WO2023085834A1 - Novel compound and organic light-emitting device comprising same - Google Patents

Novel compound and organic light-emitting device comprising same Download PDF

Info

Publication number
WO2023085834A1
WO2023085834A1 PCT/KR2022/017709 KR2022017709W WO2023085834A1 WO 2023085834 A1 WO2023085834 A1 WO 2023085834A1 KR 2022017709 W KR2022017709 W KR 2022017709W WO 2023085834 A1 WO2023085834 A1 WO 2023085834A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
layer
water
organic
Prior art date
Application number
PCT/KR2022/017709
Other languages
French (fr)
Korean (ko)
Inventor
김민준
이동훈
서상덕
김영석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220148521A external-priority patent/KR20230069842A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280032230.9A priority Critical patent/CN117279918A/en
Publication of WO2023085834A1 publication Critical patent/WO2023085834A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a novel compound and an organic light emitting device including the same.
  • the organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon has a wide viewing angle, excellent contrast, and a fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode, a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often composed of a multi-layered structure composed of different materials, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and when the injected holes and electrons meet, excitons are formed. When it falls back to the ground state, it glows.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device including the same.
  • the present invention provides a compound represented by Formula 1 below:
  • X 1 to X 9 are each independently N or CR 1 , but at least one of X 1 to X 9 is N;
  • R 1 is any one or more selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C 1-60 alkyl, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted N, O and S; A C 2-60 heteroaryl containing a heteroatom,
  • L is each independently a single bond or a substituted or unsubstituted C 6-60 arylene
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-60 aryl, or a substituted or unsubstituted C 2- including any one or more heteroatoms selected from the group consisting of N, O and S; 60 heteroaryl.
  • the present invention is a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Chemical Formula 1. do.
  • the compound represented by Chemical Formula 1 may be used as a material for an organic layer of an organic light emitting diode, and may improve efficiency, low driving voltage, and/or lifespan characteristics of an organic light emitting diode.
  • the compound represented by Chemical Formula 1 may be used as a material for hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection.
  • FIG. 1 shows an example of an organic light emitting device composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, a hole blocking layer 8, an electron injection and transport layer ( 9) and an example of an organic light emitting element composed of a cathode 4 is shown.
  • substituted or unsubstituted means deuterium; halogen group; nitrile group; nitro group; hydroxy group; carbonyl group; ester group; imide group; amino group; phosphine oxide group; alkoxy group; aryloxy group; Alkyl thioxy group; Arylthioxy group; an alkyl sulfoxy group; aryl sulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; Aralkenyl group; Alkyl aryl group; Alkylamine group; Aralkylamine group; heteroarylamine group; Arylamine group; Arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing at least one of N, O, and S atoms, or substituted or unsub
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.
  • the ester group may be substituted with an aryl group having 6 to 25 carbon atoms or a straight-chain, branched-chain or cyclic chain alkyl group having 1 to 25 carbon atoms in the ester group. Specifically, it may be a substituent of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.
  • the silyl group is specifically a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. but not limited to
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be straight-chain or branched-chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the number of carbon atoms of the alkyl group is 1 to 20. According to another exemplary embodiment, the number of carbon atoms of the alkyl group is 1 to 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, etc., but is not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 6.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 30. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 20.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as a monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc.
  • it is not limited thereto.
  • the heterocyclic group is a heterocyclic group containing at least one of O, N, Si, and S as heterogeneous elements, and the number of carbon atoms is not particularly limited, but preferably has 2 to 60 carbon atoms.
  • the heterocyclic group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, and an acridyl group.
  • pyridazine group pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyridopyrimidinyl group, pyridopyrazinyl group, pyrazinopyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia A zolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but are not limited thereto.
  • an aralkyl group, an aralkenyl group, an alkylaryl group, and an aryl group among arylamine groups are the same as the examples of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the examples of the above-mentioned alkyl group.
  • the description of the heterocyclic group described above may be applied to the heteroaryl of the heteroarylamine.
  • the alkenyl group among the aralkenyl groups is the same as the examples of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the heterocyclic group described above may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied, except that the hydrocarbon ring is formed by combining two substituents.
  • the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
  • the present invention provides a compound represented by Formula 1 above.
  • one of X 1 to X 9 is N.
  • Formula 1 is represented by any one of the following Formulas 1-1 to 1-9:
  • X 1 to X 9 , R 1 , L, Ar 1 and Ar 2 are as defined above,
  • n is an integer from 1 to 8;
  • R 1 is hydrogen or deuterium.
  • L is a single bond, phenylene, or naphthylene;
  • the phenylene and naphthylene are unsubstituted or substituted with one or more deuterium atoms.
  • L is a single bond or any one selected from the group consisting of:
  • Ar 1 and Ar 2 are each independently selected from phenyl, naphthyl, biphenylyl, terphenylyl, phenanthrenyl, phenyl naphthyl, naphthyl phenyl, dibenzofuranyl, dibenzothiophenyl, 9 -phenyl-carbazolyl, carbazol-9-yl, benzophenanthrenyl, or chrysenyl; Ar 1 and Ar 2 are unsubstituted or substituted with one or more deuterium atoms.
  • the present invention provides a method for preparing the compound represented by Formula 1 as shown in Reaction Scheme 1 below.
  • the reaction is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the reaction can be changed as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • the present invention provides an organic light emitting device including the compound represented by Formula 1 above.
  • the present invention provides a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Chemical Formula 1. do.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and the like as organic layers.
  • the structure of the organic light emitting device is not limited thereto and may include fewer organic layers.
  • the organic material layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes, and the hole injection layer, the hole transport layer, or a layer that simultaneously injects and transports holes is represented by Formula 1 above. may contain the indicated compounds.
  • the organic material layer may include a light emitting layer
  • the light emitting layer may include the compound represented by Chemical Formula 1.
  • the compound according to the present invention can be used as a dopant of the light emitting layer.
  • the organic material layer may include an electron transport layer, an electron injection layer, or a layer that simultaneously transports and injects electrons, and the electron transport layer, the electron injection layer, or a layer that simultaneously transports and injects electrons has the formula The compound represented by 1 may be included.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an organic light emitting device of an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
  • Chemical Formula 1 shows an example of an organic light emitting device composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • the compound represented by Chemical Formula 1 may be included in the light emitting layer.
  • the compound represented by Chemical Formula 1 may be included in the light emitting layer.
  • the organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Chemical Formula 1. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation, depositing a metal or a metal oxide having conductivity or an alloy thereof on the substrate to form an anode After forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and depositing a material that can be used as a cathode thereon, it can be prepared. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • PVD physical vapor deposition
  • the compound represented by Chemical Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate from a cathode material (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
  • the cathode material a material having a high work function is generally preferred so that holes can be smoothly injected into the organic layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function so as to easily inject electrons into the organic material layer.
  • Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and the hole injection material has the ability to transport holes and has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and generated in the light emitting layer
  • a compound that prevents migration of excitons to the electron injecting layer or electron injecting material and has excellent thin film formation ability is preferred. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • HOMO highest occupied molecular orbital
  • the hole injection material include metal porphyrins, oligothiophenes, arylamine-based organic materials, hexanitrilehexaazatriphenylene-based organic materials, quinacridone-based organic materials, and perylene-based organic materials. of organic materials, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports the holes to the light emitting layer.
  • a hole transport material a material capable of receiving holes from the anode or the hole injection layer and transferring them to the light emitting layer is a material having high hole mobility. This is suitable Specific examples include, but are not limited to, arylamine-based organic materials, conductive polymers, and block copolymers having both conjugated and non-conjugated parts.
  • the electron blocking layer is formed on the hole transport layer, and is preferably provided in contact with the light emitting layer to control hole mobility and prevent excessive movement of electrons to increase the probability of hole-electron coupling, thereby increasing the efficiency of the organic light emitting device.
  • the electron blocking layer includes an electron blocking material, and an example of such an electron blocking material may be an arylamine-based organic material, but is not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; Polyfluorene, rubrene, etc., but are not limited thereto.
  • the light emitting layer may include a host material and a dopant material.
  • the host material includes a condensed aromatic ring derivative or a compound containing a hetero ring.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type furan compounds, pyrimidine derivatives, etc., but are not limited thereto.
  • Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like.
  • aromatic amine derivatives are condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, periplanthene, etc.
  • styrylamine compounds include substituted or unsubstituted arylamine is substituted with at least one arylvinyl group, wherein one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group are substituted or unsubstituted.
  • metal complexes include, but are not limited to, iridium complexes and platinum complexes.
  • the hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to improve the efficiency of the organic light emitting device by controlling electron mobility and preventing excessive movement of holes to increase the probability of hole-electron coupling layers that play a role.
  • the hole blocking layer includes a hole blocking material, and examples of the hole blocking material include azine derivatives including triazine; triazole derivatives; oxadiazole derivatives; phenanthroline derivatives; A compound having an electron withdrawing group such as a phosphine oxide derivative may be used, but is not limited thereto.
  • the electron injection and transport layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from an electrode and transporting the received electrons to the light emitting layer, and is formed on the light emitting layer or the hole blocking layer.
  • an electron injecting and transporting material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable.
  • specific electron injection and transport materials include Al complexes of 8-hydroxyquinoline; Complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes; triazine derivatives, etc., but are not limited thereto.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, etc. and their derivatives, metal complex compounds , or may be used together with nitrogen-containing 5-membered ring derivatives, etc., but is not limited thereto.
  • the electron injection and transport layer may also be formed as a separate layer such as an electron injection layer and an electron transport layer.
  • the electron transport layer is formed on the light emitting layer or the hole blocking layer, and the above-described electron injection and transport material may be used as an electron transport material included in the electron transport layer.
  • the electron injection layer is formed on the electron transport layer, and examples of electron injection materials included in the electron injection layer include LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiophyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, fluorenylidene methane, anthrone, etc. and their derivatives, metal complex compounds, nitrogen-containing 5-membered ring derivatives, and the like can be used.
  • electron injection materials included in the electron injection layer include LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiophyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, fluorenylidene methan
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato) aluminum, tris(2-methyl-8-hydroxyquinolinato) aluminum, tris(8-hydroxyquinolinato) gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-hydroxyquinolinato)chlorogallium, bis(2-methyl-8-hydroxyquine nolinato)(o-cresolato)gallium, bis(2-methyl-8-hydroxyquinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-hydroxyquinolinato)(2- Naphtolato) gallium and the like, but are not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type, or a double side emission type depending on the material used.
  • the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to an organic light emitting device.
  • 3-bromo-4-chloropyridin-2-amine (15g, 72.3mmol) and (1-methoxynaphthalen-2-yl)boronic acid (15.3g, 75.9mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (30g, 216.9mmol) was dissolved in 100ml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.4g, 0.7mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer.
  • Compound A-2 was prepared in the same manner as in Preparation Example 1, except that 4-bromo-5-chloropyridin-3-amine was used instead of 3-bromo-4-chloropyridin-2-amine.
  • Compound A-3 was prepared in the same manner as in Preparation Example 1, except that 3-bromo-2-chloropyridin-4-amine was used instead of 3-bromo-4-chloropyridin-2-amine.
  • 2-bromo-3-chloroaniline (15g, 72.6mmol) and (4-methoxyquinolin-3-yl)boronic acid (15.5g, 76.3mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (30.1g, 217.9mmol) was dissolved in 100ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.4g, 0.7mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled.
  • Compound B-2 was prepared in the same manner as in Preparation Example 4, except that (4-methoxyisoquinolin-3-yl)boronic acid was used instead of (4-methoxyquinolin-3-yl)boronic acid.
  • Compound B-3 was prepared in the same manner as in Preparation Example 4, except that (5-methoxyquinolin-6-yl)boronic acid was used instead of (4-methoxyquinolin-3-yl)boronic acid.
  • Compound B-4 was prepared in the same manner as in Preparation Example 4, except that (5-methoxyisoquinolin-6-yl)boronic acid was used instead of (4-methoxyquinolin-3-yl)boronic acid.
  • Compound B-5 was prepared in the same manner as in Preparation Example 4, except that (8-methoxyisoquinolin-7-yl)boronic acid was used instead of (4-methoxyquinolin-3-yl)boronic acid.
  • 2-bromo-3-chloroaniline (15g, 72.6mmol) and (8-methoxyquinolin-7-yl)boronic acid (15.5g, 76.3mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (30.1g, 217.9mmol) was dissolved in 100ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.4g, 0.7mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer.
  • Trz4 (15g, 35.9mmol) and Compound A-2 (13g, 37.7mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled.
  • Trz6 (15g, 35.9mmol) and Compound A-2 (13g, 37.7mmol) were added to 300ml of THF, stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer.
  • Trz11 (15g, 35.9mmol) and Compound A-3 (13g, 37.7mmol) were added to 300ml of THF, stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 3 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer.
  • Trz14 (15g, 35.9mmol) and compound B-2 (13g, 37.7mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer.
  • Trz18 (15g, 35.9mmol) and compound B-3 (13g, 37.7mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled.
  • Trz21 (15g, 35.9mmol) and compound B-4 (13g, 37.7mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 3 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer.
  • a glass substrate coated with ITO (indium tin oxide) to a thickness of 1,000 ⁇ was put in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • a Fischer Co. product was used as the detergent
  • distilled water filtered through a second filter of a Millipore Co. product was used as the distilled water.
  • ultrasonic cleaning was performed for 10 minutes.
  • ultrasonic cleaning was performed with solvents such as isopropyl alcohol, acetone, and methanol, dried, and transported to a plasma cleaner.
  • solvents such as isopropyl alcohol, acetone, and methanol
  • the following compound HI-1 was formed to a thickness of 1150 ⁇ as a hole injection layer on the prepared ITO transparent electrode, but the following compound A-1 was p-doped at a concentration of 1.5%.
  • the following HT-1 compound was vacuum deposited to form a hole transport layer having a thickness of 800 ⁇ .
  • an electron blocking layer was formed by vacuum depositing the following EB-1 compound to a film thickness of 150 ⁇ on the hole transport layer.
  • compound 1 as a host and compound Dp-7 as a dopant were vacuum-deposited at a weight ratio of 98:2 to form a red light emitting layer having a thickness of 400 ⁇ .
  • a hole blocking layer was formed on the light emitting layer by vacuum depositing the following HB-1 compound to a film thickness of 30 ⁇ . Subsequently, the following ET-1 compound and the following LiQ compound were vacuum deposited at a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 ⁇ .
  • a negative electrode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ on the electron injection and transport layer.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ / sec
  • the deposition rate of lithium fluoride on the cathode was 0.3 ⁇ / sec
  • the deposition rate of aluminum was 2 ⁇ / sec
  • the vacuum level during deposition was 2x10 -7 ⁇ Maintaining 5x10 -6 torr, an organic light emitting device was manufactured.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds listed in Table 1 were used in the organic light emitting device of Example 1.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds listed in Table 1 were used in the organic light emitting device of Example 1.
  • compounds B-1 to B-10 are as follows.
  • the lifetime T95 means the time required for the luminance to decrease from the initial luminance (6,000 nit) to 95%.
  • the red organic light emitting device of Example 1 used materials widely used in the prior art, and had a structure using compound EB-1 as an electron blocking layer and Dp-7 as a red dopant.
  • the driving voltage is reduced and the efficiency and lifetime are increased compared to the compound of Comparative Example. It was found that the energy transfer was well done. It can be determined that this is because electrons and holes combine to form excitons through a more stable balance into the light emitting layer compared to the comparative compound.
  • the driving voltage, luminous efficiency and lifetime characteristics of the organic light emitting device can be improved when the compound of the present invention is used as a host of the red light emitting layer.
  • substrate 2 anode

Abstract

The present invention provides a novel compound and an organic light-emitting device comprising same.

Description

신규한 화합물 및 이를 포함한 유기 발광 소자Novel compound and organic light emitting device including the same
관련 출원(들)과의 상호 인용Cross-citation with related application(s)
본 출원은 2021년 11월 12일자 한국 특허 출원 제10-2021-0155894호 및 2022년 11월 9일자 한국 특허 출원 제10-2022-0148521호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2021-0155894 dated November 12, 2021 and Korean Patent Application No. 10-2022-0148521 dated November 9, 2022, and the All material disclosed in the literature is incorporated as part of this specification.
본 발명은 신규한 화합물 및 이를 포함한 유기 발광 소자에 관한 것이다.The present invention relates to a novel compound and an organic light emitting device including the same.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material. An organic light emitting device using an organic light emitting phenomenon has a wide viewing angle, excellent contrast, and a fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물층을 포함하는 구조를 가진다. 상기 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light emitting device generally has a structure including an anode, a cathode, and an organic material layer between the anode and the cathode. In order to increase the efficiency and stability of the organic light emitting device, the organic material layer is often composed of a multi-layered structure composed of different materials, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. In the structure of this organic light emitting device, when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and when the injected holes and electrons meet, excitons are formed. When it falls back to the ground state, it glows.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in the organic light emitting device as described above is continuously required.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호(Patent Document 0001) Korean Patent Publication No. 10-2000-0051826
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device including the same.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:The present invention provides a compound represented by Formula 1 below:
[화학식 1][Formula 1]
Figure PCTKR2022017709-appb-img-000001
Figure PCTKR2022017709-appb-img-000001
상기 화학식 1에서,In Formula 1,
X1 내지 X9는 각각 독립적으로, N 또는 CR1이되, X1 내지 X9 중 적어도 하나는 N이고,X 1 to X 9 are each independently N or CR 1 , but at least one of X 1 to X 9 is N;
R1은 수소, 중수소, 치환 또는 비치환된 C1-60 알킬, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,R 1 is any one or more selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C 1-60 alkyl, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted N, O and S; A C 2-60 heteroaryl containing a heteroatom,
L은 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,L is each independently a single bond or a substituted or unsubstituted C 6-60 arylene;
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이다.Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-60 aryl, or a substituted or unsubstituted C 2- including any one or more heteroatoms selected from the group consisting of N, O and S; 60 heteroaryl.
또한, 본 발명은 제1전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention is a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Chemical Formula 1. do.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.The compound represented by Chemical Formula 1 may be used as a material for an organic layer of an organic light emitting diode, and may improve efficiency, low driving voltage, and/or lifespan characteristics of an organic light emitting diode. In particular, the compound represented by Chemical Formula 1 may be used as a material for hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 1 shows an example of an organic light emitting device composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(3), 정공저지층(8), 전자주입 및 수송층(9) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, a hole blocking layer 8, an electron injection and transport layer ( 9) and an example of an organic light emitting element composed of a cathode 4 is shown.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, in order to aid understanding of the present invention, it will be described in more detail.
본 명세서에서,
Figure PCTKR2022017709-appb-img-000002
또는
Figure PCTKR2022017709-appb-img-000003
는 다른 치환기에 연결되는 결합을 의미한다.
In this specification,
Figure PCTKR2022017709-appb-img-000002
or
Figure PCTKR2022017709-appb-img-000003
means a bond connected to another substituent.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.In this specification, the term "substituted or unsubstituted" means deuterium; halogen group; nitrile group; nitro group; hydroxy group; carbonyl group; ester group; imide group; amino group; phosphine oxide group; alkoxy group; aryloxy group; Alkyl thioxy group; Arylthioxy group; an alkyl sulfoxy group; aryl sulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; Aralkenyl group; Alkyl aryl group; Alkylamine group; Aralkylamine group; heteroarylamine group; Arylamine group; Arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing at least one of N, O, and S atoms, or substituted or unsubstituted with two or more substituents linked to each other among the substituents exemplified above. . For example, "a substituent in which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.
Figure PCTKR2022017709-appb-img-000004
Figure PCTKR2022017709-appb-img-000004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the ester group may be substituted with an aryl group having 6 to 25 carbon atoms or a straight-chain, branched-chain or cyclic chain alkyl group having 1 to 25 carbon atoms in the ester group. Specifically, it may be a substituent of the following structural formula, but is not limited thereto.
Figure PCTKR2022017709-appb-img-000005
Figure PCTKR2022017709-appb-img-000005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.
Figure PCTKR2022017709-appb-img-000006
Figure PCTKR2022017709-appb-img-000006
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group is specifically a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. but not limited to
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, but is not limited thereto.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In this specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be straight-chain or branched-chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the number of carbon atoms of the alkyl group is 1 to 20. According to another exemplary embodiment, the number of carbon atoms of the alkyl group is 1 to 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, etc., but is not limited thereto.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, etc., but is not limited thereto.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 6. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 30. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 20. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as a monocyclic aryl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2022017709-appb-img-000007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure PCTKR2022017709-appb-img-000007
etc. However, it is not limited thereto.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a heterocyclic group containing at least one of O, N, Si, and S as heterogeneous elements, and the number of carbon atoms is not particularly limited, but preferably has 2 to 60 carbon atoms. Examples of the heterocyclic group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, and an acridyl group. , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyridopyrimidinyl group, pyridopyrazinyl group, pyrazinopyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia A zolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but are not limited thereto.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.In the present specification, an aralkyl group, an aralkenyl group, an alkylaryl group, and an aryl group among arylamine groups are the same as the examples of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the examples of the above-mentioned alkyl group. In the present specification, the description of the heterocyclic group described above may be applied to the heteroaryl of the heteroarylamine. In the present specification, the alkenyl group among the aralkenyl groups is the same as the examples of the alkenyl group described above. In the present specification, the description of the aryl group described above may be applied except that the arylene is a divalent group. In the present specification, the description of the heterocyclic group described above may be applied except that the heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied, except that the hydrocarbon ring is formed by combining two substituents. In the present specification, the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
(화합물)(compound)
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.The present invention provides a compound represented by Formula 1 above.
바람직하게는, X1 내지 X9 중 하나가 N이다.Preferably, one of X 1 to X 9 is N.
바람직하게는, 상기 화학식 1은 하기 화학식 1-1 내지 1-9 중 어느 하나로 표시된다:Preferably, Formula 1 is represented by any one of the following Formulas 1-1 to 1-9:
Figure PCTKR2022017709-appb-img-000008
Figure PCTKR2022017709-appb-img-000008
상기 화학식 1-1 내지 1-9에서, In Formulas 1-1 to 1-9,
X1 내지 X9, R1, L, Ar1 및 Ar2는 앞서 정의한 바와 같고,X 1 to X 9 , R 1 , L, Ar 1 and Ar 2 are as defined above,
n은 1 내지 8의 정수이다.n is an integer from 1 to 8;
바람직하게는, R1은 수소, 또는 중수소이다.Preferably, R 1 is hydrogen or deuterium.
바람직하게는, L은 단일 결합, 페닐렌, 또는 나프틸렌이고; 상기 페닐렌, 및 나프틸렌은 비치환되거나, 또는 하나 이상의 중수소로 치환된다.Preferably, L is a single bond, phenylene, or naphthylene; The phenylene and naphthylene are unsubstituted or substituted with one or more deuterium atoms.
바람직하게는, L은 단일 결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나이다:Preferably, L is a single bond or any one selected from the group consisting of:
Figure PCTKR2022017709-appb-img-000009
Figure PCTKR2022017709-appb-img-000009
바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 페닐, 나프틸, 비페닐릴, 터페닐릴, 페난쓰레닐, 페닐 나프틸, 나프틸 페닐, 디벤조퓨라닐, 디벤조티오페닐, 9-페닐-카바졸릴, 카바졸-9-일, 벤조페난쓰레닐, 또는 크라이세닐이고; 상기 Ar1 및 Ar2는 비치환되거나, 또는 하나 이상의 중수소로 치환된다.Preferably, Ar 1 and Ar 2 are each independently selected from phenyl, naphthyl, biphenylyl, terphenylyl, phenanthrenyl, phenyl naphthyl, naphthyl phenyl, dibenzofuranyl, dibenzothiophenyl, 9 -phenyl-carbazolyl, carbazol-9-yl, benzophenanthrenyl, or chrysenyl; Ar 1 and Ar 2 are unsubstituted or substituted with one or more deuterium atoms.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:Representative examples of the compound represented by Formula 1 are as follows:
Figure PCTKR2022017709-appb-img-000010
Figure PCTKR2022017709-appb-img-000010
Figure PCTKR2022017709-appb-img-000011
Figure PCTKR2022017709-appb-img-000011
Figure PCTKR2022017709-appb-img-000012
Figure PCTKR2022017709-appb-img-000012
Figure PCTKR2022017709-appb-img-000013
Figure PCTKR2022017709-appb-img-000013
Figure PCTKR2022017709-appb-img-000014
Figure PCTKR2022017709-appb-img-000014
Figure PCTKR2022017709-appb-img-000015
Figure PCTKR2022017709-appb-img-000015
Figure PCTKR2022017709-appb-img-000016
Figure PCTKR2022017709-appb-img-000016
Figure PCTKR2022017709-appb-img-000017
Figure PCTKR2022017709-appb-img-000017
Figure PCTKR2022017709-appb-img-000018
Figure PCTKR2022017709-appb-img-000018
Figure PCTKR2022017709-appb-img-000019
Figure PCTKR2022017709-appb-img-000019
Figure PCTKR2022017709-appb-img-000020
Figure PCTKR2022017709-appb-img-000020
Figure PCTKR2022017709-appb-img-000021
Figure PCTKR2022017709-appb-img-000021
Figure PCTKR2022017709-appb-img-000022
Figure PCTKR2022017709-appb-img-000022
Figure PCTKR2022017709-appb-img-000023
Figure PCTKR2022017709-appb-img-000023
Figure PCTKR2022017709-appb-img-000024
Figure PCTKR2022017709-appb-img-000024
Figure PCTKR2022017709-appb-img-000025
Figure PCTKR2022017709-appb-img-000025
Figure PCTKR2022017709-appb-img-000026
Figure PCTKR2022017709-appb-img-000026
또한, 본 발명은 하기 반응식 1과 같은 상기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다.In addition, the present invention provides a method for preparing the compound represented by Formula 1 as shown in Reaction Scheme 1 below.
[반응식 1][Scheme 1]
Figure PCTKR2022017709-appb-img-000027
Figure PCTKR2022017709-appb-img-000027
상기 반응식 1에서, Y를 제외한 나머지는 앞서 정의한 바와 같으며, Y는 할로겐이고, 바람직하게는 브로모 또는 클로로이다.In Scheme 1, everything except Y is as defined above, and Y is halogen, preferably bromo or chloro.
상기 반응은 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 상기 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.The reaction is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the reaction can be changed as known in the art. The manufacturing method may be more specific in Preparation Examples to be described later.
(유기 발광 소자)(organic light emitting device)
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention provides an organic light emitting device including the compound represented by Formula 1 above. In one example, the present invention provides a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound represented by Chemical Formula 1. do.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 전자차단층, 발광층, 정공저지층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and the like as organic layers. However, the structure of the organic light emitting device is not limited thereto and may include fewer organic layers.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.In addition, the organic material layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes, and the hole injection layer, the hole transport layer, or a layer that simultaneously injects and transports holes is represented by Formula 1 above. may contain the indicated compounds.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 특히, 본 발명에 따른 화합물은 발광층의 도펀트로 사용할 수 있다.Also, the organic material layer may include a light emitting layer, and the light emitting layer may include the compound represented by Chemical Formula 1. In particular, the compound according to the present invention can be used as a dopant of the light emitting layer.
또한, 상기 유기물 층은 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층을 포함할 수 있고, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. In addition, the organic material layer may include an electron transport layer, an electron injection layer, or a layer that simultaneously transports and injects electrons, and the electron transport layer, the electron injection layer, or a layer that simultaneously transports and injects electrons has the formula The compound represented by 1 may be included.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.Also, the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting device according to the present invention may be an organic light emitting device of an inverted type in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 1 shows an example of an organic light emitting device composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. In this structure, the compound represented by Chemical Formula 1 may be included in the light emitting layer.
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(3), 정공저지층(8), 전자주입 및 수송층(9) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, a hole blocking layer 8, an electron injection and transport layer ( 9) and an example of an organic light emitting element composed of a cathode 4 is shown. In this structure, the compound represented by Chemical Formula 1 may be included in the light emitting layer.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one of the organic layers includes the compound represented by Chemical Formula 1. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation, depositing a metal or a metal oxide having conductivity or an alloy thereof on the substrate to form an anode After forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer thereon, and depositing a material that can be used as a cathode thereon, it can be prepared. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Chemical Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device. Here, the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to this method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate from a cathode material (WO 2003/012890). However, the manufacturing method is not limited thereto.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.In one example, the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode and the second electrode is an anode.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. As the anode material, a material having a high work function is generally preferred so that holes can be smoothly injected into the organic layer. Specific examples of the cathode material include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The cathode material is preferably a material having a small work function so as to easily inject electrons into the organic material layer. Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. The hole injection layer is a layer for injecting holes from the electrode, and the hole injection material has the ability to transport holes and has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and generated in the light emitting layer A compound that prevents migration of excitons to the electron injecting layer or electron injecting material and has excellent thin film formation ability is preferred. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer. Specific examples of the hole injection material include metal porphyrins, oligothiophenes, arylamine-based organic materials, hexanitrilehexaazatriphenylene-based organic materials, quinacridone-based organic materials, and perylene-based organic materials. of organic materials, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited thereto.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports the holes to the light emitting layer. As a hole transport material, a material capable of receiving holes from the anode or the hole injection layer and transferring them to the light emitting layer is a material having high hole mobility. this is suitable Specific examples include, but are not limited to, arylamine-based organic materials, conductive polymers, and block copolymers having both conjugated and non-conjugated parts.
상기 전자차단층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자차단층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The electron blocking layer is formed on the hole transport layer, and is preferably provided in contact with the light emitting layer to control hole mobility and prevent excessive movement of electrons to increase the probability of hole-electron coupling, thereby increasing the efficiency of the organic light emitting device. means a layer that serves to improve The electron blocking layer includes an electron blocking material, and an example of such an electron blocking material may be an arylamine-based organic material, but is not limited thereto.
상기 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송 받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. The light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; Polyfluorene, rubrene, etc., but are not limited thereto.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. The light emitting layer may include a host material and a dopant material. The host material includes a condensed aromatic ring derivative or a compound containing a hetero ring. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc., and heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type furan compounds, pyrimidine derivatives, etc., but are not limited thereto.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like. Specifically, aromatic amine derivatives are condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, periplanthene, etc. having an arylamino group, and styrylamine compounds include substituted or unsubstituted arylamine is substituted with at least one arylvinyl group, wherein one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, etc., but is not limited thereto. In addition, metal complexes include, but are not limited to, iridium complexes and platinum complexes.
상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.The hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to improve the efficiency of the organic light emitting device by controlling electron mobility and preventing excessive movement of holes to increase the probability of hole-electron coupling layers that play a role. The hole blocking layer includes a hole blocking material, and examples of the hole blocking material include azine derivatives including triazine; triazole derivatives; oxadiazole derivatives; phenanthroline derivatives; A compound having an electron withdrawing group such as a phosphine oxide derivative may be used, but is not limited thereto.
상기 전자 주입 및 수송층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다. The electron injection and transport layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from an electrode and transporting the received electrons to the light emitting layer, and is formed on the light emitting layer or the hole blocking layer. As such an electron injecting and transporting material, a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable. Examples of specific electron injection and transport materials include Al complexes of 8-hydroxyquinoline; Complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes; triazine derivatives, etc., but are not limited thereto. Or fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidene methane, anthrone, etc. and their derivatives, metal complex compounds , or may be used together with nitrogen-containing 5-membered ring derivatives, etc., but is not limited thereto.
상기 전자 주입 및 수송층은 전자주입층 및 전자수송층과 같은 별개의 층으로도 형성될 수 있다. 이와 같은 경우, 전자 수송층은 상기 발광층 또는 상기 정공저지층 상에 형성되고, 상기 전자 수송층에 포함되는 전자 수송 물질로는 상술한 전자 주입 및 수송 물질이 사용될 수 있다. 또한, 전자 주입층은 상기 전자 수송층 상에 형성되고, 상기 전자 주입층에 포함되는 전자 주입 물질로는 LiF, NaCl, CsF, Li2O, BaO, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 플루오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 사용될 수 있다.The electron injection and transport layer may also be formed as a separate layer such as an electron injection layer and an electron transport layer. In this case, the electron transport layer is formed on the light emitting layer or the hole blocking layer, and the above-described electron injection and transport material may be used as an electron transport material included in the electron transport layer. In addition, the electron injection layer is formed on the electron transport layer, and examples of electron injection materials included in the electron injection layer include LiF, NaCl, CsF, Li 2 O, BaO, fluorenone, anthraquinodimethane, diphenoquinone, Thiophyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, fluorenylidene methane, anthrone, etc. and their derivatives, metal complex compounds, nitrogen-containing 5-membered ring derivatives, and the like can be used.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-하이드록시퀴놀리나토)클로로갈륨, 비스(2-메틸-8-하이드록시퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-하이드록시퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-하이드록시퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato) aluminum, tris(2-methyl-8-hydroxyquinolinato) aluminum, tris(8-hydroxyquinolinato) gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-hydroxyquinolinato)chlorogallium, bis(2-methyl-8-hydroxyquine nolinato)(o-cresolato)gallium, bis(2-methyl-8-hydroxyquinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-hydroxyquinolinato)(2- Naphtolato) gallium and the like, but are not limited thereto.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a top emission type, a bottom emission type, or a double side emission type depending on the material used.
또한, 본 발명에 따른 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.In addition, the compound according to the present invention may be included in an organic solar cell or an organic transistor in addition to an organic light emitting device.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.Preparation of the compound represented by Chemical Formula 1 and the organic light emitting device including the same will be described in detail in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
[실시예][Example]
제조예 1Preparation Example 1
Figure PCTKR2022017709-appb-img-000028
Figure PCTKR2022017709-appb-img-000028
3-bromo-4-chloropyridin-2-amine (15g, 72.3mmol)와 (1-methoxynaphthalen-2-yl)boronic acid (15.3g, 75.9mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(30g, 216.9mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.4g, 0.7mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A-1_P1을 12.7g 제조하였다. (수율 62%, MS: [M+H]+= 285)3-bromo-4-chloropyridin-2-amine (15g, 72.3mmol) and (1-methoxynaphthalen-2-yl)boronic acid (15.3g, 75.9mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (30g, 216.9mmol) was dissolved in 100ml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.4g, 0.7mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.7 g of compound A-1_P1. (Yield 62%, MS: [M+H] + = 285)
화합물 A-1_P1 (15g, 52.7mmol)와 HBF4 (9.3g, 105.4mmol)를 Acetonitrile 150ml에 넣고 교반하였다. 이 후 NaNO2(14.6g, 105.4mmol)를 물 30ml에 녹여 0oC에서 천천히 넣어주었다. 9시간 반응 후 상온으로 승온 후, 물 300ml를 넣어 희석하였다. 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A-1_P2를 8g 제조하였다. (수율 60%, MS: [M+H]+= 254)Compound A-1_P1 (15g, 52.7mmol) and HBF 4 (9.3g, 105.4mmol) were added to 150ml of Acetonitrile and stirred. After that, NaNO 2 (14.6g, 105.4mmol) was dissolved in 30ml of water and added slowly at 0 o C. After reacting for 9 hours, the temperature was raised to room temperature, and diluted with 300 ml of water. After dissolving in chloroform and washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 8 g of compound A-1_P2. (Yield 60%, MS: [M+H] + = 254)
화합물 A-1_P2 (15g, 59.1mmol)와 bis(pinacolato)diboron (16.5g, 65mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (8.7g, 88.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (1g, 1.8mmol) 및 tricyclohexylphosphine (1g, 3.5mmol)을 투입하였다. 6시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 A-1을 16.1g 제조하였다. (수율 79%, MS: [M+H]+= 346)Compound A-1_P2 (15g, 59.1mmol) and bis(pinacolato)diboron (16.5g, 65mmol) were stirred while refluxing in 300ml of 1,4-dioxane. After that, potassium acetate (8.7g, 88.7mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (1g, 1.8mmol) and tricyclohexylphosphine (1g, 3.5mmol) were added. After reacting for 6 hours, cooling to room temperature and separating the organic layer using chloroform and water, the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.1 g of Compound A-1. (Yield 79%, MS: [M+H] + = 346)
제조예 2Preparation Example 2
Figure PCTKR2022017709-appb-img-000029
Figure PCTKR2022017709-appb-img-000029
3-bromo-4-chloropyridin-2-amine 대신에 4-bromo-5-chloropyridin-3-amine를 사용한 것을 제외하고는 제조예 1과 같은 방법으로 화합물 A-2를 제조하였다.Compound A-2 was prepared in the same manner as in Preparation Example 1, except that 4-bromo-5-chloropyridin-3-amine was used instead of 3-bromo-4-chloropyridin-2-amine.
제조예 3Preparation Example 3
Figure PCTKR2022017709-appb-img-000030
Figure PCTKR2022017709-appb-img-000030
3-bromo-4-chloropyridin-2-amine 대신에 3-bromo-2-chloropyridin-4-amine를 사용한 것을 제외하고는 제조예 1과 같은 방법으로 화합물 A-3를 제조하였다.Compound A-3 was prepared in the same manner as in Preparation Example 1, except that 3-bromo-2-chloropyridin-4-amine was used instead of 3-bromo-4-chloropyridin-2-amine.
제조예 4Production Example 4
Figure PCTKR2022017709-appb-img-000031
Figure PCTKR2022017709-appb-img-000031
2-bromo-3-chloroaniline (15g, 72.6mmol)와 (4-methoxyquinolin-3-yl)boronic acid (15.5g, 76.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(30.1g, 217.9mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.4g, 0.7mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-1_P1을 14g 제조하였다. (수율 68%, MS: [M+H]+= 285)2-bromo-3-chloroaniline (15g, 72.6mmol) and (4-methoxyquinolin-3-yl)boronic acid (15.5g, 76.3mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (30.1g, 217.9mmol) was dissolved in 100ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.4g, 0.7mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14 g of compound B-1_P1. (Yield 68%, MS: [M+H] + = 285)
화합물 B-1_P1 (15g, 52.7mmol)와 HBF4 (9.3g, 105.4mmol)를 Acetonitrile 150ml에 넣고 교반하였다. 이 후 NaNO2(14.6g, 105.4mmol)를 물 30ml에 녹여 0oC에서 천천히 넣어주었다. 8시간 반응 후 상온으로 승온 후, 물 300ml를 넣어 희석하였다. 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-1_P2를 6.8g 제조하였다. (수율 51%, MS: [M+H]+= 254)Compound B-1_P1 (15g, 52.7mmol) and HBF 4 (9.3g, 105.4mmol) were added to 150ml of Acetonitrile and stirred. After that, NaNO 2 (14.6g, 105.4mmol) was dissolved in 30ml of water and added slowly at 0 o C. After reacting for 8 hours, the temperature was raised to room temperature, and diluted with 300 ml of water. After dissolving in chloroform and washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 6.8 g of compound B-1_P2. (Yield 51%, MS: [M+H] + = 254)
화합물 B-1_P2 (15g, 59.1mmol)와 bis(pinacolato)diboron (16.5g, 65mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (8.7g, 88.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (1g, 1.8mmol) 및 tricyclohexylphosphine (1g, 3.5mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-1을 13.9g 제조하였다. (수율 68%, MS: [M+H]+= 346)Compound B-1_P2 (15g, 59.1mmol) and bis(pinacolato)diboron (16.5g, 65mmol) were stirred while refluxing in 300ml of 1,4-dioxane. After that, potassium acetate (8.7g, 88.7mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (1g, 1.8mmol) and tricyclohexylphosphine (1g, 3.5mmol) were added. After reacting for 5 hours, cooling to room temperature and separating the organic layer using chloroform and water, the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.9 g of Compound B-1. (Yield 68%, MS: [M+H] + = 346)
제조예 5Preparation Example 5
Figure PCTKR2022017709-appb-img-000032
Figure PCTKR2022017709-appb-img-000032
(4-methoxyquinolin-3-yl)boronic acid대신 (4-methoxyisoquinolin-3-yl)boronic acid를 사용한 것을 제외하고는 제조예 4와 같은 방법으로 화합물 B-2를 제조하였다.Compound B-2 was prepared in the same manner as in Preparation Example 4, except that (4-methoxyisoquinolin-3-yl)boronic acid was used instead of (4-methoxyquinolin-3-yl)boronic acid.
제조예 6Preparation Example 6
Figure PCTKR2022017709-appb-img-000033
Figure PCTKR2022017709-appb-img-000033
(4-methoxyquinolin-3-yl)boronic acid대신 (5-methoxyquinolin-6-yl)boronic acid를 사용한 것을 제외하고는 제조예 4와 같은 방법으로 화합물 B-3를 제조하였다.Compound B-3 was prepared in the same manner as in Preparation Example 4, except that (5-methoxyquinolin-6-yl)boronic acid was used instead of (4-methoxyquinolin-3-yl)boronic acid.
제조예 7Preparation Example 7
Figure PCTKR2022017709-appb-img-000034
Figure PCTKR2022017709-appb-img-000034
(4-methoxyquinolin-3-yl)boronic acid대신 (5-methoxyisoquinolin-6-yl)boronic acid를 사용한 것을 제외하고는 제조예 4와 같은 방법으로 화합물 B-4를 제조하였다.Compound B-4 was prepared in the same manner as in Preparation Example 4, except that (5-methoxyisoquinolin-6-yl)boronic acid was used instead of (4-methoxyquinolin-3-yl)boronic acid.
제조예 8Preparation Example 8
Figure PCTKR2022017709-appb-img-000035
Figure PCTKR2022017709-appb-img-000035
(4-methoxyquinolin-3-yl)boronic acid대신 (8-methoxyisoquinolin-7-yl)boronic acid를 사용한 것을 제외하고는 제조예 4와 같은 방법으로 화합물 B-5를 제조하였다.Compound B-5 was prepared in the same manner as in Preparation Example 4, except that (8-methoxyisoquinolin-7-yl)boronic acid was used instead of (4-methoxyquinolin-3-yl)boronic acid.
제조예 9Preparation Example 9
Figure PCTKR2022017709-appb-img-000036
Figure PCTKR2022017709-appb-img-000036
2-bromo-3-chloroaniline (15g, 72.6mmol)와 (8-methoxyquinolin-7-yl)boronic acid (15.5g, 76.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(30.1g, 217.9mmol)를 물 100ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.4g, 0.7mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-6_P1을 15.1g 제조하였다. (수율 73%, MS: [M+H]+= 285)2-bromo-3-chloroaniline (15g, 72.6mmol) and (8-methoxyquinolin-7-yl)boronic acid (15.5g, 76.3mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (30.1g, 217.9mmol) was dissolved in 100ml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.4g, 0.7mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.1 g of compound B-6_P1. (Yield 73%, MS: [M+H] + = 285)
화합물 B-6_P1 (15g, 52.7mmol)와 HBF4 (9.3g, 105.4mmol)를 Acetonitrile 150ml에 넣고 교반하였다. 이 후 NaNO2(14.6g, 105.4mmol)를 물 30ml에 녹여 0oC에서 천천히 넣어주었다. 9시간 반응 후 상온으로 승온 후, 물 300ml를 넣어 희석하였다. 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-6_P2를 7.9g 제조하였다. (수율 59%, MS: [M+H]+= 254)Compound B-6_P1 (15g, 52.7mmol) and HBF 4 (9.3g, 105.4mmol) were added to 150ml of Acetonitrile and stirred. After that, NaNO 2 (14.6g, 105.4mmol) was dissolved in 30ml of water and added slowly at 0 o C. After reacting for 9 hours, the temperature was raised to room temperature, and diluted with 300 ml of water. After dissolving in chloroform and washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 7.9 g of compound B-6_P2. (Yield 59%, MS: [M+H] + = 254)
화합물 B-6_P2 (15g, 59.1mmol)와 bis(pinacolato)diboron (16.5g, 65mmol)를 1,4-dioxane 300ml에 환류시키며 교반하였다. 이 후 potassium acetate (8.7g, 88.7mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0) (1g, 1.8mmol) 및 tricyclohexylphosphine (1g, 3.5mmol)을 투입하였다. 5시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 B-6를 12.4g 제조하였다. (수율 61%, MS: [M+H]+= 346)Compound B-6_P2 (15g, 59.1mmol) and bis(pinacolato)diboron (16.5g, 65mmol) were stirred while refluxing in 300ml of 1,4-dioxane. After that, potassium acetate (8.7g, 88.7mmol) was added, and after sufficient stirring, bis(dibenzylideneacetone)palladium(0) (1g, 1.8mmol) and tricyclohexylphosphine (1g, 3.5mmol) were added. After reacting for 5 hours, cooling to room temperature and separating the organic layer using chloroform and water, the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.4 g of compound B-6. (Yield 61%, MS: [M+H] + = 346)
합성예 1Synthesis Example 1
Figure PCTKR2022017709-appb-img-000037
Figure PCTKR2022017709-appb-img-000037
Trz1 (15g, 40.8mmol)와 화합물 A-1 (14.8g, 42.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.9g, 122.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1를 17.9g 제조하였다. (수율 80%, MS: [M+H]+= 551)Trz1 (15g, 40.8mmol) and Compound A-1 (14.8g, 42.8mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (16.9g, 122.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 2 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.9 g of Compound 1. (Yield 80%, MS: [M+H] + = 551)
합성예 2Synthesis Example 2
Figure PCTKR2022017709-appb-img-000038
Figure PCTKR2022017709-appb-img-000038
Trz2 (15g, 38.1mmol)와 화합물 A-1 (13.8g, 40mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8g, 114.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2를 15.6g 제조하였다. (수율 71%, MS: [M+H]+= 577)Trz2 (15g, 38.1mmol) and Compound A-1 (13.8g, 40mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (15.8g, 114.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.6 g of Compound 2. (Yield 71%, MS: [M+H] + = 577)
합성예 3Synthesis Example 3
Figure PCTKR2022017709-appb-img-000039
Figure PCTKR2022017709-appb-img-000039
Trz3 (15g, 34.6mmol)와 화합물 A-1 (12.5g, 36.3mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3g, 103.7mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 3를 14.3g 제조하였다. (수율 67%, MS: [M+H]+= 617)Trz3 (15g, 34.6mmol) and Compound A-1 (12.5g, 36.3mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (14.3g, 103.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.3 g of Compound 3. (Yield 67%, MS: [M+H] + = 617)
합성예 4Synthesis Example 4
Figure PCTKR2022017709-appb-img-000040
Figure PCTKR2022017709-appb-img-000040
Trz4 (15g, 35.9mmol)와 화합물 A-2 (13g, 37.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.9g, 107.7mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 4를 14.9g 제조하였다. (수율 69%, MS: [M+H]+= 601)Trz4 (15g, 35.9mmol) and Compound A-2 (13g, 37.7mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.9 g of Compound 4. (Yield 69%, MS: [M+H] + = 601)
합성예 5Synthesis Example 5
Figure PCTKR2022017709-appb-img-000041
Figure PCTKR2022017709-appb-img-000041
Trz5 (15g, 38.1mmol)와 화합물 A-2 (13.8g, 40mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8g, 114.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 5를 17.6g 제조하였다. (수율 80%, MS: [M+H]+= 577)Trz5 (15g, 38.1mmol) and Compound A-2 (13.8g, 40mmol) were added to 300ml of THF, stirred and refluxed. Thereafter, potassium carbonate (15.8g, 114.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 2 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.6 g of Compound 5. (Yield 80%, MS: [M+H] + = 577)
합성예 6Synthesis Example 6
Figure PCTKR2022017709-appb-img-000042
Figure PCTKR2022017709-appb-img-000042
Trz6 (15g, 35.9mmol)와 화합물 A-2 (13g, 37.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.9g, 107.7mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 6를 14.2g 제조하였다. (수율 66%, MS: [M+H]+= 601)Trz6 (15g, 35.9mmol) and Compound A-2 (13g, 37.7mmol) were added to 300ml of THF, stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.2 g of Compound 6. (Yield 66%, MS: [M+H] + = 601)
합성예 7Synthesis Example 7
Figure PCTKR2022017709-appb-img-000043
Figure PCTKR2022017709-appb-img-000043
Trz7 (15g, 38.1mmol)와 화합물 A-2 (13.8g, 40mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8g, 114.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 7를 16.9g 제조하였다. (수율 77%, MS: [M+H]+= 577)Trz7 (15g, 38.1mmol) and Compound A-2 (13.8g, 40mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (15.8g, 114.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.9 g of Compound 7. (Yield 77%, MS: [M+H] + = 577)
합성예 8Synthesis Example 8
Figure PCTKR2022017709-appb-img-000044
Figure PCTKR2022017709-appb-img-000044
Trz8 (15g, 36.8mmol)와 화합물 A-3 (13.3g, 38.6mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.2g, 110.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 8를 13g 제조하였다. (수율 60%, MS: [M+H]+= 591)Trz8 (15g, 36.8mmol) and compound A-3 (13.3g, 38.6mmol) were added to 300ml of THF, stirred and refluxed. Thereafter, potassium carbonate (15.2g, 110.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 2 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13 g of Compound 8. (Yield 60%, MS: [M+H] + = 591)
합성예 9Synthesis Example 9
Figure PCTKR2022017709-appb-img-000045
Figure PCTKR2022017709-appb-img-000045
Trz9 (15g, 33.8mmol)와 화합물 A-3 (12.2g, 35.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14g, 101.4mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 9를 12.9g 제조하였다. (수율 61%, MS: [M+H]+= 627)Trz9 (15g, 33.8mmol) and Compound A-3 (12.2g, 35.5mmol) were added to 300ml of THF, stirred and refluxed. After that, potassium carbonate (14g, 101.4mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After reacting for 2 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of Compound 9. (Yield 61%, MS: [M+H] + = 627)
합성예 10Synthesis Example 10
Figure PCTKR2022017709-appb-img-000046
Figure PCTKR2022017709-appb-img-000046
Trz10 (15g, 33.3mmol)와 화합물 A-3 (12.1g, 35mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.8g, 100mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 10를 12.9g 제조하였다. (수율 61%, MS: [M+H]+= 633)Trz10 (15g, 33.3mmol) and Compound A-3 (12.1g, 35mmol) were added to 300ml of THF, stirred and refluxed. Thereafter, potassium carbonate (13.8g, 100mmol) was dissolved in 100mlml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.9 g of Compound 10. (Yield 61%, MS: [M+H] + = 633)
합성예 11Synthesis Example 11
Figure PCTKR2022017709-appb-img-000047
Figure PCTKR2022017709-appb-img-000047
Trz11 (15g, 35.9mmol)와 화합물 A-3 (13g, 37.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.9g, 107.7mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 11를 13.8g 제조하였다. (수율 64%, MS: [M+H]+= 601)Trz11 (15g, 35.9mmol) and Compound A-3 (13g, 37.7mmol) were added to 300ml of THF, stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 3 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.8 g of Compound 11. (Yield 64%, MS: [M+H] + = 601)
합성예 12Synthesis Example 12
Figure PCTKR2022017709-appb-img-000048
Figure PCTKR2022017709-appb-img-000048
Trz12 (15g, 35.7mmol)와 화합물 B-2 (12.9g, 37.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.8g, 107.2mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 12를 13.3g 제조하였다. (수율 62%, MS: [M+H]+= 603)Trz12 (15g, 35.7mmol) and compound B-2 (12.9g, 37.5mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (14.8g, 107.2mmol) was dissolved in 100mlml of water, and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 2 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.3 g of Compound 12. (Yield 62%, MS: [M+H] + = 603)
합성예 13Synthesis Example 13
Figure PCTKR2022017709-appb-img-000049
Figure PCTKR2022017709-appb-img-000049
Trz13 (15g, 38.1mmol)와 화합물 B-2 (13.8g, 40mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8g, 114.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 13를 15.1g 제조하였다. (수율 69%, MS: [M+H]+= 577)Trz13 (15g, 38.1mmol) and compound B-2 (13.8g, 40mmol) were added to 300ml of THF, stirred and refluxed. Thereafter, potassium carbonate (15.8g, 114.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.1 g of Compound 13. (Yield 69%, MS: [M+H] + = 577)
합성예 14Synthesis Example 14
Figure PCTKR2022017709-appb-img-000050
Figure PCTKR2022017709-appb-img-000050
Trz14 (15g, 35.9mmol)와 화합물 B-2 (13g, 37.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.9g, 107.7mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 14를 14g 제조하였다. (수율 65%, MS: [M+H]+= 601)Trz14 (15g, 35.9mmol) and compound B-2 (13g, 37.7mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14 g of Compound 14. (Yield 65%, MS: [M+H] + = 601)
합성예 15Synthesis Example 15
Figure PCTKR2022017709-appb-img-000051
Figure PCTKR2022017709-appb-img-000051
Trz15 (15g, 36.8mmol)와 화합물 B-1 (13.3g, 38.6mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.2g, 110.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 15를 13.2g 제조하였다. (수율 61%, MS: [M+H]+= 591)Trz15 (15g, 36.8mmol) and Compound B-1 (13.3g, 38.6mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (15.2g, 110.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.2 g of Compound 15. (Yield 61%, MS: [M+H] + = 591)
합성예 16Synthesis Example 16
Figure PCTKR2022017709-appb-img-000052
Figure PCTKR2022017709-appb-img-000052
Trz16 (15g, 40.8mmol)와 화합물 B-1 (14.8g, 42.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.9g, 122.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 16를 17.5g 제조하였다. (수율 78%, MS: [M+H]+= 551)Trz16 (15g, 40.8mmol) and Compound B-1 (14.8g, 42.8mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (16.9g, 122.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 2 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.5 g of Compound 16. (Yield 78%, MS: [M+H] + = 551)
합성예 17Synthesis Example 17
Figure PCTKR2022017709-appb-img-000053
Figure PCTKR2022017709-appb-img-000053
Trz17 (15g, 38.1mmol)와 화합물 B-1 (13.8g, 40mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8g, 114.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 17를 14.7g 제조하였다. (수율 67%, MS: [M+H]+= 577)Trz17 (15g, 38.1mmol) and Compound B-1 (13.8g, 40mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (15.8g, 114.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 3 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.7 g of Compound 17. (Yield 67%, MS: [M+H] + = 577)
합성예 18Synthesis Example 18
Figure PCTKR2022017709-appb-img-000054
Figure PCTKR2022017709-appb-img-000054
Trz18 (15g, 35.9mmol)와 화합물 B-3 (13g, 37.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.9g, 107.7mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 18를 16.8g 제조하였다. (수율 78%, MS: [M+H]+= 601)Trz18 (15g, 35.9mmol) and compound B-3 (13g, 37.7mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.8 g of Compound 18. (Yield 78%, MS: [M+H] + = 601)
합성예 19Synthesis Example 19
Figure PCTKR2022017709-appb-img-000055
Figure PCTKR2022017709-appb-img-000055
Trz19 (15g, 43.6mmol)와 화합물 B-3 (15.8g, 45.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.1g, 130.9mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 19를 17.9g 제조하였다. (수율 78%, MS: [M+H]+= 527)Trz19 (15g, 43.6mmol) and compound B-3 (15.8g, 45.8mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (18.1g, 130.9mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 3 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.9 g of Compound 19. (Yield 78%, MS: [M+H] + = 527)
합성예 20Synthesis Example 20
Figure PCTKR2022017709-appb-img-000056
Figure PCTKR2022017709-appb-img-000056
Trz20 (15g, 38.1mmol)와 화합물 B-3 (13.8g, 40mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8g, 114.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 20를 16.7g 제조하였다. (수율 76%, MS: [M+H]+= 577)Trz20 (15g, 38.1mmol) and compound B-3 (13.8g, 40mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (15.8g, 114.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 3 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.7 g of Compound 20. (Yield 76%, MS: [M+H] + = 577)
합성예 21Synthesis Example 21
Figure PCTKR2022017709-appb-img-000057
Figure PCTKR2022017709-appb-img-000057
Trz21 (15g, 35.9mmol)와 화합물 B-4 (13g, 37.7mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.9g, 107.7mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 3시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 21를 14.2g 제조하였다. (수율 66%, MS: [M+H]+= 601)Trz21 (15g, 35.9mmol) and compound B-4 (13g, 37.7mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14.9g, 107.7mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 3 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.2 g of Compound 21. (Yield 66%, MS: [M+H] + = 601)
합성예 22Synthesis Example 22
Figure PCTKR2022017709-appb-img-000058
Figure PCTKR2022017709-appb-img-000058
Trz22 (15g, 34.6mmol)와 화합물 B-4 (12.6g, 36.4mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.4g, 103.9mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 22를 16g 제조하였다. (수율 75%, MS: [M+H]+= 616)Trz22 (15g, 34.6mmol) and compound B-4 (12.6g, 36.4mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (14.4g, 103.9mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After reacting for 2 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16 g of Compound 22. (Yield 75%, MS: [M+H] + = 616)
합성예 23Synthesis Example 23
Figure PCTKR2022017709-appb-img-000059
Figure PCTKR2022017709-appb-img-000059
Trz23 (15g, 38.1mmol)와 화합물 B-4 (13.8g, 40mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8g, 114.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 23를 14.7g 제조하였다. (수율 67%, MS: [M+H]+= 577)Trz23 (15g, 38.1mmol) and compound B-4 (13.8g, 40mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (15.8g, 114.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 2 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.7 g of Compound 23. (Yield 67%, MS: [M+H] + = 577)
합성예 24Synthesis Example 24
Figure PCTKR2022017709-appb-img-000060
Figure PCTKR2022017709-appb-img-000060
Trz24 (15g, 33.8mmol)와 화합물 B-5 (12.2g, 35.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14g, 101.4mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 24를 16.7g 제조하였다. (수율 79%, MS: [M+H]+= 627)Trz24 (15g, 33.8mmol) and compound B-5 (12.2g, 35.5mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14g, 101.4mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After reacting for 4 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.7 g of Compound 24. (Yield 79%, MS: [M+H] + = 627)
합성예 25Synthesis Example 25
Figure PCTKR2022017709-appb-img-000061
Figure PCTKR2022017709-appb-img-000061
Trz25 (15g, 33.8mmol)와 화합물 B-5 (12.2g, 35.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14g, 101.4mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 25를 15.2g 제조하였다. (수율 72%, MS: [M+H]+= 627)Trz25 (15g, 33.8mmol) and compound B-5 (12.2g, 35.5mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14g, 101.4mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.2 g of Compound 25. (Yield 72%, MS: [M+H] + = 627)
합성예 26Synthesis Example 26
Figure PCTKR2022017709-appb-img-000062
Figure PCTKR2022017709-appb-img-000062
Trz26 (15g, 33.8mmol)와 화합물 B-5 (12.2g, 35.5mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14g, 101.4mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 26를 12.7g 제조하였다. (수율 60%, MS: [M+H]+= 627)Trz26 (15g, 33.8mmol) and compound B-5 (12.2g, 35.5mmol) were added to 300ml of THF and stirred and refluxed. After that, potassium carbonate (14g, 101.4mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.3mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.7 g of Compound 26. (Yield 60%, MS: [M+H] + = 627)
합성예 27Synthesis Example 27
Figure PCTKR2022017709-appb-img-000063
Figure PCTKR2022017709-appb-img-000063
Trz27 (15g, 40.8mmol)와 화합물 B-6 (14.8g, 42.8mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.9g, 122.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 27를 16.2g 제조하였다. (수율 72%, MS: [M+H]+= 551)Trz27 (15g, 40.8mmol) and compound B-6 (14.8g, 42.8mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (16.9g, 122.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 4 hours, the mixture was cooled to room temperature, and the organic layer and the water layer were separated and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.2 g of Compound 27. (Yield 72%, MS: [M+H] + = 551)
합성예 28Synthesis Example 28
Figure PCTKR2022017709-appb-img-000064
Figure PCTKR2022017709-appb-img-000064
Trz28 (15g, 36.8mmol)와 화합물 B-6 (13.3g, 38.6mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.2g, 110.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 28를 16.3g 제조하였다. (수율 75%, MS: [M+H]+= 591)Trz28 (15g, 36.8mmol) and compound B-6 (13.3g, 38.6mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (15.2g, 110.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 2 hours, it was cooled to room temperature, and the organic layer and the water layer were separated, and the organic layer was distilled. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.3 g of Compound 28. (Yield 75%, MS: [M+H] + = 591)
합성예 29Synthesis Example 29
Figure PCTKR2022017709-appb-img-000065
Figure PCTKR2022017709-appb-img-000065
Trz29 (15g, 38.1mmol)와 화합물 B-6 (13.8g, 40mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8g, 114.3mmol)를 물 100mlml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol)을 투입하였다. 5시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 29를 13.6g 제조하였다. (수율 62%, MS: [M+H]+= 577)Trz29 (15g, 38.1mmol) and compound B-6 (13.8g, 40mmol) were added to 300ml of THF and stirred and refluxed. Thereafter, potassium carbonate (15.8g, 114.3mmol) was dissolved in 100mlml of water, and after sufficiently stirred, bis(tri-tert-butylphosphine)palladium(0) (0.2g, 0.4mmol) was added. After reacting for 5 hours, the mixture was cooled to room temperature, and the organic layer was distilled after separating the organic layer and the water layer. This was dissolved in chloroform again, and after washing twice with water, the organic layer was separated, stirred with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.6 g of Compound 29. (Yield 62%, MS: [M+H] + = 577)
실시예 1Example 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with ITO (indium tin oxide) to a thickness of 1,000 Å was put in distilled water in which detergent was dissolved and washed with ultrasonic waves. At this time, a Fischer Co. product was used as the detergent, and distilled water filtered through a second filter of a Millipore Co. product was used as the distilled water. After washing the ITO for 30 minutes, it was repeated twice with distilled water and ultrasonic cleaning was performed for 10 minutes. After washing with distilled water, ultrasonic cleaning was performed with solvents such as isopropyl alcohol, acetone, and methanol, dried, and transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transferred to a vacuum deposition machine.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자차단층을 형성했다. 이어서, 상기 EB-1 증착막 위에 호스트로 화합물 1과 도판트로 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다. The following compound HI-1 was formed to a thickness of 1150 Å as a hole injection layer on the prepared ITO transparent electrode, but the following compound A-1 was p-doped at a concentration of 1.5%. On the hole injection layer, the following HT-1 compound was vacuum deposited to form a hole transport layer having a thickness of 800 Å. Subsequently, an electron blocking layer was formed by vacuum depositing the following EB-1 compound to a film thickness of 150 Å on the hole transport layer. Then, on the EB-1 deposited film, compound 1 as a host and compound Dp-7 as a dopant were vacuum-deposited at a weight ratio of 98:2 to form a red light emitting layer having a thickness of 400 Å. A hole blocking layer was formed on the light emitting layer by vacuum depositing the following HB-1 compound to a film thickness of 30 Å. Subsequently, the following ET-1 compound and the following LiQ compound were vacuum deposited at a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 Å. A negative electrode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1,000 Å on the electron injection and transport layer.
Figure PCTKR2022017709-appb-img-000066
Figure PCTKR2022017709-appb-img-000066
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2x10-7 ~ 5x10-6 torr를 유지하여, 유기 발광 소자를 제조하였다.In the above process, the deposition rate of the organic material was maintained at 0.4 ~ 0.7Å / sec, the deposition rate of lithium fluoride on the cathode was 0.3Å / sec, and the deposition rate of aluminum was 2Å / sec, and the vacuum level during deposition was 2x10 -7 ~ Maintaining 5x10 -6 torr, an organic light emitting device was manufactured.
실시예 2 내지 실시예 29Examples 2 to 29
실시예 1의 유기 발광 소자에서 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.An organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds listed in Table 1 were used in the organic light emitting device of Example 1.
비교예 1 내지 비교예 10Comparative Examples 1 to 10
실시예 1의 유기 발광 소자에서 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1에서 화합물 B-1 내지 B-10은 하기와 같다.An organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds listed in Table 1 were used in the organic light emitting device of Example 1. In Table 1 below, compounds B-1 to B-10 are as follows.
Figure PCTKR2022017709-appb-img-000067
Figure PCTKR2022017709-appb-img-000067
상기 실시예 1 내지 실시예 29 및 비교예 1 내지 비교예 10에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15mA/cm2 기준)하고 그 결과를 하기 표 1에 나타냈다. 수명 T95는 휘도가 초기 휘도(6,000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.When current was applied to the organic light emitting devices prepared in Examples 1 to 29 and Comparative Examples 1 to 10, voltage and efficiency were measured (based on 15 mA/cm 2 ) and the results are shown in Table 1 below. . The lifetime T95 means the time required for the luminance to decrease from the initial luminance (6,000 nit) to 95%.
구분division 호스트host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Lifetime T95(hr) 발광색luminescent color
실시예 1Example 1 화합물1compound 1 3.293.29 22.6122.61 184184 적색Red
실시예 2Example 2 화합물2compound 2 3.303.30 22.5922.59 191191 적색Red
실시예 3Example 3 화합물3compound 3 3.353.35 22.2822.28 209209 적색Red
실시예 4Example 4 화합물4compound 4 3.363.36 22.5822.58 197197 적색Red
실시예 5Example 5 화합물5compound 5 3.323.32 20.9620.96 203203 적색Red
실시예 6Example 6 화합물6compound 6 3.323.32 21.4621.46 193193 적색Red
실시예 7Example 7 화합물7compound 7 3.343.34 20.2020.20 215215 적색Red
실시예 8Example 8 화합물8compound 8 3.443.44 22.0022.00 186186 적색Red
실시예 9Example 9 화합물9compound 9 3.563.56 21.6321.63 188188 적색Red
실시예 10Example 10 화합물10compound 10 3.403.40 22.3822.38 184184 적색Red
실시예 11Example 11 화합물11compound 11 3.563.56 21.6621.66 178178 적색Red
실시예 12Example 12 화합물12compound 12 3.563.56 20.9720.97 175175 적색Red
실시예 13Example 13 화합물13compound 13 3.583.58 20.7920.79 165165 적색Red
실시예 14Example 14 화합물14compound 14 3.543.54 20.2320.23 163163 적색Red
실시예 15Example 15 화합물15compound 15 3.373.37 22.8322.83 211211 적색Red
실시예 16Example 16 화합물16compound 16 3.423.42 22.5622.56 191191 적색Red
실시예 17Example 17 화합물17compound 17 3.413.41 23.0023.00 199199 적색Red
실시예 18Example 18 화합물18compound 18 3.413.41 22.2522.25 186186 적색Red
실시예 19Example 19 화합물19compound 19 3.463.46 21.2921.29 174174 적색Red
실시예 20Example 20 화합물20compound 20 3.463.46 22.3522.35 180180 적색Red
실시예 21Example 21 화합물21compound 21 3.303.30 20.5020.50 187187 적색Red
실시예 22Example 22 화합물22compound 22 3.283.28 21.1221.12 210210 적색Red
실시예 23Example 23 화합물23compound 23 3.393.39 20.8520.85 211211 적색Red
실시예 24Example 24 화합물24compound 24 3.553.55 20.6420.64 162162 적색Red
실시예 25Example 25 화합물25compound 25 3.553.55 20.5620.56 154154 적색Red
실시예 26Example 26 화합물26compound 26 3.553.55 20.7820.78 155155 적색Red
실시예 27Example 27 화합물27compound 27 3.673.67 20.4820.48 155155 적색Red
실시예 28Example 28 화합물28compound 28 3.683.68 19.5419.54 150150 적색Red
실시예 29Example 29 화합물29compound 29 3.623.62 19.4919.49 163163 적색Red
비교예 1Comparative Example 1 화합물B-1Compound B-1 4.27 4.27 14.3014.30 9494 적색Red
비교예 2Comparative Example 2 화합물B-2Compound B-2 4.14 4.14 15.8715.87 7171 적색Red
비교예 3Comparative Example 3 화합물B-3Compound B-3 4.09 4.09 15.9315.93 8282 적색Red
비교예 4Comparative Example 4 화합물B-4Compound B-4 3.87 3.87 17.6217.62 137137 적색Red
비교예 5Comparative Example 5 화합물B-5Compound B-5 3.81 3.81 17.8717.87 122122 적색Red
비교예 6Comparative Example 6 화합물B-6Compound B-6 4.02 4.02 16.7016.70 7878 적색Red
비교예 7Comparative Example 7 화합물B-7Compound B-7 3.94 3.94 15.0615.06 106106 적색Red
비교예 8Comparative Example 8 화합물B-8Compound B-8 3.92 3.92 16.3816.38 8484 적색Red
비교예 9Comparative Example 9 화합물B-9Compound B-9 4.03 4.03 15.7715.77 7171 적색Red
비교예 10Comparative Example 10 화합물B-10Compound B-10 4.06 4.06 16.1316.13 108108 적색Red
실시예 1 내지 29 및 비교예 1 내지 10에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1의 결과를 얻었다. 상기 실시예 1의 적색 유기 발광 소자는 종래 널리 사용되고 있는 물질을 사용하였으며, 전자차단층으로 화합물 EB-1, 적색 도판트로 Dp-7을 사용하는 구조이다. When current was applied to the organic light emitting devices manufactured in Examples 1 to 29 and Comparative Examples 1 to 10, the results shown in Table 1 were obtained. The red organic light emitting device of Example 1 used materials widely used in the prior art, and had a structure using compound EB-1 as an electron blocking layer and Dp-7 as a red dopant.
본 발명의 화합물을 적색 발광층으로 사용했을 때 비교예 화합물 대비 구동 전압이 감소하고 효율 및 수명이 증가하는 것으로 보아, 본 발명의 화합물을 호스트로 사용했을 때 비교예 화합물 대비 적색 발광층 내의 적색 도판트로의 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 이것은 결국 비교예 화합물 대비 발광층 내로 더 안정적인 균형을 통해 전자와 정공이 결합하여 엑시톤을 형성하기 때문이라 판단할 수 있다. When the compound of the present invention is used as a red light emitting layer, the driving voltage is reduced and the efficiency and lifetime are increased compared to the compound of Comparative Example. It was found that the energy transfer was well done. It can be determined that this is because electrons and holes combine to form excitons through a more stable balance into the light emitting layer compared to the comparative compound.
결론적으로 본 발명의 화합물을 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다. In conclusion, it can be confirmed that the driving voltage, luminous efficiency and lifetime characteristics of the organic light emitting device can be improved when the compound of the present invention is used as a host of the red light emitting layer.
[부호의 설명][Description of code]
1: 기판 2: 양극1: substrate 2: anode
3: 발광층 4: 음극3: light emitting layer 4: cathode
5: 정공주입층 6: 정공수송층5: hole injection layer 6: hole transport layer
7: 전자차단층 8: 정공저지층7: electron blocking layer 8: hole blocking layer
9: 전자주입 및 수송층 9: electron injection and transport layer

Claims (10)

  1. 하기 화학식 1로 표시되는 화합물:A compound represented by Formula 1 below:
    [화학식 1][Formula 1]
    Figure PCTKR2022017709-appb-img-000068
    Figure PCTKR2022017709-appb-img-000068
    상기 화학식 1에서,In Formula 1,
    X1 내지 X9는 각각 독립적으로, N 또는 CR1이되, X1 내지 X9 중 적어도 하나는 N이고,X 1 to X 9 are each independently N or CR 1 , but at least one of X 1 to X 9 is N;
    R1은 수소, 중수소, 치환 또는 비치환된 C1-60 알킬, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이고,R 1 is any one or more selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C 1-60 alkyl, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted N, O and S; A C 2-60 heteroaryl containing a heteroatom,
    L은 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,L is each independently a single bond or a substituted or unsubstituted C 6-60 arylene;
    Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이다.Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-60 aryl, or a substituted or unsubstituted C 2- including any one or more heteroatoms selected from the group consisting of N, O and S; 60 heteroaryl.
  2. 제1항에 있어서,According to claim 1,
    X1 내지 X9 중 하나가 N인,wherein one of X 1 to X 9 is N;
    화합물.compound.
  3. 제1항에 있어서,According to claim 1,
    상기 화학식 1은 하기 화학식 1-1 내지 1-9 중 어느 하나로 표시되는,Chemical Formula 1 is represented by any one of the following Chemical Formulas 1-1 to 1-9,
    화합물:compound:
    Figure PCTKR2022017709-appb-img-000069
    Figure PCTKR2022017709-appb-img-000069
    상기 화학식 1-1 내지 1-9에서, In Formulas 1-1 to 1-9,
    X1 내지 X9, R1, L, Ar1 및 Ar2는 제1항에서 정의한 바와 같고,X 1 to X 9 , R 1 , L, Ar 1 and Ar 2 are as defined in claim 1,
    n은 1 내지 8의 정수이다.n is an integer from 1 to 8;
  4. 제1항에 있어서,According to claim 1,
    R1은 수소, 또는 중수소인,R 1 is hydrogen or deuterium;
    화합물.compound.
  5. 제1항에 있어서,According to claim 1,
    L은 단일 결합, 페닐렌, 또는 나프틸렌이고,L is a single bond, phenylene, or naphthylene;
    상기 페닐렌 및 나프틸렌은 비치환되거나, 또는 하나 이상의 중수소로 치환된,The phenylene and naphthylene are unsubstituted or substituted with one or more deuterium,
    화합물.compound.
  6. 제1항에 있어서,According to claim 1,
    L은 단일 결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인,L is a single bond, or any one selected from the group consisting of
    화합물:compound:
    Figure PCTKR2022017709-appb-img-000070
    Figure PCTKR2022017709-appb-img-000070
  7. 제1항에 있어서,According to claim 1,
    Ar1 및 Ar2는 각각 독립적으로, 페닐, 나프틸, 비페닐릴, 터페닐릴, 페난쓰레닐, 페닐 나프틸, 나프틸 페닐, 디벤조퓨라닐, 디벤조티오페닐, 9-페닐-카바졸릴, 카바졸-9-일, 벤조페난쓰레닐, 또는 크라이세닐이고,Ar 1 and Ar 2 are each independently phenyl, naphthyl, biphenylyl, terphenylyl, phenanthrenyl, phenyl naphthyl, naphthyl phenyl, dibenzofuranyl, dibenzothiophenyl, 9-phenyl-carba zolyl, carbazol-9-yl, benzophenanthrenyl, or chrysenyl;
    상기 Ar1 및 Ar2는 비치환되거나, 또는 하나 이상의 중수소로 치환된,Wherein Ar 1 and Ar 2 are unsubstituted or substituted with one or more deuterium,
    화합물.compound.
  8. 제1항에 있어서,According to claim 1,
    상기 화학식 1로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택되는 어느 하나인,The compound represented by Formula 1 is any one selected from the group consisting of the following compounds,
    화합물:compound:
    Figure PCTKR2022017709-appb-img-000071
    Figure PCTKR2022017709-appb-img-000071
    Figure PCTKR2022017709-appb-img-000072
    Figure PCTKR2022017709-appb-img-000072
    Figure PCTKR2022017709-appb-img-000073
    Figure PCTKR2022017709-appb-img-000073
    Figure PCTKR2022017709-appb-img-000074
    Figure PCTKR2022017709-appb-img-000074
    Figure PCTKR2022017709-appb-img-000075
    Figure PCTKR2022017709-appb-img-000075
    Figure PCTKR2022017709-appb-img-000076
    Figure PCTKR2022017709-appb-img-000076
    Figure PCTKR2022017709-appb-img-000077
    Figure PCTKR2022017709-appb-img-000077
    Figure PCTKR2022017709-appb-img-000078
    Figure PCTKR2022017709-appb-img-000078
    Figure PCTKR2022017709-appb-img-000079
    Figure PCTKR2022017709-appb-img-000079
    Figure PCTKR2022017709-appb-img-000080
    Figure PCTKR2022017709-appb-img-000080
    Figure PCTKR2022017709-appb-img-000081
    Figure PCTKR2022017709-appb-img-000081
    Figure PCTKR2022017709-appb-img-000082
    Figure PCTKR2022017709-appb-img-000082
    Figure PCTKR2022017709-appb-img-000083
    Figure PCTKR2022017709-appb-img-000083
    Figure PCTKR2022017709-appb-img-000084
    Figure PCTKR2022017709-appb-img-000084
    Figure PCTKR2022017709-appb-img-000085
    Figure PCTKR2022017709-appb-img-000085
    Figure PCTKR2022017709-appb-img-000086
    Figure PCTKR2022017709-appb-img-000086
    Figure PCTKR2022017709-appb-img-000087
    Figure PCTKR2022017709-appb-img-000087
  9. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제8항 중 어느 하나의 항에 따른 화합물을 포함하는, 유기 발광 소자.a first electrode; a second electrode provided to face the first electrode; and one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the compound according to any one of claims 1 to 8. , an organic light emitting device.
  10. 제9항에 있어서According to claim 9
    상기 화합물을 포함하는 유기물층은 발광층인, The organic material layer containing the compound is a light emitting layer,
    유기 발광 소자.organic light emitting device.
PCT/KR2022/017709 2021-11-12 2022-11-11 Novel compound and organic light-emitting device comprising same WO2023085834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280032230.9A CN117279918A (en) 2021-11-12 2022-11-11 Novel compound and organic light emitting device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0155894 2021-11-12
KR20210155894 2021-11-12
KR10-2022-0148521 2022-11-09
KR1020220148521A KR20230069842A (en) 2021-11-12 2022-11-09 Novel compound and organic light emitting device comprising the same

Publications (1)

Publication Number Publication Date
WO2023085834A1 true WO2023085834A1 (en) 2023-05-19

Family

ID=86336225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017709 WO2023085834A1 (en) 2021-11-12 2022-11-11 Novel compound and organic light-emitting device comprising same

Country Status (1)

Country Link
WO (1) WO2023085834A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150136942A (en) * 2014-05-28 2015-12-08 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR20160001702A (en) * 2014-06-27 2016-01-06 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20170025810A (en) * 2015-08-31 2017-03-08 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20200015495A (en) * 2018-06-28 2020-02-12 에스케이머티리얼즈 주식회사 Compounds, Organic Electroluminescent Devices and Display Devices
KR20200092633A (en) * 2019-01-25 2020-08-04 엘티소재주식회사 Compound, composition and organic optoelectronic device and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150136942A (en) * 2014-05-28 2015-12-08 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR20160001702A (en) * 2014-06-27 2016-01-06 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20170025810A (en) * 2015-08-31 2017-03-08 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20200015495A (en) * 2018-06-28 2020-02-12 에스케이머티리얼즈 주식회사 Compounds, Organic Electroluminescent Devices and Display Devices
KR20200092633A (en) * 2019-01-25 2020-08-04 엘티소재주식회사 Compound, composition and organic optoelectronic device and display device

Similar Documents

Publication Publication Date Title
WO2021025328A1 (en) Novel compound and organic light emitting device comprising the same
WO2021125552A1 (en) Novel compound and organic light-emitting diode comprising same
WO2021091165A1 (en) Organic light-emitting device
WO2022102992A1 (en) Novel compound and organic light-emitting device using same
WO2021125648A1 (en) Novel compound, and organic light-emitting element using same
WO2020262861A1 (en) Novel compound and organic light emitting device comprising same
WO2020231242A1 (en) Organic light-emitting element
WO2023096405A1 (en) Novel compound and organic light emitting device comprising same
WO2022059923A1 (en) Novel compound and organic light-emitting device comprising same
WO2022031020A1 (en) Novel compound and organic light emitting device comprising same
WO2022031013A1 (en) Novel compound and organic light-emitting device comprising same
WO2021251661A1 (en) Novel compound and organic light emitting device comprising same
WO2021194261A1 (en) Novel compound and organic light-emitting device using same
WO2021182834A1 (en) Novel compound and organic light-emitting device using same
WO2021034156A1 (en) Novel compound and organic light emitting device using same
WO2021149954A1 (en) Organic light emitting device
WO2020246835A9 (en) Novel compound and organic light-emitting device using same
WO2020246837A1 (en) Novel compound and organic light emitting device comprising same
WO2020231021A1 (en) Organic light emitting device
WO2020231022A1 (en) Organic light emitting device
WO2023085834A1 (en) Novel compound and organic light-emitting device comprising same
WO2023085789A1 (en) Novel compound and organic light-emitting device comprising same
WO2023096318A1 (en) Novel compound and organic light-emitting device comprising same
WO2023003146A1 (en) Novel compound and organic light-emitting device comprising same
WO2021015603A1 (en) Novel compound and organic light-emitting device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893253

Country of ref document: EP

Kind code of ref document: A1