WO2023087972A1 - 一种负碳性排放的生物氢烷联产发酵系统及方法 - Google Patents

一种负碳性排放的生物氢烷联产发酵系统及方法 Download PDF

Info

Publication number
WO2023087972A1
WO2023087972A1 PCT/CN2022/124245 CN2022124245W WO2023087972A1 WO 2023087972 A1 WO2023087972 A1 WO 2023087972A1 CN 2022124245 W CN2022124245 W CN 2022124245W WO 2023087972 A1 WO2023087972 A1 WO 2023087972A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
fermentation
gas
production
methane
Prior art date
Application number
PCT/CN2022/124245
Other languages
English (en)
French (fr)
Inventor
李亚猛
张全国
张志萍
荆艳艳
张寰
岳建芝
蒋丹萍
路朝阳
张洋
王昌昌
Original Assignee
河南农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111375268.XA external-priority patent/CN114058479B/zh
Application filed by 河南农业大学 filed Critical 河南农业大学
Publication of WO2023087972A1 publication Critical patent/WO2023087972A1/zh
Priority to ZA2023/09739A priority Critical patent/ZA202309739B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/18Gas cleaning, e.g. scrubbers; Separation of different gases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention belongs to the field of carbon emission reduction and high-efficiency utilization of clean energy, and in particular relates to a biohydrocarbon co-production fermentation system and method with negative carbon emission.
  • waste biomass resources is shifting from emphasizing utilization scale to emphasizing utilization value; from emphasizing economic value to emphasizing economic value, environmental protection value and social value.
  • Using waste biomass with a large amount and wide sources as raw materials to produce hydrogen is one of the effective ways to realize the high-value utilization of waste biomass, and it also provides ideas for reducing the cost of hydrogen production.
  • Biological fermentation hydrogen production has mild reaction conditions, simple process, wide source of raw materials and diversified hydrogen production methods.
  • dark-light combined hydrogen production has a high substrate conversion rate, and has become the most advanced hydrogen production technology. option with potential.
  • biohydrogen gas has a higher calorific value than methane gas, and its storage and application are safer than biohydrogen.
  • biological anaerobic hydrogen production is equivalent to the acid and hydrogen production stage in the biological anaerobic methanogenesis process.
  • the separate operation of the acid and hydrogen production stage and the methane production stage is called two-phase anaerobic fermentation.
  • Two-phase anaerobic fermentation technology It can relieve the antagonism between bacterial species, and has significant advantages in gas production, organic matter removal rate and system stability.
  • the main components of the generated gas are hydrogen and carbon dioxide.
  • the hydrogen production rate is fast and the concentration is high.
  • This stage of hydrogen is called high-quality hydrogen, while the concentration of hydrogen in other stages is low, and carbon dioxide High concentration is called low-quality hydrogen.
  • Low-quality hydrogen increases the cost and difficulty of hydrogen purification.
  • the gas produced is mainly methane and carbon dioxide. Whether it is high-quality hydrogen, low-quality hydrogen or biogas after purification
  • the final gas can be used as fuel, while carbon dioxide is usually emitted directly, which is not in line with low-carbon and sustainable development strategies.
  • methane is formed by reducing carbon dioxide with hydrogen. Based on this, if low-quality hydrogen is passed into the methanogenic phase, under the action of methanogens, carbon dioxide is reduced to generate methane. This process not only reduces the cost of hydrogen purification, but also increases the amount of methane production. At the same time, high-quality hydrogen and methane The carbon dioxide captured during the purification process is returned to the methanogenic reactor, where it is converted into methane by hydrogenation under the action of methanogenic bacteria.
  • This combined system achieves the goal of negative emission of carbon dioxide during the anaerobic fermentation of biomass.
  • Hydrogen is produced through multi-stage fermentation of biomass and carbon capture and storage is carried out, which not only realizes the high-value utilization of crop straw but also realizes the negative carbon utilization of biomass.
  • the present invention provides a bio-hydrogen co-production fermentation system and method with negative carbon emission.
  • a negative carbon emission bio-hydrogen alkane co-production fermentation system including a dark-light combined hydrogen production device, a hydrogen quality detection system, a hydrogen purification device, a gas collection tank, an ultra-fine bubble nano device, a methane production device, and a methane purification device
  • the dark-light combined hydrogen production device is an integrated reactor, which is equipped with a dark fermentation hydrogen production unit and a photosynthetic fermentation hydrogen production unit
  • the dark-light combined hydrogen production device is connected to the hydrogen quality detection system through a metal hose
  • the hydrogen quality detection system is connected to the hydrogen purification device through a metal hose
  • the hydrogen quality detection system and the hydrogen purification device are connected through a metal hose.
  • a 0.2 ⁇ m cellulose acetate membrane is provided between the dark fermentation hydrogen production unit and the photosynthetic fermentation hydrogen production unit.
  • the hydrogen quality detection system may include an online gas analyzer.
  • the hydrogen quality detection system is connected to a hydrogen purification device through a gas flow pump.
  • the hydrogen purification device includes a solid/liquid impurity separator and a membrane separator.
  • the gas separation membrane in the membrane separator of the hydrogen purification device is a 0.51 nm graphene-like carbon-nitrogen separation membrane.
  • the separation membrane in the membrane separator of the methane purification device adopts polyimide hollow fiber composite membrane.
  • a method for the co-production and fermentation of biohydrocarbons with negative carbon emissions comprising the following steps:
  • Hydrogen production by microbial fermentation a mixture of dark fermentation hydrogen-producing bacteria and photosynthetic hydrogen-producing bacteria, and the fermentation substrate is the enzymatic hydrolyzate of crop straw;
  • the hydrogen quality detection system feeds the information back to the control system, and then the control system turns on the gas flow pump in the direction of the hydrogen purification device, and passes the gas into the hydrogen purification device through a metal hose for purification, detection, and distribution;
  • the separated pure hydrogen is in the gas Under the action of the flow pump, it flows to the gas collection tank through the metal hose, and the separated carbon dioxide is passed into the methane production device through the metal hose under the action of the air pump;
  • the fermentation temperature of the methanogenic device was set at 35°C, the inoculation amount of methanogenic bacteria was 20% (v/v), and the gas generated from the methanogenic device flowed into the methane purification device through the metal hose pipeline under the action of the gas flow pump;
  • the purified methane enters the gas tank through the metal hose under the action of the gas flow pump, and the separated carbon dioxide flows back to the methane production device through the metal hose under the action of the gas flow pump.
  • the dark fermentation unit is set to 35°C, pH 5.5-6.5, inoculum size 20% (v/v), photosynthetic fermentation unit temperature 35°C, light 3500lx, pH 6.5-7, inoculum size 20 %(v/v).
  • the hydrogen gas quality detection system detects that the hydrogen concentration in the mixed gas is greater than 50%
  • the hydrogen gas quality detection system feeds back the information to the control system, and then the control system opens the gas flow to the direction of the hydrogen purification device
  • the pump is connected to the hydrogen purification device, and the separated pure hydrogen flows to the gas collection tank through the metal hose under the action of the gas flow pump, and the separated carbon dioxide is passed into the methane production device through the metal hose under the action of the gas pump; when the hydrogen mass
  • the detection system detects low-quality hydrogen
  • the hydrogen quality detection system feeds back the information to the control system, and the control system turns on the gas flow pump that flows the gas to the methane production device, and transports the gas to the low-quality hydrogen to the ultra-micro Bubble nanodevices.
  • the invention passes low-quality hydrogen into the methanogenic phase, and under the action of methanogens, carbon dioxide is reduced to generate methane.
  • This process not only reduces the cost of hydrogen purification, but also increases the amount of methane production.
  • the process of purifying high-quality hydrogen and methane The carbon dioxide captured in the process is returned to the methanogenic reactor, where it is hydrogenated and converted into methane under the action of methanogenic bacteria.
  • This combined system achieves the goal of negative carbon dioxide emissions during the anaerobic fermentation of biomass.
  • Hydrogen is produced through multi-stage fermentation of biomass and carbon capture and storage is carried out, which not only realizes the high-value utilization of crop straw but also realizes the negative carbon utilization of biomass.
  • Fig. 1 is a structural schematic diagram of the present invention.
  • Fig. 2 is a schematic diagram of the purification device of the present invention.
  • a bio-hydrogen alkane co-production fermentation system with negative carbon emissions in the present invention includes a dark-light combined hydrogen production device 1, a hydrogen quality detection system 2, a hydrogen purification device 3, a gas collection tank 4, and a super Micro-bubble nano-device 5 , methane-producing device 6 , and methane-purifying device 7 .
  • the dark-light combined hydrogen production device is an integrated reactor, which is equipped with a dark fermentation hydrogen production unit and a photosynthetic fermentation hydrogen production unit.
  • the dark fermentation hydrogen production unit and the photosynthetic fermentation hydrogen production unit are separated by a 0.2 ⁇ m cellulose acetate membrane
  • the dark-light combined hydrogen production device 1 is connected to the hydrogen quality detection system 2 through a metal hose.
  • the hydrogen quality detection system 2 may include an online gas analyzer, and the hydrogen purification device 3 is connected to the hydrogen quality detection system through a gas flow pump and a metal hose. 2 is connected with the hydrogen purification unit 3 and the methane production unit through a metal hose.
  • the hydrogen purification device 3 as shown in Figure 2, includes a solid/liquid impurity separator 8 and a membrane separator 9.
  • the mixed gas passes through the solid/liquid impurity separator to remove the solid/liquid impurities mixed in the mixed gas for preliminary purification.
  • the preliminarily purified mixed gas enters the membrane separator.
  • the gas separation membrane in the membrane separator adopts a 0.51nm graphene-like carbon-nitrogen separation membrane (purchased from Haining Keluo Membrane Filtration Equipment Co., Ltd.), and the temperature of the membrane separator is maintained at 27 °C, the separated pure hydrogen flows to the gas collection tank through the metal hose under the action of the gas flow pump, and the separated carbon dioxide is passed into the methane production device through the metal hose under the action of the gas pump, and the gas is micronized by the ultrasonic micro-nano device Entering the methanogenic fermentation broth, the micronized gas increases the probability of contact between carbon dioxide and methanogenic bacteria, thereby enhancing the probability of carbon dioxide being fixed.
  • a 0.51nm graphene-like carbon-nitrogen separation membrane purchased from Haining Keluo Membrane Filtration Equipment Co., Ltd.
  • the hydrogen quality detection system detects low-quality hydrogen
  • the hydrogen quality detection system feeds back the information to the control system, and the control system turns on the gas flow pump that flows the gas to the methane production device, and sends the gas to the low-quality hydrogen through the metal hose
  • the ultra-fine bubble nano-device inside the methanogenic device is micronized by ultrasonic to increase the contact probability of gas and methanogenic bacteria, and the introduction of low-quality hydrogen provides hydrogen for the reduction of carbon dioxide by methanogenic bacteria.
  • the present invention is a kind of bio-hydrogen alkane co-production fermentation method with negative carbon emission, which utilizes the above-mentioned system and comprises the following steps:
  • the dark-light combined hydrogen production technology is adopted.
  • the dark-light combined hydrogen production device is an integrated reactor with a dark fermentation hydrogen production unit and a photosynthetic fermentation hydrogen production unit inside. Separated by 0.2 ⁇ m cellulose acetate membrane (purchased from Haining Keluo Membrane Filtration Equipment Co., Ltd.), the cellulose acetate membrane can effectively isolate dark fermentation hydrogen-producing bacteria and photo-fermentation hydrogen-producing bacteria, and keep the hydrogen-producing bacteria separate The space ecological niche, and allows the small molecular acid produced by the dark fermentation unit to penetrate into the photosynthetic hydrogen production unit and be used by photosynthetic bacteria to produce hydrogen.
  • the dark fermentation hydrogen-producing bacteria is a mixture of Paraclostridium, Enterococcus, and Sporanaerobacter
  • the photosynthetic hydrogen-producing bacteria is a mixture of Rhodospirillum rubrum, Rhodobacter capsulatus and Rhodopseudomonas palustris.
  • the dark fermentation unit conditions are 35°C, pH 5.5-6.5, inoculation The amount is 20% (v/v), the temperature of the photosynthetic fermentation unit is 35°C, the light is 3500lx, the pH is 6.5-7, the inoculum size is 20% (v/v), and the fermentation substrate is the enzymatic hydrolyzate of crop stalks (concentration: 10-15g reducing sugar/L).
  • the ambient temperature required for the hydrogen production fermentation process relies on solar energy to circulate hot water. Part of the light for the photosynthetic hydrogen production unit comes from sunlight transmitted by optical fibers, and part of the light is provided by LED lights.
  • the main components of the generated gas in the hydrogen production stage are hydrogen and carbon dioxide.
  • the generated gas is analyzed by an online gas analyzer to analyze the content of each component in the gas.
  • the dark-light combined hydrogen production device and the gas online device are connected through a metal hose.
  • the present invention defines that the hydrogen concentration in the mixed gas is greater than 50% as high-quality hydrogen, and that the hydrogen concentration in the mixed gas is less than 50% is called low-quality hydrogen.
  • the hydrogen gas quality detection system detects that the concentration of hydrogen in the mixed gas is greater than 50%
  • the hydrogen gas quality detection system feeds back the information to the control system, and then the control system turns on the gas flow pump that flows to the hydrogen purification device, and the gas flows through the metal hose.
  • the hydrogen purification device It is connected to the hydrogen purification device, and the hydrogen quality detection system is connected with the hydrogen purification device and the methane production device through a metal hose.
  • the system diagram of the hydrogen purification device is shown in Figure 2.
  • the preferred mixed gas passes through the solid/liquid impurity separator to remove the solid/liquid impurities mixed in the mixed gas for preliminary purification. After the preliminary purification, the mixed gas enters the membrane separator.
  • the gas separation membrane in the separator adopts 0.51nm graphene-like carbon-nitrogen separation membrane (purchased from Haining Keluo Membrane Filtration Equipment Co., Ltd.).
  • the temperature of the membrane separator is maintained at 27°C. Under the action of the air pump, the separated carbon dioxide is passed into the methane-producing device through the metal hose.
  • the gas is micronized by the ultrasonic micro-nano device and enters the methane-producing fermentation liquid.
  • the micronized gas Increases the probability of contact between carbon dioxide and methanogens, thereby enhancing the probability of carbon dioxide being fixed.
  • the hydrogen quality detection system detects low-quality hydrogen
  • the hydrogen quality detection system feeds back the information to the control system, and the control system turns on the gas flow pump that flows the gas to the methane production device, and sends the gas to the low-quality hydrogen through the metal hose
  • the ultra-fine bubble nano-device inside the methanogenic device is micronized by ultrasonic to increase the contact probability of gas and methanogenic bacteria, and the introduction of low-quality hydrogen provides hydrogen for the reduction of carbon dioxide by methanogenic bacteria.
  • the methane-producing fermentation is carried out in the methane-producing device.
  • the fermentation tail liquid is pumped into the methane-producing device through a peristaltic pump. Before that, it is connected by a metal hose.
  • the fermentation temperature of the methane-producing device is 35°C. is 20% (v/v)
  • the gas produced from the methane plant flows into the methane purification unit through the metal hose pipeline under the action of the gas flow pump, and the methane purification unit and the hydrogen purification unit have the same composition, as shown in Figure 2.
  • the separation membrane in the membrane separator of the methane purification unit adopts polyimide hollow fiber composite membrane (membrane density 1.422kg/m3) (purchased from Haining Keluo Membrane Filtration Equipment Co., Ltd.), and the mixed gas first passes through Solid/liquid impurity purification device, and then proceed to the membrane separator, methane is trapped on the high-pressure side of the membrane separator, carbon dioxide and other gases permeate to the enrichment side through the membrane, and the purified methane passes through the metal under the action of the gas flow pump.
  • polyimide hollow fiber composite membrane membrane density 1.422kg/m3
  • the hose enters the gas tank, and the separated carbon dioxide is returned to the methanation device through the metal hose under the action of the gas flow pump, and it also enters from the substrate of the methanation device, and is micronized by ultrasonic to increase the contact probability.
  • biomass fixes carbon dioxide through photosynthesis equal to the carbon dioxide released during its own degradation process, and through the shunting of high and low-quality hydrogen and the separation and backflow of carbon dioxide in the process of hydrogen production and fermentation, under the action of methanogens, the low-quality hydrogen
  • the hydrogen and carbon dioxide in the gas and the carbon dioxide returned from gas purification are converted into methane, which not only reduces the cost of hydrogen purification, but also increases the amount of methane generated, and more importantly, reduces the emission of carbon dioxide in the process of biological utilization.
  • the fermentative production of hydrogen and carbon capture and storage not only realize the high-value utilization of crop straw but also realize the negative carbon utilization of biomass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种负碳性排放的生物氢烷联产发酵系统及方法,包括暗-光联合产氢装置,氢气质量检测系统,氢气提纯装置,集气罐,超微气泡纳米装置,产甲烷装置,甲烷提纯装置,所述暗-光联合产氢装置为一体化反应器,内部设有暗发酵产氢单元和光合发酵产氢单元。把低质氢通入产甲烷相,在甲烷菌的作用下,还原二氧化碳生成甲烷。

Description

一种负碳性排放的生物氢烷联产发酵系统及方法 技术领域
本发明属于碳减排及清洁能源高效利用领域,具体涉及一种负碳性排放的生物氢烷联产发酵系统及方法。
背景技术
随着“碳达峰、碳中和”和目标的提出,废弃生物质资源利用正从重视利用规模转向重视利用价值;从重视经济价值转向经济价值、环保价值和社会价值并重。利用量大来源广的废弃生物质为原料来制取氢气是实现废弃生物质高值化利用的有效途径之一,也为降低制氢成本提供了思路。生物发酵制氢具有反应条件温和、过程简单、原料来源广和制氢方式多样化,在生物制氢技术中,暗-光联合产氢具有较高的底物转化率,成为发展制氢技术最有潜力的选择。但是生物制氢过程中,产氢微生物主要利用纤维素水解出来的糖类有机质,而淀粉、蛋白质等物质得不到有效的利用,另外在产氢发酵过程中由于抑制物的累积阻断了产氢代谢造成一定浓度的有机酸残留在发酵尾液中,阻碍了发酵过程底物转化。相对于产氢微生物来说,产甲烷菌拥有着较强的代谢能力,不仅能利用可降解的纤维素,也可以利用秸秆中的淀粉和蛋白质等物质,具有较高降解能力,但是氢气的热值高于甲烷,由此看出单相发酵限制了底物能量的转化,利用两类微生物代谢特性,进行产氢、产甲烷发酵,不仅能获得高热值的可燃气即生物氢烷(20%左右的氢气和80%左右的甲烷),也能实现底物的高效转化。生物氢烷气体相对于甲烷气体来说具有较高的热值,其储存与应用较生物氢气更加安全。从微生物代谢角度分析,生物厌氧制氢相当于生物厌氧产甲烷过程中产酸产氢阶段,产酸产氢阶段和产甲烷阶段分开运行称为两相厌氧发酵,两相厌氧发酵技术可以解除菌种间的拮抗作用,在产气量、有机物去除率和系统的稳定性有着显著的优势。
在生物发酵制氢气的过程,生成气体主要成分为氢气和二氧化碳,当菌种处于对数期时氢气生成速率快、浓度高此阶段氢气称为高质氢,而其它阶段氢气浓度较低,二氧化碳浓度高称为低质氢,低质氢增加了氢气提纯成本和工作难度,同时在甲烷发酵过程中,产生的气体主要为甲烷和二氧化碳,无论是高质氢、低质氢或生物沼气经过提纯后的气体均可作为燃料,而二氧化碳通常直接排放,这不符合低碳和可持续的发展战略。 通过分析生物厌氧发酵过程,甲烷的生成可分两中途径,一是有机酸等物质被分解成甲烷和二氧化碳,二是通过氢气还原二氧化碳形成甲烷。基于此,若把低质氢通入产甲烷相,在甲烷菌的作用下,还原二氧化碳生成甲烷,此过程不仅降低了氢气提纯的成本,也提高了甲烷生成量,同时把高质氢气和甲烷提纯过程中捕集到的二氧化碳回流到产甲烷反应器,在产甲烷菌的作用下加氢转化成甲烷,这样的组合系统实现了生物质厌氧发酵过程中二氧化碳的负排放目标。通过生物质多阶段发酵制备氢烷并进行碳捕捉与封存,不仅实现了农作物秸秆高值化利用也实现了生物质的负碳性利用。
发明内容
针对上述问题,本发明提供了一种负碳性排放的生物氢烷联产发酵系统及方法。
一种负碳性排放的生物氢烷联产发酵系统,包括暗-光联合产氢装置,氢气质量检测系统,氢气提纯装置,集气罐,超微气泡纳米装置,产甲烷装置,甲烷提纯装置,所述暗-光联合产氢装置为一体化反应器,内部设有暗发酵产氢单元和光合发酵产氢单元,所述暗-光联合产氢装置与氢气质量检测系统通过金属软管连接,所述氢气质量检测系统通过金属软管连接氢气提纯装置,所述氢气质量检测系统和氢气提纯装置之间通过金属软管连接。
优选的,所述暗发酵产氢单元和光合发酵产氢单元之间设有0.2μm醋酸纤维膜。
优选的,所述氢气质量检测系统可包括在线气体分析仪。
优选的,所述氢气质量检测系统通过气体流动泵连接氢气提纯装置。
优选的,所述氢气提纯装置包括固/液杂质分离器和膜分离器。
优选的,所述氢气提纯装置膜分离器中气体分离膜为0.51nm的类石墨烯碳氮分离膜。
优选的,所述甲烷提纯装置的膜分离器中的分离膜采用聚酰亚胺中空纤维复合膜。
一种负碳性排放的生物氢烷联产发酵方法,包括如下步骤:
(1)微生物发酵产氢:暗发酵产氢菌、光合产氢菌组成的混合菌,发酵底物为农作物秸秆的酶解液;
(2)氢气的提纯和分流:
氢气质量检测系统把信息反馈到控制系统,然后控制系统打开氢气提纯装置方向的气体流动泵,通过金属软管把气体通入氢气提纯装置,进行提纯和检测、分流;分离出来的纯氢气在气体流动泵作用下通过金属软管流向集气罐,分离出来的二氧化碳在气泵的作 用下通过金属软管通入产甲烷装置;
(3)生物厌氧发酵:
产甲烷装置发酵温度设置为35℃,产甲烷菌的接种量为20%(v/v),从产甲烷装置产生的气体在气体流动泵的作用下通过金属软管管道流入甲烷提纯装置;经提纯后的甲烷在气体流动泵的作用下经过金属软管进入到气罐,而分离出的二氧化碳在气体流动泵的作用下经过金属软管回流到产甲烷装置。
优选的,在(1)中,暗发酵单元设置为35℃,pH 5.5-6.5,接种量20%(v/v),光合发酵单元温度35℃,光照3500lx,pH 6.5-7,接种量20%(v/v)。
优选的,在(2)中,当氢气质量检测系统检测出混合气体中的氢气浓度大于50%时,氢气质量检测系统把信息反馈到控制系统,然后控制系统打开流向氢气提纯装置方向的气体流动泵,通入氢气提纯装置,分离出来的纯氢气在气体流动泵作用下通过金属软管流向集气罐,分离出来的二氧化碳在气泵的作用下通过金属软管通入产甲烷装置;当氢气质量检测系统检测到低质氢气时,氢气质量检测系统把信息反馈到控制系统,控制系统把气体流向产甲烷装置方向的气体流动泵打开,把气体把低质氢输送到产甲烷装置内部的超微气泡纳米装置。
有本发明的有益效果是:
本发明把低质氢通入产甲烷相,在甲烷菌的作用下,还原二氧化碳生成甲烷,此过程不仅降低了氢气提纯的成本,也提高了甲烷生成量,同时把高质氢气和甲烷提纯过程中捕集到的二氧化碳回流到产甲烷反应器,在产甲烷菌的作用下加氢转化成甲烷,这样的组合系统实现了生物质厌氧发酵过程中二氧化碳的负排放目标。通过生物质多阶段发酵制备氢烷并进行碳捕捉与封存,不仅实现了农作物秸秆高值化利用也实现了生物质的负碳性利用。
附图说明
图1为本发明的结构示意图。
图2为本发明的提纯装置示意图。
具体实施方式
下面结合具体实例,详细说明本发明专利的方案。
如图1-2,本发明一种负碳性排放的生物氢烷联产发酵系统,包括暗-光联合产氢装置1,氢气质量检测系统2,氢气提纯装置3,集气罐4,超微气泡纳米装置5,产甲烷装置6,甲烷提纯装置7。暗-光联合产氢装置为一体化反应器,内部设有暗发酵产氢 单元和光合发酵产氢单元,暗发酵产氢单元和光合发酵产氢单元之间采用0.2μm醋酸纤维膜隔开,暗-光联合产氢装置1与氢气质量检测系统2通过金属软管连接,氢气质量检测系统2可以包括在线气体分析仪,通过气体流动泵、金属软管连接氢气提纯装置3,氢气质量检测系统2和氢气提纯装置3及产甲烷装置之间通过金属软管连接。
氢气提纯装置3如图2所示,包括固/液杂质分离器8,膜分离器9,混合气体通过固/液杂质分离器,去除混合气体中混入的固/液杂质,进行初步提纯,经过初步提纯的混合气进入到膜分离器,膜分离器中气体分离膜采用0.51nm的类石墨烯碳氮分离膜(购买于海宁市科洛膜过滤设备有限公司),膜分离器温度维持在27℃,分离出来的纯氢气在气体流动泵作用下通过金属软管流向集气罐,分离出来的二氧化碳在气泵的作用下通过金属软管通入产甲烷装置,气体经过超声波微纳米装置微化后进入产甲烷发酵液中,微化后的气体增加了二氧化碳和产甲烷菌接触的机率,进而增强了二氧化碳被固定的机率。当氢气质量检测系统检测到低质氢气时,氢气质量检测系统把信息反馈到控制系统,控制系统把气体流向产甲烷装置方向的气体流动泵打开,,通过金属软管把气体把低质氢输送到产甲烷装置内部的超微气泡纳米装置,在超声微化,增加气体与产甲烷菌的接触机率,低质氢的通入为甲烷菌还原二氧化碳提供氢。
本发明一种负碳性排放的生物氢烷联产发酵方法,利用如上所述的系统,包括如下步骤:
(1)微生物发酵产氢:
采用暗-光联合产氢技术,暗-光联合产氢装置为一体化反应器,内部设有暗发酵产氢单元和光合发酵产氢单元,暗发酵产氢单元和光合发酵产氢单元之间采用0.2μm醋酸纤维膜隔开(醋酸纤维膜购买于海宁市科洛膜过滤设备有限公司),醋酸纤维膜能可以把暗发酵产氢菌和光发酵产氢菌有效隔离,保持产氢菌的各自的空间生态位,并允许暗发酵单元产生的小分子酸可以渗入到光合产氢单元被光合细菌利用进行产氢。暗发酵产氢菌为Paraclostridium,Enterococcus,和Sporanaerobacter组成的混合菌,光合产氢菌为Rhodospirillum rubrum,Rhodobacter capsulatus和Rhodopseudomonas palustris组成的混合菌,暗发酵单元条件为35℃,pH在5.5-6.5,接种量为20%(v/v),光合发酵单元温度为35℃,光照3500lx,pH 6.5-7,接种量为20%(v/v),发酵底物为农作物秸秆的酶解液(浓度为10-15g还原糖/L)。产氢发酵过程所需环境温度依靠太阳能循环热水,光合产氢单元的光照一部分来自光纤传输的太阳光,一部分由LED灯提供光照。
(2)氢气的提纯和分流:
在产氢阶段生成气体主要成分为氢气和二氧化碳,产生的气体通过在线气体分析仪分析气体中各成分的含量,暗-光联合产氢装置与气体在线装置通过金属软管链接。本发明定义混合气体中氢气浓度大于50%称为高质氢,混合气体中氢气浓度小于50%称为低质氢。当氢气质量检测系统检测出混合气体中的氢气浓度大于50%时,氢气质量检测系统把信息反馈到控制系统,然后控制系统打开流向氢气提纯装置方向的气体流动泵打开,通过金属软管把气体通入氢气提纯装置,氢气质量检测系统和氢气提纯装置及产甲烷装置之间通过金属软管链接。氢气提纯装置系统图如图2所示,首选混合气体通过固/液杂质分离器,去除混合气体中混入的固/液杂质,进行初步提纯,经过初步提纯的混合气进入到膜分离器,膜分离器中气体分离膜采用0.51nm的类石墨烯碳氮分离膜(购买于海宁市科洛膜过滤设备有限公司),膜分离器温度维持在27℃,分离出来的纯氢气在气体流动泵作用下通过金属软管流向集气罐,分离出来的二氧化碳在气泵的作用下通过金属软管通入产甲烷装置,气体经过超声波微纳米装置微化后进入产甲烷发酵液中,微化后的气体增加了二氧化碳和产甲烷菌接触的机率,进而增强了二氧化碳被固定的机率。当氢气质量检测系统检测到低质氢气时,氢气质量检测系统把信息反馈到控制系统,控制系统把气体流向产甲烷装置方向的气体流动泵打开,,通过金属软管把气体把低质氢输送到产甲烷装置内部的超微气泡纳米装置,在超声微化,增加气体与产甲烷菌的接触机率,低质氢的通入为甲烷菌还原二氧化碳提供氢。
(3)生物厌氧发酵:
产甲烷发酵在产甲烷装置内进行,产氢发酵结束后发酵尾液通过蠕动泵泵入到产甲烷装置,之前通过金属软管链接,产甲烷装置发酵温度为35℃,产甲烷菌的接种量为20%(v/v),从产甲烷装置产生的气体在气体流动泵的作用下通过金属软管管道流入甲烷提纯装置,甲烷提纯装置和氢气提纯装置的组成相同,如图2所示,区别在于甲烷提纯装置的膜分离器中的分离膜采用聚酰亚胺中空纤维复合膜(膜密度1.422kg/m3)(购买于海宁市科洛膜过滤设备有限公司),产生的混合气体首先经过固/液杂质净化装置,然后进行到膜分离器,甲烷被截留在膜分离器的高压侧,二氧化碳等气体通过膜渗透到富集侧,经提纯后的甲烷在气体流动泵的作用下经过金属软管进入到气罐,而分离出的二氧化碳在气体流动泵的作用下经过金属软管回流到产甲烷装置,也是从产甲烷装置底物进入,并采用超声微化,增加接触机率。在碳循环角度分析,生物质通过光合作用固定二氧化碳等于本身降解过程释放的二氧化碳,而通过产氢发酵过程中高低质氢气的分流及二氧化碳的分离回流,在甲烷菌的作用下,把低质氢中的氢气和二氧化碳及气体提纯回 流的二氧化碳转化成甲烷,这不仅降低了氢气提纯的成本,也提高了甲烷生成量,更重要的是降低了生物利用过程中二氧化碳的排放,通过生物质多阶段发酵制备氢烷并进行碳捕捉与封存,不仅实现了作物秸秆高值化利用也实现了生物质的负碳性利用。

Claims (10)

  1. 一种负碳性排放的生物氢烷联产发酵系统,其特征在于:包括暗-光联合产氢装置,氢气质量检测系统,氢气提纯装置,集气罐,超微气泡纳米装置,产甲烷装置,甲烷提纯装置,所述暗-光联合产氢装置为一体化反应器,内部设有暗发酵产氢单元和光合发酵产氢单元,所述暗-光联合产氢装置与氢气质量检测系统通过金属软管连接,所述氢气质量检测系统通过金属软管连接氢气提纯装置,所述氢气质量检测系统和氢气提纯装置之间通过金属软管连接。
  2. 如权利要求1所述的一种负碳性排放的生物氢烷联产发酵系统,其特征在于:所述暗发酵产氢单元和光合发酵产氢单元之间设有0.2μm醋酸纤维膜。
  3. 如权利要求1所述的一种负碳性排放的生物氢烷联产发酵系统,其特征在于:所述氢气质量检测系统可包括在线气体分析仪。
  4. 如权利要求1所述的一种负碳性排放的生物氢烷联产发酵系统,其特征在于:所述氢气质量检测系统通过气体流动泵连接氢气提纯装置。
  5. 如权利要求1所述的一种负碳性排放的生物氢烷联产发酵系统,其特征在于:所述氢气提纯装置包括固/液杂质分离器和膜分离器。
  6. 如权利要求1所述的一种负碳性排放的生物氢烷联产发酵系统,其特征在于:所述氢气提纯装置膜分离器中气体分离膜为0.51nm的类石墨烯碳氮分离膜。
  7. 如权利要求1所述的一种负碳性排放的生物氢烷联产发酵系统,其特征在于:所述甲烷提纯装置的膜分离器中的分离膜采用聚酰亚胺中空纤维复合膜。
  8. 一种负碳性排放的生物氢烷联产发酵方法,其特征在于,包括如下步骤:
    (1)微生物发酵产氢:暗发酵产氢菌、光合产氢菌组成的混合菌,发酵底物为农作物秸秆的酶解液;
    (2)氢气的提纯和分流:
    氢气质量检测系统把信息反馈到控制系统,然后控制系统打开氢气提纯装置方向的气体流动泵,通过金属软管把气体通入氢气提纯装置,进行提纯和检测、分流;分离出来的纯氢气在气体流动泵作用下通过金属软管流向集气罐,分离出来的二氧化碳在气泵的作用下通过金属软管通入产甲烷装置;
    (3)生物厌氧发酵:
    产甲烷装置发酵温度设置为35℃,产甲烷菌的接种量为20%(v/v),从产甲烷装置产生的气体在气体流动泵的作用下通过金属软管管道流入甲烷提纯装置;经提纯后的甲烷在 气体流动泵的作用下经过金属软管进入到气罐,而分离出的二氧化碳在气体流动泵的作用下经过金属软管回流到产甲烷装置。
  9. 如权利要求1所述的一种负碳性排放的生物氢烷联产发酵方法,其特征在于,在(1)中,暗发酵单元设置为35℃,pH 5.5-6.5,接种量20%(v/v),光合发酵单元温度35℃,光照3500lx,pH 6.5-7,接种量20%(v/v)。
  10. 如权利要求1所述的一种负碳性排放的生物氢烷联产发酵方法,其特征在于,
    在(2)中,当氢气质量检测系统检测出混合气体中的氢气浓度大于50%时,氢气质量检测系统把信息反馈到控制系统,然后控制系统打开流向氢气提纯装置方向的气体流动泵,通入氢气提纯装置,分离出来的纯氢气在气体流动泵作用下通过金属软管流向集气罐,分离出来的二氧化碳在气泵的作用下通过金属软管通入产甲烷装置;当氢气质量检测系统检测到低质氢气时,氢气质量检测系统把信息反馈到控制系统,控制系统把气体流向产甲烷装置方向的气体流动泵打开,把气体把低质氢输送到产甲烷装置内部的超微气泡纳米装置。
PCT/CN2022/124245 2021-11-19 2022-10-10 一种负碳性排放的生物氢烷联产发酵系统及方法 WO2023087972A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2023/09739A ZA202309739B (en) 2021-11-19 2023-10-18 Method and system for biohydrogen alkane co-producing fermentation with negative carbonaceous emissions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111375268.X 2021-11-19
CN202111375268.XA CN114058479B (zh) 2021-11-19 一种负碳性排放的生物氢烷联产发酵系统及方法

Publications (1)

Publication Number Publication Date
WO2023087972A1 true WO2023087972A1 (zh) 2023-05-25

Family

ID=80278446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124245 WO2023087972A1 (zh) 2021-11-19 2022-10-10 一种负碳性排放的生物氢烷联产发酵系统及方法

Country Status (2)

Country Link
WO (1) WO2023087972A1 (zh)
ZA (1) ZA202309739B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082075A (ja) * 2004-08-19 2006-03-30 Takuma Co Ltd バイオマスの処理システム
CN101109014A (zh) * 2006-07-20 2008-01-23 中国科学院上海生命科学研究院 暗-光发酵偶联制氢的方法
US20110033908A1 (en) * 2009-08-04 2011-02-10 Dae-Yeol Cheong Methods for selectively producing hydrogen and methane from biomass feedstocks using an anaerobic biological system
CN104651412A (zh) * 2015-02-05 2015-05-27 昆明理工大学 一种二氧化碳和氢气生物甲烷化的方法
CN107974316A (zh) * 2016-10-25 2018-05-01 中国科学院青岛生物能源与过程研究所 一种制备生物氢烷燃料的方法
CN113583856A (zh) * 2021-08-18 2021-11-02 上海交通大学 两相耦合厌氧发酵产沼气及原位沼气提纯装置
CN114058479A (zh) * 2021-11-19 2022-02-18 河南农业大学 一种负碳性排放的生物氢烷联产发酵系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082075A (ja) * 2004-08-19 2006-03-30 Takuma Co Ltd バイオマスの処理システム
CN101109014A (zh) * 2006-07-20 2008-01-23 中国科学院上海生命科学研究院 暗-光发酵偶联制氢的方法
US20110033908A1 (en) * 2009-08-04 2011-02-10 Dae-Yeol Cheong Methods for selectively producing hydrogen and methane from biomass feedstocks using an anaerobic biological system
CN104651412A (zh) * 2015-02-05 2015-05-27 昆明理工大学 一种二氧化碳和氢气生物甲烷化的方法
CN107974316A (zh) * 2016-10-25 2018-05-01 中国科学院青岛生物能源与过程研究所 一种制备生物氢烷燃料的方法
CN113583856A (zh) * 2021-08-18 2021-11-02 上海交通大学 两相耦合厌氧发酵产沼气及原位沼气提纯装置
CN114058479A (zh) * 2021-11-19 2022-02-18 河南农业大学 一种负碳性排放的生物氢烷联产发酵系统及方法

Also Published As

Publication number Publication date
CN114058479A (zh) 2022-02-18
ZA202309739B (en) 2023-12-20

Similar Documents

Publication Publication Date Title
ES2788510T3 (es) Proceso de fermentación
Liang et al. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane
Argun et al. Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview
JP2019506165A (ja) 統合型発酵電解プロセス
US20100233775A1 (en) System for the production of methane and other useful products and method of use
CN102250956A (zh) 一种利用生物质原料制备掺氢天然气的方法
CN108048507A (zh) 一种利用农作物秸秆产业化生产乙醇的方法
ES2954747T3 (es) Proceso de fermentación
CN103374592A (zh) 一种气相底物发酵生产乙醇的方法
Zhu et al. Performance evaluation of bio-hydrogen and bio-methane cogeneration from corn stover over a range of initial pH and temperature
Gassanova et al. Fuel gases from organic wastes using membrane bioreactors
WO2023087972A1 (zh) 一种负碳性排放的生物氢烷联产发酵系统及方法
CN102266719B (zh) 一种工业尾气能源化系统
CN110747149B (zh) 一株耐盐的产甲烷古菌及其应用
CN109971795B (zh) 一种适用于畜禽粪污与干黄秸秆共发酵方法
WO2023103321A1 (zh) 一种生物质负碳排放发电系统及其工作方法
CN103667355A (zh) 一种利用有机废弃物制备车用燃气的方法
CN114058479B (zh) 一种负碳性排放的生物氢烷联产发酵系统及方法
CN215886992U (zh) 一种二氧化碳内循环的沼气发酵减碳系统
CN102295968A (zh) 一种生物燃气中二氧化碳高值利用方法
US20240102055A1 (en) Method for producing a fermentation product
CN102586336B (zh) 生物甲烷两阶段转化产出的方法
CA3213228A1 (en) Integrated fermentation and electrolysis process for improving carbon capture efficiency
CN113502210A (zh) 一种二氧化碳内循环的沼气发酵减碳方法
Leong et al. Integrated biohydrogen production and dairy manure wastewater treatment via a microalgae platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894510

Country of ref document: EP

Kind code of ref document: A1