured according to the real data of the patient’s image is the state before the stent is crimped, and it is also the first anchoring state after the stent is delivered to the aortic valve at the diseased valve orifice through the delivery catheter (see Figure 6 ).
  • the second anchoring state of the interventional aortic valve anchoring stent is when the interventional aortic valve is transported into the anchoring stent through the delivery catheter, and the valve is expanded by the balloon-assisted expansion (or the nickel-titanium memory alloy valve stent self-expands.
  • the fixed struts at the atrial end of the connecting structure are deformed into the second anchoring state, and the fixed struts or stents at both ends of the stent are bent centripetally and encircled to be axially parallel.
  • the fixed rods or the bent ends of the stents are buckled together on the rods at both ends of the interventional aortic valve stent.
  • the automatic anastomosis between the anchoring stent and the two ends of the interventional aortic valve makes the interventional aortic valve and the anchoring stent precise Integrating into one piece ensures zero displacement of the intervening aortic valve (see Figure 4).
  • the content of the present invention is summarized as follows: 1
  • the split-type interventional aortic valve system is composed of two parts: the interventional aortic valve anchoring stent and the interventional aortic valve, as well as the delivery system and system kit;
  • the image data of the aortic valve is converted into a three-dimensional real structure design.
  • the outflow surface of the anchoring stent is larger and the inflow surface is smaller and the anchoring loop is circular.
  • the stent connection structure between the two ends is conical.
  • the designed anchoring loops can accurately locate and anchor the loops on the outflow surface and inflow surface of the stent;
  • the anchoring stent can be transfemoral or transapical
  • the first anchoring state is released at the position of the aortic valve, and with the help of the deformation force released by the subsequent intervention of the aortic valve ball, the second anchoring state of the anchoring stent is formed in the diseased aortic valve, so that the interventional aortic valve It can be automatically integrated with the second anchoring state of the anchoring stent in the heart, and at the same time realize the fastening of the perivalvular and subvalvular tissues again to complete the final anchoring; 5The anchoring stent is deformed from the first state to the second state, and the deformation The process realizes the automatic combination with the interventional aortic valve, making the release control of the interventional aortic
  • the delivery system includes a delivery catheter, an intervening aortic valve anchoring stent loader, an intervening aortic valve crimping device, a valve release balloon and a delivery kit.
  • the loaded anchoring stent is delivered to the diseased aortic valve of the patient through the femoral artery (Fig. 11A), and the inflow and outflow surfaces of the anchoring stent are sequentially released (Fig. 11B ), which is the first state of the anchoring stent (FIG. 11C).
  • Fig. 11A the first state of the anchoring stent
  • FIG. 11C the first state of the anchoring stent
  • the delivery sheath is withdrawn, and the pre-assembled interventional aortic valve is delivered into the anchor stent through the catheter along the original route ( Figure 12A), and then expanded with the assistance of a balloon.
  • the aortic valve is intervened to deform the anchoring stent into the second anchoring state (Fig. 12B), to realize the self-precise combination with the intervening aortic valve, and at the same time fasten with the subvalvular tissue to complete the final anchoring (Fig. 12C).
  • the loaded anchoring stent is delivered to the diseased aortic valve of the patient through apical puncture (Fig. 13A), and the outflow surface (Fig. 13B) and inflow surface of the anchoring stent are sequentially released , which is the first state of the anchoring stent (Fig. 13C); after the release of the anchoring stent is completed, the interventional aortic valve is held in the delivery sheath in advance, and the interventional aortic valve is delivered to the anchoring stent through apical puncture (Fig.
  • FIG. 14A After expand the interventional aortic valve with the assistance of a balloon, so that the anchoring stent is deformed into the second anchoring state (Fig. 14B), realizing the self-precise combination with the interventional aortic valve, and at the same time, it is in contact with the perivalvular and inferior aortic valves. Fastening of the tissue completes the final anchoring (FIG. 14C).
  • the number of anchoring loops in this embodiment is two.
  • the position of the aortic valve is very limited.
  • the mesh of the structure of the anchoring stent connection part is also designed to be shorter to improve the adaptability to the surrounding tissue, see FIG. 16 .
  • the achievable significance of the present invention lies in: 1
  • the split-type design realizes the functional separation of the anchoring of the interventional valve and the support of the valve leaflet by the valve support, and the anchoring of the interventional valve to the aortic valve position is handed over to the anchoring support , so it is possible to realize the real anatomical shape and structure of the patient's specific image data 3D reconstruction and personalized design of the anchoring stent to make the anchoring more accurate;
  • the step-by-step intervention of the anchoring stent and the interventional valve can avoid the difficulty of compressing due to the complex structure and large volume.
  • the second anchoring state of the anchoring stent can be preset; patient-specific imaging
  • the data, special software and 3D printing pre-test are used to complete the presetting of the size and dimension of each part of the anchoring stent construction, that is, the three-dimensional shape-setting design and processing of the first anchoring state, so that it can be accurately aligned after being released through the catheter, and it is also a reference for interventional surgery.
  • the tapered structure in the first state of the anchoring stent can moderately open the heavy stenosis and restrain the severe regurgitation.
  • the former not only provides a channel for valve intervention, but also avoids sudden expansion of stenotic lesions; the latter can reduce the massive regurgitation of valvular insufficiency, and provide space and time guarantee for the intervention of the aortic valve; 3Use the external force released by the valve to drive the anchor
  • the anchoring stent is deformed from the first anchoring state to the second state, and this deformation causes the anchoring stent to be tightly integrated with the valve to ensure zero displacement of the valve, and the anchoring grid or hook structure on the inflow surface is used to further Closely combined with the subvalvular tissue to realize the pre-designed alignment anchoring, and at the same time form a clamp with the structure on the valve to complete the final preset anchoring; 4
  • the inflow end and outflow end of the connection part of the interventional aortic valve anchoring stent are set
  • the strut structure can be integrated with the interventional aortic valve from both ends to ensure that the valve does not shift; Accurately intervene

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种分体式可精准锚定的介入主动脉瓣系统,包括分体的介入主动脉瓣锚定支架(10)和介入人工生物主动脉瓣(20),介入主动脉瓣锚定支架(10)的形态和结构与患者影像数据经三维重建后的主动脉瓣真实结构相匹配,介入主动脉瓣锚定支架(10)被输送至患者主动脉瓣位释放、形变、与患者主动脉瓣叶组织和瓣下组织对位结合;介入人工生物主动脉瓣(20)被输送至介入主动脉瓣锚定支架(10)内释放,瓣膜支架形变扩启瓣膜至功能状态,使介入主动脉瓣锚定支架(10)再次形变与扩启的介入人工生物主动脉瓣(20)相嵌结合,同时介入主动脉瓣锚定支架(10)再次形变并锚定。基于三维重建而设计的系统,可以实现介入主动脉瓣个性化的精准锚定。

Description

一种分体式可精准锚定的介入主动脉瓣系统 技术领域
本发明涉及一种人工生物心脏瓣膜,特别涉及一种分体式可精准锚定的介入主动脉瓣系统。
背景技术
介入主动脉瓣(TARV)的研制与临床应用历经二十年。由于具有微创,无需体外循环,近、中期效果确切的优点,已经被公认对高龄或传统外科主动脉瓣置换高危患者的有效治疗手段。目前,全球已有65个国家,累计有1400家医院开展了介入主动脉瓣(TAVR)手术,总计植入各类介入主动脉瓣超60余万枚(图1),每年增幅达40%,2021年全球TAVR手术达18.2万余台。然而,对于某些重度钙化的二叶式主动脉瓣、升主动脉扩张、冠状动脉阻塞风险及单纯主动脉瓣反流(aortic regurgitation,AR)的患者,现有的TAVR产品还不能满足这类患者的救治需求,即便是主动脉瓣重度狭窄的患者,也时常伴有各类严重并发症的发生,诸如瓣膜释放后的变形导致瓣膜返流或瓣膜移位甚至脱落、冠脉开口梗阻、严重瓣周漏、压迫损伤窦房结所致传导阻滞而不得不再植用起搏器以及瓣膜的过度扩张导致瓣环破裂甚至死亡。这些并发症的存在,不仅使各类复杂患者面临风险,同时也加大了术者技能掌握的难度和更长时间经验积累的考验,如果介入主动脉瓣在体内释放后能确保精准且稳定锚定,以上问题有望迎刃而解。
发明内容
为此,本发明的介入主动脉瓣系统基于患者个性化的影像数据经三维重建后的主动脉瓣真实病变的解剖结构,提供一个分体式的设计,包括介入主动脉瓣锚定支架和介入人工生物主动脉瓣两个部分,先介入一个特定的支架与瓣叶夹持,然后再把介入主动脉瓣导入支架内释放,如此使介入主动脉瓣与锚定支架结合为一体,从而实现精准预设的锚定。
本发明涉及一种分体式可精准锚定的介入主动脉瓣系统,包括分体的介入主动脉瓣锚定支架和经导管介入的人工生物主动脉瓣假体以及相应的输送系统及套件。介入主动脉瓣锚定支架的形状和结构设计是依据患者影像数据经三维重建后的病变主动脉瓣真实结构相匹配,经导管将介入主动脉瓣锚定支架输送至患者主动脉瓣位,顺序释放主动脉瓣锚定支架的锚定丝袢、支架连接结构和流入面网格,使主动脉瓣锚定支架各部位与患者主动脉瓣流出面和流入面于瓣叶兜组织上下形成夹持,并保持病变的主动脉瓣原有功能,为接下来的经导管输入的介入主动脉瓣的顺利瓣导入支架内展开通路,即为主动脉瓣锚定支架的第一状态;所述介入人工生物主动脉瓣,经压握、装载并经输送器导管送至所述先前介入的第一状态的主动脉瓣锚定支架内,经球囊辅助扩启介入人工生物主动脉瓣(或镍钛记忆合金支架自膨),随着介入人工生物主动脉瓣被扩启,使主动脉瓣锚定支架形变为圆柱状的第二锚定状态,实现与介入人工生物主动脉瓣相嵌结合为一体,同时第二状态的锚定支架两端锚定丝袢或网格与主动脉瓣瓣叶及瓣下组织紧密结合,实现对患者病变主动脉瓣病变全适应症 (狭窄或返流以及狭窄合并返流)的介入治疗。
本发明的技术方案和实施过程是:
一种分体式可精准锚定的介入主动脉瓣系统,包括分体的介入主动脉瓣锚定支架和介入人工生物主动脉瓣。①所述介入主动脉瓣锚定支架的形态和结构设计是按患者主动脉瓣位的CT和超声影像数据,通过导入专有的软件重建三维的主动脉瓣真实解剖结构与形态,据此设计出介入主动脉瓣锚定支架,经激光切割、三维成形以及热处理加工和抛光,制成所述介入主动脉瓣锚定支架的第一状态,清洗包装消毒备用。②用装载器压握装载锚定支架入输送器被输送至患者主动脉瓣位定位释放,支架形变呈现第一锚定状态与患者主动脉瓣叶和瓣下组织对位结合。③所述介入人工生物主动脉瓣装载入输送器随后被输送至所述介入主动脉瓣锚定支架内释放,球扩外力瓣膜展开至功能状态,也同时使所述主动脉瓣锚定支架随之再次形变与扩启的介入主动脉瓣相嵌结合,所述主动脉瓣锚定支架的再次形变为第二锚定状态并完成利用瓣叶组织结合实现最终预设的锚定。
进一步,所述一种分体式可精准锚定的介入主动脉瓣系统,还包括输送组件,所述输送组件包括介入人工生物主动脉瓣锚定支架输送套件和介入人工生物主动脉瓣输送套件,所述介入人工生物主动脉瓣锚定支架输送套件包括输送导管、介入人工生物主动脉瓣锚定支架装载器。
所述主动脉瓣锚定支架具有置于导管内的压缩状态、经导管释放后的第一锚定状态和与介入主动脉瓣结合后的第二锚定状态,所述第一锚定状态下,所述主动脉瓣锚定支架经所述输送器释放后形变与患者主动脉瓣叶和对应流入面的瓣下组织对位接合;所述第二锚定状态下,所述主动脉瓣锚定支架经介入的主动脉瓣扩启而二次形变,与介入主动脉瓣结合同时完成与患者主动脉瓣位组织最终锚定结合。所述三维重建的真实结构为数字影像模型或3D打印的仿真实体模型。所述依据患者影像数据三维重建的仿真主动脉瓣病变的解剖结构为患者CT、超声及核磁的综合影像数字化转换后仿真的三维图像模型以及相应3D打印的仿真实体模型。所述主动脉瓣锚定支架为一伞管形支架结构,包括瓣叶流出面、瓣叶流入面和两者之间连接部,所述瓣叶流出面为两个或三个锚定丝袢,与患者瓣叶流出面影像数据三维重建的真实形态相匹配;所述锚定支架的瓣叶流入面,为与流出面的丝袢对应的锚定丝袢,可与流出面锚定丝袢形成夹持瓣叶的结构,形状与主动脉瓣瓣下影像数据三维重建真实形态相匹配;所述锚定支架的连接部为圆口漏斗状的网格,所形成的圆周内径与介入主动脉瓣支架释放后的外径相匹配。所述瓣叶流出面为远心的流出端,瓣叶流入面为近心的流入端,所述流出端的锚定丝袢为支架连接部的网格延伸的类圆形翻折,所述流出端的锚定丝袢的形态、尺寸和回折角度与依据患者影像数据三维重建的病变仿真形态相匹配;所述支架流入端的锚定丝袢为类圆形较小翻折或一排菱形网格结构,所述流入端的类圆形翻折的形态、尺寸和回折或一排菱形网格结构与依据患者影像数据三维重建的主动脉瓣流入端瓣叶基底部的仿真形态和周径相匹配;所述支架连接部为圆锥形漏斗状网格或连接流入端与流出端的3个支杆,前者锥度与依据患者影像数据三维重建的主动脉瓣仿真形态相匹配;长度的测量从患者影像的冠脉开口下缘至主动脉瓣 流入端瓣叶基底部之间实际长度为支架连接部长度。所述第一锚定状态下,所述介入主动脉瓣锚定支架经导管释放后由压缩状态回形,支架流出端的锚定丝袢回折对应延伸入至患者病变主动脉瓣叶的瓣兜内和支架流入端对应的类圆形较小的锚定丝袢外翻于病变主动脉瓣流入端瓣叶基底部,两端对应的丝袢于瓣叶内外和上下形成对位夹持,主动脉瓣锚定支架连接部网格释放回形呈漏斗状于病变主动脉瓣叶交汇处,使瓣叶呈近似正常启闭状态;所述第二锚定状态下,在所述第一锚定状态,经导管输送被压握成条索状的介入人工生物主动脉瓣进入支架内被球扩释放,球扩的外力使介入主动脉瓣由条索状扩至圆柱状(功能状态),同时,锚定支架由漏斗状二次形变也为圆柱状,与介入主动脉瓣紧密结合,随着,介入主动脉瓣锚定支架的二次形变也再次与患者病变主动脉瓣叶以及瓣叶附着主动脉壁的根部组织最终锚定结合。
所述主动脉瓣锚定支架的连接部的流出面和流入面均设置有用于嵌入介入主动脉瓣支架固定支杆或支架端头弯折,所述固定支杆或支架端头弯折方向为轴心弯折,所述固定支杆或支架端头弯折方向为轴心弯折形变为第二状态呈圆柱状时,主动脉瓣锚定支架的连接部流出面和流入面两端固定支杆或支架端头弯折之间的距离与介入主动脉瓣支架高度相匹配。所述主动脉瓣锚定支架的连接部两端设置的,用于嵌入介入主动脉瓣支架流出端若干端头向心折钩,这些向心折钩与所述主动脉瓣锚定支架的连接部流入端设置用于嵌入介入主动脉瓣支架流入端的多个固定支杆或支架弯折上下合围,可防止介入主动脉瓣释放时发生移位。所述固定支杆或支架弯折为3-12个,优选为3-6个。所述主动脉瓣锚定支架的连接部网格为由可压缩的菱形网格、V形网格和/或六边形或多边形网格构成的单元网格,所述网格部分与两端锚定丝袢呈适应性连接。所述主动脉瓣锚定支架流入端锚定丝袢的圆弧外周缘与患者主动脉瓣下根部紧密贴合。所述主动脉瓣锚定支架连接部第二状态呈圆柱状内周直径与介入式人工生物主动脉瓣各种相应大小规格的外径相匹配。所述主动脉瓣锚定支架表面被覆有一层医用高分子薄膜。所述主动脉瓣锚定支架为激光一体切割后三维成形结构或分体的连接结构。所述锚定支架为镍钛合金材质。
本发明的介入人工生物主动脉瓣包括径向可压缩,并可被球囊扩张后呈圆柱状的钴铬合金支架,或径向可压缩自膨后呈圆柱状的镍钛合金支架,三个设置于所述支架内侧的扇形瓣叶,三个所述扇形瓣叶均具有游离缘、弧形底边以及延伸于两侧的瓣叶交界连接部,所述支架为金属网管。瓣架为钴基合金钴或铬合金或镍钛合金。所述介入主动脉瓣锚定支架先经输送器导管介入病变主动脉瓣位并释放为第一锚定状态,然后再经瓣膜输送器导管将介入人工生物主动脉瓣送入锚定支架上,随着瓣膜被扩开,同时介入主动脉瓣锚定支架被扩至第二锚定状态,最终同时支架结合部与介入主动脉瓣的嵌合以及支架形变为第二状态,完成与瓣周和瓣下组织的进一步紧密结合形成最终锚定。所述介入人工生物主动脉瓣输送套件包括介入主动脉瓣输送器、导引鞘、瓣膜压握器和充压泵。
本发明的系统经由股动脉、颈动脉、锁骨下动脉或心尖穿刺路入,所述介入主动脉瓣锚定支架和介入人工生物主动脉瓣可前、后同一途径路入或分别不同路径先后路入。每完成一次针对具体患 者个性化预设实现精准锚定的介入主动脉瓣的治疗过程,所有上述相关数据作为独立的数据单元,累积大量个性化数据,通过人工智能实现所述分体式可精准锚定介入主动脉瓣系统的智能化、规模化与产业化。
附图说明
图1现有技术中各种一体式主动脉瓣实物图。
图2A-C为根据本发明实施例的不同形态的锚定支架示意图。
图3A-B为根据本发明实施例的锚定支架流出面和流入面示意图。
图4A-C为根据本发明实施例的锚定支架和主动脉瓣结合示意图。
图5A-B为根据本发明实施例的锚定支架和主动脉瓣结合后的流出面和流入面示意图。
图6A-B为根据本发明实施例的介入主动脉瓣锚定支架经导管释放后的第一锚定状态示意图。
图7A-B为根据本发明实施例的介入主动脉瓣经导管送入锚定支架后的第二锚定状态状态示意图。
图8为根据本发明实施例的介入主动脉瓣示意图。
图9为根据本发明实施例的介入人工生物主动脉瓣输送系统示意图。
图10为根据本发明实施例的介入主动脉瓣锚定支架装载示意图。
图11A-C为根据本发明实施例的经股动脉路入介入主动脉瓣锚定支架转载示意图。
图12A-C为根据本发明实施例的经股动脉路入主动脉瓣进入图11所示的锚定支架示意图。
图13A-C为根据本发明实施例的经心尖路入介入主动脉瓣锚定支架转载示意图。
图14A-C为根据本发明实施例的经心尖路入介入主动脉瓣进入图13所示的锚定支架示意图。
图15A-D为根据本发明实施例的针对二叶瓣患者的锚定支架示意图。
图16A-C为根据本发明实施例的针对不同病变患者的锚定支架示意图。
具体实施方式
本实施例中的一种分体式可精准锚定的介入主动脉瓣系统,包括分体的介入主动脉瓣锚定支架10和介入人工生物主动脉瓣20,所述介入主动脉瓣锚定支架的形态和结构与患者个性化的影像数据经三维重建后的主动脉瓣真实结构相匹配,所述介入主动脉瓣锚定支架被输送送至患者主动脉瓣位释放、形变、与患者主动脉瓣叶和瓣下组织对位结合;所述介入人工生物主动脉瓣被输送至所述介入主动脉瓣锚定支架内释放,瓣膜支架形变扩启瓣膜至功能状态,使所述主动脉瓣锚定支架再次形变与扩启的介入主动脉瓣相嵌结合,同时所述主动脉瓣锚定支架再次形变并锚定。
参阅图2-图5,本实施例的介入主动脉瓣锚定支架是本发明一种分体式可精准锚定的介入主动脉瓣系统关键部件之一。其材质为镍钛合金,所述主动脉瓣锚定支架为一伞管形支架结构,由三个部分组成:①支架流出面锚定丝袢11;②支架流入面锚定丝袢12或锚定网格14;和③支架连接部13。所述瓣叶流出面为两个或三个流出面锚定丝袢,与患者瓣叶流出面影像数据三维重建的 真实形态相匹配;所述锚定支架的瓣叶流入面,为与流出面锚定丝袢相对应,可与流出面锚定丝袢形成夹持瓣叶30的结构,形状与主动脉瓣瓣下影像数据三维重建真实形态相匹配;所述锚定支架的连接部为圆口漏斗状的网格,所形成的圆周内径与介入主动脉瓣支架释放后的外径相匹配。所述主动脉瓣锚定支架的连接部网格为由可压缩的菱形网格、V形网格和/或六边形或多边形网格构成的单元网格,所述网格部分与两端锚定丝袢呈适应性连接。由于流出面锚定丝袢是依据患者瓣叶流出面影像数据三维重建的真实形态以及主动脉瓣瓣下影像数据三维重建真实形态相匹配,所以基于上述相同的设计原则和理念,锚定丝袢的具体形态和结构也略有差异,如图所示,以实现更为精准的个性化设计和适应,达到更好的术后效果。
所述主动脉瓣锚定支架的连接部的流出面和流入面均设置有用于嵌入介入主动脉瓣支架固定支杆111或支架端头弯折112(参阅图4C固定支杆形式的局部放大示意图),所述固定支杆或支架端头弯折方向为轴心弯折,所述固定支杆或支架端头弯折方向为轴心弯折形变为第二状态呈圆柱状时,主动脉瓣锚定支架的连接部流出面和流入面两端固定支杆或支架端头弯折之间的距离与介入主动脉瓣支架高度相匹配。所述主动脉瓣锚定支架的连接部两端设置的,用于嵌入介入主动脉瓣支架流出端若干端头向心折钩,这些向心折钩与所述主动脉瓣锚定支架的连接部流入端设置用于嵌入介入主动脉瓣支架流入端的多个固定支杆或支架弯折上下合围,可防止介入主动脉瓣释放时发生移位。所述固定支杆或支架弯折为3-12个,优选为3-6个。所述主动脉瓣锚定支架流入端锚定丝袢的圆弧外周缘与患者主动脉瓣下根部距主动脉壁间隔1-2mm,优选间隔1.5mm。所述主动脉瓣锚定支架连接部第二状态呈圆柱状内周直径与介入式人工生物主动脉瓣各种相应大小规格的外径相匹配。所述主动脉瓣锚定支架表面被覆有一层医用高分子薄膜。
介入人工生物主动脉瓣包括径向可压缩,并可被球囊扩张后呈圆柱状的钴铬合金支架,或径向可压缩自膨后呈圆柱状的镍钛合金支架,三个设置于所述支架内侧的扇形瓣叶,三个所述扇形瓣叶均具有游离缘、弧形底边以及延伸于两侧的瓣叶交界连接部,所述支架为金属网管。其与本领域熟知的结构类似。
介入主动脉瓣锚定支架流出面和流入面锚定丝袢的数量、形态、大小和弧度与患者病变主动脉瓣术前的CT影像数据,经三维重建(3mensio)后的真实结构以及图像测量得出的各径项真实尺相匹配,以此制成介入主动脉瓣锚定支架的加工图纸,通过特定的镍钛记忆合金管材的三维激光切割和三维成形加工,最终定制成个性化的介入主动脉瓣锚定支架。正常主动脉瓣为三叶瓣结构,由于出生缺陷会有二瓣叶畸形的患者,以及老年退行性变发生瓣膜钙化和风湿性主动脉瓣病变。各类主动脉瓣病变形态与影像数据经三维重建后主动脉瓣真实结构相匹配。
上述按患者影像真实数据加工制造主动脉瓣锚定支架为支架的压握前状态,也是支架经输送器导管输送至主动脉瓣位于病变瓣口处释放后的第一锚定状态(参阅图6)。介入主动脉瓣锚定支架的第二锚定状态是当介入主动脉瓣经输送器导管输送至锚定支架内,通过球囊辅助扩张,瓣膜被扩 启(或镍钛记忆合金瓣膜支架自膨)使介入主动脉瓣锚定支架由第一锚定状态形变为第二锚定状态,凭借支架的形变力与介入主动脉瓣释放的球扩力相结合成为一体(参阅图7),同时介入主动脉支架第二状态与瓣周及瓣下组织40紧密结合,实现最终锚定(图7B)。与此同时,锚定支架第一锚定状态下,其连接结构心房端固定支杆随着形变为第二锚定状态,支架两端的固定支杆或支架弯折向心合围呈轴向平行,使固定支杆或支架弯折端头合力扣住介入主动脉瓣支架两端的支杆上,这种锚定支架与介入主动脉瓣两端的自动吻扣,使介入主动脉瓣膜与锚定支架精准结合成为一体,确保介入主动脉瓣的0移位(参阅图4)。
本发明内容总结如下:①分体式介入主动脉瓣系统是由介入主动脉瓣锚定支架和介入主动脉瓣两部分以及输送系统与系统套件构成;②其中锚定支架是依据患者术前病变主动脉瓣的影像数据转换为三维真实结构设计锚定支架的流出面较大类圆形锚定丝袢和流入面较小类圆形锚定丝袢,两端之间的支架连接结构为圆锥形漏斗样的网格支架结构;③利用病变主动脉瓣叶结构,设计的锚定丝袢,准确定位和锚定支架的流出面和流入面丝袢;④锚定支架可经股动脉或经心尖于主动脉瓣位释放第一锚定状态,借助随后介入的主动脉瓣球扩释放的形变力,于病变主动脉瓣内形变成锚定支架第二锚定状态,从而使介入主动脉瓣可与锚定支架第二锚定状态在心内自动嵌合成一体,同时实现再次将瓣周和瓣下组织扣紧完成最终锚定;⑤锚定支架由第一状态形变为第二状态,该形变过程实现了可与介入主动脉瓣的自动结合,使介入主动脉瓣的释放操控达到自动精准。
介入人工生物主动脉瓣及输送系统及实施
参阅图9-10,本申请实施例的输送系统包括由输送导管、介入主动脉瓣锚定支架装载器和介入主动脉瓣压握器、瓣膜释放球囊及输送器套件组成。
参阅图11-图12,实施方式一,首先把装载好的锚定支架经股动脉输送至患者病变的主动脉瓣内(图11A),顺序释放锚定支架的流入面和流出面(图11B),即为锚定支架的第一状态(图11C)。参阅图12A-C在完成锚定支架释放后,撤出输送鞘,将预装好的介入主动脉瓣经导管沿原路输送至锚定支架内(图12A),然后通过球囊辅助扩启介入主动脉瓣,使锚定支架形变为第二锚定状态(图12B),实现与介入主动脉瓣自行精准结合,同时与瓣下组织的扣紧,完成最终锚定(图12C)。
参阅图13-图14,实施方式二,把装载好的锚定支架经心尖穿刺输送至患者病变的主动脉瓣内(图13A),顺序释放锚定支架的流出面(图13B)和流入面,即为锚定支架的第一状态(图13C);在完成锚定支架释放后,预先把介入主动脉瓣压握在输送鞘内,经心尖穿刺将介入主动脉瓣膜送入至锚定支架内(图14A),然后通过球囊辅助扩启介入主动脉瓣,使锚定支架形变为第二锚定状态(图14B),实现与介入主动脉瓣自行精准结合,同时与瓣周和下组织的扣紧,完成最终锚定(图14C)。
此外,还有二叶瓣患者的介入主动脉瓣锚定支架,与三叶瓣患者的锚定支架类似,参阅图15, 本实施例的锚定丝袢的个数为两个。
在某些病例中,主动脉瓣的位置非常有限,相应地,锚定支架连接部的结构的网格也设计的更为短小,提高与周围组织的适配性,参阅图16。
以上所述实施例仅是为充分说明本发明所举的规范实施例。本发明的介入主动脉瓣系统,业已经动物试验实施了以上所述的技术方案,确认是可行的。
本发明可实现的意义在于:①分体式的设计实现了把介入瓣膜的锚定与瓣膜支架对瓣叶的支撑在功能上分开,把瓣膜介入至主动脉瓣位的锚定交给锚定支架,因此可以实现依据患者具体影像数据三维重建的真实解剖形态和结构个性化设计锚定支架使锚定更精准;分步介入锚定支架和介入瓣膜,可避免因结构复杂体积过大而难以压握,致使经导管输送困难;②通过对病变瓣膜的解剖结构特征进行锚定原理及最终锚定部位的预先设计和测量,可预设锚定支架的第二锚定状态;患者个性化影像学数据、专用软件及3D打印预试为锚定支架构建各部位的尺寸和维度完成预设,即第一锚定状态的三维定形设计和加工,使其经导管释放后精准对位,也为介入瓣膜的顺利送达提供支持。如锚定支架第一状态的锥形结构即可适度张开较重狭窄,又可约束较重度关闭不全。前者不仅为瓣膜介入提供通道,也可避免狭窄病变突然扩大;后者可减轻瓣膜关闭不全的大量返流,为介入主动脉瓣的进入提供空间和时间的保障;③利用瓣膜释放的外力驱动锚定支架由第一锚定状态形变为第二状态,这种形变产生锚定支架向心紧密与瓣膜结合为一体,保证瓣膜的0移位,并借助流入面锚定网格或钩袢结构进一步与瓣下组织紧密结合,实现事先设计的对位锚定,同时与瓣上的结构形成夹持完成最终预设的锚定;④介入主动脉瓣锚定支架连接部的流入端和流出端设置的支杆结构可从两端合抱与介入主动脉瓣结为一体,确保瓣膜无移位;⑤以上所述的分体式可精准锚定的介入主动脉瓣系统,每完成一次个性化预设的精准介入主动脉瓣的治疗过程,对相关数据的分析、介入主动脉瓣锚定支架的形态设计、加工制造、介入治疗全过程获得的相关数据以及术后随访数据等,作为独立的数据单元,累积大量个性化的影像数据、锚定支架设计以及加工制造参数、介入治疗过程及术后结果等相关数据,逐步实现所述分体式可精准锚定介入主动脉瓣系统介入治疗实施的智能化、商业化与规模化。

Claims (25)

  1. 一种分体式可精准锚定的介入主动脉瓣系统,其特征在于,包括分体的介入主动脉瓣锚定支架和介入人工生物主动脉瓣,
    所述介入主动脉瓣锚定支架的形态和结构与患者影像数据经三维重建后的主动脉瓣真实结构相匹配,所述介入主动脉瓣锚定支架被输送送至患者主动脉瓣位释放、形变、与患者主动脉瓣叶组织和瓣下组织对位结合;
    所述介入人工生物主动脉瓣被输送至所述介入主动脉瓣锚定支架内释放,瓣膜支架形变扩启瓣膜至功能状态,使所述主动脉瓣锚定支架再次形变与扩启的介入主动脉瓣相嵌结合,同时所述主动脉瓣锚定支架再次形变并锚定。
  2. 根据权利要求1所述的一种分体式可精准锚定的介入主动脉瓣系统,其特征在于,主动脉瓣叶组织为瓣叶和瓣膜流入面瓣叶根部组织。
  3. 根据权利要求1所述的一种分体式可精准锚定的介入主动脉瓣系统,其特征在于,
    所述介入人工生物主动脉瓣经导管输送至所述介入主动脉瓣锚定支架内释放,瓣膜支架形变扩启瓣膜至功能状态,使所述主动脉瓣锚定支架再次形变与扩启的介入主动脉瓣相嵌结合,同时所述主动脉瓣锚定支架再次形变,所致锚定支架与病变瓣叶和瓣下组织再次结合,使主动脉瓣锚定支架与瓣叶和对应的流入面瓣下组织形成夹持部,再次锚定的同时限位与之结合的介入人工生物主动脉瓣。
  4. 根据权利要求1所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,还包括还包括输送组件,所述输送组件包括介入人工生物主动脉瓣锚定支架输送套件和介入人工生物主动脉瓣输送套件,所述介入人工生物主动脉瓣锚定支架输送套件包括输送导管、介入人工生物主动脉瓣锚定支架装载器。
  5. 根据权利要求1-4任一所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述主动脉瓣锚定支架具有置于导管内的压缩状态、经导管释放后的第一锚定状态和与介入主动脉瓣结合后的第二锚定状态,所述第一锚定状态下,所述主动脉瓣锚定支架经所述输送器释放后形变与患者主动脉瓣叶和对应流入面的瓣下组织对位接合;所述第二锚定状态下,所述主动脉瓣锚定支架经介入的主动脉瓣扩启而二次形变,与介入主动脉瓣结合同时完成与患者主动脉瓣位组织最终锚定结合。
  6. 根据权利要求1-4任一所述分体式可精准锚定的介入主动脉瓣系统,其特征在于,
    所述三维重建的真实结构为数字影像模型或3D打印的仿真实体模型。
  7. 根据权利要求6所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述依据患者影像数据三维重建的仿真主动脉瓣病变的解剖结构为患者CT、超声及核磁的综合影像数字化转换后仿真的三维图像模型以及相应3D打印的仿真实体模型。
  8. 根据权利要求1-4任一所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,
    所述主动脉瓣锚定支架为一伞管形支架结构,包括瓣叶流出面、瓣叶流入面和两者之间连接部,所述瓣叶流出面为两个或三个锚定丝袢,与患者瓣叶流出面影像数据三维重建的真实形态相匹配;所述锚定支架的瓣叶流入面,为与流出面的丝袢对应的锚定丝袢,可与流出面锚定丝袢形成夹持瓣叶的结构,形状与主动脉瓣瓣下影像数据三维重建真实形态相匹配;所述锚定支架的连接部为圆口漏斗状的网格,所形成的圆周内径与介入主动脉瓣支架释放后的外径相匹配。
  9. 根据权利要求8所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述瓣叶流出面为远心的流出端,瓣叶流入面为近心的流入端,所述流出端的锚定丝袢为支架连接部的网格延伸的类圆形翻折,所述流出端的锚定丝袢的形态、尺寸和回折角度与依据患者影像数据三维重建的病变仿真形态相匹配;所述支架流入端的锚定丝袢为类圆形较小翻折或一排菱形网格结构,所述流入端的类圆形翻折的形态、尺寸和回折或一排菱形网格结构与依据患者影像数据三维重建的主动脉瓣流入端瓣叶基底部的仿真形态和周径相匹配;所述支架连接部为圆锥形漏斗状网格或连接流入端与流出端的3个支杆,前者锥度与依据患者影像数据三维重建的主动脉瓣仿真形态相匹配;长度的测量从患者影像的冠脉开口下缘至主动脉瓣流入端瓣叶基底部之间实际长度为支架连接部长度。
  10. 根据权利要求9所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述第一锚定状态下,所述介入主动脉瓣锚定支架经导管释放后由压缩状态回形,支架流出端的锚定丝袢回折对应延伸入至患者病变主动脉瓣叶的瓣兜内和支架流入端对应的类圆形较小的锚定丝袢外翻于病变主动脉瓣流入端瓣叶基底部,两端对应的丝袢于瓣叶内外和上下形成对位夹持,主动脉瓣锚定支架连接部网格释放回形呈漏斗状于病变主动脉瓣叶交汇处,使瓣叶呈近似正常启闭状态;
    所述第二锚定状态下,在所述第一锚定状态,经导管输送被压握成条索状的介入人工生物主动脉瓣进入支架内被球扩释放,球扩的外力使介入主动脉瓣由条索状扩至圆柱状(功能状态),同时,锚定支架由漏斗状二次形变也为圆柱状,与介入主动脉瓣紧密结合,随着,介入主动脉瓣锚定支架的二次形变也再次与患者病变主动脉瓣叶以及瓣叶附着主动脉壁的根部组织最终锚定结合。
  11. 根据权利要求8所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述主动脉瓣锚定支架的连接部的流出面和流入面均设置有用于嵌入介入主动脉瓣支架固定支杆或支架端头弯折,所述固定支杆或支架端头弯折方向为轴心弯折,所述固定支杆或支架端头弯折方向为轴心弯折形变为第二状态呈圆柱状时,主动脉瓣锚定支架的连接部流出面和流入面两端固定支杆或支架端头弯折之间的距离与介入主动脉瓣支架高度相匹配。
  12. 根据权利要求4所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述主动脉瓣锚定支架的连接部两端设置的,用于嵌入介入主动脉瓣支架流出端若干端头向心折钩,这些向心折钩与所述主动脉瓣锚定支架的连接部流入端设置用于嵌入介入主动脉瓣支架流入端的多个固定支杆或支架弯折上下合围,可防止介入主动脉瓣释放时发生移位。
  13. 根据权利要求12所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述固定支杆或支架弯折为3-12个,优选为3-6个。
  14. 根据权利要求8所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述主动脉瓣锚定支架的连接部网格为由可压缩的菱形网格、V形网格和/或六边形或多边形网格构成的单元网格,所述网格部分与两端锚定丝袢呈适应性连接。
  15. 根据权利要求8所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述主动脉瓣锚定支架流入端锚定丝袢的圆弧外周缘与患者主动脉瓣下根部紧密贴合。
  16. 根据权利要求8所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述主动脉瓣锚定支架连接部第二状态呈圆柱状内周直径与介入式人工生物主动脉瓣各种相应大小规格的外径相匹配。
  17. 根据权利要求1或2所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述主动脉瓣锚定支架表面被覆有一层医用高分子薄膜。
  18. 根据权利要求1或2所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述主动脉瓣锚定支架为激光一体切割后三维成形结构或分体的连接结构。
  19. 根据权利要求1或2所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述锚定支架为镍钛合金材质。
  20. 根据权利要求1所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,介入人工生物主动脉瓣包括径向可压缩,并可被球囊扩张后呈圆柱状的钴铬合金支架,或径向可压缩自膨后呈圆柱状的镍钛合金支架,三个设置于所述支架内侧的扇形瓣叶,三个所述扇形瓣叶均具有游离缘、弧形底边以及延伸于两侧的瓣叶交界连接部,所述支架为金属网管。
  21. 根据权利要求20所述的经导管介入的人工生物主动脉瓣系统,其特征在于,瓣架为钴基合金钴或铬合金或镍钛合金。
  22. 根据权利要求20所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述介入主动脉瓣锚定支架先经输送器导管介入病变主动脉瓣位并释放为第一锚定状态,然后再经瓣膜输送器导管将介入人工生物主动脉瓣送入锚定支架上,随着瓣膜被扩开,同时介入主动脉瓣锚定支架被扩至第二锚定状态,最终同时支架结合部与介入主动脉瓣的嵌合以及支架形变为第二状态,完成与瓣周和瓣下组织的进一步紧密结合形成最终锚定。
  23. 根据权利要求4所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述介入人工生物主动脉瓣输送套件包括介入主动脉瓣输送器、导引鞘、瓣膜压握器和充压泵。
  24. 根据权利要求1所述分体式可精准锚定的介入主动脉瓣系统,其特征在于,所述系统经由股动脉、颈动脉、锁骨下动脉或心尖穿刺路入,所述介入主动脉瓣锚定支架和介入人工生物主动脉瓣可前、后同一途径路入或分别不同路径先后路入。
  25. 根据权利要求1-24所述的分体式可精准锚定的介入主动脉瓣系统,其特征在于,每完成一次针对具体患者个性化预设实现精准锚定的介入主动脉瓣的治疗过程,所有上述相关数据作为独立的数据单元,累积大量个性化数据,通过人工智能实现所述分体式可精准锚定介入主动脉瓣系统的智能化、规模化与产业化。
PCT/CN2022/132631 2021-11-17 2022-11-17 一种分体式可精准锚定的介入主动脉瓣系统 WO2023088384A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022389638A AU2022389638A1 (en) 2021-11-17 2022-11-17 Split type precisely-anchorable interventional aortic valve system
CA3238584A CA3238584A1 (en) 2021-11-17 2022-11-17 Split type precisely-anchorable transcatheter aortic valve system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111360380 2021-11-17
CN202111360380.6 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023088384A1 true WO2023088384A1 (zh) 2023-05-25

Family

ID=85740189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132631 WO2023088384A1 (zh) 2021-11-17 2022-11-17 一种分体式可精准锚定的介入主动脉瓣系统

Country Status (4)

Country Link
CN (1) CN115887066A (zh)
AU (1) AU2022389638A1 (zh)
CA (1) CA3238584A1 (zh)
WO (1) WO2023088384A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117224278A (zh) * 2023-11-10 2023-12-15 广东脉搏医疗科技有限公司 管腔流量调节器及冠状窦缩窄装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070244552A1 (en) * 2003-12-23 2007-10-18 Amr Salahieh Assessing the location and performance of replacement heart valves
US20090005863A1 (en) * 2006-02-16 2009-01-01 Goetz Wolfgang Minimally invasive heart valve replacement
CN103300944A (zh) * 2013-06-18 2013-09-18 复旦大学附属中山医院 无缝合主动脉瓣置换装置
US20130289391A1 (en) * 2012-04-27 2013-10-31 Volcano Corporation System and Method Using Forward Looking Imaging for Valve Therapies
CN203483543U (zh) * 2013-09-13 2014-03-19 徐州亚太科技有限公司 一种经导管植入的人工主动脉瓣支架及其输送系统
CN107496056A (zh) * 2017-09-11 2017-12-22 姜正明 一种主动脉瓣膜支架
CN111227931A (zh) * 2020-01-08 2020-06-05 西安马克医疗科技有限公司 一种针对主动脉瓣疾病的3d模型构建方法及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012272855C1 (en) * 2011-06-21 2018-04-05 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
MA43173A (fr) * 2015-11-06 2018-09-12 Micor Ltd Prothèse de valvule mitrale
WO2018217338A1 (en) * 2017-05-26 2018-11-29 Caisson Interventional, LLC Systems and methods for heart valve therapy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070244552A1 (en) * 2003-12-23 2007-10-18 Amr Salahieh Assessing the location and performance of replacement heart valves
US20090005863A1 (en) * 2006-02-16 2009-01-01 Goetz Wolfgang Minimally invasive heart valve replacement
US20130289391A1 (en) * 2012-04-27 2013-10-31 Volcano Corporation System and Method Using Forward Looking Imaging for Valve Therapies
CN103300944A (zh) * 2013-06-18 2013-09-18 复旦大学附属中山医院 无缝合主动脉瓣置换装置
CN203483543U (zh) * 2013-09-13 2014-03-19 徐州亚太科技有限公司 一种经导管植入的人工主动脉瓣支架及其输送系统
CN107496056A (zh) * 2017-09-11 2017-12-22 姜正明 一种主动脉瓣膜支架
CN111227931A (zh) * 2020-01-08 2020-06-05 西安马克医疗科技有限公司 一种针对主动脉瓣疾病的3d模型构建方法及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117224278A (zh) * 2023-11-10 2023-12-15 广东脉搏医疗科技有限公司 管腔流量调节器及冠状窦缩窄装置
CN117224278B (zh) * 2023-11-10 2024-02-27 广东脉搏医疗科技有限公司 管腔流量调节器及冠状窦缩窄装置

Also Published As

Publication number Publication date
CA3238584A1 (en) 2023-05-25
AU2022389638A1 (en) 2024-06-06
CN115887066A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US20210077256A1 (en) Stents for prosthetic heart valves
US9089422B2 (en) Markers for prosthetic heart valves
EP2959866B1 (en) Heart valve prosthesis
US20090287290A1 (en) Delivery Systems and Methods of Implantation for Prosthetic Heart Valves
AU2014340564A1 (en) Modular valve prosthesis with anchor stent and valve component
WO2018157177A1 (en) Novel transcatheter valve replacement device
WO2023088384A1 (zh) 一种分体式可精准锚定的介入主动脉瓣系统
CN115957047B (zh) 一种分体式可精准锚定的介入环中瓣系统
US20220192831A1 (en) Adaptable devices and systems for docking in circulatory system and methods thereof
WO2023088369A1 (zh) 一种分体式可精准锚定的介入二尖瓣系统
CN116035768B (zh) 一种分体式可精准锚定的介入三尖瓣系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3238584

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022389638

Country of ref document: AU

Ref document number: AU2022389638

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022389638

Country of ref document: AU

Date of ref document: 20221117

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022894915

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022894915

Country of ref document: EP

Effective date: 20240617