WO2023087715A1 - 一种五轴联动3d打印机 - Google Patents

一种五轴联动3d打印机 Download PDF

Info

Publication number
WO2023087715A1
WO2023087715A1 PCT/CN2022/101703 CN2022101703W WO2023087715A1 WO 2023087715 A1 WO2023087715 A1 WO 2023087715A1 CN 2022101703 W CN2022101703 W CN 2022101703W WO 2023087715 A1 WO2023087715 A1 WO 2023087715A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
servo
scanning
swing arm
base
Prior art date
Application number
PCT/CN2022/101703
Other languages
English (en)
French (fr)
Inventor
肖国栋
余谦
Original Assignee
无锡有田五维增材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡有田五维增材科技有限公司 filed Critical 无锡有田五维增材科技有限公司
Priority to GB2218289.3A priority Critical patent/GB2617654A/en
Priority to US18/010,579 priority patent/US20240140038A1/en
Publication of WO2023087715A1 publication Critical patent/WO2023087715A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the invention relates to the field of 3D printers, in particular to a five-axis linkage 3D printer.
  • 3D printing technology a kind of rapid prototyping technology, also known as additive manufacturing, is a method based on digital model files, using powdered metal or plastic and other bondable materials to construct objects by layer-by-layer printing. technology.
  • Existing 3D printers are generally three-axis printers, which are based on cumulative printing on a plane. The workpiece to be printed needs to be positioned precisely, the printing time is long, and it is difficult to print the workpiece.
  • a five-axis linkage 3D printer including a nozzle driving unit, a substrate driving unit, a base, an electronic control system, a scanning unit, and a computer;
  • the substrate driving unit is used to drive and control the substrate to rotate on the base;
  • the nozzle driving unit is used to control the position of the nozzle of the 3D printer in the horizontal and vertical directions.
  • the nozzle drive unit includes a first servo module, a second servo module, and a third servo slide module, the first servo module is fixedly installed on the base; the second servo module is slidingly connected to the first servo module, The driving direction of the first servo module is perpendicular to the driving direction of the second servo module in the same horizontal plane, the sliding table of the second servo module is connected with the third servo sliding table module slidingly, and the third servo sliding table module The driving direction is vertically downward; the nozzle is connected with the slider of the third servo slide module.
  • the movement accuracy of the nozzle can be effectively improved through the servo slide module, and the position of the nozzle is controlled in the x, y, and z axes by the first servo module, the second servo module, and the third servo slide module to improve The accuracy of the nozzle position in all directions.
  • the scanning unit is used to scan the motion trajectory of the photographed substrate, and transmit the motion trajectory information to the computer;
  • the electric control system is electrically connected with the substrate drive unit, the first servo module, the second servo module, the third servo slide module, and the nozzle, and is used to control the first servo module, the second servo module, the The movement of the three-servo slide module and the substrate drive unit; the electronic control system is connected with the computer by communication.
  • the electronic control system can effectively control the interaction between the base material drive unit and the nozzle drive unit to improve the accuracy of 3D printing.
  • a control program is provided in the computer, and the control program includes a coordinate calibration module, a scanning module, a restoration module, a registration module, a trajectory planning module and a control module.
  • Coordinate calibration module when the object scanned by the camera and the drive unit of the print head are running, the coordinate system of the scan unit and the coordinate system of the drive unit of the print head are two different coordinate systems. The system is not in the same position, so the coordinate calibration module accurately calculates the coordinate dots through the image recognition algorithm, and unifies the coordinate system of the scanned object and the print head drive module after matrix operation.
  • Scanning module It is used to receive the data transmitted by the scanning module and convert the data into three-dimensional model data. After the coordinate calibration module, the model is transferred from the scanning unit coordinate system to the nozzle drive unit coordinate system.
  • Repair module During the scanning process of the camera, due to lighting, color and operation, etc., the scanned model will have holes, cracks, reverse and other problems. During the printing process, the system reads the scanned model after confirmation by the camera, and the repair module will automatically repair the object.
  • the repair process is: on the 3D model of the object to be printed, find all the half edges without partner half edges through the half edge structure, and store them in the container A1; through the container A1, obtain the information of a circle of holes connected end to end, that is, vector ⁇ hole>; traverse Container A1, to obtain all the hole information on the model, namely vector ⁇ vector ⁇ hole>>; calculate the area weighted normal and included angle of each point in each hole; calculate the flatness of each point; the flatness of all points Sorting; fill holes from the point with the lowest flatness, if the flatness of the point is less than 90°, and the patched patch does not frame other hole points, fill the hole; otherwise, judge the next point; execute in a loop Repeat the steps until all holes are filled.
  • the repair module is also used to transform the model coordinates, automatically transforming the model from the camera coordinate system to the machine tool coordinate system.
  • Registration module used to modify and register the scanned 3D model.
  • the 3D model is scaled according to the requirements; rotate the object to be printed, and move the 3D model to the object to be printed; intersect the 3D model and the object to be printed to complete the registration.
  • the scanning module projects the repaired 3D model data into the machine tool coordinate system through the projection relationship between the scanner coordinate system and the machine tool coordinate system.
  • the registration module can also add and modify the shape of the 3D model or uniformly set the position parameters through this module.
  • Trajectory planning module After scanning, repairing and registration processes, print trajectory planning is performed according to the driving characteristics of the printhead drive unit.
  • the planning process is: select the appropriate layered surface according to the requirements; perform Boolean intersecting between the layered surface and the 3D model to find the intersection line, and classify the inner and outer contours of the contours, and finally match the inner and outer contours , determine the filling area; for each filling area, determine an initial filling trajectory according to the filling method; cover the filling area by offsetting the initial filling trajectory, and finally cut the filling trajectory through the boundary contour of the filling area to remove the filling According to the thickness of the process layer, the layered surface is equidistantly offset to get the next layered surface, and the above steps are repeated until there is no intersecting area between the layered surface and the printed model.
  • the trajectory planning module will automatically convert the intermediate path into NC code and send the G code to the control module through the CNC module.
  • Control module used to receive trajectory path planning instructions and transmit them to the electronic control system.
  • the base material driving unit includes a trapezoidal swing arm, a first drive motor, and a second drive motor; the swing arm is trapezoidal, and the swing arm is elongated.
  • This structure has stability and high rigidity, resulting in high processing accuracy.
  • a groove is provided on the base, and the trapezoidal swing arm is arranged in the groove, and the two ends of the trapezoidal swing arm are respectively connected to the base in rotation.
  • the first drive motor is rotationally connected to the bottom of the trapezoidal swing arm, and the second drive motor is fixedly connected to one end of the trapezoidal swing arm, so that the center of the turntable rotation axis is set below the center of the rotation axis of the cradle arm, so that the rotation axis of the lower cradle arm rotates at plus or minus 90 °, the lower semicircle is formed, so that the overall height and cost of the body can be reduced.
  • the scanning unit includes a camera and an adjustment bracket; the adjustment bracket is fixedly installed on the base, the camera is fixedly connected to one end of the adjustment bracket, and the distance between the camera and the base can be adjusted by the adjustment bracket.
  • the adjusting bracket includes an L-shaped bracket and a connecting rod.
  • the L-shaped bracket is fixedly installed on the base, one end of the connecting rod is provided with a fixed plate, the camera is fixedly installed on the fixed plate, the L-shaped bracket is provided with a locking piece, the connecting rod runs through the L-shaped bracket, and the locking piece is locked and connected pole. The different positions on the connecting rod are locked by the locking piece, and the distance between the camera and the base can be adjusted by adjusting the bracket.
  • the slider of the second servo module is provided with a T-shaped bracket, one end of the T-shaped bracket is fixedly connected with the slider, the other end of the T-shaped bracket is fixedly connected with the third servo slider module, and the third servo slider
  • the driving direction of the table module is vertically downward.
  • the first drive motor is a harmonic reducer.
  • the advantages of using a harmonic reducer are: large transmission speed ratio, high load capacity, high transmission precision, high transmission efficiency, stable movement, simple structure, easy installation, small size, light weight, and low cost.
  • the second drive motor is a harmonic reducer.
  • the base is provided with a fixed bracket and a support seat
  • the fixed bracket is provided with a first bearing seat
  • the first bearing seat is rotatably connected to one end of the trapezoidal swing arm
  • the nozzle drive unit is fixedly installed on the support seat
  • the support seat A second bearing seat is provided on the side wall, and the second bearing seat is rotatably connected to the other end of the trapezoidal swing arm; the first bearing seat and the second bearing seat are located at the same height.
  • the electric control system includes an electric control cabinet, in which there is a control card system, the control card system and the substrate drive unit, the first servo module, the second servo module, the third servo slide module, The print head and the scanning unit are electrically connected.
  • the device of the present invention has the following advantages:
  • the driving device realizes precise control of the position of the nozzle in the x, y, and z axis directions through the nozzle driving unit.
  • the turntable is placed inside the groove of the base, and the trapezoidal swing arm is used, so that the rotation center is lower than the swing arm rotation center, reducing the height of the turntable, thereby reducing the overall height of the driving device, and also Reduced costs.
  • the nozzle driving unit and substrate driving unit the five-axis movement can be realized, which can make the nozzle move to any position in the workpiece coordinate system, which can greatly reduce the difficulty of printing the workpiece, shorten the printing time, and realize the complexity that the three-axis 3D machine cannot achieve.
  • the manufacture of shaped workpieces saves support materials for printing various complex parts, improves the utilization rate of materials, saves printing time and cost, and achieves green and efficient printing effects.
  • Fig. 1 is a structural schematic diagram of a five-axis linkage 3D printer
  • Fig. 2 is a structural schematic diagram of a substrate driving unit in a five-axis linkage 3D printer
  • a five-axis linkage 3D printer comprising a nozzle 6, a nozzle driving unit, a substrate driving unit, a base 4, an electronic control system, a scanning unit, and a computer;
  • the substrate driving unit includes a trapezoidal swing arm 5, a first drive motor 9, and a second drive motor 10; the swing arm is trapezoidal and elongated, and this structure has stability and high rigidity, resulting in high processing accuracy.
  • a groove 8 is provided on the base 4 .
  • the base 4 is provided with a fixed bracket 12 and a support seat 14 .
  • the fixed bracket 12 is provided with a first bearing seat 13, and the first bearing seat 13 is rotatably connected with one end of the trapezoidal swing arm 5, and a second bearing seat 11 is arranged on the side wall of the support seat 14, and the second bearing seat 11 is connected with the trapezoidal pendulum arm.
  • the other end of the arm 5 is rotatably connected; the first bearing seat 13 and the second bearing seat 11 are at the same height, so that the substrate driving unit is arranged in the groove 8 .
  • the first drive motor 9 is rotationally connected to the bottom of the trapezoidal swing arm 5, so that the rotating shaft of the cradle arm rotates by plus or minus 90° , the lower semicircle is formed, which reduces the overall height and cost of the body.
  • the first drive motor 9 and the second drive motor 10 are both harmonic reducers.
  • the advantages of using a harmonic reducer are: large transmission speed ratio, high load capacity, high transmission precision, high transmission efficiency, stable movement, simple structure, easy installation, small size, light weight, and low cost.
  • the nozzle driving unit is used to control the position of the nozzle 6 of the 3D printer in the horizontal and vertical directions.
  • the nozzle drive unit includes a first servo module 1, a second servo module 2, and a third servo slide module 3, the first servo module 1 is fixedly installed on the base 4; the second servo module 2 and the third A servo module 1 is slidingly connected, the driving direction of the first servo module 1 and the driving direction of the second servo module 2 are vertical in the same horizontal plane, and the slider of the second servo module 2 is provided with a T-shaped bracket 7, One end of the T-shaped bracket 7 is fixedly connected with the slider, and the other end of the T-shaped bracket is fixedly connected with the third servo slide module 3, and the driving direction of the third servo slide module 3 is vertically downward.
  • the shower head 6 is connected with the slider of the third servo slide module 3 .
  • the movement accuracy of the nozzle 6 can be effectively improved through the servo slide module, and the nozzle is controlled in the x, y, and z axis directions by the first servo module 1, the second servo module 2, and the third servo slide module 3 6 position, improve the accuracy of the nozzle 6 omni-directional position.
  • the scanning unit is used to scan the motion trajectory of the photographed substrate, and transmit the motion trajectory information to the computer.
  • the scanning unit includes a camera and an adjustment bracket; the adjustment bracket is fixedly installed on the base, the camera is fixedly connected to one end of the adjustment bracket, and the adjustment bracket can adjust the distance between the camera and the base.
  • the adjusting bracket includes an L-shaped bracket and a connecting rod.
  • the L-shaped bracket is fixedly installed on the base, one end of the connecting rod is provided with a fixed plate, the camera is fixedly installed on the fixed plate, the L-shaped bracket is provided with a locking piece, the connecting rod runs through the L-shaped bracket, and the locking piece is locked and connected pole. The different positions on the connecting rod are locked by the locking piece, and the distance between the camera and the base can be adjusted by adjusting the bracket.
  • the electric control system includes an electric control cabinet, in which there is a control card system, the control card system is connected with the first drive motor 9, the second drive motor 10, the first servo module 1, the second servo module 2, the third
  • the servo slide module 3 is electrically connected, and the electronic control system is connected to the computer by communication.
  • the control card system in the electronic control system can effectively control the interaction between the base material drive unit and the nozzle drive unit to improve the accuracy of 3D printing.
  • a control program is provided in the computer, and the control program includes a coordinate calibration module, a scanning module, a restoration module, a registration module, a trajectory planning module and a control module.
  • Coordinate calibration module when the object scanned by the camera and the drive unit of the print head are running, the coordinate system of the scan unit and the coordinate system of the drive unit of the print head are two different coordinate systems. The system is not in the same position, so the coordinate calibration module accurately calculates the coordinate dots through the image recognition algorithm, and unifies the coordinate system of the scanned object and the print head drive module after matrix operation.
  • Scanning module It is used to receive the data transmitted by the scanning module and convert the data into three-dimensional model data. After the coordinate calibration module, the model is transferred from the scanning unit coordinate system to the nozzle drive unit coordinate system.
  • Repair module During the scanning process of the camera, due to lighting, color and operation, etc., the scanned model will have holes, cracks, reverse and other problems. During the printing process, the system reads the scanned model after confirmation by the camera, and the repair module will automatically repair the object.
  • the repair process is: on the 3D model of the object to be printed, find all the half edges without partner half edges through the half edge structure, and store them in the container A1; through the container A1, obtain the information of a circle of holes connected end to end, that is, vector ⁇ hole>; traverse Container A1, to obtain all the hole information on the model, namely vector ⁇ vector ⁇ hole>>; calculate the area weighted normal and included angle of each point in each hole; calculate the flatness of each point; the flatness of all points Sorting; fill holes from the point with the lowest flatness, if the flatness of the point is less than 90°, and the patched patch does not frame other hole points, fill the hole; otherwise, judge the next point; execute in a loop Repeat the steps until all holes are filled.
  • the repair module is also used to transform the model coordinates, automatically transforming the model from the camera coordinate system to the machine tool coordinate system.
  • Registration module used to modify and register the scanned 3D model.
  • the 3D model can be scaled according to the requirements; rotate the object to be printed, and move the 3D model to the object to be printed; intersect the 3D model and the object to be printed to complete the registration.
  • the scanning module projects the repaired 3D model data into the machine tool coordinate system through the projection relationship between the scanner coordinate system and the machine tool coordinate system.
  • the registration module can also add and modify the shape of the three-dimensional model or uniformly set the position parameters through this module.
  • Trajectory planning module After scanning, repairing and registration processes, print trajectory planning is performed according to the driving characteristics of the printhead drive unit.
  • the planning process is: select the appropriate layered surface according to the requirements; perform Boolean intersecting between the layered surface and the 3D model to find the intersection line, and classify the inner and outer contours of the contours, and finally match the inner and outer contours , determine the filling area; for each filling area, determine an initial filling trajectory according to the filling method; cover the filling area by offsetting the initial filling trajectory, and finally cut the filling trajectory through the boundary contour of the filling area to remove the filling According to the thickness of the process layer, the layered surface is equidistantly offset to get the next layered surface, and the above steps are repeated until there is no intersecting area between the layered surface and the printed model.
  • the trajectory planning module will automatically convert the intermediate path into NC code and send the G code to the control module through the CNC module.
  • Control module used to receive trajectory path planning instructions and transmit them to the electronic control system.
  • the workflow of the five-axis linkage 3D printer is as follows: after the camera is fixed at a suitable position, the electronic control system controls the rotation of the first drive motor, and the camera scans the solid model to be printed into 3D model data to the computer.
  • the computer first The coordinate system of the scanning object and the print head driving module is unified through the coordinate calibration module. Then the received 3D model is repaired by the repair module, registered by the registration module, and then the 3D model after registration is passed through the trajectory planning module, and the printing trajectory is planned according to the driving characteristics of the nozzle drive unit.
  • the trajectory planning module will Automatically convert the intermediate path into NC code and send the G code to the control module through the numerical control module, and finally transmit the trajectory path planning instruction to the electronic control system through the control module.
  • the electronic control system operates according to the instructions to realize 3D printing.
  • the present invention has the following advantages: the driving device realizes precise control of the position of the nozzle in the directions of x, y, and z axes through the nozzle driving unit.
  • the substrate driving unit Through the substrate driving unit, the turntable is placed inside the groove of the base, and the trapezoidal swing arm is used, so that the rotation center is lower than the swing arm rotation center, reducing the height of the turntable, thereby reducing the overall height of the driving device, and also Reduced costs.
  • the nozzle driving unit and substrate driving unit the five-axis movement can be realized, which can make the nozzle move to any position in the workpiece coordinate system, which can greatly reduce the difficulty of printing the workpiece, shorten the printing time, and realize the complexity that the three-axis 3D machine cannot achieve.
  • the manufacture of shaped workpieces saves support materials for printing various complex parts, improves the utilization rate of materials, saves printing time and cost, and achieves green and efficient printing effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种五轴联动3d打印机,涉及3D打印机领域。该装置中基材驱动单元用于驱动控制基材在基座上进行旋转运动;喷头驱动单元用于在水平和竖直方向上控制3D打印机的喷头的位置;扫描单元用于扫描拍摄基材的运动轨迹,并将运动轨迹信息传输至电控系统中;电控系统用于收集扫描单元的信息并控制喷头驱动单元、基材驱动单元的运动。该装置实现了在x、y、z轴方向上精确控制喷头的位置,且将转台放置在基座的凹槽内部,且使用梯形摆臂,使得旋转中心低于摆臂旋转中心,降低了转台的高度,从而降低了驱动装置整体的高度,并且也降低了成本。

Description

一种五轴联动3d打印机 技术领域
本发明涉及3D打印机领域,尤其涉及一种五轴联动3d打印机。
背景技术
3D打印技术,快速成型技术的一种,又称增材制造,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。现有3D打印机一般均为三轴打印机,是基于平面上的累积打印,打印工件需要精确定位,打印时间长,而且打印工件难度较大。
发明内容
为了实现在传统3D打印基础上新增加两个维度,在打印过程中实现在水平面360度旋转以及实现左右正负90度旋转,同时提高打印效率,实现多维角度的打印,节约打印时间,降低打印成本。本发明采用以下技术方案:
一种五轴联动3d打印机,包括喷头驱动单元、基材驱动单元、基座、电控系统、扫描单元、计算机;
基材驱动单元用于驱动控制基材在基座上进行旋转运动;
喷头驱动单元用于在水平和竖直方向上控制3D打印机的喷头的位置。喷头驱动单元包括第一伺服模组、第二伺服模组、第三伺服滑台模组,第一伺服模组固定安装于基座上;第二伺服模组与第一伺服模组滑动连接,第一伺服模组的驱动方向与第二伺服模组的驱动方向在同一水平面内垂直,第二伺服模组的滑台与第三伺服滑台模组滑动连接,第三伺服滑台模组的驱动方向竖直向下;喷头与第三伺服滑台模组的滑块连接。通过伺服滑台模组可以有效的提升喷头移动精度,通过第一伺服模组、第二伺服模组、第三伺服滑台模组分别在x、y、z轴方向上控制喷头的位置,提高喷头全方位位置的准确率。
扫描单元用于扫描拍摄基材的运动轨迹,并将运动轨迹信息传输至计算机中;
电控系统与基材驱动单元、第一伺服模组、第二伺服模组、第三伺服滑台模组、喷头电性连接,并用于控制第一伺服模组、第二伺服模组、第三伺服滑台模组、基材驱动单元的运动;电控系统与计算机通信连接。通过电控系统可有效的控制基材驱动单元与喷头驱动单元相互配合,提高3d打印的准确率。
计算机内设有控制程序,控制程序包括坐标标定模块、扫描模块、修复模块、配准模块、轨迹规划模块、控制模块。
坐标标定模块:由于摄像头扫描物体与喷头驱动单元运转时,扫描单元坐标系与喷头驱动单元坐标系是两个不同的坐标系,在没有统一坐标系的情况下,摄像头扫描的成型物体在机床坐标系下不在同一位置,所以坐标标定模块经过图像识别算法精准计算坐标圆点,经过矩阵运算后将扫描物体与喷头驱动模块坐标系进行统一。
扫描模块:用于接收扫描模块传输的数据,并将数据转化成三维模型数据,经过坐标标定模块后将模型从扫描单元坐标系转到喷头驱动单元坐标系中。
修复模块:摄像头在扫描的过程中,因为光照、颜色和操作等原因,导致扫描的模型会出现孔洞、裂缝、反向等问题。在打印流程中,经过摄像头确认后系统读入扫描模型,修复模块会自动进行物体修复。修复的过程为:在待打印物体的三维模型上,通过半边结构寻找所有没有伙伴半边的半边,存储到容器A1中;通过容器A1,获取首尾相连一圈孔洞信息,即vector<hole>;遍历容器A1,获取模型上所有的孔洞信息,即vector<vector<hole>>;计算每个孔洞中每一个点的面积加权法向和夹角;计算每个点的平展度;对所有点平展度进行排序;从平展度最低的点开始补洞,如果点的平展度小于90°,且补出来的面片都没有将其他孔洞点框入其中,进行补洞;否则判断下一个点;循环执行上一步骤,直至所有的孔洞都填补完毕。修复模块还用于将模型坐标进行转换,自动将模型从摄像头坐标系转到机床坐标系。
配准模块:用于对扫描完成后的三维模型进行修改配准。根据待打印物体的实物尺寸,按照需求对三维模型进行任意比例缩放;旋转待打印物体,并移动三维模型到待打印物体;对三维模型和待打印物体进行求交, 完成配准。扫描模块通过扫描仪坐标系与机床坐标系的投影关系,将修复好的三维模型数据投影到机床坐标系下。配准模块还可以通过该的模块对三维模型进行形状添加修改或是位置参数的统一设定。
轨迹规划模块:经过扫描、修复和配准流程后,根据喷头驱动单元的驱动特点进行打印轨迹规划。规划的过程为:根据需求选择合适的分层曲面;将分层曲面与三维模型进行布尔求交,求出其交线,并对轮廓进行内外轮廓的分类,最后把内轮廓与外轮廓进行匹配,确定填充区域;对于每个填充区域,根据填充方式,确定一条初始填充轨迹;通过对初始填充轨迹的偏置,对填充区域进行覆盖,最后通过填充区域边界轮廓对填充轨迹进行裁剪,去掉填充区域外的轨迹,得到实际的填充轨迹;根据工艺层厚的大小,对分层曲面进行等距偏置,得到下一个分层曲面,重复上述步骤,直到分层曲面与打印模型无相交区域。轨迹规划模块会自动将中间路径转换为NC代码并通过数控模块将G代码发送给控制模块。
控制模块:用于接收轨迹路径规划指令并传输至电控系统。
具体的,基材驱动单元包括梯形摆臂、第一驱动电机、第二驱动电机;摆臂为梯形,且摆臂加长,这种结构具有稳定性、高刚性,使得加工精度高。为了使机床整体结构高度在合适范围内,所以在基座上开设有凹槽,梯形摆臂设置于凹槽内,梯形摆臂的两端分别与基座转动连接。第一驱动电机与梯形摆臂底部转动连接,第二驱动电机与梯形摆臂的一端固定连接,这样把转台旋转轴中心设置于摇篮臂转轴中心的下面,这样下摇篮臂转轴在旋转正负90°的时候,就形成了下半圆,这样就可以使得本体的总高度和成本降低。
具体的,扫描单元包括摄像头、调节支架;调节支架固定安装于基座上,摄像头与调节支架的一端固定连接,调节支架可调节摄像头与基座之间的距离。其中,调节支架包括L型支架、连接杆。L型支架固定安装于基座上,连接杆的一端设有固定板,摄像头固定安装于固定板上,L型支架上设有锁紧件,连接杆贯穿L型支架,锁紧件锁紧连接杆。通过锁紧件锁紧连接杆上的不同位置,调节支架可调节摄像头与基座之间的距离。
具体的,第二伺服模组的滑块上设有T形支架,T形支架的一端与滑块固定连接,T形支架的另一端与第三伺服滑台模组固定连接,第三伺服 滑台模组的驱动方向竖直向下。
具体的,第一驱动电机为谐波减速机。使用谐波减速机的优点为:传动速比大,承载能力高,传动精度高,传动效率高,运动平稳,结构简单,安装方便,体积小重量轻,成本低。
具体的,第二驱动电机为谐波减速机。
具体的,基座上设有固定支架、支撑座,固定支架上设有第一轴承座,第一轴承座与梯形摆臂的一端可转动连接,喷头驱动单元固定安装于支撑座上,支撑座侧壁上设有第二轴承座,第二轴承座与梯形摆臂的另一端可转动连接;第一轴承座与第二轴承座位于同一高度。
具体的,电控系统包括电控柜,电控柜内设有控制卡系统,控制卡系统与基材驱动单元、第一伺服模组、第二伺服模组、第三伺服滑台模组、喷头、扫描单元电性连接。
综上所述,本发明本装置具有以下优点:
该驱动装置通过喷头驱动单元实现了在x、y、z轴方向上精确控制喷头的位置。通过基材驱动单元,将转台放置在基座的凹槽内部,且使用梯形摆臂,使得旋转中心低于摆臂旋转中心,降低了转台的高度,从而降低了驱动装置整体的高度,并且也降低了成本。通过喷头驱动单元和基材驱动单元,实现五轴运动,能够使得喷头移动到工件坐标系内的任意位置,可以大大减少打印工件的难度,缩短打印时间,实现三轴3D机所实现不了的复杂形状工件的制造,为打印各种复杂零件节约支撑材料,提高材料的利用率,节约了打印时间和成本,达到绿色、高效的打印效果。
附图说明
图1是一种五轴联动3d打印机的结构示意图;
图2是一种五轴联动3d打印机中基材驱动单元的结构示意图;
附图标记:1第一伺服模组;2第二伺服模组;3第三伺服滑台模组;4基座;5梯形摆臂;6喷头;7T形支架;8凹槽;9第一驱动电机;10第二驱动电机;11第二轴承座;12固定支架;13第一轴承座;14支撑座;15摄像头;16滑台。
具体实施方式
下面结合图1至图2对本发明做进一步说明。
一种五轴联动3d打印机,包括喷头6、喷头驱动单元、基材驱动单元、基座4、电控系统、扫描单元、计算机;
基材驱动单元包括梯形摆臂5、第一驱动电机9、第二驱动电机10;摆臂为梯形,且摆臂加长,这种结构具有稳定性、高刚性,使得加工精度高。为了使机床整体结构高度在合适范围内,所以在基座4上开设有凹槽8。为了将基材驱动单元设置于凹槽8内,所以在基座4上设有固定支架12、支撑座14。固定支架12上设有第一轴承座13,第一轴承座13与梯形摆臂5的一端可转动连接,支撑座14侧壁上设有第二轴承座11,第二轴承座11与梯形摆臂5的另一端可转动连接;第一轴承座13与第二轴承座11位于同一高度,这样就使得基材驱动单元设置于凹槽8内。为了使得打印基体能够实现旋转且使得转台旋转轴中心设置于摇篮臂转轴中心的下面,所以将第一驱动电机9与梯形摆臂5底部转动连接,这样摇篮臂转轴在旋转正负90°的时候,就形成了下半圆,也就使得本体的总高度和成本降低。其中第一驱动电机9和第二驱动电机10都为谐波减速机。使用谐波减速机的优点为:传动速比大,承载能力高,传动精度高,传动效率高,运动平稳,结构简单,安装方便,体积小重量轻,成本低。
喷头驱动单元用于在水平和竖直方向上控制3D打印机的喷头6的位置。其中喷头驱动单元包括第一伺服模组1、第二伺服模组2、第三伺服滑台模组3,第一伺服模组1固定安装于基座4上;第二伺服模组2与第一伺服模组1滑动连接,第一伺服模组1的驱动方向与第二伺服模组2的驱动方向在同一水平面内垂直,第二伺服模组2的滑块上设有T形支架7,T形支架7的一端与滑块固定连接,T形支架的另一端与第三伺服滑台模组3固定连接,第三伺服滑台模组3的驱动方向竖直向下。喷头6与第三伺服滑台模组3的滑块连接。通过伺服滑台模组可以有效的提升喷头6移动精度,通过第一伺服模组1、第二伺服模组2、第三伺服滑台模组3分别在x、y、z轴方向上控制喷头6的位置,提高喷头6全方位位置的准确率。
扫描单元用于扫描拍摄基材的运动轨迹,并将所述运动轨迹信息传输至所述计算机中。扫描单元包括摄像头、调节支架;调节支架固定安装于基座上,摄像头与调节支架的一端固定连接,调节支架可调节摄像头与基 座之间的距离。其中,调节支架包括L型支架、连接杆。L型支架固定安装于基座上,连接杆的一端设有固定板,摄像头固定安装于固定板上,L型支架上设有锁紧件,连接杆贯穿L型支架,锁紧件锁紧连接杆。通过锁紧件锁紧连接杆上的不同位置,调节支架可调节摄像头与基座之间的距离。
电控系统包括电控柜,电控柜内设有控制卡系统,控制卡系统与第一驱动电机9、第二驱动电机10、第一伺服模组1、第二伺服模组2、第三伺服滑台模组3电性连接,电控系统与计算机通信连接。通过电控系统中的控制卡系统可有效的控制基材驱动单元与喷头驱动单元相互配合,提高3d打印的准确率。
计算机内设有控制程序,控制程序包括坐标标定模块、扫描模块、修复模块、配准模块、轨迹规划模块、控制模块。
坐标标定模块:由于摄像头扫描物体与喷头驱动单元运转时,扫描单元坐标系与喷头驱动单元坐标系是两个不同的坐标系,在没有统一坐标系的情况下,摄像头扫描的成型物体在机床坐标系下不在同一位置,所以坐标标定模块经过图像识别算法精准计算坐标圆点,经过矩阵运算后将扫描物体与喷头驱动模块坐标系进行统一。
扫描模块:用于接收扫描模块传输的数据,并将数据转化成三维模型数据,经过坐标标定模块后将模型从扫描单元坐标系转到喷头驱动单元坐标系中。
修复模块:摄像头在扫描的过程中,因为光照、颜色和操作等原因,导致扫描的模型会出现孔洞、裂缝、反向等问题。在打印流程中,经过摄像头确认后系统读入扫描模型,修复模块会自动进行物体修复。修复的过程为:在待打印物体的三维模型上,通过半边结构寻找所有没有伙伴半边的半边,存储到容器A1中;通过容器A1,获取首尾相连一圈孔洞信息,即vector<hole>;遍历容器A1,获取模型上所有的孔洞信息,即vector<vector<hole>>;计算每个孔洞中每一个点的面积加权法向和夹角;计算每个点的平展度;对所有点平展度进行排序;从平展度最低的点开始补洞,如果点的平展度小于90°,且补出来的面片都没有将其他孔洞点框入其中,进行补洞;否则判断下一个点;循环执行上一步骤,直至所有 的孔洞都填补完毕。修复模块还用于将模型坐标进行转换,自动将模型从摄像头坐标系转到机床坐标系。
配准模块:用于对扫描完成后的三维模型进行修改配准。根据待打印物体的实物尺寸,按照需求对三维模型进行任意比例缩放;旋转待打印物体,并移动三维模型到待打印物体;对三维模型和待打印物体进行求交,完成配准。扫描模块通过扫描仪坐标系与机床坐标系的投影关系,将修复好的三维模型数据投影到机床坐标系下。配准模块还可以通过该模块对三维模型进行形状添加修改或是位置参数的统一设定。
轨迹规划模块:经过扫描、修复和配准流程后,根据喷头驱动单元的驱动特点进行打印轨迹规划。规划的过程为:根据需求选择合适的分层曲面;将分层曲面与三维模型进行布尔求交,求出其交线,并对轮廓进行内外轮廓的分类,最后把内轮廓与外轮廓进行匹配,确定填充区域;对于每个填充区域,根据填充方式,确定一条初始填充轨迹;通过对初始填充轨迹的偏置,对填充区域进行覆盖,最后通过填充区域边界轮廓对填充轨迹进行裁剪,去掉填充区域外的轨迹,得到实际的填充轨迹;根据工艺层厚的大小,对分层曲面进行等距偏置,得到下一个分层曲面,重复上述步骤,直到分层曲面与打印模型无相交区域。轨迹规划模块会自动将中间路径转换为NC代码并通过数控模块将G代码发送给控制模块。
控制模块:用于接收轨迹路径规划指令并传输至电控系统。
该五轴联动3d打印机的工作流程为:将摄像头固定至合适位置处后,电控系统控制第一驱动电机旋转,摄像头将需要打印的实体模型扫描成三维模型数据至计算机,在计算机中,首先通过坐标标定模块将扫描物体与喷头驱动模块坐标系进行统一。再将接收的三维模型通过修复模块进行修复,通过配准模块进行配准,再将配准完成后的三维模块通过轨迹规划模块,根据喷头驱动单元的驱动特点进行打印轨迹规划,轨迹规划模块会自动将中间路径转换为NC代码并通过数控模块将G代码发送给控制模块,最后通过控制模块将轨迹路径规划指令传输至电控系统。电控系统按照指令进行运转,实现3d打印。
综上所述,本发明具有以下优点:该驱动装置通过喷头驱动单元实现了在x、y、z轴方向上精确控制喷头的位置。通过基材驱动单元,将转台 放置在基座的凹槽内部,且使用梯形摆臂,使得旋转中心低于摆臂旋转中心,降低了转台的高度,从而降低了驱动装置整体的高度,并且也降低了成本。通过喷头驱动单元和基材驱动单元,实现五轴运动,能够使得喷头移动到工件坐标系内的任意位置,可以大大减少打印工件的难度,缩短打印时间,实现三轴3D机所实现不了的复杂形状工件的制造,为打印各种复杂零件节约支撑材料,提高材料的利用率,节约了打印时间和成本,达到绿色、高效的打印效果。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案。本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。

Claims (8)

  1. 一种五轴联动3d打印机,其特征在于,包括喷头驱动单元、基材驱动单元、基座、电控系统、扫描单元、计算机;
    所述基材驱动单元用于驱动控制基材在基座上进行旋转运动;
    所述喷头驱动单元包括第一伺服模组、第二伺服模组、第三伺服滑台模组、喷头;所述第一伺服模组设置于所述基座上;所述第二伺服模组与所述第一伺服模组滑动连接,所述第一伺服模组的驱动方向与所述第二伺服模组的驱动方向在垂直,所述第二伺服模组的滑台与所述第三伺服滑台模组滑动连接,所述第三伺服滑台模组的驱动方向同时垂直于所述第一伺服模组的驱动方向和所述第二伺服模组驱动的驱动方向;所述喷头与所述第三伺服滑台模组滑动连接;
    所述扫描单元用于扫描拍摄基材的运动轨迹,并将所述运动轨迹信息传输至所述计算机中;
    所述电控系统与所述基材驱动单元、所述第一伺服模组、所述第二伺服模组、所述第三伺服滑台模组、所述喷头电性连接,并用于控制所述第一伺服模组、所述第二伺服模组、所述第三伺服滑台模组、所述基材驱动单元的运动;所述电控系统与所述计算机通信连接;
    所述计算机内设有控制程序,所述控制程序包括坐标标定模块、扫描模块、修复模块、配准模块、轨迹规划模块、控制模块;所述扫描模块用于接收所述扫描模块传输的数据,并将所述数据转化成三维模型数据;所述坐标标定模块用于将所述扫描模块的坐标系与喷头驱动单元的坐标系统一一致;所述配准模块用于对扫描完成后的三维模型进行修改配准;所述修复模块用于对扫描完成后的三维模型进行物体修复,并将三维模型从扫描模块的坐标系转到机床的坐标系;所述轨迹规划模块用于经过扫描模块、修复模块和配准模块后的三维模型对五轴打印轨迹规划,并下发指令至所述控制模块;所述控制模块用于接收轨迹路径规划指令并传输至电控系统。
  2. 根据权利要求1所述一种五轴联动3d打印机,其特征在于,所述基材驱动单元包括梯形摆臂、第一驱动电机、第二驱动电机、转盘;所述基座上开设有凹槽,所述梯形摆臂设置于所述凹槽内,所述梯形摆臂的两 端分别与所述基座转动连接,所述第一驱动电机固定安装于所述梯形摆臂底部,所述第一驱动电机与所述转盘连接并驱动所述转盘转动,所述第二驱动电机与所述梯形摆臂的一端连接并驱动所述梯形摆臂转动。
  3. 根据权利要求1所述一种五轴联动3d打印机,其特征在于,所述扫描单元包括摄像头、调节支架;所述调节支架固定安装于所述基座上,所述摄像头与所述调节支架的一端固定连接,所述调节支架可调节所述摄像头与所述基座之间的距离。
  4. 根据权利要求1所述一种五轴联动3d打印机,其特征在于,所述第二伺服模组的滑块上设有T形支架,所述T形支架的一端与所述滑块固定连接,所述T形支架的另一端与所述第三伺服滑台模组固定连接。
  5. 根据权利要求2所述一种五轴联动3d打印机,其特征在于,所述第一驱动电机为谐波减速机。
  6. 根据权利要求2所述一种五轴联动3d打印机,其特征在于,所述第二驱动电机为谐波减速机。
  7. 根据权利要求1所述一种五轴联动3d打印机,其特征在于,所述电控系统包括电控柜,所述电控柜内设有控制卡系统,所述控制卡系统与所述基材驱动单元、所述第一伺服模组、所述第二伺服模组、所述第三伺服滑台模组、所述喷头、所述扫描单元电性连接。
  8. 根据权利要求2所述一种五轴联动3d打印机,其特征在于,所述基座上设有固定支架、支撑座,所述固定支架上设有第一轴承座,所述第一轴承座与所述梯形摆臂的一端可转动连接,所述支撑座固定安装于所述基座上,所述支撑座侧壁上设有第二轴承座,所述第二轴承座与所述梯形摆臂的另一端可转动连接,所述第一轴承座与所述第二轴承座位于同一高度,所述第二驱动电机与所述第二轴承座连接驱动所述梯形摆臂转动;所述第一伺服模组固定安装于所述支撑座上。
PCT/CN2022/101703 2021-11-17 2022-06-28 一种五轴联动3d打印机 WO2023087715A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2218289.3A GB2617654A (en) 2021-11-17 2022-06-28 Five-axis linkage 3D printer
US18/010,579 US20240140038A1 (en) 2021-11-17 2022-06-28 Five-axis linkage 3d printer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111362273.7A CN113997569A (zh) 2021-11-17 2021-11-17 一种五轴联动3d打印机
CN202111362273.7 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023087715A1 true WO2023087715A1 (zh) 2023-05-25

Family

ID=79929304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101703 WO2023087715A1 (zh) 2021-11-17 2022-06-28 一种五轴联动3d打印机

Country Status (4)

Country Link
CN (1) CN113997569A (zh)
NL (1) NL2031973B1 (zh)
WO (1) WO2023087715A1 (zh)
ZA (1) ZA202211909B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114055779A (zh) * 2021-11-17 2022-02-18 无锡有田五维增材科技有限公司 五轴打印系统及五轴打印轨迹确定方法
CN113997569A (zh) * 2021-11-17 2022-02-01 无锡有田五维增材科技有限公司 一种五轴联动3d打印机
GB2617654A (en) * 2021-11-17 2023-10-18 Wuxi Youtinn Wuwei Additive Tech Co Ltd Five-axis linkage 3D printer
CN118287695A (zh) * 2022-09-23 2024-07-05 无锡有田五维增材科技有限公司 航空用钛合金高精度3d打印机的供料系统
CN115700179B (zh) * 2022-10-27 2024-07-09 无锡有田五维增材科技有限公司 脉冲式3d打印机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206201478U (zh) * 2016-11-03 2017-05-31 中国电子科技集团公司第三十三研究所 一种用于在曲面表面进行图形打印的五轴联动装置
CN211467488U (zh) * 2019-12-16 2020-09-11 芜湖市爱三迪电子科技有限公司 一种大尺寸高速高精五轴联动3d打印机
WO2020263205A2 (en) * 2019-06-25 2020-12-30 Tobb Ekonomi Ve Teknoloji Universitesi Printing table and operation mode thereof
CN112622260A (zh) * 2020-12-01 2021-04-09 合肥工业大学 一种五轴硅胶3d打印机及其打印方法
CN113997569A (zh) * 2021-11-17 2022-02-01 无锡有田五维增材科技有限公司 一种五轴联动3d打印机
CN216635400U (zh) * 2021-11-17 2022-05-31 无锡有田五维增材科技有限公司 一种用于3d打印机的驱动装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104512035A (zh) * 2015-01-27 2015-04-15 姚善良 一种三维扫描打印机
CN107457995B (zh) * 2017-09-18 2019-03-26 安阳工学院 基于nurbs曲面描述的五轴联动3d打印方法
CN109584288B (zh) * 2018-12-26 2023-05-02 苏州大学 一种五轴系统中三维模型的重构方法及系统
CN113199745B (zh) * 2021-01-25 2022-05-17 嘉兴嘉创智医疗设备有限公司 用于打印矫形头盔的3d打印机和3d打印系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206201478U (zh) * 2016-11-03 2017-05-31 中国电子科技集团公司第三十三研究所 一种用于在曲面表面进行图形打印的五轴联动装置
WO2020263205A2 (en) * 2019-06-25 2020-12-30 Tobb Ekonomi Ve Teknoloji Universitesi Printing table and operation mode thereof
CN211467488U (zh) * 2019-12-16 2020-09-11 芜湖市爱三迪电子科技有限公司 一种大尺寸高速高精五轴联动3d打印机
CN112622260A (zh) * 2020-12-01 2021-04-09 合肥工业大学 一种五轴硅胶3d打印机及其打印方法
CN113997569A (zh) * 2021-11-17 2022-02-01 无锡有田五维增材科技有限公司 一种五轴联动3d打印机
CN216635400U (zh) * 2021-11-17 2022-05-31 无锡有田五维增材科技有限公司 一种用于3d打印机的驱动装置

Also Published As

Publication number Publication date
CN113997569A (zh) 2022-02-01
ZA202211909B (en) 2023-01-25
NL2031973A (en) 2023-06-12
NL2031973B1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2023087715A1 (zh) 一种五轴联动3d打印机
CN105291439B (zh) 一种极坐标3d打印机
CN110434671A (zh) 一种基于特征测量的铸造件表面机加工轨迹校准方法
CN111097660B (zh) 一种基于旋转点胶装置的视觉定位纠偏方法
CN105773961B (zh) 3d打印方法
CN109903342A (zh) 一种基于扫描振镜的激光原位加工装备及方法
CN116021391A (zh) 一种基于视觉及力控的柔性打磨抛光设备及方法
CN109271689B (zh) 圆轨迹下空间包络成形包络模轨迹精确计算方法
CN107327130A (zh) 墙面抹平、喷涂机
CN103970071B (zh) 铸件表面清理过程中加工路径的检测及纠正方法
CN105773661B (zh) 水平机器人固定相机下工件平移旋转标定方法
Bausch et al. 3D printing onto unknown uneven surfaces
CN110850810B (zh) 一种基于双基准约束的精加工配准方法
CN115847408A (zh) 一种运维机器人的智能识别和调整位姿方法
CN101468395A (zh) 回转体表面激光快速成形方法及其系统
CN103991218A (zh) 一种极坐标多打印头熔丝成形装置
CN109531996B (zh) 一种基于工位变换的五轴3d打印系统及其打印方法
CN111347676A (zh) 一种角度可调节的3d打印平台
CN207496019U (zh) 一种机器人3d打印机
CN111169002A (zh) 一种打印平面可变的旋转式摆线逼近三维打印承载台
US20240140038A1 (en) Five-axis linkage 3d printer
CN1264630C (zh) 粉末材料六轴机器手激光快速成型系统及成型方法
CN210817467U (zh) 一种3d立体成型激光打印设备
WO2023087878A1 (zh) 五轴打印系统及五轴打印轨迹确定方法
CN115373288A (zh) 一种ac双摆头五轴制孔机床的法向调整方法及系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202218289

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220628

WWE Wipo information: entry into national phase

Ref document number: 18010579

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894258

Country of ref document: EP

Kind code of ref document: A1