WO2023087905A1 - 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法 - Google Patents

一种开关霍尔传感器采集相位延迟的补偿电路及控制方法 Download PDF

Info

Publication number
WO2023087905A1
WO2023087905A1 PCT/CN2022/120446 CN2022120446W WO2023087905A1 WO 2023087905 A1 WO2023087905 A1 WO 2023087905A1 CN 2022120446 W CN2022120446 W CN 2022120446W WO 2023087905 A1 WO2023087905 A1 WO 2023087905A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
hall
module
adjustment module
frequency
Prior art date
Application number
PCT/CN2022/120446
Other languages
English (en)
French (fr)
Inventor
闵琦
魏海峰
张懿
王浩陈
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2023087905A1 publication Critical patent/WO2023087905A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation

Definitions

  • the invention relates to the technical field of brushless direct current motors, in particular to a compensation circuit and a control method for acquiring phase delays of switching Hall sensors.
  • the brushless DC motor with switch Hall sensor has the advantages of high efficiency, low price, and strong anti-interference ability. Therefore, brushless DC motors with switching Hall sensors have been widely used in more and more industries.
  • the higher harmonics generated by PWM are eliminated through parallel capacitor elements.
  • a filter capacitor is generally connected in parallel at both ends of the filter resistor.
  • the capacitor absorbs and stores energy to ensure that the motor is not disturbed by high-frequency signals during operation; at the same time, the filter capacitor
  • the electromotive force zero-crossing detection method it has the function of generating a phase shift angle to ensure that the motor commutates at the correct commutation point, and then correctly adjusts the speed of the brushless DC motor with a switch Hall sensor.
  • this circuit structure will produce a phase lag.
  • the phase lag generated by the traditional RC filter module will reduce the control ability of the motor and increase unnecessary losses.
  • the invention provides a compensation circuit and a control method for acquiring phase delay of switching Hall sensors, so as to solve the problems of inaccurate motor control speed and unstable running state caused by the phase lag of the Hall signal caused by the traditional RC filter circuit.
  • the present invention provides a compensating circuit for phase delay acquisition of switch Hall sensors, comprising: a voltage divider module, an RC filter module, and an adjustment module; Output an electrical signal to divide the voltage of the electrical signal; the RC filter module is connected to the adjustment module, and is used to filter and phase-modulate the electrical signal processed by the voltage division module to eliminate high-frequency harmonics Interference: the adjustment module is used to adjust the phase lag of the electrical signal generated by the RC filter module.
  • the voltage dividing module includes: a first resistor; the RC filter module includes: a second resistor, a first capacitor; one end of the first resistor is connected to the pull-up voltage, and the other end is respectively connected to the Hall element The output end is connected to one end of the second resistor; the other end of the second resistor is respectively connected to one end of the first capacitor and the input and output end of the MCU; the other end of the first capacitor is grounded; the adjustment module is connected to connected to both ends of the second resistor.
  • the adjustment module includes: a third resistor and a first triode; one end of the third resistor is respectively connected to one end of the first resistor, the output end of the Hall element, and one end of the second resistor, so that The other end of the third resistor is connected to the collector of the first triode; the base of the first triode is connected to the PWM signal input end, and the emitter of the first triode is connected to the first triode respectively.
  • the other end of the two resistors, one end of the first capacitor, and the input end of the MCU are connected.
  • the adjustment module includes: a fourth resistor and a first optocoupler; one end of the fourth resistor is respectively connected to one end of the first resistor, the output end of the Hall element, and one end of the second resistor, and the The other end of the fourth resistor is connected to the collector of the triode in the first optocoupler; the emitter of the triode in the first optocoupler is connected to one end of the second resistor, one end of the first capacitor, and the input end of the MCU connection; the cathode of the light emitting diode in the first optocoupler is grounded, and the anode of the light emitting diode in the first optocoupler is connected to the PWM signal input terminal.
  • the present invention also provides a control method for a compensating circuit for switching Hall sensor acquisition phase delay, comprising the following steps:
  • Step 1 Obtain the Hall frequency F through the high and low levels output by the Hall sensor
  • Step 2 Determine whether the Hall frequency is greater than the first threshold f 1 of the Hall frequency. If it is greater than the first threshold of the Hall frequency, proceed to Step 3. If it is less than the first threshold of the Hall frequency, return to Step 1;
  • Step 3 judging whether the Hall frequency is less than the second Hall frequency threshold f 2 ; if it is less than the second Hall frequency threshold, proceed to step 4, and when greater than the Hall frequency second threshold, proceed to step 5;
  • Step 4 Connect the adjustment module, work the adjustment module in the half-work state, calculate the PWM duty cycle of the adjustment module according to the current Hall frequency, adjust the phase lag, and compensate for the phase lag;
  • Step 5 Connect the adjustment module, make the adjustment module work in full power state, set the PWM duty ratio of the adjustment module to 1 to adjust the phase lag, and compensate for the phase lag.
  • step 2 the specific calculation method for the first threshold of the Hall frequency in step 2 is:
  • f 1 is the first threshold value of the Hall frequency
  • c 0 is the capacitance value of the first capacitor C1 in the RC filter module.
  • step 3 the specific calculation method for the second threshold of the Hall frequency in step 3 is:
  • f2 is the second threshold value of the Hall frequency
  • r0 is the resistance value of the second resistor R2 in the RC filter module
  • c0 is the resistance value of the RC filter Capacitance value of the first capacitor C1 in the module.
  • step 4 it is necessary to calculate the PWM duty cycle of the regulating module according to the current Hall frequency, and the specific formula is as follows:
  • c0 is the capacitance value of the first capacitor C1 in the RC filter module
  • f is the Hall frequency
  • r0 is the second resistor R2 in the RC filter module, the third resistor R3 in the adjustment module, and the second resistor R3 in the adjustment module.
  • the present invention only utilizes a necessary PWM function of the original single-chip microcomputer, without changing the original hardware circuit, and only adds an adjustment module to realize the adjustment of the phase lag during medium and high-speed operation; Compared with traditional adjustment methods, it not only has stronger operability, but also has low cost.
  • control method of the present invention first obtain the current Hall frequency, then perform interval detection on the Hall frequency, and perform different hysteresis compensation on RC filter modules in different frequency bands by adjusting the PWM duty cycle, not only does not increase the frequency of the motor It also realizes closed-loop adjustment, real-time adjustment and self-adaptive adjustment during the operation of medium and high-speed motors.
  • the present invention reduces the phase lag generated during medium and high-speed operation of the brushless DC motor with switch Hall sensor, reduces the influence of this lag on high-performance control, and avoids the acceleration process The motor shakes in the middle, which improves the control accuracy.
  • Fig. 1 is the schematic circuit diagram of the embodiment of the present invention.
  • Fig. 2 is another schematic circuit diagram of the embodiment of the present invention.
  • Fig. 3 is a flowchart of a control method specifically implemented in the present invention.
  • An embodiment of the present invention provides an excitation control device for a synchronous motor, as shown in FIG. 1 , including: a voltage divider module, an RC filter module, and an adjustment module;
  • the output electrical signal of the sensor is used to divide the electrical signal;
  • the RC filter module is connected to the adjustment module for filtering and phase-modulating the electrical signal processed by the voltage division module to eliminate high frequency Harmonic interference to ensure the control ability of the motor, to ensure that the motor is phase-modulated at the correct phase commutation point, and the electric signal after filtering and phase modulation is sent to the single-chip microcomputer as an output;
  • the adjustment module is used for The problem of phase lag generated by the RC filtering module on electrical signals is solved.
  • the voltage dividing module includes a first resistor R1; wherein, one end of the first resistor R1 is connected to the pull-up voltage 5V, and the other end of the first resistor R1 is connected to the output end of the Hall element, and serves as the output end of the voltage dividing module.
  • the RC filter module includes a second resistor R2 and a first capacitor C1; one end of the second resistor R2 is connected to the output end of the voltage divider module, and the other end of the second resistor R2 is connected to one end of the first capacitor C1, and serves as an RC filter module
  • the output terminal of the first capacitor C1 is connected to the ground.
  • the adjustment module includes a third resistor R3 and an NPN transistor VT1, one end of the third resistor R3 is connected to the output terminal of the voltage divider module, the other end of the third resistor R3 is connected to the collector c of the NPN transistor VT1, and the NPN transistor VT1
  • the base b and emitter e of the RC filter module are respectively connected to the output end of the RC filter module and the PWM signal end.
  • the adjustment module may further include a fourth resistor R4 and a first optocoupler T1, and the first optocoupler T1 includes a first diode D1 and a power output from the first diode D1.
  • the second triode VT2 that converts optical signals into electrical signals, one end of the fourth resistor R4 is connected to the output end of the voltage divider module, that is, one end of the second resistor R2, and the other end of the fourth resistor R4 One end is connected to the collector c of the second triode VT2, the emitter e of the second triode VT2 is connected to the other end of the second resistor R2, and the cathode of the first diode D1 It is connected to the ground, and the anode of the first diode D1 is connected to the PWM signal terminal.
  • a control method for acquiring a phase delay of a switching Hall sensor includes the following steps:
  • Step S1 Obtain the Hall frequency F through the high and low levels output by the Hall sensor
  • Step S2 Determine whether the Hall frequency is greater than the first threshold f 1 of the Hall frequency; if the condition is met, go to step S3; if the condition is not met, return to step S1;
  • Step S3 judging whether the Hall frequency is less than the second threshold f 2 of the Hall frequency; if the condition is met, proceed to step S4; if the condition is not satisfied, proceed to step S5;
  • Step S4 Connect the adjustment module to calculate the duty ratio of the PWM; adjust the duty ratio of the PWM in real time according to the current Hall frequency to achieve the purpose of adjusting the phase lag;
  • Step S5 Completely access the regulation module, and the duty cycle of PWM is 1.
  • the first threshold of the Hall frequency in step S2 is calculated based on the condition that the phase lag does not exceed 1° and the adjustment module is not working.
  • the specific calculation method is:
  • f 1 is the first threshold value of the Hall frequency
  • c 0 is the capacitance value of the first capacitor C1 in the RC filter module.
  • the first threshold of the Hall frequency is specifically:
  • the second threshold of the Hall frequency in step S3 is calculated based on the condition that the phase lag exceeds 1° and the adjustment module is fully working.
  • the specific calculation method is:
  • f2 is the second threshold value of the Hall frequency
  • r0 is the resistance value of the second resistor R2 in the RC filter module
  • c0 is the resistance value of the RC filter Capacitance value of the first capacitor C1 in the module.
  • the duty ratio pwm of the PWM signal that needs to be adjusted in the step S4 is calculated based on the phase lag exceeding 1° and the adjustment module working, and the specific calculation method is as follows:
  • c0 is the capacitance value of the first capacitor C1 in the RC filter module
  • f is the Hall frequency
  • r0 is the second resistor R2 in the RC filter module, the third resistor R3 in the adjustment module, and the second resistor R3 in the adjustment module.
  • the Hall frequency is 125000Hz
  • the duty ratio pwm of the PWM wave is specifically:
  • the resistance values of the first resistor R1 in the voltage dividing module, the second resistor R2 in the RC filter module, the third resistor R3 and the fourth resistor R4 in the adjustment module are all 200 ⁇ , and the RC filter module
  • the first capacitor C1 is 1000nf.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种开关霍尔传感器采集相位延迟的补偿电路,包括:分压模块、RC滤波模块、调节模块;所述分压模块与所述RC滤波模块相连,用于采集霍尔传感器的输出电信号,对所述电信号进行分压;所述RC滤波模块与所述调节模块相连,用于对所述分压模块处理后的电信号进行滤波和调相,消除高频谐波的干扰;所述调节模块用于对所述RC滤波模块对电信号产生的相位滞后进行调节。本发明仅利用原有单片机必备的一个PWM功能,在不改变原有的硬件电路的基础上,仅新增一个调节模块,就可实现对中、高速运行时的相位滞后进行调节;与传统调节方法相比,不仅有更强的可操作性,而且成本低廉。

Description

一种开关霍尔传感器采集相位延迟的补偿电路及控制方法 技术领域
本发明涉及无刷直流电机技术领域,具体涉及一种开关霍尔传感器采集相位延迟的补偿电路及控制方法。
背景技术
有开关霍尔传感器的无刷直流电机具有效率高,价格低,抗干扰能力强等优点。因此,有开关霍尔传感器的无刷直流电机已经在越来越多的行业广泛应用。
传统的有开关霍尔传感器的无刷直流电机的RC滤波模块中通过并联电容元件消除PWM产生的高次谐波。在RC滤波模块中,一般是在滤波电阻的两端并联一个滤波电容,高次谐波经过时被电容吸收储能,以保证电机运行时不被高频信号干扰;同时,该滤波电容在反电动势过零点检测法中,具有产生相移角的作用,以保证电机在正确的换相点换相,进而正确的调节有开关霍尔传感器的无刷直流电机的转速。但是,随着霍尔频率不断增大,这种电路结构会产生相位滞后,增大到一定程度后,该滞后角度会导致无刷直流电机不能在正确换相点换相,造成调速不准确,甚至电机抖动。所以,传统的RC滤波模块产生的相位滞后会降低对电机的控制能力,增加不必要的损耗。
发明内容
本发明提供了一种开关霍尔传感器采集相位延迟的补偿电路及控制方法,以解决传统RC滤波电路造成的霍尔信号相位滞后,导致的电机控制速度不精确、运行状态不平稳的的问题。
本发明提供了一种开关霍尔传感器采集相位延迟的补偿电路,包括:分压模块、RC滤波模块、调节模块;所述分压模块与所述RC滤波模块相连,用于采集霍尔传感器的输出电信号,对所述电信号进行分压;所述RC滤波模块与所 述调节模块相连,用于对所述分压模块处理后的电信号进行滤波和调相,消除高频谐波的干扰;所述调节模块用于对所述RC滤波模块对电信号产生的相位滞后进行调节。
进一步地,所述分压模块包括:第一电阻;所述RC滤波模块包括:第二电阻、第一电容;所述第一电阻的一端与上拉电压连接,另一端分别与霍尔元件的输出端、第二电阻的一端连接;所述第二电阻的另一端分别与所述第一电容的一端、MCU的输出入端连接;所述第一电容的另一端接地;所述调节模块并接在所述第二电阻两端。
进一步地,所述调节模块包括:第三电阻、第一三极管;所述第三电阻的一端分别与所述第一电阻一端、霍尔元件的输出端、第二电阻的一端连接,所述第三电阻的另一端与所述第一三极管的集电极连接;所述第一三极管的基极与PWM信号输入端连接,所述第一三极管的发射极分别与第二电阻的另一端、第一电容的一端、MCU的输入端连接。
进一步地,所述调节模块包括:第四电阻、第一光耦;所述第四电阻的一端分别与所述第一电阻一端、霍尔元件的输出端、第二电阻的一端连接,所述第四电阻的另一端与所述第一光耦中三极管的集电极连接;所述第一光耦中三极管的发射极与所述第二电阻的一端、第一电容的一端、MCU的输入端连接;所述第一光耦中发光二极管的负极接地,所述第一光耦中发光二极管的正极接PWM信号输入端连接。
本发明还提供了一种开关霍尔传感器采集相位延迟的补偿电路的控制方法,包括如下步骤:
步骤1:通过霍尔传感器输出的高低电平,获得霍尔频率F;
步骤2:判断霍尔频率是否大于霍尔频率第一阈值f 1,当大于霍尔频率第一阀值时,进行步骤3,当小于霍尔频率第一阀值时,返回步骤1;
步骤3:判断霍尔频率是否小于霍尔频率第二阈值f 2;当小于霍尔频率第二阈值时,进行步骤4,当大于霍尔频率第二阈值时,进行步骤5;
步骤4:接入调节模块,将调节模块工作在半工状态,根据当前的霍尔频率计算调节模块的PWM的占空比调节相位滞后,对相位滞后进行补偿;
步骤5:接入调节模块,将调节模块工作在全工状态,设置调节模块的PWM的占空比为1调节相位滞后,对相位滞后进行补偿。
进一步地,所述步骤2中霍尔频率第一阈值,具体计算方法为:
Figure PCTCN2022120446-appb-000001
其中,f 1为霍尔频率第一阈值,c 0为所述RC滤波模块中第一电容C1的电容值。
进一步地,所述步骤3中霍尔频率第二阈值,具体计算方法为:
Figure PCTCN2022120446-appb-000002
其中,f 2为霍尔频率第二阈值,r 0为所述RC滤波模块中第二电阻R2、所述调节模块中第三电阻R3和第四电阻R4的阻值,c0为所述RC滤波模块中第一电容C1的电容值。
进一步地,所述步骤4中需根据当前的霍尔频率计算调节模块的PWM的占空比,具体公式如下:
Figure PCTCN2022120446-appb-000003
其中,c 0为所述RC滤波模块中第一电容C1的电容值,f为霍尔频率,r 0为所述RC滤波模块中第二电阻R2、所述调节模块中第三电阻R3以及第四电阻R4的阻值。
本发明的有益效果:
1、本发明仅利用原有单片机必备的一个PWM功能,在不改变原有的硬件电路的基础上,仅新增一个调节模块,就可实现对中、高速运行时的相位滞后进行调节;与传统调节方法相比,不仅有更强的可操作性,而且成本低廉。
2、本发明在控制方法中,首先获取当前的霍尔频率,再对霍尔频率进行区间检测,通过调节PWM占空比对处于不同频段的RC滤波模块进行不同的滞后补偿,不仅不增加电机的运行步骤和时间,还在中、高速电机运行中实现了闭环调节、实时调节和自适应调节。
3、本发明通过对RC滤波模块进行调节,减小了有开关霍尔传感器的无刷直流电机中、高速运转时产生的相位滞后,降低了这种滞后对高性能控制的影响,避免加速过程中出现电机抖动,提高了控制精度。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1为本发明具体实施的电路示意图;
图2为本发明具体实施的另一电路示意图;
图3为本发明具体实施的控制方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种同步电机的励磁控制装置,如图1所示,包括:分压模块、RC滤波模块、调节模块;所述分压模块与所述RC滤波模块相连,用于采集霍尔传感器的输出电信号,对所述电信号进行分压;所述RC滤波模块与所述调节模块相连,用于对所述分压模块处理后的电信号进行滤波和调相,消除高频谐波的干扰以保证对电机的控制能力、以确保电机调相后在正确的换相点进行换相,并将滤波和调相后的电信号作为输出传送到单片机;所述调节模块用于解决所述RC滤波模块对电信号产生的相位滞后问题。
分压模块包括第一电阻R1;其中,第一电阻R1的一端与上拉电压5V相连,第一电阻R1的另一端与霍尔元件的输出端相连,且作为分压模块的输出端。
RC滤波模块包括第二电阻R2、第一电容C1;第二电阻R2的一端与分压模块的输出端相连,第二电阻R2的另一端与第一电容C1的一端相连,且作为RC滤波模块的输出端;第一电容C1的另一端与地相连。
调节模块包括第三电阻R3、NPN晶体三极管VT1,第三电阻R3的一端与分压模块的输出端相连,第三电阻R3的另一端与NPN晶体三极管VT1的集电极c相连,NPN晶体三极管VT1的基极b、发射极e分别与RC滤波模块的输出端、PWM信号端相连。
如图2所示,调节模块还可以包括第四电阻R4和第一光耦合器T1,所述第一光耦合器T1包括第一二极管D1和将所述第一二极管D1发出的光信号转换成电信号的第二三极管VT2,所述第四电阻R4的一端与所述分压模块的输出端即所述第二电阻R2的一端相连,所述第四电阻R4的另一端与所述第二三极管VT2的集电极c相连,所述第二三极管VT2的发射极e与所述第二电阻R2的另一端相连,所述第一二极管D1的负极与地相连,所述第一二极管D1的正极与PWM信号端相连。
如图3所示,一种开关霍尔传感器采集相位延迟的控制方法,使用方法包括如下步骤:
步骤S1:通过霍尔传感器输出的高低电平,获得霍尔频率F;
步骤S2:判断霍尔频率是否大于霍尔频率第一阈值f 1;满足条件时,进行步骤S3,不满足条件时,返回步骤S1;
步骤S3:判断霍尔频率是否小于霍尔频率第二阈值f 2;满足条件时,进行步骤S4,不满足条件时,进行步骤S5;
步骤S4:接入调节模块,计算PWM的占空比;根据当前的霍尔频率实时调节PWM的占空比,以实现调节相位滞后的目的;
步骤S5:完全接入调节模块,PWM的占空比为1。
可选地,步骤S2中霍尔频率第一阈值是基于相位滞后不超过1°时、调节模块不工作的情况下计算,具体计算方法为:
Figure PCTCN2022120446-appb-000004
其中,f 1为霍尔频率第一阈值,c 0为所述RC滤波模块中第一电容C1的电容值。
例如,RC滤波模块中第一电容C1的电容大小c 0=1000nf,基于相位滞后超 过1°时、调节模块不工作的情况下计算,其霍尔频率第一阈值具体为:
Figure PCTCN2022120446-appb-000005
可选地,步骤S3中霍尔频率第二阈值是基于相位滞后超过1°时、调节模块全工作的情况下计算,具体计算方法为:
Figure PCTCN2022120446-appb-000006
其中,f 2为霍尔频率第二阈值,r 0为所述RC滤波模块中第二电阻R2、所述调节模块中第三电阻R3和第四电阻R4的阻值,c0为所述RC滤波模块中第一电容C1的电容值。
例如,RC滤波模块中的第二电阻R2、调节模块中的第三电阻R3和第四电阻R4的阻值大小r 0=200Ω、RC滤波模块中第一电容C1的电容大小c 0=1000nf,基于相位滞后超过1°时、调节模块不工作的情况下计算,其霍尔频率第二阈值具体为:
Figure PCTCN2022120446-appb-000007
可选地,所述步骤S4中需要调节的PWM信号的占空比pwm是基于相位滞后超过1°、调节模块工作的情况下计算,具体计算方法如下:
Figure PCTCN2022120446-appb-000008
其中,c 0为所述RC滤波模块中第一电容C1的电容值,f为霍尔频率,r 0为所述RC滤波模块中第二电阻R2、所述调节模块中第三电阻R3以及第四电阻R4的阻值。
例如,某吸尘器高速运行时的霍尔频率为125000Hz,RC滤波模块中的第二电阻R2、调节模块中的第三电阻R3和第四电阻R4的阻值大小r 0=200Ω、RC滤波模块中第一电容C1的电容大小c 0=1000nf,基于相位滞后不超过1°、调节模块不工作的情况下计算,PWM波的占空比pwm具体为:
Figure PCTCN2022120446-appb-000009
本发明实施例中,分压模块中的第一电阻R1、RC滤波模块中的第二电阻R2、调节模块中的第三电阻R3和第四电阻R4的电阻值大小均采用200Ω,RC滤波模块中第一电容C1采用1000nf。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (8)

  1. 一种开关霍尔传感器采集相位延迟的补偿电路,其特征在于,包括:分压模块、RC滤波模块、调节模块;所述分压模块与所述RC滤波模块相连,用于采集霍尔传感器的输出电信号,对所述电信号进行分压;所述RC滤波模块与所述调节模块相连,用于对所述分压模块处理后的电信号进行滤波和调相,消除高频谐波的干扰;所述调节模块用于对所述RC滤波模块对电信号产生的相位滞后进行调节。
  2. 如权利要求1所述的开关霍尔传感器采集相位延迟的补偿电路,其特征在于,所述分压模块包括:第一电阻;所述RC滤波模块包括:第二电阻、第一电容;所述第一电阻的一端与上拉电压连接,另一端分别与霍尔元件的输出端、第二电阻的一端连接;所述第二电阻的另一端分别与所述第一电容的一端、MCU的输出入端连接;所述第一电容的另一端接地;所述调节模块并接在所述第二电阻两端。
  3. 如权利要求1或2所述的开关霍尔传感器采集相位延迟的补偿电路,其特征在于,所述调节模块包括:第三电阻、第一三极管;所述第三电阻的一端分别与所述第一电阻一端、霍尔元件的输出端、第二电阻的一端连接,所述第三电阻的另一端与所述第一三极管的集电极连接;所述第一三极管的基极与PWM信号输入端连接,所述第一三极管的发射极分别与第二电阻的另一端、第一电容的一端、MCU的输入端连接。
  4. 如权利要求1或2所述的开关霍尔传感器采集相位延迟的补偿电路,其特征在于,所述调节模块包括:第四电阻、第一光耦;所述第四电阻的一端分别与所述第一电阻一端、霍尔元件的输出端、第二电阻的一端连接,所述第四电 阻的另一端与所述第一光耦中三极管的集电极连接;所述第一光耦中三极管的发射极与所述第二电阻的一端、第一电容的一端、MCU的输入端连接;所述第一光耦中发光二极管的负极接地,所述第一光耦中发光二极管的正极接PWM信号输入端连接。
  5. 一种开关霍尔传感器采集相位延迟的补偿电路的控制方法,其特征在于,包括如下步骤:
    步骤1:通过霍尔传感器输出的高低电平,获得霍尔频率F;
    步骤2:判断霍尔频率是否大于霍尔频率第一阈值f 1,当大于霍尔频率第一阀值时,进行步骤3,当小于霍尔频率第一阀值时,返回步骤1;
    步骤3:判断霍尔频率是否小于霍尔频率第二阈值f 2;当小于霍尔频率第二阈值时,进行步骤4,当大于霍尔频率第二阈值时,进行步骤5;
    步骤4:接入调节模块,将调节模块工作在半工状态,根据当前的霍尔频率计算调节模块的PWM的占空比调节相位滞后,对相位滞后进行补偿;
    步骤5:接入调节模块,将调节模块工作在全工状态,设置调节模块的PWM的占空比为1调节相位滞后,对相位滞后进行补偿。
  6. 如权利要求5所述的开关霍尔传感器采集相位延迟的补偿电路的控制方法,其特征在于,所述步骤2中霍尔频率第一阈值,具体计算方法为:
    Figure PCTCN2022120446-appb-100001
    其中,f 1为霍尔频率第一阈值,c 0为所述RC滤波模块中第一电容C1的电容值。
  7. 如权利要求5所述的开关霍尔传感器采集相位延迟的补偿电路的控制方法,其特征在于,所述步骤3中霍尔频率第二阈值,具体计算方法为:
    Figure PCTCN2022120446-appb-100002
    其中,f 2为霍尔频率第二阈值,r 0为所述RC滤波模块中第二电阻R2、所述调节模块中第三电阻R3和第四电阻R4的阻值,c0为所述RC滤波模块中第一电容C1的电容值。
  8. 如权利要求5所述的开关霍尔传感器采集相位延迟的补偿电路的控制方法,其特征在于,所述步骤4中需根据当前的霍尔频率计算调节模块的PWM的占空比,具体公式如下:
    Figure PCTCN2022120446-appb-100003
    其中,c 0为所述RC滤波模块中第一电容C1的电容值,f为霍尔频率,r 0为所述RC滤波模块中第二电阻R2、所述调节模块中第三电阻R3以及第四电阻R4的阻值。
PCT/CN2022/120446 2021-11-22 2022-09-22 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法 WO2023087905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111388810.5 2021-11-22
CN202111388810.5A CN114094883A (zh) 2021-11-22 2021-11-22 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法

Publications (1)

Publication Number Publication Date
WO2023087905A1 true WO2023087905A1 (zh) 2023-05-25

Family

ID=80302850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120446 WO2023087905A1 (zh) 2021-11-22 2022-09-22 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法

Country Status (2)

Country Link
CN (1) CN114094883A (zh)
WO (1) WO2023087905A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992075B (zh) * 2021-11-22 2023-09-29 江苏科技大学 一种无刷直流电机相位延迟的补偿电路及控制方法
CN114094883A (zh) * 2021-11-22 2022-02-25 江苏科技大学 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997463A (zh) * 2010-10-20 2011-03-30 夷中机科技(北京)有限公司 一种点钞仪双直流无刷电机控制器及其控制方法
JP2013132152A (ja) * 2011-12-22 2013-07-04 New Japan Radio Co Ltd Dcブラシレスモータ駆動回路
CN203554345U (zh) * 2013-09-11 2014-04-16 常州信息职业技术学院 无刷直流电机恒相移换相信号检测器
CN104767432A (zh) * 2015-03-31 2015-07-08 江苏大学 无刷直流电机无位置传感器起动的反电势检测电路
CN210327423U (zh) * 2020-03-05 2020-04-14 南京立超软件科技有限公司 一种带蓝牙模块的正弦波无刷直流电机控制器
CN113992075A (zh) * 2021-11-22 2022-01-28 江苏科技大学 一种无刷直流电机相位延迟的补偿电路及控制方法
CN114094883A (zh) * 2021-11-22 2022-02-25 江苏科技大学 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997463A (zh) * 2010-10-20 2011-03-30 夷中机科技(北京)有限公司 一种点钞仪双直流无刷电机控制器及其控制方法
JP2013132152A (ja) * 2011-12-22 2013-07-04 New Japan Radio Co Ltd Dcブラシレスモータ駆動回路
CN203554345U (zh) * 2013-09-11 2014-04-16 常州信息职业技术学院 无刷直流电机恒相移换相信号检测器
CN104767432A (zh) * 2015-03-31 2015-07-08 江苏大学 无刷直流电机无位置传感器起动的反电势检测电路
CN210327423U (zh) * 2020-03-05 2020-04-14 南京立超软件科技有限公司 一种带蓝牙模块的正弦波无刷直流电机控制器
CN113992075A (zh) * 2021-11-22 2022-01-28 江苏科技大学 一种无刷直流电机相位延迟的补偿电路及控制方法
CN114094883A (zh) * 2021-11-22 2022-02-25 江苏科技大学 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法

Also Published As

Publication number Publication date
CN114094883A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2023087905A1 (zh) 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法
WO2023087985A1 (zh) 一种无刷直流电机相位延迟的补偿电路及控制方法
WO2016029714A1 (zh) 三电平光伏逆变器脉宽调制方法和调制器
CN109713949B (zh) 一种无刷直流电机转矩脉动的抑制方法及系统
CN106849779B (zh) 开关磁阻电机电流无差拍pwm占空比控制方法
CN104184374A (zh) 永磁同步电机控制系统中超前角调整方法
CN101964592A (zh) 一种通用变频器死区补偿方法
CN108880393B (zh) 交错式pfc控制电路及电机驱动电路
CN107517017A (zh) 一种单相调压正弦波变频逆变电源
CN203289362U (zh) 一种无刷电机控制装置
CN105629737B (zh) 一种内燃机车异步电机内模控制方法
CN115021623A (zh) 一种超前角自适应补偿电路及无刷直流电机
CN113163550B (zh) 调光高兼容led驱动电源及其控制方法
CN105515475A (zh) 基于buck变换器的高速无刷直流电机控制器
CN108540026B (zh) 一种基于碳化硅/氮化镓mosfet的永磁同步电机驱动控制实时调压电路
CN111585479A (zh) 一种三相无传感器无刷直流电机控制系统
CN214315109U (zh) 一种基于无位置传感器控制的无刷直流电机
CN214380712U (zh) 一种直流有刷电机驱动电路
CN112542978B (zh) 基于双向交错并联dc-dc逆变器的电机驱动系统
CN105634341A (zh) 无刷直流电机反电动势过零点检测的相位补偿装置及方法
CN114172362A (zh) 一种直流大功率充电桩
CN112865619A (zh) 一种基于反电动势法改进的无刷直流电机控制方法
CN212572306U (zh) 无位置传感器直流无刷电机
CN104901528A (zh) 电机低频抖动的改善方法及装置
CN111273593B (zh) 内窥镜智能控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894443

Country of ref document: EP

Kind code of ref document: A1