WO2023088097A1 - 阻燃环氧树脂组合物 - Google Patents

阻燃环氧树脂组合物 Download PDF

Info

Publication number
WO2023088097A1
WO2023088097A1 PCT/CN2022/129216 CN2022129216W WO2023088097A1 WO 2023088097 A1 WO2023088097 A1 WO 2023088097A1 CN 2022129216 W CN2022129216 W CN 2022129216W WO 2023088097 A1 WO2023088097 A1 WO 2023088097A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
flame retardant
resin composition
bisphenol
brominated
Prior art date
Application number
PCT/CN2022/129216
Other languages
English (en)
French (fr)
Inventor
顾春华
成偬
Original Assignee
Sika技术股份公司
顾春华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sika技术股份公司, 顾春华 filed Critical Sika技术股份公司
Priority to EP22894634.9A priority Critical patent/EP4435049A1/en
Priority to CN202280068304.4A priority patent/CN118119659A/zh
Publication of WO2023088097A1 publication Critical patent/WO2023088097A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the invention relates to a flame-retardant epoxy resin composition, which is especially suitable for vacuum infusion technology.
  • the present invention also relates to the use of this flame-retardant epoxy resin composition and articles made therefrom.
  • Vacuum infusion is a suitable process for manufacturing composite materials.
  • reinforcement materials such as glass fiber, carbon fiber, etc.
  • a vacuum application device such as a vacuum bag or a vacuum guide net on it to draw out the air in the system to form a negative pressure
  • resin For example, epoxy resin is introduced into the mold to infiltrate the reinforcing material and solidify in it.
  • epoxy resin used in this vacuum infusion process it is generally expected that it has a low viscosity, and its products have excellent mechanical properties, transparency and flame retardancy.
  • a two-component flame retardant epoxy resin composition suitable for vacuum infusion wherein the A component includes bisphenol A resin, bromine-containing epoxy flame retardant and organic phosphorus flame retardant.
  • the brominated epoxy flame retardants used here refer to bromine-containing compounds with flame retardancy, including additive brominated flame retardants such as tetrabromoxylene, pentabromodiphenyl ether, octabromodiphenyl ether, and 2 , 3-dibromopropanol, tetrabromobisphenol S, tetrabromobisphenol A and other reactive bromine-containing flame retardants, the reactive group is hydroxyl or phenolic hydroxyl, and this type of reactive group will reduce the epoxy resin. Mechanical properties, such as flexural strength, tensile strength, etc.
  • the brominated epoxy flame retardants mentioned in this patent are all small molecules or monomeric compounds that are not epoxy resins.
  • the first aspect of the present invention is to provide a flame retardant epoxy resin composition, which is especially suitable for vacuum infusion process.
  • the epoxy resin composition not only can maintain excellent flame retardancy, processability and mechanical properties, but also has lower viscosity and better adhesiveness than the epoxy resin products in the prior art.
  • the inventors of the present invention have found that the above objects can be achieved using a flame retardant epoxy resin composition as described hereinafter in the specification.
  • the present invention also relates to the use of the flame-retardant epoxy resin composition in a vacuum infusion process and articles made from the flame-retardant epoxy resin composition.
  • a first aspect of the present invention relates to a flame retardant epoxy resin composition, comprising
  • poly(poly) in the names of substances such as “polyol”, “polyisocyanate”, “polyether” or “polyamine” in this context indicates that the corresponding substance formally contains more than one compound present in its name per molecule. functional groups.
  • molecular weight is understood to mean the molar mass (in g/mol) of a molecule.
  • Molecular weight average is understood to mean the number average molecular weight Mn of an oligomer or polymer mixture of molecules, which is usually determined by GPC relative to polystyrene as a standard.
  • room temperature means a temperature of 23°C.
  • epoxy resin refers to an epoxy resin or epoxy polymer having an average of more than one, such as two or more, epoxy groups per molecule, which is preferably a liquid epoxy resin or a solid epoxy resin.
  • epoxy resin Epoxy resins can be prepared, for example, in a known manner by oxidation of the corresponding alkenes or by reaction of epichlorohydrin with the corresponding polyols or polyphenols.
  • solid epoxy resin is well known to those skilled in the art of epoxy resins and is used in contrast to "liquid epoxy resin”. The glass transition temperature of the solid resin is above room temperature, which means it can be pulverized at room temperature to give a free-flowing powder.
  • Suitable epoxy resins are especially aromatic epoxy resins, especially the glycidylation products of:
  • bisphenols or polyphenols such as bis(4-hydroxy-3-methylphenyl)methane, 2,2-bis(4-hydroxy-3-methylphenyl)propane (bisphenol C), bis( 3,5-Dimethyl-4-hydroxyphenyl)methane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 2,2-bis(3,5-dibromo -4-hydroxyphenyl) propane, 2,2-bis(4-hydroxy-3-tert-butylphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane (bisphenol B), 3 ,3-bis(4-hydroxyphenyl)pentane, 3,4-bis(4-hydroxyphenyl)hexane, 4,4-bis(4-hydroxyphenyl)heptane, 2,4-bis( 4-hydroxyphenyl)-2-methylbutane, 2,4-bis(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutane, 1,1-bis(bis(4
  • Aromatic amines such as aniline, toluidine, 4-aminophenol, 4,4'-methylenediphenyldiamine, 4,4'-methylenediphenylbis(N-methyl)amine, 4,4'-[1,4-phenylenebis(1-methylethylene)]bisaniline (bisaniline P) or 4,4'-[1,3-phenylenebis(1-methyl Ethylene)] bis-aniline (bis-aniline M).
  • epoxy resins are especially aliphatic or cycloaliphatic polyepoxides, especially
  • N-glycidyl derivatives of amides or heterocyclic nitrogen bases such as triglycidyl cyanurate or triglycidyl isocyanurate, or reaction products of epichlorohydrin with hydantoin.
  • olefins such as especially vinylcyclohexene, dicyclopentadiene, cyclohexadiene, cyclododecadiene, cyclododecatriene, isoprene, 1, 5-Hexadiene, butadiene, polybutadiene or divinylbenzene.
  • the epoxy resin has the formula (II)
  • substituents R' and R" are each independently H or CH 3 .
  • the index s has values >1.5, especially 2-12.
  • Such solid epoxy resins are commercially available, for example, from Dow or Huntsman or Hexion.
  • the index s has a value less than 1.
  • s has a value less than 0.2.
  • the epoxy resin is a liquid epoxy resin of formula (II), more preferably an epoxy resin based on bisphenol A, bisphenol F and/or bisphenol A/F, such as bisphenol A, bisphenol Diglycidyl ether products of F and bisphenol A/F.
  • liquid resins can be used, for example, as GY 250, PY 304, Available as GY 282 (Huntsman) or DER TM 331 or DER TM 330 (Dow) or Epikote 828 (Hexion).
  • so-called epoxy-novolac resin (Novolac Epoxy Resin) can be used in a small amount, for example, its addition is 0-10% by weight based on the total weight of the composition, such as 1- 6% by weight.
  • the proportion of epoxy resin is preferably 30-62% by weight, for example 35-59% by weight, based on the total weight of the epoxy resin composition.
  • the epoxy resin composition should in particular comprise a brominated epoxy resin B) having a capping group selected from epoxy groups and tribromophenol groups.
  • the bromine content in the brominated epoxy resin refers to the mass percentage of bromine element based on the average molecular weight of the brominated epoxy resin.
  • the "brominated epoxy resin” refers to a product in which bromine atoms are substituted on the epoxy resin molecule in terms of molecular structure.
  • the brominated epoxy resins can be considered to be brominated products of epoxy resins.
  • the substitution position of the bromine atom is not particularly limited, and it may be located in the main chain or side chain or terminal of the epoxy resin.
  • the "brominated epoxy resin" according to the present invention should have a capping group selected from epoxy groups and tribromophenol groups.
  • the tribromophenol can react with the epoxy group at the end of the epoxy resin to form a capping group in the form of an ether oxygen linked tribromophenoxy group.
  • the epoxy resin A) and the brominated epoxy resin B) can have the same or different epoxy resin matrix. Accordingly, those epoxy resins described above and their preferred forms also apply to the epoxy resins on which the brominated epoxy resins are based, for example having the matrix structure of formula (II) above.
  • the brominated epoxy resin according to the invention is a brominated epoxy resin based on bisphenol A, bisphenol F and/or bisphenol A/F epoxy resins as described above.
  • brominated epoxy resins meeting the definition of the present invention include, for example:
  • n is greater than or equal to 0, such as >0.2, >1, >1.5 or such as 2-12.
  • Brominated epoxy resins suitable for the present invention are commercially available, such as ICL F2000 series brominated epoxy polymers (F-2016, F-2100, F-2400, etc.) or Dow D.E.R 542 or NPEB 400, etc.
  • brominated epoxy resins can not only provide good flame retardancy in the flame retardant epoxy resin composition according to the present invention
  • Epoxy resins have better compatibility and can also maintain or improve the mechanical properties of cured epoxy resins.
  • the brominated epoxy resin of the present invention has better compatibility, and there is no thinning out or delamination problem;
  • the brominated epoxy resin of the present invention can lead to better mechanical properties of the epoxy resin after curing, and maintain the glass transition temperature of the epoxy resin.
  • the epoxy resin composition according to the present invention may comprise less than 1% by weight, such as 0.5% by weight or even no brominated epoxy resin, based on the total weight of the composition.
  • Other brominated compounds especially those commonly used as flame retardants or flame retardant substances.
  • the bromine content of the brominated epoxy resin is greater than or equal to 48%, such as in the range of 48-60%. If the bromine content is too low, less than 48%, the desired flame retardant properties may not be obtained, and in order to meet the flame retardant properties, the brominated epoxy resin content in the formulation may have to be increased too high.
  • the bromine content is defined as the proportion of elemental bromine to the total weight of the brominated epoxy resin.
  • the content of brominated epoxy resin should be 16-30% by weight, preferably 18-28% by weight, for example 20-25% by weight. If the content of brominated epoxy resin is too low, the expected qualified flame retardant properties cannot be obtained, although it is possible to compensate for the flame retardant properties by increasing the amount of organophosphorus flame retardants, but this will lead to a significant decrease in mechanical properties. If the level of brominated epoxy resin is too high, it may cause excessive viscosity and affect workability.
  • the epoxy resin of the present invention must also contain an organic phosphorus flame retardant.
  • Organophosphorus flame retardants are known per se, which, when heated, promote the generation of a more structurally stable crosslinked solid mass or carbonized layer, thereby inhibiting combustion and further pyrolysis of the polymer.
  • Organophosphorus flame retardants usually include various phosphates, phosphites, pyrophosphates, phosphonates, phosphonites, organic phosphorus salts, phosphorus-containing heterocyclic compounds, and poly(poly)phosphates or phosphonates, etc. .
  • organophosphorous flame retardants include ammonium phosphate ((NH 4 ) 3 PO 4 ), ammonium polyphosphate, melamine phosphate, melamine pyrophosphate, triphenyl phosphate, diphenyl cresyl phosphate, tricresyl phosphate , trimethyl phosphate, triethyl phosphate, tris(2-ethylhexyl) phosphate, trioctyl phosphate, dimethyl methyl phosphate, diethyl ethyl phosphate, mono-, di- and tri-phosphate -(isopropylphenyl) ester, resorcinol-bis-(diphenyl phosphate), resorcinol diphosphate oligomer, tetraphenyl-resorcinol diphosphate, ethylene diphosphate Amine diphosphate, bisphenol A-bis-(diphenyl phosphate), tris(2-chloroethyl)
  • the organic phosphorus flame retardant is selected from trimethyl phosphate, triethyl phosphate, tris (2-chloroethyl) phosphate, tris (2,3-dichloropropyl) phosphoric acid ester, tris(1,3-dichloro-2-propanyl)phosphate, tris(2,3-dibromopropyl)phosphate, and/or bis(2,3-dibromopropyl)dichloropropane base phosphate.
  • the content of the organic phosphorus flame retardant is important in the epoxy resin composition of the present invention. If the content of the organic phosphorus flame retardant exceeds 25% by weight, the mechanical properties of the epoxy resin composition will be greatly reduced, and at the same time at long-term ambient temperature, it will also easily cause the slow migration of the organic phosphorus; and if the content of the organic phosphorus flame retardant Below 10%, it may weaken the flame retardant performance of the system. In one embodiment, the content of the organophosphorus flame retardant may be 12-20% by weight.
  • flame retardants such as nitrogen-based flame retardants or phosphorus-nitrogen flame retardants are also possible, it is preferred that no other types of flame retardants, especially inorganic flame retardants, be included in the composition of the present invention. agent. From the point of view of the vacuum infusion process, the absence of inorganic flame retardants is beneficial as they are detrimental to incorporation into the web and detrimental to the low viscosity requirement of the process due to their high tendency to settle.
  • the epoxy resin composition can additionally comprise at least one reactive diluent for the epoxy resin.
  • This reactive diluent is used to control and reduce the viscosity of the epoxy resin curing system, and those skilled in the art know how to select a suitable reactive diluent for the selected epoxy resin.
  • Alcohol glycidyl ethers such as butanol glycidyl ether, hexanol glycidyl ether, 2-ethyl alcohol Hexyl alcohol glycidyl ether, allyl glycidyl ether, tetrahydrofurfuryl and furfuryl glycidyl ether, trimethoxysilyl glycidyl ether, etc.;
  • glycidyl ethers of difunctional saturated or unsaturated, branched or linear, cyclic or open-chain aliphatic C2 - C30 alcohols, such as ethylene glycol glycidyl ether, butanediol glycidyl ether, hexyl Glycol glycidyl ether, caprylyl glycol glycidyl ether, cyclohexanedimethanol diglycidyl ether, neopentyl glycol diglycidyl ether, etc.;
  • - glycidyl ethers of trifunctional or polyfunctional, saturated or unsaturated, branched or unbranched, cyclic or open-chain alcohols such as epoxidized castor oil, epoxidized trimethylolpropane, epoxidized Polyglycidyl ethers of pentaerythritol or aliphatic polyols such as sorbitol, glycerin, trimethylolpropane, etc.;
  • - glycidyl ethers of phenolic and aniline compounds such as phenyl glycidyl ether, cresol glycidyl ether, resorcinol diglycidyl ether, p-tert-butylphenyl glycidyl ether, nonylphenol glycidyl ether, 3-pentadecenyl glycidyl ether (from cashew nut shell oil), N,N-diglycidyl aniline, etc.;
  • -epoxidized amines such as N,N-diglycidylcyclohexylamine, etc.
  • Epoxidized mono- or dicarboxylic acids such as glycidyl neodecanoate, glycidyl methacrylate, glycidyl benzoate, diglycidyl phthalate, diglycidyl tetrahydrophthalate Glycerides and diglycidyl hexahydrophthalate, diglycidyl esters of dimer fatty acids, etc.;
  • hexanediol diglycidyl ether cresol glycidyl ether, p-tert-butylphenyl glycidyl ether, polypropylene glycol diglycidyl ether and polyethylene glycol diglycidyl ether.
  • the total proportion of reactive diluents for the epoxy resin may advantageously be >0-30%, such as 1-30% or 5-25%, based on the total weight of the epoxy resin composition.
  • compositions according to the invention also preferably contain at least one curing agent for epoxy resins.
  • curing agent for epoxy resins.
  • Common and known compounds that react with epoxy groups can be used as curing agents.
  • the curing agent is preferably a basic curing agent, especially an amine compound or an amide.
  • the curing agent contains at least two primary or secondary amino groups per molecule.
  • Amine compounds having two or more amino groups per molecule are hereinafter referred to as "polyamines". If the polyamines are polymers, they contain on average at least two amino groups per molecule.
  • mixtures of different curing agents may be used, for example mixtures of two, three or more different curing agents.
  • the curing agent contains at least one polyamine, preferably selected from aliphatic, cycloaliphatic or araliphatic primary diamines, triamines and tetraamines, having more than 4 polyamines per molecule Amino-based polyamines, secondary amino-containing polyamines, amine/polyepoxide adducts, poly(ethyleneimine), polyamidoamines, polyetheramines and amino-terminated butadiene/acrylonitrile copolymers thing.
  • polyamine preferably selected from aliphatic, cycloaliphatic or araliphatic primary diamines, triamines and tetraamines, having more than 4 polyamines per molecule Amino-based polyamines, secondary amino-containing polyamines, amine/polyepoxide adducts, poly(ethyleneimine), polyamidoamines, polyetheramines and amino-terminated butadiene/acrylonitrile copolymers thing.
  • Polyamines are also polyoxyalkylene diamines with molecular weights below 500 g/mol ( D-230, Jeffamine D400, EDR-148), 4,7,10-trioxatridecane-1-13-diamine, 4,9-dioxadodecane-1,12-diamine, ethylenediamine and/or 3 (4),8(9)-bis-(aminomethyl)-tricyclo[5.2.1.02,6]decane (TCD manufactured by Celanese Chemicals).
  • polyamines suitable as curing agents are, for example:
  • aliphatic, cycloaliphatic or araliphatic primary diamines such as ethylenediamine, 1,2-propylenediamine, 1,3-propylenediamine, 2-methyl-1,2-propylenediamine, 2,2-Dimethyl-1,3-propanediamine, 1,3-butanediamine, 1,4-butanediamine, 1,3-pentanediamine (DAMP), 1,5-pentanediamine , 1,5-diamino-2-methylpentane (MPMD), 2-butyl-2-ethyl-1,5-pentanediamine (C11-new diamine), 1,6-hexanediamine, 2,5-Dimethyl-1,6-hexanediamine, 2,2,4- and 2,4,4-trimethylhexamethylenediamine (TMD), 1,7-heptanediamine , 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-
  • ether groups e.g. bis-(2-aminoethyl)-ether, 3,6-dioxaoctane-1,8-diamine, 4,7-dioxadecane -1,10-diamine, 4,7-dioxadecane-2,9-diamine, 4,9-dioxadodecane-1,12-diamine, 5,8-dioxa Dodecane-3,10-diamine, 4,7,10-trioxatridecane-1,13-diamine and higher oligomers of these diamines, bis-(3-aminopropyl)- Polytetrahydrofuran and other polytetrahydrofuran diamines and polyoxyalkylene diamines having a molecular weight of, for example, 350-2000.
  • polyoxyalkylene glycols are generally products from the amination of polyoxyalkylene glycols and can be named, for example (Huntsman), under the name polyether amine (from BASF) or under the name PC (from Nitroil).
  • Particularly suitable polyoxyalkylene diamines are D-230, D-400, D-2000, XTJ-511, ED-600, ED-900, ED-2003, XTJ-568, XTJ-569, XTJ-523, XTJ-536, XTJ-542, XTJ-559, EDR-104, EDR-148, EDR-176; polyether amine D 230, polyether amine D 400 and polyether amine D 2000, PC DA 250, PC DA 400, PC DA 650 and PC DA 2000;
  • polyamines containing secondary amino groups for example, diethylenetriamine (DETA), N,N-bis-(2-aminoethyl)-ethylenediamine, dipropylenetriamine (DPTA), Bis-hexamethylenetriamine (BHMT), 3-(2-aminoethyl)-aminopropylamine, triethylenetetramine, tetraethylenepentamine, N3-(3-aminopentyl)- 1,3-pentanediamine, N5-(3-aminopropyl)-2-methyl-1,5-pentanediamine, N5-(3-amino-1-ethylpropyl)-2-methyl -1,5-pentanediamine, N,N'-dibutylethylenediamine;N,N'-di-tert-butylethylenediamine,N,N'-diethyl-1,6 -Hexanediamine, 1-(1-methylethylamino)-3-(1-(1
  • - amine/polyepoxide adducts in particular adducts of the aforementioned polyamines to diepoxides in a molar ratio of at least 2/1, in particular in a molar ratio of 2/1 to 10/1;
  • polyamidoamines which are reaction products of mono- or polycarboxylic acids or their esters or anhydrides, especially dimerized fatty acids, with aliphatic, cycloaliphatic or aromatic polyamines used in stoichiometric excess, especially poly Alkyleneamines such as DETA or triethylenetetramine (TETA), especially commercially available polyamidoamines 100, 125, 140 and 150 (from Cognis), 125, 140, 223, 250 and 848 (from Huntsman), 3607, 530 (from Huntsman), EH 651, EH 654, EH 655, EH 661 and EH 663 (from Cytec);
  • PEI Polyethyleneimine
  • Suitable polyethyleneimines generally have an average molecular weight of 250 to 25 000 g/mol and contain tertiary, secondary and primary amino groups.
  • Polyethyleneimine for example available under the trade name (from BASF), e.g. WF, FG, G20 and PR 8515 obtained.
  • Acidic curing agents can also be used as curing agents, especially acid anhydrides.
  • Catalytically active curing agents such as fluorides, eg boron trifluoride, may also be used.
  • the ratio of the curing agent component to the epoxy resin component can be determined according to the equivalent weight and stoichiometric ratio of their reactive groups participating in the curing reaction.
  • the epoxy resin composition is formulated such that the content of the curing agent is 0.5-15 wt%, preferably 1-10 wt%, based on the total weight of the epoxy resin composition.
  • the epoxy resin composition according to the invention may comprise one or more other additives, especially catalysts, stabilizers, especially heat and/or light stabilizers, thixotropic agents, plasticizers, solvents, mineral or organic fillers, Foaming agents, dyes and pigments, preservatives, surfactants, defoamers and adhesion promoters.
  • additives especially catalysts, stabilizers, especially heat and/or light stabilizers, thixotropic agents, plasticizers, solvents, mineral or organic fillers, Foaming agents, dyes and pigments, preservatives, surfactants, defoamers and adhesion promoters.
  • Suitable as plasticizers are especially phenol alkylsulfonates or benzenesulfonic acid-N-butylamide, as available from Bayer as or those commercially available from Dellatol BBS.
  • Suitable as stabilizers are especially optionally substituted phenols such as BHT or T (Elikem), sterically hindered amines or N-oxyl compounds such as TEMPO (Evonik).
  • adhesion promoters suitable are for example organoalkoxysilanes such as 3-glycidoxypropyltrimethoxysilane, 3-aminopropyl-trimethoxysilane, N-(2-aminoethyl)-3 -Aminopropyl-trimethoxysilane, N-(2-aminoethyl)-N'-[3-(trimethoxysilyl)-propyl]-ethylenediamine, 3-ureidopropyltrimethyl oxysilane, 3-chloropropyltrimethoxysilane, vinyltrimethoxysilane, or the corresponding organosilanes with ethoxy or (poly)etheroxy groups instead of methoxy groups.
  • organoalkoxysilanes such as 3-glycidoxypropyltrimethoxysilane, 3-aminopropyl-trimethoxysilane, N-(2-aminoethyl)-3 -Amin
  • the epoxy resin compositions according to the invention can be provided as two-component systems.
  • the composition comprises two separate components.
  • the components are stored separately in separate containers such as cartridges, buckets, cartridges, sachets or bags to avoid spontaneous reactions.
  • the components are combined with each other.
  • the curing reaction begins, allowing the composition to be processed within the open time after mixing the components.
  • the epoxy resin compositions are often supplied to users as two-component systems.
  • the epoxy resin and the curing agent are often contained in different components, so that the curing reaction can only take place when the user mixes the components.
  • the epoxy resin composition according to the invention is two-component, wherein the first component comprises at least said epoxy resin, brominated epoxy resin and at least a part of the organophosphorus flame retardant and optionally other additives such as reactive diluents, and the second component comprises curing agent, the remainder organophosphorus flame retardant and optional other additives.
  • Another aspect of the present invention relates to the method for preparing composite material by vacuum infusion, comprising:
  • the reinforcing material may be a reinforcing fiber selected from glass fiber, carbon fiber, and Kevlar fiber.
  • these reinforcing materials can be laid in a mold in a certain direction, can be laid flat, or can be laid flat by rotation at a certain angle. Then, a mechanism for assisting in forming a vacuum is provided on the mold, such as a vacuum bag and a deflector net, and sealing strips are laid around it. Next, after confirming that the airtightness of the laminate is correct, a vacuum is applied by a vacuum device to introduce the epoxy resin composition of the present invention into the reinforcing material.
  • the individual components of the one-component or multi-component epoxy resin composition according to the invention are homogeneously mixed, and the resin mixture can then be catheterized into the reinforcing material by means of a vacuum. Finally, the composition is cured and shaped under suitable conditions to obtain a vacuum infusion product.
  • the invention also relates to products obtained from epoxy resin compositions as described above, in particular products obtained by vacuum infusion processes, such as parts in vehicles such as automobiles, trains, ships and aircraft, as well as engineering buildings or parts of household appliances.
  • each prepared epoxy resin composition was tested according to the performance test method described below, and the measured results were listed in the following table.
  • test spline reaches the V0 level. If it reaches the V0 level, it will be recorded as "Pass”, otherwise it will be recorded as "Fail”.
  • the test of flexural strength and flexural modulus is carried out with reference to ISO 178:1993.
  • the unit of flexural strength and modulus in the following table is MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种阻燃环氧树脂组合物,基于组合物总重量计包含A)25~65重量%的环氧树脂,B)16~30重量%的溴化环氧树脂,所述溴化环氧树脂具有选自环氧基和三溴苯酚基的封端基团,和C)10~25重量%的有机磷阻燃剂。此外,本发明还涉及一种利用该阻燃环氧树脂组合物的真空灌注制备复合材料的方法以及涉及由此方法获得的制品。

Description

阻燃环氧树脂组合物 发明领域
本发明涉及一种阻燃环氧树脂组合物,其特别适用于真空灌注工艺。此外,本发明还涉及这种阻燃环氧树脂组合物的用途以及由其制得的制品。
发明背景
在工业制造中,特别是在一些交通工具如汽车、火车、船舶和飞机的部件的制造中需要大量使用到复合材料。而针对复合材料的制造工艺也在不断发展。真空灌注工艺(有时也称为真空导入工艺)就是一种合适的加工制造复合材料的工艺方法。在该方法中,通常首先在模具上放置增强材料如玻璃纤维、碳纤维等,随后在其上铺设真空施加装置如真空袋或真空导流网以便抽出体系中的空气形成负压,然后再将树脂如环氧树脂导入模具以浸润增强材料并在其中固化成型。
对于用于这种真空灌注工艺的环氧树脂,通常希望其具有较低的粘度,其制品具有优良的力学性能以及透明性和阻燃性等。
在CN103627142A中提出了一种适用于真空导流的双组分的阻燃环氧树脂组合物,其中的A组分包含双酚A树脂、含溴环氧阻燃剂和有机磷阻燃剂。其中所用的含溴环氧阻燃剂指的是具有阻燃作用的含溴化合物,包括四溴二甲苯、五溴二苯醚、八溴二苯醚等添加型含溴阻燃剂,及2,3-二溴丙醇、四溴双酚S、四溴双酚A等反应型含溴阻燃剂,其反应基团为羟基或酚羟基,而该类型反应基团会降低环氧树脂的机械性能,如弯曲强度、拉伸强度等。该专利中所提及的含溴环氧阻燃剂本身均为非环氧树脂类的小分子或单体化合物。
但是,用于真空灌注工艺的环氧树脂仍然具有进一步改进的需求和空间。
发明概述
本发明的第一个方面在于提供一种阻燃的环氧树脂组合物,其特别适用于真空灌注工艺。所述环氧树脂组合物不仅能够保持出色的阻燃性、加工性和力学性能,而且相比于现有技术的环氧树脂产品还能具有更低的粘度和更好的粘合性。本发明的发明人已经发现,使用如说明书下文所述的一种阻燃环氧树脂组合物能够实现上述目的。
此外,本发明还涉及该阻燃环氧树脂组合物用于真空灌注工艺的用途以及由该阻燃环氧树脂组合物制得的制品。
本发明的其他一些优选的实施方式是从属权利要求的主题。
发明详述
本发明的第一个方面涉及一种阻燃环氧树脂组合物,基于组合物总重量计包含
A)25~65重量%的环氧树脂,
B)16~30重量%的溴化环氧树脂,所述溴化环氧树脂具有选自环氧基或三溴苯酚基的封端基团,和
C)10~25重量%的有机磷阻燃剂。
在本文中,术语“彼此独立地”与取代基、残基或基团相关地使用,应被解释为在相同分子中具有相同名称的取代基、残基或基团可以不同的含义同时出现。
本文中物质名称例如“多元醇”、“多异氰酸酯”、“聚醚”或“多胺”中的前缀“聚(多)”表示相应物质在形式上每分子包含多于一个的以其名称出现的官能团。
在本文中,“分子量”应理解为是指分子的摩尔质量(以克/摩尔计)。“平均分子量”应理解为是指分子的低聚物或聚合物混合物的数均分子量Mn,其通常通过GPC相对于作为标样的聚苯乙烯来测定。
在本文中,“室温”是指23℃的温度。
在本文中,“环氧树脂”指的是每个分子具有平均一个以上、例 如两个或三个以上环氧基团的环氧树脂或环氧聚合物,其优选为液体环氧树脂或固体环氧树脂。环氧树脂可以例如以已知的方式,由相应的烯烃氧化或者由表氯醇与相应的多元醇或者多酚反应来制备。术语“固体环氧树脂”是环氧树脂领域的技术人员众所周知的,并且与“液体环氧树脂”相对使用。固体树脂的玻璃化转变温度高于室温,这意味着可以在室温下将其粉碎以得到自由流动的粉末。
合适的环氧树脂尤其是芳族环氧树脂,尤其是以下物质的缩水甘油化产物:
-双酚A、双酚F或双酚A/F,其中A表示丙酮和F表示甲醛,其作为制备这些双酚的反应物。在双酚F的情况下,也可存在位置异构体,尤其是衍生自2,4'-或2,2'-羟基苯基甲烷的;
-其它双酚或多酚,例如双(4-羟基-3-甲基苯基)甲烷、2,2-双(4-羟基-3-甲基苯基)丙烷(双酚C)、双(3,5-二甲基-4-羟基苯基)甲烷、2,2-双(3,5-二甲基-4-羟基苯基)丙烷、2,2-双(3,5-二溴-4-羟基苯基)丙烷、2,2-双(4-羟基-3-叔丁基苯基)丙烷、2,2-双(4-羟基苯基)丁烷(双酚B)、3,3-双(4-羟基苯基)戊烷、3,4-双(4-羟基苯基)己烷、4,4-双(4-羟基苯基)庚烷、2,4-双(4-羟基苯基)-2-甲基丁烷、2,4-双(3,5-二甲基-4-羟基苯基)-2-甲基丁烷、1,1-双(4-羟基苯基)环己烷(双酚Z)、1,1-双(4-羟基苯基)-3,3,5-三甲基环己烷(双酚TMC)、1,1-双(4-羟基苯基)-1-苯基乙烷、1,4-双[2-(4-羟基苯基)-2-丙基]苯(双酚P)、1,3-双[2-(4-羟基苯基)-2-丙基]苯(双酚M)、4,4'-二羟基联苯(DOD)、4,4'-二羟基二苯甲酮、双(2-羟基萘-1-基)甲烷、双(4-羟基萘-1-基)甲烷、1,5-二羟基萘、三(4-羟基苯基)甲烷、1,1,2,2-四(4-羟基苯基)乙烷、双(4-羟基苯基)醚或双(4-羟基苯基)砜;
-在酸性条件下获得的苯酚与甲醛的缩合产物,例如苯酚-线性酚醛树脂或甲酚-线性酚醛树脂;
-芳族胺,例如苯胺、甲苯胺、4-氨基苯酚、4,4'-亚甲基二苯基二胺、4,4'-亚甲基二苯基二(N-甲基)胺、4,4'-[1,4-亚苯基双(1- 甲基亚乙基)]双苯胺(双苯胺P)或4,4'-[1,3-亚苯基双(1-甲基亚乙基)]双苯胺(双苯胺M)。
其它合适的环氧树脂尤其为脂族或环脂族的多环氧化物,尤其是
-饱和或不饱和的、支链或无支链的、环状或开链的二-、三-或四官能的C 2至C 30醇,尤其是乙二醇、丙二醇、丁二醇、己二醇、辛二醇、聚丙二醇、二羟甲基环己烷、新戊二醇、二溴新戊二醇、蓖麻油、三羟甲基丙烷、三羟甲基乙烷、季戊四醇、山梨糖醇或甘油,或烷氧基化甘油,或烷氧基化三羟甲基丙烷的缩水甘油醚;
-氢化的双酚A、F或A/F液体树脂,或氢化双酚A、F或A/F的缩水甘油化产品;
-酰胺或杂环氮碱的N-缩水甘油基衍生物,例如三缩水甘油基氰脲酸酯或三缩水甘油基异氰脲酸酯,或表氯醇与乙内酰脲的反应产物。
-来自烯烃氧化的环氧树脂,例如特别是乙烯基环己烯、二环戊二烯、环己二烯、环十二碳二烯、环十二碳三烯、异戊二烯、1,5-己二烯、丁二烯、聚丁二烯或二乙烯基苯。
在本申请的一个进一步的优选实施方式中,所述环氧树脂具有式(II)
Figure PCTCN2022129216-appb-000001
此处取代基R'和R”各自独立为H或CH 3
在固体环氧树脂中,该指数s具有>1.5的值,尤其是2-12。
这类固体环氧树脂例如可由Dow或Huntsman或Hexion商购。
具有1至1.5的指数s的式(II)化合物被本领域技术人员称为半固体环氧树脂。对于本发明,它们同样被认为是固体树脂。但是,优选的固体环氧树脂是狭义上的环氧树脂,即其中指数s的值>1.5。
在液体环氧树脂中,指数s具有小于1的值。优选地,s具有小 于0.2的值。
因此,优选地,环氧树脂是式(II)的液体环氧树脂,更优选是基于双酚A、双酚F和/或双酚A/F的环氧树脂,如双酚A、双酚F和双酚A/F的二缩水甘油醚产品。这样的液态树脂例如可以作为
Figure PCTCN2022129216-appb-000002
GY 250,
Figure PCTCN2022129216-appb-000003
PY 304,
Figure PCTCN2022129216-appb-000004
GY 282(Huntsman)或D.E.R. TM331或D.E.R. TM330(Dow)或Epikote 828(Hexion)获得。
在本发明的另一个有利的实施方式中,可以少量使用所谓的环氧-线性酚醛树脂(Novolac Epoxy Resin),例如其添加量为基于组合物总重量计的0-10重量%,如1-6重量%。这些尤其是具有以下的式:
Figure PCTCN2022129216-appb-000005
其中
Figure PCTCN2022129216-appb-000006
或CH 2,R1=H或甲基和z=0至7。
更特别地,这些是苯酚或甲酚环氧线性酚醛树脂(R2=CH 2)。
这些环氧树脂可以EPN或ECN和
Figure PCTCN2022129216-appb-000007
商品名可商购自Huntsman或以D.E.N. TM产品系列可商购自Dow Chemical。
环氧树脂的比例优选为30-62重量%,例如35-59重量%,基于环氧树脂组合物的总重量计。过高含量如超过65重量%的环氧树脂会使得组合物的加工性变差并且机械性能劣化。
在本发明中,该环氧树脂组合物特别应当包含溴化环氧树脂B),所述溴化环氧树脂具有选自环氧基和三溴苯酚基的封端基团。所述溴化环氧树脂中的溴含量指的是以该溴化环氧树脂平均分子量计的溴元素的质量百分比。
在本发明范畴内,所述“溴化环氧树脂”从分子结构看指的是溴原子在环氧树脂分子上取代的产物。在某些实施方式中,可以将所述 的溴化环氧树脂视作是环氧树脂的溴化产物。溴原子的取代位置没有特别的限制,其可以位于环氧树脂的主链或侧链或末端。
此外,根据本发明的“溴化环氧树脂”应当具有选自环氧基和三溴苯酚基的封端基团。在三溴苯酚基封端的情况下,三溴苯酚可以与环氧树脂末端的环氧基团反应从而形成醚氧连接的三溴苯氧基形式的封端基团。
所述环氧树脂A)和溴化环氧树脂B)可以具有相同或不同的环氧树脂基体。因此,如上所述的那些环氧树脂及其优选形式也适用于溴化环氧树脂所基于的环氧树脂,例如具有上式(II)所示的基体结构。
更优选的,根据本发明的溴化环氧树脂是基于如上所述的双酚A、双酚F和/或双酚A/F的环氧树脂的溴化环氧树脂。
因此,符合本发明定义的优选的溴化环氧树脂包括例如:
Figure PCTCN2022129216-appb-000008
其中n大于或等于0,例如>0.2、>1、>1.5或例如2-12。
适合于本发明的溴化环氧树脂可以市售获得,例如ICL F2000系列溴化环氧聚合物(F-2016,F-2100,F-2400等)或Dow D.E.R 542或NPEB 400等。
本申请的发明人发现,与传统的简单的或单体的溴化化合物相比,溴化环氧树脂在根据本发明的阻燃环氧树脂组合物中不仅能够提供良好的阻燃性并且与环氧树脂具有更好的相容性,而且也能保持或改善固化后环氧树脂的机械性能。例如,相比于十溴二苯乙烷,本发明的 溴化环氧树脂具有更好的相容性,不存在稀出或分层问题;而与和环氧树脂具有优良相容性的四溴双酚A或S相比,本发明的溴化环氧树脂却能够导致更好的环氧树脂固化后的机械性能,保持环氧树脂的玻璃化转变温度。因此,在某个实施方式中,根据本发明的环氧树脂组合物可以包含少于组合物总重量计1重量%,如0.5重量%或甚至不包含除了所述溴化环氧树脂之外的其他溴化化合物,特别是作为阻燃剂或阻燃物质而通常使用的那些溴化化合物。
优选的,所述溴化环氧树脂的溴含量在大于等于48%,例如48-60%的范围内。如果溴的含量过低,低于48%,则可能无法获得期望的阻燃特性,而为了满足阻燃特性,又可能不得不过高地提高配方中的溴化环氧树脂的含量。所述溴含量定义为元素溴在溴化环氧树脂总重量中所占的比例。
根据本发明,溴化环氧树脂的含量应当为16-30重量%,优选18-28重量%、例如20-25重量%。如果溴化环氧树脂的含量过低,则无法获得预期的合格的阻燃性能,虽然可能通过提高有机磷阻燃剂的量来弥补阻燃性能,但这会导致机械性能大大下降。如果溴化环氧树脂的含量过高,则可能会造成粘度过高并影响可施工性。
另外,本发明的环氧树脂还必须包含有机磷阻燃剂。有机磷阻燃剂本身是已知的,该物质能够在受热时促进产生结构更趋稳定的交联状固体物质或碳化层,从而抑制燃烧和聚合物的进一步热解。有机磷阻燃剂通常包括各种磷酸酯、亚磷酸酯、焦磷酸酯、膦酸酯、亚膦酸酯、有机磷盐、含磷杂环化合物及多(聚)磷酸酯或膦酸酯等。
合适的有机磷阻燃剂的例子包含磷酸铵((NH 4) 3PO 4)、多磷酸铵、磷酸三聚氰胺、焦磷酸三聚氰胺、磷酸三苯酯、磷酸二苯基甲苯基酯、磷酸三甲苯酯、磷酸三甲酯、磷酸三乙酯、三(2-乙基己基)磷酸酯、磷酸三辛酯、二甲基甲基磷酸酯、乙基磷酸二乙酯、磷酸单-、双-和三-(异丙基苯基)酯、间苯二酚-双-(二苯基磷酸酯)、间苯二酚二磷酸酯低聚物、四苯基-间苯二酚二磷酸酯、乙二胺二磷酸酯、双酚 A-双-(磷酸二苯酯)、三(2-氯乙基)磷酸酯、三(2,3-二氯丙基)磷酸酯、三(1,3-二氯-2-丙烷基)磷酸酯、三(2,3-二溴丙基)磷酸酯、和/或双(2,3-二溴丙基)二氯丙基磷酸酯。
在一个优选的实施方式中,所述有机磷阻燃剂选自磷酸三甲酯、磷酸三乙酯、三(2-氯乙基)磷酸酯、三(2,3-二氯丙基)磷酸酯、三(1,3-二氯-2-丙烷基)磷酸酯、三(2,3-二溴丙基)磷酸酯、和/或双(2,3-二溴丙基)二氯丙基磷酸酯。
有机磷阻燃剂的含量在本发明的环氧树脂组合物中是重要的。如果有机磷阻燃剂的含量超过25重量%,则大大降低环氧树脂组合物的机械性能,同时在长期的环境温度下,也易引起有机磷的缓慢迁移;而如果有机阻燃剂的含量低于10%,则可能会削弱体系的阻燃性能。在一个实施方式中,所述有机磷阻燃剂的含量可以为12-20重量%。
尽管其他类型的阻燃剂如氮类阻燃剂或磷氮类阻燃剂也是可能的,但是优选在在本发明的组合物中不包含其他类型的阻燃剂,特别是不包含无机阻燃剂。从真空灌注工艺的角度而言,不包含无机阻燃剂是有益的,因为它们不利于进入纤维网中并且由于它们极易沉降而不利于工艺对低粘度的要求。
在进一步优选的实施方案中,该环氧树脂组合物可以额外地包含至少一种用于环氧树脂的反应性稀释剂。这种反应性稀释剂用于控制和降低环氧树脂固化体系的粘度,本领域技术人员知晓针对所选的环氧树脂如何选用合适的反应性稀释剂。
优选的反应性稀释剂的实例为:
-单官能的饱和或不饱和、支化或直链、环状或开链的C 4-C 30醇的缩水甘油醚,例如丁醇缩水甘油基醚、己醇缩水甘油基醚、2-乙基己醇缩水甘油基醚、烯丙基缩水甘油基醚、四氢糠基和糠基缩水甘油基醚、三甲氧基甲硅烷基缩水甘油基醚等;
-双官能的饱和或不饱和、支化或直链、环状或开链的脂族C 2-C 30醇的缩水甘油醚,例如乙二醇缩水甘油醚、丁二醇缩水甘油醚、己二 醇缩水甘油醚、辛二醇缩水甘油醚、环己烷二甲醇二缩水甘油醚、新戊二醇二缩水甘油醚等;
-三官能或多官能、饱和或不饱和、支链或非支化、环状或开链的醇的缩水甘油醚,如环氧化蓖麻油、环氧化三羟甲基丙烷、环氧化季戊四醇或脂族多元醇,如山梨糖醇、甘油、三羟甲基丙烷等的多缩水甘油醚;
-酚化合物和苯胺化合物的缩水甘油醚,例如苯基缩水甘油醚、甲酚缩水甘油醚、间苯二酚二缩水甘油醚、对叔丁基苯基缩水甘油醚、壬基酚缩水甘油醚、3-正十五烯基缩水甘油醚(来自腰果壳油)、N,N-二缩水甘油苯胺等;
-环氧化胺,例如N,N-二缩水甘油基环己胺等;
-环氧化的一元或二元羧酸,例如新癸酸缩水甘油酯、甲基丙烯酸缩水甘油酯、苯甲酸缩水甘油酯、邻苯二甲酸二缩水甘油酯、四氢邻苯二甲酸二缩水甘油酯和六氢邻苯二甲酸二缩水甘油酯,二聚脂肪酸的二缩水甘油酯等;
-环氧化的二或三官能的低至高分子量的聚醚多元醇,例如聚乙二醇二缩水甘油醚,聚丙二醇二缩水甘油醚等。
特别优选的是己二醇二缩水甘油基醚、甲酚缩水甘油基醚、对叔丁基苯基缩水甘油基醚、聚丙二醇二缩水甘油基醚和聚乙二醇二缩水甘油基醚。
如果使用的话,用于环氧树脂的反应性稀释剂的总比例可以有利地为>0-30%,如1-30%或5-25%,基于环氧树脂组合物的总重量计。
根据本发明的组合物还优选地含有至少一种用于环氧树脂的固化剂。与环氧基团反应的常用和已知化合物可用作固化剂。由此,环氧树脂被交联。固化剂优选为碱性固化剂,特别是胺化合物或酰胺。优选地,固化剂每分子含有至少两个伯或仲氨基。每分子具有两个或更多个氨基的胺化合物在下文中称为“多胺”。如果多胺是聚合物,它们每分子平均含有至少两个氨基。根据本发明,可以使用不同固化 剂的混合物,例如两种、三种或更多种不同固化剂的混合物。
在本发明一个优选的实施方案中,固化剂含有至少一种多胺,其优选选自脂肪族、脂环族或芳脂族的伯二胺、三胺和四胺,每分子具有大于4个氨基的多胺,含仲氨基的多胺,胺/聚环氧化物加合物,聚(亚乙基亚胺),聚酰氨基胺,聚醚胺和氨基封端的丁二烯/丙烯腈共聚物。
多胺还为分子量低于500g/mol的聚氧化亚烷基二胺(
Figure PCTCN2022129216-appb-000009
D-230、Jeffamine D400、
Figure PCTCN2022129216-appb-000010
EDR-148)、4,7,10-三氧杂十三烷-1-13-二胺、4,9-二氧杂十二烷-1,12-二胺、乙二胺和/或3(4),8(9)-双-(氨基甲基)-三环[5.2.1.02,6]癸烷(TCD
Figure PCTCN2022129216-appb-000011
Celanese Chemicals制造)。
其它适用作固化剂的多胺例如为:
-脂肪族、脂环族或芳脂族的伯二胺,例如乙二胺、1,2-丙二胺、1,3-丙二胺、2-甲基-1,2-丙二胺、2,2-二甲基-1,3-丙二胺、1,3-丁二胺、1,4-丁二胺、1,3-戊二胺(DAMP)、1,5-戊二胺、1,5-二氨基-2-甲基戊(MPMD)、2-丁基-2-乙基-1,5-戊二胺(C11-新二胺)、1,6-己二胺、2,5-二甲基-1,6-己二胺、2,2,4-和2,4,4-三甲基六亚甲基二胺(TMD)、1,7-庚烷二胺、1,8-辛烷二胺、1,9-壬烷二胺、1,10-癸烷二胺、1,11-十一烷二胺、1,12-十二烷二胺、1,2-、1,3-和1,4-二氨基环己烷、双-(4-氨基环己基)-甲烷(H12-MDA)、双-(4-氨基-3-甲基环己基)-甲烷、双-(4-氨基-3-乙基环己基)-甲烷、双-(4-氨基-3,5-二甲基环己基)-甲烷、双-(4-氨基-3-乙基-5-甲基环己基)-甲烷(M-MECA)、1-氨基-3-氨基甲基-3,5,5-三甲基环己烷(=异佛尔酮二胺或IPDA)、2-和4-甲基-1,3-二氨基环己烷以及其混合物,1,3-和1,4-双-(氨基甲基)-环己烷、氨乙基哌嗪、1,3-环亚己基双-(甲基胺)、2,5(2,6)-双-(氨基甲基)-二环[2.2.1]庚烷(NBDA)、3(4),8(9)-双-(氨基甲基)-三环[5.2.1.02,6]癸烷、1,4-二氨基-2,2,6-三甲基环己烷(TMCDA)、1,8-薄荷烷二胺,3,9-双-(3-氨基丙基)-2,4,8,10- 四氧杂螺[5.5]十一烷以及1,3-和1,4-亚二甲苯基二胺;
-含醚基的脂肪族伯二胺;例如双-(2-氨基乙基)-醚、3,6-二氧杂辛烷-1,8-二胺、4,7-二氧杂癸烷-1,10-二胺、4,7-二氧杂癸烷-2,9-二胺、4,9-二氧杂十二烷-1,12-二胺、5,8-二氧杂十二烷-3,10-二胺、4,7,10-三氧杂十三烷-1,13-二胺和这些二胺的高级低聚物、双-(3-氨基丙基)-聚四氢呋喃和分子量例如为350-2000的其它聚四氢呋喃二胺和聚氧化亚烷基二胺。后者通常是来自聚氧化亚烷基二醇的胺化的产物并且例如可以名称
Figure PCTCN2022129216-appb-000012
(Huntsman)、名称polyether amine(来自BASF)或以名称PC
Figure PCTCN2022129216-appb-000013
(来自Nitroil)获得。特别合适的聚氧化亚烷基二胺为
Figure PCTCN2022129216-appb-000014
D-230、
Figure PCTCN2022129216-appb-000015
D-400、
Figure PCTCN2022129216-appb-000016
D-2000、
Figure PCTCN2022129216-appb-000017
XTJ-511、
Figure PCTCN2022129216-appb-000018
ED-600、
Figure PCTCN2022129216-appb-000019
ED-900、
Figure PCTCN2022129216-appb-000020
ED-2003、
Figure PCTCN2022129216-appb-000021
XTJ-568、
Figure PCTCN2022129216-appb-000022
XTJ-569、
Figure PCTCN2022129216-appb-000023
XTJ-523、
Figure PCTCN2022129216-appb-000024
XTJ-536、
Figure PCTCN2022129216-appb-000025
XTJ-542、
Figure PCTCN2022129216-appb-000026
XTJ-559、
Figure PCTCN2022129216-appb-000027
EDR-104、
Figure PCTCN2022129216-appb-000028
EDR-148、
Figure PCTCN2022129216-appb-000029
EDR-176;polyether amine D 230、polyether amine D 400和polyether amine D 2000,PC
Figure PCTCN2022129216-appb-000030
DA 250、PC
Figure PCTCN2022129216-appb-000031
DA 400、PC
Figure PCTCN2022129216-appb-000032
DA 650和PC
Figure PCTCN2022129216-appb-000033
DA 2000;
-含仲氨基的多胺;例如,二亚乙基三胺(DETA)、N,N-双-(2-氨基乙基)-亚乙基二胺、二亚丙基三胺(DPTA)、双-六亚甲基三胺(BHMT)、3-(2-氨基乙基)-氨基丙基胺、三亚乙基四胺、四亚乙基五胺、N3-(3-氨基戊基)-1,3-戊二胺、N5-(3-氨基丙基)-2-甲基-1,5-戊二胺、N5-(3-氨基-1-乙基丙基)-2-甲基-1,5-戊二胺、N,N'-二丁基亚乙基二胺;N,N'-二叔丁基亚乙基二胺、N,N'-二乙基-1,6-己烷二胺、1-(1-甲基乙基氨基)-3-(1-甲基乙基-氨基甲基)-3,5,5-三甲基环己烷(
Figure PCTCN2022129216-appb-000034
754,来自Huntsman)、N4-环己基-2-甲基-N2-(2-甲基丙基)-2,4-戊二胺、N,N'-二烷基-1,3-亚二甲苯基二胺、双-(4-(N-烷基氨基)-环己基)-甲烷、4,4'-三亚甲基二哌啶,N-烷基化聚醚胺, 例如,
Figure PCTCN2022129216-appb-000035
类型SD-231、SD-401、SD-404和SD-2001(来自Huntsman);
-胺/聚环氧化物加合物;特别是上述多胺与二环氧化物的摩尔比为至少2/1,特别地摩尔比为2/1至10/1的加合物;
-聚酰胺基胺,其为单或多元羧酸或其酯或酸酐的反应产物,特别是二聚脂肪酸与化学计量过量使用的脂肪族、脂环族或芳香多胺的反应产物,特别是聚亚烷基胺如DETA或三亚乙基四胺(TETA),特别是可商购获得的聚酰胺基胺
Figure PCTCN2022129216-appb-000036
100、125、140和150(来自Cognis),
Figure PCTCN2022129216-appb-000037
125、140、223、250和848(来自Huntsman)、
Figure PCTCN2022129216-appb-000038
3607、
Figure PCTCN2022129216-appb-000039
530(来自Huntsman)、
Figure PCTCN2022129216-appb-000040
EH 651、EH 654、EH 655、EH 661和EH 663(来自Cytec);
-聚亚乙基亚胺(PEI),其是来自亚乙基亚胺聚合的支化的聚合物胺。合适的聚亚乙基亚胺通常具有250-25000g/mol的平均分子量并且含有叔、仲和伯氨基。聚亚乙基亚胺例如可以商品名
Figure PCTCN2022129216-appb-000041
(来自BASF)、例如
Figure PCTCN2022129216-appb-000042
WF、
Figure PCTCN2022129216-appb-000043
FG、
Figure PCTCN2022129216-appb-000044
G20和
Figure PCTCN2022129216-appb-000045
PR 8515获得。
-曼尼希碱;即具有其它官能团的胺,其可通过曼尼希反应获得,其中发生CH-酸性化合物与醛和氨,或伯胺或仲胺的氨基烷基化。
酸性固化剂也可用作固化剂,特别是酸酐。也可以使用诸如氟化物的催化活性的固化剂,例如三氟化硼。
固化剂组分与环氧树脂组分的比例可以根据它们参与固化反应的反应基团的当量和化学计量比来确定。在一个示例性的优选实施方式中,配制环氧树脂组合物使得固化剂的含量为0.5-15wt%,优选1-10wt%,基于该环氧树脂组合物的总重量计。
本发明的环氧树脂组合物可以包括一种或多种其他添加剂,尤其是催化剂、稳定剂,尤其是热和/或光稳定剂、触变剂、增塑剂、溶剂、矿物或有机填料、发泡剂、染料和颜料、防腐剂、表面活性剂、消泡 剂和附着力促进剂。
作为增塑剂合适的尤其是苯酚烷基磺酸酯或苯磺酸-N-丁基酰胺,如可以从Bayer作为
Figure PCTCN2022129216-appb-000046
或Dellatol BBS商购获得的那些。
作为稳定剂合适的尤其为任选取代的苯酚,例如BHT或
Figure PCTCN2022129216-appb-000047
T(Elikem),空间受阻胺或N-氧基化合物例如TEMPO(Evonik)。
作为附着力促进剂,合适的例如有机烷氧基硅烷如3-缩水甘油氧基丙基三甲氧基硅烷、3-氨基丙基-三甲氧基硅烷、N-(2-氨基乙基)-3-氨基丙基-三甲氧基硅烷、N-(2-氨基乙基)-N'-[3-(三甲氧基甲硅烷基)-丙基]-乙二胺、3-脲基丙基三甲氧基硅烷、3-氯丙基三甲氧基硅烷、乙烯基三甲氧基硅烷,或相应的具有乙氧基或(聚)醚氧基代替甲氧基的有机硅烷。
根据本发明的环氧树脂组合物可以作为双组分体系提供。因此,组合物包括两个单独的组分。所述组分分开存放于单独的容器如筒、桶、料盒、囊或袋中,以避免自发反应。使用时,组分彼此组合。当组分混合在一起时,开始固化反应,使得在混合组分后在开放时间内加工组合物。
所述环氧树脂组合物经常作为双组分体系提供给用户。在这种情况下,例如环氧树脂和固化剂通常包含在不同的组分中,因此固化反应可以仅在使用者混合组分时进行。
在一个优选的实施方式中,根据本发明的环氧树脂组合物是双组分的,其中第一组分包含至少所述环氧树脂、溴化环氧树脂和至少一部分的有机磷阻燃剂和任选的其他添加剂如反应性稀释剂,和第二组分包含固化剂、剩余部分的有机磷阻燃剂和任选的其他添加剂。
本发明的再一个方面涉及真空灌注制备复合材料的方法,包括:
a)将增强材料置于模具中;
b)在模具上施加真空以形成负压;
c)将本发明的环氧树脂组合物导入模具中。
在此,所述增强材料可以是选自玻璃纤维、碳纤维、凯夫拉芳纶纤维的增强纤维。
在一个具体的实施方式中,首先可以在模具中将这些增强材料按一定方向铺好,可以平铺,也可以按照一定角度旋转平铺。然后,在模具上设置辅助形成真空的机构,例如设置真空袋和导流网并于四周铺设密封条。接着,在确认层压件的密封性无误后,通过真空设备施加真空从而将本发明的环氧树脂组合物引入增强材料中。这里将本发明的单组分或多组分的环氧树脂组合物的各个组分混合均匀,然后可以将导管插入树脂混合物中借助于真空引入增强材料中。最后在合适的条件下将组合物固化成型,从而得到真空灌注产品。
最后,本发明还涉及由如上所述的环氧树脂组合物制得的产品,特别是通过真空灌注工艺制得的产品,如汽车、火车、船舶和飞机等交通工具中的部件,以及工程建筑或家用器具的部件。
实施例
以下通过实施例来进一步阐述本申请,但是应当明确的是本申请并不局限于这些实施例。
主要原料列表
名称/牌号 组成或说明
D.E.R.331或D.E.R.383 双酚A环氧树脂
ERISYS GE21 1,4-丁二醇二缩水甘油醚,反应性稀释剂
TBBPA 四溴双酚A
ICL F2016或NPEB 400 溴化环氧树脂
DEEP 乙基磷酸二乙酯
TEP 磷酸三乙酯
TMP 磷酸三甲酯
KH570 偶联剂(γ-缩水甘油醚氧丙基三甲氧基硅烷)
包含环氧树脂的第一组分的配制
实施例1(Ex1)
将62.5g的D.E.R.331和22g的ICL F2016置于容器中,搅拌加热至80℃,待溴化环氧树脂完全溶解于环氧树脂之后,冷却至室温。随后加入15g有机磷阻燃剂TEP和0.5g的KH570,以桨叶搅拌器混合大约20分钟之后即得环氧树脂组分。
实施例2(Ex2)
将49.4g的D.E.R.338、22g的NPEB 400、10g的稀释剂ERISYS GE21和18.1g的有机磷阻燃剂DEEP以及0.5g的KH570置于密闭容器中,在室温下搅拌2小时直至获得溴化环氧树脂完全溶解的均匀树脂混合物,即得到环氧树脂组分。
实施例3(Ex3)
将40g的D.E.R.331、22g的NPEB 400、19.5g的稀释剂三羟甲基丙烷三缩水甘油醚和18g的有机磷阻燃剂DEEP以及0.5g的KH570置于密闭容器中,在室温下搅拌2小时直至获得溴化环氧树脂完全溶解的均匀树脂混合物,即得到环氧树脂组分。
实施例4(Ex4)
将57.5g的D.E.R.331和22g的ICL F2016置于容器中,搅拌加热至60℃,待溴化环氧树脂完全溶解于环氧树脂之后,冷却至室温。随后加入20g有机磷阻燃剂TEP和0.5g的KH570,以桨叶搅拌器混合大约20分钟之后即得环氧树脂组分。
对比例1(Ref.1)
将71.5g的D.E.R.331、18g的四溴双酚A(TBBPA)和10g的有机磷阻燃剂TMP以及0.5g的KH570置于密闭容器中,在室温下搅拌2小时直至获得均匀树脂混合物,即得到环氧树脂组分。
对比例3(Ref.3)
将56.56g的D.E.R.331、22g的ICL F2016、12.74g的稀释剂 ERISYS GE21和8.2g的有机磷阻燃剂TEP以及0.5g的KH570置于密闭容器中,在室温下搅拌2小时直至获得均匀树脂混合物,即得到环氧树脂组分。
对比例4(Ref.4)
将64.5g的D.E.R.331、1.8g的稀释剂ERISYS GE21、18g的四溴双酚A(TBBPA)和15g的有机磷阻燃剂TEP以及0.7g的KH570置于密闭容器中,在室温下搅拌2小时直至获得均匀树脂混合物,即得到环氧树脂组分。
对比例7(Ref.7)
将51.3g的D.E.R.331和22g的ICL F2016置于容器中,搅拌加热至100℃,待溴化环氧树脂完全溶解于环氧树脂之后,冷却至室温。随后加入26g有机磷阻燃剂DEEP和0.7g的KH570,以桨叶搅拌器混合大约20分钟之后即得环氧树脂组分。
对比例8(Ref.8)
将64.5g的D.E.R.331、5.8g的ERISYS GE21、14g的NPEB 400和15g的有机磷阻燃剂TMP以及0.7g的KH570置于密闭容器中,在室温下搅拌2小时直至获得均匀树脂混合物,即得到环氧树脂组分。
对比例9(Ref.9)
将49.3g的D.E.R.331和35g的NPEB 400置于容器中,搅拌加热至60℃,待溴化环氧树脂完全溶解于环氧树脂之后,冷却至室温。随后加入15g的有机磷阻燃剂TMP和0.7g的偶联剂,以桨叶搅拌器混合大约20分钟之后即得环氧树脂组分。
包含固化剂的第二组分的配制
将50g的异佛尔酮二胺和50g的三亚乙基四胺置于容器中,在23℃的温度下搅拌混合20-30分钟,然后出料即得包含固化剂的第二组分。在所有实施例中使用如此制得的固化剂组分。
环氧树脂组合物的配制
在室温下分别将如上制备的各个包含环氧树脂的第一组分与如上所述制备的包含固化剂的第二组分按照质量比100:12的比例混合均匀,配制得到环氧树脂组合物。然后,根据以下所述的性能测试方法测试所制得的各个环氧树脂组合物,并将所测得的结果列于下表中。
性能测试说明
1、粘度测试
使用Brookfield LVT旋转粘度计,将样品保持在恒温恒湿条件下(23℃/50%H)24小时后,使用2号转子测试树脂粘度和混合物粘度。测试样品的高度水平线应与转子上的水平线保持一致,转速根据样品粘度进行调节以确定最合适的转速。在表格中,所列混合粘度指的是所配制的环氧树脂混合物的粘度。
2、UL94阻燃垂直燃烧测试
将树脂和固化剂混合均匀后,浇注于125mm*50mm*3mm的模具中,在80℃烘箱中固化16小时。随后取出样件,置于恒温恒湿(23±2℃/50±5%H)环境中72小时。
将50W火焰强度,火焰高度20±1mm施加于样条10秒。距样品底部300±10mm处放置最厚为6mm的棉花,停止燃烧记录样品的余焰时间t1(第一次施加火焰后样条燃烧时间);待火焰停止后,即刻施加火焰10秒,移出火焰并记录样品余焰时间t2(第二次施加火焰后样条燃烧时间)和余燃时间t3。上述测试重复5次。
根据下表中所列标准判断测试样条是否达到V0级别,如果达到V0级别则记录为“Pass”,反之则记录为“Fail”。
判断条件 V0
单个样条余焰时间t1或t2 ≤10s
五组样条余焰时间总和 ≤50s
第二次施加火焰后余焰和余燃时间之和 ≤30s
残留样条是否仍置于紧固件
滴落物是否引燃棉花
3、机械性能测试
弯曲强度和弯曲模量的测试参考ISO 178:1993进行。下表中弯曲强度和模量的单位均为MPa。
表1
  Ex1 Ex2 Ex3 Ex4 Ref1 Ref3 Ref4 Ref7 Ref8 Ref9
混合粘度 300cP 200cP 290cP 290cP 1300cP 660cP 600cP 285cP 350cP 1500cP
UL94V0 Pass Pass Pass Pass Fail Fail Fail Pass Fail Pass
弯曲强度 未测 未测 100 88 未测 未测 29 70 未测 未测
弯曲模量 未测 未测 2810 2760 未测 未测 750 2500 未测 未测

Claims (12)

  1. 一种阻燃环氧树脂组合物,基于组合物总重量计包含
    A)25~65重量%的环氧树脂,
    B)16~30重量%的溴化环氧树脂,所述溴化环氧树脂具有选自环氧基和三溴苯酚基的封端基团,和
    C)10~25重量%的有机磷阻燃剂。
  2. 根据权利要求1所述的阻燃环氧树脂组合物,其特征在于,所述组合物包含30-62重量%,例如35-59重量%的环氧树脂。
  3. 根据前述权利要求任一项所述的阻燃环氧树脂组合物,其特征在于,所述环氧树脂是芳族环氧树脂,优选是基于双酚A、双酚F和/或双酚A/F的环氧树脂,如双酚A、双酚F和双酚A/F的二缩水甘油醚。
  4. 根据前述权利要求任一项所述的阻燃环氧树脂组合物,其特征在于,所述溴化环氧树脂是基于双酚A、双酚F和/或双酚A/F的溴化环氧树脂。
  5. 根据前述权利要求任一项所述的阻燃环氧树脂组合物,其特征在于,所述溴化环氧树脂的溴含量≥48%。
  6. 根据前述权利要求任一项所述的阻燃环氧树脂组合物,其特征在于,所述溴化环氧树脂的含量为18-28重量%、例如20-25重量%。
  7. 根据前述权利要求任一项所述的阻燃环氧树脂组合物,其特征在于,所述有机磷阻燃剂选自磷酸三甲酯、磷酸三乙酯、三(2-氯乙基)磷酸酯、三(2,3-二氯丙基)磷酸酯、三(1,3-二氯-2-丙烷基)磷酸酯、 三(2,3-二溴丙基)磷酸酯、和/或双(2,3-二溴丙基)二氯丙基磷酸酯。
  8. 根据前述权利要求任一项所述的阻燃环氧树脂组合物,其特征在于,所述环氧树脂组合物是双组分的,其中第一组分包含至少所述环氧树脂、溴化环氧树脂和至少一部分的有机磷阻燃剂和任选的其他添加剂如反应性稀释剂,和第二组分包含固化剂、剩余部分的有机磷阻燃剂和任选的其他添加剂。
  9. 根据前述权利要求任一项所述的阻燃环氧树脂组合物,其特征在于,所述环氧树脂组合物还包含反应性稀释剂,其总比例为1-30%,如5-25%,基于环氧树脂组合物的总重量计。
  10. 一种真空灌注制备复合材料的方法,包括:
    a)将增强材料置于模具中;
    b)在模具上施加真空以形成负压;
    c)将根据权利要求1至9任一项的环氧树脂组合物导入模具中。
  11. 根据权利要求10的方法,其中所述增强材料可以是选自玻璃纤维、碳纤维、凯夫拉芳纶纤维的增强纤维。
  12. 根据权利要求10所述的方法制得的制品。
PCT/CN2022/129216 2021-11-16 2022-11-02 阻燃环氧树脂组合物 WO2023088097A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22894634.9A EP4435049A1 (en) 2021-11-16 2022-11-02 Flame-retardant epoxy resin composition
CN202280068304.4A CN118119659A (zh) 2021-11-16 2022-11-02 阻燃环氧树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111352415.1 2021-11-16
CN202111352415.1A CN114752183A (zh) 2021-11-16 2021-11-16 阻燃环氧树脂组合物

Publications (1)

Publication Number Publication Date
WO2023088097A1 true WO2023088097A1 (zh) 2023-05-25

Family

ID=82325934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129216 WO2023088097A1 (zh) 2021-11-16 2022-11-02 阻燃环氧树脂组合物

Country Status (3)

Country Link
EP (1) EP4435049A1 (zh)
CN (2) CN114752183A (zh)
WO (1) WO2023088097A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752183A (zh) * 2021-11-16 2022-07-15 Sika技术股份公司 阻燃环氧树脂组合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0754728A1 (de) * 1995-07-14 1997-01-22 Hoechst Aktiengesellschaft Flammwidrige Epoxidharz-Formmassen
CN103627142A (zh) 2013-11-28 2014-03-12 惠柏新材料科技(上海)有限公司 一种适用于真空导流的阻燃环氧树脂及其制备方法
US20200123309A1 (en) * 2016-12-14 2020-04-23 Bromine Compounds Ltd. Antimony free flame-retarded epoxy compositions
WO2020252681A1 (en) * 2019-06-19 2020-12-24 Dow Global Technologies Llc Flame retardant composition
CN114752183A (zh) * 2021-11-16 2022-07-15 Sika技术股份公司 阻燃环氧树脂组合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147696A (ja) * 1996-11-20 1998-06-02 Chisso Corp 難燃性エポキシ樹脂組成物
WO2021212314A1 (zh) * 2020-04-21 2021-10-28 穗晔实业股份有限公司 热固性树脂组成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0754728A1 (de) * 1995-07-14 1997-01-22 Hoechst Aktiengesellschaft Flammwidrige Epoxidharz-Formmassen
CN103627142A (zh) 2013-11-28 2014-03-12 惠柏新材料科技(上海)有限公司 一种适用于真空导流的阻燃环氧树脂及其制备方法
US20200123309A1 (en) * 2016-12-14 2020-04-23 Bromine Compounds Ltd. Antimony free flame-retarded epoxy compositions
WO2020252681A1 (en) * 2019-06-19 2020-12-24 Dow Global Technologies Llc Flame retardant composition
CN114752183A (zh) * 2021-11-16 2022-07-15 Sika技术股份公司 阻燃环氧树脂组合物

Also Published As

Publication number Publication date
EP4435049A1 (en) 2024-09-25
CN114752183A (zh) 2022-07-15
CN118119659A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
TWI460201B (zh) 包含環氧樹脂及胺類與胍衍生物之混合物的摻合物
ES2637367T3 (es) Agentes de curado de poliamina bencilada
CA2730518C (en) Mixtures of amines with guanidine derivatives
ES2672521T3 (es) Polialquileno poliaminas alquiladas y sus usos
CN112812721B (zh) 可固化的环氧树脂组合物
TWI454500B (zh) 使用胺類與胍衍生物之混合物製備模製品之方法
EP3983469A1 (en) Toughened two-component epoxy composition
WO2023088097A1 (zh) 阻燃环氧树脂组合物
EP2151463B1 (en) Alkylated aminopropylated methylene-di-(cyclohexylamine) and uses thereof
CN114752040A (zh) 结构粘结剂组合物
WO2024092601A1 (en) Two-component epoxy adhesive for liquified natural gas containers
CN116848086A (zh) 含有酚醛胺的组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280068304.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18702409

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022894634

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022894634

Country of ref document: EP

Effective date: 20240617