WO2023087416A1 - 一种钢渣砖的制备方法 - Google Patents

一种钢渣砖的制备方法 Download PDF

Info

Publication number
WO2023087416A1
WO2023087416A1 PCT/CN2021/135291 CN2021135291W WO2023087416A1 WO 2023087416 A1 WO2023087416 A1 WO 2023087416A1 CN 2021135291 W CN2021135291 W CN 2021135291W WO 2023087416 A1 WO2023087416 A1 WO 2023087416A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel slag
carbonation
present
sio
brick
Prior art date
Application number
PCT/CN2021/135291
Other languages
English (en)
French (fr)
Inventor
李长久
王丹
陈泽霖
于晓龙
蔡思翔
易兰林
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Publication of WO2023087416A1 publication Critical patent/WO2023087416A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/142Steelmaking slags, converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the technical field of building materials, in particular to a method for preparing steel slag bricks.
  • my country's steel slag production generally accounts for 10% to 25% of the total amount of steel.
  • its comprehensive utilization potential is huge.
  • my country has accumulated more than 100 million tons of steel slag, occupying more than 1,400 hectares of farmland, and the annual slag discharge is more than 20 million tons.
  • most of my country's steel slag is mainly used for road construction and backfilling, and only a small part is used for the production of cement and concrete, and most of the construction sites are near steel plants, and the utilization rate is far lower than that of industrialized countries. It can be seen that the added value of steel slag utilization in my country is low, and the economic and social benefits obtained are not significant. Improving the utilization rate and added value of steel slag and reducing environmental pollution have attracted more and more attention. Therefore, it is necessary to carry out research on the reduction, recycling and high-value comprehensive utilization of steel slag, so as to turn waste into treasure.
  • Carbonation technology is also called carbonation technology.
  • CO 2 can be quickly and permanently solidified and stored in some natural minerals and solid wastes. What is more important is that after the material is carbonated and maintained, its physical and chemical properties will be improved. It has been greatly improved and can be reused in different buildings, so it is an advanced technology that utilizes waste and saves resources and energy.
  • the main factors causing poor stability in steel slag are f-CaO and f-MgO. Both f-CaO and f-MgO can react with CO2 in industrial waste gas. According to this principle, we can carbonate steel slag to prepare building materials , it is a new method of dealing with steel slag.
  • Carbonation of steel slag is also of great significance to the recovery and utilization of CO2 .
  • the content of CO2 in industrial waste gas can be reduced, thereby reducing the greenhouse effect. Therefore, carbonation of steel slag can not only solve the pollution of steel slag, but also It can alleviate the greenhouse effect caused by CO2 , and turn waste into wealth, and develop new materials, which have very important significance and economic value in modern society.
  • the carbonation weight gain rate of steel slag in the prior art is about 9.48%, which is far lower than the theoretical value of 37% for steel slag carbonation weight gain rate. Therefore, how to further increase the carbonation weight gain rate of steel slag is a research hotspot in the field.
  • the object of the present invention is to provide a method for preparing steel slag bricks, and the steel slag bricks prepared by the method provided by the present invention have a better carbonation weight gain rate.
  • the invention provides a method for preparing steel slag bricks, comprising:
  • the composite alkaline admixture includes:
  • the solvent in the composite alkaline admixture solution is water.
  • the mass concentration of the Na 2 SiO 3 in the composite alkaline admixture solution is 0.3-0.5%.
  • the mass concentration of the NaHCO 3 in the composite alkaline admixture solution is 0.5-1.5%.
  • the mass of the composite alkaline admixture solution is 12-13% of the mass of the steel slag fine powder.
  • the compression molding pressure is 5-10 MPa.
  • the CO 2 partial pressure in the carbonation curing process is 0.1-0.3 MPa.
  • the temperature of the carbonation curing is 20-30°C.
  • the carbonation curing time is 1-3 hours.
  • the present invention adds a certain amount of admixture to the steel slag to promote the carbonation reaction of the steel slag, thereby preparing steel slag products with better performance.
  • Adding NaHCO 3 and Na 2 SiO 3 admixtures to the steel slag powder in the present invention is beneficial to the improvement of the carbonation weight gain rate of the steel slag powder brick, and at the same time is beneficial to the improvement of the strength of the steel slag powder brick.
  • a large number of granular CaCO 3 crystals were formed in the carbonated steel slag with admixture.
  • the resulting CaCO 3 has a denser crystal structure, larger grains, and clearer grain boundaries, thereby improving the structural composition of the steel slag.
  • the steel slag brick manufacturing method provided by the invention has the characteristics of easy acquisition of raw materials, low price, environmental protection and the like, and can also reduce the total porosity of hardened cement paste.
  • Fig. 1 is the process flow chart of preparing steel slag brick for the embodiment of the present invention
  • Fig. 2 is the XRD diffractogram of steel slag in the embodiment of the present invention.
  • Fig. 3 is the steel slag brick performance test result prepared by the embodiment of the present invention 3 ⁇ 7;
  • Fig. 4 is the test results of the properties of steel slag bricks prepared in Examples 8-14 of the present invention.
  • the invention provides a method for preparing steel slag bricks, comprising:
  • the selection of the admixture components needs to consider the following two factors, one is to stimulate the activity of steel slag and accelerate the carbonation reaction rate of steel slag during the carbonation reaction process; the other is the physical effect on steel slag , its incorporation can increase the internal voids of the steel slag, facilitate the diffusion of CO 2 into the steel slag, and promote the carbonation reaction.
  • Na 2 CO 3 , CaSO 4 ⁇ 2H 2 O, Na 2 SiO 3 can stimulate the activity of steel slag; NaHCO 3 can provide HCO 3 - for the carbonation reaction, which can promote the carbonation of steel slag.
  • the composite alkaline admixture preferably includes:
  • the solvent in the composite alkaline admixture solution is preferably water, more preferably distilled water.
  • the mass concentration of the Na2SiO3 in the composite alkaline admixture solution is preferably 0.3-0.5%, more preferably 0.35-0.45%, most preferably 0.4%; the NaHCO3 in the composite alkali
  • the mass concentration in the additive solution is preferably 0.5-1.5%, more preferably 0.8-1.2%, and most preferably 1%.
  • the steel slag fine powder is preferably converter steel slag; the composition of the steel slag fine powder preferably includes:
  • the mass content of the CaO is preferably 36-39%, more preferably 38-39%, most preferably 38.91%; the mass content of the SiO2 is preferably 11-14%, more preferably 13% ⁇ 14%, most preferably 13.32%; the mass content of the Al 2 O 3 is preferably 1.2 ⁇ 1.8%, more preferably 1.4 ⁇ 1.6%, most preferably 1.57%; the mass content of the Fe 2 O 3 is preferably 21-24%, more preferably 23-24%, most preferably 23.11%; the mass content of the MgO is preferably 6-9%, more preferably 7-8%, most preferably 7.61%; the FeO
  • the mass content of the P 2 O 5 is preferably 21-24%, more preferably 21-22%, and most preferably 21.62%; the mass content of the P 2 O 5 is preferably 1.2-1.8%, more preferably 1.4-1.6%, most preferably is 1.47%; the mass content of the LOI is preferably 2.6-2.9%, more preferably 2.7-2.8%.
  • the mass of the composite alkaline admixture solution is preferably 12-13% of the mass of the steel slag fine powder, more preferably 12.2-12.8%, most preferably 12.4-12.6%.
  • the mixing method is preferably stirring, more preferably stirring in a stirring crucible.
  • the mixing method preferably includes:
  • the fine steel slag powder is preferably stirred slowly in planetary cement mortar stirring; the slow stirring time is preferably 50-70s, more preferably 55-65s, most preferably 60s.
  • the stop time is preferably 20-40s, more preferably 25-35s, and most preferably 30s.
  • the rapid stirring time is preferably 50-70s, more preferably 55-65s, and most preferably 60s.
  • the press molding is preferably carried out in a mold; the size of the mold is preferably (85-95) mm ⁇ (35-45) mm ⁇ (45-55) mm, more preferably (88-92) mm )mm ⁇ (38 ⁇ 42)mm ⁇ (48 ⁇ 52)mm, most preferably 90mm ⁇ 40mm ⁇ 50mm.
  • the compression molding pressure is preferably 5-10 MPa, more preferably 6-8 MPa, most preferably 7 MPa; the dwell time during the compression molding process is preferably 0.5-1.5 min, more preferably 0.8 ⁇ 1.2 min, most preferably 1 min.
  • the carbonation curing is preferably carried out in a carbonation kettle;
  • the CO2 partial pressure in the carbonation curing process is preferably 0.1-0.3MPa, more preferably 0.15-0.25MPa, most preferably 0.2MPa;
  • the temperature of the carbonation curing is preferably 20 to 30°C, more preferably 23 to 27°C, most preferably 25°C;
  • the CO in the carbonation curing process preferably has a purity >99.9%; the carbonation curing
  • the time is preferably 1 to 3 hours, more preferably 1.5 to 2.5 hours, and most preferably 2 hours.
  • test method of described weight gain preferably comprises:
  • absorbent paper to dry up the water produced by the reaction in the carbonization kettle, and weigh the weight gain of the absorbent paper and the weight of the steel slag brick before and after carbonation.
  • the phase analysis is preferably SEM-EDS, XRD, DTA-TG and MIP.
  • Phase analysis such as SEM-EDS, XRD, DTA-TG and MIP was carried out on the sample.
  • the invention utilizes the modern scientific analysis and test technology of materials to analyze the structure and performance of the steel slag after carbonation, and discusses the mechanism of the admixture increasing the carbonation weight gain rate of the steel slag.
  • the basic reaction equation of steel slag carbonation is as follows:
  • the admixture Na 2 SiO 3 (also known as water glass) is added to the steel slag sample, and the Na + and OH- plasma generated after its hydration destroys the glassy Si-O bond and Al-O bond in the steel slag, making the glass body Dissociate rapidly, and produce a large number of silicon oxide ion groups and aluminum oxide ion groups, which react with Ca 2+ and Al 3+ plasma in the liquid phase of steel slag to form a large amount of calcium aluminate hydrate and calcium silicate hydrate.
  • the product reacts rapidly with CO2 , which improves the carbonation weight gain rate of steel slag.
  • the main reaction of the change of the lattice structure is that the lattice size decreases, the lattice strain increases, and the structure is distorted.
  • the reduced lattice size ensures that the contact area between minerals and CO2 in steel slag increases; the lattice strain increases, which increases the force between minerals and CO2 ; the structure is distorted, and the crystallinity decreases to reduce the bond of mineral crystals.
  • CO2 molecules can easily enter the mineral interior and accelerate the carbonation reaction; when preparing steel slag bricks, the mortar mixer can fully mix the batch materials, which is beneficial to the reaction between materials and plays an important role in improving the strength of bricks.
  • the initial strength of the steel slag brick is obtained during the pressure forming process of the sample. Forming not only makes the sample have a certain strength, but also ensures that the physical and chemical interactions between the material particles can be efficiently carried out due to the close contact between the raw material particles, which provides conditions for the formation of later strength.
  • the steel slag brick particle material forms a thin hydration film on the surface under the action of water molecules, and under the action of the hydration film, some chemical bonds begin to break and ionize to form colloidal particles system.
  • colloidal particles have negative charges on their surfaces, which can adsorb cations.
  • the cations with different valences and different ionic radii can be adsorbed and exchanged with the Ca 2+ equivalent in the Ca(OH) 2 produced by the reaction. Due to the ion adsorption and exchange on the surface of these colloidal particles, the charged state of the particle surface is changed, and the particles form small aggregates, thereby generating strength in the later reaction.
  • the most vulnerable position of the material is the area with the most defects.
  • defects can also be divided into macro defects and micro defects. Since the steel slag is formed at a high temperature of 1600-1800 °C, the grains are well developed, the growth is thick, and the internal slip and dislocation are relatively few. Therefore, the macroscopic defects of the steel slag, that is, the voids inside the steel slag, are mainly considered.
  • the carbonation weight gain rate is used in the experiment to characterize the amount of CO 2 absorbed by steel slag products.
  • the calculation method of carbonation weight gain rate is: accurately weigh the mass m 1 of the formed steel slag product, then put it in the carbonization kettle, feed CO 2 with a purity of 99.9%, and carbonize it under the set CO 2 partial pressure scheduled time. After the carbonation is completed, accurately weigh the mass m2 of the steel slag product after carbonation, and use absorbent paper to absorb the moisture generated in the carbonization kettle. Calculate the weight gain of the absorbent paper as m3 , and the carbonation weight gain rate is:
  • This expression method of carbonation weight gain rate is simple to calculate, better expresses the weight gain of mass before and after carbonation, better reflects the effect of carbonation, and is suitable for industrial production control; however, this method cannot express Reaction status of calcium oxide and magnesium oxide before and after carbonation.
  • This method is similar to the KH value of cement, and can better reflect the carbonation of calcium oxide and magnesium oxide in steel slag.
  • this method requires the measurement of each batch of steel slag.
  • the percentage content of CaO and MgO is relatively cumbersome, which is not conducive to the control of industrial production, so the first method is still used to express the carbonation weight gain rate.
  • the steel slag composition in the following examples of the present invention is (wt%) (XRD diffraction is as shown in Figure 2):
  • Na 2 SiO 3 and NaHCO 3 are firstly mixed with deionized water uniformly according to the mass fraction of 0.3% Na 2 SiO 3 +0.5% NaHCO 3 to obtain an additive solution.
  • Example 1 Steel slag bricks were prepared according to the method of Example 1, the difference from Example 1 was that 0.3% Na 2 SiO 3 +0.5% NaHCO 3 in Example 1 was replaced by 0.4% Na 2 SiO 3 +1% NaHCO 3 .
  • Example 1 Steel slag bricks were prepared according to the method of Example 1. The difference from Example 1 is that 0.5% NaHCO 3 , 1.0% NaHCO 3 , 1.5% NaHCO 3 , 2.0% NaHCO 3 , and 2.5% NaHCO 3 were used to replace those in Example 1. 0.3% Na 2 SiO 3 +0.5% NaHCO 3 .
  • Example 1 Steel slag bricks were prepared according to the method of Example 1. The difference from Example 1 is that 0.1% Na 2 SiO 3 , 0.2% Na 2 SiO 33 , 0.3% Na 2 SiO 3 , 0.4% Na 2 SiO 3 , 0.5 %Na 2 SiO 3 , 0.6% Na 2 SiO 3 , 0.7% Na 2 SiO 3 replaced 0.3% Na 2 SiO 3 +0.5% NaHCO 3 in Example 1.
  • the weight gain rate of the steel slag brick prepared in the embodiment of the present invention was tested.
  • Compression test using YE-30 hydraulic pressure testing machine calculate the average value of the compressive strength of the three test blocks, accurate to 0.01MPa, if the difference between the three measured values and their average value is not more than 15%, Then use the average value as the compressive strength. If the difference between a certain value and the average value is greater than 15%, this value should be discarded, and the remaining value should be used to calculate the average value; if there are more than two values and the average value If the difference is greater than 15%, the experiment should be repeated.
  • the compressive strength of the steel slag brick prepared in the embodiment of the present invention was tested, and the test results are shown in Figure 3, Figure 4 and the table below, and the technical solution without adding additives was taken as a comparative example.
  • the steel slag carbonation weight gain rate and compressive strength of blank sample are 9.48% and 21.34MPa respectively. Comparing the samples mixed with admixtures with the blank sample, it is found that the admixtures all increase the carbonation weight gain rate of steel slag to varying degrees. However, comparing the effects of admixtures on the carbonation weight gain rate of steel slag, it was found that the carbonation weight gain rate of steel slag samples mixed with NaHCO 3 and Na 2 SiO 3 was greatly improved. Therefore, choose NaHCO 3 , Na 2 SiO 3 multiple doping scheme. The stability test was carried out on the sample, and there were no cracks, corner drop, cracking and crushing in the sample.
  • Adding NaHCO 3 and Na 2 SiO 3 admixtures to the steel slag powder in the present invention is beneficial to the improvement of the carbonation weight gain rate of the steel slag powder brick, and at the same time is beneficial to the improvement of the strength of the steel slag powder brick.
  • a large number of granular CaCO 3 crystals were formed in the carbonated steel slag with admixture.
  • the resulting CaCO 3 has a denser crystal structure, larger grains, and clearer grain boundaries, thereby improving the structural composition of the steel slag.
  • the steel slag brick manufacturing method provided by the invention has the characteristics of easy acquisition of raw materials, low price, environmental protection and the like, and can also reduce the total porosity of hardened cement paste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种钢渣砖的制备方法,在制备过程中使用激发剂A和激发剂B,通过调节激发剂A和B的比例及掺量可以实现对钢渣碳酸化制品强度的调控。该激发剂可以显著提高钢渣的碳酸化程度及碳酸化钢渣砖的强度,掺入0.4%Na 2SiO 3+1%NaHCO 3时,钢渣砖碳酸化增重率与未加外加剂试样相比提高18.6%,同时强度提高59.7%。该钢渣砖制备方法具有原材料易获取、价格低廉、绿色环保等特点,同时可固定大量二氧化碳,提高固体废弃物钢渣的资源化利用率。

Description

一种钢渣砖的制备方法
本申请要求于2021年11月16日提交中国专利局、申请号为202111354430.X、发明名称为“一种钢渣砖的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于建筑材料技术领域,尤其涉及一种钢渣砖的制备方法。
背景技术
我国的钢渣产量一般占钢铁总量的10%~25%,作为世界各国最大量的固态废弃物之一,其综合利用的潜力十分巨大。我国积存的钢渣已有1亿吨以上,侵占农田1400公顷以上,每年排渣量在2000万吨以上。然而,我国钢渣大部分主要用于筑路和回填,只有小部分用于水泥及其混凝土方面的生产,并且施工地点大多在钢厂附近,利用率远远低于工业发达国家。由此可见,我国钢渣的利用附加值低,所取得的经济效益、社会效益还不显著。提高钢渣的利用率和附加值,降低对环境的污染已愈来愈引起人们的关注。因此有必要对钢渣进行减量化、资源化和高价值综合利用研究,使之变废为宝。
碳酸化技术又称碳化技术,利用此技术,可以将CO 2快速永久固化储存在某些天然矿物及固体废弃物中,而且具有重要意义的是材料被碳酸化养护后,其物理和化学性能将得到重大改进,并可以再次利用到不同的建筑中,因此它是一项利用废弃物,节约资源和能源的先进技术。钢渣中造成安定性不好的主要因素是f-CaO和f-MgO,f-CaO和f-MgO都可以与工业废气中的CO 2反应,根据这个原理,我们可以将钢渣碳酸化制备建筑材料,它是处理钢渣的新方法。
钢渣碳酸化对回收利用CO 2也有重要的意义,大规模的钢渣碳酸化投入运营后,可以减少工业废气中CO 2的含量,从而减轻温室效应,因此钢渣碳酸化不仅可以解决钢渣的污染,也可以缓解CO 2所引起的温室效应,而且变废为宝,开发了新建材,在现代社会具有十分重要的意义和经济价值。
现有技术中的钢渣碳酸化增重率约为9.48%,远低于钢渣碳酸化增重率的理论值37%,因此如何进一步提升钢渣的碳酸化增重率是本领域人员研究的热点。
发明内容
有鉴于此,本发明的目的在于提供一种钢渣砖的制备方法,本发明提供的方法制备的钢渣砖具有较好的碳酸化增重率。
本发明提供了一种钢渣砖的制备方法,包括:
将复合碱性外加剂溶液和钢渣微粉混合,得到混合物;
将所述混合物压制成型后进行碳酸化养护,得到钢渣砖。
优选的,所述复合碱性外加剂包括:
Na 2SiO 3和NaHCO 3
优选的,所述复合碱性外加剂溶液中的溶剂为水。
优选的,所述Na 2SiO 3在复合碱性外加剂溶液中的质量浓度为0.3~0.5%。
优选的,所述NaHCO 3在复合碱性外加剂溶液中的质量浓度为0.5~1.5%。
优选的,所述复合碱性外加剂溶液的质量为钢渣微粉质量的12~13%。
优选的,所述压制成型的压力为5~10MPa。
优选的,所述碳酸化养护过程中的CO 2分压为0.1~0.3MPa。
优选的,所述碳酸化养护的温度为20~30℃。
优选的,所述碳酸化养护的时间为1~3h。
本发明为了进一步提升钢渣的碳酸化增重率,向钢渣中掺加一定量的外加剂,促进钢渣碳酸化反应,从而制备性能更好的钢渣制品。本发明在钢渣微粉中加入NaHCO 3、Na 2SiO 3外加剂有利于钢渣微粉砖碳酸化增重率的提高,同时有利于钢渣微粉砖强度的提高。与未掺外加剂的试样相比,掺加外加剂碳酸化的钢渣有大量的颗粒状的CaCO 3晶体生成。生成的CaCO 3晶体结构较致密,晶粒较大,晶界较清晰,从而改善了钢渣的结构组成。本发明提供的钢渣砖制造方法具有原料易获取、价格低廉、绿色环保等特点,还可以降低硬化水泥浆体的总孔隙率。
附图说明
图1为本发明实施例制备钢渣砖的工艺流程图;
图2为本发明实施例中钢渣的XRD衍射图;
图3为本发明实施例3~7制备的钢渣砖性能检测结果;
图4为本发明实施例8~14制备的钢渣砖性能检测结果。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员经改进或润饰的所有其它实例,都属于本发明保护的范围。应理解,本发明实施例仅用于说明本发明的技术效果,而非用于限制本发明的保护范围。实施例中,所用方法如无特别说明,均为常规方法。
本发明提供了一种钢渣砖的制备方法,包括:
将复合碱性外加剂溶液和钢渣微粉混合,得到混合物;
将所述混合物压制成型后进行碳酸化养护,得到钢渣砖。
在本发明中,对外加剂成分的选用需考虑以下两个方面的因素,一是能够在参加碳酸化反应过程中,激发钢渣活性,加快钢渣碳酸化反应速率;二是对钢渣物理方面的作用,其掺入能够增加钢渣内部空隙,有利于CO 2向钢渣内部扩散,促进碳酸化反应。Na 2CO 3、CaSO 4·2H 2O、Na 2SiO 3可以激发钢渣活性;NaHCO 3可以为碳酸化反应提供HCO 3-,其对钢渣碳酸化有促进作用。
在本发明中,所述复合碱性外加剂优选包括:
Na 2SiO 3和NaHCO 3
在本发明中,所述复合碱性外加剂溶液中的溶剂优选为水,更优选为蒸馏水。
在本发明中,所述Na 2SiO 3在复合碱性外加剂溶液中的质量浓度优选为0.3~0.5%,更优选为0.35~0.45%,最优选为0.4%;所述NaHCO 3在复合碱性外加剂溶液中的质量浓度优选为0.5~1.5%,更优选为0.8~1.2%,最优选为1%。
在本发明中,所述钢渣微粉优选为转炉钢渣;所述钢渣微粉的成分优选包括:
35~40wt%的CaO;
10~15wt%的SiO 2
1~2wt%的Al 2O 3
20~25wt%的Fe 2O 3
5~10wt%的MgO;
20~25wt%的FeO;
1~2wt%的P 2O 5
2.5~3wt%的LOI(烧失量)。
在本发明中,所述CaO的质量含量优选为36~39%,更优选为38~39%,最优选为38.91%;所述SiO 2的质量含量优选为11~14%,更优选为13~14%,最优选为13.32%;所述Al 2O 3的质量含量优选为1.2~1.8%,更优选为1.4~1.6%,最优选为1.57%;所述Fe 2O 3的质量含量优选为21~24%,更优选为23~24%,最优选为23.11%;所述MgO的质量含量优选为6~9%,更优选为7~8%,最优选为7.61%;所述FeO的质量含量优选为21~24%,更优选为21~22%,最优选为21.62%;所述P 2O 5的质量含量优选为1.2~1.8%,更优选为1.4~1.6%,最优选为1.47%;所述LOI的质量含量优选为2.6~2.9%,更优选为2.7~2.8%。
在本发明中,所述复合碱性外加剂溶液的质量优选为钢渣微粉质量的12~13%,更优选为12.2~12.8%,最优选为12.4~12.6%。
在本发明中,所述混合的方法优选搅拌,更优选为在搅拌埚中进行搅拌。在本发明中,所述混合的方法优选包括:
将钢渣微粉进行慢速搅拌,然后加入复合碱性外加剂溶液后静停,再快速搅拌。
在本发明中,所述钢渣微粉优选在行星式水泥砂浆搅拌中进行慢速搅拌;所述慢速搅拌的时间优选为50~70s,更优选为55~65s,最优选为60s。
在本发明中,所述静停的时间优选为20~40s,更优选为25~35s,最优选为30s。
在本发明中,所述快速搅拌的时间优选为50~70s,更优选为55~65s,最优选为60s。
在本发明中,所述压制成型优选在模具中进行;所述模具的尺寸优选为(85~95)mm×(35~45)mm×(45~55)mm,更优选为(88~92)mm×(38~42)mm×(48~52)mm,最优选为90mm×40mm×50mm。
在本发明中,所述压制成型的压力优选为5~10MPa,更优选为6~8MPa,最优选为7MPa;所述压制成型过程中的保压时间优选为0.5~1.5min,更优选为0.8~1.2min,最优选为1min。
在本发明中,所述碳酸化养护优选在碳化釜中进行;所述碳酸化养护过程中的CO 2分压优选为0.1~0.3MPa,更优选为0.15~0.25MPa,最优选为0.2MPa;所述碳酸化养护的温度优选为20~30℃,更优选为23~27℃,最优选为25℃;所述碳酸化养护过程中的CO 2的纯度优选>99.9%;所述碳酸化养护的时间优选为1~3h,更优选为1.5~2.5h,最优选为2h。
在本发明中,所述碳化化养护后优选还包括:
测试制备得到的钢渣砖的增重、物理性能以及物相分析。
在本发明中,所述增重的测试方法优选包括:
用吸水纸吸干碳化釜中由于反应而产生的水,称量吸水纸的增重和碳酸化前后钢渣砖的重量。
在本发明中,所述物相分析优选为SEM-EDS,XRD,DTA-TG及MIP。
本发明实施例提供的钢渣砖的制备方法的工艺流程图如图1所示,包括:
用电子天平准确称取所需钢渣微粉及其他掺加物质;
喷入w=12.6wt%复合激发剂溶液,蒸馏水中预先溶解一定比例的Na 2SiO 3+NaHCO 3制备得到复合激发剂溶液,将原料放入搅拌锅中搅拌;
搅拌均匀后,倒入90mm×40mm×50mm的模具中在7MPa压力下压制成型,并保压1min;
称量脱模后的样品放入碳化釜中:在CO 2分压P=0.2MPa,T=25℃,CO 2浓度(纯度)c>99.9%的条件下,试样碳酸化养护2h;
碳酸化后,用吸水纸吸干碳化釜中由于反应而产生的水,称量吸水纸的增重和碳酸化后试样的重量;
对试样进行物理性能测试;
对试样进行SEM-EDS,XRD,DTA-TG及MIP等物相分析。
本发明利用材料现代科学分析测试技术对碳酸化后钢渣的结构与性能进行了分析,对外加剂提高钢渣碳酸化增重率的机理进行了探讨。钢渣碳酸化的基本反应方程如下:
CO 2(L)+H 2O(L)→H 2CO 3→H ++HCO 3 -
CaSiO 3+2H +→Ca 2++H 2O+SiO 2
Ca 2++HCO 3 -→CaCO 3+H +
掺入1%的NaHCO 3使HCO 3-增加,促使反应平衡向生成CaCO 3的方向进行,然而当掺量增大时,碳酸化增重率不再增加,说明这种物质对钢渣碳酸化反应的促进是有限的。
钢渣试样中掺入外加剂Na 2SiO 3(又称水玻璃),其水化后产生的Na +、OH-等离子破坏了钢渣中玻璃态的Si-O键、Al-O键,使玻璃体迅速解离,并产生大量硅氧离子团、铝氧离子团,其与钢渣液相中Ca 2+、Al 3+等离子反应生成大量的水化铝酸钙与水化硅酸钙,其水化产物与CO 2迅速反应,提高了钢渣的碳酸化增重率。
碳酸化钢渣砖强度较高的原因考虑以下几个方面:
物理机械作用,制备钢渣砖前的破碎和粉磨,不仅仅是钢渣颗粒减小,比表面积增大的过程,同时伴随着晶体结构及表面物理化学性质的变化。由于物料比表面积增大,粉磨能量中的一部分转化为新生颗粒的内能和表面能。晶体的键能也将发生变化,晶格能迅速减小,在损失晶格能的位置产生晶格错位、缺陷、重结晶。在表面形成易溶于水的非晶态结构。晶格结构的变化主要反应为晶格尺寸减小,晶格应变增大,结构发生畸变。晶格尺寸减小,保证钢渣中矿物与CO 2接触面积增大;晶格应变增大,提高了矿物与CO 2的作用力;结构发生畸变,结晶度下降使矿物晶体的结合键减小,CO 2分子容易进入矿物内部,加速碳酸化反应;制备钢渣砖时,砂浆搅拌机对配合料的充分混合,有利物料之间的反应,对砖的强度提高起到重要作用。钢渣砖的初期强度是在试样压力成型过程中获得的。成型不仅使试样具有一定的强度,同时由于原材料颗粒间紧密接触,保证了物料颗粒之间的物理化学作用能够高效进行,为后期强度的形成提供了条件。
颗粒表面的交换和团料化作用,钢渣砖颗粒物料在水分子的作用下,表面形成一层薄薄的水化膜,在水化膜的作用下,一部分化学键开始断裂、电离,形成胶体颗粒体系。胶体颗粒大多数表面带有负电荷,可以吸附阳离子。而不同价、不同离子半径的阳离子可以与反应生成的Ca(OH) 2中的Ca 2+等当量吸附 交换。由于这些胶体颗粒表面的离子吸附与交换作用,改变了颗粒表面的带电状态,使颗粒形成了一个个小的聚集体,从而在后期反应中产生强度。
填隙作用,根据格里菲斯的材料破坏理论,材料最易破坏的位置就是缺陷最多的区域。在钢渣中,缺陷也可分为宏观缺陷和微观缺陷。由于钢渣在1600~1800℃的高温下形成,晶粒发育完好,生长粗大,内部的滑移和位错相对较少,因此,主要考虑钢渣的宏观缺陷,即钢渣内部的空隙。显而易见,CaO+CO 2→CaCO 3和MgO+CO 2→MgCO 3的作用就可以产生膨胀,生成的颗粒状的CaCO 3和MgCO 3填充在宏观的空隙内,使制品变得密实,强度自然提高。
钢渣碳酸化反应中会发生Ca(OH) 2+CO 2=CaCO 3+H 2O反应,且反应过程中钢渣制品吸收CO 2,从而制品质量增加,同时反应放热,部分水会以水蒸汽的形式释放出来,冷凝在碳化釜壁上。碳酸化养护后,需用吸水纸擦净碳化釜内壁,根据质量守恒定律,钢渣制品碳酸化后其自身质量与释放水的质量之和,比未碳酸化前制品质量高,高出的部分即为吸收的CO 2,实验过程用碳酸化增重率来表征钢渣制品吸收CO 2的量。
碳酸化增重率计算方法为:将成型后的钢渣制品准确称取其质量m 1,然后放在碳化釜中,通入纯度为99.9%的CO 2,在设定的CO 2分压下碳化预定的时间。碳酸化完成后,准确称取碳酸化后钢渣制品的质量m 2,用吸水纸吸收碳化釜中产生的水分,计吸水纸的增重为m 3,则碳酸化增重率为:
Figure PCTCN2021135291-appb-000001
这种碳酸化增重率的表示方法计算简单,较好的表示了碳酸化前后质量的增重情况,较好的反映了碳酸化的效果,适用于工业化生产控制;然而这种方法无法表示出碳酸化前后氧化钙和氧化镁的反应状况。
因此,称量碳酸化前钢渣污泥制品质量为m 1,碳酸化后钢渣制品质量为m 2,吸水纸的增重为m 3,则碳酸化增重为△m=m 2+m 3-m 1,即△m为CO 2实际增重△CO 2。理论计算钢渣中全部氧化钙和氧化镁完全转变为CaCO 3和MgCO 3的理论增重△M,则碳酸化增重率可以表示为钢渣中CaO和MgO转变为CaCO 3和MgCO 3的实际增重量△m与钢渣中全部氧化钙和氧化镁完全转变为CaCO 3和碳酸镁的理论增重△M的比值,即:
Figure PCTCN2021135291-appb-000002
这种方法与水泥的KH值相类似,可以较好的反映钢渣中氧化钙和氧化镁被碳酸化的情况,但由于钢渣中的化学成分波动很大,而这种方法要求测出每批钢渣的CaO和MgO的百分含量,较为繁琐,不利于工业化实际生产的控制,故依旧用第一种方法表示碳酸化增重率。
本发明以下实施例中的钢渣成分为(wt%)(XRD衍射如图2所示):
Figure PCTCN2021135291-appb-000003
实施例1
将Na 2SiO 3和NaHCO 3按质量分数0.3%Na 2SiO 3+0.5%NaHCO 3先与去离子水混合均匀,得到外加剂溶液。
按质量份数,将钢渣微粉倒入搅拌机,用行星式水泥砂浆搅拌机先慢速搅拌60s,与此同时加入12.6%(钢渣微粉质量12.6%)的外加剂溶液,静停30s,再快速搅拌60s使二者混合均匀,得到润湿的钢渣浆体;
搅拌均匀后,倒入90mm×40mm×50mm的模具中在7MPa压力下压制成型,并保压1min;
称量脱模后的样品放入碳化釜中,在CO 2分压P=0.2MPa,T=25℃,CO 2浓度(纯度)c>99.9%的条件下,试样碳酸化养护2h,得到钢渣砖。
实施例2
按照实施例1的方法制备钢渣砖,与实施例1的区别在于,采用0.4%Na 2SiO 3+1%NaHCO 3替换实施例1中的0.3%Na 2SiO 3+0.5%NaHCO 3
实施例3~7
按照实施例1的方法制备得到钢渣砖,与实施例1的区别在于,分别采用0.5%NaHCO 3、1.0%NaHCO 3、1.5%NaHCO 3、2.0%NaHCO 3、2.5%NaHCO 3替换实施例1中的0.3%Na 2SiO 3+0.5%NaHCO 3
实施例8~14
按照实施例1的方法制备得到钢渣砖,与实施例1的区别在于,分别采用0.1%Na 2SiO 3、0.2%Na 2SiO 33、0.3%Na 2SiO 3、0.4%Na 2SiO 3、0.5%Na 2SiO 3、0.6%Na 2SiO 3、0.7%Na 2SiO 3替换实施例1中的0.3%Na 2SiO 3+0.5%NaHCO 3
性能检测
按照上述技术方案所述的方法测试本发明实施例制备的钢渣砖的增重率。抗压实验使用YE-30型液压式压力实验机:计算三个试块抗压强度的平均值,精确至0.01MPa,如果所测得的三个值与它们平均值的差不大于15%,则用该平均值作为抗压强度,如果有某个值与平均值之差大于15%,应将此值舍去,以其余的值计算平均值;如果有二个以上的值与平均值之差大于15%,应重做实验。测试本发明实施例制备的钢渣砖的抗压强度,检测结果如图3、图4和下表所示,将不添加外加剂的技术方案作为比较例。
Figure PCTCN2021135291-appb-000004
空白样(不掺加外加剂的试样)的钢渣碳酸化增重率和抗压强度分别为9.48%、21.34MPa。掺加外加剂的试样与空白样对比发现,掺加的加剂都在不同程度上提高了钢渣碳酸化增重率。然而,对比外加剂对钢渣碳酸化增重率的影响发现,掺入NaHCO 3、Na 2SiO 3的钢渣试样碳酸化增重率提高幅度较大。因此,选择NaHCO 3、Na 2SiO 3复掺方案。对试样进行安定性测试,试样没有出现裂纹、掉角、开裂和粉碎现象。
本发明在钢渣微粉中加入NaHCO 3、Na 2SiO 3外加剂有利于钢渣微粉砖碳酸化增重率的提高,同时有利于钢渣微粉砖强度的提高。与未掺外加剂的试样相比,掺加外加剂碳酸化的钢渣有大量的颗粒状的CaCO 3晶体生成。生成的CaCO 3晶体结构较致密,晶粒较大,晶界较清晰,从而改善了钢渣的结构组成。本发明提供的钢渣砖制造方法具有原料易获取、价格低廉、绿色环保等特点,还可以降低硬化水泥浆体的总孔隙率。
虽然已参考本发明的特定实施例描述并说明本发明,但是这些描述和说明 并不限制本发明。所属领域的技术人员可清晰地理解,在不脱离如由所附权利要求书定义的本发明的真实精神和范围的情况下,可进行各种改变,以使特定情形、材料、物质组成、物质、方法或过程适宜于本申请的目标、精神和范围。所有此类修改都意图在此所附权利要求书的范围内。虽然已参考按特定次序执行的特定操作描述本文中所公开的方法,但应理解,可在不脱离本发明的教示的情况下组合、细分或重新排序这些操作以形成等效方法。因此,除非本文中特别指示,否则操作的次序和分组并非本申请的限制。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种钢渣砖的制备方法,包括:
    将复合碱性外加剂溶液和钢渣微粉混合,得到混合物;
    将所述混合物压制成型后进行碳酸化养护,得到钢渣砖。
  2. 根据权利要求1所述的方法,其特征在于,所述复合碱性外加剂包括:
    Na 2SiO 3和NaHCO 3
  3. 根据权利要求1所述的方法,其特征在于,所述复合碱性外加剂溶液中的溶剂为水。
  4. 根据权利要求2所述的方法,其特征在于,所述Na 2SiO 3在复合碱性外加剂溶液中的质量浓度为0.3~0.5%。
  5. 根据权利要求2所述的方法,其特征在于,所述NaHCO 3在复合碱性外加剂溶液中的质量浓度为0.5~1.5%。
  6. 根据权利要求1所述的方法,其特征在于,所述复合碱性外加剂溶液的质量为钢渣微粉质量的12~13%。
  7. 根据权利要求1所述的方法,其特征在于,所述压制成型的压力为5~10MPa。
  8. 根据权利要求1所述的方法,其特征在于,所述碳酸化养护过程中的CO 2分压为0.1~0.3MPa。
  9. 根据权利要求1所述的方法,其特征在于,所述碳酸化养护的温度为20~30℃。
  10. 根据权利要求1所述的方法,其特征在于,所述碳酸化养护的时间为1~3h。
PCT/CN2021/135291 2021-11-16 2021-12-03 一种钢渣砖的制备方法 WO2023087416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111354430.X 2021-11-16
CN202111354430.XA CN113912370B (zh) 2021-11-16 2021-11-16 一种钢渣砖的制备方法

Publications (1)

Publication Number Publication Date
WO2023087416A1 true WO2023087416A1 (zh) 2023-05-25

Family

ID=79246526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135291 WO2023087416A1 (zh) 2021-11-16 2021-12-03 一种钢渣砖的制备方法

Country Status (2)

Country Link
CN (1) CN113912370B (zh)
WO (1) WO2023087416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504761B (zh) * 2022-08-12 2023-05-16 海南大学 一种高强碳酸化钢渣板的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101337786A (zh) * 2008-08-28 2009-01-07 济南大学 碳化养护废弃物制备建筑材料用激发剂
JP2016037409A (ja) * 2014-08-06 2016-03-22 新日鐵住金株式会社 製鋼スラグの炭酸化処理方法
CN108147769A (zh) * 2017-12-31 2018-06-12 武汉理工大学 一种碳激发钢渣砖的制备方法
CN109574610A (zh) * 2019-01-21 2019-04-05 北京科技大学 一种利用钢渣高效制备低成本碳化砖的方法
CN111892340A (zh) * 2020-07-31 2020-11-06 湖北工业大学 一种低成本钢渣碳化砖的制备方法
CN112266264A (zh) * 2020-11-09 2021-01-26 河南兴安新型建筑材料有限公司 基于碱激发与加速碳化协同作用的加气混凝土及制备方法-
CN112430051A (zh) * 2020-11-30 2021-03-02 山西大学 钢渣-脱硫石膏-粉煤灰协同碳化制备的建材及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771780A (zh) * 2014-01-01 2014-05-07 大连理工大学 一种水化-碳酸化联用技术制备建筑材料制品的方法
US20170057872A1 (en) * 2015-08-31 2017-03-02 Watershed Materials, Llc Alkali-Activated Natural Aluminosilicate Materials for Compressed Masonry Products, and Associated Processes and Systems
CN111689742A (zh) * 2020-06-05 2020-09-22 贵州宏信创达工程检测咨询有限公司 一种工业固废复合材料砖及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101337786A (zh) * 2008-08-28 2009-01-07 济南大学 碳化养护废弃物制备建筑材料用激发剂
JP2016037409A (ja) * 2014-08-06 2016-03-22 新日鐵住金株式会社 製鋼スラグの炭酸化処理方法
CN108147769A (zh) * 2017-12-31 2018-06-12 武汉理工大学 一种碳激发钢渣砖的制备方法
CN109574610A (zh) * 2019-01-21 2019-04-05 北京科技大学 一种利用钢渣高效制备低成本碳化砖的方法
CN111892340A (zh) * 2020-07-31 2020-11-06 湖北工业大学 一种低成本钢渣碳化砖的制备方法
CN112266264A (zh) * 2020-11-09 2021-01-26 河南兴安新型建筑材料有限公司 基于碱激发与加速碳化协同作用的加气混凝土及制备方法-
CN112430051A (zh) * 2020-11-30 2021-03-02 山西大学 钢渣-脱硫石膏-粉煤灰协同碳化制备的建材及方法

Also Published As

Publication number Publication date
CN113912370A (zh) 2022-01-11
CN113912370B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Liu et al. An overview on the reuse of waste glasses in alkali-activated materials
Mallikarjuna Rao et al. Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar
Haq et al. In-situ carbonation of alkali activated fly ash geopolymer
WO2004058662A1 (en) A two-component wet cement, process and application thereof
CN115215586A (zh) 一种由电石渣湿磨固碳制备免蒸压加气混凝土砖的方法
CN113336516A (zh) 一种采用多元固废制备的胶凝材料及其协同调控方法
CN112266193A (zh) 人造钢渣骨料及其制备方法和应用
CN103539417B (zh) 一种利用铁尾矿、钢渣制蒸压砖的方法
CN114380518B (zh) 一种拜耳法赤泥-磷石膏免烧胶凝材料及其制备方法
CN112079583A (zh) 一种基于再生胶凝材料快速碳化的建材制品及其制备方法
Liu et al. Effect of rice husk ash on early hydration behavior of magnesium phosphate cement
Fan et al. Synthesis and microstructure analysis of autoclaved aerated concrete with carbide slag addition
CN114605121B (zh) 一种钨尾矿蒸压加气混凝土及其制备方法
CN115321890A (zh) 一种封存二氧化碳用固废基粘结剂、制备方法及其封存二氧化碳方法
WO2023087416A1 (zh) 一种钢渣砖的制备方法
CN111410508A (zh) 一种基于电厂固废和二氧化碳的建筑制品的制备方法和用途
CN113603402B (zh) 一种利用搅拌站废浆制备抗碳化型混凝土的方法
CN108751863B (zh) 一种基于盐渍土的胶凝材料及其制备方法
CN113880473A (zh) 一种钨尾矿基地聚物的制备方法
Wei et al. Preparation and characterization of unfired lightweight bricks using dealkalized calcium silicate residue from low-calcium sintering red mud
CN108530015B (zh) 一种利用铝土矿尾矿制造的蒸养砖及其制备方法
CN111559896A (zh) 一种发泡磷石膏砌块及其制备方法
CN114716193B (zh) 一种再生渣土砖的制备方法
Lin et al. A Review of Recent Advances in Alkali-Activated Materials from Silica-Rich Wastes Derived Sodium Silicate Activators
Zheng et al. A review: Enhanced performance of recycled cement and CO2 emission reduction effects through thermal activation and nanosilica incorporation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964561

Country of ref document: EP

Kind code of ref document: A1