WO2023085697A1 - Insulation monitoring device for insulation-terra system - Google Patents

Insulation monitoring device for insulation-terra system Download PDF

Info

Publication number
WO2023085697A1
WO2023085697A1 PCT/KR2022/017212 KR2022017212W WO2023085697A1 WO 2023085697 A1 WO2023085697 A1 WO 2023085697A1 KR 2022017212 W KR2022017212 W KR 2022017212W WO 2023085697 A1 WO2023085697 A1 WO 2023085697A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
ground fault
monitoring device
coil
ungrounded power
Prior art date
Application number
PCT/KR2022/017212
Other languages
French (fr)
Korean (ko)
Inventor
박병철
정규창
오성문
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2023085697A1 publication Critical patent/WO2023085697A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • G01R11/02Constructional details
    • G01R11/17Compensating for errors; Adjusting or regulating means therefor
    • G01R11/18Compensating for variations in ambient conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/22Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of ac into dc
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to a technique for detecting leakage current in an ungrounded power system.
  • the present invention is derived from research conducted as part of other projects of the Small and Medium Business Technology Information Promotion Agency below.
  • the power system is divided into a grounded power system and an ungrounded power system depending on whether or not it is insulated from the ground (ground).
  • the power system In the grounding power system, the power system is connected to the ground, and there are TN (Terra-Neutral) and TT (Terra-Terra). In Korea, distribution lines supplied with power from KEPCO use TN grounding, and power supplied indoors after transformers uses TT grounding.
  • the non-grounded power system (IT System: Insulation-Terra System) means a method of insulating the ground and the power system.
  • the ungrounded power system is used in solar power plants, ESS (Energy Storage System), electric vehicles, power plant batteries, and on-site power grids.
  • this method according to the prior art has a problem in that the longer the power wiring, the more difficult it is to install the measurement equipment, and the longer the wiring, the larger the leakage capacitance, so there is an error in measuring the detection signal due to the circulating current caused by this. .
  • the detection signal is a small signal with a very small output, it is difficult to distinguish between the detection signal and noise when affected by EMC (Electro-Magnetic Compatibility) noise generated from a peripheral power system, resulting in frequent signal detection malfunctions.
  • EMC Electro-Magnetic Compatibility
  • the inventors of the present invention have made research efforts to solve the problems of the prior art ungrounded power system insulation monitoring device. After much effort to complete an insulation monitoring device and method that can increase the reliability of detection signals while being easy to install and manage for ground detection of ungrounded power systems, the present invention has been completed.
  • an object of the present invention is to provide an insulation monitoring device for an ungrounded power system having a simple system and high reliability.
  • the present invention provides a signal applying unit for applying a DC detection signal to a transmission line in order to monitor a ground fault in an ungrounded power system that transmits power through a transmission line, and a DC detection in case of a ground fault. It includes a calculator that calculates a return current that returns to the signal applicator in response to a signal, a core disposed on a transmission line, and a first coil wound around the core, applying an alternating current to the first coil and detecting direct current in case of a ground fault.
  • an insulation monitoring device for an ungrounded power system including a sensor unit for detecting a DC offset current induced by a signal and a fault monitoring unit for monitoring a ground fault based on at least one of a return current and a DC offset current.
  • the fault monitoring unit may determine a ground fault when at least one of the return current and the DC offset current is greater than or equal to a reference value.
  • a coil current obtained by adding a DC offset current to an AC current may flow through the first coil.
  • the sensor unit may calculate the DC offset current by removing the AC current from the coil current.
  • the insulation monitoring device of the ungrounded power system of the present invention includes a second coil wound around the core, and further includes a compensation unit for applying a compensation current corresponding to the AC current and in the opposite direction to the AC current to the second coil. can do.
  • the sensor unit may be provided in each of a plurality of transmission lines located at different positions.
  • calculation unit may transmit the return current to the fault monitoring unit, and the sensor unit may transmit the DC offset current to the accident monitoring unit.
  • the fault monitoring unit may detect the position of the transmission line where the ground fault has occurred based on the DC offset current.
  • the fault monitoring unit may determine that a ground fault has occurred at a location of a transmission line where a sensor unit transmitting a DC offset current is disposed.
  • a system compared to the AC detection signal application and AC current detection method is simple and can provide high reliability.
  • insulation resistance can be precisely measured by return current, and a ground fault occurrence point can be detected regardless of current measurement accuracy in the form of whether or not it has occurred.
  • FIG. 1 is a diagram schematically illustrating an ungrounded power supply system.
  • FIG. 2 is a diagram illustrating a phase synchronization based insulation monitoring device for monitoring insulation in the ungrounded power system of FIG. 1 .
  • FIG. 3 is a schematic block diagram of an insulation monitoring device for an ungrounded power system according to an embodiment of the present invention.
  • FIG. 4 is a schematic circuit diagram of an insulation monitoring device for an ungrounded power system according to an embodiment of the present invention.
  • FIG. 5 is a specific circuit diagram of the sensor unit of FIG. 3 .
  • FIG. 6 is a specific circuit diagram for forcibly applying an alternating current to a coil in the circuit diagram of FIG. 5 .
  • FIG. 7 is a graph showing a waveform of a coil current flowing through a first coil.
  • FIG. 8 is a graph showing a waveform obtained by removing an alternating current from the coil current of FIG. 7 .
  • FIG. 9 is a specific circuit diagram for compensating an alternating current forcibly applied to a coil in the circuit diagram of FIG. 5 .
  • FIG. 10 is an overall diagram of an insulation monitoring device applied to an ungrounded power system according to an embodiment of the present invention.
  • 'first' and 'second' may be used to describe various elements, but the elements should not be limited by the above terms. The above terms may only be used for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a 'first element' may be named a 'second element', and similarly, a 'second element' may also be named a 'first element'. can Also, singular expressions include plural expressions unless the context clearly indicates otherwise. Terms used in the embodiments of the present invention may be interpreted as meanings commonly known to those skilled in the art unless otherwise defined.
  • FIG. 1 is a diagram schematically illustrating an ungrounded power supply system.
  • FIG. 2 is a diagram showing a phase synchronization based insulation monitoring device for monitoring insulation in the ungrounded power system of FIG. 1 .
  • the ungrounded power system refers to a power system that is not grounded with the ground (PE), that is, is insulated from the ground, and transmits power to each load through transmission lines L1 and L2.
  • phase synchronization based insulation monitoring device for monitoring a ground fault by distinguishing the leakage current (Ic) and the ground fault current (If) will be described.
  • the phase synchronization based insulation monitoring device is composed of a detection signal generator 10 and a plurality of detection signal detectors (20, 21, 22).
  • the detection signal detectors 20, 21, and 22 may include a Current Transformer (CT) using the AC induced electromotive force principle, and the detection signal detectors 20, 21, and 22 may include a CT at different locations.
  • CT Current Transformer
  • Each of the plurality of transmission lines may be provided.
  • the detection signal generator 10 generates an AC detection signal for detecting a ground fault and transmits it to the transmission lines L1 and L2 of the ungrounded power system, and the detection signal detectors 20, 21 and 22 generate an AC detection signal The current signal corresponding to is sensed and transmitted back to the detection signal generator 10.
  • the detection signal generator 10 compares the current signal received from the detection signal detectors 20, 21, and 22 with the AC detection signal to detect whether or not ground resistance occurs and the location of a ground fault.
  • the AC detection signal Vs transmitted by the detection signal generator 10 has a phase difference of 90 degrees from the phase of the leakage current Ic caused by the leakage capacitor. That is, since the leakage current (Ic) caused by the leakage capacitor corresponds to the reactive current in relation to the AC detection signal, it is not a detection target.
  • ground fault current If caused by the ground fault resistance R F has the same phase as the AC detection signal Vs.
  • the insulation monitoring device classifies the leakage current (Ic) by the leakage capacitor (Ce) and the ground fault current (If) by the ground fault resistance (R F ) by the phase difference to determine whether or not ground resistance has occurred and ground. The location of the accident can be identified.
  • phase synchronization between the detection signal detector 20 and the detection signal generator 10 is essential.
  • system complexity increases due to such phase synchronization and reliability of ground fault detection is lowered when an error occurs in phase synchronization.
  • FIG. 3 is a schematic block diagram of an insulation monitoring device for an ungrounded power system according to an embodiment of the present invention.
  • 4 is a schematic circuit diagram of an insulation monitoring device for an ungrounded power system according to an embodiment of the present invention.
  • the insulation monitoring device of the ungrounded power system includes a signal application unit 110, a calculation unit 120, a sensor unit 130, a compensation unit 140, and an accident monitoring unit 150. It can be configured to include.
  • the signal applying unit 110 may apply a DC detection signal Vd to the transmission lines L1 and L2 in order to monitor a ground fault in an ungrounded power system that transmits power through the transmission lines L1 and L2. .
  • the calculation unit 120 may calculate the return current (ground fault current) If returning to the signal applying unit 110 in response to the DC detection signal Vd.
  • the leakage current Ic by the leakage capacitor Ce is zero (0). ) becomes Accordingly, in determining a ground fault, it is not necessary to distinguish between the leakage current Ic caused by the leakage capacitor Ce and the return current If caused by the ground fault resistance R F .
  • the calculation unit 120 includes a detection resistance Rd connected between the signal application unit 110 and the ground PE, and when the voltage Vr of both ends of the detection resistance Rd is measured, Ohm's law (The return current (if) can be calculated by Vr/Rd). Also, the calculation unit 120 may transmit the calculated return current If to the accident monitoring unit 150 through communication.
  • the calculation unit 120 uses Kirchhoff's law based on the detection resistance (Rd), the DC detection signal (Vd), and the return current (if) at the location of the transmission line (L1, L2) where the ground fault occurred. Insulation resistance (R F ) can be calculated.
  • the signal applying unit 110 may be a variable voltage source so that the return current If is less than the target current. In this case, if the insulation resistance R F is relatively low, the level of the DC detection signal Vd is lowered and the insulation resistance is relatively low. If the resistance R F is relatively high, the magnitude of the DC detection signal Vd can be increased.
  • the sensor unit 130 is disposed on the transmission lines L1 and L2 and can detect a DC offset current induced by the DC detection signal Vs when a ground fault occurs.
  • the fault monitoring unit 150 may monitor a ground fault based on at least one of the DC offset current and the return current If. That is, if at least one of the DC offset current and the return current (If) is detected by the fault monitoring unit 150, it may be determined as a ground fault, or if the DC offset current and the return current (If) are greater than or equal to a reference value, it may be determined as a ground fault.
  • FIG. 5 is a specific circuit diagram of the sensor unit of FIG. 3
  • FIG. 6 is a specific circuit diagram for forcibly applying an alternating current to a coil in the circuit diagram of FIG. 5
  • 7 is a graph showing a waveform of a coil current flowing through the first coil
  • FIG. 8 is a graph showing a waveform obtained by removing an AC current from the coil current of FIG. 7
  • FIG. 9 is a specific circuit diagram for compensating the AC current forcibly applied to the coil in the circuit diagram of FIG. 5 .
  • the sensor unit 130 may be a current transformer (CT) as a current sensor using the principle of alternating current induced electromotive force, and the core 131 disposed on the transmission lines L1 and L2 and a first coil 132 wound around the core 131 .
  • CT current transformer
  • the sensor unit 130 prevents the core 131 from being saturated by applying the AC voltage (alternating voltage) Vs to the first coil 132 . At this time, an AC current (is) flows in the first coil 132 due to the AC voltage (Vs).
  • the sensor unit 130 includes a first operational amplifier op1, a first resistor R1, a second resistor R2, and a first operational amplifier op1 to apply an alternating current is to the first coil 132. It may be configured to include a current controller 133.
  • the first current controller 133 is connected to one end of the first coil 132 wound around the core 131, and between one end of the first coil 132 and the first current controller 133, first and second The second resistors R1 and R2 are connected in series.
  • the non-inverting terminal (+) of the first operational amplifier op1 is connected between the first and second resistors R1 and R2, and the inverting terminal (-) of the first operational amplifier op1 is connected to the first coil. It is connected to the other end of (132).
  • the number of windings of the first coil 132 may be adjusted according to the detection range of the return current If or DC offset current.
  • the alternating current (is) is applied to the first coil 132 .
  • the signal applying unit 110 applies the DC detection signal Vd to the transmission lines L1 and L2, the primary side of the transmission lines L1 and L2 due to the ground fault resistance R F when a ground fault occurs.
  • a DC current ip flows, and a DC offset current is induced in the first coil 132 by the primary side DC current ip.
  • the coil current i ST flowing through the first coil 132 includes only the alternating current is (a). However, when a ground fault occurs, a coil current (i ST ) obtained by adding a DC offset current to an AC current (is) flows in the first coil 132 (b).
  • a shunt resistor Rs may be connected between the other end of the first coil 132 and the inverting terminal (-) of the first operational amplifier op1, and the sensor unit 130 can measure the coil current (i ST ) by Ohm's law (V ST /Rs) by measuring the voltage (V ST ) across the shunt resistor (Rs).
  • the sensor unit 130 may calculate the DC offset current by removing the AC current is from the coil current i ST . At this time, referring to FIG. 8 , if a ground fault does not occur, the DC offset current is almost zero (0) (a), and if a ground fault occurs, it can be confirmed that a DC offset current of a certain value or more appears ( b).
  • the sensor unit 130 may transmit the calculated DC offset current to the accident monitoring unit 150 through communication.
  • the fault monitoring unit 150 may determine whether a ground fault has occurred based on the DC offset current received from the sensor unit 130 . That is, when the DC offset current is detected, it can be determined as a ground fault. In this case, when the DC offset current is greater than or equal to the reference value, it may be determined as a ground fault.
  • the alternating current (is) is forcibly applied to the first coil 132
  • the current (Icc) flowing through the transmission lines (L1, L2) is also affected. Therefore, it is preferable to remove the effect on the transmission lines L1 and L2 by flowing the compensation current i T in the opposite direction to the AC current is applied to the first coil 132 .
  • the compensation unit 140 includes a second coil 141 wound around the core 131, and applies a compensation voltage V T to the second coil 141 in response to the AC current is. can do. Accordingly, the compensating current i T according to the compensating voltage V T flows in the second coil 141 in the opposite direction to the alternating current is, so that the alternating current is flowing in the first coil 131 The influence on the transmission lines L1 and L2 can be removed.
  • the compensation unit 140 includes a low-pass filter 142, an integrator 143, and a second operational amplifier op2 to apply a compensation current i T to the second coil 141. ) and a second current controller 144.
  • One end of the second coil 141 is connected to the second current controller 144, and the second current controller is connected to the output terminal of the second operational amplifier op2. Then, the integrator 143 is input to the non-inverting terminal (+) of the second operational amplifier op2 and the low-pass filter 142 is connected to the integrator 143. And, the other end of the second coil 141 is connected to the inverting terminal (-) of the second operational amplifier op2.
  • a measurement resistance may be connected between the other end of the second coil 132 and the inverting terminal (-) of the first operational amplifier (op1), and the sensor unit 130 ) can measure the compensation current (i T ) flowing through the second coil 141 by Ohm's law (V T / R T ) when the voltage ( VT ) across the measured resistance (R T ) is measured.
  • FIG. 10 is an overall diagram of an insulation monitoring device applied to an ungrounded power system according to an embodiment of the present invention.
  • an ungrounded power supply system may include a plurality of transmission lines branched from a bus line, and sensor units 130 may be provided in each of a plurality of transmission lines at different locations.
  • the fault monitoring unit 150 may receive the return current If from the calculation unit 120 and the DC offset current from the sensor unit 130 to monitor the ground fault and its location.
  • the fault monitoring unit 150 may determine a ground fault when one of the DC offset current and the return current (If) is received or when the received DC offset current and the return current (If) are greater than or equal to a reference value.
  • the fault monitoring unit 150 may detect the position of the transmission line where the ground fault has occurred based on the DC offset current.
  • the fault monitoring unit 150 may determine that a ground fault has occurred at a location of a transmission line where the sensor unit 130 transmitting the DC offset current is disposed.
  • the sensor unit 130 may transmit the DC offset current along with its own identification code in order to identify each sensor unit 130 .
  • the fault monitoring unit 150 may include a display unit (not shown) that displays the return current If and the DC offset current for each of the plurality of transmission lines in numbers, etc. In this case, the display unit is normal and a ground fault occurs
  • the transmitted transmission lines can be distinguished and displayed with LED lights.
  • the insulation monitoring device of an ungrounded power system detects a ground fault in an ungrounded power system using a DC detection signal, so that the system is simple and compared to the AC detection signal application and AC current detection method. , can provide high reliability.
  • insulation resistance can be precisely measured by return current, and a ground fault occurrence point can be detected regardless of current measurement accuracy.
  • the insulation monitoring device of the ungrounded power system of the present invention can be used in ungrounded power systems such as photovoltaic power plants, energy storage systems (ESSs), electric vehicles, power plant batteries, and on-site power grids.
  • ungrounded power systems such as photovoltaic power plants, energy storage systems (ESSs), electric vehicles, power plant batteries, and on-site power grids.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

The present invention provides an insulation monitoring device for an insulation-terra system, comprising: a signal application unit for applying a direct current detection signal to a transmission line in order to monitor a ground fault in an insulation-terra system transmitting power through the transmission line; a calculation unit for calculating a return current, which returns to the signal application unit in response to the direct current detection signal if a ground fault occurs; a sensor unit, which includes a core disposed in the transmission line and a first coil wound on the core, applies an alternating current to the first coil and detects a direct current offset current induced by the direct current detection signal if a ground fault occurs; and a fault monitoring unit for monitoring a ground fault on the basis of at least one from among the return current and the direct current offset current.

Description

비접지 전원 계통의 절연 감시 장치Insulation monitoring device for ungrounded power systems
본 발명은 비접지 전원 계통의 누설 전류를 탐지하는 기술에 관한 것이다.The present invention relates to a technique for detecting leakage current in an ungrounded power system.
본 발명은 아래의 중소기업기술정보진흥원의 기타사업의 일환으로 수행한 연구로부터 도출된 것이다.The present invention is derived from research conducted as part of other projects of the Small and Medium Business Technology Information Promotion Agency below.
[과제고유번호] 1425147376[Assignment identification number] 1425147376
[과제번호] S3035699[Assignment number] S3035699
[부처명] 중소벤처기업부[Name of Department] Ministry of Small and Medium Venture Business
[과제관리(전문)기관명] 중소기업기술정보진흥원[Task management (professional) organization name] Small and Medium Business Technology Information Promotion Agency
[연구사업명] 기타사업[Research project name] Other projects
[연구과제명] 에너지(전력) 신산업 공동수요 직류(DC) 전기 계측, 계전 솔루션 기술 개발[Research Project Title] Development of DC electricity measurement and relay solution technology for common demand in new energy (electric power) industries
[기여율] 1/1[Contribution rate] 1/1
[과제수행기관명] 한국전자기술연구원[Name of project performing organization] Korea Institute of Electronics Technology
[연구기간] 2020.12.01 ~ 2022.11.30[Research period] 2020.12.01 ~ 2022.11.30
전원 계통은 대지(접지)와의 절연 여부에 따라 접지 전원 계통과 비접지 전원 계통으로 구분된다.The power system is divided into a grounded power system and an ungrounded power system depending on whether or not it is insulated from the ground (ground).
접지 전원 계통은 전원 계통이 대지와 연결되어 있으며, TN(Terra-Neutral), TT(Terra-Terra)가 있다. 우리나라의 경우 한국전력에서 전원을 공급하는 배전선로는 TN접지를 사용하고, 변압기 이후 옥내로 공급되는 전원은 TT 접지를 사용한다.In the grounding power system, the power system is connected to the ground, and there are TN (Terra-Neutral) and TT (Terra-Terra). In Korea, distribution lines supplied with power from KEPCO use TN grounding, and power supplied indoors after transformers uses TT grounding.
비접지 전원 계통(IT System: Insulation-Terra System)은 대지와 전원 계통을 절연하는 방식을 의미한다. 비접지 전원 계통은 태양광 발전소, ESS(Energy Storage System), 전기차, 발전소 배터리, 소내 전력망 등에 활용된다.The non-grounded power system (IT System: Insulation-Terra System) means a method of insulating the ground and the power system. The ungrounded power system is used in solar power plants, ESS (Energy Storage System), electric vehicles, power plant batteries, and on-site power grids.
비접지 전원 계통은 전원 계통의 한 선로가 접지와 연결되는 접지 사고가 발생해도 전체 시스템은 접지와 절연되어 있으므로 고장 전류(If)가 거의 흐르지 않는다. 한 선로에 접지 사고가 발생해도 시스템은 정상적으로 사용이 가능하지만 이에 대한 조치를 취하지 않는 중에 다른 선로도 접지 사고가 발생한다면 높은 고장 전류가 흐르게 되어 전체 시스템 정전이 발생하고 만다. 따라서 비접지 전원 계통의 신뢰성을 높이기 위해서는 시스템 정전이 발생하기 전에 접지 검출(절연 감시)을 수행하고 어떤 선로(지점)에 접지 사고가 발생했는지 파악하여 고장을 제거해야 한다.In the ungrounded power system, even if a ground fault occurs in which one line of the power system is connected to the ground, almost no fault current (If) flows because the entire system is insulated from the ground. Even if a ground fault occurs in one line, the system can be used normally, but if a ground fault occurs in other lines while no action is taken, a high fault current flows and the entire system is blacked out. Therefore, in order to increase the reliability of an ungrounded power system, it is necessary to perform grounding detection (insulation monitoring) before a system blackout occurs, identify which line (point) has a grounding fault, and eliminate the fault.
이를 위해 종래기술들은 검출 신호를 비접지 전원 계통에 인가하여 접지(PE: Protected Earth)와 비접지 전원 계통 사이의 전압, 전류를 측정하여 접지 사고 저항을 검출하는 방식과, 별도의 검출 신호를 인가하지 않고 비접지 전원 계통을 접지에 의도적으로 알고 있는 저항 값에 의한 접지 사고를 발생시켜 접지와 비접지 전원 계통 사이의 전압, 전류를 측정하여 접지 사고 저항을 검출하는 방식을 사용해 왔다.To this end, conventional technologies apply a detection signal to an ungrounded power system to measure the voltage and current between the ground (PE: Protected Earth) and the ungrounded power system to detect ground fault resistance, and apply a separate detection signal A method of detecting the ground fault resistance by measuring the voltage and current between the ground and the ungrounded power system by intentionally causing a ground fault by a known resistance value to ground the ungrounded power system without doing so has been used.
하지만 이러한 종래 기술에 의한 방식은 전원 배선이 길어질수록 측정 장비들을 설치하는 데 어려움이 있고, 누설 커패시턴스 역시 배선이 길어질수록 커지기 때문에 이에 의해 발생하는 순환 전류 때문에 검출 신호 측정에 오류가 발생하는 문제점이 있다. 또한 검출 신호는 출력이 아주 작은 미소 신호이기 때문에 주변 전원 시스템에서 발생하는 EMC(Electro-Magnetic Compatibility) 노이즈의 영향을 받으면 검출 신호와 노이즈의 구분이 어려워져 신호 검출 오동작이 빈번한 문제점도 있다.However, this method according to the prior art has a problem in that the longer the power wiring, the more difficult it is to install the measurement equipment, and the longer the wiring, the larger the leakage capacitance, so there is an error in measuring the detection signal due to the circulating current caused by this. . In addition, since the detection signal is a small signal with a very small output, it is difficult to distinguish between the detection signal and noise when affected by EMC (Electro-Magnetic Compatibility) noise generated from a peripheral power system, resulting in frequent signal detection malfunctions.
본 발명의 발명자들은 이러한 종래 기술의 비접지 전원 계통 절연 감시 장치의 문제점을 해결하기 위해 연구 노력해 왔다. 비접지 전원 계통의 접지 검출을 위해 설치 및 관리가 간편하면서도 검출 신호의 신뢰성을 높일 수 있는 절연 감시 장치 및 그 방법을 완성하기 위해 많은 노력 끝에 본 발명을 완성하기에 이르렀다.The inventors of the present invention have made research efforts to solve the problems of the prior art ungrounded power system insulation monitoring device. After much effort to complete an insulation monitoring device and method that can increase the reliability of detection signals while being easy to install and manage for ground detection of ungrounded power systems, the present invention has been completed.
상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여, 본 발명은, 시스템이 간단하면서 높은 신뢰도를 갖는 비접지 전원 계통의 절연 감시 장치를 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, an object of the present invention is to provide an insulation monitoring device for an ungrounded power system having a simple system and high reliability.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. There will be.
전술한 과제를 해결하기 위해, 본 발명은, 전송 선로를 통해 전력을 전송하는 비접지 전원 계통의 접지 사고를 감시하기 위해 직류 검출 신호를 전송 선로에 인가하는 신호 인가부와, 접지 사고 시 직류 검출 신호에 대응하여 신호 인가부로 회귀하는 회귀 전류를 산출하는 산출부와, 전송 선로에 배치되는 코어 및 코어에 권선되는 제1 코일을 포함하고, 제1 코일에 교류 전류를 인가하며 접지 사고 시 직류 검출 신호에 의해 유도되는 직류 옵셋 전류를 검출하는 센서부와, 회귀 전류 및 직류 옵셋 전류 중 적어도 하나를 기초로 접지 사고를 감시하는 사고 감시부를 포함하는 비접지 전원 계통의 절연 감시 장치를 제공한다.In order to solve the above problems, the present invention provides a signal applying unit for applying a DC detection signal to a transmission line in order to monitor a ground fault in an ungrounded power system that transmits power through a transmission line, and a DC detection in case of a ground fault. It includes a calculator that calculates a return current that returns to the signal applicator in response to a signal, a core disposed on a transmission line, and a first coil wound around the core, applying an alternating current to the first coil and detecting direct current in case of a ground fault. Provided is an insulation monitoring device for an ungrounded power system including a sensor unit for detecting a DC offset current induced by a signal and a fault monitoring unit for monitoring a ground fault based on at least one of a return current and a DC offset current.
여기서, 사고 감시부는, 회귀 전류 및 직류 옵셋 전류 중 적어도 하나가 기준값 이상이면 접지 사고로 판단할 수 있다.Here, the fault monitoring unit may determine a ground fault when at least one of the return current and the DC offset current is greater than or equal to a reference value.
또한, 제1 코일에는 접지 사고 시 교류 전류에 직류 옵셋 전류가 더해진 코일 전류가 흐를 수 있다.Also, in the event of a ground fault, a coil current obtained by adding a DC offset current to an AC current may flow through the first coil.
또한, 센서부는, 코일 전류에서 교류 전류를 제거하여 직류 옵셋 전류를 산출할 수 있다In addition, the sensor unit may calculate the DC offset current by removing the AC current from the coil current.
또한, 본 발명의 비접지 전원 계통의 절연 감시 장치는, 코어에 권선되는 제2 코일을 포함하고, 교류 전류와 대응하며 교류 전류와 반대 방향인 보상 전류를 제2 코일에 인가하는 보상부를 더 포함할 수 있다.In addition, the insulation monitoring device of the ungrounded power system of the present invention includes a second coil wound around the core, and further includes a compensation unit for applying a compensation current corresponding to the AC current and in the opposite direction to the AC current to the second coil. can do.
또한, 센서부는 서로 다른 위치에 있는 복수의 전송 선로에 각각 구비될 수 있다.In addition, the sensor unit may be provided in each of a plurality of transmission lines located at different positions.
또한, 산출부는 회귀 전류를 사고 감시부에 전송하고, 센서부는 직류 옵셋 전류를 사고 감시부에 전송할 수 있다.Also, the calculation unit may transmit the return current to the fault monitoring unit, and the sensor unit may transmit the DC offset current to the accident monitoring unit.
또한, 사고 감시부는 직류 옵셋 전류를 기초로 접지 사고가 발생된 전송 선로의 위치를 검출할 수 있다.Also, the fault monitoring unit may detect the position of the transmission line where the ground fault has occurred based on the DC offset current.
또한, 사고 감시부는 직류 옵셋 전류를 전송한 센서부가 배치되는 전송 선로의 위치에서 접지 사고가 발생한 것으로 판단할 수 있다.In addition, the fault monitoring unit may determine that a ground fault has occurred at a location of a transmission line where a sensor unit transmitting a DC offset current is disposed.
본 발명에 따르면, 직류 검출 신호를 이용해 비접지 전원 계통의 접지 사고를 검출함으로써, 교류 검출 신호 인가 및 교류 전류 검출 방식 대비 시스템이 간단하고, 높은 신뢰도를 제공할 수 있다.According to the present invention, by detecting a ground fault in an ungrounded power system using a DC detection signal, a system compared to the AC detection signal application and AC current detection method is simple and can provide high reliability.
또한, 본 발명에 따르면, 주파수가 없는 직류 전압을 검출 신호로 인가하므로 전송 선로와 대지간의 누설 커패시턴스의 영향이 없기 때문에, 무효 전력 및 유효 전력을 구분할 필요 없이 직류 누설 전류가 검출되면 바로 접지 사고 전류로 판단 할 수 있다. In addition, according to the present invention, since a DC voltage without frequency is applied as a detection signal, there is no effect of leakage capacitance between the transmission line and the ground, so there is no need to distinguish between reactive power and active power, and when a DC leakage current is detected, the ground fault current can be judged by
또한, 본 발명에 따르면, 절연 저항은 회귀 전류로 정밀하게 측정할 수 있고, 접지 사고 발생 지점은 전류 측정 정밀도와 상관없이 발생 유무 형태로 검출할 수 있다.In addition, according to the present invention, insulation resistance can be precisely measured by return current, and a ground fault occurrence point can be detected regardless of current measurement accuracy in the form of whether or not it has occurred.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the description below. will be.
도 1은 비접지 전원 계통을 개략적인 도시한 도면이다.1 is a diagram schematically illustrating an ungrounded power supply system.
도 2는 도 1의 비접지 전원 계통에서 절연을 감시하는 위상 동기 기반 절연 감시 장치를 도시한 도면이다.FIG. 2 is a diagram illustrating a phase synchronization based insulation monitoring device for monitoring insulation in the ungrounded power system of FIG. 1 .
도 3은 본 발명의 실시예에 따른 비접지 전원 계통의 절연 감시 장치의 개략적인 블록도이다.3 is a schematic block diagram of an insulation monitoring device for an ungrounded power system according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 비접지 전원 계통의 절연 감시 장치의 개략적인 회로도이다.4 is a schematic circuit diagram of an insulation monitoring device for an ungrounded power system according to an embodiment of the present invention.
도 5는 도 3의 센서부의 구체적인 회로도이다.5 is a specific circuit diagram of the sensor unit of FIG. 3 .
도 6은 도 5의 회로도에서 코일에 교류 전류를 강제로 인가하기 위한 구체적인 회로도이다.FIG. 6 is a specific circuit diagram for forcibly applying an alternating current to a coil in the circuit diagram of FIG. 5 .
도 7은 제1 코일에 흐르는 코일 전류의 파형을 도시한 그래프이다.7 is a graph showing a waveform of a coil current flowing through a first coil.
도 8은 도 7의 코일 전류에서 교류 전류를 제거한 파형을 도시한 그래프이다.FIG. 8 is a graph showing a waveform obtained by removing an alternating current from the coil current of FIG. 7 .
도 9는 도 5의 회로도에서 코일에 강제로 인가된 교류 전류를 보상하기 위한 구체적인 회로도이다.FIG. 9 is a specific circuit diagram for compensating an alternating current forcibly applied to a coil in the circuit diagram of FIG. 5 .
도 10은 본 발명의 실시예에 따른 비접지 전원 계통에 적용된 절연 감시 장치의 전체 도면이다.10 is an overall diagram of an insulation monitoring device applied to an ungrounded power system according to an embodiment of the present invention.
본 발명의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 여러 가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시예에 대한 설명은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 첨부된 도면에서 구성요소는 설명의 편의를 위하여 그 크기를 실제보다 확대하여 도시한 것이며, 각 구성요소의 비율은 과장되거나 축소될 수 있다.In order to fully understand the configuration and effects of the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and may be implemented in various forms and various changes may be made. However, the description of the present embodiment is provided to complete the disclosure of the present invention and to completely inform those skilled in the art of the scope of the invention to which the present invention belongs. In the accompanying drawings, the size of the components is enlarged from the actual size for convenience of description, and the ratio of each component may be exaggerated or reduced.
'제1', '제2' 등의 용어는 다양한 구성요소를 설명하는데 사용될 수 있지만, 상기 구성요소는 위 용어에 의해 한정되어서는 안 된다. 위 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 '제1구성요소'는 '제2구성요소'로 명명될 수 있고, 유사하게 '제2구성요소'도 '제1구성요소'로 명명될 수 있다. 또한, 단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시예에서 사용되는 용어는 다르게 정의되지 않는 한, 해당 기술분야에서 통상의 지식을 가진 자에게 통상적으로 알려진 의미로 해석될 수 있다.Terms such as 'first' and 'second' may be used to describe various elements, but the elements should not be limited by the above terms. The above terms may only be used for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a 'first element' may be named a 'second element', and similarly, a 'second element' may also be named a 'first element'. can Also, singular expressions include plural expressions unless the context clearly indicates otherwise. Terms used in the embodiments of the present invention may be interpreted as meanings commonly known to those skilled in the art unless otherwise defined.
도 1은 비접지 전원 계통을 개략적인 도시한 도면이다. 그리고, 도 2는 도 1의 비접지 전원 계통에서 절연을 감시하는 위상 동기 기반 절연 감시 장치를 도시한 도면이다.1 is a diagram schematically illustrating an ungrounded power supply system. And, FIG. 2 is a diagram showing a phase synchronization based insulation monitoring device for monitoring insulation in the ungrounded power system of FIG. 1 .
비접지 전원 계통은 대지(PE)와의 접지가 이루어지지 않은, 즉 대지와 절연된 전원 시스템을 의미하며, 전송 선로(L1, L2)를 통해 전력을 각 부하로 전송한다.The ungrounded power system refers to a power system that is not grounded with the ground (PE), that is, is insulated from the ground, and transmits power to each load through transmission lines L1 and L2.
도 1을 참조하면, 비접지 전원 계통의 전송 선로(L1, L2)는 대지(PE)와 절연된 상태이므로 이론적으로는 전송 선로(L1, L2)와 대지(PE) 사이에 전류가 흐르지 않는다. 그러나, 실제로는 전송 선로(L1, L2)와 대지(PE) 사이에 존재하는 누설 커패시터(Ce)로 인해 미세한 누설 전류(Ic)가 흐르기 때문에 전송 선로(L1, L2)와 대지(PE)가 완전한 절연 상태가 아니다. Referring to FIG. 1 , since the transmission lines L1 and L2 of the ungrounded power system are insulated from the ground PE, theoretically, no current flows between the transmission lines L1 and L2 and the ground PE. However, in reality, since a minute leakage current (Ic) flows due to the leakage capacitor (Ce) existing between the transmission lines (L1, L2) and the ground (PE), the transmission lines (L1, L2) and the ground (PE) are completely not insulated
또한, 전송 선로(L1, L2)와 대지(PE) 사이에 접지 사고가 나면 접지 사고 저항(RF)이 생성되고, 이 접지 사고 저항(RF)으로 인해 전송 선로(L1, L2)와 대지(PE) 사이에 대량의 접지 사고 전류(If)가 흐르게 된다. 이에 따라, 전원이 차단되어 정전 사고가 발생하게 된다. In addition, when a ground fault occurs between the transmission lines (L1, L2) and the ground (PE), a ground fault resistance (R F ) is generated, and this ground fault resistance (R F ) causes the transmission line (L1, L2) and the ground to A large amount of ground fault current (If) flows between (PE). Accordingly, the power is cut off, resulting in a power outage accident.
이와 같은 접지 사고를 감시하기 위해서는, 누설 전류(Ic)와 접지 사고 전류(If)를 구분해야 한다.In order to monitor such a ground fault, it is necessary to distinguish between the leakage current Ic and the ground fault current If.
이하, 누설 전류(Ic)와 접지 사고 전류(If)를 구분하여 접지 사고를 감시하는 위상 동기 기반 절연 감시 장치를 설명하겠다.Hereinafter, a phase synchronization based insulation monitoring device for monitoring a ground fault by distinguishing the leakage current (Ic) and the ground fault current (If) will be described.
도 2를 참조하면, 위상 동기 기반 절연 감시 장치는 검출 신호 발생부(10)과 복수의 검출 신호 감지부(20, 21, 22)로 구성된다. Referring to Figure 2, the phase synchronization based insulation monitoring device is composed of a detection signal generator 10 and a plurality of detection signal detectors (20, 21, 22).
여기서, 검출 신호 감지부(20, 21, 22)는 검출 신호 감지부(20, 21, 22)는 교류 유도기전력 원리를 이용한 변류기(Current Transformer; CT)를 포함할 수 있으며, 서로 다른 위치에 있는 복수의 전송 선로에 각각 구비될 수 있다.Here, the detection signal detectors 20, 21, and 22 may include a Current Transformer (CT) using the AC induced electromotive force principle, and the detection signal detectors 20, 21, and 22 may include a CT at different locations. Each of the plurality of transmission lines may be provided.
검출 신호 발생부(10)는 접지 사고 검출을 위한 교류 검출 신호를 생성하여 비접지 전원 계통의 전송 선로(L1, L2)에 전송하고, 검출 신호 감지부(20, 21, 22)는 교류 검출 신호에 대응하는 전류 신호를 감지하여 검출 신호 발생부(10)에 다시 전송한다.The detection signal generator 10 generates an AC detection signal for detecting a ground fault and transmits it to the transmission lines L1 and L2 of the ungrounded power system, and the detection signal detectors 20, 21 and 22 generate an AC detection signal The current signal corresponding to is sensed and transmitted back to the detection signal generator 10.
그러면, 검출 신호 발생부(10)는 검출 신호 감지부(20, 21, 22)로부터 수신한 전류 신호를 교류 검출 신호와 비교하여 접지 저항 발생 여부와 접지 사고 발생 위치를 감지한다.Then, the detection signal generator 10 compares the current signal received from the detection signal detectors 20, 21, and 22 with the AC detection signal to detect whether or not ground resistance occurs and the location of a ground fault.
이 때, 검출 신호 발생부(10)가 전송한 교류 검출 신호(Vs)는 누설 커패시터에 의한 누설 전류(Ic)의 위상과 90도의 위상차를 가진다. 즉, 누설 커패시터에 의한 누설 전류(Ic)는 교류 검출 신호와의 관계에서 무효 전류에 해당하므로 이는 검출 대상이 아니다.At this time, the AC detection signal Vs transmitted by the detection signal generator 10 has a phase difference of 90 degrees from the phase of the leakage current Ic caused by the leakage capacitor. That is, since the leakage current (Ic) caused by the leakage capacitor corresponds to the reactive current in relation to the AC detection signal, it is not a detection target.
그러나, 접지 사고 저항(RF)에 의한 접지 사고 전류(If)는 교류 검출 신호(Vs)와 동일한 위상을 갖는다.However, the ground fault current If caused by the ground fault resistance R F has the same phase as the AC detection signal Vs.
이와 같은 위상차를 이용해, 절연 감시 장치는 누설 커패시터(Ce)에 의한 누설 전류(Ic)와 접지 사고 저항(RF)에 의한 접지 사고 전류(If)를 위상차에 의해 구분하여 접지 저항 발생 여부와 접지 사고 발생 위치를 파악할 수 있다.Using this phase difference, the insulation monitoring device classifies the leakage current (Ic) by the leakage capacitor (Ce) and the ground fault current (If) by the ground fault resistance (R F ) by the phase difference to determine whether or not ground resistance has occurred and ground. The location of the accident can be identified.
이와 같이 위상차를 이용해 누설 전류(Ic)와 접지 사고 전류(If)를 구분하기 위해서는, 검출 신호 감지부(20)와 검출 신호 발생부(10) 간 위상 동기화가 필수적으로 필요하다. 그러나, 이러한 위상 동기화로 인해 시스템 복잡도가 증가되고, 위상 동기화에 오차가 발생하는 경우 접지 사고 검출의 신뢰도가 낮아지는 문제점이 있다.In this way, in order to distinguish the leakage current Ic and the ground fault current If using the phase difference, phase synchronization between the detection signal detector 20 and the detection signal generator 10 is essential. However, there is a problem in that system complexity increases due to such phase synchronization and reliability of ground fault detection is lowered when an error occurs in phase synchronization.
도 3은 본 발명의 실시예에 따른 비접지 전원 계통의 절연 감시 장치의 개략적인 블록도이다. 그리고, 도 4는 본 발명의 실시예에 따른 비접지 전원 계통의 절연 감시 장치의 개략적인 회로도이다.3 is a schematic block diagram of an insulation monitoring device for an ungrounded power system according to an embodiment of the present invention. 4 is a schematic circuit diagram of an insulation monitoring device for an ungrounded power system according to an embodiment of the present invention.
도 3 및 도 4를 참조하면, 비접지 전원 계통의 절연 감시 장치는, 신호 인가부(110), 산출부(120), 센서부(130), 보상부(140) 및 사고 감시부(150)를 포함하여 구성될 수 있다.3 and 4, the insulation monitoring device of the ungrounded power system includes a signal application unit 110, a calculation unit 120, a sensor unit 130, a compensation unit 140, and an accident monitoring unit 150. It can be configured to include.
신호 인가부(110)는 전송 선로(L1, L2)를 통해 전력을 전송하는 비접지 전원 계통의 접지 사고를 감시하기 위해 직류 검출 신호(Vd)를 전송 선로(L1, L2)에 인가할 수 있다.The signal applying unit 110 may apply a DC detection signal Vd to the transmission lines L1 and L2 in order to monitor a ground fault in an ungrounded power system that transmits power through the transmission lines L1 and L2. .
이 때, 전송 선로(L1, L2)와 대지(PE) 사이에 접지 사고가 발생하면, 접지 사고 저항(RF)을 통해 직류 검출 신호(Vd)에 대응하는 접지 사고 전류(If)가 신호 인가부(110)로 회귀하게 된다.At this time, if a ground fault occurs between the transmission lines (L1, L2) and the ground (PE), the ground fault current (If) corresponding to the DC detection signal (Vd) is applied as a signal through the ground fault resistance (R F ). It will return to section 110.
산출부(120)는 직류 검출 신호(Vd)에 대응하여 신호 인가부(110)로 회귀하는 회귀 전류(접지 사고 전류)(If)를 산출할 수 있다.The calculation unit 120 may calculate the return current (ground fault current) If returning to the signal applying unit 110 in response to the DC detection signal Vd.
본 발명의 절연 감시 장치는, 접지 사고를 검출하기 위해, 전송 선로(L1, L2)에 직류 검출 신호(Vd)를 인가하기 때문에, 누설 커패시터(Ce)에 의한 누설 전류(Ic)가 제로(0)가 된다. 이에 따라, 접지 사고를 판단함에 있어 누설 커패시터(Ce)에 의한 누설 전류(Ic)와 접지 사고 저항(RF)에 의한 회귀 전류(If)를 구분할 필요가 없다.In the insulation monitoring device of the present invention, since the DC detection signal Vd is applied to the transmission lines L1 and L2 to detect a ground fault, the leakage current Ic by the leakage capacitor Ce is zero (0). ) becomes Accordingly, in determining a ground fault, it is not necessary to distinguish between the leakage current Ic caused by the leakage capacitor Ce and the return current If caused by the ground fault resistance R F .
산출부(120)는 신호 인가부(110) 및 대지(PE)와 사이에 연결된 검출 저항(Rd)를 포함하고, 검출 저항(Rd)의 양단의 전압(Vr)을 측정하면, 옴의 법칙(Vr/Rd)에 의해 회귀 전류(if)를 산출할 수 있다. 그리고, 산출부(120)는 산출한 회귀 전류(If)를 사고 감시부(150)에 통신으로 전송할 수 있다.The calculation unit 120 includes a detection resistance Rd connected between the signal application unit 110 and the ground PE, and when the voltage Vr of both ends of the detection resistance Rd is measured, Ohm's law ( The return current (if) can be calculated by Vr/Rd). Also, the calculation unit 120 may transmit the calculated return current If to the accident monitoring unit 150 through communication.
또한, 산출부(120)는 검출 저항(Rd), 직류 검출 신호(Vd) 및 회귀 전류(if)를 기초로 키르히호프의 법칙을 이용해 접지 사고가 발생한 전송 선로(L1, L2)의 위치에서의 절연 저항(RF)을 산출할 수 있다.In addition, the calculation unit 120 uses Kirchhoff's law based on the detection resistance (Rd), the DC detection signal (Vd), and the return current (if) at the location of the transmission line (L1, L2) where the ground fault occurred. Insulation resistance (R F ) can be calculated.
신호 인가부(110)는 회귀 전류(If)가 목표 전류 미만이 되도록 하기 위해 가변 전압원일 수 있으며, 이 경우 절연 저항(RF)이 비교적 낮으면 직류 검출 신호(Vd)의 크기를 낮추고, 절연 저항(RF)이 비교적 높으면 직류 검출 신호(Vd)의 크기를 높일 수 있다.The signal applying unit 110 may be a variable voltage source so that the return current If is less than the target current. In this case, if the insulation resistance R F is relatively low, the level of the DC detection signal Vd is lowered and the insulation resistance is relatively low. If the resistance R F is relatively high, the magnitude of the DC detection signal Vd can be increased.
센서부(130)는, 전송 선로(L1, L2)에 배치되며, 접지 사고 발생 시 직류 검출 신호(Vs)에 의해 유도되는 직류 옵셋 전류를 검출할 수 있다. The sensor unit 130 is disposed on the transmission lines L1 and L2 and can detect a DC offset current induced by the DC detection signal Vs when a ground fault occurs.
사고 감시부(150) 직류 옵셋 전류 및 회귀 전류(If) 중 적어도 하나를 기초로 접지 사고를 감시할 수 있다. 즉, 사고 감시부(150) 직류 옵셋 전류 및 회귀 전류(If) 중 적어도 하나가 검출되면 접지 사고로 판단하거나, 직류 옵셋 전류 및 회귀 전류(If)가 기준값 이상이면 접지 사고로 판단할 수 있다.The fault monitoring unit 150 may monitor a ground fault based on at least one of the DC offset current and the return current If. That is, if at least one of the DC offset current and the return current (If) is detected by the fault monitoring unit 150, it may be determined as a ground fault, or if the DC offset current and the return current (If) are greater than or equal to a reference value, it may be determined as a ground fault.
도 5는 도 3의 센서부의 구체적인 회로도이고, 도 6은 도 5의 회로도에서 코일에 교류 전류를 강제로 인가하기 위한 구체적인 회로도이다. 그리고, 도 7은 제1 코일에 흐르는 코일 전류의 파형을 도시한 그래프이고, 도 8은 도 7의 코일 전류에서 교류 전류를 제거한 파형을 도시한 그래프이다. 그리고, 도 9는 도 5의 회로도에서 코일에 강제로 인가된 교류 전류를 보상하기 위한 구체적인 회로도이다.5 is a specific circuit diagram of the sensor unit of FIG. 3 , and FIG. 6 is a specific circuit diagram for forcibly applying an alternating current to a coil in the circuit diagram of FIG. 5 . 7 is a graph showing a waveform of a coil current flowing through the first coil, and FIG. 8 is a graph showing a waveform obtained by removing an AC current from the coil current of FIG. 7 . And, FIG. 9 is a specific circuit diagram for compensating the AC current forcibly applied to the coil in the circuit diagram of FIG. 5 .
도 5 및 도 6를 참조하면, 센서부(130)는, 교류 유도 기전력 원리를 이용한 전류 센서로서 변류기(Current Transformer; CT)일 수 있으며, 전송 선로(L1, L2)에 배치되는 코어(131) 및 코어(131)에 권선되는 제1 코일(132)을 포함하여 구성될 수 있다.5 and 6, the sensor unit 130 may be a current transformer (CT) as a current sensor using the principle of alternating current induced electromotive force, and the core 131 disposed on the transmission lines L1 and L2 and a first coil 132 wound around the core 131 .
한편, 비접지 전원 계통의 접지 사고를 감시하기 위해 전송 선로(L1, L2)에 직류 검출 신호(Vd)가 지속적으로 인가하게 되면, 센서부(130)의 코어(131)가 포화되어 더 이상 변류기의 역할을 수행할 수 없다.On the other hand, when the DC detection signal Vd is continuously applied to the transmission lines L1 and L2 to monitor the ground fault of the ungrounded power system, the core 131 of the sensor unit 130 is saturated and no longer operates as a current transformer. cannot fulfill the role of
따라서, 센서부(130)는 제1 코일(132)에 교류 전압(교번 전압)(Vs)을 인가함으로써, 코어(131)가 포화되는 것을 방지한다. 이 때, 교류 전압(Vs)으로 인해 제1 코일(132)에는 교류 전류(is)가 흐르게 된다.Accordingly, the sensor unit 130 prevents the core 131 from being saturated by applying the AC voltage (alternating voltage) Vs to the first coil 132 . At this time, an AC current (is) flows in the first coil 132 due to the AC voltage (Vs).
구체적으로, 센서부(130)는 제1 코일(132)에 교류 전류(is)를 인가하기 위해, 제1 연산 증폭기(op1), 제1 저항(R1), 제2 저항(R2) 및 제1 전류 제어기(133)를 포함하여 구성될 수 있다.Specifically, the sensor unit 130 includes a first operational amplifier op1, a first resistor R1, a second resistor R2, and a first operational amplifier op1 to apply an alternating current is to the first coil 132. It may be configured to include a current controller 133.
여기서, 코어(131)에 권선된 제1 코일(132)의 일단에는 제1 전류 제어기(133)가 연결되고, 제1 코일(132)의 일단과 제1 전류 제어기(133) 사이에는 제1 및 제2 저항(R1, R2)이 직렬 연결된다. 그리고, 제1 연산 증폭기(op1)의 비반전 단자(+)는 제1 및 제2 저항(R1, R2) 사이에 연결되고, 제1 연산 증폭기(op1)의 반전 단자(-)는 제1 코일(132)의 타단에 연결된다.Here, the first current controller 133 is connected to one end of the first coil 132 wound around the core 131, and between one end of the first coil 132 and the first current controller 133, first and second The second resistors R1 and R2 are connected in series. The non-inverting terminal (+) of the first operational amplifier op1 is connected between the first and second resistors R1 and R2, and the inverting terminal (-) of the first operational amplifier op1 is connected to the first coil. It is connected to the other end of (132).
여기서, 제1 코일(132)의 권선수는 회귀 전류(If) 또는 직류 옵셋 전류의 검출 범위에 따라 조정될 수 있다.Here, the number of windings of the first coil 132 may be adjusted according to the detection range of the return current If or DC offset current.
전술한 바와 같이 제1 코일(132)에는 교류 전류(is)가 인가된다. 그리고, 신호 인가부(110)가 전송 선로(L1, L2)에 직류 검출 신호(Vd)를 인가하면 접지 사고 발생 시 접지 사고 저항(RF)으로 인해 전송 선로(L1, L2)에는 1차 측 직류 전류(ip)가 흐르게 되고, 제1 코일(132)에는 1차 측 직류 전류(ip)에 의해 직류 옵셋 전류가 유도된다.As described above, the alternating current (is) is applied to the first coil 132 . In addition, when the signal applying unit 110 applies the DC detection signal Vd to the transmission lines L1 and L2, the primary side of the transmission lines L1 and L2 due to the ground fault resistance R F when a ground fault occurs. A DC current ip flows, and a DC offset current is induced in the first coil 132 by the primary side DC current ip.
도 7을 참조하면, 접지 사고가 발생하지 않으면, 제1 코일(132)에 흐르는 코일 전류(iST)는 교류 전류(is)만 포함된다(a). 그러나, 접지 사고가 발생하면, 제1 코일(132)에는 교류 전류(is)에 직류 옵셋 전류가 더해진 코일 전류(iST)가 흐르게 된다(b).Referring to FIG. 7 , when no ground fault occurs, the coil current i ST flowing through the first coil 132 includes only the alternating current is (a). However, when a ground fault occurs, a coil current (i ST ) obtained by adding a DC offset current to an AC current (is) flows in the first coil 132 (b).
이 때, 코일 전류(iST)를 측정하기 위해, 제1 코일(132)의 타단 및 제1 연산 증폭기(op1)의 반전 단자(-) 사이에 션트 저항(Rs)이 연결될 수 있고, 센서부(130)는 션트 저항(Rs) 양단의 전압(VST)을 측정하면 옴의 법칙(VST/Rs)에 의해 코일 전류(iST)를 측정할 수 있다.At this time, in order to measure the coil current i ST , a shunt resistor Rs may be connected between the other end of the first coil 132 and the inverting terminal (-) of the first operational amplifier op1, and the sensor unit 130 can measure the coil current (i ST ) by Ohm's law (V ST /Rs) by measuring the voltage (V ST ) across the shunt resistor (Rs).
센서부(130)는 코일 전류(iST)에서 교류 전류(is)를 제거하여 직류 옵셋 전류를 산출할 수 있다. 이 때, 도 8을 참조하면, 접지 사고가 발생하지 않으면, 직류 옵셋 전류는 거의 제로(0)에 가깝고(a), 접지 사고가 발생하면, 일정 값 이상의 직류 옵셋 전류가 나타남을 확인할 수 있다(b).The sensor unit 130 may calculate the DC offset current by removing the AC current is from the coil current i ST . At this time, referring to FIG. 8 , if a ground fault does not occur, the DC offset current is almost zero (0) (a), and if a ground fault occurs, it can be confirmed that a DC offset current of a certain value or more appears ( b).
센서부(130)는 산출한 직류 옵셋 전류를 통신으로 사고 감시부(150)에 전송할 수 있다.The sensor unit 130 may transmit the calculated DC offset current to the accident monitoring unit 150 through communication.
사고 감시부(150)는 센서부(130)로부터 전송 받은 직류 옵셋 전류를 기초로 접지 사고 발생 여부를 판단할 수 있다. 즉, 직류 옵셋 전류가 검출되면 접지 사고로 판단할 수 있다. 이 때, 직류 옵셋 전류가 기준값 이상인 경우 접지 사고로 판단할 수 있다.The fault monitoring unit 150 may determine whether a ground fault has occurred based on the DC offset current received from the sensor unit 130 . That is, when the DC offset current is detected, it can be determined as a ground fault. In this case, when the DC offset current is greater than or equal to the reference value, it may be determined as a ground fault.
한편, 제1 코일(132)에 교류 전류(is)가 강제로 인가되면, 전송 선로(L1, L2)에 흐르는 전류(Icc)에도 영향을 주게 된다. 따라서, 제1 코일(132)에 인가된 교류 전류(is)에 대응하여 반대 방향으로 보상 전류(iT)를 흘려 전송 선로(L1, L2)에 미치는 영향을 제거하는 것이 바람직하다.Meanwhile, when the alternating current (is) is forcibly applied to the first coil 132, the current (Icc) flowing through the transmission lines (L1, L2) is also affected. Therefore, it is preferable to remove the effect on the transmission lines L1 and L2 by flowing the compensation current i T in the opposite direction to the AC current is applied to the first coil 132 .
이를 위해, 보상부(140)는, 코어(131)에 권선되는 제2 코일(141)을 포함하고, 제2 코일(141)에 교류 전류(is)에 대응하여 보상 전압(VT)을 인가할 수 있다. 이에 따라, 제2 코일(141)에 보상 전압(VT)에 따른 보상 전류(iT)가 교류 전류(is)와 반대 방향으로 흐르게 되어 제1 코일(131)에 흐르는 교류 전류(is)가 전송 선로(L1, L2)에 미치는 영향을 제거할 수 있다.To this end, the compensation unit 140 includes a second coil 141 wound around the core 131, and applies a compensation voltage V T to the second coil 141 in response to the AC current is. can do. Accordingly, the compensating current i T according to the compensating voltage V T flows in the second coil 141 in the opposite direction to the alternating current is, so that the alternating current is flowing in the first coil 131 The influence on the transmission lines L1 and L2 can be removed.
도 5 및 도 9를 참조하면, 보상부(140)는 제2 코일(141)에 보상 전류(iT)를 인가하기 위해 저역 통과 필터(142), 적분기(143), 제2 연산 증폭기(op2) 및 제2 전류 제어기(144)를 포함할 수 있다.5 and 9, the compensation unit 140 includes a low-pass filter 142, an integrator 143, and a second operational amplifier op2 to apply a compensation current i T to the second coil 141. ) and a second current controller 144.
제2 코일(141)의 일단은 제2 전류 제어기(144)에 연결되고, 제2 전류 제어기는 제2 연산 증폭기(op2)의 출력단에 연결된다. 그리고, 적분기(143)는 제2 연산 증폭기(op2)의 비반전 단자(+)에 입력되고 저역 통과 필터(142)는 적분기(143)에 연결된다. 그리고, 제2 코일(141)의 타단은 제2 연산 증폭기(op2)의 반전 단자(-)에 연결된다.One end of the second coil 141 is connected to the second current controller 144, and the second current controller is connected to the output terminal of the second operational amplifier op2. Then, the integrator 143 is input to the non-inverting terminal (+) of the second operational amplifier op2 and the low-pass filter 142 is connected to the integrator 143. And, the other end of the second coil 141 is connected to the inverting terminal (-) of the second operational amplifier op2.
여기서, 션트 저항(Rs) 양단의 전압(VST)은 저역 통과 필터(142) 및 적분기(143)를 거쳐 제2 연산 증폭기(op2)의 비반전 단자(+)에 입력되면, 제2 코일(141)에 보상 전류(iT)가 흐르게 된다.Here, when the voltage (V ST ) across the shunt resistor (Rs) is input to the non-inverting terminal (+) of the second operational amplifier (op2) via the low-pass filter (142) and the integrator (143), the second coil ( 141), the compensating current (i T ) flows.
보상 전류(iT)를 측정하기 위해, 제2 코일(132)의 타단 및 제1 연산 증폭기(op1)의 반전 단자(-) 사이에 측정 저항(RT)이 연결될 수 있고, 센서부(130)는 측정 저항(RT) 양단의 전압(VT)을 측정하면 옴의 법칙(VT/ RT)에 의해 제2 코일(141)에 흐르는 보상 전류(iT)를 측정할 수 있다.In order to measure the compensation current (i T ), a measurement resistance (R T ) may be connected between the other end of the second coil 132 and the inverting terminal (-) of the first operational amplifier (op1), and the sensor unit 130 ) can measure the compensation current (i T ) flowing through the second coil 141 by Ohm's law (V T / R T ) when the voltage ( VT ) across the measured resistance (R T ) is measured.
도 10은 본 발명의 실시예에 따른 비접지 전원 계통에 적용된 절연 감시 장치의 전체 도면이다.10 is an overall diagram of an insulation monitoring device applied to an ungrounded power system according to an embodiment of the present invention.
도 10을 참조하면, 비접지 전원 계통은 모선에서 분기된 복수의 전송 선로를 포함하여 구성될 수 있으며, 센서부(130)는 서로 다른 위치에 있는 복수의 전송 선로에 각각 구비될 수 있다.Referring to FIG. 10 , an ungrounded power supply system may include a plurality of transmission lines branched from a bus line, and sensor units 130 may be provided in each of a plurality of transmission lines at different locations.
사고 감시부는(150)는 산출부(120)로부터 회귀 전류(If)를 각각 전송 받고, 센서부(130)로부터 직류 옵셋 전류를 각각 전송 받아, 접지 사고 및 그 위치를 감시할 수 있다.The fault monitoring unit 150 may receive the return current If from the calculation unit 120 and the DC offset current from the sensor unit 130 to monitor the ground fault and its location.
구체적으로, 사고 감시부(150)는 직류 옵셋 전류 및 회귀 전류(If) 중 하나를 전송 받거나 전송 받은 직류 옵셋 전류 및 회귀 전류(If)가 기준값 이상이면 접지 사고로 판단할 수 있다.Specifically, the fault monitoring unit 150 may determine a ground fault when one of the DC offset current and the return current (If) is received or when the received DC offset current and the return current (If) are greater than or equal to a reference value.
한편, 회귀 전류(If)만으로는 복수의 전송 선로 중 어느 전송 선로의 위치에서 접지 사고가 발생했는지 판단하기 어렵다.On the other hand, it is difficult to determine at which transmission line position among a plurality of transmission lines a ground fault has occurred using only the return current If.
이에 따라, 사고 감시부(150)는 직류 옵셋 전류를 기초로 접지 사고가 발생한 전송 선로의 위치를 검출할 수 있다.Accordingly, the fault monitoring unit 150 may detect the position of the transmission line where the ground fault has occurred based on the DC offset current.
구체적으로, 사고 감시부(150)는 직류 옵셋 전류를 전송한 센서부(130)가 배치되는 전송 선로의 위치에서 접지 사고가 발생한 것으로 판단할 수 있다. 이 때, 센서부(130)는 각각의 센서부(130)를 구분하기 위해 직류 옵셋 전류 전송 시 자신의 식별 코드와 함께 전송할 수 있다.Specifically, the fault monitoring unit 150 may determine that a ground fault has occurred at a location of a transmission line where the sensor unit 130 transmitting the DC offset current is disposed. In this case, the sensor unit 130 may transmit the DC offset current along with its own identification code in order to identify each sensor unit 130 .
사고 감시부(150)는 회귀 전류(If)와 복수의 전송 선로 별로 직류 옵셋 전류를 숫자 등으로 표시하는 표시부(미도시)를 구비할 수 있으며, 이 경우 표시부는 정상인 전송 선로와 접지 사고가 발생된 전송 선로를 LED 등으로 구별하여 표시할 수 있다.The fault monitoring unit 150 may include a display unit (not shown) that displays the return current If and the DC offset current for each of the plurality of transmission lines in numbers, etc. In this case, the display unit is normal and a ground fault occurs The transmitted transmission lines can be distinguished and displayed with LED lights.
이와 같이, 본 발명의 실시예에 따른 비접지 전원 계통의 절연 감시 장치는, 직류 검출 신호를 이용해 비접지 전원 계통의 접지 사고를 검출함으로써, 교류 검출 신호 인가 및 교류 전류 검출 방식 대비 시스템이 간단하고, 높은 신뢰도를 제공할 수 있다.As described above, the insulation monitoring device of an ungrounded power system according to an embodiment of the present invention detects a ground fault in an ungrounded power system using a DC detection signal, so that the system is simple and compared to the AC detection signal application and AC current detection method. , can provide high reliability.
또한, 주파수가 없는 직류 전압을 검출 신호로 인가하므로 전송 선로와 대지간의 누설 커패시턴스의 영향이 없기 때문에, 무효 전력 및 유효 전력을 구분할 필요 없이 직류 누설 전류가 검출되면 바로 접지 사고 전류로 판단 할 수 있다. In addition, since DC voltage without frequency is applied as a detection signal, there is no influence of leakage capacitance between the transmission line and the ground, so it is not necessary to distinguish between reactive power and active power. When a DC leakage current is detected, it can be immediately determined as a ground fault current. .
또한, 절연 저항은 회귀 전류로 정밀하게 측정할 수 있고, 접지 사고 발생 지점은 전류 측정 정밀도와 상관없이 발생 유무 형태로 검출할 수 있다.In addition, insulation resistance can be precisely measured by return current, and a ground fault occurrence point can be detected regardless of current measurement accuracy.
본 발명의 상세한 설명에서는 구체적인 실시 예에 관하여 설명하였으나 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되지 않으며, 후술되는 청구범위 및 이 청구범위와 균등한 것들에 의해 정해져야 한다.In the detailed description of the present invention, specific embodiments have been described, but various modifications are possible without departing from the scope of the present invention. Therefore, the scope of the present invention is not limited to the described embodiments, and should be defined by the following claims and equivalents thereof.
본 발명의 비접지 전원 계통의 절연 감시 장치는, 태양광 발전소, ESS(Energy Storage System), 전기차, 발전소 배터리, 소내 전력망 등의 비접지 전원 계통에 이용될 수 있다.The insulation monitoring device of the ungrounded power system of the present invention can be used in ungrounded power systems such as photovoltaic power plants, energy storage systems (ESSs), electric vehicles, power plant batteries, and on-site power grids.

Claims (10)

  1. 전송 선로를 통해 전력을 전송하는 비접지 전원 계통의 접지 사고를 감시하기 위해 직류 검출 신호를 상기 전송 선로에 인가하는 신호 인가부;a signal applying unit for applying a DC detection signal to the transmission line in order to monitor a ground fault in an ungrounded power system that transmits power through the transmission line;
    상기 접지 사고 시 상기 직류 검출 신호에 대응하여 상기 신호 인가부로 회귀하는 회귀 전류를 산출하는 산출부;a calculator configured to calculate a return current returning to the signal applying unit in response to the direct current detection signal when the ground fault occurs;
    상기 전송 선로에 배치되는 코어 및 상기 코어에 권선되는 제1 코일을 포함하고, 상기 제1 코일에 교류 전류를 인가하며 상기 접지 사고 시 상기 직류 검출 신호에 의해 유도되는 직류 옵셋 전류를 검출하는 센서부; 및A sensor unit including a core disposed on the transmission line and a first coil wound around the core, applying an alternating current to the first coil and detecting a DC offset current induced by the DC detection signal when the ground fault occurs. ; and
    상기 회귀 전류 및 직류 옵셋 전류 중 적어도 하나를 기초로 상기 접지 사고를 감시하는 사고 감시부Fault monitoring unit for monitoring the ground fault based on at least one of the return current and the DC offset current
    를 포함하는 비접지 전원 계통의 절연 감시 장치.Insulation monitoring device of ungrounded power system including.
  2. 제 1 항에 있어서,According to claim 1,
    상기 사고 감시부는The accident monitoring department
    상기 회귀 전류 및 직류 옵셋 전류 중 적어도 하나가 기준값 이상이면 상기 접지 사고로 판단하는If at least one of the return current and the DC offset current is greater than or equal to a reference value, determining the ground fault
    비접지 전원 계통의 절연 감시 장치.Insulation monitoring device for ungrounded power systems.
  3. 제 1 항에 있어서,According to claim 1,
    상기 제1 코일에는In the first coil
    상기 접지 사고 시 상기 교류 전류에 직류 옵셋 전류가 더해진 코일 전류가 흐르는In the case of the ground fault, a coil current obtained by adding a DC offset current to the AC current flows
    비접지 전원 계통의 절연 감시 장치.Insulation monitoring device for ungrounded power systems.
  4. 제 3 항에 있어서,According to claim 3,
    상기 센서부는The sensor part
    상기 코일 전류에서 상기 교류 전류를 제거하여 상기 직류 옵셋 전류를 산출하는Calculating the DC offset current by removing the AC current from the coil current
    비접지 전원 계통의 절연 감시 장치.Insulation monitoring device for ungrounded power systems.
  5. 제 1 항에 있어서,According to claim 1,
    상기 코어에 권선되는 제2 코일을 포함하고, 상기 교류 전류와 대응하며 상기 교류 전류와 반대 방향인 보상 전류를 상기 제2 코일에 인가하는 보상부A compensation unit including a second coil wound around the core and applying a compensating current corresponding to the AC current and in a direction opposite to the AC current to the second coil.
    를 더 포함하는 비접지 전원 계통의 절연 감시 장치.Insulation monitoring device of an ungrounded power system further comprising a.
  6. 제 1 항에 있어서,According to claim 1,
    상기 센서부는The sensor part
    서로 다른 위치에 있는 복수의 상기 전송 선로에 각각 구비되는Each of the plurality of transmission lines at different locations is provided
    비접지 전원 계통의 절연 감시 장치.Insulation monitoring device for ungrounded power systems.
  7. 제 6 항에 있어서,According to claim 6,
    상기 산출부는The calculation unit
    상기 회귀 전류를 상기 사고 감시부에 전송하는Transmitting the return current to the accident monitoring unit
    비접지 전원 계통의 절연 감시 장치.Insulation monitoring device for ungrounded power systems.
  8. 제 7 항에 있어서,According to claim 7,
    상기 센서부는 The sensor part
    상기 직류 옵셋 전류를 상기 사고 감시부에 전송하는Transmitting the DC offset current to the accident monitoring unit
    비접지 전원 계통의 절연 감시 장치.Insulation monitoring device for ungrounded power systems.
  9. 제 6 항에 있어서,According to claim 6,
    상기 사고 감시부는The accident monitoring department
    상기 직류 옵셋 전류를 기초로 상기 접지 사고가 발생된 상기 전송 선로의 위치를 검출하는Detecting the location of the transmission line where the ground fault occurred based on the DC offset current
    비접지 전원 계통의 절연 감시 장치.Insulation monitoring device for ungrounded power systems.
  10. 제 6 항에 있어서,According to claim 6,
    상기 사고 감시부는The accident monitoring department
    상기 직류 옵셋 전류를 전송한 상기 센서부가 배치되는 상기 전송 선로의 위치에서 상기 접지 사고가 발생한 것으로 판단하는Determining that the ground fault has occurred at the location of the transmission line where the sensor unit transmitting the DC offset current is disposed
    비접지 전원 계통의 절연 감시 장치.Insulation monitoring device for ungrounded power systems.
PCT/KR2022/017212 2021-11-09 2022-11-04 Insulation monitoring device for insulation-terra system WO2023085697A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210153064A KR102634381B1 (en) 2021-11-09 2021-11-09 Apparatus for monitoring insulation of insulation-terra system based
KR10-2021-0153064 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023085697A1 true WO2023085697A1 (en) 2023-05-19

Family

ID=86336032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017212 WO2023085697A1 (en) 2021-11-09 2022-11-04 Insulation monitoring device for insulation-terra system

Country Status (2)

Country Link
KR (1) KR102634381B1 (en)
WO (1) WO2023085697A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083185A (en) * 1999-09-14 2001-03-30 Matsushita Electric Works Ltd Current measuring device
KR20080037878A (en) * 2006-10-27 2008-05-02 주식회사유성계전 Direct current ground detecting apparatus
KR20090129775A (en) * 2008-06-13 2009-12-17 주식회사 효성 Dc feeder groundfault detector
KR20130008844A (en) * 2011-07-13 2013-01-23 (재) 기초전력연구원 Dc leakage current circuit braker
KR101984950B1 (en) * 2018-07-19 2019-05-31 주식회사 비츠로이엠 Apparatus for monitoring earth fault in non-grounded dc power line and method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083185A (en) * 1999-09-14 2001-03-30 Matsushita Electric Works Ltd Current measuring device
KR20080037878A (en) * 2006-10-27 2008-05-02 주식회사유성계전 Direct current ground detecting apparatus
KR20090129775A (en) * 2008-06-13 2009-12-17 주식회사 효성 Dc feeder groundfault detector
KR20130008844A (en) * 2011-07-13 2013-01-23 (재) 기초전력연구원 Dc leakage current circuit braker
KR101984950B1 (en) * 2018-07-19 2019-05-31 주식회사 비츠로이엠 Apparatus for monitoring earth fault in non-grounded dc power line and method for the same

Also Published As

Publication number Publication date
KR20230067208A (en) 2023-05-16
KR102634381B1 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
JP5568321B2 (en) Power system configuration automatic detection system
KR101272130B1 (en) Method of and device for insulation monitoring
WO2016171347A1 (en) Device for detecting improper wiring of watt-hour meter and method therefor
US5138265A (en) Apparatus and system for locating thunderstruck point and faulty point of transmission line
WO2020060305A1 (en) Apparatus for detecting fault location of underground cable, and method therefor
WO2013081310A1 (en) A detection device of insulation resistance for non-interruption of electric power and hot-line
WO2010107199A2 (en) Apparatus for measuring ground leakage current in an ungrounded direct current power system, and method for same
CA1254619A (en) Low cost self-contained transformerless solid state electronic watthour meter having thin film ferromagnetic current sensor
WO2013024919A1 (en) Connection error detecting apparatus and method which detect a connection error in a smart meter
US5125738A (en) Apparatus and system for locating a point or a faulty point in a transmission line
US11137421B1 (en) Non-contact voltage sensing system
WO2015093838A1 (en) Digital current leakage breaker
WO2018230769A1 (en) Ami system for performing phase detection and synchronization in ami communication network employing relay communication scheme, and method therefor
CN104749484B (en) Leakage monitoring device
WO2020159026A1 (en) Earth leakage circuit breaker and leakage current detection method thereof
WO2023085697A1 (en) Insulation monitoring device for insulation-terra system
WO2019221362A1 (en) Self-power relay and method for preventing malfunction thereof
WO2010077078A2 (en) Distribution transformer with a display function and a display device of the same
WO2013151217A1 (en) Protection apparatus and control method for the same
WO2020017714A1 (en) Device for detecting ground fault accident in isolated neutral direct current power system, and method therefor
WO2012002618A1 (en) Power factor correction system
WO2011129525A2 (en) Greenhouse gas measuring device for automatically calculating greenhouse gas emission volumes having a separable magnetic field sensor capable of being fitted without interruption in power
US20040130327A1 (en) Ground circuit impedance measurement apparatus and method
JP4104341B2 (en) Accident location system
WO2019203419A1 (en) Power distribution system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22893118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE