WO2023087197A1 - 显示装置、电流校正值的建立方法与电流校正系统 - Google Patents

显示装置、电流校正值的建立方法与电流校正系统 Download PDF

Info

Publication number
WO2023087197A1
WO2023087197A1 PCT/CN2021/131383 CN2021131383W WO2023087197A1 WO 2023087197 A1 WO2023087197 A1 WO 2023087197A1 CN 2021131383 W CN2021131383 W CN 2021131383W WO 2023087197 A1 WO2023087197 A1 WO 2023087197A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
correction
values
current setting
Prior art date
Application number
PCT/CN2021/131383
Other languages
English (en)
French (fr)
Inventor
李连勇
孙君毅
林炯宏
吴逢祥
伍弘宝
Original Assignee
瑞仪光电(苏州)有限公司
瑞仪光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞仪光电(苏州)有限公司, 瑞仪光电股份有限公司 filed Critical 瑞仪光电(苏州)有限公司
Priority to PCT/CN2021/131383 priority Critical patent/WO2023087197A1/zh
Priority to CN202180020859.7A priority patent/CN116472575A/zh
Priority to TW110144746A priority patent/TWI786972B/zh
Priority to US18/058,276 priority patent/US11804189B2/en
Publication of WO2023087197A1 publication Critical patent/WO2023087197A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G3/2096Details of the interface to the display terminal specific for a flat panel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/067Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means
    • G06N3/0675Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means using electro-optical, acousto-optical or opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0686Adjustment of display parameters with two or more screen areas displaying information with different brightness or colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the disclosure relates to a current calibration method for establishing a current calibration value of a backlight module in a display device.
  • Displays are one of the most common electronic devices in modern life, and they are used in various scenes and situations.
  • Some displays use a backlight module to provide a light source.
  • This backlight module includes multiple light-emitting diodes.
  • the brightness of these light-emitting diodes can be independently controlled under the technology of local dimming, thereby improving the contrast of the display. .
  • the light emitting diodes are driven according to default parameters.
  • light with preset luminance may not be provided according to the preset parameters. Therefore, how to correct these parameters is a topic of concern to those skilled in the art.
  • Embodiments of the disclosure provide a method for establishing a current correction value, which is suitable for a display device.
  • the display device includes a display panel and a backlight module, the display panel includes a plurality of areas, the backlight module includes a plurality of light emitting units, and each area corresponds to at least one light emitting unit.
  • the light emitting unit is driven by the current of the backlight module to emit light, so as to serve as a backlight source for the area of the display panel.
  • the establishment method includes: establishing a current setting value sequence, the current setting value sequence includes a plurality of current setting values, driving the first light-emitting unit, and measuring the current value of the first light-emitting unit; establishing a recurrent neural network, the recursive neural network Including an input layer, a hidden layer, and an output layer; and inputting the first current value to the hidden layer, simultaneously inputting multiple current setting values to the input layer in sequence, and sequentially obtaining multiple correction values from the output layer, multiple The correction values respectively correspond to a plurality of current setting values.
  • the above establishment method further includes: obtaining one of the correction values, and driving the first light emitting unit according to the obtained correction value.
  • the operation of the recurrent neural network includes the following mathematics.
  • d is the dimming level
  • t(d) is the current setting value
  • a plurality of dimming levels d are set from large to small.
  • s(d) is the correction value.
  • m(d+1) is the input of the hidden layer.
  • W, V, and U are weights
  • f 1 and f 2 are activation functions.
  • multiple current setting values correspond to multiple driving values
  • the above establishment method further includes: in the training phase, for each current setting value, driving the light-emitting unit according to the corresponding driving value, and obtaining the first Two current values, use the negative feedback control method to adjust the corresponding driving value, so that the second current value conforms to the corresponding current setting value, wherein the adjusted multiple driving values and the second current value corresponding to the maximum dimming level form Training samples.
  • the above activation functions f 1 and f 2 are Sigmoid functions, linear rectification units or hyperbolic tangent functions.
  • the above multiple dimming levels are arithmetic progressions.
  • the embodiments of the present disclosure provide a display device including a display panel, a backlight module, and at least one circuit.
  • the display panel includes a plurality of regions.
  • the backlight module includes a plurality of light emitting units, each area of the display panel corresponds to at least one light emitting unit, and the light emitting unit is driven by the current of the backlight module to emit light, so as to serve as a backlight source for the area of the display panel.
  • the above-mentioned circuit includes a correction look-up table, and the correction look-up table includes a plurality of correction values, and these correction values respectively correspond to a plurality of dimming levels. These correction values are generated according to the recursive neural network.
  • the above-mentioned circuit obtains one of the correction values, and generates a corrected current according to the obtained correction value to drive the light emitting unit.
  • the aforementioned circuit includes a timing controller and a microcontroller.
  • the timing controller calculates the driving value corresponding to the first light emitting unit according to the local dimming algorithm.
  • the microcontroller contains a calibration lookup table.
  • the embodiments of the present disclosure provide a current calibration system, including the above-mentioned display device and an electronic terminal.
  • the electronic terminal establishes the current correction value according to the correction program, wherein the recursive neural network runs on the electronic terminal.
  • the calibration procedure includes: establishing a current setting value sequence, the current setting value sequence including a plurality of current setting values, driving the first light-emitting unit, and measuring the current value of the first light-emitting unit; inputting the first current value to the recursive neuron
  • the hidden layer of the network simultaneously inputs multiple current setting values to the input layer sequentially, and sequentially obtains multiple correction values from the output layer; and establishes a correction lookup table corresponding to the first light emitting unit according to the multiple correction values.
  • FIG. 1 is a schematic diagram illustrating a current calibration system according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating a plurality of regions and corresponding light emitting units on a display panel according to an embodiment.
  • FIG. 3 is a flowchart illustrating generating a training current correction value according to an embodiment.
  • FIG. 4 is a schematic diagram illustrating a recurrent neural network according to an embodiment.
  • FIG. 5 is a flowchart illustrating a calibration procedure according to an embodiment.
  • FIG. 1 is a schematic diagram illustrating a current calibration system according to an embodiment.
  • the current calibration system 100 includes an electronic terminal 110 and a display device 120 .
  • the electronic terminal 110 can be a personal computer, a server, or various electronic devices with computing capabilities.
  • the display device 120 includes a circuit 130 , a backlight module 140 and a display panel 150 .
  • the circuit 130 includes a timing controller 131 and a microcontroller (Microcontroller Unit, MCU) 132, and the microcontroller 132 can also be replaced by a programmable logic gate array (FPGA), so the microcontroller disclosed in this embodiment should not be used 132 is the limit.
  • MCU microcontroller Unit
  • FPGA programmable logic gate array
  • the backlight module 140 includes a plurality of light emitting units, such as light emitting diodes, and these light emitting diodes are driven by the current of the backlight module 140 to provide backlight.
  • the display panel 150 is, for example, a liquid crystal display panel.
  • FIG. 2 is a schematic diagram illustrating a plurality of regions and corresponding light emitting units on a display panel according to an embodiment. Referring to FIG. 1 and FIG. 2 , in the embodiment of FIG. 2 , the display panel 150 includes 15 areas (eg, areas 151 - 153 ), and each area corresponds to a plurality of light emitting units (eg, light emitting units 141 - 142 ).
  • the luminance of each light-emitting unit can be controlled by providing different magnitudes of current to increase the contrast of the picture. For example, when the picture to be displayed in a certain area is dark, the luminance of the corresponding light-emitting unit can be reduced. On the contrary, When the picture to be displayed in a certain area is bright, the luminance of the corresponding light emitting unit can be adjusted up.
  • FIG. 2 is only an example, and the disclosure does not limit how many areas the display panel 150 includes, nor does it limit how many light emitting units each area corresponds to.
  • the timing controller 131 calculates the dimming level of each area on the display panel 150 , and the dimming level indicates how bright the backlight source is required. According to the calculated dimming level, the timing controller 131 calculates a driving value, and the driving value is used to drive the light emitting unit to generate a specific current.
  • the drive value is directly related to the dimming level described above.
  • the dimming level is represented by 8 bits, and its numerical range is 0-255, while the driving value is represented by 10 bits, and its numerical range is 0-1023.
  • the mapping relationship between the dimming level and the driving value can be be linear or nonlinear, the present disclosure is not limited thereto.
  • the microcontroller 132 includes a plurality of calibration lookup tables, each calibration lookup table corresponds to a light emitting unit, and multiple calibration values corresponding to the driving values are recorded in the calibration lookup table.
  • the timing controller 131 can access the correction look-up table in the microcontroller 132 according to the above-mentioned calculated driving value, thereby obtaining the corresponding correction value, and then drive the corresponding light-emitting unit according to the correction value, so that the light-emitting unit Brightness as expected can be provided.
  • a method for establishing a current correction value is proposed herein, which is executed by the electronic terminal 110 and uses a recurrent neural network (RNN) to generate the above correction value.
  • RNN recurrent neural network
  • FIG. 3 is a flow chart illustrating generating a training current correction value according to an embodiment.
  • the light emitting unit 141 is taken as an example.
  • the light emitting unit 141 is first driven according to the driving value 301 , and then the current value of the light emitting unit 141 is measured by the measuring unit 302 , such as an ammeter or a power meter.
  • the measuring unit 302 such as an ammeter or a power meter.
  • the setting value, or the specification setting value required by the manufacturer of the electronic terminal 110 can be the objective target value obtained by the electronic terminal 110 through the program operation, or the subjective value required by the user.
  • the setting value, or the specification setting value required by the manufacturer of the electronic terminal 110 can be the objective target value obtained by the electronic terminal 110 through the program operation, or the subjective value required by
  • the current setting value 304 corresponds to the driving value 301 .
  • the driving value can be "995", and the corresponding current setting value under this driving value is 64 milliamperes, that is, 64 milliamperes can make the light-emitting unit 141 provide the current corresponding to the driving value "995".
  • brightness in step 303 it is necessary to judge whether the actually measured current value is close enough to 64 mA.
  • step 303 may determine whether the measured current value is the same as the current setting value 304, and in some embodiments may also determine whether the difference between the measured current value and the current setting value 304 is Within a certain range. If the judgment result of step 303 is no, then the driving value is adjusted in step 305 .
  • the initial driving value 301 can be slightly increased to form a new driving value 301, and the new driving value 301 can be used as the next Step 305 adjusts the basis of the driving value; if the measured current value is greater than the current setting value 304, the initial driving value 301 can be used as the basis to slightly reduce to form a new driving value 301, and the new driving value 301 As a basis for adjusting the driving value at step 305 next time. Then drive the light-emitting unit 141 again according to the adjusted driving value and repeat the above steps. When it is judged in step 303 that the measured current value meets the current setting value, the adjusted driving value is output in step 306 .
  • the driving value 301 is adjusted by the negative feedback control method, so that the measured current value conforms to the current setting value 304 corresponding to the driving value 301 . It is worth noting that the above-mentioned negative feedback control method needs to be repeated for different driving values. If there are 256 dimming levels, there will also be 256 corresponding driving values. This negative feedback must be performed for each driving value. The feedback control method is used to obtain the adjusted driving values, and these 256 adjusted driving values are part of the training samples.
  • Table 1 includes the dimming level, current setting value, original driving value, measured current value, and adjusted driving value corresponding to a certain light emitting unit.
  • the dimming level is 255
  • the current setting value is 64 mA
  • the original driving value is 995
  • the actually measured current value is 65.3 mA , which is greater than the current setting value of 64 mA, so the driving value must be reduced
  • the adjusted driving value is 993, and so on for other dimming levels.
  • use d to represent the dimming level use t(d) to represent the current setting value corresponding to the dimming level d, and use si(d) to represent the original value corresponding to the dimming level d (default ), use m(d) to represent the measured current value corresponding to the dimming level d, and use s(d) to represent the adjusted driving value corresponding to the dimming level d.
  • the driving value s(d) of all dimming levels is predicted according to the current value m(d) of a certain dimming level (for example, dimming level 255").
  • FIG. 4 is a schematic diagram illustrating a recurrent neural network according to an embodiment.
  • the recurrent neural network 400 includes an input layer 410 , a hidden layer 420 and an output layer 430 .
  • the input of the input layer 410 is the current setting value t(d), and the feature value m(d) in the hidden layer 420 is calculated using the following mathematical formula 1, wherein V and U are the parameters to be trained.
  • the output of the output layer 430 is the adjusted driving value s(d), which is calculated by the following formula 2, where W is the parameter to be trained.
  • s(d) the adjusted driving value s(d)
  • W the parameter to be trained.
  • an activation function (activation function) f 1 is also included between the input layer 410 and the hidden layer 420
  • an activation function f 2 is also included between the hidden layer 420 and the output layer 430.
  • These two activation functions can be S-type ( Sigmoid) function, Rectified Linear Unit (ReLU) or hyperbolic tangent function (tanh), etc., the present disclosure is not limited thereto. Since these two activation functions are not general arithmetic functions, these two activation functions are mainly mapped to a certain interval, and the function changes in this interval are quite smooth, and will not produce positive infinity or negative similar to the arithmetic function In the case of infinity, this contributes to the corrected stability of the drive value s(d). On this premise, after adding the activation function, the above formula 3 can be rewritten as the following formula 4.
  • the input current setting values t(255) ⁇ t(0) are a sequence
  • the driving value s(d) output by the recurrent neural network 400 is also a sequence.
  • the recurrent neural network 400 can be expressed in an expanded manner, for example, when the input is t(d), the output is s(d), and so on.
  • the dimming level d is an arithmetic sequence sorted from large to small, that is to say, the current setting values t(255) ⁇ t(0) are sequentially input into the input layer 410, and the characteristic values m(d) is calculated based on the eigenvalue m(d+1) of the previous iteration.
  • the eigenvalue m(256) is calculated based on the original driving value si(255 ) actually measured current value after driving the light-emitting unit, for example, 65.3 mA in the second row of Table 1 above. That is to say, only m(256) needs to be actually measured, while other m(255)-(0) are all calculated by the above formula 1. At least the current value m(256) and all adjusted driving values s(255) ⁇ s(0) are required in the training samples.
  • FIG. 5 is a flow chart illustrating a calibration procedure according to an embodiment.
  • the calibration procedure is executed by the electronic terminal 110 to establish a calibration lookup table for a certain light emitting unit. Please refer to FIG. 5 , taking the light-emitting unit 142 as an example, first establish the current setting value sequence 501, the current setting value sequence includes the current setting value t(255) ⁇ t(0), and the dimming level is from "255 ” Arranged in sequence to the arithmetic progression of “0”.
  • the driving value 502 corresponding to one of the current setting values is obtained.
  • the driving value si(255) corresponding to the maximum dimming level is used to drive the light emitting unit 142 according to the obtained driving value 502, and then the amount of The measuring unit 302 measures the current value 503 of the light emitting unit 142 .
  • the current value 503 is input to the hidden layer of the recurrent neural network 400 as m(d+1), and the current setting values t(255) ⁇ t(0) are sequentially input to the input layer, and then from the output layer Correction values 504 are sequentially obtained, and these correction values 504 can be used to build a correction look-up table. For example, the correction values ("999", "989", . . .
  • This calibration lookup table can be stored in the microcontroller 132.
  • the dimming value is "254"
  • the calibration value can be found to be "989” through the calibration lookup table, and then the backlight module 140 can generate
  • the calibrated current drives the light emitting unit 142 to emit light, so as to serve as a backlight source for at least one area of the display panel. That is to say, since the output current of each light-emitting region has been calibrated, uniform brightness characteristics can be obtained to avoid uneven brightness of the light-emitting regions. Combined with the existing regional dimming technology, it can ensure that each light-emitting area after regional dimming can achieve the desired regional brightness.
  • the driving value 502 adopts the driving value si(255) corresponding to the maximum dimming level, but in other embodiments, the driving value corresponding to any dimming level can also be used, and in the training stage also The corresponding current value needs to be adopted.
  • the current setting value of the input layer can be t(127) ⁇ t(0), (255) ⁇ t(128), that is Say the current setpoint t(127) must be entered first.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Neurology (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of El Displays (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

本发明提出一种电流校正值的建立方法,包括:建立电流设定值序列,此电流设定值序列包括多个电流设定值,驱动发光单元,并且量测此发光单元的电流值;建立递归神经网络,此递归神经网络包括输入层、隐藏层以及输出层;以及将上述多个电流值输入至隐藏层,同时将多个电流设定值依序输入至输入层,并从输出层依序取得多个校正值,多个校正值分别对应至多个电流设定值。

Description

显示装置、电流校正值的建立方法与电流校正系统 技术领域
本揭露涉及一种电流校正方法,其用以建立显示装置中背光模组的电流校正值。
背景技术
显示器是现代人生活最常见的电子装置之一,各种场景、情境中都有显示器的应用。一些显示器使用背光模组来提供光源,此背光模组包括多个发光二极管,在区域调光(local dimming)的技术下可以独立控制这些发光二极管的辉度(brightness),由此提高显示器的对比度。然而,在一些习知技术中,则是根据默认的参数来驱动这些发光二极管,但是,因为制程变异等因素,根据预设的参数不一定可以提供预设辉度的光线。因此,如何校正这些参数,为本领域技术人员所关心的议题。
发明内容
本揭露的实施例提出一种电流校正值的建立方法,其适用于显示装置。此显示装置包括显示面板与背光模组,显示面板包括多个区域,背光模组包括多个发光单元,每一个区域对应至少一个发光单元。发光单元被背光模组的电流所驱动而发光,以作为显示面板的区域的背光源。建立方法包括:建立电流设定值序列,电流设定值序列包括多个电流设定值,驱动第一发光单元,并且量测第一发光单元的电流值;建立递归神经网络,此递归神经网络包括输入层、隐藏层以及输出层;以及将第一电流值输入至隐藏层,同时将多个电流设定值依序输入至输入层,并从输出层依序取得多个校正值,多个校正值分别对应至多个电流设定值。
在一些实施例中,上述的建立方法还包括:取得其中一个校正值,并根据所取得的校正值驱动第一发光单元。
在一些实施例中,递归神经网络的操作包括以下数学式。
s(d)=f 2(W×f 1(V×t(d)+U×m(d+1)))
其中,d为调光等级,t(d)为电流设定值,在电流设定值序列中多个调光等级d设定为由大至小。s(d)为校正值。m(d+1)为隐藏层的输入。当处理最大调光等级时,m(d+1)为第一电流值。W、V与U为权重,f 1与f 2为激活函数。
在一些实施例中,多个电流设定值对应至多个驱动值,上述的建立方法还包括:在训练阶段,对于每一个电流设定值,根据对应的驱动值来驱动发光单元,并取得第二电流值,利用负回授控制方法调整对应的驱动值,使得第二电流值符合对应的电流设定值,其中调整后的多个驱动值以及最大调光等级所对应的第二电流值形成训练样本。
在一些实施例中,上述的激活函数f 1与f 2为S型(Sigmoid)函数、线性整流单元或双曲正切函数。上述多个调光等级为等差数列。
以另一个角度来说,本揭露的实施例提出一种显示装置,包括显示面板、背光模组、以及至少一个电路。显示面板包括多个区域。背光模组包括多个发光单元,显示面板的每一个区域对应于至少一个发光单元,发光单元被背光模组的电流所驱动而发光,以作为显示面板的区域的背光源。上述的电路包含校正查找表,校正查找表包含多个校正值,这些校正值分别对应至多个调光等级。这些校正值根据递归神经网络所产生,上述的电路取得其中一个校正值,并根据所取得的校正值产生校正后电流,以驱动发光单元。
在一些实施例中,上述的电路包括时序控制器以及微控制器。时序控制器根据区域调光算法计算出第一发光单元所对应的驱动值。微控制器包含校正查找表。
以另一个角度来说,本揭露的实施例提出一种电流校正系统,包含上述的显示装置以及电子终端。此电子终端依据校正程序来建立电流校正值,其中递归神经网络在电子终端运行。校正程序包括:建立电流设定值序列,电流设定值序列包括多个电流设定值,驱动第一发光单元,并且量测第一发光单元的电流值;将第一电流值输入至递归神经网络的隐藏层, 同时将多个电流设定值依序输入至输入层,并从输出层依序取得多个校正值;以及根据多个校正值建立对应至第一发光单元的校正查找表。
附图说明
为了使本发明的上述特征和优点更加明显易懂,现在配合附图做出如下详细说明。
图1是绘示根据实施例的电流校正系统的示意图。
图2是绘示根据实施例的显示面板上多个区域与对应的发光单元的示意图。
图3是绘示根据实施例的产生训练用电流校正值的流程图。
图4是绘示根据实施例的递归神经网络的示意图。
图5是绘示根据实施例的校正程序的流程图。
具体实施方式
关于本文所使用的「第一」、「第二」等,并非特别意指次序或顺位,其仅为了区别以相同技术用语描述的元件或操作。
图1是绘示根据实施例的电流校正系统的示意图。请参照图1,电流校正系统100包括电子终端110与显示装置120。电子终端110可为个人计算机、服务器或具有计算能力的各种电子装置。显示装置120包含电路130、背光模组140与显示面板150。电路130包含时序控制器131与微控制器(Microcontroller Unit,MCU)132,微控制器132也可以替换为可程序化逻辑门阵列(FPGA),所以不应以本实施例所揭露的微控制器132为限。背光模组140包含多个发光单元,这些发光单元例如为发光二极管,这些发光二极管被背光模组140的电流所驱动而提供背光源。显示面板150例如为液晶显示面板。图2是绘示根据实施例的显示面板上多个区域与对应的发光单元的示意图。请参照图1与图2,在图2的实施例中,显示面板150包括15个区域(例如,区域151~153),每个区域对应至多个发光单元(例如发光单元141~142)。在此,可以通过提供不同大小的电流来控制每个发光单元的辉度以增加画面对比度,例如当某个区域所要显示的画面较 暗时,可以将对应的发光单元的辉度降低,相反,当某个区域所要显示的画面较亮时,可以将对应的发光单元的辉度调高。图2仅是范例,本揭露并不限制显示面板150包含几个区域,也不限制每个区域对应至多少个发光单元。
请参照图1,当要显示一张画面时,时序控制器131计算出显示面板150上每个区域的调光等级,此调光等级表示需要多大辉度的背光源。根据所计算出的调光等级,时序控制器131会计算出驱动值,此驱动值用以驱动发光单元产生特定的电流。在一些实施例中,驱动值正相关于上述的调光等级。举例来说,调光等级用8位来表示,其数值范围是0~255,而驱动值以10位来表示,其数值范围是0~1023,调光等级与驱动值之间的映像关系可为线性或非线性,本揭露并不限于此。由于制程的变异等因素,使用预定的驱动值不一定可以驱动发光单元来提供所需要的辉度,因此驱动值需要经过校正。微控制器132包含多个校正查找表,每个校正查找表对应至一个发光单元,校正查找表中纪录对应至驱动值的多个校正值。时序控制器131可根据上述计算出的驱动值来存取微控制器132中的校正查找表,由此取得对应的校正值,接着根据此校正值来驱动对应的发光单元,如此一来发光单元可以提供符合预期的辉度。在此提出一种电流校正值的建立方法,此建立方法由电子终端110来执行,并且利用递归神经网络(recurrent neural network,RNN)来产生上述校正值。
具体来说,图3是绘示根据实施例的产生训练用电流校正值的流程图。请参照图3,在此以发光单元141为例。在训练阶段,首先根据驱动值301驱动发光单元141,接着使用量测单元302来量测发光单元141的电流值,此量测单元302例如为电流计或是功率计。在步骤303中,判断所量测到的电流值是否符合电流设定值304,其中,电流设定值可以是电子终端110经过程序运算后所得到的客观目标值,或是用户所要求的主观设定值,或是电子终端110制造商所要求的规格设定值。此电流设定值304对应至驱动值301。举例来说,驱动值可为“995”,在此驱动值下所对应的电流设定值是64毫安,也就是说,64毫安可以使发光单元141提供驱动值“995”所对应的辉度,在步骤303中需要判断实际上量测到的电流值 是否足够接近64毫安。在一些实施例中,步骤303可以判断量测到的电流值是否相同于电流设定值304,在一些实施例中也可以判断量测到的电流值与电流设定值304之间的差是否在一定范围内。如果步骤303的判断结果为否,则在步骤305中调整驱动值。举例来说,如果量测到的电流值小于电流设定值304,则可以先以初始驱动值301为基础稍微增加而形成新的驱动值301,并以此新的驱动值301作为下一次在步骤305调整驱动值的基础;如果量测到的电流值大于电流设定值304,则可以先以初始驱动值301作为基础稍微减少而形成新的驱动值301,并以此新的驱动值301作为下一次在步骤305调整驱动值的基础。接着根据调整后的驱动值再次驱动发光单元141并重复上述步骤,当在步骤303中判断量测到的电流值符合电流设定值时,则在步骤306输出调整后的驱动值。换言之,在此以负回授控制方法调整驱动值301,使得量测到的电流值符合驱动值301所对应的电流设定值304。值得注意的是,对于不同的驱动值都需要重复上述的负回授控制方法,如果有256个调光等级,则也会有对应的256个驱动值,对于每一个驱动值都必须进行此负回授控制方法来取得调整后的驱动值,这256个调整后的驱动值属于训练样本的一部分。
以下,表一包含某个发光单元所对应的调光等级、电流设定值、原本的驱动值、量测到的电流值、以及调整后的驱动值。
Figure PCTCN2021131383-appb-000001
表一
举例来说,请参照表一的第二行,当调光等级为255时,电流设定值为64毫安,原本的驱动值为995,但实际上量测到的电流值为65.3毫 安,这大于电流设定值64毫安,因此必须要降低驱动值,而调整后的驱动值为993,对于其他调光等级以此类推。在后续的说明中,用d来表示调光等级,用t(d)来表示调光等级d所对应的电流设定值,用si(d)来表示调光等级d所对应的原本(默认)的驱动值,用m(d)来表示调光等级d所对应的量测到的电流值,用s(d)来表示调光等级d所对应的调整后的驱动值。在此实施例中,根据某一个调光等级(例如调光等级255”)的电流值m(d)来预测所有调光等级的驱动值s(d)。由于量测电流值m(d)需要一定的时间,因此如果每个调光等级都量测对应的电流值m(d),则需要大量的时间,通过预测的方法可以快速产生校正后的驱动值s(d)。
图4是绘示根据实施例的递归神经网络的示意图。请参照图4,递归神经网络400包含输入层410、隐藏层420与输出层430。输入层410的输入为电流设定值t(d),隐藏层420中的特征值m(d)利用如下数学式1来计算,其中,V、U为所要训练的参数。
[数学式1]
m(d)=V×t(d)+U×m(d+1)
输出层430的输出为调整后的驱动值s(d),其利用以下数学式2来计算,其中,W为所要训练的参数。将数学式1代入数学式2可以得到以下数学式3。
[数学式2]
s(d)=W×m(d)
[数学式3]
s(d)=W×(V×t(d)+U×m(d+1))
另外,在输入层410与隐藏层420之间还包含激活函数(activation function)f 1,在隐藏层420与输出层430之间还包含激活函数f 2,这两个激活函数可为S型(Sigmoid)函数、线性整流单元(Rectified Linear Unit,ReLU)或双曲正切函数(tanh)等,本揭露并不限于此。由于这两个激活函数并非一般的等差函数,因此,这两个激活函数主要会映像到某一区间,在此区间的函数变化相当平滑,而不会类似于等差函数产生正无穷或负无穷的情况,这有助于驱动值s(d)的校正稳定度。在此前提下,加入激活函数后, 上述的数学式3可以改写为以下数学式4。
[数学式4]
s(d)=f 2(W×f 1(V×t(d)+U×m(d+1)))
在此,输入的电流设定值t(255)~t(0)是一个序列,递归神经网络400输出的驱动值s(d)也是一个序列。一般来说,递归神经网络400可以用展开的方式来表示,例如当输入为t(d)时,输出为s(d),以此类推。值得注意的是,在此,调光等级d是由大到小排序的等差数列,也就是说电流设定值t(255)~t(0)被依序输入至输入层410,特征值m(d)是根据上一次迭代的特征值m(d+1)计算出来的,当处理最高调光等级(d=255)时,特征值m(256)是根据原本的驱动值si(255)驱动发光单元后实际上量测到的电流值,例如为上述表一的第二行的65.3毫安。也就是说,只有m(256)需要实际量测,而其他m(255)~(0)都是通过上述数学式1所计算出。训练样本中至少需要电流值m(256)以及所有调整后的驱动值s(255)~s(0)。
在此,每个发光单元可以提供一个训练样本,在收集多个训练样本以后,可以据此训练递归神经网络400。训练好的递归神经网络400可以用来预测校正后的驱动值。具体来说,图5是绘示根据实施例的校正程序的流程图,此校正程序由电子终端110来执行,其用以建立某一个发光单元的校正查找表。请参照图5,在此以发光单元142为例,首先建立电流设定值序列501,电流设定值序列包括电流设定值t(255)~t(0),调光等级是从“255”依序排列至“0”的等差数列。接着,取得其中一个电流设定值所对应的驱动值502,此实施例采用最大调光等级所对应的驱动值si(255),根据所取得的驱动值502来驱动发光单元142,然后利用量测单元302量测发光单元142的电流值503。接着,将电流值503输入至递归神经网络400的隐藏层当作m(d+1),同时将电流设定值t(255)~t(0)依序输入至输入层,然后从输出层依序取得校正值504,这些校正值504可用来建立校正查找表。例如,校正查找表中依序纪录了调光值255~0分别对应的校正值(“999”、“989”…、“3”、“0”)。此校正查找表可被储存在微控制器132中,当调光值为“254”时,可以通过此校正查找表找到校正值为“989”,接着背光模组140可根据此校正值来产生校正后的电流而驱动发光单元142发 光,以作为显示面板中至少一个区域的背光源。也就是说,由于每个发光区域的输出电流经过了校正,因此可获得均匀亮度特性,以避免发光区域的亮度不均匀的情形发生。再结合现有的区域调光技术,便能确保区域调光后的各个发光区域都能达到期望的分区亮度。
在图5的流程中,只需要量测电流值503一次,便可以取得所有的校正值,相较来说,习知技术需要量测每个驱动值所对应的电流值,然后通过负回授控制方法来计算出调整后的校正值。因此,借助于上述实施例的方法来产生校正值可以节省大量的时间。
在上述实施例中,驱动值502采用了最大调光等级所对应的驱动值si(255),但在其他实施例中也可以采用任何一个调光等级所对应的驱动值,而在训练阶段也需要采用对应的电流值。举例来说,如果将量测到的m(128)输入至隐藏层,则输入层的电流设定值可以为t(127)~t(0)、(255)~t(128),也就是说电流设定值t(127)必须被第一个输入。本领域普通技术人员应当可以根据上述内容设计出不同的电流设定值序列,本揭露并不限于上述实施例。
虽然本发明已通过实施例进行了如上揭露,然而本发明并不限于此,任何本领域技术人员,在不脱离本发明的精神和范围内,应当可以做出些许更动与润饰,故本发明的保护范围应当以所附的权利要求书所界定的范围为准。
【附图标记列表】
100:电流校正系统
110:电子终端
120:显示装置
130:电路
131:时序控制器
132:微控制器
140:背光模组
141、142:发光单元
150:显示面板
151、152:区域
301:驱动值
302:量测单元
303、305、306:步骤
304:电流设定值
400:递归神经网络
410:输入层
420:隐藏层
430:输出层
501:电流设定值序列
502:驱动值
503、610:电流值
504:校正值
620:查找表。

Claims (10)

  1. 一种电流校正值的建立方法,其适用于显示装置,所述显示装置包括显示面板与背光模组,所述显示面板包括多个区域,所述背光模组包括多个发光单元,所述多个区域中的每一者对应于所述多个发光单元中的至少一者,所述多个发光单元被所述背光模组的电流所驱动而发光,以作为所述显示面板的所述多个区域的背光源,所述建立方法包括:
    建立电流设定值序列,其中所述电流设定值序列包括多个电流设定值,驱动所述多个发光单元中的第一发光单元,并且量测所述第一发光单元的第一电流值;
    建立递归神经网络,其中所述递归神经网络包括输入层、隐藏层以及输出层;以及
    将所述第一电流值输入至所述隐藏层,同时将所述多个电流设定值依序输入至所述输入层,并从所述输出层依序取得多个校正值,所述多个校正值分别对应至所述多个电流设定值。
  2. 根据权利要求1所述的电流校正值的建立方法,还包括:
    取得所述多个校正值中的其中一者,并根据所取得的所述校正值来驱动所述第一发光单元。
  3. 根据权利要求1所述的电流校正值的建立方法,其中,所述递归神经网络的操作包括以下数学式:
    s(d)=f 2(W×f 1(V×t(d)+U×m(d+1)))
    其中,d为多个调光等级的其中一者,t(d)为所述多个电流设定值的其中一者,在所述电流设定值序列中所述多个调光等级d设定为由大至小,s(d)为所述多个校正值的其中一者,m(d+1)为所述隐藏层的输入,当所述多个调光等级的其中一者为最大调光等级时,m(d+1)为所述第一电流值,W、V与U为权重,f 1与f 2为激活函数。
  4. 根据权利要求3所述的电流校正值的建立方法,其中,所述多个电流设定值对应至多个驱动值,所述建立方法还包括:
    在训练阶段,对于每一所述电流设定值,根据对应的所述驱动值来驱动所述多个发光单元的其中一者,并取得第二电流值,接着利用负回授控制方法调整对应的所述驱动值,使得所述第二电流值符合对应的所述电流设定值,其中调整后的所述多个驱动值以及所述最大调光等级所对应的所述第二电流值形成训练样本。
  5. 根据权利要求3所述的电流校正值的建立方法,其中,所述激活函数f 1与f 2为S型函数、线性整流单元或双曲正切函数,所述多个调光等级为等差数列。
  6. 一种显示装置,包括:
    显示面板,其包括多个区域;
    背光模组,其包括多个发光单元,所述显示面板的每一所述区域对应于所述多个发光单元中的至少一者,所述多个发光单元被所述背光模组的电流所驱动而发光,以作为所述显示面板的所述多个区域的背光源;以及
    至少一个电路,其包含校正查找表,所述校正查找表包含多个校正值,所述多个校正值分别对应至多个调光等级,所述多个校正值根据递归神经网络产生,所述至少一个电路取得所述多个校正值的其中一者,并根据所取得的所述校正值产生校正后电流,以驱动所述多个发光单元中的第一发光单元。
  7. 根据权利要求6所述的显示装置,其中,所述至少一个电路包括时序控制器以及微控制器,所述时序控制器根据区域调光算法计算出所述第一发光单元所对应的驱动值,所述微控制器包含所述校正查找表。
  8. 一种显示装置的电流校正系统,包含根据权利要求6或7所述的显示装置以及电子终端,所述电子终端依据校正程序来建立电流校正值,其中所述递归神经网络在所述电子终端上运行,且包括输入层、隐藏层以及输出层,所述校正程序包括:
    建立电流设定值序列,其中所述电流设定值序列包括多个电流设定值,驱动所述第一发光单元,并且量测所述第一发光单元的第一电流值;
    将所述第一电流值输入至所述隐藏层,同时将所述多个电流设定值依序输入至所述输入层,并从所述输出层依序取得所述多个校正值;以及
    根据所述多个校正值建立对应至所述第一发光单元的所述校正查找表。
  9. 根据权利要求8所述的显示装置的电流校正系统,其中,所述递归神经网络的操作包括以下数学式:
    s(d)=f 2(W×f 1(V×t(d)+U×m(d+1)))
    其中,d为多个调光等级的其中一者,t(d)为所述多个电流设定值的其中一者,在所述电流设定值序列中所述多个调光等级d设定为由大至小,s(d)为所述多个校正值的其中一者,m(d+1)为所述隐藏层的输入,当所述多个调光等级的其中一者为最大调光等级时,m(d+1)为所述第一电流值,W、V与U为权重,f 1与f 2为激活函数。
  10. 根据权利要求9所述的显示装置的电流校正系统,其中,所述激活函数f 1与f 2为S型函数、线性整流单元或双曲正切函数,所述多个调光等级为等差数列。
PCT/CN2021/131383 2021-11-18 2021-11-18 显示装置、电流校正值的建立方法与电流校正系统 WO2023087197A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/131383 WO2023087197A1 (zh) 2021-11-18 2021-11-18 显示装置、电流校正值的建立方法与电流校正系统
CN202180020859.7A CN116472575A (zh) 2021-11-18 2021-11-18 显示装置、电流校正值的建立方法与电流校正系统
TW110144746A TWI786972B (zh) 2021-11-18 2021-12-01 顯示裝置、電流校正值的建立方法與電流校正系統
US18/058,276 US11804189B2 (en) 2021-11-18 2022-11-23 Display device, method for generating offset current values and current offsetting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131383 WO2023087197A1 (zh) 2021-11-18 2021-11-18 显示装置、电流校正值的建立方法与电流校正系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/058,276 Continuation US11804189B2 (en) 2021-11-18 2022-11-23 Display device, method for generating offset current values and current offsetting system

Publications (1)

Publication Number Publication Date
WO2023087197A1 true WO2023087197A1 (zh) 2023-05-25

Family

ID=85795019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131383 WO2023087197A1 (zh) 2021-11-18 2021-11-18 显示装置、电流校正值的建立方法与电流校正系统

Country Status (4)

Country Link
US (1) US11804189B2 (zh)
CN (1) CN116472575A (zh)
TW (1) TWI786972B (zh)
WO (1) WO2023087197A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673529A (zh) * 2009-11-02 2010-03-17 友达光电股份有限公司 发光校正方法与显示器
CN102332242A (zh) * 2011-04-29 2012-01-25 Geo半导体有限公司 用于改善背光lcd显示器的色彩和亮度均匀性的系统和方法
CN103700348A (zh) * 2013-12-31 2014-04-02 深圳市华星光电技术有限公司 一种amoled驱动电路及其驱动方法
US20190333456A1 (en) * 2016-10-26 2019-10-31 Samsung Electronics Co., Ltd. Display device and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI391639B (zh) * 2009-07-15 2013-04-01 Univ Nat Formosa 以多片背光模組個別的影像亮度平均值與標準差訓練類神經網路來計算背光模組輝度的方法與系統
WO2018002774A1 (en) * 2016-06-29 2018-01-04 Semiconductor Energy Laboratory Co., Ltd. Electronic device, operation method of the electronic device, and moving vehicle
US11676547B2 (en) * 2017-07-07 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Display system and operation method of the display system
US11024002B2 (en) * 2019-03-14 2021-06-01 Intel Corporation Generating gaze corrected images using bidirectionally trained network
TWI731498B (zh) * 2019-12-05 2021-06-21 友達光電股份有限公司 顯示系統
KR20230050546A (ko) * 2021-10-07 2023-04-17 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673529A (zh) * 2009-11-02 2010-03-17 友达光电股份有限公司 发光校正方法与显示器
CN102332242A (zh) * 2011-04-29 2012-01-25 Geo半导体有限公司 用于改善背光lcd显示器的色彩和亮度均匀性的系统和方法
CN103700348A (zh) * 2013-12-31 2014-04-02 深圳市华星光电技术有限公司 一种amoled驱动电路及其驱动方法
US20190333456A1 (en) * 2016-10-26 2019-10-31 Samsung Electronics Co., Ltd. Display device and method

Also Published As

Publication number Publication date
US20230154422A1 (en) 2023-05-18
CN116472575A (zh) 2023-07-21
TWI786972B (zh) 2022-12-11
US11804189B2 (en) 2023-10-31
TW202322076A (zh) 2023-06-01

Similar Documents

Publication Publication Date Title
CN108630148B (zh) 显示面板亮度差异的补偿方法及显示器
CN108648700B (zh) 一种背光源的动态调光显示控制方法和装置
US9886915B2 (en) Dynamic backlight adjustment method of display screen
KR100855472B1 (ko) 저전력 구동 장치 및 방법
TWI439996B (zh) 調整顯示器背光的方法及相關裝置
TWI483235B (zh) 調整影像強度之方法與裝置
JP2009510685A (ja) 照明装置のエージング処理を補償する方法
CN1875311A (zh) 显示器及其控制方法
JP2012237972A (ja) 温度推定装置、その制御方法、及び画像表示装置
WO2020232588A1 (zh) 控制屏幕亮度的装置及方法
CN104143320A (zh) 亮度补偿方法及其显示控制装置与影像显示装置
CN111343746B (zh) 多基色led光源多像素下消除亮度饱和的控制方法及控制器
CN113012648A (zh) 用于实现局部调光的图像数据处理装置和方法
CN111341272A (zh) 一种背光控制方法、系统、终端及计算机可读存储介质
TW202038210A (zh) 減少背光源消耗的電力的圖像數據處理裝置及其顯示裝置
CN1658679A (zh) 色彩校正的方法
WO2023087197A1 (zh) 显示装置、电流校正值的建立方法与电流校正系统
TWI433593B (zh) 調光刻度調整裝置及用以驅動發光單元之調光方法
US20230222633A1 (en) Image data processing apparatus and display device for controlling local dimming
TWI677861B (zh) 適用於顯示器背光的區域調光系統
CN110021268B (zh) Oled的显示控制方法和装置
CN115731882A (zh) 屏幕亮度调节方法、装置、设备及存储介质
WO2022006753A1 (zh) 显示控制装置及其确定背光区光强的方法
TWI802120B (zh) 顯示裝置與其校正方法
CN111524484A (zh) 一种快速Gamma调整方法与一次烧录OTP系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180020859.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964358

Country of ref document: EP

Kind code of ref document: A1