WO2023088158A1 - 一种功率确定方法及通信装置 - Google Patents

一种功率确定方法及通信装置 Download PDF

Info

Publication number
WO2023088158A1
WO2023088158A1 PCT/CN2022/131012 CN2022131012W WO2023088158A1 WO 2023088158 A1 WO2023088158 A1 WO 2023088158A1 CN 2022131012 W CN2022131012 W CN 2022131012W WO 2023088158 A1 WO2023088158 A1 WO 2023088158A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
uplink transmission
information
power
time unit
Prior art date
Application number
PCT/CN2022/131012
Other languages
English (en)
French (fr)
Inventor
张莉莉
戴喜增
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023088158A1 publication Critical patent/WO2023088158A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • H04L1/0063Single parity check
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communication technologies, and in particular to a power determination method and a communication device.
  • Subband full duplex can also be called time-frequency division duplex (X division duplex, XDD), or full duplex, etc.
  • X division duplex time-frequency division duplex
  • XDD time-frequency division duplex
  • TDD time-frequency division duplex
  • FDD frequency division duplex
  • DL UE downlink user equipment
  • Current power control is not aimed at SBFD transmission, therefore, inaccurate power adjustment information will cause strong self-interference in uplink transmission, resulting in reduced full-duplex gain.
  • the present application provides a power determination method and a communication device, which are beneficial to avoid strong self-interference in uplink transmission and avoid reduction of full-duplex gain.
  • the present application provides a method for determining power, which is applied to a first terminal device, and the method includes:
  • the first uplink transmission is an uplink transmission located in a first full-duplex time unit; according to the first signaling, transmit power of the first uplink transmission is determined.
  • the first terminal device can receive the first signaling in time to determine the transmit power of the first uplink transmission of the first terminal device in the first full-duplex time unit, which is beneficial to avoid the first An uplink transmission is subject to strong self-interference to avoid reducing the full-duplex gain.
  • the first signaling is not used for scheduling.
  • the first signaling does not include uplink scheduling information or downlink scheduling information.
  • the transmission directions of the two subbands in the at least two subbands are different; wherein, the two subbands do not overlap in the frequency domain, Partially or completely overlap.
  • the first terminal device may further receive second signaling, where the second signaling includes third information and fourth information, where the third information indicates the first full-duplex time unit, and the fourth The information indicates the second power adjustment information of the first uplink transmission, and the second signaling does not include uplink scheduling information or downlink scheduling information; according to the first signaling, the specific implementation manner of determining the transmission power of the first uplink transmission is: according to the first The first signaling and the second signaling determine the transmit power of the first uplink transmission.
  • the network device may deliver the power adjustment information of the first uplink transmission to the first terminal device in multiple times. If the network device sends power adjustment information for the first uplink transmission to the first terminal device after determining all the terminal devices used for downlink transmission in the first full-duplex time unit, the network device may face insufficient delivery resources For sending the power adjustment information, or it cannot be guaranteed that the first terminal device has enough time to determine and adjust the transmit power of the first uplink transmission after receiving the power adjustment information of the first uplink transmission. Therefore, it may cause that the first terminal device cannot effectively compensate for the power of the first uplink transmission, and cannot alleviate the self-interference effect suffered by the first uplink transmission at the network device, and the first uplink transmission cannot be correctly received by the network device.
  • the network device can send the first The power adjustment information for uplink transmission can ensure that there are sufficient resources for sending the power adjustment information, and ensure that the first terminal device has enough time to determine and adjust the first uplink transmission after receiving the power adjustment information for the first uplink transmission.
  • the transmitted transmit power. Therefore, it is beneficial for the first terminal device to perform effective power compensation for the first uplink transmission, alleviate the self-interference effect suffered by the first uplink transmission at the network device, and enable the first uplink transmission to be correctly received by the network device.
  • the first terminal device before receiving the first signaling, may also receive third signaling; the third signaling includes scheduling information of the first uplink transmission, and the scheduling information of the first uplink transmission indicates The third power adjustment information of the first uplink transmission; or, the third signaling includes the scheduling information of the first downlink transmission, the first uplink transmission is used to transmit the feedback information of the first downlink transmission, and the first downlink transmission
  • the scheduling information indicates the third power adjustment information of the first uplink transmission; the specific implementation manner for the first terminal device to determine the transmit power of the first uplink transmission according to the first signaling is: according to the first signaling and the third signaling, Determine transmit power for the first uplink transmission.
  • the first power adjustment information may be an offset relative to the third power adjustment information, and indicating the offset relative to the third power adjustment information helps to reduce the overhead of the first signaling , the number of bits of the first signaling can be reduced, and the cost can be minimized.
  • the scheduling information refers to time-domain or frequency-domain resource allocation information for data transmission, modulation and coding information, HARQ process number information, uplink sounding signal trigger information, feedback information of data to be transmitted, and feedback resource information of data to be transmitted , or at least one item of power parameter information of the data to be transmitted.
  • the first terminal device may further receive fourth signaling, where the fourth signaling includes scheduling information for the second uplink transmission, or, the fourth signaling includes scheduling information for the second downlink transmission,
  • the second uplink transmission is used to transmit the feedback information of the second downlink transmission; according to the third signaling and the fourth signaling, the transmission power of the second uplink transmission is determined, and the second uplink transmission is located after the first uplink transmission in the time domain .
  • the transmission power of the uplink transmission after the first uplink transmission is affected after the transmission power of the first uplink transmission in the first full-duplex time unit is adjusted.
  • the transmit power of uplink transmission within a certain full-duplex time unit can be adjusted in a targeted manner.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission. Based on this possible implementation manner, it can be ensured that the first terminal device has enough time to determine and adjust the transmit power of the first uplink transmission.
  • the first power adjustment information includes a transmission power control TPC of the first uplink transmission and/or a target power of the first uplink transmission.
  • the first signaling may be group common control signaling. Since the group common control signaling is sent to a group of terminal devices, rather than user-specific (UE-specific), it avoids the signaling overhead caused by the network device generating different signaling for each terminal device in the terminal device group Big problem, reducing the signaling overhead of network equipment.
  • group common control signaling is sent to a group of terminal devices, rather than user-specific (UE-specific), it avoids the signaling overhead caused by the network device generating different signaling for each terminal device in the terminal device group Big problem, reducing the signaling overhead of network equipment.
  • the first signaling may be a dedicated control instruction.
  • the CRC part of the group common control signaling is scrambled by using the group common radio network temporary identifier RNTI. In this way, all terminal devices in this user group can use this RNTI to descramble the group common control signaling.
  • the first signaling is group common control signaling
  • the second information includes power adjustment information fields of N subbands
  • the first uplink transmission is located in one or more subbands of the N subbands, where N is An integer greater than 1.
  • the first information includes a time unit offset from T1 to T2, where T1 is a time unit for transmitting the first signaling, and T2 is a first full-duplex time unit. Indicating the first full-duplex time unit by using the time unit offset from T1 to T2 can effectively indicate the first full-duplex time unit, so that the first terminal device can know the time unit for accurately applying the first power adjustment information, and The first full-duplex time unit is indicated by the time unit offset from T1 to T2, which helps to reduce the overhead of the first signaling, reduces the number of bits of the first signaling, and minimizes the cost.
  • the time unit offset from T1 to T2 may be a time slot offset.
  • the time unit offset from T1 to T2 may also be a symbol offset.
  • the first signaling is dedicated control signaling
  • the first information includes a Hybrid Automatic Repeat Request (HARQ) process number, where the HARQ process number corresponds to the first full-duplex time unit.
  • the HARQ process number corresponds to a time unit, indicating that the data transmission corresponding to the HARQ process number is located in this time unit.
  • the first terminal device can determine the time unit where the data transmission corresponding to a certain HARQ process number is located.
  • the valid period refers to the continuous scheduling time of the maximum number of HARQ processes.
  • the first full-duplex time unit is indicated by using the HARQ process number, and the first full-duplex time unit can be indicated without introducing any new reference information.
  • the present application provides a method for determining power, which is applied to a second terminal device.
  • the method includes: receiving first signaling, where the first signaling includes first information and second information, and the first information indicates The first full-duplex time unit, the second information indicates the first power adjustment information of the first uplink transmission, the first uplink transmission is an uplink transmission located in the first full-duplex time unit; receiving the fifth signaling, the first uplink transmission
  • the fifth signaling includes the scheduling information of the third uplink transmission, or, the fifth signaling includes the scheduling information of the third downlink transmission, and the third uplink transmission is used to transmit the feedback information of the third downlink transmission, and the third uplink transmission is located in The second full-duplex time unit; determine the transmit power of the third uplink transmission; wherein, the second full-duplex time unit is different from the first full-duplex time unit, and the first signaling is not used to determine the transmit power of the third uplink transmission .
  • the second terminal device After the second terminal device receives the first multicast signaling, if the uplink transmission in the second terminal device is not within the full-duplex time unit indicated by the first signaling, then do not The first signaling is used to determine the transmit power of the uplink transmission, so that the second terminal device can accurately determine the transmit power of the uplink transmission.
  • the first signaling is not used for scheduling.
  • the first signaling does not include uplink scheduling information or downlink scheduling information.
  • the second terminal device after the second terminal device receives the fifth signaling, when the second full-duplex time unit is different from the first full-duplex time unit, determine that the first signaling is not used to determine the third uplink transmission transmit power.
  • the two subbands there are at least two subbands, and the transmission directions of the two subbands in the at least two subbands are different; wherein, the two subbands
  • the bands are non-overlapping, partially overlapping or fully overlapping in the frequency domain.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission.
  • the first power adjustment information includes a transmission power control TPC of the first uplink transmission and/or a target power of the first uplink transmission.
  • the first signaling may be group common control signaling or dedicated control signaling.
  • the CRC part of the group common control signaling is scrambled by using the group common radio network temporary identifier RNTI.
  • the first signaling is group common control signaling
  • the second information includes power adjustment information fields of N subbands
  • the first uplink transmission is located in one or more subbands of the N subbands, where N is An integer greater than 1.
  • the first information includes a time unit offset from T1 to T2, where T1 is a time unit for transmitting the first signaling, and T2 is a first full-duplex time unit.
  • the present application provides a method for determining power, which is applied to a network device.
  • the method includes: determining first information and second information, the first information indicating the first full-duplex time unit, and the second information indicating First power adjustment information for the first uplink transmission, where the first uplink transmission is an uplink transmission located in the first full-duplex time unit; sending first signaling to the first terminal device, where the first signaling includes the first information and second information.
  • the first signaling is not used for scheduling.
  • the first signaling does not include uplink scheduling information or downlink scheduling information.
  • the two subbands do not overlap in the frequency domain, Partially or completely overlap.
  • the network device may further send second signaling to the first terminal device, where the second signaling includes third information and fourth information, where the third information indicates the first full-duplex time unit, The fourth information indicates second power adjustment information of the first uplink transmission.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission.
  • the first power adjustment information includes a transmission power control TPC of the first uplink transmission and/or a target power of the first uplink transmission.
  • the network device may also send third signaling to the first terminal device; the third signaling includes scheduling information of the first uplink transmission, and the scheduling information of the first uplink transmission indicates that the first uplink transmission or, the third signaling includes the scheduling information of the first downlink transmission, the first uplink transmission is used to transmit the feedback information of the first downlink transmission, and the scheduling information of the first downlink transmission indicates Third power adjustment information for the first uplink transmission; the first power adjustment information may be an offset relative to the third power adjustment information.
  • the first signaling may be group common control signaling or dedicated control signaling.
  • the CRC part of the group common control signaling is scrambled by using the group common radio network temporary identifier RNTI.
  • the first signaling is group common control signaling
  • the second information includes power adjustment information fields of N subbands
  • the first uplink transmission is located in one or more subbands of the N subbands, where N is An integer greater than 1.
  • the first signaling is group common control signaling
  • the specific implementation manner of sending the first signaling to the first terminal device is: sending the first signaling to the first terminal device and the second terminal device
  • the network device may also send fifth signaling to the second terminal device, where the fifth signaling includes scheduling information for the third uplink transmission, or, the fifth signaling includes scheduling information for the third downlink transmission, and the third uplink transmission Used to transmit feedback information for the third downlink transmission, the third uplink transmission is located in the second full-duplex time unit; the second full-duplex time unit is different from the first full-duplex time unit, and the first signaling is not used to determine the third Transmit power for uplink transmission.
  • the first information includes a time unit offset from T1 to T2, where T1 is a time unit for transmitting the first signaling, and T2 is a first full-duplex time unit.
  • the time unit offset from T1 to T2 may be a time slot offset.
  • the time unit offset from T1 to T2 may also be a symbol offset.
  • the time unit offset from T1 to T2 may also be an offset of a time slot and a symbol.
  • the first signaling is dedicated control signaling
  • the first information includes a Hybrid Automatic Repeat Request (HARQ) process number, where the HARQ process number corresponds to the first full-duplex time unit.
  • HARQ Hybrid Automatic Repeat Request
  • beneficial effects of the third aspect and possible implementations of the third aspect refer to the beneficial effects of the first aspect, the beneficial effects of the possible implementations of the first aspect, and the beneficial effects of the second aspect, which will not be repeated here.
  • the present application provides a power determination method.
  • the method includes: receiving a first signaling, where the first signaling is a dedicated control instruction, and the first signaling includes first information, and the first information indicates that the first First power adjustment information for uplink transmission, where the first uplink transmission is uplink transmission located in the first full-duplex time unit; according to the first signaling, the transmission power of the first uplink transmission is determined.
  • the terminal device can receive the first signaling in time to determine the transmit power of the terminal device's uplink transmission within the first full-duplex time unit, which is beneficial to avoid the first uplink transmission being strongly affected Self-interference, to avoid reducing the gain of full-duplex.
  • the first signaling does not need to indicate the first full-duplex time unit, which is beneficial to reduce indication overhead.
  • the first signaling is not used for scheduling.
  • the first signaling does not include uplink scheduling information or downlink scheduling information.
  • the transmission directions of the two subbands in the at least two subbands are different; wherein, the two subbands do not overlap in the frequency domain, Partially or completely overlap.
  • second signaling may also be received, where the second signaling includes second information indicating second power adjustment information for the first uplink transmission, and the second signaling does not include uplink scheduling information or downlink scheduling information; according to the first signaling, a specific implementation manner of determining the transmission power of the first uplink transmission is: according to the first signaling and the second signaling, determining the transmission power of the first uplink transmission.
  • the network device can send the power adjustment information of the first uplink transmission to the first terminal device multiple times, which is beneficial for the terminal device to effectively compensate for the power of the first uplink transmission, and alleviates the first uplink transmission.
  • the self-interference suffered at the network device causes the first uplink transmission to be correctly received by the network device.
  • third signaling before receiving the first signaling, third signaling may also be received; the third signaling includes scheduling information of the first uplink transmission, and the scheduling information of the first uplink transmission indicates the The third power adjustment information; or, the third signaling includes the scheduling information of the first downlink transmission, the first uplink transmission is used to transmit the feedback information of the first downlink transmission, and the scheduling information of the first downlink transmission indicates the first uplink transmission
  • the third power adjustment information to be transmitted; the specific implementation manner in which the terminal device determines the transmission power of the first uplink transmission according to the first signaling is: determining the transmission power of the first uplink transmission according to the first signaling and the third signaling.
  • the first power adjustment information may be an offset relative to the third power adjustment information, and indicating the offset relative to the third power adjustment information helps to reduce the overhead of the first signaling , the number of bits of the first signaling can be reduced, and the cost can be minimized.
  • fourth signaling may also be received, where the fourth signaling includes scheduling information for the second uplink transmission, or, the fourth signaling includes scheduling information for the second downlink transmission, and is used for the second uplink transmission. for transmitting the feedback information of the second downlink transmission; according to the first signaling, the third signaling and the fourth signaling, determine the transmission power of the second uplink transmission, and the second uplink transmission is located after the first uplink transmission in the time domain. Based on this possible implementation, even if there is no clear information in the signaling sent by the network device to indicate which full-duplex time unit it should be applied to, the terminal device can accurately determine the uplink transmission within the full-duplex time unit transmit power.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission. Based on this possible implementation manner, it can be ensured that the terminal device has enough time to determine and adjust the transmit power of the first uplink transmission.
  • the first power adjustment information indicates the transmission power control TPC of the first uplink transmission and/or the target power of the first uplink transmission.
  • the present application provides a method for determining power, the method including: determining first information, where the first information indicates first power adjustment information for a first uplink transmission, where the first uplink transmission is located in the first full dual Uplink transmission of working time units; sending a first signaling to the terminal device, where the first signaling is a dedicated control instruction, and the first signaling includes first information.
  • the two subbands do not overlap in the frequency domain, Partially or completely overlap.
  • the second signaling may also be sent to the terminal device, the second signaling does not include uplink scheduling information or downlink scheduling information, the second signaling includes second information, and the second information indicates that the first Second power adjustment information for uplink transmission.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission.
  • the first power adjustment information indicates the transmission power control TPC of the first uplink transmission and/or the target power of the first uplink transmission.
  • the network device may further send third signaling to the terminal device; the third signaling includes scheduling information of the first uplink transmission, and the scheduling information of the first uplink transmission indicates that the first uplink transmission of the first Three power adjustment information; or, the third signaling includes the scheduling information of the first downlink transmission, the first uplink transmission is used to transmit the feedback information of the first downlink transmission, and the scheduling information of the first downlink transmission indicates the first Third power adjustment information for uplink transmission; the first power adjustment information may be an offset relative to the third power adjustment information.
  • the present application provides a method for determining a power ramp value, the method including: receiving first information indicating at least two power ramp values for random access; according to the type of the first time unit and the type of the second time unit, determine the power ramp value used for random access in the second time unit from at least two power ramp values, and the type is full-duplex or non-full-duplex; wherein, the first time The unit and the second time unit are two adjacent random access opportunities.
  • the terminal device can accurately determine the power ramp value used for random access, thereby improving the success rate of random access.
  • a full-duplex time unit there are at least two subbands, and the transmission directions of the two subbands in the at least two subbands are different; wherein, the two subbands do not overlap in the frequency domain, partly overlapping or fully overlapping.
  • the first time unit is before the second time unit.
  • the at least two power ramp values include a first power ramp value and a second power ramp value, and the first power ramp value is smaller than the second power ramp value;
  • the power ramp value used for random access is the second power ramp value
  • the power ramping value used for random access is the first power ramping value
  • the power ramp value used for random access is the first power ramp value
  • the power ramping value used for random access is the first power ramping value.
  • the first information may explicitly indicate the second power ramp value, for example, the first information may directly include the first power ramp value and the second power ramp value.
  • the first information may implicitly indicate the second power ramp value, and the first information includes the first power ramp value and an offset of the second power ramp value relative to the first power ramp value.
  • the present application provides a communication device.
  • the communication device may be a terminal device, or a device in the terminal device, or a device that can be matched with the terminal device. Wherein, the communication device may also be a system on a chip.
  • the communication device may execute the method described in the first aspect or the second aspect or the fourth aspect or the sixth aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module can be software and/or hardware.
  • the present application provides a communication device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device. Wherein, the communication device may also be a system on a chip.
  • the communication device may execute the method described in the third aspect or the fifth aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the unit or module can be software and/or hardware.
  • the present application provides a communication device, the communication device includes a processor, and when the processor calls the computer program in the memory, the method described in any one of the first to sixth aspects be executed.
  • the present application provides a communication device, the communication device includes a processor and a memory, and the processor and the memory are coupled; the processor is used to implement the method according to any one of the first aspect to the sixth aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory, and a transceiver, and the processor and the memory are coupled; the transceiver is used to send and receive data, and the processor is used to implement the information in the first to sixth aspects. any one of the methods described.
  • the present application provides a communication device, the communication device includes a processor and an interface, the interface is used to receive or output signals, and the processor is used to implement the first to sixth aspects through logic circuits or code instructions any one of the methods described.
  • the present application provides a computer-readable storage medium, in which computer programs or instructions are stored.
  • the computer programs or instructions are executed by a communication device, any one of the first to sixth aspects can be realized. method described in the item.
  • the present application provides a computer program product including instructions.
  • the computer executes the method described in any one of the first to sixth aspects.
  • FIG. 1 is a schematic diagram of a sub-band full-duplex SBFD provided by the present application
  • FIG. 2 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a time unit relationship provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an uplink scheduling provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a downlink scheduling sequence provided by the present application.
  • FIG. 6 is a schematic diagram of an uplink scheduling sequence provided by the present application.
  • FIG. 7 is a schematic diagram of an uplink scheduling provided by the present application.
  • FIG. 8 is a schematic flowchart of a method for determining power provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another uplink scheduling provided by the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another power determination method provided in the embodiment of the present application.
  • FIG. 11 is a schematic diagram of another uplink scheduling provided by the embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another power determination method provided in the embodiment of the present application.
  • FIG. 13 is a schematic diagram of another uplink scheduling provided by the embodiment of the present application.
  • FIG. 14 is a schematic flowchart of another power determination method provided in the embodiment of the present application.
  • FIG. 15 is a schematic diagram of another uplink scheduling provided by the embodiment of the present application.
  • FIG. 16 is a schematic flowchart of another power determination method provided in the embodiment of the present application.
  • FIG. 17 is a schematic flowchart of another power determination method provided in the embodiment of the present application.
  • FIG. 18 is a schematic flowchart of another power determination method provided in the embodiment of the present application.
  • FIG. 19 is a schematic diagram of another uplink scheduling provided by the embodiment of the present application.
  • FIG. 20 is a schematic diagram of another uplink scheduling provided by the embodiment of the present application.
  • Fig. 21 is a schematic flow chart of another method for determining a power ramp value provided by the embodiment of the present application.
  • Fig. 22 is a schematic diagram of the first time unit and the second time unit provided by the embodiment of the present application.
  • Fig. 23 is a schematic diagram of the first time unit and the second time unit provided by the embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • At least one (item) means one or more
  • “multiple” means two or more
  • “at least two (items)” means two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time A case where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • 5G new radio
  • NR new radio
  • Fig. 2 is a schematic diagram of a communication system provided by an embodiment of the present application, and the solution in the present application is applicable to the communication system.
  • the communication system may include a network device and at least one terminal device.
  • FIG. 2 takes the network device and three terminal devices included in the communication system as an example.
  • Terminal equipment includes equipment that provides voice and/or data connectivity to users.
  • terminal equipment is a device with wireless transceiver capabilities that can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed in On the water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal can be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, or a wireless terminal in industrial control (industrial control) , vehicle terminal equipment, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, Wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • a terminal may sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE proxy or UE device, etc.
  • Terminals can also be fixed or mobile.
  • the device used to realize the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to realize the function, such as a chip system or a combined device or component that can realize the function of the terminal device. Can be installed in terminal equipment.
  • the network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and a next-generation base station (next station) in the fifth generation (5th generation, 5G) mobile communication system.
  • generation NodeB, gNB the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.
  • the network device may also be a module or unit that performs some functions of the base station, for example, it may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part or all of the physical layer.
  • 3GPP 3rd generation partnership project
  • the network equipment may be a macro base station, a micro base station or an indoor station, or a relay node or a donor node.
  • the device for implementing the function of the network device may be the network device itself, or a device capable of supporting the network device to realize the function, such as a chip system or a combined device or component that can realize the function of the access network device,
  • the device can be installed in network equipment.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • a time unit is a time-domain unit for signal transmission, which may include a radio frame, a subframe, a mini-subframe, a slot, a mini-slot, or at least one orthogonal Frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols and other time domain units. OFDM symbols may also be referred to as time-domain symbols for short.
  • FIG. 3 is a schematic diagram of a possible time unit relationship in the present application. Referring to FIG. 3 , the time domain length of a radio frame is 10 ms.
  • a radio frame may include 10 radio subframes, and a time domain length of a radio subframe is 1 ms.
  • a radio subframe may include one or more time slots, and the specific number of time slots included in a subframe is related to the subcarrier space (Subcarrier Space, SCS).
  • SCS subcarrier Space
  • a radio frame may include 10 time slots.
  • the symbol length/slot length is related to the SCS. For the case where the SCS is 15kHz, the time domain length of a time slot is 1ms.
  • One slot includes 14 symbols.
  • the carrier bandwidth can be regarded as a kind of broadband, which includes at least one bandwidth part (bandwidth part, BWP). Each bandwidth portion includes at least one contiguous subband. Each subband includes at least one continuous physical resource block (physical resource block, PRB). In other words, the carrier bandwidth includes at least one PRB. One or more continuous PRBs in the frequency domain may be a subband. In the frequency domain, each PRB includes 12 consecutive subcarriers.
  • the full-duplex time unit may be referred to as a subband full duplex (subband full duplex, SBFD) time unit, or a time-frequency division duplex (X division duplex, XDD) time unit, etc.
  • SBFD subband full duplex
  • XDD time-frequency division duplex
  • a full-duplex time unit there are at least two subbands, and the transmission directions of the two subbands in the at least two subbands are different.
  • the two subbands do not overlap, partially overlap or completely overlap in the frequency domain. That is, full duplex is full duplex on non-overlapping subbands, or full duplex is full duplex on partially overlapping subbands, or full duplex is full duplex on fully overlapping subbands. duplex.
  • uplink transmission can be performed on the carrier used for downlink transmission or the carrier used for flexible symbols. As a result, the uplink capacity is expanded, the time delay required by the terminal equipment for uplink transmission is reduced, the waiting time is shortened, the communication is accelerated, and the service quality is guaranteed.
  • subband 1 and subband 2 exist on a full-duplex time unit.
  • Subband 1 is used for uplink transmission and subband 2 is used for downlink transmission.
  • Subband 1 includes PRB #0 to PRB #9, and subband 2 includes PRB #10 to PRB #19.
  • subband 1 and subband 2 exist on a full-duplex time unit.
  • Subband 1 is used for uplink transmission and subband 2 is used for downlink transmission.
  • Subband 1 includes PRB #0 to PRB #9, and subband 2 includes PRB #5 to PRB #14.
  • subband 1 and subband 2 exist on a full-duplex time unit.
  • Subband 1 is used for uplink transmission and subband 2 is used for downlink transmission.
  • Subband 1 includes PRB #0 to PRB #9, and subband 2 includes PRB #0 to PRB #9.
  • the terminal device determines the transmission power of the uplink transmission based on the closed-loop power control parameters configured by the network device. For example, take the uplink transmission as PUSCH as an example. The following describes how to determine the transmit power of the PUSCH based on the closed-loop power control parameters:
  • the transmit power of the PUSCH described below may be considered as the transmit power of the terminal device to transmit the PUSCH to the cell c in the resource unit i.
  • the resource unit i may be any resource unit
  • the cell c may be any cell served by a network device, such as a base station.
  • c is not involved in the formulas of the transmit power of the PUSCH calculated below.
  • the transmission power P(i,j,q d ,n) of the terminal device transmitting PUSCH in resource unit i is:
  • ⁇ (j) is a semi-static configuration parameter, indicating the degree of path loss compensation.
  • PL(q d ) is the path loss value estimated by the UE; ⁇ TF (i) is the increment value for different modulation and coding scheme (modulation and coding scheme, MCS) indexes.
  • P 0 (j) is a semi-statically configured power control parameter, which represents the target power of the terminal device, and is composed of a cell-level power control parameter and a terminal device-level power control parameter.
  • f(i,n) is a specific closed-loop power control parameter of the terminal equipment.
  • transmission power control transmission power control, TPC
  • TPC transmission power control
  • the network device can configure the uplink transmit power by configuring the above target power and closed-loop power control parameters. For example, the network device may configure one or more target powers for the terminal device through radio resource control (radio resource control, RRC) signaling. If the network device configures multiple target powers for the terminal device, the network device may dynamically instruct the terminal device to use which target power among the multiple target powers to calculate the uplink transmit power through DCI signaling. If the network device configures only one target power for the terminal device, the network device does not need to indicate the target power through DCI signaling, and the terminal device can directly use the target power configured by the RRC signaling to calculate the uplink transmit power.
  • RRC radio resource control
  • the network device may dynamically instruct the terminal device which closed-loop power control parameter to use to calculate the uplink transmit power closed-loop power control parameter through the DCI signaling.
  • closed-loop power control There are two types of closed-loop power control: absolute (absolute adjustment) and cumulative (relative adjustment).
  • the closed-loop power control parameter indicated by the DCI signaling may be an absolute value or an offset.
  • TPC closed-loop power control parameter
  • time slots 1 to 6 are normal time slots and are non-full-duplex time slots.
  • Time slots 1 to 3 are downlink time slots, and time slots 4 to 6 are uplink time slots.
  • the network device sends DCI signaling 1 to terminal device 1 in time slot 1, and the DCI signaling 1 is used to schedule the transmission of PUSCH1 in time slot 4.
  • the network device sends DCI signaling 2 to the terminal device 1 in time slot 2, and the DCI signaling 2 is used to schedule the transmission of PUSCH2 in time slot 5.
  • the network device sends DCI signaling 3 to the terminal device 1 in time slot 3, and the DCI signaling 3 is used to schedule the transmission of PUSCH3 in time slot 6.
  • DCI signaling 1 indicates a TPC of 10db.
  • DCI signaling 2 indicates TPC of 11db.
  • DCI signaling 3 indicates a TPC of 13db.
  • Terminal device 1 uses a TPC of 10 db in time slot 4 to calculate the transmit power of PUSCH1.
  • Terminal device 1 calculates the transmit power of PUSCH2 using the TPC of 11 db in time slot 5.
  • Terminal device 1 uses a TPC of 13db in time slot 6 to calculate the transmit power of PUSCH3.
  • the values of TPC in all the examples in the embodiments of the present application are examples, and do not constitute limitations to the embodiments of the present application.
  • the TPC indicated by the i-th DCI signaling issued by the network device needs to be superimposed on the TPC adjusted by the last power control (ie f(i-1)), and the accumulated TPC (ie f(i)) is the terminal
  • the last power control adjusted TPC i.e. f(i-1)
  • the last power control adjusted TPC i.e. f(i-2)
  • f(i) is a cumulative value.
  • DCI signaling 1 indicates a TPC of 10db.
  • the DCI signaling 2 indicates a TPC of 1db, and the TPC indicated by the DCI signaling 2 is an offset from the TPC indicated by the DCI signaling 1 .
  • DCI signaling 3 indicates a TPC of 2db, and the TPC indicated by DCI signaling 3 is an offset from the TPC indicated by DCI signaling 2 .
  • Terminal device 1 uses a TPC of 10 db in time slot 4 to calculate the transmit power of PUSCH1.
  • Terminal device 1 calculates the transmit power of PUSCH2 using the TPC of 11 db in time slot 5.
  • Terminal device 1 uses a TPC of 13db in time slot 6 to calculate the transmit power of PUSCH3.
  • Group common control signaling is control signaling sent to a group of terminal devices.
  • the cyclic redundancy check (cyclic redundancy check, CRC) part of the group common control signaling is scrambled by the group common radio network temporary identifier (radio network temporary identifier, RNTI).
  • RNTI radio network temporary identifier
  • all terminal devices in this user group can use this RNTI to descramble the group common control signaling.
  • RNTI radio network temporary identifier
  • the group common control signaling may be group common DCI signaling, or other group common control signaling.
  • the dedicated control signaling is a control signaling sent to a terminal device.
  • the dedicated control signaling may be dedicated DCI signaling, or other dedicated control signaling.
  • the dedicated DCI signaling can be understood as DCI signaling for scheduling a certain UE.
  • a terminal device establishes a connection with a network device, and this process is generally called a random access (RA) process.
  • RA random access
  • various problems may be encountered in the random access process, which leads to random access failure. If this random access fails, the terminal device will re-initiate random access and perform power ramping, that is, use higher power than the previous random access to initiate this random access.
  • the power increased by the power ramp may be referred to as a power ramp value.
  • k 0 is the time slot from the transmission of downlink control information (downlink control information, DCI) signaling used to schedule the physical downlink data channel (physical downlink data channel, PDSCH) to the transmission of the PDSCH Offset between downlink time slots.
  • k 1 is an offset between the downlink time slot for transmitting the PDSCH and the uplink time slot for transmitting the feedback information of the PDSCH.
  • the feedback information of the PDSCH may be an acknowledgment/negative-acknowledgement (ACK/NACK).
  • the DCI signaling for scheduling the PDSCH includes power adjustment information of a physical uplink control channel (physical uplink control channel, PUCCH) carrying the feedback information.
  • the power adjustment information is used to determine the transmit power of the PUCCH.
  • k 2 is an offset between the downlink time slot for transmitting DCI signaling for scheduling a physical uplink data channel (physical uplink data Channel, PUSCH) and the uplink time slot for transmitting the PUSCH.
  • the DCI signaling for scheduling the PUSCH includes the power adjustment information of the PUSCH.
  • the power adjustment information is used to determine the transmit power of the PUSCH.
  • DL UE downlink user equipment
  • DL UE downlink user equipment
  • DL UEs in SBFD time slots are different, and UL UEs should use different power adjustment information in SBFD to determine the transmit power of uplink transmission, so as to reduce the interference of adjacent channels on uplink transmission.
  • k 0 is usually smaller than k 2 , that is, the scheduling time of the UL UE in the SBFD slot is before the scheduling time of the DL UE.
  • the network device schedules the UL UE in the SBFD time slot through DCI signaling, it cannot determine the DL UE paired with the UL UE in the SBFD time slot.
  • the power adjustment information for uplink transmission included in the DCI signaling is not accurate.
  • DCI signaling for scheduling PUSCH will be transmitted.
  • the DCI signaling is used to schedule the PUSCH to be sent in time slot n
  • the DCI signaling includes power adjustment information of the PUSCH
  • time slot n is an SBFD time slot. Since in time slot n-t1, the network device still has not decided which DLUE to schedule for downlink transmission in time slot n, the network device is not sure about the interference that the uplink transmission of time slot n will face. Therefore, the power adjustment information of the PUSCH of slot n cannot be correctly set. Inaccurate power adjustment information will cause strong self-interference in uplink transmission, resulting in reduced full-duplex gain.
  • the present application provides a power determination method and a communication device.
  • Fig. 8 is a schematic flowchart of a method for determining power provided in an embodiment of the present application.
  • the power determination method includes the following steps 801 to 803 .
  • the method shown in FIG. 8 may be executed by the first terminal device and the network device.
  • the execution subject of the method shown in FIG. 8 may be a chip in the first terminal device and a chip in the network device.
  • FIG. 8 is illustrated by taking the first terminal device and the network device as execution subjects of the method as an example.
  • a network device determines first information and second information.
  • the first information indicates a first full-duplex time unit
  • the second information indicates first power adjustment information of a first uplink transmission, where the first uplink transmission is an uplink transmission located in the first full-duplex time unit.
  • the full-duplex time unit please refer to the relevant description of the above technical terms, and details are not repeated here.
  • the power adjustment information may also be understood as power determination information, power control information or power compensation information.
  • the first uplink transmission may be transmission of an uplink signal, transmission of a physical uplink channel, or transmission carried on a physical uplink channel.
  • the transmission of the uplink signal includes the transmission of a sounding reference signal (sounding reference signal, SRS).
  • the transmission of the physical uplink channel includes the transmission of the PUSCH or the transmission of the PUCCH.
  • the transmission carried on the physical uplink channel includes the transmission carried on the PUSCH, the transmission carried on the PUCCH, or the transmission of uplink control information (uplink control information, UCI) carried on the PUSCH.
  • the network device may also send third signaling to the first terminal device before determining the first information and the second information.
  • the first terminal device may receive the third signaling.
  • the third signaling may be DCI signaling.
  • the third signaling includes scheduling information of the first uplink transmission, and the scheduling information of the first uplink transmission includes third power adjustment information of the first uplink transmission; or, the third signaling includes scheduling of the first downlink transmission Information, the first uplink transmission is used to transmit the feedback information of the first downlink transmission, and the scheduling information of the first downlink transmission includes the third power adjustment information of the first uplink transmission.
  • the third signaling includes scheduling information of the first uplink transmission, that is, the third signaling is used to schedule the first uplink transmission.
  • the first uplink transmission includes SRS transmission, PUSCH transmission, or transmission carried on PUSCH.
  • the third signaling includes scheduling information of the first downlink transmission, that is, the third signaling is used to schedule the first downlink transmission.
  • the first downlink transmission includes the transmission of the PDSCH or the transmission carried on the PDSCH.
  • the first uplink transmission is the PUCCH or the transmission carried on the PUCCH.
  • the first uplink transmission is the transmission of UCI carried on the PUSCH.
  • the network device may not send the third signaling, and the network device may send a grant free scheduling signaling to the first terminal device before determining the first information and the second information.
  • the ungranted scheduling signaling includes scheduling information of the first uplink transmission.
  • the first terminal device may receive the unauthorized scheduling signaling.
  • the unlicensed scheduling signaling may be RRC signaling, or RRC signaling triggered by DCI.
  • RRC signaling triggered by DCI can also be understood as RRC signaling combined with DCI signaling.
  • RRC signaling unlicensed scheduling may be type I unlicensed scheduling.
  • Unauthorized scheduling of RRC signaling combined with DCI signaling can be type II unlicensed scheduling.
  • the first uplink transmission includes transmission of SRS, transmission of PUSCH, transmission carried on PUSCH, transmission of PUCCH, transmission carried on PUCCH or transmission of UCI carried on PUSCH.
  • the network device may also send a DCI signaling to the first terminal device, where the DCI signaling carries third power adjustment information for the first uplink transmission.
  • the first terminal device may receive the DCI signaling.
  • the third power adjustment information includes the TPC of the first uplink transmission and/or the target power of the first uplink transmission.
  • the third power adjustment information may also be other parameters used to determine the transmit power of the first uplink transmission.
  • the TPC in the third power adjustment information may be an absolute value or an offset. Based on the foregoing description of the closed-loop power control, it can be seen that if the power control is absolute, the TPC in the third power adjustment information is an absolute value. If it is accumulative power control, TPC in the third power adjustment information is an offset.
  • the first power adjustment information includes the TPC of the first uplink transmission and/or the target power of the first uplink transmission.
  • the first power adjustment information may also be other parameters used to determine the transmit power of the first uplink transmission.
  • the TPC or target power in the first power adjustment information may be an absolute value or an offset. If the TPC or the target power in the first power adjustment information is an offset that is beneficial to reduce the overhead of the first signaling, the number of bits of the first signaling can be reduced to minimize the cost.
  • the TPC in the first power adjustment information may be an offset relative to the TPC in the third power adjustment information.
  • the target power in the first power adjustment information may be an offset relative to the target power in the third power adjustment information.
  • the target power in the first power adjustment information may be relative to the value indicated by the RRC signaling Offset for target power.
  • the first terminal device may determine the transmit power of the first uplink transmission based on the first signaling and the third signaling.
  • the TPC in the first power adjustment information is an offset relative to the TPC in the third power adjustment information.
  • the first terminal device may superimpose the TPC in the first power adjustment information and the TPC in the third power adjustment information, and calculate the transmit power of the first uplink transmission based on the superimposed TPC.
  • the target power in the first power adjustment information is an offset relative to the target power in the third power adjustment information.
  • the first terminal device may superimpose the target power in the first power adjustment information and the target power in the third power adjustment information, and calculate the transmit power of the first uplink transmission based on the superimposed target power.
  • time slot 1 to time slot 5 and time slot 7 are normal time slots and are non-full-duplex time slots.
  • Time slot 6 is a full-duplex time slot.
  • the time slots 1 to 5 and 7 may not all be non-full-duplex time slots, that is, one or more of the time slots may also be full-duplex time slots.
  • the network device sends DCI signaling 1 to the terminal device 1 in time slot 1.
  • the DCI signaling 1 is used to schedule the transmission of PUSCH1 in time slot 5.
  • the TPC indicated by the DCI signaling 1 is 10db, and the DCI signaling 1 indicates The target power is 12db.
  • the network device sends DCI signaling 2 to the terminal device 1 in time slot 2.
  • the DCI signaling 2 is used to schedule the transmission of PUSCH2 in time slot 6.
  • the TPC indicated by the DCI signaling 2 is 2db, and the DCI signaling 2 indicates The TPC is an offset compared to the TPC indicated by DCI signaling 1.
  • the target power indicated by the DCI signaling 2 is 14db.
  • the network device determines at time slot 4 to schedule terminal device 2 and terminal device 3 for downlink transmission at time slot 6. At this time, considering that terminal device 2 and terminal device 3 will generate self-interference with PUSCH2 at time slot 6, the network device determines The TPC and/or target power indicated by the DCI signaling 2 are no longer accurate, which will cause deviations.
  • the network device sends DCI signaling 3 to the terminal device 1 at time slot 4, the DCI signaling 3 indicates the TPC of 2db and the time slot 6 to which the TPC applies; or, the DCI signaling 3 indicates the target power of 3db and The time slot 6 to which the target power is applied; or, the DCI signaling 3 indicates a TPC of 2db and a target power of 3db and a time slot 6 to which the TPC and target power are applied.
  • the TPC indicated by the DCI signaling 3 is an offset from the TPC indicated by the DCI signaling 2 .
  • the target power indicated by the DCI signaling 3 is an offset compared to the target power indicated by the DCI signaling 2 .
  • the terminal device 1 If the DCI signaling 3 indicates a TPC of 2db and the time slot 6 to which the TPC applies, the terminal device 1 accumulates the TPC indicated by the DCI signaling 1, the TPC indicated by the DCI signaling 2, and the TPC indicated by the DCI signaling 3. The accumulated TPC is 14db. The first terminal device uses the TPC of 14db to calculate the transmit power of PUSCH2.
  • the terminal device 1 If the DCI signaling 3 indicates a target power of 3db and the time slot 6 to which the target power is applied, the terminal device 1 accumulates the target power indicated by the DCI signaling 2 and the target power indicated by the DCI signaling 3 .
  • the accumulated target power is 17db.
  • the first terminal device uses the target power of 17db to calculate the transmit power of PUSCH2.
  • the terminal device 1 If the DCI signaling 3 indicates a TPC of 2db and a target power of 3db and a time slot 6 to which the TPC and target power apply.
  • the terminal device 1 accumulates the TPC indicated by DCI signaling 1, the TPC indicated by DCI signaling 2, and the TPC indicated by DCI signaling 3.
  • the accumulated TPC is 14db.
  • the terminal device 1 accumulates the target power indicated by the DCI signaling 2 and the target power indicated by the DCI signaling 3 .
  • the accumulated target power is 17db.
  • the first terminal device uses a TPC of 14db and a target power of 17db to calculate the transmit power of PUSCH2.
  • TPC and target power in all the examples in the embodiments of the present application are examples, and do not constitute limitations to the embodiments of the present application.
  • self-interference when the frequency bands completely overlap, self-interference can be the interference caused by transmission on the same frequency at the same time; In the case of partial overlap, self-interference can include both the interference to reception caused by simultaneous transmission on the same frequency, and the adjacent channel interference to reception caused by simultaneous transmission on different frequencies. In this application, self-interference can also be understood as nonlinear interference.
  • TPC in the third power adjustment information as an absolute value as an example.
  • the network device sends DCI signaling 2 to the terminal device 1 in time slot 2.
  • the DCI signaling 2 is used to schedule the transmission of PUSCH2 in time slot 6.
  • the TPC indicated by the DCI signaling 2 is 12db.
  • the target power indicated by the DCI signaling 2 is 14db.
  • the network device determines at time slot 4 to schedule terminal device 2 and terminal device 3 for downlink transmission at time slot 6. At this time, considering that terminal device 2 and terminal device 3 will generate self-interference on PUSCH2 at time slot 6, the network device considers that DCI The TPC and/or target power indicated by the signaling 2 are no longer accurate, which will cause a deviation. Therefore, the network device sends DCI signaling 3 to the terminal device 1 in time slot 4, the DCI signaling 3 indicates the TPC of 2db and/or the target power of 3db, and indicates the time slot for which the TPC and/or the target power is applied 6.
  • the TPC indicated by the DCI signaling 3 is an offset from the TPC indicated by the DCI signaling 2 .
  • the target power indicated by the DCI signaling 3 is an offset compared to the target power indicated by the DCI signaling 2 .
  • the terminal device 1 accumulates the TPC indicated by the DCI signaling 2 and the TPC indicated by the DCI signaling 3, and the accumulated TPC is 14db, and/or, the terminal device 1 integrates the target power indicated by the DCI signaling 2 and the DCI signaling
  • the target power indicated by 3 is accumulated, and the accumulated target power is 17db.
  • the first terminal device uses a TPC of 14db and/or a target power of 17db to calculate the transmit power of PUSCH2.
  • the target power in the first power adjustment information is an offset relative to the target power indicated by RRC signaling.
  • the first terminal device may superimpose the target power in the first power adjustment information and the target power indicated by the RRC signaling, and calculate the transmit power of the first uplink transmission based on the superimposed target power.
  • the first terminal device superimposes the target power indicated by RRC signaling with the target power in the first power adjustment information , the target power after superposition is 12db.
  • the first terminal device calculates the transmit power of the first uplink transmission based on the target power of 12db.
  • the first terminal device if the TPC in the first power adjustment information is an absolute value, the first terminal device does not need to superimpose the TPC in the first power adjustment information and the TPC in the third power adjustment information. If the target power in the first power adjustment information is an absolute value, the first terminal device does not need to superimpose the target power in the first power adjustment information with the target power in the third power adjustment information or RRC signaling.
  • the network device sends DCI signaling 2 to terminal device 1 in time slot 2, and the DCI signaling 2 is used to schedule the transmission of PUSCH2 in time slot 6.
  • the DCI signaling 2 indicates The TPC is 12db and the target power is 14db.
  • the network device determines at time slot 4 to schedule terminal device 2 and terminal device 3 for downlink transmission at time slot 6. At this time, considering that terminal device 2 and terminal device 3 will generate self-interference on PUSCH2 at time slot 6, the network device considers that DCI The TPC and/or target power indicated by signaling 2 are no longer accurate.
  • the network device sends DCI signaling 3 to the terminal device 1 in time slot 4, the DCI signaling 3 indicates that the TPC is 14db and/or the target power is 17db, and indicates the time slot for which the TPC and/or the target power is applied 6.
  • Terminal device 1 directly uses the TPC of 14db and/or the target power of 17db to calculate the transmission power of PUSCH2.
  • the network device sends first signaling to the first terminal device, where the first signaling includes first information and second information.
  • the first terminal device may receive the first signaling.
  • the first signaling is not used for scheduling.
  • the first signaling does not include uplink scheduling information or downlink scheduling information.
  • the first signaling is transmitted after the third signaling.
  • the first signaling is a group common control instruction.
  • group common control instructions and dedicated control signaling refer to the previous description, and details are not repeated here. Since the group common control signaling is sent to a group of terminal devices, rather than user-specific (UE-specific), it avoids the signaling overhead caused by the network device generating different signaling for each terminal device in the terminal device group Big problem, reducing the signaling overhead of network equipment.
  • the first signaling is a dedicated control instruction.
  • dedicated control signaling reference may be made to the foregoing description, and details are not repeated here.
  • the first signaling is a group common control instruction
  • the first signaling is used for a terminal device group
  • the terminal device group includes the first terminal device, the second terminal device and the third terminal device
  • the network device sends the first The signaling is sent to the first terminal device, the second terminal device and the third terminal device.
  • the network device only sends the first signaling to the first terminal device.
  • the first signaling is group common control signaling
  • the second information includes power adjustment information fields of N subbands
  • the first uplink transmission is located in one or more subbands of the N subbands, where N is An integer greater than 1.
  • the power adjustment information field is used to carry the first power adjustment information. Based on this possible implementation manner, it is possible to accurately indicate the corresponding power adjustment information to multiple terminal devices.
  • the second information includes power adjustment information domain 1 to power adjustment information domain 3 .
  • the power adjustment information field 1 is used to carry the first power adjustment information 1 of the first uplink transmission 1 on the subband 1 and the subband 2 .
  • the power adjustment information field 2 is used to carry the first power adjustment information 2 of the first uplink transmission 2 on the subband 3 and the subband 4 .
  • the power adjustment information field 3 is used to carry the first power adjustment information 3 of the first uplink transmission 3 on the subband 5 and the subband 6 .
  • the first terminal device reads the first power adjustment information from power adjustment information field 1. Assuming that the first uplink transmission of the first terminal device is located in subband 3 and subband 4, the first terminal device reads the first power adjustment information from the power adjustment information field 2 . Assuming that the first uplink transmission of the first terminal device is located in subband 5 and subband 6, the first terminal device reads the first power adjustment information from the power adjustment information domain 3 .
  • the second information includes power adjustment information domain 1 to power adjustment information domain 3 .
  • the power adjustment information field 1 is used to carry the first power adjustment information 1 of the first uplink transmission 1 on the subband 1 .
  • the power adjustment information field 2 is used to carry the first power adjustment information 2 of the first uplink transmission 2 on the subband 2.
  • the power adjustment information field 3 is used to carry the first power adjustment information 3 of the first uplink transmission 3 on the subband 3 .
  • the first terminal device reads the first power adjustment information from power adjustment information field 1. Assuming that the first uplink transmission of the first terminal device is located in subband 2, the first terminal device reads the first power adjustment information from the power adjustment information domain 2. Assuming that the first uplink transmission of the first terminal device is located in subband 3, the first terminal device reads the first power adjustment information from the power adjustment information field 3 .
  • the first information may directly include the index of the first full-duplex time unit.
  • the first information includes a time unit offset from T1 to T2, where T1 is a time unit for transmitting the first signaling carrying the first information and the second information, and T2 is a first full-duplex time unit. That is to say, the first information implicitly indicates the first full-duplex time unit by indicating an offset from the time unit for transmitting the first signaling to the first full-duplex time unit.
  • Indicating the first full-duplex time unit by using the time unit offset from T1 to T2 can effectively indicate the first full-duplex time unit, so that the first terminal device can know the time unit for accurately applying the first power adjustment information, and
  • the first full-duplex time unit is indicated by the time unit offset from T1 to T2, which helps to reduce the overhead of the first signaling, reduces the number of bits of the first signaling, and minimizes the cost.
  • the network device sends the first signaling in the 5th time slot, and the first full-duplex time unit is the 8th time slot, then the offset included in the first information is 3 time slots.
  • the first terminal device can determine the first full-duplex time unit based on the time slot for receiving the first signaling and the offset.
  • the first signaling is a dedicated control signaling
  • the first information includes a hybrid automatic repeat request (HARQ) process number
  • the HARQ process number corresponds to the first full-duplex time unit. That is to say, the first information indicates the first full-duplex time unit by indicating the HARQ process number.
  • the first full-duplex time unit is indicated by using the HARQ process number, and the first full-duplex time unit can be indicated without introducing any new reference information.
  • the HARQ process number corresponds to a time unit, indicating that the data transmission corresponding to the HARQ process number is located in this time unit. Based on the HARQ process in the valid period, the first terminal device can determine the time unit where the data transmission corresponding to a certain HARQ process number is located.
  • the effective period refers to the continuous scheduling time of the maximum number of HARQ processes.
  • HARQ process number 1 corresponds to time slot 1
  • HARQ process number 2 corresponds to time slot 2
  • HARQ process number 3 corresponds to time slot 3.
  • the first information indicates that the first full-duplex time unit is time slot 2.
  • HARQ process number 2 corresponds to time slot 2, indicating that data transmission corresponding to HARQ process number 2 is located in time slot 2. That is, if the data transmission scheduled by the third signaling is located in the time slot 2, and the third signaling includes the HARQ process number 2, then the HARQ process number 2 corresponds to the time slot 2.
  • the first information in the first signaling includes the HARQ process number 2, it implicitly indicates the time slot 2.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission.
  • the power adjustment delay may also be understood as a processing delay or a preparation delay.
  • the first terminal device needs to adjust the transmission power of the first uplink transmission before sending the first uplink transmission, assuming that the power adjustment delay of the first uplink transmission is adjusted ⁇ t is 2 time slots, then the first signaling should be transmitted before time slot 5. Based on this possible implementation manner, it can be ensured that the first terminal device has enough time to determine and adjust the transmit power of the first uplink transmission.
  • the first signaling has the following two sending opportunities:
  • the network device When the network device has determined all the terminal devices used for downlink transmission within the first full-duplex time unit, determine the first information and the second information, and issue the first signaling.
  • the network device sends the first signaling no later than T2- ⁇ t, so as to ensure that the first terminal device has enough time to determine and adjust the transmit power of the first uplink transmission. That is to say, in this manner, the network device sends a signaling to adjust the transmit power of the first uplink transmission after determining all interferences in the first full-duplex time unit. In this manner, the network device only sends one signaling to indicate the power adjustment information of the first uplink transmission, which is beneficial to save indication overhead.
  • the network device sends the first signaling not later than T2- ⁇ t, which can be understood as the network device sends the first signaling at the first few symbols of the corresponding time slot not exceeding T2- ⁇ t.
  • the network device sends DCI signaling 2 to the terminal device 1 at time slot 2 , and the DCI signaling 2 is used to schedule the transmission of PUSCH2 at time slot 6 .
  • the network device After the network device sends the DCI signaling 2, it determines in time slot 3 that terminal device 2 to terminal device 3 are used for downlink transmission in time slot 6.
  • time slot 4 the network device determines that terminal device 4 - terminal device 5 are used for downlink transmission in time slot 6 .
  • the network device After the network device has determined that terminal device 2 to terminal device 5 are used for downlink transmission in time slot 6 in time slot 4, the network device sends DCI signaling 3, the DCI signaling 3 indicates that the TPC is 4db and/or the target power is 6db, and Indicates that the TPC and/or the target power applies to slot 6.
  • the terminal device 1 superimposes the TPC indicated by the DCI signaling 3 and the TPC indicated by the DCI signaling 2, and/or the terminal device 1 superimposes the target power indicated by the DCI signaling 3 and the target power indicated by the DCI signaling 2, And determine the transmission power of PUSCH2 based on the superimposed TPC and/or the superimposed target power.
  • the network device determines part of the terminal devices used for downlink transmission in the first full-duplex time unit, it determines the first information and the second information, and sends the first signaling.
  • the network device may also send second signaling to the first terminal device after sending the first signaling, where the second signaling includes third information and fourth information, where the third information indicates the first full-duplex time unit,
  • the fourth information indicates second power adjustment information of the first uplink transmission.
  • the second power adjustment information is an offset relative to the first power adjustment information.
  • the first terminal device determines the transmit power of the first uplink transmission based on the first signaling and the second signaling. For example, as shown in step 1003 and step 1004 in FIG. 10 .
  • the specific implementation manners of other steps in FIG. 10 are the same as the specific implementation manners of the corresponding steps in FIG. 8 , and will not be repeated here.
  • the network device sends the first signaling and the second signaling no later than T2- ⁇ t, so as to ensure that the first terminal device has enough time to determine and adjust the transmit power of the first uplink transmission.
  • the network device sends the first signaling and the second signaling no later than T2- ⁇ t. It can be understood that the network device sends the first signaling in the first few symbols of the corresponding time slot not exceeding T2- ⁇ t. order and the second signaling.
  • the network device may send the power adjustment information of the first uplink transmission to the first terminal device multiple times. If the network device sends power adjustment information for the first uplink transmission to the first terminal device after determining all the terminal devices used for downlink transmission in the first full-duplex time unit, the network device may face insufficient delivery resources For sending the power adjustment information, or it cannot be guaranteed that the first terminal device has enough time to determine and adjust the transmit power of the first uplink transmission after receiving the power adjustment information of the first uplink transmission. Therefore, it may cause that the first terminal device cannot effectively compensate for the power of the first uplink transmission, and cannot alleviate the self-interference effect suffered by the first uplink transmission at the network device, and the first uplink transmission cannot be correctly received by the network device.
  • the network device can send the first The power adjustment information for uplink transmission can ensure that there are sufficient resources for sending the power adjustment information, and ensure that the first terminal device has enough time to determine and adjust the first uplink transmission after receiving the power adjustment information for the first uplink transmission.
  • the transmitted transmit power. Therefore, it is beneficial for the first terminal device to perform effective power compensation for the first uplink transmission, alleviate the self-interference effect suffered by the first uplink transmission at the network device, and enable the first uplink transmission to be correctly received by the network device.
  • the network device sends DCI signaling 2 to the terminal device 1 in time slot 2, and the DCI signaling 2 is used to schedule the transmission of PUSCH2 in time slot 6.
  • the network device determines in time slot 3 that terminal device 2 to terminal device 3 are used for downlink transmission in time slot 6.
  • the network device sends DCI signaling 3 to the terminal device 1 in time slot 3, the DCI signaling 3 indicates that the TPC is 2db and/or the target power is 3db, and indicates the time slot 6 where the TPC and/or the target power is applied.
  • time slot 4 the network device determines that terminal device 4 - terminal device 5 are used for downlink transmission in time slot 6 .
  • the network device sends DCI signaling 4 in time slot 4, where the DCI signaling 4 indicates that the TPC is 2db and/or the target power is 3db, and indicates the time slot 6 where the TPC and/or the target power is applied.
  • the first terminal device superimposes the TPC indicated by DCI signaling 2, the TPC indicated by DCI signaling 3, and the TPC indicated by DCI signaling 4, and/or, the target power indicated by DCI signaling 2 and the target power indicated by DCI signaling 3 Superimpose the target power of the target power with the target power indicated by the DCI signaling 4, and determine the transmit power of the PUSCH2 based on the superimposed TPC and/or the superimposed target power.
  • the network device sends DCI signaling 2 to the terminal device 1 in time slot 2, and the DCI signaling 2 is used to schedule the transmission of PUSCH2 in time slot 6.
  • the network device determines in time slot 3 that terminal device 2 to terminal device 3 are used for downlink transmission in time slot 6.
  • the network device sends DCI signaling 3 to the terminal device 1 in time slot 3, the DCI signaling 3 indicates that the TPC is 10db and/or the target power is 10db, and indicates the time slot 6 where the TPC and/or the target power is applied.
  • the network device determines that terminal device 4 - terminal device 5 are used for downlink transmission in time slot 6 .
  • the network device sends DCI signaling 4 in time slot 4, where the DCI signaling 4 indicates that the TPC is 2db and/or the target power is 3db and indicates the time slot 6 where the TPC and/or the target power is applied.
  • the first terminal device superimposes the TPC indicated by DCI signaling 3 and the TPC indicated by DCI signaling 4, and the superimposed TPC is 12db, and/or, the first terminal device combines the target power indicated by DCI signaling 3 with the DCI
  • the target power indicated by signaling 4 is superimposed, and the superimposed target power is 13db.
  • the first terminal device determines the transmission power of PUSCH2 based on the superimposed TPC and/or the superimposed target power.
  • the network device may pre-configure two sets of power adjustment information on the first terminal device.
  • the first set of power adjustment information is used when the network device determines to adopt the first type of timing for sending the first signaling.
  • the network device uses the second set of power adjustment information when determining to adopt the second type of timing for sending the first signaling.
  • the power adjustment information range corresponding to the first set of power adjustment information is larger than the power adjustment information range corresponding to the second set of power adjustment information.
  • the network device may instruct the first terminal device which set of power adjustment information to use through signaling.
  • the signaling may be RRC signaling.
  • the network device may also configure an index (index) corresponding to the TPC.
  • the network device may indicate the value of the corresponding TPC by indicating the index.
  • the index can also be understood as a serial number.
  • the first set of power adjustment information configured by the network device is shown in Table 2 below.
  • the network device may directly configure a series of values of the TPC without configuring an index corresponding to the TPC.
  • the index corresponding to the TPC can be implicitly deduced from the sequence, there is no explicit index. That is, the index corresponding to the first value is 1, the index corresponding to the second value is 2, and so on.
  • the second set of power adjustment information configured by the network device is shown in Table 3 below.
  • the network device may also configure an index corresponding to the TPC.
  • the network device may indicate the value of the corresponding TPC by indicating the index.
  • the second set of power adjustment information configured by the network device is shown in Table 4 below.
  • the network device may not be configured with a TPC index, and the TPC index may be implicitly derived from a sequence, and there is no displayed index.
  • the network device determines to use the first set of power adjustment information.
  • the network device determines that terminal device 2 to terminal device 5 are used for downlink transmission in time slot 6 (the first full-duplex time) in time slot 4, the network device determines that terminal device 2 to terminal device 5 Interference affects the terminal device 1, and the network device determines the power value that the terminal device 1 needs to increase to compensate for the signal-to-noise ratio decrease caused by the self-interference of the terminal device 2 to the terminal device 5 on the terminal device 1.
  • the power value to be increased is greater than or equal to the smallest TPC in the first set of power adjustment information, the network device determines the first power adjustment information.
  • the network device determines the first power adjustment information.
  • the network device determines that the first power adjustment information is 9db.
  • the network device generates first information and second information, the first information indicates time slot 6, and the second information may be index 3 in the first set of power adjustment information table, which is used to indicate that the first power adjustment information is 9db.
  • the network device sends the first signaling including the first information and the second information to the terminal device 1 (that is, the DCI signaling 3 in FIG. 9 ).
  • the network device determines to use the second set of power adjustment information. As shown in Figure 11, when the network device determines that terminal device 2 to terminal device 3 are used for downlink transmission in time slot 6 (the first full-duplex time) in time slot 3, the network device determines that terminal device 2 to terminal device 3 Interference affects the terminal device 1, and the network device determines the power value that the terminal device 1 needs to increase to compensate for the decrease in signal-to-noise ratio caused by the self-interference of the terminal device 2 to the terminal device 3 on the terminal device 1.
  • the network device determines the first power adjustment information. Or, when the power value to be increased is greater than or equal to at least one TPC in the second set of power adjustment range values, the network device determines the first power adjustment information. As an example, as shown in Table 3, when the power value to be increased is greater than or equal to 3 and less than 5, the network device determines that the first power adjustment information is 3db.
  • the network device generates first information and second information, the first information indicates time slot 6, and the second information may be index 2 in the second set of power adjustment information table, which is used to indicate that the first power adjustment information is 3db.
  • the network device sends the first signaling including the first information and the second information to the terminal device 1 (that is, the DCI signaling 3 in FIG. 11 ).
  • the first signaling including the first information and the second information may be understood as the first signaling including only the first information and the second information.
  • the network device determines that terminal device 4 to terminal device 5 are used for downlink transmission in time slot 6.
  • the network device determines that the first terminal device 2 to terminal device 3 are used for downlink transmission in time slot 6 (the first full-duplex time) in time slot 4
  • the network device determines that terminal device 2 to terminal device 3 are responsible for terminal device 1
  • the interference effect is generated, and the network device determines the power value that the terminal device 1 needs to increase to compensate for the decrease of the signal-to-noise ratio caused by the self-interference generated by the terminal device 2 to the terminal device 3 on the terminal device 1 .
  • the network device determines the second power adjustment information accordingly. Or, when the power value to be increased is greater than or equal to at least one TPC in the second set of power adjustment range values, the network device determines the second power adjustment information accordingly. As an example, when the power value to be increased is greater than or equal to 5 and less than 6, the network device determines that the second power adjustment information is 5db.
  • the network device generates third information and fourth information, the third information indicates time slot 6, and the fourth information may be index 3 in the second set of power adjustment information table, which is used to indicate that the second power adjustment information is 5db.
  • the network device sends the second signaling (that is, the DCI signaling 4 in FIG. 11 ) including the third information and the fourth information to the terminal device 1 .
  • the first terminal device determines transmit power for the first uplink transmission according to the first signaling.
  • the first terminal device after receiving the first signaling, determines the transmit power of the first uplink transmission according to the first signaling. How the first terminal device determines the transmit power of the first uplink transmission according to the first signaling may refer to the foregoing description, and details are not repeated here.
  • the network device can send signaling to the first terminal device in time to adjust the first terminal device's
  • the transmit power of the first uplink transmission in the first full-duplex time unit is beneficial to avoid strong self-interference on the first uplink transmission and avoid reduction of full-duplex gain.
  • Fig. 12 is a schematic flowchart of another method for determining power provided by an embodiment of the present application.
  • the power determination method includes the following steps 1201 to 1206 .
  • the method shown in FIG. 12 may be executed by the first terminal device and the network device.
  • the method shown in FIG. 12 may be executed by a chip in the first terminal device and a chip in the network device.
  • FIG. 12 is illustrated by taking the first terminal device and the network device as execution bodies of the method as an example.
  • the network device sends third signaling to the first terminal device.
  • the third signaling includes scheduling information of the first uplink transmission, and the scheduling information of the first uplink transmission indicates third power adjustment information of the first uplink transmission; or, the third signaling includes scheduling information of the first downlink transmission,
  • the first uplink transmission is used to transmit the feedback information of the first downlink transmission, and the scheduling information of the first downlink transmission indicates the third power adjustment information of the first uplink transmission.
  • the network device determines first information and second information.
  • the first information indicates a first full-duplex time unit
  • the second information indicates first power adjustment information of a first uplink transmission, where the first uplink transmission is an uplink transmission located in the first full-duplex time unit.
  • the network device sends first signaling to the first terminal device, where the first signaling includes first information and second information.
  • the first terminal device may receive the first signaling.
  • the first terminal device determines transmit power for the first uplink transmission according to the first signaling and the third signaling.
  • steps 1202 to 1204 For specific implementation manners of steps 1202 to 1204, reference may be made to the description in the embodiment corresponding to FIG. 8 , and details are not repeated here.
  • the network device sends fourth signaling to the first terminal device.
  • the first terminal device may receive the fourth signaling.
  • the fourth signaling includes scheduling information of the second uplink transmission, or, the fourth signaling includes scheduling information of the second downlink transmission, and the second uplink transmission is used to transmit feedback information of the second downlink transmission.
  • the second uplink transmission is located after the first uplink transmission in the time domain.
  • the scheduling information in the fourth signaling indicates fourth power adjustment information.
  • the first terminal device determines transmit power for the second uplink transmission according to the third signaling and the fourth signaling.
  • the first signaling is not used to determine the transmit power of the second uplink transmission. That is, the first signaling takes effect only for uplink transmission in the first full-duplex time unit, and is invalid for uplink transmission after the first full-duplex time unit.
  • the network device sends DCI signaling 1 to terminal device 1 in time slot 1, and the DCI signaling 1 is used to schedule transmission of PUSCH1 in time slot 5.
  • the TPC indicated by the DCI signaling 1 is 10db.
  • the target power indicated by the DCI signaling 1 is 10db.
  • the network device sends DCI signaling 2 to the terminal device 1 in time slot 2, and the DCI signaling 2 is used to schedule the transmission of PUSCH2 in time slot 6.
  • the TPC indicated by the DCI signaling 2 is 2db
  • the TPC indicated by the DCI signaling 2 is an offset from the TPC indicated by the DCI signaling 1 .
  • the target power indicated by the DCI signaling 2 is 11db.
  • the network device sends DCI signaling 3 to the terminal device 1 in time slot 3, and the DCI signaling 3 is used to schedule the transmission of PUSCH3 in time slot 7.
  • the TPC indicated by the DCI signaling 3 is 2db
  • the TPC indicated by the DCI signaling 3 is an offset from the TPC indicated by the DCI signaling 2 .
  • the target power indicated by the DCI signaling 3 is 12db.
  • the network device determines at time slot 4 to schedule terminal device 2 and terminal device 3 for downlink transmission at time slot 6. At this time, considering that terminal device 2 and terminal device 3 will generate self-interference on PUSCH2 at time slot 6, the network device considers that DCI The TPC indicated by signaling 2 is no longer accurate. Therefore, the network device sends DCI signaling 4 to the terminal device 1 in time slot 4, the DCI signaling 4 indicates the TPC of 3db and/or the target power of 3db, and the time slot 6 indicating the application of the TPC and/or target power .
  • the TPC indicated by the DCI signaling 4 is an offset from the TPC indicated by the DCI signaling 2 .
  • the target power indicated by the DCI signaling 4 is an offset compared to the target power indicated by the DCI signaling 2 .
  • the terminal device 1 accumulates the TPC indicated by the DCI signaling 1, the TPC indicated by the DCI signaling 2, and the TPC indicated by the DCI signaling 4, and the accumulated TPC is 15db, and/or, the terminal device 1 adds the TPC indicated by the DCI signaling 2
  • the indicated target power and the target power indicated by the DCI signaling 4 are accumulated, and the accumulated target power is 14db.
  • Terminal device 1 uses a TPC of 15db and/or a target power of 14db to calculate the transmission power of PUSCH2.
  • the terminal device 1 accumulates the TPC indicated by DCI signaling 1, the TPC indicated by DCI signaling 2, and the TPC indicated by DCI signaling 3, and the accumulated TPC is 14db.
  • Terminal device 1 uses a TPC of 14db and a target power of 12db to calculate the transmit power of PUSCH3.
  • the terminal device 1 will not accumulate the TPC indicated by DCI signaling 3 and the TPC indicated by DCI signaling 4 .
  • Fig. 14 is a schematic flowchart of another method for determining power provided by an embodiment of the present application.
  • the power determination method includes the following steps 1401 to 1405 .
  • the method shown in FIG. 14 may be executed by the first terminal device, the second terminal device, and the network device.
  • the method shown in FIG. 14 may be executed by a chip in the first terminal device, a chip in the second terminal device, and a chip in the network device.
  • FIG. 14 takes the first terminal device, the second terminal device, and the network device as execution subjects of the method as an example for illustration.
  • a network device determines first information and second information.
  • the first information indicates a first full-duplex time unit
  • the second information indicates first power adjustment information of a first uplink transmission, where the first uplink transmission is an uplink transmission located in the first full-duplex time unit.
  • the network device sends first signaling to the first terminal device and the second terminal device, where the first signaling includes first information and second information.
  • the first terminal device and the second terminal device can receive the first signaling.
  • the first signaling is a group common control instruction.
  • the first terminal device and the second terminal device belong to a terminal device group.
  • both the first terminal device and the second terminal device are configured with an RNTI for parsing the first signaling. Therefore, both the first terminal device and the second terminal device can receive the first signaling.
  • the first terminal device determines transmit power for the first uplink transmission according to the first signaling.
  • steps 1401 to 1403 For specific implementation manners of steps 1401 to 1403, reference may be made to the description in the embodiment corresponding to FIG. 8 , and details are not repeated here.
  • the network device sends fifth signaling to the second terminal device.
  • the second terminal device may receive the fifth signaling.
  • the fifth signaling includes scheduling information of the third uplink transmission, or, the fifth signaling includes scheduling information of the third downlink transmission, and the third uplink transmission is used to transmit feedback information of the third downlink transmission.
  • the third uplink transmission is located in the second time unit, and the second time unit is different from the first full-duplex time unit.
  • the fifth signaling may be transmitted before the first full-duplex time unit.
  • the second time unit is a full-duplex time unit or a non-full-duplex time unit.
  • a non-full-duplex time unit may be understood as a time unit that is not configured with full-duplex.
  • the second terminal device determines the transmit power of the third uplink transmission. Wherein, the first signaling is not used to determine the transmit power of the third uplink transmission.
  • the second terminal device may determine the transmit power of the third uplink transmission based on the fifth signaling.
  • the second terminal device may determine the transmit power of the third uplink transmission based on signaling other than the first signaling.
  • the second terminal device determines that the first signaling is not used to determine the transmit power of the third uplink transmission. That is to say, after the second terminal device receives the fifth signaling, it will judge whether the third uplink transmission is in the first full-duplex time unit, and if not, the first signaling is not used to determine the transmit power of the third uplink transmission .
  • the second terminal device may discard the first signaling.
  • the network device sends DCI signaling 1 to the terminal device 2 in time slot 2, and the DCI signaling 1 is used to schedule the transmission of PUSCH1 in time slot 6 and indicate TPC and target power.
  • the network device sends DCI signaling 2 to the terminal device 1 and the terminal device 2 at time slot 3 , where the DCI signaling 2 indicates TPC and/or target power and time slot 5 to which the TPC and/or target power is applied.
  • terminal device 2 determines that the time slot where PUSCH1 is located is different from the time slot indicated by DCI signaling 2, and terminal device 2 determines not to use the TPC indicated by DCI signaling 2 to determine the transmission of PUSCH1 power.
  • the terminal device 2 may use the TPC and the target power indicated by the DCI signaling 1 to determine the transmission power of the PUSCH1.
  • the terminal device after the terminal device receives the first multicast signaling, if the second uplink transmission in the terminal device is not within the full-duplex time unit indicated by the first signaling, it does not use The first signaling is used to determine the transmit power of the second uplink transmission, so that the terminal device can accurately determine the transmit power of the second uplink transmission.
  • Fig. 16 is a schematic flowchart of another method for determining power provided by an embodiment of the present application.
  • the power determination method includes the following steps 1601 to 1603 .
  • the execution body of the method shown in FIG. 16 may be a terminal device and a network device.
  • the execution subject of the method shown in FIG. 16 may be a chip in the terminal device and a chip in the network device.
  • FIG. 16 takes the terminal device and the network device as the execution subjects of the method as an example for illustration.
  • the network device determines first information.
  • the first information indicates first power adjustment information of the first uplink transmission
  • the first uplink transmission is an uplink transmission located in a first full-duplex time unit.
  • the full-duplex time unit please refer to the relevant description of the above technical terms, and details are not repeated here.
  • the power adjustment information may also be understood as power determination information, power control information or power compensation information.
  • the first uplink transmission may be transmission of an uplink signal, transmission of a physical uplink channel, or transmission carried on a physical uplink channel.
  • the transmission of the uplink signal includes the transmission of the SRS.
  • the transmission of the physical uplink channel includes the transmission of the PUSCH or the transmission of the PUCCH.
  • the transmission carried on the physical uplink channel includes the transmission carried on the PUSCH, the transmission carried on the PUCCH or the transmission of UCI carried on the PUSCH.
  • the network device may also send a third signaling to the first terminal device before determining the first information.
  • the first terminal device may receive the third signaling.
  • the third signaling may be DCI signaling.
  • the third signaling includes scheduling information of the first uplink transmission, and the scheduling information of the first uplink transmission includes third power adjustment information of the first uplink transmission; or, the third signaling includes scheduling of the first downlink transmission Information, the first uplink transmission is used to transmit the feedback information of the first downlink transmission, and the scheduling information of the first downlink transmission includes the third power adjustment information of the first uplink transmission.
  • the third signaling includes scheduling information of the first uplink transmission, that is, the third signaling is used to schedule the first uplink transmission.
  • the first uplink transmission includes SRS transmission, PUSCH transmission, or transmission carried on PUSCH.
  • the third signaling includes scheduling information of the first downlink transmission, that is, the third signaling is used to schedule the first downlink transmission.
  • the first downlink transmission includes the transmission of the PDSCH or the transmission carried on the PDSCH.
  • the first uplink transmission is the PUCCH or the transmission carried on the PUCCH.
  • the first uplink transmission is the transmission of UCI carried on the PUSCH.
  • the network device may not send the third signaling, and the network device may send a non-grant (grant free) scheduling signaling to the first terminal device before determining the first information.
  • the ungranted scheduling signaling includes scheduling information of the first uplink transmission.
  • the first terminal device may receive the unauthorized scheduling signaling.
  • the unlicensed scheduling signaling may be RRC signaling, or RRC signaling triggered by DCI.
  • RRC signaling triggered by DCI can also be understood as RRC signaling combined with DCI signaling.
  • RRC signaling unlicensed scheduling may be type I unlicensed scheduling.
  • Unauthorized scheduling of RRC signaling combined with DCI signaling can be type II unlicensed scheduling.
  • the first uplink transmission includes transmission of SRS, transmission of PUSCH, transmission carried on PUSCH, transmission of PUCCH, transmission carried on PUCCH or transmission of UCI carried on PUSCH.
  • the network device may also send a DCI signaling to the first terminal device, where the DCI signaling carries third power adjustment information for the first uplink transmission.
  • the first terminal device may receive the DCI signaling.
  • the third power adjustment information includes the TPC of the first uplink transmission and/or the target power of the first uplink transmission.
  • the third power adjustment information may also be other parameters used to determine the transmit power of the first uplink transmission.
  • the TPC in the third power adjustment information may be an absolute value or an offset. Based on the foregoing description of the closed-loop power control, it can be seen that if the power control is absolute, the TPC in the third power adjustment information is an absolute value. If it is accumulative power control, TPC in the third power adjustment information is an offset. For example, the TPC in the third power adjustment information is an offset relative to the TPC indicated by the last signaling for scheduling uplink or downlink transmission.
  • the first power adjustment information includes the TPC of the first uplink transmission and/or the target power of the first uplink transmission.
  • the first power adjustment information may also be other parameters used to determine the transmit power of the first uplink transmission.
  • the TPC or target power in the first power adjustment information may be an absolute value or an offset. If the TPC or the target power in the first power adjustment information is an offset that is beneficial to reduce the overhead of the first signaling, the number of bits of the first signaling can be reduced to minimize the cost.
  • the TPC in the first power adjustment information may be an offset relative to the TPC in the third power adjustment information.
  • the target power in the first power adjustment information may be an offset relative to the target power in the third power adjustment information.
  • the target power in the first power adjustment information may be relative to the value indicated by the RRC signaling Offset for target power.
  • the terminal device may determine the transmit power of the first uplink transmission based on the first signaling and the third signaling.
  • the terminal device may superimpose the TPC in the first power adjustment information and the TPC in the third power adjustment information, and calculate the transmit power of the first uplink transmission based on the superimposed TPC.
  • the target power in the first power adjustment information is an offset relative to the target power in the third power adjustment information.
  • the terminal device may superimpose the target power in the first power adjustment information and the target power in the third power adjustment information, and calculate the transmit power of the first uplink transmission based on the superimposed target power.
  • the target power in the first power adjustment information is an offset relative to the target power indicated by RRC signaling.
  • the terminal device may superimpose the target power in the first power adjustment information and the target power indicated by the RRC signaling, and calculate the transmit power of the first uplink transmission based on the superimposed target power.
  • the terminal device if the TPC in the first power adjustment information is an absolute value, the terminal device does not need to superimpose the TPC in the first power adjustment information and the TPC in the third power adjustment information. If the target power in the first power adjustment information is an absolute value, the terminal device does not need to superimpose the target power in the first power adjustment information with the target power in the third power adjustment information or RRC signaling.
  • the target power in the first power adjustment information is an absolute value
  • RRC signaling for a specific example, reference may be made to the corresponding example in the embodiment corresponding to FIG. 8 , and details are not described here.
  • the network device sends the first signaling to the terminal device.
  • the terminal device may receive the first signaling.
  • the first signaling is a dedicated control instruction, and the first signaling includes first information.
  • the first signaling is not used for scheduling.
  • the first signaling does not include uplink scheduling information or downlink scheduling information.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission.
  • the terminal device needs to adjust the transmit power of the first uplink transmission before sending the first uplink transmission, assuming that the power adjustment delay ⁇ t for adjusting the first uplink transmission is 2 time slots , then the first signaling should be transmitted before time slot 4. Based on this possible implementation manner, it can be ensured that the terminal device has enough time to determine and adjust the transmit power of the first uplink transmission.
  • the terminal device Since the first signaling does not directly indicate the first full-duplex time unit. If the first signaling is received by the terminal device before T2- ⁇ t, the terminal device considers that the first signaling can be used to determine the transmit power of the first uplink transmission in the first full-duplex time unit.
  • the first signaling has the following two sending opportunities:
  • the network device determines all the terminal devices used for downlink transmission in the first full-duplex time unit, it determines the first information and sends the first signaling.
  • the network device sends the first signaling no later than T2- ⁇ t, so as to ensure sufficient time to determine and adjust the transmit power of the first uplink transmission. That is to say, in this manner, the network device sends a signaling to adjust the transmit power of the first uplink transmission after determining all interferences in the first full-duplex time unit. In this manner, the network device only sends a signaling to indicate the power adjustment information of the first uplink transmission.
  • the network device sends the first signaling not later than T2- ⁇ t, which can be understood as the network device sends the first signaling at the first few symbols of the corresponding time slot not exceeding T2- ⁇ t.
  • the network device determines part of the terminal devices used for downlink transmission in the first full-duplex time unit, it determines the first information and sends the first signaling. After sending the first signaling, the network device may also send second signaling to the network, the second signaling does not include uplink scheduling information or downlink scheduling information, the second signaling includes second information, and the second information indicates that the first Second power adjustment information for uplink transmission.
  • the second power adjustment information is an offset relative to the first power adjustment information.
  • the network device sends the first signaling and the second signaling no later than T2- ⁇ t, so as to ensure that the first terminal device has enough time to determine and adjust the transmit power of the first uplink transmission.
  • the network device sends the first signaling and the second signaling no later than T2- ⁇ t. It can be understood that the network device sends the first signaling in the first few symbols of the corresponding time slot not exceeding T2- ⁇ t. order and the second signaling.
  • the terminal device Since neither the first signaling nor the second signaling directly indicates the first full-duplex time unit. If the first signaling and the second signaling are received by the terminal device before T2- ⁇ t, the terminal device considers that the first signaling and the second signaling can be used to determine the first uplink transmission in the first full-duplex time unit transmit power.
  • the network device may pre-configure two sets of power adjustment information on the first terminal device.
  • the first set of power adjustment information is used when the network device determines to adopt the first type of timing for sending the first signaling.
  • the network device uses the second set of power adjustment information when determining to adopt the second type of timing for sending the first signaling.
  • the power adjustment information range corresponding to the first set of power adjustment information is larger than the power adjustment information range corresponding to the second set of power adjustment information.
  • the network device may instruct the first terminal device which set of power adjustment information to use through signaling.
  • the signaling may be RRC signaling.
  • the terminal device determines transmit power for the first uplink transmission according to the first signaling.
  • the network device can send signaling to the first terminal device in time to adjust the The transmit power of the first uplink transmission in the first full-duplex time unit is beneficial to avoid strong self-interference on the first uplink transmission and avoid reduction of full-duplex gain.
  • the network device does not need to indicate the first full-duplex time unit to the terminal device, which is beneficial to reduce indication overhead.
  • Fig. 18 is a schematic flowchart of another method for determining power provided by an embodiment of the present application.
  • the power determination method includes the following steps 1801 to 1806 .
  • the execution body of the method shown in FIG. 18 may be a terminal device and a network device.
  • the execution body of the method shown in FIG. 18 may be a chip in the terminal device and a chip in the network device.
  • FIG. 18 uses a terminal device and a network device as execution subjects of the method as an example for illustration.
  • the network device sends third signaling to the terminal device.
  • the terminal device may receive the third signaling.
  • the third signaling includes scheduling information of the first uplink transmission, and the scheduling information of the first uplink transmission indicates third power adjustment information of the first uplink transmission; or, the third signaling includes scheduling information of the first downlink transmission , the first uplink transmission is used to transmit feedback information of the first downlink transmission, and the scheduling information of the first downlink transmission indicates third power adjustment information of the first uplink transmission.
  • the network device determines first information.
  • the first information indicates first power adjustment information of the first uplink transmission
  • the first uplink transmission is an uplink transmission located in a first full-duplex time unit.
  • the network device sends the first signaling to the terminal device.
  • the terminal device may receive the first signaling.
  • the first signaling is a dedicated control instruction, and the first signaling includes first information.
  • the terminal device determines transmit power for the first uplink transmission according to the first signaling and the third signaling.
  • steps 1801 to 1804 reference may be made to the description in the embodiment corresponding to FIG. 16 , and details are not repeated here.
  • the network device sends fourth signaling to the terminal device.
  • the terminal device may receive the fourth signaling.
  • the fourth signaling includes the scheduling information of the second uplink transmission, and the scheduling information of the second uplink transmission indicates the fourth power adjustment information, or, the third signaling includes the scheduling information of the second downlink transmission, and the second uplink transmission uses When transmitting the feedback information of the second downlink transmission, the scheduling information of the second downlink transmission indicates the fourth power adjustment information; the second uplink transmission is located after the first uplink transmission in the time domain.
  • the second uplink transmission may be located in the second full-duplex time unit, or the second uplink transmission may also be located in the non-full-duplex time unit.
  • the second uplink transmission is the first uplink transmission after the first uplink transmission in the time domain, or the second uplink transmission is the Xth uplink transmission after the first uplink transmission in the time domain, where X is greater than 1.
  • the network device sends DCI signaling 1 to terminal device 1 in time slot 1, and the DCI signaling 1 is used to schedule the transmission of PUSCH1 in time slot 6.
  • the TPC indicated by the DCI signaling 1 is 10db, and the target power is 10db.
  • the network device sends DCI signaling 2 to the terminal device 1 in time slot 2.
  • the DCI signaling 2 is used to schedule the transmission of PUSCH2 in time slot 7.
  • the TPC indicated by the DCI signaling 2 is 2db, and the DCI signaling 2 indicates The TPC is an offset compared to the TPC indicated by DCI signaling 1.
  • the target power indicated by the DCI signaling 2 is 11db.
  • the network device sends DCI signaling 3 to the terminal device 1 in time slot 3.
  • the DCI signaling 3 is used to schedule the transmission of PUSCH3 in time slot 8.
  • the TPC indicated by the DCI signaling 3 is 2db, and the DCI signaling 3 indicates The TPC is an offset compared to the TPC indicated by DCI signaling 2.
  • the target power indicated by the DCI signaling 3 is 12db.
  • the network device determines at time slot 4 to schedule terminal device 2 and terminal device 3 for downlink transmission at time slot 7. At this time, considering that terminal device 2 and terminal device 3 will generate self-interference on PUSCH2 at time slot 7, the network device considers that DCI The TPC and/or target power indicated by signaling 2 are no longer accurate. Therefore, the network device issues DCI signaling 4 to the terminal device 1 in time slot 4, where the DCI signaling 4 indicates a TPC of 3db and/or a target power of 3db.
  • the TPC indicated by the DCI signaling 4 is an offset from the TPC indicated by the DCI signaling 2 .
  • the target power indicated by the DCI signaling 4 is an offset compared to the target power indicated by the DCI signaling 2 .
  • the terminal device 1 accumulates the TPC indicated by the DCI signaling 1, the TPC indicated by the DCI signaling 2, and the TPC indicated by the DCI signaling 4, and the accumulated TPC is 15db, and/or, the terminal device 1 adds the TPC indicated by the DCI signaling 2
  • the indicated target power and the target power indicated by the DCI signaling 4 are accumulated, and the accumulated target power is 14db.
  • Terminal device 1 uses a TPC of 15db and/or a target power of 14db to calculate the transmission power of PUSCH2.
  • the terminal device 1 accumulates the TPC indicated by DCI signaling 1, the TPC indicated by DCI signaling 2, the TPC indicated by DCI signaling 3, and the TPC indicated by DCI signaling 4, and the accumulated TPC is 17db.
  • Terminal device 1 uses a TPC of 17db and a target power of 12db to calculate the transmit power of PUSCH3.
  • the network device may also send fifth signaling to the terminal device, where the fifth signaling includes third information, and the third information indicates the fourth Power adjustment information. Specifically, the network device determines the transmit power of the second uplink transmission according to the first signaling, the third signaling, the fourth signaling, and the fifth signaling.
  • the network device sends DCI signaling 1 to terminal device 1 in time slot 1.
  • the DCI signaling 1 is used to schedule the transmission of PUSCH1 in time slot 6.
  • the TPC indicated by the DCI signaling 1 is 10db.
  • the target power is 10db.
  • the network device sends DCI signaling 2 to the terminal device 1 in time slot 2.
  • the DCI signaling 2 is used to schedule the transmission of PUSCH2 in time slot 7.
  • the TPC indicated by the DCI signaling 2 is 2db, and the DCI signaling 2 indicates The TPC is an offset compared to the TPC indicated by DCI signaling 1.
  • the target power indicated by the DCI signaling 2 is 11db.
  • the network device sends DCI signaling 3 to the terminal device 1 in time slot 3.
  • the DCI signaling 3 is used to schedule the transmission of PUSCH3 in time slot 8.
  • the TPC indicated by the DCI signaling 3 is 2db, and the DCI signaling 3 indicates The TPC is an offset compared to the TPC indicated by DCI signaling 2.
  • the target power indicated by the DCI signaling 2 is 12db.
  • the network device determines at time slot 4 to schedule terminal device 2 and terminal device 3 for downlink transmission at time slot 7. At this time, considering that terminal device 2 and terminal device 3 will generate self-interference on PUSCH2 at time slot 7, the network device considers that DCI The TPC and/or target power indicated by signaling 2 are no longer accurate. Therefore, the network device issues DCI signaling 4 to the terminal device 1 in time slot 4, where the DCI signaling 4 indicates a TPC of 3db and/or a target power of 3db.
  • the TPC indicated by the DCI signaling 4 is an offset from the TPC indicated by the DCI signaling 2 .
  • the target power indicated by the DCI signaling 4 is an offset compared to the target power indicated by the DCI signaling 2 .
  • the network device determines at time slot 5 to schedule terminal device 4 and terminal device 5 for downlink transmission at time slot 8. At this time, considering that terminal device 4 and terminal device 5 will generate self-interference on PUSCH3 at time slot 8, the network device considers that DCI The TPC and/or target power indicated by signaling 3 are no longer accurate. Therefore, the network device issues DCI signaling 5 to the terminal device 1 in time slot 5, where the DCI signaling 5 indicates a TPC of 3db and/or a target power of 3db.
  • the TPC indicated by the DCI signaling 5 is an offset from the sum of the TPC indicated by the DCI signaling 3 and the TPC indicated by the DCI signaling 4 .
  • the target power indicated by the DCI signaling 5 is an offset compared to the sum of the target power indicated by the DCI signaling 3 and the target power indicated by the DCI signaling 4 .
  • the terminal device 1 accumulates the TPC indicated by the DCI signaling 1, the TPC indicated by the DCI signaling 2, and the TPC indicated by the DCI signaling 4, and the accumulated TPC is 15db, and/or, the terminal device 1 adds the TPC indicated by the DCI signaling 2
  • the indicated target power and the target power indicated by the DCI signaling 4 are accumulated, and the accumulated TPC is 14db.
  • Terminal device 1 uses a TPC of 15db and/or a target power of 14db to calculate the transmission power of PUSCH2.
  • the terminal device 1 accumulates the TPC indicated by DCI signaling 1, the TPC indicated by DCI signaling 2, the TPC indicated by DCI signaling 3, the TPC indicated by DCI signaling 4, and the TPC indicated by DCI signaling 5, to obtain the accumulated The TPC is 20db. And/or, the terminal device 1 accumulates the target power indicated by DCI signaling 3, the target power indicated by DCI signaling 4, and the target power indicated by DCI signaling 5, to obtain an accumulated TPC of 18db. Terminal device 1 uses a TPC of 20db and/or a target power of 18db to calculate the transmission power of PUSCH3.
  • the terminal device needs to use the TPC and/or target power indicated by DCI signaling 4 to determine the transmission power of PUSCH2.
  • the terminal device needs to use the TPC and/or target power indicated by DCI signaling 4 and DCI signaling 5 to determine the transmit power of PUSCH3. That is to say, based on the solution described in FIG. 18 , for the second full-duplex time unit, the terminal device may consider that all DCI signaling detected before T3- ⁇ t2 of the second full-duplex time unit can be used to determine the second full-duplex time unit. Transmit power of uplink transmission in a full-duplex time unit.
  • the DCI signaling is DCI signaling that does not include scheduling information.
  • T3 is the second full-duplex time unit
  • ⁇ t2 is the power adjustment delay of the second uplink transmission.
  • the terminal device can accurately determine the uplink time within the full-duplex time unit.
  • the transmitted transmit power.
  • Fig. 21 is a schematic flowchart of another method for determining power provided by an embodiment of the present application.
  • the power determination method includes steps 2101 to 2102 as follows.
  • the execution body of the method shown in FIG. 21 may be a terminal device and a network device.
  • the execution body of the method shown in FIG. 21 may be a chip in the terminal device and a chip in the network device.
  • FIG. 21 takes the terminal device and the network device as the execution subjects of the method as an example for illustration.
  • the network device sends first information to the terminal device, where the first information indicates at least two power ramping values for random access.
  • the terminal device can receive the first information.
  • the terminal device determines the power ramping value used for random access in the second time unit from the at least two power ramping values, and the type is all duplex or not full duplex.
  • the type may also be another type, which is not limited in this embodiment of the present application.
  • the first time unit and the second time unit are two adjacent random access opportunities.
  • the first time unit and the second time unit are specifically two adjacent random access opportunities configured by the network device to the same terminal device.
  • the two adjacent random access opportunities may be discontinuous in the time domain.
  • the two adjacent random access opportunities are determined from random access opportunities configured by the network device to the terminal device.
  • the first time unit is located before the second time unit.
  • the first time unit is the last random access opportunity, and the second time unit is the current random access opportunity; or, the first time unit is the current random access opportunity, and the second time unit for the next random access opportunity.
  • the at least two power ramp values indicated by the first information include a first power ramp value and a second power ramp value, and the first power ramp value is smaller than the second power ramp value;
  • the power ramp value used for random access in the second time unit is the second power ramp value
  • the power ramping value used for random access in the second time unit is the first power ramping value
  • the power ramp value used for random access in the second time unit is the first power ramp value
  • the power ramping value used for random access in the second time unit is the first power ramping value.
  • the power ramping value used for random access in the second time unit is the first power ramping value value. If the first time unit is time slot 3 and the second time unit is time slot 5, then the power ramping value used for random access in the second time unit is the second power ramping value. If the first time unit is time slot 5 and the second time unit is time slot 7, then the power ramping value used for random access in the second time unit is the first power ramping value. If the first time unit is time slot 7 and the second time unit is time slot 9, then the power ramp value used for random access in the second time unit is the first power ramp value.
  • the at least two power ramp values indicated by the first information include a first power ramp value, a second power ramp value, and a third power ramp value, and the first power ramp value is smaller than the second power ramp value value, the third power ramp value is also smaller than the second power ramp value; when the type of the first time unit is full-duplex and the type of the second time unit is full-duplex, random access in the second time unit
  • the power ramp value used is a third power ramp value. For example, as shown in Figure 23.
  • the first information may explicitly indicate the second power ramp value, for example, the first information may directly include the first power ramp value and the second power ramp value. Alternatively, the first information may implicitly indicate the second power ramp value, and the first information includes the first power ramp value and an offset of the second power ramp value relative to the first power ramp value.
  • the terminal device can accurately determine the power ramp value used for random access, thereby improving the success rate of random access.
  • FIG. 24 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus shown in FIG. 24 may be used to perform some or all functions of the first terminal device in the method embodiments described in FIG. 8 , FIG. 10 , FIG. 12 or FIG. 14 above.
  • the device may be the first terminal device, or a device in the first terminal device, or a device that can be matched and used with the first terminal device.
  • the communication device may also be a system on a chip.
  • the communication device shown in FIG. 24 may include a communication unit 2401 and a processing unit 2402 . Among them, the processing unit 2402 is configured to perform data processing.
  • the communication unit 2401 is integrated with a receiving unit and a sending unit.
  • the communication unit 2401 may also be called a transceiver unit.
  • the communication unit 2401 may also be split into a receiving unit and a sending unit. in:
  • the communication unit 2401 is configured to receive first signaling, where the first signaling includes first information and second information, where the first information indicates the first full-duplex time unit, and where the second information indicates the first time unit of the first uplink transmission.
  • Power adjustment information the first uplink transmission is an uplink transmission located in a first full-duplex time unit; the processing unit 2402 is configured to determine the transmit power of the first uplink transmission according to the first signaling.
  • the two subbands do not overlap in the frequency domain, Partially or completely overlap.
  • the communication unit 2401 is further configured to receive second signaling, where the second signaling includes third information and fourth information, where the third information indicates a first full-duplex time unit, and the first The four information indicates the second power adjustment information of the first uplink transmission, and the second signaling does not include uplink scheduling information or downlink scheduling information; the processing unit 2402 determines the transmission power of the first uplink transmission according to the first signaling, specifically as follows: According to the first signaling and the second signaling, transmit power of the first uplink transmission is determined.
  • the communication unit 2401 is further configured to receive third signaling before receiving the first signaling; the third signaling includes scheduling information of the first uplink transmission, and the scheduling information of the first uplink transmission indicates The third power adjustment information of the first uplink transmission; or, the third signaling includes the scheduling information of the first downlink transmission, the first uplink transmission is used to transmit the feedback information of the first downlink transmission, and the scheduling of the first downlink transmission
  • the information indicates the third power adjustment information of the first uplink transmission;
  • the manner in which the processing unit 2402 determines the transmission power of the first uplink transmission according to the first signaling is specifically: according to the first signaling and the third signaling, determining the first uplink transmission power The transmitted transmit power.
  • the communication unit 2401 is further configured to receive fourth signaling, where the fourth signaling includes scheduling information of the second uplink transmission, or, the fourth signaling includes scheduling information of the second downlink transmission , the second uplink transmission is used to transmit the feedback information of the second downlink transmission; the processing unit 2402 is further configured to determine the transmission power of the second uplink transmission according to the third signaling and the fourth signaling, and the second uplink transmission is After the first uplink transmission on the domain.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission.
  • the first power adjustment information includes a transmission power control TPC of the first uplink transmission and/or a target power of the first uplink transmission.
  • the first signaling is group common control signaling
  • the second information includes power adjustment information fields of N subbands
  • the first uplink transmission is located in one or more subbands of the N subbands, where N is An integer greater than 1.
  • the first information includes a time unit offset from T1 to T2, where T1 is a time unit for transmitting the first signaling, and T2 is a first full-duplex time unit; or,
  • the first signaling is a dedicated control signaling, and the first information includes a Hybrid Automatic Repeat Request (HARQ) process number, where the HARQ process number corresponds to the first full-duplex time unit.
  • HARQ Hybrid Automatic Repeat Request
  • FIG. 24 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus shown in FIG. 24 may be used to execute some or all functions of the second terminal device in the method embodiment described in FIG. 14 above.
  • the device may be the second terminal device, or a device in the second terminal device, or a device that can be matched and used with the second terminal device.
  • the communication device may also be a system on a chip.
  • the communication device shown in FIG. 24 may include a communication unit 2401 and a processing unit 2402 . Among them, the processing unit 2402 is configured to perform data processing.
  • the communication unit 2401 is integrated with a receiving unit and a sending unit.
  • the communication unit 2401 may also be called a transceiver unit. Alternatively, the communication unit 2401 may also be split into a receiving unit and a sending unit. in:
  • the communication unit 2401 is configured to receive first signaling, where the first signaling includes first information and second information, where the first information indicates the first full-duplex time unit, and where the second information indicates the first time unit of the first uplink transmission.
  • Power adjustment information where the first uplink transmission is an uplink transmission located in a first full-duplex time unit
  • the communication unit 2401 is also configured to receive fifth signaling, where the fifth signaling includes scheduling information for a third uplink transmission, Or, the fifth signaling includes the scheduling information of the third downlink transmission, the third uplink transmission is used to transmit the feedback information of the third downlink transmission, and the third uplink transmission is located in the second full-duplex time unit
  • the processing unit 2402 uses To determine the transmit power of the third uplink transmission; wherein, the second full-duplex time unit is different from the first full-duplex time unit, and the first signaling is not used to determine the transmit power of the third uplink transmission.
  • the processing unit 2402 is further configured to determine that the first signaling is not used to determine the transmit power of the third uplink transmission when the second full-duplex time unit is different from the first full-duplex time unit.
  • the two subbands there are at least two subbands, and the transmission directions of the two subbands in the at least two subbands are different; wherein, the two subbands
  • the bands are non-overlapping, partially overlapping or fully overlapping in the frequency domain.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission.
  • the first power adjustment information includes a transmission power control TPC of the first uplink transmission and/or a target power of the first uplink transmission.
  • the first signaling is group common control signaling
  • the second information includes power adjustment information fields of N subbands
  • the first uplink transmission is located in one or more subbands of the N subbands, where N is An integer greater than 1.
  • the first information includes a time unit offset from T1 to T2, where T1 is a time unit for transmitting the first signaling, and T2 is a first full-duplex time unit.
  • FIG. 24 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus shown in FIG. 24 may be used to perform some or all functions of the network device in the method embodiments described in FIG. 8 , FIG. 10 , FIG. 12 or FIG. 14 above.
  • the device may be a network device, or a device in the network device, or a device that can be matched with the network device. Wherein, the communication device may also be a system on a chip.
  • the communication device shown in FIG. 24 may include a communication unit 2401 and a processing unit 2402 . Among them, the processing unit 2402 is configured to perform data processing.
  • the communication unit 2401 is integrated with a receiving unit and a sending unit.
  • the communication unit 2401 may also be called a transceiver unit. Alternatively, the communication unit 2401 may also be split into a receiving unit and a sending unit. in:
  • the processing unit 2402 is configured to determine first information and second information, where the first information indicates a first full-duplex time unit, where the second information indicates first power adjustment information for a first uplink transmission, where the first uplink transmission is Uplink transmission in the first full-duplex time unit: a communication unit 2401, configured to send first signaling to the first terminal device, where the first signaling includes first information and second information.
  • the two subbands do not overlap in the frequency domain, Partially or completely overlap.
  • the second signaling is sent to the first terminal device, where the second signaling includes third information and fourth information, the third information indicates the first full-duplex time unit, and the fourth information Indicates second power adjustment information for the first uplink transmission.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission.
  • the first power adjustment information includes a transmission power control TPC of the first uplink transmission and/or a target power of the first uplink transmission.
  • the first signaling is group common control signaling
  • the second information includes power adjustment information fields of N subbands
  • the first uplink transmission is located in one or more subbands of the N subbands, where N is An integer greater than 1.
  • the first signaling is a group common control signaling
  • the manner in which the communication unit 2401 sends the first signaling to the first terminal device is specifically: sending the first signaling to the first terminal device and the second terminal device. signaling;
  • the communication unit 2401 is further configured to send fifth signaling to the second terminal device, where the fifth signaling includes scheduling information for the third uplink transmission, or, where the fifth signaling includes scheduling information for the third downlink transmission, where the fifth signaling includes scheduling information for the third downlink transmission.
  • the three uplink transmissions are used to transmit the feedback information of the third downlink transmission, and the third uplink transmission is located in the second full-duplex time unit; the second full-duplex time unit is different from the first full-duplex time unit, and the first signaling does not use to determine the transmit power for the third uplink transmission.
  • the first information includes a time unit offset from T1 to T2, where T1 is a time unit for transmitting the first signaling, and T2 is a first full-duplex time unit; or,
  • the first signaling is a dedicated control signaling, and the first information includes a Hybrid Automatic Repeat Request (HARQ) process number, where the HARQ process number corresponds to the first full-duplex time unit.
  • HARQ Hybrid Automatic Repeat Request
  • FIG. 24 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus shown in FIG. 24 may be used to perform some or all functions of the terminal device in the method embodiments described in FIG. 16 , FIG. 17 , and FIG. 18 above.
  • the device may be a terminal device, or a device in the terminal device, or a device that can be matched with the terminal device. Wherein, the communication device may also be a system on a chip.
  • the communication device shown in FIG. 24 may include a communication unit 2401 and a processing unit 2402 . Among them, the processing unit 2402 is configured to perform data processing.
  • the communication unit 2401 is integrated with a receiving unit and a sending unit.
  • the communication unit 2401 may also be called a transceiver unit. Alternatively, the communication unit 2401 may also be split into a receiving unit and a sending unit. in:
  • the communication unit 2401 is configured to receive first signaling, where the first signaling is a dedicated control instruction, where the first signaling includes first information, where the first information indicates first power adjustment information for the first uplink transmission, where the first An uplink transmission is an uplink transmission located in the first full-duplex time unit; the processing unit 2402 is configured to determine the transmit power of the first uplink transmission according to the first signaling.
  • the two subbands do not overlap in the frequency domain, Partially or completely overlap.
  • the communication unit 2401 is further configured to receive second signaling, where the second signaling includes second information indicating second power adjustment information for the first uplink transmission, and the second The signaling does not include uplink scheduling information or downlink scheduling information; the manner in which the processing unit 2402 determines the transmit power of the first uplink transmission according to the first signaling is specifically: determining the transmission power of the first uplink transmission according to the first signaling and the second signaling transmit power.
  • the communication unit 2401 is further configured to receive third signaling before receiving the first signaling; the third signaling includes scheduling information of the first uplink transmission, and the scheduling information of the first uplink transmission The information indicates third power adjustment information of the first uplink transmission; or, the third signaling includes scheduling information of the first downlink transmission, the first uplink transmission is used to transmit feedback information of the first downlink transmission, and the first downlink transmission
  • the scheduling information of the uplink transmission indicates the third power adjustment information of the first uplink transmission; the manner in which the processing unit 2402 determines the transmission power of the first uplink transmission according to the first signaling is specifically: according to the first signaling and the third signaling, Determine transmit power for the first uplink transmission.
  • the communication unit 2401 is further configured to receive fourth signaling, where the fourth signaling includes scheduling information of the second uplink transmission, or, the fourth signaling includes scheduling information of the second downlink transmission , the second uplink transmission is used to transmit the feedback information of the second downlink transmission; the processing unit 2402 is further configured to determine the transmit power of the second uplink transmission according to the first signaling, the third signaling and the fourth signaling, and the second The uplink transmission is located after the first uplink transmission in the time domain.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission.
  • the first power adjustment information indicates the transmission power control TPC of the first uplink transmission and/or the target power of the first uplink transmission.
  • FIG. 24 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus shown in FIG. 24 may be used to execute some or all functions of the network device in the method embodiments described in FIG. 16 , FIG. 17 , and FIG. 18 above.
  • the device may be a network device, or a device in the network device, or a device that can be matched with the network device. Wherein, the communication device may also be a system on a chip.
  • the communication device shown in FIG. 24 may include a communication unit 2401 and a processing unit 2402 . Among them, the processing unit 2402 is configured to perform data processing.
  • the communication unit 2401 is integrated with a receiving unit and a sending unit.
  • the communication unit 2401 may also be called a transceiver unit. Alternatively, the communication unit 2401 may also be split into a receiving unit and a sending unit. in:
  • the processing unit 2402 is configured to determine first information, where the first information indicates first power adjustment information of a first uplink transmission, where the first uplink transmission is an uplink transmission located in a first full-duplex time unit; the communication unit 2401 is configured to Sending first signaling to the terminal device, where the first signaling is a dedicated control instruction, and where the first signaling includes first information.
  • the two subbands do not overlap in the frequency domain, Partially or completely overlap.
  • the communication unit 2401 is further configured to send second signaling to the terminal device, the second signaling does not include uplink scheduling information or downlink scheduling information, the second signaling includes second information, the second The second information indicates second power adjustment information of the first uplink transmission.
  • the first signaling is signaling transmitted before T2- ⁇ t
  • T2 is the first full-duplex time unit
  • ⁇ t is the power adjustment delay of the first uplink transmission.
  • the first power adjustment information indicates the transmission power control TPC of the first uplink transmission and/or the target power of the first uplink transmission.
  • FIG. 24 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication apparatus shown in FIG. 24 may be used to perform some or all functions of the terminal device in the method embodiment described in FIG. 21 above.
  • the device may be a terminal device, or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may also be a system on a chip.
  • the communication device shown in FIG. 24 may include a communication unit 2401 and a processing unit 2402 .
  • the processing unit 2402 is configured to perform data processing.
  • the communication unit 2401 is integrated with a receiving unit and a sending unit.
  • the communication unit 2401 may also be called a transceiver unit.
  • the communication unit 2401 may also be split into a receiving unit and a sending unit. in:
  • the communication unit 2401 is configured to receive first information, and the first information indicates at least two power ramp values for random access; the processing unit 2402 is configured to, according to the type of the first time unit and the type of the second time unit, from at least Determine the power ramping value used for random access in the second time unit from the two power ramping values, and the type is full-duplex or non-full-duplex; wherein, the first time unit and the second time unit are two adjacent a random access opportunity.
  • a full-duplex time unit there are at least two subbands, and the transmission directions of the two subbands in the at least two subbands are different; wherein, the two subbands do not overlap in the frequency domain, partly overlapping or fully overlapping.
  • the first time unit is before the second time unit.
  • the at least two power ramp values include a first power ramp value and a second power ramp value, and the first power ramp value is smaller than the second power ramp value;
  • the power ramp value used for random access is the second power ramp value
  • the power ramping value used for random access is the first power ramping value
  • the power ramp value used for random access is the first power ramp value
  • the power ramping value used for random access is the first power ramping value.
  • FIG. 25 shows a schematic structural diagram of a communication device.
  • the communication device 2500 may be the first terminal device in the above method embodiment, or the second terminal device in the above method embodiment, or the terminal device in the above method embodiment, or it may be the above method implementation
  • the network device in the example may also be a chip, a chip system, or a processor that supports the first terminal device to implement the above method, and may also be a chip, a chip system, or a processor that supports the second terminal device to implement the above method, It may also be a chip, a chip system, or a processor that supports a terminal device to implement the above method, and may also be a chip, a chip system, or a processor that supports a network device to implement the above method.
  • the communication device may be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • the communication device 2500 may include one or more processors 2501 .
  • the processor 2501 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process Data for Software Programs.
  • the communication device 2500 may include one or more memories 2502, on which instructions 2504 may be stored, and the instructions may be executed on the processor 2501, so that the communication device 2500 executes the above method Methods described in the Examples.
  • data may also be stored in the memory 2502 .
  • the processor 2501 and the memory 2502 can be set separately or integrated together.
  • the communication device 2500 may further include a transceiver 2505 and an antenna 2506 .
  • the transceiver 2505 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to realize a transceiver function.
  • the transceiver 2505 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the processing unit 2402 shown in FIG. 24 may be the processor 2501 .
  • the communication unit 2401 may be a transceiver 2505 .
  • the communication apparatus 2500 is a first terminal device: the processor 2501 is configured to execute the data processing operation of the first terminal device in the above method embodiment.
  • the transceiver 2505 is configured to perform the data transceiving operation of the first terminal device in the above method embodiment.
  • the transceiver 2505 may be used to perform the data transceiving operation of the first terminal device in FIG. 8 , FIG. 10 , FIG. 12 or FIG. 14 .
  • the processor 2501 may be configured to execute data processing operations of the first terminal device in FIG. 8 , FIG. 10 , FIG. 12 , or FIG. 14 .
  • the communication apparatus 2500 is a second terminal device: the processor 2501 is configured to execute the data processing operation of the second terminal device in the foregoing method embodiments.
  • the transceiver 2505 is configured to perform the data transceiving operation of the second terminal device in the above method embodiment.
  • the transceiver 2505 may be used to perform the data transceiving operation of the second terminal device in FIG. 14 .
  • the processor 2501 may be configured to perform data processing operations of the second terminal device in FIG. 14 .
  • the communication apparatus 2500 is a terminal device: the processor 2501 is configured to perform data processing operations of the terminal device in the foregoing method embodiments.
  • the transceiver 2505 is configured to perform data transceiving operations of the terminal device in the foregoing method embodiments.
  • the transceiver 2505 may be used to perform the data transceiving operation of the terminal device in FIG. 16 , FIG. 17 , FIG. 18 or FIG. 21 .
  • the processor 2501 may be configured to perform data processing operations of the terminal device in FIG. 16 , FIG. 17 , FIG. 18 or FIG. 21 .
  • the communication apparatus 2500 is a network device: the processor 2501 is configured to perform data processing operations of the network device in the foregoing method embodiments.
  • the transceiver 2505 is configured to perform data transceiving operations of the network device in the foregoing method embodiments.
  • the transceiver 2505 may be used to perform data transceiving operations of the network devices in FIG. 8 , FIG. 10 , FIG. 12 , FIG. 14 , FIG. 16 , FIG. 17 , FIG. 18 or FIG. 21 .
  • the processor 2501 may be configured to execute data processing operations of the network devices in FIG. 8 , FIG. 10 , FIG. 12 , FIG. 14 , FIG. 16 , FIG. 17 , FIG. 18 or FIG. 21 .
  • the processor 2501 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 2501 may store instructions 2503, and the instructions 2503 run on the processor 2501, and may cause the communication device 2500 to execute the methods described in the foregoing method embodiments.
  • the instruction 2503 may be fixed in the processor 2501, in this case, the processor 2501 may be implemented by hardware.
  • the communication device 2500 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and the transceiver described in the embodiment of the present application can be implemented in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (application specific integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be the first communication device and the second communication device, but the scope of the communication device described in the embodiment of the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 25 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and instructions;
  • ASIC such as modem (MSM)
  • the communication device may be a chip or a chip system
  • the chip 2600 shown in FIG. 26 includes a processor 2601 and an interface 2602 .
  • a memory 2603 may also be included.
  • the number of processors 2601 may be one or more, and the number of interfaces 2602 may be more than one.
  • the interface 2602 is used to receive or output a signal; for example, the interface 2602 may be used to perform a signal receiving or output operation of the first terminal device in FIG. 8 , FIG. 10 , FIG. 12 , or FIG. 14 .
  • the processor 2601 is configured to perform a data processing operation of the first communication device.
  • the processor 2601 may be configured to execute data processing operations of the first terminal device in FIG. 8 , FIG. 10 , FIG. 12 or FIG. 14 .
  • the interface 2602 is used to receive or output signals; for example, the interface 2602 can be used to implement the second terminal device in Figure 14 A signal receiving or output operation of a device.
  • the processor 2601 is configured to perform a data processing operation of the second communication device.
  • the processor 2601 may be configured to perform data processing operations of the second terminal device in FIG. 14 .
  • the interface 2602 is used to receive or output a signal; for example, the interface 2602 can be used to perform a signal receiving or output operation of the terminal device in FIG. 16 , FIG. 17 , FIG. 18 or FIG. 21 .
  • the processor 2601 is configured to perform a data processing operation of the second communication device.
  • the processor 2601 may be configured to perform data processing operations of the terminal device in FIG. 16 , FIG. 17 , FIG. 18 or FIG. 21 .
  • the interface 2602 is used to receive or output signals; for example, the interface 2602 can be used to perform signal reception or output of network devices in FIG. 8, FIG. 10, FIG. 12, FIG. 14, FIG. 16, FIG. 17, FIG. 18 or FIG. 21 operate.
  • the processor 2601 is configured to perform data processing operations of network devices.
  • the processor 2601 may be configured to execute data processing operations of the network devices in FIG. 8 , FIG. 10 , FIG. 12 , FIG. 14 , FIG. 16 , FIG. 17 , FIG. 18 or FIG. 21 .
  • the processor in the embodiment of the present application may be an integrated circuit chip that has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other possible Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer-readable medium, where computer programs or instructions are stored in the storage medium, and when the computer programs or instructions are executed by the communication device, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product including instructions.
  • the computer reads and executes the computer program product, the computer can realize the functions of any one of the above method embodiments.
  • all or part may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种功率确定方法及通信装置,该方法包括:接收第一信令,该第一信令包括第一信息和第二信息,该第一信息指示第一全双工时间单元,该第二信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输;根据第一信令,确定第一上行传输的发射功率。基于本申请所描述的方法,终端设备能够及时地接收到第一信令来确定终端设备在第一全双工时间单元内的第一上行传输的发射功率,有利于避免第一上行传输受到强烈的自干扰,避免降低全双工的增益。

Description

一种功率确定方法及通信装置
本申请要求于2021年11月22日提交中国专利局、申请号为202111389856.9、申请名称为“一种功率确定方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种功率确定方法及通信装置。
背景技术
目前的无线通信系统,例如WiFi,长期演进(long term evolution,LTE)都是基于半双工传输,即同一个设备在同一个载波或相同的时频资源上不允许同时进行收发操作。近期,第三代合作伙伴计划(3rd generation partnership project,3GPP)全会提出子带全双工(subband full duplex,SBFD),将工作于半双工的终端设备进行联合调度,使得网络设备(如基站)能同时进行收发,在网络设备侧实现全双工。网络设备侧进行的全双工为子带全双工,即在同一载波的不同子带上同时进行发送和接收。子带全双工也可称为时频分双工(X division duplex,XDD),或全双工等。例如,如图1所示,对于某一时分双工下行(time division duplex downlink,TDD DL)时隙(slot),可以在该slot中选取部分子带用作上行(uplink,UL)传输。即在非对称频谱(unpaired spectrum,通常指TDD)上使能频分双工(frequency division duplex,FDD)传输。
SBFD时隙中的下行用户设备(downlink user equipment,DL UE)不同,会对SBFD时隙中的UL UE造成不同的干扰。目前的功率控制并非针对SBFD传输,因此,不精确的功率调整信息会导致上行传输受到强烈的自干扰,导致全双工的增益降低。
发明内容
本申请提供一种功率确定方法及通信装置,有利于避免上行传输受到强烈的自干扰,避免降低全双工的增益。
第一方面,本申请提供了一种功率确定方法,应用于第一终端设备,该方法包括:
接收第一信令,该第一信令包括第一信息和第二信息,该第一信息指示第一全双工时间单元,该第二信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输;根据第一信令,确定第一上行传输的发射功率。
基于第一方面所描述的方法,第一终端设备能够及时地接收到第一信令来确定第一终端设备在第一全双工时间单元内的第一上行传输的发射功率,有利于避免第一上行传输受到强烈的自干扰,避免降低全双工的增益。
可选的,第一信令不用于调度。可选的,第一信令不包括上行调度信息或下行调度信息。
在一种可能的实现中,在第一全双工时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。通过在同一时间单元上引入不同的传输方向,使得在用于下行传输的载波上或者用于灵活符号的载波上,可以进行上行传输。从而使得上行容量得到扩展,减少了终端设备进行上行传输所 需要的时延,等待时间更短,加速了通信,保证了服务质量。
在一种可能的实现中,第一终端设备还可接收第二信令,该第二信令包括第三信息和第四信息,该第三信息指示第一全双工时间单元,该第四信息指示第一上行传输的第二功率调整信息,该第二信令不包括上行调度信息或下行调度信息;根据第一信令,确定第一上行传输的发射功率的具体实施方式为:根据第一信令和第二信令,确定第一上行传输的发射功率。
基于该可能的实现方式,网络设备可以分多次向第一终端设备下发第一上行传输的功率调整信息。如果网络设备确定完第一全双工时间单元内所有用于下行传输的终端设备之后,才向第一终端设备下发第一上行传输的功率调整信息,网络设备可能面临没有充足的下发资源用于功率调整信息的发送,或者不能保证第一终端设备在接收第一上行传输的功率调整信息之后,有足够的时间确定和调整第一上行传输的发射功率。因此,可能造成第一终端设备无法对第一上行传输进行有效的功率弥补,无法缓解第一上行传输在网络设备处遭受的自干扰影响,第一上行传输无法被网络设备正确接收。而如果网络设备分多次向第一终端设备下发第一上行传输的功率调整信息,网络设备在确定有下行传输会对第一上行传输会产生自干扰影响时,就可及时下发第一上行传输的功率调整信息,可以保证有充足的下发资源用于功率调整信息的发送,保证第一终端设备在接收第一上行传输的功率调整信息之后,有足够的时间确定和调整第一上行传输的发射功率。因此,有利于第一终端设备对第一上行传输进行有效的功率弥补,缓解第一上行传输在网络设备处遭受的自干扰影响,使得第一上行传输被网络设备正确接收。
在一种可能的实现中,第一终端设备接收第一信令之前,还可接收第三信令;该第三信令包括第一上行传输的调度信息,该第一上行传输的调度信息指示第一上行传输的第三功率调整信息;或者,该第三信令包括第一下行传输的调度信息,第一上行传输用于传输第一下行传输的反馈信息,该第一下行传输的调度信息指示第一上行传输的第三功率调整信息;第一终端设备根据第一信令,确定第一上行传输的发射功率的具体实施方式为:根据第一信令和第三信令,确定第一上行传输的发射功率。在该可能的实现方式中,第一功率调整信息可以是相对于第三功率调整信息的偏移量,通过指示相对于第三功率调整信息的偏移量有助于减少第一信令的开销,可以减少第一信令的比特数,最小化成本。
可选的,调度信息指用于传输数据的时域或频域资源分配信息,调制编码信息,HARQ进程号信息,上行探测信号触发信息,待传输数据的反馈信息,待传输数据的反馈资源信息,或待传输数据的功率参数信息等中至少一项。
在一种可能的实现中,第一终端设备还可接收第四信令,该第四信令包括第二上行传输的调度信息,或,该第四信令包括第二下行传输的调度信息,第二上行传输用于传输第二下行传输的反馈信息;根据第三信令和第四信令,确定第二上行传输的发射功率,该第二上行传输在时域上位于第一上行传输之后。基于该可能的实现方式,可以避免在对第一全双工时间单元内的第一上行传输的发射功率进行调整之后,影响第一上行传输之后的上行传输的发射功率。基于该可能的实现方式,可以有针对性的对某个全双工时间单元内的上行传输的发射功率进行调整。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。基于该可能的实现方式,能够保证第一终端设备有足够的时间确定和调整第一上行传输的发射功率。
在一种可能的实现中,第一功率调整信息包括第一上行传输的传输功率控制TPC和/或第一上行传输的目标功率。
在一种可能的实现中,第一信令可以是组公共控制信令。由于组公共控制信令是发给一组终端设备的,而不是用户特定的(UE-specific),避免了网络设备为终端设备组中的每个终端设备分别生成不同的信令造成信令开销大的问题,降低了网络设备的信令开销。
在一种可能的实现中,第一信令可以是专用控制指令。
在一种可能的实现中,组公共控制信令的循环冗余码校验CRC部分通过组公共的无线网络临时标识RNTI加扰。这样这一个用户组内所有终端设备都可以用这个RNTI去解扰组公共控制信令。
在一种可能的实现中,第一信令为组公共控制信令,第二信息包括N个子带的功率调整信息域,第一上行传输位于N个子带中的一个或多个子带,N为大于1的整数。基于该可能的实现方式,能够准确地向多个终端设备指示其对应的功率调整信息。
在一种可能的实现中,第一信息包括从T1到T2的时间单元偏移量,T1为传输第一信令的时间单元,T2为第一全双工时间单元。通过T1到T2的时间单元偏移量来指示第一全双工时间单元,可以有效指示第一全双工时间单元,使得第一终端设备能获知准确应用第一功率调整信息的时间单元,且通过T1到T2的时间单元偏移量来指示第一全双工时间单元,有助于减少第一信令的开销,可以减少第一信令的比特数,最小化成本。
可选的,T1到T2的时间单元偏移量可以为时隙偏移量。可选的,T1到T2的时间单元偏移量也可以为符号偏移量。
在一种可能的实现中,第一信令为专用控制信令,第一信息包括混合自动重传请求HARQ进程号,该HARQ进程号对应第一全双工时间单元。HARQ进程号对应时间单元,表示HARQ进程号对应的数据传输位于该时间单元。第一终端设备基于有效时段内的HARQ进程,能确定某个HARQ进程号对应的数据传输所在的时间单元。所述有效时段指的是最大个数HARQ进程可以持续的调度时间,通过限制基于有效时段内的HARQ进程来确定某个HARQ进程号对应的数据传输所在的时间单元,可以保证终端设备不会产生混淆,不会出现对多个持有相同HARQ进程号的数据无法准确区分和适用的情形。通过HARQ进程号来指示第一全双工时间单元,可以在不引入任何新的参考信息的情况下指示第一全双工时间单元。
第二方面,本申请提供了一种功率确定方法,应用于第二终端设备,该方法包括:接收第一信令,该第一信令包括第一信息和第二信息,该第一信息指示第一全双工时间单元,该第二信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输;接收第五信令,该第五信令包括第三上行传输的调度信息,或,该第五信令包括第三下行传输的调度信息,该第三上行传输用于传输第三下行传输的反馈信息,该第三上行传输位于第二全双工时间单元;确定第三上行传输的发射功率;其中,第二全双工时间单元不同于第一全双工时间单元,第一信令不用于确定第三上行传输的发射功率。
基于第二方面所描述的方法,第二终端设备在接收到组播的第一信令之后,如果第二终端设备中的上行传输不在第一信令指示的全双工时间单元内,则不使用该第一信令来确定该上行传输的发射功率,这样第二终端设备可以准确地确定上行传输的发射功率。
可选的,第一信令不用于调度。可选的,第一信令不包括上行调度信息或下行调度信息。
在一种可能的实现中,第二终端设备接收第五信令之后,当第二全双工时间单元不同于第一全双工时间单元时,确定第一信令不用于确定第三上行传输的发射功率。
在一种可能的实现中,在第一全双工时间单元或第二全双工时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。
在一种可能的实现中,第一功率调整信息包括第一上行传输的传输功率控制TPC和/或第一上行传输的目标功率。
在一种可能的实现中,第一信令可以是组公共控制信令或专用控制信令。
在一种可能的实现中,组公共控制信令的循环冗余码校验CRC部分通过组公共的无线网络临时标识RNTI加扰。
在一种可能的实现中,第一信令为组公共控制信令,第二信息包括N个子带的功率调整信息域,第一上行传输位于N个子带中的一个或多个子带,N为大于1的整数。
在一种可能的实现中,第一信息包括从T1到T2的时间单元偏移量,T1为传输第一信令的时间单元,T2为第一全双工时间单元。
第二方面的可能的实现方式的有益效果可参见第一方面相应的可能的实现方式的有益效果,在此不赘述。
第三方面,本申请提供了一种功率确定方法,应用于网络设备,该方法包括:确定第一信息和第二信息,该第一信息指示第一全双工时间单元,该第二信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输;向第一终端设备发送第一信令,该第一信令包括第一信息和第二信息。
可选的,第一信令不用于调度。可选的,第一信令不包括上行调度信息或下行调度信息。
在一种可能的实现中,在第一全双工时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。
在一种可能的实现中,网络设备还可向第一终端设备发送第二信令,该第二信令包括第三信息和第四信息,该第三信息指示第一全双工时间单元,该第四信息指示第一上行传输的第二功率调整信息。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。
在一种可能的实现中,第一功率调整信息包括第一上行传输的传输功率控制TPC和/或第一上行传输的目标功率。
在一种可能的实现中,网络设备还可向第一终端设备发送第三信令;该第三信令包括第一上行传输的调度信息,该第一上行传输的调度信息指示第一上行传输的第三功率调整信息;或者,该第三信令包括第一下行传输的调度信息,第一上行传输用于传输第一下行传输的反馈信息,该第一下行传输的调度信息指示第一上行传输的第三功率调整信息;该第一功率调整信息可以是相对于第三功率调整信息的偏移量。
在一种可能的实现中,第一信令可以是组公共控制信令或专用控制信令。
在一种可能的实现中,组公共控制信令的循环冗余码校验CRC部分通过组公共的无线网络临时标识RNTI加扰。
在一种可能的实现中,第一信令为组公共控制信令,第二信息包括N个子带的功率调整信息域,第一上行传输位于N个子带中的一个或多个子带,N为大于1的整数。
在一种可能的实现中,第一信令为组公共控制信令,向第一终端设备发送第一信令的具体实施方式为:向第一终端设备和第二终端设备发送第一信令;网络设备还可向第二终端设备发送第五信令,该第五信令包括第三上行传输的调度信息,或,该第五信令包括第三下行传输的调度信息,第三上行传输用于传输第三下行传输的反馈信息,第三上行传输位于第二 全双工时间单元;第二全双工时间单元不同于第一全双工时间单元,第一信令不用于确定第三上行传输的发射功率。
在一种可能的实现中,第一信息包括从T1到T2的时间单元偏移量,T1为传输第一信令的时间单元,T2为第一全双工时间单元。
可选的,T1到T2的时间单元偏移量可以为时隙偏移量。可选的,T1到T2的时间单元偏移量也可以为符号偏移量。可选的,T1到T2的时间单元偏移量也可以为时隙和符号的偏移量。
在一种可能的实现中,第一信令为专用控制信令,第一信息包括混合自动重传请求HARQ进程号,HARQ进程号对应第一全双工时间单元。
第三方面和第三方面的可能的实现方式的有益效果,可参见第一方面的有益效果、第一方面的可能的实现方式的有益效果和第二方面的有益效果,在此不赘述。
第四方面,本申请提供了一种功率确定方法,该方法包括:接收第一信令,该第一信令为专用控制指令,该第一信令包括第一信息,该第一信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输;根据第一信令,确定第一上行传输的发射功率。
基于第四方面所描述的方法,终端设备能够及时地接收到第一信令来确定终端设备在第一全双工时间单元内的上行传输的发射功率,有利于避免第一上行传输受到强烈的自干扰,避免降低全双工的增益。并且第一信令不用指示第一全双工时间单元,这样有利于减少指示开销。
可选的,第一信令不用于调度。可选的,第一信令不包括上行调度信息或下行调度信息。
在一种可能的实现中,在第一全双工时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。通过在同一时间单元上引入不同的传输方向,使得在用于下行传输的载波上或者用于灵活符号的载波上,可以进行上行传输。从而使得上行容量得到扩展,减少了终端设备进行上行传输所需要的时延,等待时间更短,加速了通信,保证了服务质量。
在一种可能的实现中,还可接收第二信令,该第二信令包括第二信息,该第二信息指示第一上行传输的第二功率调整信息,第二信令不包括上行调度信息或下行调度信息;根据第一信令,确定第一上行传输的发射功率的具体实施方式为:根据第一信令和第二信令,确定第一上行传输的发射功率。基于该可能的实现方式,网络设备可以分多次向第一终端设备下发第一上行传输的功率调整信息,有利于终端设备对第一上行传输进行有效的功率弥补,缓解第一上行传输在网络设备处遭受的自干扰影响,使得第一上行传输被网络设备正确接收。
在一种可能的实现中,接收第一信令之前,还可接收第三信令;该第三信令包括第一上行传输的调度信息,第一上行传输的调度信息指示第一上行传输的第三功率调整信息;或者,第三信令包括第一下行传输的调度信息,第一上行传输用于传输第一下行传输的反馈信息,第一下行传输的调度信息指示第一上行传输的第三功率调整信息;终端设备根据第一信令,确定第一上行传输的发射功率的具体实施方式为:根据第一信令和第三信令,确定第一上行传输的发射功率。在该可能的实现方式中,第一功率调整信息可以是相对于第三功率调整信息的偏移量,通过指示相对于第三功率调整信息的偏移量有助于减少第一信令的开销,可以减少第一信令的比特数,最小化成本。
在一种可能的实现中,还可接收第四信令,该第四信令包括第二上行传输的调度信息,或,第四信令包括第二下行传输的调度信息,第二上行传输用于传输第二下行传输的反馈信 息;根据第一信令、第三信令和第四信令,确定第二上行传输的发射功率,第二上行传输在时域上位于第一上行传输之后。基于该可能的实现方式,即使网络设备发送的信令中并没有明确的信息来指示其应该应用于哪个全双工时间单元,终端设备也能准确地确定该全双工时间单元内的上行传输的发射功率。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。基于该可能的实现方式,能够保证终端设备有足够的时间确定和调整第一上行传输的发射功率。
在一种可能的实现中,第一功率调整信息指示第一上行传输的传输功率控制TPC和/或第一上行传输的目标功率。
第五方面,本申请提供了一种功率确定方法,该方法包括:确定第一信息,该第一信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输;向终端设备发送第一信令,该第一信令为专用控制指令,该第一信令包括第一信息。
在一种可能的实现中,在第一全双工时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。
在一种可能的实现中,还可向终端设备发送第二信令,该第二信令不包括上行调度信息或下行调度信息,该第二信令包括第二信息,该第二信息指示第一上行传输的第二功率调整信息。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。
在一种可能的实现中,第一功率调整信息指示第一上行传输的传输功率控制TPC和/或第一上行传输的目标功率。
在一种可能的实现中,网络设备还可向终端设备发送第三信令;该第三信令包括第一上行传输的调度信息,该第一上行传输的调度信息指示第一上行传输的第三功率调整信息;或者,该第三信令包括第一下行传输的调度信息,第一上行传输用于传输第一下行传输的反馈信息,该第一下行传输的调度信息指示第一上行传输的第三功率调整信息;该第一功率调整信息可以是相对于第三功率调整信息的偏移量。
第五方面和第五方面的可能的实现方式的有益效果可参见第四方面和第四方面的可能的实现方式的有益效果,在此不赘述。
第六方面,本申请提供了一种功率爬坡值确定方法,该方法包括:接收第一信息,该第一信息指示随机接入的至少两个功率爬坡值;根据第一时间单元的类型和第二时间单元的类型,从至少两个功率爬坡值中确定在第二时间单元进行随机接入使用的功率爬坡值,类型为全双工或非全双工;其中,第一时间单元和第二时间单元为相邻两个随机接入时机。
基于第六方面所描述的方法,终端设备能够准确地确定进行随机接入使用的功率爬坡值,从而提升随机接入的成功率。
在一种可能的实现中,在全双工的时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。
在一种可能的实现中,第一时间单元位于第二时间单元之前。
在一种可能的实现中,至少两个功率爬坡值包括第一功率爬坡值和第二功率爬坡值,第一功率爬坡值小于第二功率爬坡值;
当第一时间单元的类型为非全双工,且第二时间单元的类型为全双工时,随机接入使用的功率爬坡值为第二功率爬坡值;或者,
当第一时间单元的类型为非全双工,且第二时间单元的类型为非全双工时,随机接入使用的功率爬坡值为第一功率爬坡值;或者,
当第一时间单元的类型为全双工,且第二时间单元的类型为非全双工时,随机接入使用的功率爬坡值为第一功率爬坡值;或者,
当第一时间单元的类型为全双工,且第二时间单元的类型为全双工时,随机接入使用的功率爬坡值为第一功率爬坡值。
由于全双工时间单元内的干扰较大,因此,从非全双工时间单元切换到全双工时间单元时,需要更大的发射功率进行随机接入。
在一种可能的实现中,第一信息可以显式地指示第二功率爬坡值,例如,第一信息可以直接包括第一功率爬坡值和第二功率爬坡值。或者,第一信息可以隐式地指示第二功率爬坡值,第一信息包括第一功率爬坡值和第二功率爬坡值相对于第一功率爬坡值的偏移量。
第七方面,本申请提供了一种通信装置,该通信装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面或第二方面或第四方面或第六方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面或第二方面或第四方面或第六方面所述的方法以及有益效果。
第八方面,本申请提供了一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第三方面或第五方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。该单元或模块可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第三方面或第五方面所述的方法以及有益效果。
第九方面,本申请提供了一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,如第一方面~第六方面中任意一项所述的方法被执行。
第十方面,本申请提供了一种通信装置,通信装置包括处理器和存储器,处理器和存储器耦合;处理器用于实现如第一方面~第六方面中任意一项所述的方法。
第十一方面,本申请提供了一种通信装置,通信装置包括处理器、存储器和收发器,处理器和存储器耦合;收发器用于收发数据,处理器用于实现如第一方面~第六方面中任意一项所述的方法。
第十二方面,本申请提供了一种通信装置,通信装置包括处理器和接口,该接口用于接收或输出信号,处理器用于通过逻辑电路或执行代码指令实现如第一方面~第六方面中任意一项所述的方法。
第十三方面,本申请提供了一种计算机可读存储介质,存储介质中存储有计算机程序或指令,当计算机程序或指令被通信装置执行时,实现如第一方面~第六方面中任意一项所述的方法。
第十四方面,本申请提供一种包括指令的计算机程序产品,当计算机读取并执行计算机程序产品时,使得计算机执行如第一方面~第六方面中任意一项所述的方法。
附图说明
图1为本申请提供的一种子带全双工SBFD的示意图;
图2为本申请实施例提供的一种通信系统的示意图;
图3为本申请实施例提供的一种时间单元关系的示意图;
图4为本申请实施例提供的一种上行调度的示意图;
图5为本申请提供的一种下行调度时序的示意图;
图6为本申请提供的一种上行调度时序的示意图;
图7为本申请提供的一种上行调度的示意图;
图8为本申请实施例提供的一种功率确定方法的流程示意图;
图9为本申请实施例提供的另一种上行调度的示意图;
图10为本申请实施例提供的另一种功率确定方法的流程示意图;
图11为本申请实施例提供的又一种上行调度的示意图;
图12为本申请实施例提供的又一种功率确定方法的流程示意图;
图13为本申请实施例提供的又一种上行调度的示意图;
图14为本申请实施例提供的又一种功率确定方法的流程示意图;
图15为本申请实施例提供的又一种上行调度的示意图;
图16为本申请实施例提供的又一种功率确定方法的流程示意图;
图17为本申请实施例提供的又一种功率确定方法的流程示意图;
图18为本申请实施例提供的又一种功率确定方法的流程示意图;
图19为本申请实施例提供的又一种上行调度的示意图;
图20为本申请实施例提供的又一种上行调度的示意图;
图21为本申请实施例提供的又一种功率爬坡值确定方法的流程示意图;
图22为本申请实施例提供的第一时间单元和第二时间单元的示意图;
图23为本申请实施例提供的第一时间单元和第二时间单元的示意图;
图24为本申请实施例提供的一种通信装置的结构示意图;
图25为本申请实施例提供的另一种通信装置的结构示意图;
图26为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至 少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
为了更好地理解本申请实施例,下面首先对本申请实施例涉及的系统架构进行介绍:
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)以及未来的通信系统等。
图2是本申请实施例提供的一种通信系统的示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括网络设备和至少一个终端设备,图2以通信系统中包括网络设备和3个终端设备为例。
一、终端设备
终端设备包括向用户提供语音和/或数据连通性的设备,例如终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(VR)终端设备、增强现实(AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或可实现终端设备功能的组合器件、部件,该装置可以被安装在终端设备中。
二、网络设备
网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等。网络设备也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data  adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和媒体接入控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能。有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。网络设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请实施例中,用于实现网络设备功能的装置可以是网络设备本身,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或可实现接入网设备功能的组合器件、部件,该装置可以被安装在网络设备中。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
下面对出本申请实施例所使用的一些名词或术语进行解释说明。
一、时间单元
时间单元为用于信号传输的时域单元,可包括无线帧(radio frame)、子帧(subframe)、迷你子帧、时隙(slot)、微时隙(mini-slot)或至少一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号等时域单位。OFDM符号也可以简称为时域符号。图3所示为本申请中一种可能的时间单元关系的示意图。参考图3,一个无线帧的时域长度为10ms。一个无线帧可以包括10个无线子帧,一个无线子帧的时域长度为1ms。一个无线子帧可以包括一个或多个时隙,具体一个子帧包括多少个时隙与子载波间隔(Subcarrier Space,SCS)相关。或者说,一个无线帧可以包括10个时隙。符号长度/时隙长度与SCS相关。对于SCS为15kHz的情况,一个时隙的时域长度为1ms。一个时隙包括14个符号。
二、子带
载波带宽(carrierbandwidth)可以视为一种宽带,其包括至少一个带宽部分(bandwidth part,BWP)。每个带宽部分包括至少一个连续的子带。每个子带包括至少一个连续的物理资源块(physical resource block,PRB)。或者说,载波带宽包括至少一个PRB。频域上连续的一个或多个PRB可以为一个子带。在频域上,每个PRB包括12个连续子载波。
三、全双工时间单元
全双工时间单元可以称为子带全双工(subband full duplex,SBFD)时间单元,或时频分双工(X division duplex,XDD)时间单元等。
在全双工时间单元上,存在至少两个子带,该至少两个子带中的两个子带的传输方向不同。其中,该两个子带在频域上不重叠、部分重叠或完全重叠。也就是说,全双工为不重叠的子带上的全双工,或者,全双工为部分重叠的子带上的全双工,或者,全双工为完全重叠的子带上的全双工。通过在同一时间单元上引入不同的传输方向,使得在用于下行传输的载波上或者用于灵活符号的载波上,可以进行上行传输。从而使得上行容量得到扩展,减少了终端设备进行上行传输所需要的时延,等待时间更短,加速了通信,保证了服务质量。
例如,以两个子带在频域上不重叠为例。在全双工时间单元上,存在子带1和子带2。子带1用于上行传输,子带2用于下行传输。子带1包括PRB#0~PRB#9,子带2包括PRB#10~PRB#19。
再如,以两个子带在频域上部分重叠为例。在全双工时间单元上,存在子带1和子带2。子带1用于上行传输,子带2用于下行传输。子带1包括PRB#0~PRB#9,子带2包括PRB#5~PRB#14。
再如,以两个子带在频域上完全重叠为例。在全双工时间单元上,存在子带1和子带2。子带1用于上行传输,子带2用于下行传输。子带1包括PRB#0~PRB#9,子带2包括PRB#0~PRB#9。
四、闭环功率控制
终端设备基于网络设备配置的闭环功率控制参数来确定上行传输的发射功率。例如,以上行传输为PUSCH为例。下面对如何基于闭环功率控制参数确定PUSCH的发射功率进行介绍:
需要说明的是,下文中描述的PUSCH的发射功率可以认为是终端设备在资源单位i向小区c发送PUSCH的发射功率。其中,资源单位i可以是任一个资源单位,小区c可以是网络设备,例如基站,所服务的任一个小区。为了便于描述,下文中计算的PUSCH的发射功率的公式中均未涉及c。
终端设备在资源单位i发射PUSCH的发射功率P(i,j,q d,n)为:
Figure PCTCN2022131012-appb-000001
其中,j为配置{P 0,α}参数集的索引;n为配置的功率控制调整状态索引,对应不同的闭环功率控制进程,n可以为1或2;q d为参考信号(reference signal,RS)资源索引;P CMAX(i)为终端设备的最大可用发射功率;M RB(i)是资源单位i内PUSCH对应的时频资源所占的带宽,该时频资源可以以资源块(resource block,RB)数目为单位。α(j)为半静态配置参数,表示路损补偿程度。PL(q d)为UE估计的路损值;Δ TF(i)为针对不同调制与编码策略(modulation and coding scheme,MCS)索引的增量值。P 0(j)为半静态配置的功控参数,表示终端设备的目标功率,由小区级功控参数和终端设备级功控参数组成。f(i,n)为终端设备特定的闭环功率控制参数。其中,传输功率控制(transmission power control,TPC)为闭环功率控制参数的一种。
网络设备可通过配置上述目标功率和闭环功率控制参数来配置上行发射功率。例如,网络设备可以通过无线资源控制(radio resource control,RRC)信令为终端设备配置一个或多个目标功率。如果网络设备为终端设备配置了多个目标功率,则网络设备可通过DCI信令动态指示终端设备采用该多个目标功率中的哪个目标功率计算上行发射功率。如果网络设备只为终端设备配置了一个目标功率,则网络设备无需再通过DCI信令指示目标功率,终端设备可以直接使用RRC信令配置的目标功率来计算上行发射功率。
再如,网络设备可通过DCI信令动态指示终端设备采用哪个闭环功率控制参数计算上行发射功率闭环功率控制参数。闭环功率控制有绝对式(绝对调整)和累积式(相对调整)之说。DCI信令指示的闭环功率控制参数可以是一个绝对值或者是一个偏移量。
以闭环功率控制参数为TPC为例。绝对式功率控制中的“绝对”体现在:f(i)=TPC。即第i个DCI信令指示的TPC就为终端设备计算上行传输的发射功率使用的TPC。
举例来说,如图4所示,假设时隙1~时隙6是正常的时隙,为非全双工时隙。时隙1~时隙3为下行时隙,时隙4~时隙6为上行时隙。网络设备在时隙1向终端设备1下发了DCI信令1,该DCI信令1用于调度PUSCH1在时隙4传输。网络设备在时隙2向终端设备1下发了DCI信令2,该DCI信令2用于调度PUSCH2在时隙5传输。网络设备在时隙3向终端设备1下发了DCI信令3,该DCI信令3用于调度PUSCH3在时隙6传输。DCI信令1指示10db的TPC。DCI信令2指示11db的TPC。DCI信令3指示13db的TPC。终端设备1在时隙4使用10db的TPC来计算PUSCH1的发射功率。终端设备1在时隙5使用11db的TPC来计算PUSCH2的发射功率。终端设备1在时隙6使用13db的TPC来计算PUSCH3的发射功率。本申请实施例中的所有举例中的TPC的值均为示例,不构成对本申请实施例的限定。
累积式功率控制中的“累积”体现在:f(i)=f(i-1)+TPC。即第i个DCI信令指示的 TPC为相对于第i-1个DCI信令指示的TPC的偏移量。网络设备下发的第i个DCI信令指示的TPC,需要叠加在上次功率控制调整的TPC(即f(i-1))上面,累加后的TPC(即f(i))才是终端设备计算上行传输的发射功率使用的TPC。相应的,上次功率控制调整的TPC(即f(i-1))需要叠加在上上次功率控制调整的TPC(即f(i-2))上面,所以f(i)是一个依次累加的值。
举例来说,如图4所示,DCI信令1指示10db的TPC。DCI信令2指示1db的TPC,该DCI信令2指示的TPC为相较于DCI信令1指示的TPC的偏移量。DCI信令3指示2db的TPC,DCI信令3指示的TPC为相较于DCI信令2指示的TPC的偏移量。终端设备1在时隙4使用10db的TPC来计算PUSCH1的发射功率。终端设备1在时隙5使用11db的TPC来计算PUSCH2的发射功率。终端设备1在时隙6使用13db的TPC来计算PUSCH3的发射功率。
五、组公共控制信令
组公共控制信令是发送给用于一组终端设备的控制信令。组公共控制信令的循环冗余码校验(cyclic redundancy check,CRC)部分通过组公共的无线网络临时标识(radio network temporary identifier,RNTI)加扰。这样这一个用户组内所有终端设备都可以用这个RNTI去解扰组公共控制信令。或者说,被配置了该RNTI的一组用户,都可以用这个RNTI去解扰组公共控制信令。组公共控制信令可以是组公共DCI信令,或者是其他的组公共控制信令。
六、专用控制信令
专用控制信令是发送给一个终端设备的控制信令。专用控制信令可以是专用DCI信令,或者是其他的专用控制信令。专用DCI信令可以理解为调度某UE的DCI信令。
七、功率爬坡值
在无线通信系统中,终端设备和网络设备建立连接,这一过程通常被称为随机接入(random access,RA)过程。从终端设备的角度上看,随机接入过程可能遇到各种问题导致随机接入失败。如果本次随机接入失败了,则终端设备会重新发起随机接入,并进行功率爬坡(power ramping),即使用比上次随机接入更高的功率去发起本次随机接入。该功率爬坡增加的功率可以称为功率爬坡值。
第五代新空口(5th generation new radio,5G NR)技术中,上行和下行调度有不同的时序(timing)要求。例如,如图5所示,k 0为从传输用于调度物理下行数据信道(physical downlink data channel,PDSCH)的下行控制信息(downlink control information,DCI)信令的下行时隙到传输该PDSCH的下行时隙之间的偏移量(offset)。k 1为从传输该PDSCH的下行时隙到传输该PDSCH的反馈信息的上行时隙之间的偏移量。该PDSCH的反馈信息可以为确定应答/否定应答(acknowledgement/negative-acknowledgement,ACK/NACK)。用于调度PDSCH的DCI信令中包括了承载该反馈信息的物理上行控制信道(physical uplink control channel,PUCCH)的功率调整信息。该功率调整信息用于确定该PUCCH的发射功率。例如,图6所示,k 2为从传输用于调度物理上行数据信道(physical uplink data Channel,PUSCH)的DCI信令的下行时隙到传输该PUSCH的上行时隙之间的偏移量。用于调度PUSCH的DCI信令中包括了该PUSCH的功率调整信息。该功率调整信息用于确定该PUSCH的发射功率。
SBFD时隙中的下行用户设备(downlink user equipment,DL UE)不同,会对SBFD时隙中的UL UE造成不同的干扰。因此,SBFD时隙中的DL UE不同,UL UE在SBFD中应该使用不同的功率调整信息来确定上行传输的发射功率,以减小邻信道对上行传输的干扰。由 于通常k 0小于k 2,即SBFD时隙中的UL UE的调度时间在DL UE的调度时间之前。这就导致网络设备在通过DCI信令调度SBFD时隙中的UL UE时,无法确定SBFD时隙中与UL UE配对的DL UE。因此,DCI信令中包括的上行传输的功率调整信息并不准确。例如,如图7所示,在时隙n-t1时,会传输用于调度PUSCH的DCI信令。该DCI信令用于调度该PUSCH在时隙n发送,该DCI信令中包括该PUSCH的功率调整信息,时隙n为SBFD时隙。由于在时隙n-t1,网络设备仍然未决定在时隙n中调度哪个DLUE进行下行传输,网络设备不确定时隙n的上行传输将面临的干扰。因此,时隙n的PUSCH的功率调整信息不能被正确设置。不精确的功率调整信息会导致上行传输受到强烈的自干扰,导致全双工的增益降低。
为避免上行传输受到强烈的自干扰,避免降低全双工的增益,本申请提供了一种功率确定方法及通信装置。
下面进一步对本申请实施例提供的功率确定方法及通信装置进行详细描述。
图8是本申请实施例提供的一种功率确定方法的流程示意图。如图8所示,该功率确定方法包括如下步骤801~步骤803。图8所示的方法执行主体可以为第一终端设备和网络设备。或者,图8所示的方法执行主体可以为第一终端设备中的芯片和网络设备中的芯片。图8以第一终端设备和网络设备为方法的执行主体为例进行说明。
801、网络设备确定第一信息和第二信息。
其中,该第一信息指示第一全双工时间单元,该第二信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输。关于全双工时间单元的描述可参见前文专业术语的相关描述,在此不赘述。
本申请中,功率调整信息也可以理解为功率确定信息,功率控制信息或者功率弥补信息。
在一种可能的实现中,第一上行传输可以为上行信号的传输或物理上行信道的传输或物理上行信道上所承载的传输。例如,上行信号的传输包括探测参考信号(sounding reference signal,SRS)的传输。物理上行信道的传输包括PUSCH的传输或PUCCH的传输。物理上行信道上所承载的传输包括PUSCH上所承载的传输、PUCCH上所承载的传输或PUSCH上所承载的上行控制信息(uplink control information,UCI)的传输。
本申请实施例中,网络设备还可在确定第一信息和第二信息之前,向第一终端设备发送第三信令。相应地,第一终端设备可以接收该第三信令。该第三信令可以为DCI信令。其中,该第三信令包括第一上行传输的调度信息,第一上行传输的调度信息包括第一上行传输的第三功率调整信息;或者,该第三信令包括第一下行传输的调度信息,第一上行传输用于传输第一下行传输的反馈信息,第一下行传输的调度信息包括第一上行传输的第三功率调整信息。
如果该第三信令包括第一上行传输的调度信息,即第三信令用于调度第一上行传输。作为示例,第一上行传输包括SRS的传输、PUSCH的传输或PUSCH上所承载的传输。如果该第三信令包括第一下行传输的调度信息,即第三信令用于调度第一下行传输。作为示例,第一下行传输包括PDSCH的传输或PDSCH上所承载的传输。这种情况下,第一上行传输为PUCCH或PUCCH上所承载的传输。或者,第一上行传输为PUSCH上所承载的UCI的传输。
在另一种可能的实现中,网络设备也可以不发送第三信令,网络设备可在确定第一信息和第二信息之前,向第一终端设备发送非授权(grant free)调度信令。该非授权调度信令包括第一上行传输的调度信息。相应地,第一终端设备可以接收该非授权调度信令。其中,非授权调度信令可以为RRC信令,或者通过DCI触发的RRC信令。通过DCI触发的RRC信令也可以理解为RRC信令结合DCI信令。RRC信令非授权调度可以为type I的非授权调度。RRC信令结合DCI信令的非授权调度可以为type II的非授权调度。作为示例,第一上行传输 包括SRS的传输、PUSCH的传输、PUSCH上所承载的传输、PUCCH的传输、PUCCH上所承载的传输或PUSCH上所承载的UCI的传输。
如果网络设备向第一终端设备发送非授权调度信令,网络设备还可向第一终端设备发送一个DCI信令,该DCI信令携带第一上行传输的第三功率调整信息。相应地,第一终端设备可以接收该DCI信令。
在一种可能的实现中,第三功率调整信息包括第一上行传输的TPC和/或第一上行传输的目标功率。或者,第三功率调整信息还可以是其他用于确定第一上行传输的发射功率的参数。第三功率调整信息中的TPC可以是绝对值或者是偏移量。基于前文中对闭环功率控制的描述可知,如果是绝对式功率控制,第三功率调整信息中的TPC是绝对值。如果是累积式功率控制,则第三功率调整信息中的TPC是偏移量。
在一种可能的实现中,第一功率调整信息包括第一上行传输的TPC和/或第一上行传输的目标功率。或者,第一功率调整信息还可以是其他用于确定第一上行传输的发射功率的参数。第一功率调整信息中的TPC或目标功率可以是绝对值或者是偏移量。如果第一功率调整信息中的TPC或目标功率是偏移量有利于减少第一信令的开销,可以减少第一信令的比特数,最小化成本。
可选的,如果第一功率调整信息中的TPC是一个偏移量,第一功率调整信息中的TPC可以是相对于第三功率调整信息中的TPC的偏移量。
可选的,如果第一功率调整信息中的目标功率是一个偏移量,第一功率调整信息中的目标功率可以是相对于第三功率调整信息中的目标功率的偏移量。
可选的,如果RRC信令只配置了一个目标功率值,如果第一功率调整信息中的目标功率是一个偏移量,第一功率调整信息中的目标功率可以是相对于RRC信令指示的目标功率的偏移量。
在一种可能的实现中,第一终端设备可以基于第一信令和第三信令来确定第一上行传输的发射功率。
例如,如果第一功率调整信息中的TPC是相对于第三功率调整信息中的TPC的偏移量。第一终端设备可以将第一功率调整信息中的TPC和第三功率调整信息中的TPC进行叠加,并基于叠加之后的TPC来计算第一上行传输的发射功率。同理,如果第一功率调整信息中的目标功率是相对于第三功率调整信息中的目标功率的偏移量。第一终端设备可以将第一功率调整信息中的目标功率和第三功率调整信息中的目标功率进行叠加,并基于叠加之后的目标功率来计算第一上行传输的发射功率。
举例来说,以第三功率调整信息中的TPC为偏移量为例。作为示例,如图9所示,时隙1~时隙5和时隙7是正常的时隙,为非全双工时隙。时隙6为全双工时隙。当然,时隙1~时隙5和时隙7也可以不全都是非全双工时隙,即其中的一个或多个时隙也可以为全双工时隙。网络设备在时隙1向终端设备1下发了DCI信令1,该DCI信令1用于调度PUSCH1在时隙5传输,该DCI信令1指示的TPC为10db,该DCI信令1指示的目标功率为12db。
网络设备在时隙2向终端设备1下发了DCI信令2,该DCI信令2用于调度PUSCH2在时隙6传输,该DCI信令2指示的TPC为2db,该DCI信令2指示的TPC为相较于DCI信令1指示的TPC的偏移量。该DCI信令2指示的目标功率为14db。
网络设备在时隙4确定在时隙6要调度终端设备2和终端设备3进行下行传输,此时,考虑到终端设备2和终端设备3在时隙6对PUSCH2会产生自干扰,网络设备确定DCI信令2指示的TPC和/或目标功率已不准确,会造成偏差。因此,网络设备在时隙4向终端设备1 下发DCI信令3,该DCI信令3指示2db的TPC以及该TPC应用的时隙6;或者,该DCI信令3指示3db的目标功率以及该目标功率应用的时隙6;或者,该DCI信令3指示2db的TPC和3db的目标功率以及该TPC和目标功率应用的时隙6。该DCI信令3指示的TPC为相较于DCI信令2指示的TPC的偏移量。该DCI信令3指示的目标功率为相较于DCI信令2指示的目标功率的偏移量。
如果DCI信令3指示2db的TPC以及该TPC应用的时隙6,终端设备1将DCI信令1指示的TPC、DCI信令2指示的TPC以及DCI信令3指示的TPC进行累计。得到累计后的TPC为14db。第一终端设备使用14db的TPC来计算PUSCH2的发射功率。
如果DCI信令3指示3db的目标功率以及该目标功率应用的时隙6,终端设备1将DCI信令2指示的目标功率以及DCI信令3指示的目标功率进行累计。得到累计后的目标功率为17db。第一终端设备使用17db的目标功率来计算PUSCH2的发射功率。
如果DCI信令3指示2db的TPC和3db的目标功率以及该TPC和目标功率应用的时隙6。终端设备1将DCI信令1指示的TPC、DCI信令2指示的TPC以及DCI信令3指示的TPC进行累计。得到累计后的TPC为14db。终端设备1将DCI信令2指示的目标功率以及DCI信令3指示的目标功率进行累计。得到累计后的目标功率为17db。第一终端设备使用14db的TPC和17db的目标功率来计算PUSCH2的发射功率。
本申请实施例中的所有举例中的TPC的值和目标功率的值均为示例,不构成对本申请实施例的限定。
本申请中,当频段完全重叠时,自干扰可以是同时同频的发送对接收产生的干扰;当频段不重叠时,自干扰可以是同时不同频的发送对接收产生的邻信道干扰;当频段部分重叠时,自干扰可以既包含同时同频的发送对接收产生的干扰,又包含同时不同频的发送对接收产生的邻信道干扰。本申请中,自干扰也可以理解为非线性干扰。
再举例来说,以第三功率调整信息中的TPC为绝对值为例。如图9所示,网络设备在时隙2向终端设备1下发了DCI信令2,该DCI信令2用于调度PUSCH2在时隙6传输,该DCI信令2指示的TPC为12db,该DCI信令2指示的目标功率为14db。
网络设备在时隙4确定在时隙6要调度终端设备2和终端设备3进行下行传输,此时考虑到终端设备2和终端设备3在时隙6对PUSCH2会产生自干扰,网络设备认为DCI信令2指示的TPC和/或目标功率已不准确,会造成偏差。因此,网络设备在时隙4向终端设备1下发DCI信令3,该DCI信令3指示2db的TPC和/或3db的目标功率,以及指示该TPC和/或该目标功率应用的时隙6。该DCI信令3指示的TPC为相较于DCI信令2指示的TPC的偏移量。该DCI信令3指示的目标功率为相较于DCI信令2指示的目标功率的偏移量。
终端设备1将DCI信令2指示的TPC以及DCI信令3指示的TPC进行累计,得到累计后的TPC为14db,和/或,终端设备1将DCI信令2指示的目标功率以及DCI信令3指示的目标功率进行累计,得到累计后的目标功率为17db。第一终端设备使用14db的TPC和/或17db的目标功率来计算PUSCH2的发射功率。
在一种可能的实现中,如果第一功率调整信息中的目标功率是相对于RRC信令指示的目标功率的偏移量。第一终端设备可以将第一功率调整信息中的目标功率和RRC信令指示的目标功率进行叠加,并基于叠加之后的目标功率来计算第一上行传输的发射功率。
例如,假设RRC信令指示的目标功率为10db,第一功率调整信息中的目标功率为2db,则第一终端设备将RRC信令指示的目标功率与第一功率调整信息中的目标功率进行叠加,得到叠加后的目标功率为12db。第一终端设备基于12db的目标功率来计算第一上行传输的发 射功率。
在一种可能的实现中,如果第一功率调整信息中的TPC是一个绝对值,第一终端设备不用将第一功率调整信息中的TPC与第三功率调整信息中的TPC进行叠加。如果第一功率调整信息中的目标功率是一个绝对值,第一终端设备不用将第一功率调整信息中的目标功率与第三功率调整信息或RRC信令中的目标功率进行叠加。
举例来说,如图9所示,网络设备在时隙2向终端设备1下发了DCI信令2,该DCI信令2用于调度PUSCH2在时隙6传输,该DCI信令2指示的TPC为12db,目标功率为14db。网络设备在时隙4确定在时隙6要调度终端设备2和终端设备3进行下行传输,此时考虑到终端设备2和终端设备3在时隙6对PUSCH2会产生自干扰,网络设备认为DCI信令2指示的TPC和/或目标功率已不准确。因此,网络设备在时隙4向终端设备1下发DCI信令3,该DCI信令3指示TPC为14db和/或目标功率为17db,以及指示该TPC和/或该目标功率应用的时隙6。终端设备1直接使用14db的TPC和/或17db的目标功率来计算PUSCH2的发射功率。
802、网络设备向第一终端设备发送第一信令,该第一信令包括第一信息和第二信息。相应地,第一终端设备可以接收该第一信令。
本申请实施例中,第一信令不用于调度。可选的,第一信令不包括上行调度信息或下行调度信息。第一信令在第三信令之后传输。
在一种可能的实现中,第一信令为组公共控制指令。关于组公共控制指令和专用控制信令的介绍可参见前文中的描述,在此不赘述。由于组公共控制信令是发给一组终端设备的,而不是用户特定的(UE-specific),避免了网络设备为终端设备组中的每个终端设备分别生成不同的信令造成信令开销大的问题,降低了网络设备的信令开销。
在一种可能的实现中,第一信令为专用控制指令。关于专用控制信令的介绍可参见前文中的描述,在此不赘述。
例如,如果第一信令为组公共控制指令,第一信令用于一个终端设备组,该终端设备组包括第一终端设备、第二终端设备和第三终端设备,则网络设备将第一信令发送给第一终端设备、第二终端设备和第三终端设备。如果第一信令为专用控制指令,网络设备只向第一终端设备发送第一信令。
在一种可能的实现中,第一信令为组公共控制信令,第二信息包括N个子带的功率调整信息域,第一上行传输位于N个子带中的一个或多个子带,N为大于1的整数。其中,功率调整信息域用于携带第一功率调整信息。基于该可能的实现方式,能够准确地向多个终端设备指示其对应的功率调整信息。
例如,以N为6为例。第二信息包括功率调整信息域1~功率调整信息域3。功率调整信息域1用于携带子带1和子带2上的第一上行传输1的第一功率调整信息1。功率调整信息域2用于携带子带3和子带4上的第一上行传输2的第一功率调整信息2。功率调整信息域3用于携带子带5和子带6上的第一上行传输3的第一功率调整信息3。
假设第一终端设备的第一上行传输位于子带1和子带2,则第一终端设备从功率调整信息域1中读取第一功率调整信息。假设第一终端设备的第一上行传输位于子带3和子带4,则第一终端设备从功率调整信息域2中读取第一功率调整信息。假设第一终端设备的第一上行传输位于子带5和子带6,则第一终端设备从功率调整信息域3中读取第一功率调整信息。
又例如,以N为3为例。第二信息包括功率调整信息域1~功率调整信息域3。功率调整信息域1用于携带子带1上的第一上行传输1的第一功率调整信息1。功率调整信息域2用 于携带子带2上的第一上行传输2的第一功率调整信息2。功率调整信息域3用于携带子带3上的第一上行传输3的第一功率调整信息3。
假设第一终端设备的第一上行传输位于子带1,则第一终端设备从功率调整信息域1中读取第一功率调整信息。假设第一终端设备的第一上行传输位于子带2,则第一终端设备从功率调整信息域2中读取第一功率调整信息。假设第一终端设备的第一上行传输位于子带3,则第一终端设备从功率调整信息域3中读取第一功率调整信息。
下面对第一信息指示第一全双工时间单元的方式进行介绍:
一、显示指示
例如,如果第一信息显示地指示第一全双工时间单元,则第一信息可以直接包括第一全双工时间单元的索引。
二、隐式指示
(1)第一信息包括从T1到T2的时间单元偏移量,该T1为传输携带第一信息和第二信息的第一信令的时间单元,该T2为第一全双工时间单元。也就是说,第一信息通过指示传输第一信令的时间单元至第一全双工时间单元的偏移量,来隐式地指示第一全双工时间单元。通过T1到T2的时间单元偏移量来指示第一全双工时间单元,可以有效指示第一全双工时间单元,使得第一终端设备能获知准确应用第一功率调整信息的时间单元,且通过T1到T2的时间单元偏移量来指示第一全双工时间单元,有助于减少第一信令的开销,可以减少第一信令的比特数,最小化成本。
例如,网络设备在第5个时隙发送第一信令,第一全双工时间单元为第8个时隙,则第一信息包括的偏移量为3个时隙。第一终端设备基于接收第一信令的时隙以及该偏移量就能确定第一全双工时间单元。
(2)第一信令为专用控制信令,该第一信息包括混合自动重传请求(hybrid automatic repeat request,HARQ)进程号,该HARQ进程号对应第一全双工时间单元。也就是说,第一信息通过指示HARQ进程号来指示第一全双工时间单元。通过HARQ进程号来指示第一全双工时间单元,可以在不引入任何新的参考信息的情况下指示第一全双工时间单元。
HARQ进程号对应时间单元,表示HARQ进程号对应的数据传输位于该时间单元。第一终端设备基于有效时段内的HARQ进程,能确定某个HARQ进程号对应的数据传输所在的时间单元。所述有效时段指的是最大个数HARQ进程可以持续的调度时间,通过限制基于有效时段内的HARQ进程来确定某个HARQ进程号对应的上行传输所在的时间单元,可以保证终端设备不会产生混淆,不会出现对多个持有相同HARQ进程号的数据无法准确区分和适用的情形。
例如,假设HARQ进程号1对应时隙1,HARQ进程号2对应时隙2,HARQ进程号3对应时隙3。如果第一信息包括HARQ进程号2,则第一信息指示第一全双工时间单元为时隙2。作为示例,HARQ进程号2对应时隙2,表示HARQ进程号2相应的数据传输位于时隙2。即如果第三信令调度的数据传输位于时隙2,第三信令包括HARQ进程号2,那么HARQ进程号2对应时隙2。这种情况下,如果第一信令中的第一信息包括HARQ进程号2隐含指示时隙2。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。本申请中,功率调整时延也可以理解为处理时延或准备时延。如图9所示,假设第一全双工时间单元为时隙6,第一终端设备发送第一上行传输之前需要调整第一上行传输的发射功率,假设调整第一上行传输的功率调整时延Δt为2个时隙, 则第一信令应该在时隙5之前传输。基于该可能的实现方式,能够保证第一终端设备有足够的时间确定和调整第一上行传输的发射功率。
第一信令具有以下两种下发时机:
一、网络设备确定完第一全双工时间单元内所有用于下行传输的终端设备时,确定第一信息和第二信息,并下发第一信令。网络设备最晚不超过T2-Δt下发第一信令,从而保证第一终端设备有足够的时间确定并调整第一上行传输的发射功率。也就是说,这种方式是网络设备确定完第一全双工时间单元内的所有干扰之后,才下发一个信令调整第一上行传输的发射功率。在这种方式中,网络设备只会下发一个信令来指示第一上行传输的功率调整信息,这样有利于节省指示开销。
本申请中,网络设备最晚不超过T2-Δt下发第一信令,可以理解为网络设备在不超过T2-Δt的对应时隙的前几个符号下发第一信令。
举例来说,以第一功率调整信息为相对于第三功率调整信息的偏移量,第一上行传输的功率调整时延Δt为2个时隙为例。如图9所示,网络设备在时隙2向终端设备1下发了DCI信令2,该DCI信令2用于调度PUSCH2在时隙6传输。网络设备发送DCI信令2之后,在时隙3确定终端设备2~终端设备3用于在时隙6进行下行传输。网络设备在时隙4又确定终端设备4~终端设备5用于在时隙6进行下行传输。网络设备在时隙4确定完终端设备2~终端设备5用于在时隙6进行下行传输之后,发送DCI信令3,该DCI信令3指示TPC为4db和/或目标功率为6db,以及指示该TPC和/或该目标功率应用于时隙6。终端设备1将DCI信令3指示的TPC与DCI信令2指示的TPC进行叠加,和/或,终端设备1将DCI信令3指示的目标功率与DCI信令2指示的目标功率进行叠加,并基于叠加之后的TPC和/或叠加之后的目标功率来确定PUSCH2的发射功率。
二、网络设备确定第一全双工时间单元内部分用于下行传输的终端设备时,就确定第一信息和第二信息,并下发第一信令。网络设备还可在下发第一信令之后,向第一终端设备发送第二信令,该第二信令包括第三信息和第四信息,该第三信息指示第一全双工时间单元,该第四信息指示第一上行传输的第二功率调整信息。该第二功率调整信息为相对于第一功率调整信息的偏移量。第一终端设备接收到第一信令和第二信令之后,基于第一信令和第二信令来确定第一上行传输的发射功率。例如,如图10的步骤1003和步骤1004所示。图10中其他步骤的具体实现方式与图8中对应步骤的具体实现方式相同,在此不赘述。
网络设备最晚不超过T2-Δt下发第一信令和第二信令,从而保证第一终端设备有足够的时间确定并调整第一上行传输的发射功率。本申请中,网络设备最晚不超过T2-Δt下发第一信令和第二信令,可以理解为网络设备在不超过T2-Δt的对应时隙的前几个符号下发第一信令和第二信令。
在第二种第一信令的下发时机中,网络设备可以分多次向第一终端设备下发第一上行传输的功率调整信息。如果网络设备确定完第一全双工时间单元内所有用于下行传输的终端设备之后,才向第一终端设备下发第一上行传输的功率调整信息,网络设备可能面临没有充足的下发资源用于功率调整信息的发送,或者不能保证第一终端设备在接收第一上行传输的功率调整信息之后,有足够的时间确定和调整第一上行传输的发射功率。因此,可能造成第一终端设备无法对第一上行传输进行有效的功率弥补,无法缓解第一上行传输在网络设备处遭受的自干扰影响,第一上行传输无法被网络设备正确接收。而如果网络设备分多次向第一终端设备下发第一上行传输的功率调整信息,网络设备在确定有下行传输会对第一上行传输会产生自干扰影响时,就可及时下发第一上行传输的功率调整信息,可以保证有充足的下发资 源用于功率调整信息的发送,保证第一终端设备在接收第一上行传输的功率调整信息之后,有足够的时间确定和调整第一上行传输的发射功率。因此,有利于第一终端设备对第一上行传输进行有效的功率弥补,缓解第一上行传输在网络设备处遭受的自干扰影响,使得第一上行传输被网络设备正确接收。
举例来说,以第一功率调整信息为相对于第三功率调整信息的偏移量,第一上行传输的功率调整时延Δt为2个时隙为例。如图11所示,网络设备在时隙2向终端设备1下发了DCI信令2,该DCI信令2用于调度PUSCH2在时隙6传输。网络设备发送DCI信令2之后,在时隙3确定终端设备2~终端设备3用于在时隙6进行下行传输。网络设备在时隙3向终端设备1发送DCI信令3,该DCI信令3指示TPC为2db和/或目标功率为3db,以及指示该TPC和/或该目标功率应用的时隙6。网络设备在时隙4又确定终端设备4~终端设备5用于在时隙6进行下行传输。网络设备在时隙4发送DCI信令4,该DCI信令4指示TPC为2db和/或目标功率为3db,以及指示该TPC和/或该目标功率应用的时隙6。第一终端设备将DCI信令2指示的TPC、DCI信令3指示的TPC与DCI信令4指示的TPC进行叠加,和/或,将DCI信令2指示的目标功率、DCI信令3指示的目标功率与DCI信令4指示的目标功率进行叠加,并基于叠加之后的TPC和/或叠加之后的目标功率来确定PUSCH2的发射功率。
再举例来说,以第一功率调整信息为绝对值,第一上行传输的功率调整时延Δt为2个时隙为例。如图11所示,网络设备在时隙2向终端设备1下发了DCI信令2,该DCI信令2用于调度PUSCH2在时隙6传输。网络设备发送DCI信令2之后,在时隙3确定终端设备2~终端设备3用于在时隙6进行下行传输。网络设备在时隙3向终端设备1发送DCI信令3,该DCI信令3指示TPC为10db和/或目标功率为10db,以及指示该TPC和/或该目标功率应用的时隙6。网络设备在时隙4又确定终端设备4~终端设备5用于在时隙6进行下行传输。网络设备在时隙4发送DCI信令4,该DCI信令4指示TPC为2db和/或目标功率为3db以及指示该TPC和/或该目标功率应用的时隙6。第一终端设备将DCI信令3指示的TPC与DCI信令4指示的TPC进行叠加,得到叠加后的TPC为12db,和/或,第一终端设备将DCI信令3指示的目标功率与DCI信令4指示的目标功率进行叠加,得到叠加后的目标功率为13db。第一终端设备并基于叠加之后的TPC和/或叠加之后的目标功率来确定PUSCH2的发射功率。
网络设备可预先在第一终端设备配置两套功率调整信息。网络设备确定采用第一种第一信令下发时机时,使用第一套功率调整信息。网络设备确定采用第二种第一信令下发时机时,使用第二套功率调整信息。第一套功率调整信息对应的功率调整信息范围大于第二套功率调整信息对应的功率调整信息范围。网络设备可通过信令指示第一终端设备使用哪一套功率调整信息。例如,该信令可以为RRC信令。
以功率调整信息为TPC为例。作为一个示例,网络设备配置的第一套功率调整信息如下表1所示。其中,网络设备除配置TPC之外,还可配置TPC对应的索引(index)。网络设备可通过指示索引来指示对应的TPC的值。本申请中,索引也可以理解为序列号。
表1
索引 TPC
1 3
2 6
3 9
4 12
5 15
6 18
作为另一个示例,网络设备配置的第一套功率调整信息如下表2所示。其中,网络设备可以不配置TPC对应的索引,直接配置TPC的一系列值。TPC对应的索引可以隐示地从顺序中推导,没有显示的索引。即,第一个值对应的索引为1,第二个值对应的索引为2,依次类推。
表2
TPC
3
6
9
12
15
18
作为一个示例,网络设备配置的第二套功率调整信息如下表3所示。其中,网络设备除配置TPC之外,还可配置TPC对应的索引。网络设备可通过指示索引来指示对应的TPC的值。
表3
索引 TPC
1 1
2 3
3 5
4 6
5 7
6 8
作为另一个示例,网络设备配置的第二套功率调整信息如下表4所示。其中,网络设备可以不配置TPC的索引,TPC的索引可以隐示地从顺序中推导,没有显示的索引。
表4
TPC
1
3
5
6
7
8
在网络设备确定采用上述第一种第一信令的下发时机的情况下,网络设备确定使用第一套功率调整信息。如图9所示,当网络设备在时隙4确定终端设备2~终端设备5用于在时隙6(第一全双工时间)进行下行传输时,网络设备确定终端设备2~终端设备5对终端设备1产生干扰影响,网络设备确定终端设备1需要提升的功率值,以用于弥补终端设备2~终端设备5对终端设备1产生的自干扰带来的信噪比下降。当该需要提升的功率值大于或等于第一套功率调整信息中最小的TPC时,网络设备确定第一功率调整信息。或者,当该需要提升的 功率值大于或等于第一套功率调整范围值中至少一个TPC时,网络设备确定第一功率调整信息。作为示例,如表1所示,当需要提升的功率值大于或等于9,且小于12时,网络设备确定第一功率调整信息为9db。网络设备生成第一信息和第二信息,该第一信息指示时隙6,该第二信息可以是第一套功率调整信息表格中的索引3,用于指示第一功率调整信息为9db。网络设备向终端设备1发送包括第一信息和第二信息的第一信令(即图9的DCI信令3)。
在网络设备确定采用上述第二种第一信令的下发时机的情况下,网络设备确定使用第二套功率调整信息。如图11所示,当网络设备在时隙3确定终端设备2~终端设备3用于在时隙6(第一全双工时间)进行下行传输时,网络设备确定终端设备2~终端设备3对终端设备1产生干扰影响,网络设备确定终端设备1需要提升的功率值,以用于弥补终端设备2~终端设备3对终端设备1产生的自干扰带来的信噪比下降。当该需要提升的功率值大于或等于第二套功率调整信息中最小的TPC时,网络设备确定第一功率调整信息。或者,当该需要提升的功率值大于或等于第二套功率调整范围值中至少一个TPC时,网络设备确定第一功率调整信息。作为示例,如表3所示,当需要提升的功率值大于或等于3,且小于5时,网络设备确定第一功率调整信息为3db。网络设备生成第一信息和第二信息,该第一信息指示时隙6,该第二信息可以是第二套功率调整信息表格中的索引2,用于指示第一功率调整信息为3db。网络设备向终端设备1发送包括第一信息和第二信息的第一信令(即图11的DCI信令3)。
本申请中,包括第一信息和第二信息的第一信令,可以理解为只包含第一信息和第二信息的第一信令。以此类推,网络设备在时隙4又确定终端设备4~终端设备5用于在时隙6进行下行传输。当网络设备在时隙4确定第一终端设备2~终端设备3用于在时隙6(第一全双工时间)进行下行传输时,网络设备确定终端设备2~终端设备3对终端设备1产生干扰影响,网络设备确定终端设备1需要提升的功率值以用于弥补终端设备2~终端设备3对终端设备1产生的自干扰带来的信噪比的下降。当该需要提升的功率值大于或等于第二套功率调整范围值中最小的TPC时,网络设备相应确定第二功率调整信息。或者,当该需要提升的功率值大于或等于第二套功率调整范围值中至少一个TPC时,网络设备相应确定第二功率调整信息。作为示例,当需要提升的功率值大于或等于5,且小于6时,网络设备确定第二功率调整信息为5db。网络设备生成第三信息和第四信息,该第三信息指示时隙6,该第四信息可以是第二套功率调整信息表格中的索引3,用于指示第二功率调整信息为5db。网络设备向终端设备1发送包括第三信息和第四信息的第二信令(即图11的DCI信令4)。
803、第一终端设备根据第一信令,确定第一上行传输的发射功率。
本申请实施例中,第一终端设备接收第一信令之后,根据第一信令,确定第一上行传输的发射功率。第一终端设备如何根据第一信令,确定第一上行传输的发射功率可参见前文中的描述,在此不赘述。
可见,基于图8所描述的方法,网络设备能够在确定第一全双工时间单元内用于下行传输的终端设备之后,及时地向第一终端设备下发信令来调整第一终端设备在第一全双工时间单元内的第一上行传输的发射功率,有利于避免第一上行传输受到强烈的自干扰,避免降低全双工的增益。
图12是本申请实施例提供的另一种功率确定方法的流程示意图。如图12所示,该功率确定方法包括如下步骤1201~步骤1206。图12所示的方法执行主体可以为第一终端设备和网络设备。或者,图12所示的方法执行主体可以为第一终端设备中的芯片和网络设备中的芯片。图12以第一终端设备和网络设备为方法的执行主体为例进行说明。
1201、网络设备向第一终端设备发送第三信令。
其中,第三信令包括第一上行传输的调度信息,第一上行传输的调度信息指示第一上行传输的第三功率调整信息;或者,第三信令包括第一下行传输的调度信息,第一上行传输用于传输第一下行传输的反馈信息,第一下行传输的调度信息指示第一上行传输的第三功率调整信息。关于第三信令的描述,可参见图8所对应的方法实施例中的描述,在此不赘述。
1202、网络设备确定第一信息和第二信息。
其中,该第一信息指示第一全双工时间单元,该第二信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输。
1203、网络设备向第一终端设备发送第一信令,该第一信令包括第一信息和第二信息。相应地,第一终端设备可以接收该第一信令。
1204、第一终端设备根据第一信令和第三信令,确定第一上行传输的发射功率。
步骤1202~步骤1204的具体实现方式可参见图8所对应的实施例中的描述,在此不赘述。
1205、网络设备向第一终端设备发送第四信令。相应地,第一终端设备可以接收该第四信令。
其中,该第四信令包括第二上行传输的调度信息,或者,该第四信令包括第二下行传输的调度信息,第二上行传输用于传输第二下行传输的反馈信息。第二上行传输在时域上位于第一上行传输之后。第四信令中的调度信息指示第四功率调整信息。
1206、第一终端设备根据第三信令和第四信令,确定第二上行传输的发射功率。
本申请实施例中,第一信令不用于来确定第二上行传输的发射功率。即第一信令只对第一全双工时间单元中的上行传输生效,对第一全双工时间单元之后的上行传输无效。
举例来说,以第三信令和第四信令指示的功率调整信息为偏移量为例。如图13所示,网络设备在时隙1向终端设备1下发了DCI信令1,该DCI信令1用于调度PUSCH1在时隙5传输。该DCI信令1指示的TPC为10db。该DCI信令1指示的目标功率为10db。
网络设备在时隙2向终端设备1下发了DCI信令2,该DCI信令2用于调度PUSCH2在时隙6传输。该DCI信令2指示的TPC为2db,该DCI信令2指示的TPC为相较于DCI信令1指示的TPC的偏移量。该DCI信令2指示的目标功率为11db。
网络设备在时隙3向终端设备1下发了DCI信令3,该DCI信令3用于调度PUSCH3在时隙7传输。该DCI信令3指示的TPC为2db,该DCI信令3指示的TPC为相较于DCI信令2指示的TPC的偏移量。该DCI信令3指示的目标功率为12db。
网络设备在时隙4确定在时隙6要调度终端设备2和终端设备3进行下行传输,此时考虑到终端设备2和终端设备3在时隙6对PUSCH2会产生自干扰,网络设备认为DCI信令2指示的TPC已不准确。因此,网络设备在时隙4向终端设备1下发DCI信令4,该DCI信令4指示3db的TPC和/或3db的目标功率,以及指示该TPC和/或目标功率应用的时隙6。该DCI信令4指示的TPC为相较于DCI信令2指示的TPC的偏移量。该DCI信令4指示的目标功率为相较于DCI信令2指示的目标功率的偏移量。
终端设备1将DCI信令1指示的TPC、DCI信令2指示的TPC以及DCI信令4指示的TPC进行累计,得到累计后的TPC为15db,和/或,终端设备1将DCI信令2指示的目标功率以及DCI信令4指示的目标功率进行累计,得到累计后的目标功率为14db。终端设备1使用15db的TPC和/或14db的目标功率来计算PUSCH2的发射功率。
终端设备1将DCI信令1指示的TPC、DCI信令2指示的TPC以及DCI信令3指示的TPC进行累计,得到累计后的TPC为14db。终端设备1使用14db的TPC和12db的目标功 率来计算PUSCH3的发射功率。终端设备1不会将DCI信令3指示的TPC与DCI信令4指示的TPC进行累计。
可见,基于图12所描述的方法,可以避免在对第一全双工时间单元内的第一上行传输的发射功率进行调整之后,影响第一上行传输之后的上行传输的发射功率。因此,基于图12所描述的方法,可以有针对性的对某个全双工时间单元内的上行传输的发射功率进行调整。
图14是本申请实施例提供的另一种功率确定方法的流程示意图。如图14所示,该功率确定方法包括如下步骤1401~步骤1405。图14所示的方法执行主体可以为第一终端设备、第二终端设备和网络设备。或者,图14所示的方法执行主体可以为第一终端设备中的芯片、第二终端设备中的芯片和网络设备中的芯片。图14以第一终端设备、第二终端设备和网络设备为方法的执行主体为例进行说明。
1401、网络设备确定第一信息和第二信息。
其中,该第一信息指示第一全双工时间单元,该第二信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输。
1402、网络设备向第一终端设备和第二终端设备发送第一信令,该第一信令包括第一信息和第二信息。相应地,第一终端设备和第二终端设备可以接收该第一信令。
本申请实施例中,第一信令为组公共控制指令。第一终端设备和第二终端设备属于一个终端设备组。或者,第一终端设备和第二终端设备都被配置了用于解析第一信令的RNTI。所以,第一终端设备和第二终端设备都可以接收到第一信令。
1403、第一终端设备根据第一信令,确定第一上行传输的发射功率。
步骤1401~步骤1403的具体实现方式可参见图8所对应的实施例中的描述,在此不赘述。
1404、网络设备向第二终端设备发送第五信令。相应地,第二终端设备可以接收该第五信令。
其中,该第五信令包括第三上行传输的调度信息,或,第五信令包括第三下行传输的调度信息,第三上行传输用于传输第三下行传输的反馈信息。第三上行传输位于第二时间单元,第二时间单元不同于第一全双工时间单元。第五信令可以是在第一全双工时间单元之前传输的。
可选的,第二时间单元是全双工时间单元或者非全双工时间单元。本申请实施例全文中,非全双工时间单元可以理解为未被配置全双工的时间单元。
1405、第二终端设备确定第三上行传输的发射功率。其中,第一信令不用于确定第三上行传输的发射功率。
可选的,第二终端设备可基于第五信令确定第三上行传输的发射功率。或者,第二终端设备可基于除第一信令之外的其他信令来确定第三上行传输的发射功率。
可选的,当第二时间单元不同于第一全双工时间单元时,第二终端设备确定第一信令不用于确定第三上行传输的发射功率。也就是说,第二终端设备接收第五信令之后,会判断第三上行传输是否处于第一全双工时间单元,如果不是,则不采用第一信令来确定第三上行传输的发射功率。可选的,第二终端设备可以丢弃该第一信令。
举例来说,如图15所示,网络设备在时隙2向终端设备2发送DCI信令1,DCI信令1用于调度PUSCH1在时隙6传输,并指示TPC和目标功率。网络设备在时隙3向终端设备1和终端设备2发送DCI信令2,该DCI信令2中指示TPC和/或目标功率以及该TPC和/或目标功率应用的时隙5。终端设备2接收DCI信令1和DCI信令2之后,确定PUSCH1所在时 隙与DCI信令2指示的时隙不相同,终端设备2确定不使用DCI信令2指示的TPC来确定PUSCH1的发射功率。终端设备2可使用DCI信令1指示的TPC和目标功率来确定PUSCH1的发射功率。
可见,基于图14所描述的方法,终端设备在接收到组播的第一信令之后,如果终端设备中的第二上行传输不在第一信令指示的全双工时间单元内,则不使用该第一信令来确定该第二上行传输的发射功率,这样终端设备可以准确地确定第二上行传输的发射功率。
图16是本申请实施例提供的另一种功率确定方法的流程示意图。如图16所示,该功率确定方法包括如下步骤1601~步骤1603。图16所示的方法执行主体可以为终端设备和网络设备。或者,图16所示的方法执行主体可以为终端设备中的芯片和网络设备中的芯片。图16以终端设备和网络设备为方法的执行主体为例进行说明。
1601、网络设备确定第一信息。
其中,该第一信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输。关于全双工时间单元的描述可参见前文专业术语的相关描述,在此不赘述。
本申请中,功率调整信息也可以理解为功率确定信息,功率控制信息或者功率弥补信息。
在一种可能的实现中,第一上行传输可以为上行信号的传输或物理上行信道的传输或物理上行信道上所承载的传输。例如,上行信号的传输包括SRS的传输。物理上行信道的传输包括PUSCH的传输或PUCCH的传输。物理上行信道上所承载的传输包括PUSCH上所承载的传输、PUCCH上所承载的传输或PUSCH上所承载的UCI的传输。
本申请实施例中,网络设备还可在确定第一信息之前,向第一终端设备发送第三信令。相应地,第一终端设备可以接收该第三信令。该第三信令可以为DCI信令。其中,该第三信令包括第一上行传输的调度信息,第一上行传输的调度信息包括第一上行传输的第三功率调整信息;或者,该第三信令包括第一下行传输的调度信息,第一上行传输用于传输第一下行传输的反馈信息,第一下行传输的调度信息包括第一上行传输的第三功率调整信息。
如果该第三信令包括第一上行传输的调度信息,即第三信令用于调度第一上行传输。作为示例,第一上行传输包括SRS的传输、PUSCH的传输或PUSCH上所承载的传输。如果该第三信令包括第一下行传输的调度信息,即第三信令用于调度第一下行传输。作为示例,第一下行传输包括PDSCH的传输或PDSCH上所承载的传输。这种情况下,第一上行传输为PUCCH或PUCCH上所承载的传输。或者,第一上行传输为PUSCH上所承载的UCI的传输。
在另一种可能的实现中,网络设备也可以不发送第三信令,网络设备可在确定第一信息之前,向第一终端设备发送非授权(grant free)调度信令。该非授权调度信令包括第一上行传输的调度信息。相应地,第一终端设备可以接收该非授权调度信令。其中,非授权调度信令可以为RRC信令,或者通过DCI触发的RRC信令。通过DCI触发的RRC信令也可以理解为RRC信令结合DCI信令。RRC信令非授权调度可以为type I的非授权调度。RRC信令结合DCI信令的非授权调度可以为type II的非授权调度。作为示例,第一上行传输包括SRS的传输、PUSCH的传输、PUSCH上所承载的传输、PUCCH的传输、PUCCH上所承载的传输或PUSCH上所承载的UCI的传输。
如果网络设备向第一终端设备发送非授权调度信令,网络设备还可向第一终端设备发送一个DCI信令,该DCI信令携带第一上行传输的第三功率调整信息。相应地,第一终端设备可以接收该DCI信令。
在一种可能的实现中,第三功率调整信息包括第一上行传输的TPC和/或第一上行传输的目标功率。或者,第三功率调整信息还可以是其他用于确定第一上行传输的发射功率的参数。第三功率调整信息中的TPC可以是绝对值或者是偏移量。基于前文中对闭环功率控制的描述可知,如果是绝对式功率控制,第三功率调整信息中的TPC是绝对值。如果是累积式功率控制,则第三功率调整信息中的TPC是偏移量。例如,第三功率调整信息中的TPC是相对于上一个用于调度上行或下行传输的信令指示的TPC的偏移量。
在一种可能的实现中,第一功率调整信息包括第一上行传输的TPC和/或第一上行传输的目标功率。或者,第一功率调整信息还可以是其他用于确定第一上行传输的发射功率的参数。第一功率调整信息中的TPC或目标功率可以是绝对值或者是偏移量。如果第一功率调整信息中的TPC或目标功率是偏移量有利于减少第一信令的开销,可以减少第一信令的比特数,最小化成本。
可选的,如果第一功率调整信息中的TPC是一个偏移量,第一功率调整信息中的TPC可以是相对于第三功率调整信息中的TPC的偏移量。
可选的,如果第一功率调整信息中的目标功率是一个偏移量,第一功率调整信息中的目标功率可以是相对于第三功率调整信息中的目标功率的偏移量。
可选的,如果RRC信令只配置了一个目标功率值,如果第一功率调整信息中的目标功率是一个偏移量,第一功率调整信息中的目标功率可以是相对于RRC信令指示的目标功率的偏移量。
在一种可能的实现中,终端设备可以基于第一信令和第三信令来确定第一上行传输的发射功率。
例如,如果第一功率调整信息中的TPC是相对于第三功率调整信息中的TPC的偏移量。终端设备可以将第一功率调整信息中的TPC和第三功率调整信息中的TPC进行叠加,并基于叠加之后的TPC来计算第一上行传输的发射功率。同理,如果第一功率调整信息中的目标功率是相对于第三功率调整信息中的目标功率的偏移量。终端设备可以将第一功率调整信息中的目标功率和第三功率调整信息中的目标功率进行叠加,并基于叠加之后的目标功率来计算第一上行传输的发射功率。具体示例可参见图8所对应的实施例相应的示例,在此不赘述。
在一种可能的实现中,如果第一功率调整信息中的目标功率是相对于RRC信令指示的目标功率的偏移量。终端设备可以将第一功率调整信息中的目标功率和RRC信令指示的目标功率进行叠加,并基于叠加之后的目标功率来计算第一上行传输的发射功率。具体示例可参见图8所对应的实施例相应的示例,在此不赘述。
在一种可能的实现中,如果第一功率调整信息中的TPC是一个绝对值,终端设备不用将第一功率调整信息中的TPC与第三功率调整信息中的TPC进行叠加。如果第一功率调整信息中的目标功率是一个绝对值,终端设备不用将第一功率调整信息中的目标功率与第三功率调整信息或RRC信令中的目标功率进行叠加。具体示例可参见图8所对应的实施例相应的示例,在此不赘述。
1602、网络设备向终端设备发送第一信令。相应地,终端设备可以接收该第一信令。
其中,该第一信令为专用控制指令,该第一信令包括第一信息。第一信令不用于调度。可选的,第一信令不包括上行调度信息或下行调度信息。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。例如,假设第一全双工时间单元为时隙6,终端设备发送第一上行传输之前需要调整第一上行传输的发射功率,假设调整第一上行传输的功率调整 时延Δt为2个时隙,则第一信令应该在时隙4之前传输。基于该可能的实现方式,能够保证终端设备有足够的时间确定和调整第一上行传输的发射功率。
由于第一信令没有直接指示第一全双工时间单元。如果第一信令为终端设备在T2-Δt之前接收的,终端设备认为第一信令可用于确定第一全双工时间单元中的第一上行传输的发射功率。
第一信令具有以下两种下发时机:
一、网络设备确定完第一全双工时间单元内所有用于下行传输的终端设备时,确定第一信息,并下发第一信令。网络设备最晚不超过T2-Δt下发第一信令,从而保证有足够的时间确定并调整第一上行传输的发射功率。也就是说,这种方式是网络设备确定完第一全双工时间单元内的所有干扰之后,才下发一个信令调整第一上行传输的发射功率。在这种方式中,网络设备只会下发一个信令来指示第一上行传输的功率调整信息。
本申请中,网络设备最晚不超过T2-Δt下发第一信令,可以理解为网络设备在不超过T2-Δt的对应时隙的前几个符号下发第一信令。
二、网络设备确定第一全双工时间单元内部分用于下行传输的终端设备时,就确定第一信息,并下发第一信令。网络设备还可在下发第一信令之后,向发送第二信令,该第二信令不包括上行调度信息或下行调度信息,该第二信令包括第二信息,该第二信息指示第一上行传输的第二功率调整信息。该第二功率调整信息为相对于第一功率调整信息的偏移量。接收到第一信令和第二信令之后,基于第一信令和第二信令来确定第一上行传输的发射功率。例如,如图17的步骤1703和步骤1704所示。图17中其他步骤的具体实现方式与图16中对应步骤的具体实现方式相同,在此不赘述。方式二的具体实现原理与图8所对应的实施例中第一信令的第二种下发时机的实现原理相同,在此不赘述。
网络设备最晚不超过T2-Δt下发第一信令和第二信令,从而保证第一终端设备有足够的时间确定并调整第一上行传输的发射功率。本申请中,网络设备最晚不超过T2-Δt下发第一信令和第二信令,可以理解为网络设备在不超过T2-Δt的对应时隙的前几个符号下发第一信令和第二信令。
由于第一信令和第二信令均没有直接指示第一全双工时间单元。如果第一信令和第二信令为终端设备在T2-Δt之前接收的,终端设备认为第一信令和第二信令可用于确定第一全双工时间单元中的第一上行传输的发射功率。
网络设备可预先在第一终端设备配置两套功率调整信息。网络设备确定采用第一种第一信令下发时机时,使用第一套功率调整信息。网络设备确定采用第二种第一信令下发时机时,使用第二套功率调整信息。第一套功率调整信息对应的功率调整信息范围大于第二套功率调整信息对应的功率调整信息范围。网络设备可通过信令指示第一终端设备使用哪一套功率调整信息。例如,该信令可以为RRC信令。第一套功率调整信息和第二套功率调整信息的相关示例可参见图8所对应的实施例中的相关描述,在此不赘述。
1603、终端设备根据第一信令,确定第一上行传输的发射功率。
可见,基于图16所描述的方法,网络设备能够在确定第一全双工时间单元内用于下行传输的终端设备之后,及时地向第一终端设备下发信令来调整第一终端设备在第一全双工时间单元内的第一上行传输的发射功率,有利于避免第一上行传输受到强烈的自干扰,避免降低全双工的增益。并且,网络设备不用向终端设备指示第一全双工时间单元,这样有利于减少指示开销。
图18是本申请实施例提供的另一种功率确定方法的流程示意图。如图18所示,该功率确定方法包括如下步骤1801~步骤1806。图18所示的方法执行主体可以为终端设备和网络设备。或者,图18所示的方法执行主体可以为终端设备中的芯片和网络设备中的芯片。图18以终端设备和网络设备为方法的执行主体为例进行说明。
1801、网络设备向终端设备发送第三信令。相应地,终端设备可以接收该第三信令。
其中,该第三信令包括第一上行传输的调度信息,第一上行传输的调度信息指示第一上行传输的第三功率调整信息;或者,第三信令包括第一下行传输的调度信息,第一上行传输用于传输第一下行传输的反馈信息,第一下行传输的调度信息指示第一上行传输的第三功率调整信息。
1802、网络设备确定第一信息。
其中,第一信息指示第一上行传输的第一功率调整信息,第一上行传输为位于第一全双工时间单元的上行传输。
1803、网络设备向终端设备发送第一信令。相应地,终端设备可以接收该第一信令。
其中,第一信令为专用控制指令,第一信令包括第一信息。
1804、终端设备根据第一信令和第三信令,确定第一上行传输的发射功率。
其中,步骤1801~步骤1804可参见图16所对应的实施例中的描述,在此不赘述。
1805、网络设备向终端设备发送第四信令。相应地,终端设备可以接收第四信令。
其中,该第四信令包括第二上行传输的调度信息,第二上行传输的调度信息指示第四功率调整信息,或者,第三信令包括第二下行传输的调度信息,第二上行传输用于传输第二下行传输的反馈信息,第二下行传输的调度信息指示第四功率调整信息;第二上行传输在时域上位于第一上行传输之后。
1806、根据第一信令、第三信令和第四信令,确定第二上行传输的发射功率。
本申请实施例中,第二上行传输可位于第二全双工时间单元,或者,第二上行传输也可位于非全双工时间单元。第二上行传输为在时域上位于第一上行传输之后的第一个上行传输,或者,第二上行传输为在时域上位于第一上行传输之后的第X个上行传输,X大于1。
举例来说,以第二上行传输位于非全双工时间单元为例。假设第一上行传输的功率调整时延Δt为3个时隙。如图19所示,网络设备在时隙1向终端设备1下发了DCI信令1,该DCI信令1用于调度PUSCH1在时隙6传输。该DCI信令1指示的TPC为10db,目标功率为10db。
网络设备在时隙2向终端设备1下发了DCI信令2,该DCI信令2用于调度PUSCH2在时隙7传输,该DCI信令2指示的TPC为2db,该DCI信令2指示的TPC为相较于DCI信令1指示的TPC的偏移量。该DCI信令2指示的目标功率为11db。
网络设备在时隙3向终端设备1下发了DCI信令3,该DCI信令3用于调度PUSCH3在时隙8传输,该DCI信令3指示的TPC为2db,该DCI信令3指示的TPC为相较于DCI信令2指示的TPC的偏移量。该DCI信令3指示的目标功率为12db。
网络设备在时隙4确定在时隙7要调度终端设备2和终端设备3进行下行传输,此时考虑到终端设备2和终端设备3在时隙7对PUSCH2会产生自干扰,网络设备认为DCI信令2指示的TPC和/或目标功率已不准确。因此,网络设备在时隙4向终端设备1下发DCI信令4,该DCI信令4指示3db的TPC和/或3db的目标功率。该DCI信令4指示的TPC为相较于DCI信令2指示的TPC的偏移量。该DCI信令4指示的目标功率为相较于DCI信令2指示的目标功率的偏移量。
终端设备1将DCI信令1指示的TPC、DCI信令2指示的TPC以及DCI信令4指示的TPC进行累计,得到累计后的TPC为15db,和/或,终端设备1将DCI信令2指示的目标功率以及DCI信令4指示的目标功率进行累计,得到累计后的目标功率为14db。终端设备1使用15db的TPC和/或14db的目标功率来计算PUSCH2的发射功率。
终端设备1将DCI信令1指示的TPC、DCI信令2指示的TPC、DCI信令3指示的TPC、DCI信令4指示的TPC进行累计,得到累计后的TPC为17db。终端设备1使用17db的TPC和12db的目标功率来计算PUSCH3的发射功率。
如果第二上行传输位于第二全双工时间单元,则网络设备还可向终端设备发送第五信令,该第五信令包括第三信息,该第三信息指示第二上行传输的第四功率调整信息。网络设备具体根据第一信令、第三信令、第四信令和第五信令,确定第二上行传输的发射功率。
举例来说,以第二上行传输位于第二全双工时间单元为例。假设第一上行传输的功率调整时延Δt为3个时隙。如图20所示,网络设备在时隙1向终端设备1下发了DCI信令1,该DCI信令1用于调度PUSCH1在时隙6传输,该DCI信令1指示的TPC为10db,目标功率为10db。
网络设备在时隙2向终端设备1下发了DCI信令2,该DCI信令2用于调度PUSCH2在时隙7传输,该DCI信令2指示的TPC为2db,该DCI信令2指示的TPC为相较于DCI信令1指示的TPC的偏移量。该DCI信令2指示的目标功率为11db。
网络设备在时隙3向终端设备1下发了DCI信令3,该DCI信令3用于调度PUSCH3在时隙8传输,该DCI信令3指示的TPC为2db,该DCI信令3指示的TPC为相较于DCI信令2指示的TPC的偏移量。该DCI信令2指示的目标功率为12db。
网络设备在时隙4确定在时隙7要调度终端设备2和终端设备3进行下行传输,此时考虑到终端设备2和终端设备3在时隙7对PUSCH2会产生自干扰,网络设备认为DCI信令2指示的TPC和/或目标功率已不准确。因此,网络设备在时隙4向终端设备1下发DCI信令4,该DCI信令4指示3db的TPC和/或3db的目标功率。该DCI信令4指示的TPC为相较于DCI信令2指示的TPC的偏移量。该DCI信令4指示的目标功率为相较于DCI信令2指示的目标功率的偏移量。
网络设备在时隙5确定在时隙8要调度终端设备4和终端设备5进行下行传输,此时考虑到终端设备4和终端设备5在时隙8对PUSCH3会产生自干扰,网络设备认为DCI信令3指示的TPC和/或目标功率已不准确。因此,网络设备在时隙5向终端设备1下发DCI信令5,该DCI信令5指示3db的TPC和/或3db的目标功率。该DCI信令5指示的TPC为相较于DCI信令3指示的TPC和DCI信令4指示的TPC之和的偏移量。该DCI信令5指示的目标功率为相较于DCI信令3指示的目标功率和DCI信令4指示的目标功率之和的偏移量。
终端设备1将DCI信令1指示的TPC、DCI信令2指示的TPC以及DCI信令4指示的TPC进行累计,得到累计后的TPC为15db,和/或,终端设备1将DCI信令2指示的目标功率以及DCI信令4指示的目标功率进行累计,得到累计后的TPC为14db。终端设备1使用15db的TPC和/或14db的目标功率来计算PUSCH2的发射功率。
终端设备1将DCI信令1指示的TPC、DCI信令2指示的TPC、DCI信令3指示的TPC、DCI信令4指示的TPC和DCI信令5指示的TPC进行累计,得到累计后的TPC为20db。和/或,终端设备1将DCI信令3指示的目标功率、DCI信令4指示的目标功率、DCI信令5指示的目标功率进行累计,得到累计后的TPC为18db。终端设备1使用20db的TPC和/或18db的目标功率来计算PUSCH3的发射功率。
可见,对于时隙7中的PUSCH2,终端设备需要使用到DCI信令4指示的TPC和/或目标功率确定PUSCH2的发射功率。对于时隙8中的PUSCH3,终端设备需要使用到DCI信令4和DCI信令5指示的TPC和/或目标功率确定PUSCH3的发射功率。也就是说,基于图18所描述的方案,对于第二全双工时间单元,终端设备可以认为在第二全双工时间单元的T3-Δt2之前检测到的DCI信令都可用于确定第二全双工时间单元内上行传输的发射功率,该DCI信令为不包括调度信息的DCI信令。T3为第二全双工时间单元,Δt2为第二上行传输的功率调整时延。
基于图18所描述的方法,即使网络设备发送的信令中并没有明确的信息来指示其应该应用于哪个全双工时间单元,终端设备也能准确地确定该全双工时间单元内的上行传输的发射功率。
图21是本申请实施例提供的另一种功率确定方法的流程示意图。如图21所示,该功率确定方法包括如下步骤2101~步骤2102。图21所示的方法执行主体可以为终端设备和网络设备。或者,图21所示的方法执行主体可以为终端设备中的芯片和网络设备中的芯片。图21以终端设备和网络设备为方法的执行主体为例进行说明。
2101、网络设备向终端设备发送第一信息,该第一信息指示随机接入的至少两个功率爬坡值。相应地,终端设备可以接收该第一信息。
2102、终端设备根据第一时间单元的类型和第二时间单元的类型,从该至少两个功率爬坡值中确定在第二时间单元进行随机接入使用的功率爬坡值,该类型为全双工或非全双工。该类型还可以是其他的类型,本申请实施例不做限定。
其中,第一时间单元和第二时间单元为相邻两个随机接入时机。第一时间单元和第二时间单元具体为网络设备配置给同一个终端设备的相邻两个随机接入时机。所述相邻两个随机接入时机在时间域上可以是非连续的。所述相邻两个随机接入时机为在网络设备配置给终端设备的随机接入时机中所确定出来的。
其中,第一时间单元位于第二时间单元之前。
在一种可能的实现中,第一时间单元为上一个随机接入时机,第二时间单元为当前的随机接入时机;或者,第一时间单元为当前的随机接入时机,第二时间单元为下一个随机接入时机。
在一种可能的实现中,第一信息指示的至少两个功率爬坡值包括第一功率爬坡值和第二功率爬坡值,第一功率爬坡值小于第二功率爬坡值;
当第一时间单元的类型为非全双工,且第二时间单元的类型为全双工时,在第二时间单元随机接入使用的功率爬坡值为第二功率爬坡值;或者,
当第一时间单元的类型为非全双工,且第二时间单元的类型为非全双工时,在第二时间单元随机接入使用的功率爬坡值为第一功率爬坡值;或者,
当第一时间单元的类型为全双工,且第二时间单元的类型为非全双工时,在第二时间单元随机接入使用的功率爬坡值为第一功率爬坡值;或者,
当第一时间单元的类型为全双工,且第二时间单元的类型为全双工时,在第二时间单元随机接入使用的功率爬坡值为第一功率爬坡值。
由于全双工时间单元内的干扰较大,因此,从非全双工时间单元切换到全双工时间单元时,需要更大的发射功率进行随机接入。
举例来说,如图22所示,如果第一时间单元为时隙1,第二时间单元为时隙3,则在第 二时间单元随机接入使用的功率爬坡值为第一功率爬坡值。如果第一时间单元为时隙3,第二时间单元为时隙5,则在第二时间单元随机接入使用的功率爬坡值为第二功率爬坡值。如果第一时间单元为时隙5,第二时间单元为时隙7,则在第二时间单元随机接入使用的功率爬坡值为第一功率爬坡值。如果第一时间单元为时隙7,第二时间单元为时隙9,则在第二时间单元随机接入使用的功率爬坡值为第一功率爬坡值。
可选的,第一信息指示的至少两个功率爬坡值包括第一功率爬坡值、第二功率爬坡值和第三功率爬坡值,第一功率爬坡值小于第二功率爬坡值,第三功率爬坡值也小于第二功率爬坡值;当第一时间单元的类型为全双工,且第二时间单元的类型为全双工时,在第二时间单元随机接入使用的功率爬坡值为第三功率爬坡值。例如,如图23所示。
第一信息可以显式地指示第二功率爬坡值,例如,第一信息可以直接包括第一功率爬坡值和第二功率爬坡值。或者,第一信息可以隐式地指示第二功率爬坡值,第一信息包括第一功率爬坡值和第二功率爬坡值相对于第一功率爬坡值的偏移量。
基于图21所描述的方法,终端设备能够准确地确定进行随机接入使用的功率爬坡值,从而提升随机接入的成功率。
请参见图24,图24示出了本申请实施例的一种通信装置的结构示意图。图24所示的通信装置可以用于执行上述图8、图10、图12或图14所描述的方法实施例中第一终端设备的部分或全部功能。该装置可以是第一终端设备,也可以是第一终端设备中的装置,或者是能够和第一终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图24所示的通信装置可以包括通信单元2401和处理单元2402。其中,处理单元2402,用于进行数据处理。通信单元2401集成有接收单元和发送单元。通信单元2401也可以称为收发单元。或者,也可将通信单元2401拆分为接收单元和发送单元。其中:
通信单元2401,用于接收第一信令,该第一信令包括第一信息和第二信息,该第一信息指示第一全双工时间单元,该第二信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输;处理单元2402,用于根据第一信令,确定第一上行传输的发射功率。
在一种可能的实现中,在第一全双工时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。
在一种可能的实现中,通信单元2401,还用于接收第二信令,该第二信令包括第三信息和第四信息,该第三信息指示第一全双工时间单元,该第四信息指示第一上行传输的第二功率调整信息,第二信令不包括上行调度信息或下行调度信息;处理单元2402根据第一信令,确定第一上行传输的发射功率的方式具体为:根据第一信令和第二信令,确定第一上行传输的发射功率。
在一种可能的实现中,通信单元2401,还用于在接收第一信令之前,接收第三信令;第三信令包括第一上行传输的调度信息,第一上行传输的调度信息指示第一上行传输的第三功率调整信息;或者,第三信令包括第一下行传输的调度信息,第一上行传输用于传输第一下行传输的反馈信息,第一下行传输的调度信息指示第一上行传输的第三功率调整信息;处理单元2402根据第一信令,确定第一上行传输的发射功率的方式具体为:根据第一信令和第三信令,确定第一上行传输的发射功率。
在一种可能的实现中,通信单元2401,还用于接收第四信令,该第四信令包括第二上行传输的调度信息,或,该第四信令包括第二下行传输的调度信息,该第二上行传输用于传输 第二下行传输的反馈信息;处理单元2402,还用于根据第三信令和第四信令,确定第二上行传输的发射功率,第二上行传输在时域上位于第一上行传输之后。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。
在一种可能的实现中,第一功率调整信息包括第一上行传输的传输功率控制TPC和/或第一上行传输的目标功率。
在一种可能的实现中,第一信令为组公共控制信令,第二信息包括N个子带的功率调整信息域,第一上行传输位于N个子带中的一个或多个子带,N为大于1的整数。
在一种可能的实现中,第一信息包括从T1到T2的时间单元偏移量,T1为传输第一信令的时间单元,T2为第一全双工时间单元;或者,
第一信令为专用控制信令,第一信息包括混合自动重传请求HARQ进程号,HARQ进程号对应第一全双工时间单元。
请参见图24,图24示出了本申请实施例的一种通信装置的结构示意图。图24所示的通信装置可以用于执行上述图14所描述的方法实施例中第二终端设备的部分或全部功能。该装置可以是第二终端设备,也可以是第二终端设备中的装置,或者是能够和第二终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图24所示的通信装置可以包括通信单元2401和处理单元2402。其中,处理单元2402,用于进行数据处理。通信单元2401集成有接收单元和发送单元。通信单元2401也可以称为收发单元。或者,也可将通信单元2401拆分为接收单元和发送单元。其中:
通信单元2401,用于接收第一信令,该第一信令包括第一信息和第二信息,该第一信息指示第一全双工时间单元,该第二信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输;通信单元2401,还用于接收第五信令,该第五信令包括第三上行传输的调度信息,或,该第五信令包括第三下行传输的调度信息,第三上行传输用于传输第三下行传输的反馈信息,该第三上行传输位于第二全双工时间单元;处理单元2402,用于确定第三上行传输的发射功率;其中,第二全双工时间单元不同于第一全双工时间单元,第一信令不用于确定第三上行传输的发射功率。
在一种可能的实现中,处理单元2402,还用于当第二全双工时间单元不同于第一全双工时间单元时,确定第一信令不用于确定第三上行传输的发射功率。
在一种可能的实现中,在第一全双工时间单元或第二全双工时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。
在一种可能的实现中,第一功率调整信息包括第一上行传输的传输功率控制TPC和/或第一上行传输的目标功率。
在一种可能的实现中,第一信令为组公共控制信令,第二信息包括N个子带的功率调整信息域,第一上行传输位于N个子带中的一个或多个子带,N为大于1的整数。
在一种可能的实现中,第一信息包括从T1到T2的时间单元偏移量,T1为传输第一信令的时间单元,T2为第一全双工时间单元。
请参见图24,图24示出了本申请实施例的一种通信装置的结构示意图。图24所示的通信装置可以用于执行上述图8、图10、图12或图14所描述的方法实施例中网络设备的部分或全部功能。该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图24所示的通信装置可以包括通信单元2401和处理单元2402。其中,处理单元2402,用于进行数据处理。通信单元2401集成有接收单元和发送单元。通信单元2401也可以称为收发单元。或者,也可将通信单元2401拆分为接收单元和发送单元。其中:
处理单元2402,用于确定第一信息和第二信息,该第一信息指示第一全双工时间单元,该第二信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输;通信单元2401,用于向第一终端设备发送第一信令,第一信令包括第一信息和第二信息。
在一种可能的实现中,在第一全双工时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。
在一种可能的实现中,向第一终端设备发送第二信令,该第二信令包括第三信息和第四信息,该第三信息指示第一全双工时间单元,该第四信息指示第一上行传输的第二功率调整信息。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。
在一种可能的实现中,第一功率调整信息包括第一上行传输的传输功率控制TPC和/或第一上行传输的目标功率。
在一种可能的实现中,第一信令为组公共控制信令,第二信息包括N个子带的功率调整信息域,第一上行传输位于N个子带中的一个或多个子带,N为大于1的整数。
在一种可能的实现中,第一信令为组公共控制信令,通信单元2401向第一终端设备发送第一信令的方式具体为:向第一终端设备和第二终端设备发送第一信令;
通信单元2401,还用于向第二终端设备发送第五信令,该第五信令包括第三上行传输的调度信息,或,该第五信令包括第三下行传输的调度信息,该第三上行传输用于传输第三下行传输的反馈信息,该第三上行传输位于第二全双工时间单元;第二全双工时间单元不同于第一全双工时间单元,第一信令不用于确定第三上行传输的发射功率。
在一种可能的实现中,第一信息包括从T1到T2的时间单元偏移量,T1为传输第一信令的时间单元,T2为第一全双工时间单元;或者,
第一信令为专用控制信令,第一信息包括混合自动重传请求HARQ进程号,HARQ进程号对应第一全双工时间单元。
请参见图24,图24示出了本申请实施例的一种通信装置的结构示意图。图24所示的通信装置可以用于执行上述图16、图17、图18所描述的方法实施例中终端设备的部分或全部功能。该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图24所示的通信装置可以包括通信单元2401和处理单元2402。其中,处理单元2402,用于进行数据处理。通信单元2401集成有接收单元和发送单元。通信单元2401也可以称为收发单元。或者,也可将通信单元2401拆分为接收单元和发送单元。其中:
通信单元2401,用于接收第一信令,该第一信令为专用控制指令,该第一信令包括第一 信息,该第一信息指示第一上行传输的第一功率调整信息,该第一上行传输为位于第一全双工时间单元的上行传输;处理单元2402,用于根据第一信令,确定第一上行传输的发射功率。
在一种可能的实现中,在第一全双工时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。
在一种可能的实现中,通信单元2401,还用于接收第二信令,该第二信令包括第二信息,该第二信息指示第一上行传输的第二功率调整信息,该第二信令不包括上行调度信息或下行调度信息;处理单元2402根据第一信令,确定第一上行传输的发射功率的方式具体为:根据第一信令和第二信令,确定第一上行传输的发射功率。
在一种可能的实现中,通信单元2401,还用于在接收第一信令之前,接收第三信令;该第三信令包括第一上行传输的调度信息,该第一上行传输的调度信息指示第一上行传输的第三功率调整信息;或者,该第三信令包括第一下行传输的调度信息,第一上行传输用于传输第一下行传输的反馈信息,该第一下行传输的调度信息指示第一上行传输的第三功率调整信息;处理单元2402根据第一信令,确定第一上行传输的发射功率的方式具体为:根据第一信令和第三信令,确定第一上行传输的发射功率。
在一种可能的实现中,通信单元2401,还用于接收第四信令,该第四信令包括第二上行传输的调度信息,或,该第四信令包括第二下行传输的调度信息,第二上行传输用于传输第二下行传输的反馈信息;处理单元2402,还用于根据第一信令、第三信令和第四信令,确定第二上行传输的发射功率,第二上行传输在时域上位于第一上行传输之后。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。
在一种可能的实现中,第一功率调整信息指示第一上行传输的传输功率控制TPC和/或第一上行传输的目标功率。
请参见图24,图24示出了本申请实施例的一种通信装置的结构示意图。图24所示的通信装置可以用于执行上述图16、图17、图18所描述的方法实施例中网络设备的部分或全部功能。该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图24所示的通信装置可以包括通信单元2401和处理单元2402。其中,处理单元2402,用于进行数据处理。通信单元2401集成有接收单元和发送单元。通信单元2401也可以称为收发单元。或者,也可将通信单元2401拆分为接收单元和发送单元。其中:
处理单元2402,用于确定第一信息,该第一信息指示第一上行传输的第一功率调整信息,第一上行传输为位于第一全双工时间单元的上行传输;通信单元2401,用于向终端设备发送第一信令,该第一信令为专用控制指令,该第一信令包括第一信息。
在一种可能的实现中,在第一全双工时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。
在一种可能的实现中,通信单元2401,还用于向终端设备发送第二信令,该第二信令不包括上行调度信息或下行调度信息,该第二信令包括第二信息,第二信息指示第一上行传输的第二功率调整信息。
在一种可能的实现中,第一信令为在T2-Δt之前传输的信令,T2为第一全双工时间单元,Δt为第一上行传输的功率调整时延。
在一种可能的实现中,第一功率调整信息指示第一上行传输的传输功率控制TPC和/或第 一上行传输的目标功率。
请参见图24,图24示出了本申请实施例的一种通信装置的结构示意图。图24所示的通信装置可以用于执行上述图21所描述的方法实施例中终端设备的部分或全部功能。该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。图24所示的通信装置可以包括通信单元2401和处理单元2402。其中,处理单元2402,用于进行数据处理。通信单元2401集成有接收单元和发送单元。通信单元2401也可以称为收发单元。或者,也可将通信单元2401拆分为接收单元和发送单元。其中:
通信单元2401,用于接收第一信息,第一信息指示随机接入的至少两个功率爬坡值;处理单元2402,用于根据第一时间单元的类型和第二时间单元的类型,从至少两个功率爬坡值中确定在第二时间单元进行随机接入使用的功率爬坡值,类型为全双工或非全双工;其中,第一时间单元和第二时间单元为相邻两个随机接入时机。
在一种可能的实现中,在全双工的时间单元上,存在至少两个子带,至少两个子带中的两个子带的传输方向不同;其中,两个子带在频域上不重叠、部分重叠或完全重叠。
在一种可能的实现中,第一时间单元位于第二时间单元之前。
在一种可能的实现中,至少两个功率爬坡值包括第一功率爬坡值和第二功率爬坡值,第一功率爬坡值小于第二功率爬坡值;
当第一时间单元的类型为非全双工,且第二时间单元的类型为全双工时,随机接入使用的功率爬坡值为第二功率爬坡值;或者,
当第一时间单元的类型为非全双工,且第二时间单元的类型为非全双工时,随机接入使用的功率爬坡值为第一功率爬坡值;或者,
当第一时间单元的类型为全双工,且第二时间单元的类型为非全双工时,随机接入使用的功率爬坡值为第一功率爬坡值;或者,
当第一时间单元的类型为全双工,且第二时间单元的类型为全双工时,随机接入使用的功率爬坡值为第一功率爬坡值。
本申请中各个实施例可以结合使用。
图25给出了一种通信装置的结构示意图。所述通信装置2500可以是上述方法实施例中的第一终端设备,也可以是上述方法实施例中的第二终端设备,也可以是上述方法实施例中的终端设备,也可以是上述方法实施例中的网络设备,还可以是支持第一终端设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持第二终端设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等。该通信装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置2500可以包括一个或多个处理器2501。所述处理器2501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置2500中可以包括一个或多个存储器2502,其上可以存有指令2504,所述指令可在所述处理器2501上被运行,使得所述通信装置2500执行上述方法实施例中描 述的方法。可选的,所述存储器2502中还可以存储有数据。所述处理器2501和存储器2502可以单独设置,也可以集成在一起。
可选的,所述通信装置2500还可以包括收发器2505、天线2506。所述收发器2505可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器2505可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。其中,图24所示的处理单元2402可以为处理器2501。通信单元2401可以为收发器2505。
所述通信装置2500为第一终端设备:处理器2501用于执行上述方法实施例中第一终端设备的数据处理操作。收发器2505用于执行上述方法实施例中第一终端设备的数据收发操作。例如,收发器2505可用于执行图8、图10、图12或图14中第一终端设备的数据收发操作。处理器2501可用于执行图8、图10、图12或图14中第一终端设备的数据处理操作。
所述通信装置2500为第二终端设备:处理器2501用于执行上述方法实施例中第二终端设备的数据处理操作。收发器2505用于执行上述方法实施例中第二终端设备的数据收发操作。例如,收发器2505可用于执行图14中第二终端设备的数据收发操作。处理器2501可用于执行图14中第二终端设备的数据处理操作。
所述通信装置2500为终端设备:处理器2501用于执行上述方法实施例中终端设备的数据处理操作。收发器2505用于执行上述方法实施例中终端设备的数据收发操作。例如,收发器2505可用于执行图16、图17、图18或图21中终端设备的数据收发操作。处理器2501可用于执行图16、图17、图18或图21中终端设备的数据处理操作。
所述通信装置2500为网络设备:处理器2501用于执行上述方法实施例中网络设备的数据处理操作。收发器2505用于执行上述方法实施例中网络设备的数据收发操作。例如,收发器2505可用于执行图8、图10、图12、图14、图16、图17、图18或图21中网络设备的数据收发操作。处理器2501可用于执行图8、图10、图12、图14、图16、图17、图18或图21中网络设备的数据处理操作。
另一种可能的设计中,处理器2501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器2501可以存有指令2503,指令2503在处理器2501上运行,可使得所述通信装置2500执行上述方法实施例中描述的方法。指令2503可能固化在处理器2501中,该种情况下,处理器2501可能由硬件实现。
又一种可能的设计中,通信装置2500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是第一通信设备、第二通信设备,但本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图25的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图26所示的芯片的结构示意图。图26所示的芯片2600包括处理器2601、接口2602。可选的,还可包括存储器2603。其中,处理器2601的数量可以是一个或多个,接口2602的数量可以是多个。
一种设计中,对于芯片用于实现本申请实施例中第一终端设备的功能的情况:
所述接口2602,用于接收或输出信号;例如,接口2602可用于执行图8、图10、图12或图14中第一终端设备的信号接收或输出操作。
所述处理器2601,用于执行第一通信设备的数据处理操作。例如,处理器2601可用于执行图8、图10、图12或图14中第一终端设备的数据处理操作。
另一种设计中,对于芯片用于实现本申请实施例中第二终端设备的功能的情况:所述接口2602,用于接收或输出信号;例如,接口2602可用于执行图14中第二终端设备的信号接收或输出操作。所述处理器2601,用于执行第二通信设备的数据处理操作。例如,处理器2601可用于执行图14中第二终端设备的数据处理操作。
另一种设计中,对于芯片用于实现本申请实施例中终端设备的功能的情况:
所述接口2602,用于接收或输出信号;例如,接口2602可用于执行图16、图17、图18或图21中终端设备的信号接收或输出操作。
所述处理器2601,用于执行第二通信设备的数据处理操作。例如,处理器2601可用于执行图16、图17、图18或图21中终端设备的数据处理操作。
另一种设计中,对于芯片用于实现本申请实施例中网络设备的功能的情况:
所述接口2602,用于接收或输出信号;例如,接口2602可用于执行图8、图10、图12、图14、图16、图17、图18或图21中网络设备的信号接收或输出操作。
所述处理器2601,用于执行网络设备的数据处理操作。例如,处理器2601可用于执行图8、图10、图12、图14、图16、图17、图18或图21中网络设备的数据处理操作。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的通信装置也可以相应的实现这些特征或功能,在此不予赘述。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field  programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,存储介质中存储有计算机程序或指令,当计算机程序或指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种包括指令的计算机程序产品,当计算机读取并执行计算机程序产品时,使得计算机实现上述任一方法实施例的功能。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种功率确定方法,其特征在于,应用于第一终端设备,所述方法包括:
    接收第一信令,所述第一信令包括第一信息和第二信息,所述第一信息指示第一全双工时间单元,所述第二信息指示第一上行传输的第一功率调整信息,所述第一上行传输为位于所述第一全双工时间单元的上行传输;
    根据所述第一信令,确定所述第一上行传输的发射功率。
  2. 根据权利要求1所述的方法,其特征在于,
    在所述第一全双工时间单元上,存在至少两个子带,所述至少两个子带中的两个子带的传输方向不同;
    其中,所述两个子带在频域上不重叠、部分重叠或完全重叠。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收第二信令,所述第二信令包括第三信息和第四信息,所述第三信息指示所述第一全双工时间单元,所述第四信息指示所述第一上行传输的第二功率调整信息,所述第二信令不包括上行调度信息或下行调度信息;
    所述根据所述第一信令,确定所述第一上行传输的发射功率,包括:
    根据所述第一信令和所述第二信令,确定所述第一上行传输的发射功率。
  4. 根据权利要求1或2所述的方法,其特征在于,所述接收第一信令之前,所述方法还包括:
    接收第三信令;所述第三信令包括所述第一上行传输的调度信息,所述第一上行传输的调度信息指示所述第一上行传输的第三功率调整信息;或者,所述第三信令包括第一下行传输的调度信息,所述第一上行传输用于传输所述第一下行传输的反馈信息,所述第一下行传输的调度信息指示所述第一上行传输的第三功率调整信息;
    所述根据所述第一信令,确定所述第一上行传输的发射功率,包括:
    根据所述第一信令和所述第三信令,确定所述第一上行传输的发射功率。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收第四信令,所述第四信令包括第二上行传输的调度信息,或,所述第四信令包括第二下行传输的调度信息,第二上行传输用于传输所述第二下行传输的反馈信息;
    根据所述第三信令和所述第四信令,确定所述第二上行传输的发射功率,所述第二上行传输在时域上位于所述第一上行传输之后。
  6. 根据权利要求1~5中任意一项所述的方法,其特征在于,
    所述第一信令为在T2-Δt之前传输的信令,所述T2为所述第一全双工时间单元,所述Δt为所述第一上行传输的功率调整时延。
  7. 根据权利要求1~6中任意一项所述的方法,其特征在于,所述第一功率调整信息包括所述第一上行传输的传输功率控制TPC和/或所述第一上行传输的目标功率。
  8. 根据权利要求1~7中任意一项所述的方法,其特征在于,所述第一信令为组公共控制信令,所述第二信息包括N个子带的功率调整信息域,所述第一上行传输位于所述N个子带中的一个或多个子带,所述N为大于1的整数。
  9. 根据权利要求1~7中任意一项所述的方法,其特征在于,
    所述第一信息包括从T1到T2的时间单元偏移量,所述T1为传输所述第一信令的时间单元,所述T2为所述第一全双工时间单元;或者,
    所述第一信令为专用控制信令,所述第一信息包括混合自动重传请求HARQ进程号,所述HARQ进程号对应所述第一全双工时间单元。
  10. 一种功率确定方法,其特征在于,应用于第二终端设备,所述方法包括:
    接收第一信令,所述第一信令包括第一信息和第二信息,所述第一信息指示第一全双工时间单元,所述第二信息指示第一上行传输的第一功率调整信息,所述第一上行传输为位于所述第一全双工时间单元的上行传输;
    接收第五信令,所述第五信令包括第三上行传输的调度信息,或,所述第五信令包括第三下行传输的调度信息,所述第三上行传输用于传输所述第三下行传输的反馈信息,所述第三上行传输位于第二全双工时间单元;
    确定所述第三上行传输的发射功率;
    其中,所述第二全双工时间单元不同于所述第一全双工时间单元,所述第一信令不用于确定所述第三上行传输的发射功率。
  11. 根据权利要求10所述的方法,其特征在于,所述接收第五信令之后,所述方法还包括:
    当所述第二全双工时间单元不同于所述第一全双工时间单元时,确定所述第一信令不用于确定所述第三上行传输的发射功率。
  12. 根据权利要求10或11所述的方法,其特征在于,在所述第一全双工时间单元或所述第二全双工时间单元上,存在至少两个子带,所述至少两个子带中的两个子带的传输方向不同;
    其中,所述两个子带在频域上不重叠、部分重叠或完全重叠。
  13. 根据权利要求10~12中任意一项所述的方法,其特征在于,
    所述第一信令为在T2-Δt之前传输的信令,所述T2为所述第一全双工时间单元,所述Δt为所述第一上行传输的功率调整时延。
  14. 根据权利要求10~13中任意一项所述的方法,其特征在于,所述第一功率调整信息包括所述第一上行传输的传输功率控制TPC和/或所述第一上行传输的目标功率。
  15. 根据权利要求10~14中任意一项所述的方法,其特征在于,所述第一信令为组公共控制信令,所述第二信息包括N个子带的功率调整信息域,所述第一上行传输位于所述N个子 带中的一个或多个子带,所述N为大于1的整数。
  16. 根据权利要求10~15中任意一项所述的方法,其特征在于,所述第一信息包括从T1到T2的时间单元偏移量,所述T1为传输所述第一信令的时间单元,所述T2为所述第一全双工时间单元。
  17. 一种功率确定方法,其特征在于,应用于网络设备,所述方法包括:
    确定第一信息和第二信息,所述第一信息指示第一全双工时间单元,所述第二信息指示第一上行传输的第一功率调整信息,所述第一上行传输为位于所述第一全双工时间单元的上行传输;
    向第一终端设备发送第一信令,所述第一信令包括所述第一信息和所述第二信息。
  18. 根据权利要求17所述的方法,其特征在于,
    在所述第一全双工时间单元上,存在至少两个子带,所述至少两个子带中的两个子带的传输方向不同;
    其中,所述两个子带在频域上不重叠、部分重叠或完全重叠。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    向所述第一终端设备发送第二信令,所述第二信令包括第三信息和第四信息,所述第三信息指示所述第一全双工时间单元,所述第四信息指示所述第一上行传输的第二功率调整信息。
  20. 根据权利要求17~19中任意一项所述的方法,其特征在于,
    所述第一信令为在T2-Δt之前传输的信令,所述T2为所述第一全双工时间单元,所述Δt为所述第一上行传输的功率调整时延。
  21. 根据权利要求17~20中任意一项所述的方法,其特征在于,所述第一功率调整信息包括所述第一上行传输的传输功率控制TPC和/或所述第一上行传输的目标功率。
  22. 根据权利要求17~21中任意一项所述的方法,其特征在于,所述第一信令为组公共控制信令,所述第二信息包括N个子带的功率调整信息域,所述第一上行传输位于所述N个子带中的一个或多个子带,所述N为大于1的整数。
  23. 根据权利要求17~22中任意一项所述的方法,其特征在于,所述第一信令为组公共控制信令,所述向第一终端设备发送第一信令,包括:
    向所述第一终端设备和第二终端设备发送第一信令;
    所述方法还包括:
    向所述第二终端设备发送第五信令,所述第五信令包括第三上行传输的调度信息,或,所述第五信令包括第三下行传输的调度信息,所述第三上行传输用于传输所述第三下行传输的反馈信息,所述第三上行传输位于第二全双工时间单元;所述第二全双工时间单元不同于所述第一全双工时间单元,所述第一信令不用于确定所述第三上行传输的发射功率。
  24. 根据权利要求17~22中任意一项所述的方法,其特征在于,
    所述第一信息包括从T1到T2的时间单元偏移量,所述T1为传输所述第一信令的时间单元,所述T2为所述第一全双工时间单元;或者,
    所述第一信令为专用控制信令,所述第一信息包括混合自动重传请求HARQ进程号,所述HARQ进程号对应所述第一全双工时间单元。
  25. 一种通信装置,其特征在于,包括用于执行如权利要求1~9中任一项所述方法的单元,或包括用于执行如权利要求10~16中任一项所述方法的单元,或包括用于执行如权利要求17~24中任一项所述方法的单元。
  26. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求1~9中任一项所述的方法,或所述处理器用于实现如权利要求10~16中任一项所述的方法,或所述处理器用于实现如权利要求17~24中任一项所述的方法。
  27. 一种芯片,其特征在于,包括处理器和接口,所述处理器和所述接口耦合;
    所述接口用于接收或输出信号,所述处理器用于执行代码指令,以使权利要求1~9中任一项所述的方法被执行,或以使权利要求10~16中任一项所述的方法被执行,或以使权利要求17~24中任一项所述的方法被执行。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述权利要求1-9中任一项所述的方法,或,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述权利要求10-16中任一项所述的方法,或,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述权利要求17-24中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,所述计算机程序代码被计算机运行时,使得所述计算机执行:
    权利要求1至9中任一项所述的方法,或权利要求10至16中任一项所述的方法,或,权利要求17至24中任一项所述的方法。
PCT/CN2022/131012 2021-11-22 2022-11-10 一种功率确定方法及通信装置 WO2023088158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111389856.9 2021-11-22
CN202111389856.9A CN116170862A (zh) 2021-11-22 2021-11-22 一种功率确定方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023088158A1 true WO2023088158A1 (zh) 2023-05-25

Family

ID=86396240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131012 WO2023088158A1 (zh) 2021-11-22 2022-11-10 一种功率确定方法及通信装置

Country Status (2)

Country Link
CN (1) CN116170862A (zh)
WO (1) WO2023088158A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024441A1 (zh) * 2015-08-07 2017-02-16 华为技术有限公司 一种全双工传输的控制方法和用户设备以及基站
WO2018128409A1 (ko) * 2017-01-04 2018-07-12 엘지전자(주) 무선 통신 시스템에서의 상향링크 전력 제어 방법 및 이를 위한 장치
CN111836349A (zh) * 2019-04-18 2020-10-27 北京三星通信技术研究有限公司 功率控制方法和执行该方法的设备
WO2021190519A1 (zh) * 2020-03-24 2021-09-30 维沃移动通信有限公司 功率调整方法及节点设备
CN115209460A (zh) * 2021-04-09 2022-10-18 维沃移动通信有限公司 上行功率确定方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024441A1 (zh) * 2015-08-07 2017-02-16 华为技术有限公司 一种全双工传输的控制方法和用户设备以及基站
WO2018128409A1 (ko) * 2017-01-04 2018-07-12 엘지전자(주) 무선 통신 시스템에서의 상향링크 전력 제어 방법 및 이를 위한 장치
CN111836349A (zh) * 2019-04-18 2020-10-27 北京三星通信技术研究有限公司 功率控制方法和执行该方法的设备
WO2021190519A1 (zh) * 2020-03-24 2021-09-30 维沃移动通信有限公司 功率调整方法及节点设备
CN115209460A (zh) * 2021-04-09 2022-10-18 维沃移动通信有限公司 上行功率确定方法和设备

Also Published As

Publication number Publication date
CN116170862A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
US11792739B2 (en) Uplink power control
CN112534888B (zh) 上行链路传输功率分配
US9867148B2 (en) Power control for transmissions to first and second base stations
WO2018030038A1 (ja) 通信装置、通信方法及び記録媒体
JP2019036951A (ja) 無線通信システムにおけるsfi(スロットフォーマット情報)衝突を処理するための方法及び装置
US20160227486A1 (en) Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation
US20220201618A1 (en) Method for controlling transmission power in wireless communication system, and apparatus therefor
AU2019347974B2 (en) Communication method, apparatus, and storage medium
CN109565708B (zh) 通信装置、通信方法和记录介质
CN109565709B (zh) 通信设备、通信方法和记录介质
WO2022236672A1 (en) Power control parameters for multi-trp pusch repetition
CN113875295A (zh) 用于控制nr v2x中的副链路发送功率的方法和装置
US20230164772A1 (en) Joint scheduling of sidelink and uu link
US20230156609A1 (en) Method and Apparatus for Power Control
WO2023088158A1 (zh) 一种功率确定方法及通信装置
US11064517B2 (en) Optimization of signalling of absolute grants for uplink transmission using time-division multiplexing
US20220201637A1 (en) Method and device in nodes used for wireless communication
US11240762B2 (en) Uplink transmit power control for cross link interference
CN114175760B (zh) 通信方法、装置及设备
WO2023051201A1 (zh) 通信方法与装置
US20220322408A1 (en) Urllc indications with multi-transmission grants
WO2020087548A1 (zh) 一种功率控制方法、设备及存储介质
KR102206361B1 (ko) 반송파 집성을 지원하는 무선통신 시스템에서 상향링크 전력제어를 수행하는 장치 및 방법
WO2023170181A1 (en) Unified beam management framework with multiple beams
CN117915460A (zh) 上行功率控制方法与装置、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894695

Country of ref document: EP

Kind code of ref document: A1