WO2023087689A1 - 一种间歇、波动电解制氢控制方法 - Google Patents

一种间歇、波动电解制氢控制方法 Download PDF

Info

Publication number
WO2023087689A1
WO2023087689A1 PCT/CN2022/099163 CN2022099163W WO2023087689A1 WO 2023087689 A1 WO2023087689 A1 WO 2023087689A1 CN 2022099163 W CN2022099163 W CN 2022099163W WO 2023087689 A1 WO2023087689 A1 WO 2023087689A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electrolyzer
power generation
hydrogen production
preset
Prior art date
Application number
PCT/CN2022/099163
Other languages
English (en)
French (fr)
Inventor
任志博
刘丽萍
王金意
余智勇
张畅
Original Assignee
中国华能集团清洁能源技术研究院有限公司
四川华能氢能科技有限公司
华能集团技术创新中心有限公司
四川华能太平驿水电有限责任公司
四川华能宝兴河水电有限责任公司
四川华能嘉陵江水电有限责任公司
四川华能东西关水电股份有限公司
四川华能康定水电有限责任公司
四川华能涪江水电有限责任公司
华能明台电力有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 四川华能氢能科技有限公司, 华能集团技术创新中心有限公司, 四川华能太平驿水电有限责任公司, 四川华能宝兴河水电有限责任公司, 四川华能嘉陵江水电有限责任公司, 四川华能东西关水电股份有限公司, 四川华能康定水电有限责任公司, 四川华能涪江水电有限责任公司, 华能明台电力有限责任公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023087689A1 publication Critical patent/WO2023087689A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present application relates to the technical field of hydrogen production, in particular to a control method for intermittent and fluctuating electrolytic hydrogen production.
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • the purpose of this application is to propose a control method for intermittent and fluctuating electrolytic hydrogen production.
  • the intermittent and fluctuating electrolytic hydrogen production control method provided by this application enables the electrolytic hydrogen production system to accommodate intermittent and fluctuating wind power generation and photovoltaic power generation. Power generation, and under the condition of ensuring the safety of the hydrogen production process, the electric energy is preferentially used for hydrogen production, and the consumption and utilization of renewable energy power generation in the off-grid/grid-connected mode are promoted.
  • the application proposes a control method for intermittent and fluctuating electrolytic hydrogen production, which includes the following steps: obtaining the power generation output power of the new energy power generation equipment; comparing the power generation output power with the preset start-up power of the electrolyzer Yes; according to the comparison result between the output power of the power generation and the preset start-up power, the operating state of the electrolyzer is controlled.
  • controlling the operation state of the electrolyzer specifically includes: when the power generation output power is greater than the preset start-up power, start the electrolyzer to produce hydrogen by electrolysis ; When the output power of the power generation is less than the preset start-up power, shut down the electrolyzer, wherein the preset start-up power is 0-30% of the rated power of the electrolyzer.
  • the method further includes: starting an electric storage device to consume the power generation output power.
  • the power generation output power is less than the preset start-up power
  • after closing the electrolyzer it also includes: when the shutdown time of the electrolyzer is longer than the preset time, nitrogen replacement is performed on the hydrogen production system, and the preset time is 3-12h.
  • starting the electrolyzer to produce hydrogen by electrolysis specifically includes: comparing the power generation output power with the preset limit load power of the electrolyzer, according to the The input power of the electrolyzer is controlled as a result of comparison between the output power of the power generation and the preset limit load power, and the preset limit load power is 120-200% of the rated power of the electrolyzer.
  • controlling the input power of the electrolyzer specifically includes: when the power generation output power is greater than the preset limit load power, controlling the input power of the electrolyzer to be equal to the preset limit load power.
  • the limit load power is set; when the output power of the generator is less than the preset limit load power, the input power of the electrolyzer is controlled to be equal to the output power of the generator.
  • the method further includes: starting the power storage device to consume the remaining generated output power.
  • Fig. 1 is a schematic flowchart of a control method for intermittent and fluctuating electrolytic hydrogen production proposed by an embodiment of the present application.
  • Fig. 1 is a schematic flowchart of a control method for intermittent and fluctuating electrolytic hydrogen production proposed by an embodiment of the present application.
  • a control method for intermittent and fluctuating electrolytic hydrogen production includes the following steps:
  • the new energy power generation equipment in this application may be equipment that utilizes renewable energy to generate power, such as photovoltaic units or wind power generation equipment, and is suitable for installation in areas rich in solar energy and wind power resources.
  • the generated electricity can be connected to the grid, and after transmission, it can provide lighting, communication and other domestic and production electricity, and can also be used as a power source to supply power to loads in the area in the form of off-grid.
  • wind power generation equipment is composed of propeller, generator, generator speed control device, empennage, tower and controller and other components.
  • the photovoltaic unit is composed of photovoltaic panels, brackets and controllers. Due to the fluctuating and intermittent nature of wind power and photovoltaics, they need to be converted into chemical energy storage for utilization.
  • the preset start-up power of the electrolyzer is 0-30% of the rated power of the electrolyzer.
  • the preset start-up power is set as 20% of the rated power of the electrolyzer, so as Energy power generation is used to produce hydrogen to improve the utilization rate of the electrolyzer; at the same time, it avoids safety risks caused by the low operating power of the electrolyzer.
  • the operating state of the electrolyzer is controlled.
  • the operating state of the electrolytic hydrogen production system is adjusted in time to realize dynamic hydrogen production.
  • controlling the operation state of the electrolyzer specifically includes: when the power generation output power is greater than the preset start-up power, start the electrolyzer to produce hydrogen by electrolysis; When the output power of the power generation is less than the preset start-up power, the electrolyzer is closed.
  • the power generation output power of the power generation equipment is compared with it to control the opening and closing of the electrolyzer.
  • the output power of power generation is greater than the preset start-up power, it means that there is excess electric energy generated.
  • the electrolytic cell can be used to produce hydrogen for energy storage. The electric energy is less, so there is no need to open and close the electrolytic cell at this time, which avoids the low-power operation of the electrolytic cell.
  • the electrolytic cell is in low-power operation, due to the characteristics of the internal materials of the electrolytic cell, there is a risk of hydrogen and oxygen crossing over the explosion limit. , the above control process effectively avoids the above risks and ensures the safe operation of the hydrogen production system.
  • the method further includes: starting a power storage device to consume the power generation output power.
  • the power storage device specifically includes other energy storage devices such as load electrochemical energy storage or pumped storage, which can flexibly store the electric energy generated by the power generation device.
  • the power generation output power is less than the preset start-up power, after closing the electrolyzer, it also includes: when the shutdown time of the electrolyzer is longer than the preset time, nitrogen replacement is performed on the hydrogen production system.
  • the setting of the shutdown limit time of the electrolyzer avoids the safety hazard caused by the purity of the internal residual gas after the hydrogen production system is shut down, and improves the safety of the hydrogen production process.
  • the preset time is 3-12h. Within this time range, the safe state of the electrolyzer can be fully guaranteed. Optionally, the preset time can be set to 4 hours.
  • starting the electrolyzer for electrolytic hydrogen production specifically includes: comparing the power generation output power with the preset limit load power of the electrolyzer, and according to the power generation output power The comparison result with the preset limit load power controls the input power of the electrolyzer.
  • the preset limit load power is 120-200% of the rated power of the electrolytic cell.
  • the preset limit load power is set to 120% of the rated power of the electrolyzer, so as to avoid the electrolyzer from running under too high a load, thereby further ensuring the safe and stable operation of the electrolyzer.
  • controlling the input power of the electrolyzer specifically includes: when the power generation output power is greater than the preset limit load power, controlling the input power of the electrolyzer to be equal to the preset limit load power Power; when the output power of the generator is less than the preset limit load power, the input power of the electrolyzer is controlled to be equal to the output power of the generator.
  • the power generation output power is compared with the preset limit load power to control the working power of the electrolyzer.
  • the power generation equipment When the power generation output power of the power generation equipment is greater than the preset limit load power, the power generation equipment The generated electric energy is relatively high.
  • the electrolyzer operates at a high level with the preset limit load power, fully stores the generated electric energy, and realizes the efficient use of renewable energy.
  • the generated output power of the power generation equipment is lower than the preset limit load power, this The electrolyzer can run at the output power of the power generation equipment at all times, and convert and store the electric energy generated by the power generation equipment in real time.
  • the method further includes: starting the power storage device to consume the remaining generated output power.

Abstract

本申请提出一种间歇、波动电解制氢控制方法,包括如下步骤:获取新能源发电设备的发电输出功率;将所述发电输出功率与电解槽的预设启动功率进行比对;根据所述发电输出功率与预设启动功率比对结果,控制电解槽的运行状态,本申请提供的间歇、波动电解制氢控制方法,使得电解制氢系统能够消纳间歇、波动性的风力发电和光伏发电,并在保证制氢过程安全性的条件下,将电能优先用于制氢,促进可再生能源发电在离网/并网模式下的消纳利用。

Description

一种间歇、波动电解制氢控制方法
交叉引用
本申请要求在2021年11月19日提交中国国家知识产权局、申请号为202111399620.3、发明名称为“一种间歇、波动电解制氢控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及制氢技术领域,尤其涉及一种间歇、波动电解制氢控制方法。
背景技术
在调整能源结构和实现碳中和的大背景下,氢气作为一种能够与电网和热网互联的能源载体受到了前所未有关注。传统的化石燃料直接制氢会造成大量的二氧化碳排放,与碳减排目标背道而驰。基于可再生能源的制氢过程则避免了二氧化碳排放,因此制取的氢气被称为“绿氢”。风电、光伏等可在生能源发电后,经电解水制氢是目前最具前景的“绿氢”生产方式。千万千瓦级大规模可再生能源发电基地的规划和开发,为“绿氢”制取规模的增长提供了良好的电源支撑。
传统电解水制氢设备主要是在稳态条件下运行,为多晶硅、玻璃等行业提供高纯氢气。由于风电、光伏具有波动、间歇性,电解水制氢设备需要改变运行模式来适应新能源发电设备的特点。制氢设备既要跟随发电量波动调整负荷来提高可再生能源的利用率,又要通过启、停控制避免设备状态偏离安全区间。因此需要开发间歇、波动电解制氢控制方法,确保电解制氢水设备能够实现风力发电和光伏发电的安全、高效消纳。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的目的在于提出一种间歇、波动电解制氢控制方法,本申请提供的间歇、波动电解制氢控制方法,使得电解制氢系统能够消纳间歇、波动性的风力发电和光伏发电,并在保证制氢过程安全性的条件下,将电能优先用于制氢,促进可再生能源发电在离网/并网模式下的消纳利用。
为达到上述目的,本申请提出的一种间歇、波动电解制氢控制方法,包括如下步骤:获取新能源发电设备的发电输出功率;将所述发电输出功率与电解槽的预设启动功率进行比对;根据所述发电输出功率与预设启动功率比对结果,控制电解槽的运行状态。
进一步地,根据所述发电输出功率与预设启动功率比对结果,控制电解槽的运行状态,具体包括:当所述发电输出功率大于所述预设启动功率时,启动电解槽进行电解制氢;当所述发电输出功率小于所述预设启动功率时,关闭电解槽,其中,所述预设启动功率为电解槽 额定功率额的0-30%。
进一步地,当所述发电输出功率小于所述预设启动功率时,关闭电解槽之后还包括:启动储电设备消耗所述发电输出功率。
进一步地,当所述发电输出功率小于所述预设启动功率时,关闭电解槽之后还包括:当电解槽关停时间大于预设时间时,对制氢系统进行氮气置换,所述预设时间为3-12h。
进一步地,当所述发电输出功率大于所述预设启动功率时,启动电解槽进行电解制氢具体包括:将所述发电输出功率与电解槽的预设极限负荷功率进行比对,根据所述发电输出功率与所述预设极限负荷功率的比对结果,控制电解槽的输入功率,所述预设极限负荷功率为电解槽额定功率的120-200%。
进一步地,根据所述发电输出功率与预设极限负荷功率比对结果,控制电解槽的输入功率具体包括:当所述发电输出功率大于预设极限负荷功率时,控制电解槽的输入功率等于预设极限负荷功率;当所述发电输出功率小于预设极限负荷功率时,控制电解槽的输入功率等于所述发电输出功率。
进一步地,当所述发电输出功率大于预设极限负荷功率时,控制电解槽的输入功率等于预设极限负荷功率之后还包括:启动储电设备消耗剩余的发电输出功率。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一实施例提出的间歇、波动电解制氢控制方法的流程示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。相反,本申请的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1是本申请一实施例提出的间歇、波动电解制氢控制方法流程示意图。
参见图1,一种间歇、波动电解制氢控制方法,包括如下步骤:
获取新能源发电设备的发电输出功率;
本申请中的新能源发电设备可以为光伏机组或者风力发电设备等利用可再生能源进行发电的设备,适于安装在太阳能和风力资源丰富地区。发出的电量可以并网,经传输后提供照明、通讯等生活用电及生产用电,也可以作为电源以离网的形式为区域内负荷供电。其中 风力发电设备是由螺旋浆、发电机、发电机调速装置、尾翼、塔架及控制器等部件组成。而光伏机组则是由光电池板、支架及控制器等部件组成。由于风电、光伏具有波动、间歇性,需要将其转化为化学储能进行利用。
将所述发电输出功率与电解槽的预设启动功率进行比对;
本实施例中,电解槽的预设启动功率为电解槽额定功率的0-30%,可选地,预设启动功率设为电解槽额定功率的20%,从而可以将尽可能多的可再生能源发电用于制氢,提升电解槽的利用率;同时避免因电解槽运行功率过低,引发安全风险。
根据所述发电输出功率与预设启动功率比对结果,控制电解槽的运行状态。
本实施例中,根据发电设备的供电情况,及时调整电解制氢系统的运行状态,实现动态制氢。
根据所述发电输出功率与预设启动功率比对结果,控制电解槽的运行状态,具体包括:当所述发电输出功率大于所述预设启动功率时,启动电解槽进行电解制氢;当所述发电输出功率小于所述预设启动功率时,关闭电解槽。
本实施例中,以预设启动功率为基准,将发电设备的发电输出功率与之比较,来进行电解槽启闭控制。在发电输出功率大于所述预设启动功率时,说明有多余电能产生,此时可以利用电解槽制氢储能,在发电输出功率小于所述预设启动功率时,说明此时发电设备的发电电能较少,此时则不必开闭电解槽,避免了电解槽低功率运行,在电解槽处于低功率运行时,由于电解槽内部材料的特性,存在氢、氧互串发生超过爆炸极限的风险,上述控制流程有效避开上述风险,保障了制氢系统运行安全。
当所述发电输出功率小于所述预设启动功率时,关闭电解槽之后还包括:启动储电设备消耗所述发电输出功率。
本实施例中,储电设备具体包括负载电化学储能或者抽水蓄能等其他储能设备,可以灵活对发电设备的发电电能进行存储。
当所述发电输出功率小于所述预设启动功率时,关闭电解槽之后还包括:当电解槽关停时间大于预设时间时,对制氢系统进行氮气置换。通过电解槽关停极限时间的设置避免了制氢系统停机后因内部残留气体纯度变差引发安全隐患的问题,提高了制氢过程的安全性。
所述预设时间为3-12h。在此时间范围内,能够充分保证电解槽的安全状态,可选地,预设时间可以设定为4个小时。
当所述发电输出功率大于所述预设启动功率时,启动电解槽进行电解制氢具体包括:将所述发电输出功率与电解槽的预设极限负荷功率进行比对,根据所述发电输出功率与所述预设极限负荷功率的比对结果,控制电解槽的输入功率。
本实施例中,预设极限负荷功率为电解槽额定功率的120-200%,电解槽在工作时,其功 率可以短时超过额定功率,利用此特性可以降低电解槽的配置容量。可选地,预设极限负荷功率设定为电解槽额定功率的120%,避免电解槽过高负载运行,从而进一步保证电解槽安全稳定运行。
根据所述发电输出功率与预设极限负荷功率比对结果,控制电解槽的输入功率具体包括:当所述发电输出功率大于预设极限负荷功率时,控制电解槽的输入功率等于预设极限负荷功率;当所述发电输出功率小于预设极限负荷功率时,控制电解槽的输入功率等于所述发电输出功率。
本实施例中,以预设极限负荷功率为基准,将发电输出功率与之进行比较,来进行电解槽工作功率的控制,在发电设备的发电输出功率大于预设极限负荷功率时,说明发电设备发电电能较高,此时电解槽以预设极限负荷功率进行高位运行,充分对发电电能进行存储,实现可再生能源的高效利用,在发电设备的发电输出功率小于预设极限负荷功率时,此时电解槽以发电设备的输出功率运行即可,实时对发电设备发电电能进行转化存储。
当所述发电输出功率大于预设极限负荷功率时,控制电解槽的输入功率等于预设极限负荷功率之后还包括:启动储电设备消耗剩余的发电输出功率。
在发电设备的发电输出功率大于预设极限负荷功率时,除了电解槽以预设极限负荷功率进行高位运行对发电设备的发电电能进行消纳,还有富余电能,为了完全利用发电设备的发电电能,还可以利用其他储电设备对剩余的发电电能进行临时储存,多种储电设备相互配合,实现可再生能源的高效利用。
需要说明的是,在本申请的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的, 不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (7)

  1. 一种间歇、波动电解制氢控制方法,其特征在于,包括如下步骤:
    获取新能源发电设备的发电输出功率;
    将所述发电输出功率与电解槽的预设启动功率进行比对;
    根据所述发电输出功率与预设启动功率比对结果,控制电解槽的运行状态。
  2. 如权利要求1所述的间歇、波动电解制氢控制方法,其特征在于,根据所述发电输出功率与预设启动功率比对结果,控制电解槽的运行状态,具体包括:当所述发电输出功率大于所述预设启动功率时,启动电解槽进行电解制氢;当所述发电输出功率小于所述预设启动功率时,关闭电解槽,其中,所述预设启动功率为电解槽额定功率额的0-30%。
  3. 如权利要求2所述的间歇、波动电解制氢控制方法,其特征在于,当所述发电输出功率小于所述预设启动功率时,关闭电解槽之后还包括:启动储电设备消耗所述发电输出功率。
  4. 如权利要求2所述的间歇、波动电解制氢控制方法,其特征在于,当所述发电输出功率小于所述预设启动功率时,关闭电解槽之后还包括:当电解槽关停时间大于预设时间时,对制氢系统进行氮气置换;所述预设时间为3-12h。
  5. 如权利要求2所述的间歇、波动电解制氢控制方法,其特征在于,当所述发电输出功率大于所述预设启动功率时,启动电解槽进行电解制氢具体包括:将所述发电输出功率与电解槽的预设极限负荷功率进行比对,根据所述发电输出功率与所述预设极限负荷功率的比对结果,控制电解槽的输入功率,所述预设极限负荷功率为电解槽额定功率的120-200%。
  6. 如权利要求5所述的间歇、波动电解制氢控制方法,其特征在于,根据所述发电输出功率与预设极限负荷功率比对结果,控制电解槽的输入功率具体包括:当所述发电输出功率大于预设极限负荷功率时,控制电解槽的输入功率等于预设极限负荷功率;当所述发电输出功率小于预设极限负荷功率时,控制电解槽的输入功率等于所述发电输出功率。
  7. 如权利要求6所述的间歇、波动电解制氢控制方法,其特征在于,当所述发电输出功率大于预设极限负荷功率时,控制电解槽的输入功率等于预设极限负荷功率之后还包括:启动储电设备消耗剩余的发电输出功率。
PCT/CN2022/099163 2021-11-19 2022-06-16 一种间歇、波动电解制氢控制方法 WO2023087689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111399620.3A CN114086203A (zh) 2021-11-19 2021-11-19 一种间歇、波动电解制氢控制方法
CN202111399620.3 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023087689A1 true WO2023087689A1 (zh) 2023-05-25

Family

ID=80303697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099163 WO2023087689A1 (zh) 2021-11-19 2022-06-16 一种间歇、波动电解制氢控制方法

Country Status (2)

Country Link
CN (1) CN114086203A (zh)
WO (1) WO2023087689A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646993A (zh) * 2023-07-27 2023-08-25 国网能源研究院有限公司 电氢耦合系统协同程度测算方法、系统、装置及存储介质
CN116720789A (zh) * 2023-08-08 2023-09-08 国网能源研究院有限公司 一种制氢电解槽容量配置评估方法、装置及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086203A (zh) * 2021-11-19 2022-02-25 中国华能集团清洁能源技术研究院有限公司 一种间歇、波动电解制氢控制方法
WO2023207201A1 (zh) * 2022-04-29 2023-11-02 阳光氢能科技有限公司 一种新能源制氢系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027361A (ja) * 2003-06-30 2005-01-27 Setec:Kk 風力発電水電解水素製造システム
CN108517533A (zh) * 2018-03-26 2018-09-11 全球能源互联网研究院有限公司 一种电解制氢控制方法及装置
WO2021082423A1 (zh) * 2019-10-28 2021-05-06 阳光电源股份有限公司 一种直流耦合制氢系统及其控制方法
CN113373477A (zh) * 2021-06-17 2021-09-10 中国华能集团清洁能源技术研究院有限公司 动态制氢电解槽的电解液流量、压力控制方法及系统
CN113659632A (zh) * 2021-08-10 2021-11-16 中国华能集团清洁能源技术研究院有限公司 一种可实现大规模波动能源消纳的电解制氢系统及运行方法
CN114086203A (zh) * 2021-11-19 2022-02-25 中国华能集团清洁能源技术研究院有限公司 一种间歇、波动电解制氢控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249738B (zh) * 2021-05-28 2022-08-05 全球能源互联网研究院有限公司 一种新型电解水制氢系统及其运行方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027361A (ja) * 2003-06-30 2005-01-27 Setec:Kk 風力発電水電解水素製造システム
CN108517533A (zh) * 2018-03-26 2018-09-11 全球能源互联网研究院有限公司 一种电解制氢控制方法及装置
WO2021082423A1 (zh) * 2019-10-28 2021-05-06 阳光电源股份有限公司 一种直流耦合制氢系统及其控制方法
CN113373477A (zh) * 2021-06-17 2021-09-10 中国华能集团清洁能源技术研究院有限公司 动态制氢电解槽的电解液流量、压力控制方法及系统
CN113659632A (zh) * 2021-08-10 2021-11-16 中国华能集团清洁能源技术研究院有限公司 一种可实现大规模波动能源消纳的电解制氢系统及运行方法
CN114086203A (zh) * 2021-11-19 2022-02-25 中国华能集团清洁能源技术研究院有限公司 一种间歇、波动电解制氢控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张轩 等 (ZHANG, XUAN ET AL.): "电解水制氢成本分析 (Non-official translation: Cost Analysis of Electrolyzed Water for Hydrogen Production)", 现代化工 (MODERN CHEMICAL INDUSTRY), vol. 41, no. 12, 26 October 2021 (2021-10-26), XP009546560, ISSN: 0253-4320 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646993A (zh) * 2023-07-27 2023-08-25 国网能源研究院有限公司 电氢耦合系统协同程度测算方法、系统、装置及存储介质
CN116646993B (zh) * 2023-07-27 2023-10-03 国网能源研究院有限公司 电氢耦合系统协同程度测算方法、系统、装置及存储介质
CN116720789A (zh) * 2023-08-08 2023-09-08 国网能源研究院有限公司 一种制氢电解槽容量配置评估方法、装置及设备
CN116720789B (zh) * 2023-08-08 2023-11-07 国网能源研究院有限公司 一种制氢电解槽容量配置评估方法、装置及设备

Also Published As

Publication number Publication date
CN114086203A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2023087689A1 (zh) 一种间歇、波动电解制氢控制方法
CN109004665B (zh) 风电、光电储能及离/并网制氢系统
AU2010352432B2 (en) Hydrogen production system for regulating the power at renewable energy electric plants, and a regulation method
CN201323453Y (zh) 一种可再生能源微型电网
CN109245169B (zh) 一种风光水储联合调度方法
CN103199561A (zh) 一种基于燃料电池、风能、太阳能的风光氢互补并网型电站
US20200005405A1 (en) Wind-solar-gas complementary and coupled power generation system and method
CN105186660A (zh) 离网型风电制氢转换系统
CN113659632B (zh) 一种可实现大规模波动能源消纳的电解制氢系统及运行方法
CN107769255A (zh) 基于海上风电制氢的变速恒频风力发电系统及其控制方法
CN111668869A (zh) 一种离网型风电制氢系统及其容量匹配方法
CN114069688B (zh) 一种基于时序生产模拟的多电源容量布局规划方法
CN114374220A (zh) 一种电化学电池-电解水制氢-储氢-氢燃料电池耦合储能系统及控制方法
JP2020058168A (ja) 水素供給システム及び水素供給方法
CN110030085A (zh) 利用电解制氢和氢混合燃料进行火电厂调峰的系统和方法
Liu et al. Research on optimal matching scheme of renewable energy based on renewable energy consumption ability
CN108710977A (zh) 一种分布式供能系统设备配置与运行优化设计方法
Li et al. Multi-unit control strategy of electrolyzer considering start-stop times
CN203180547U (zh) 一种基于燃料电池、风能、太阳能的风光氢互补并网型电站
CN203374433U (zh) 一种风力发电幕墙
CN113014037B (zh) 一种含飞轮和无极传动的电转气装置及其运行方法
CN210370915U (zh) 利用电解制氢和氢混合燃料进行火电厂调峰的系统
CN208564861U (zh) 一种互补耦合发电系统
CN110601266A (zh) 一种水光氢互补微网发电系统及方法
Shi et al. Research of hybrid integrated energy station based on gas turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894232

Country of ref document: EP

Kind code of ref document: A1