WO2012002618A1 - Power factor correction system - Google Patents

Power factor correction system Download PDF

Info

Publication number
WO2012002618A1
WO2012002618A1 PCT/KR2010/006565 KR2010006565W WO2012002618A1 WO 2012002618 A1 WO2012002618 A1 WO 2012002618A1 KR 2010006565 W KR2010006565 W KR 2010006565W WO 2012002618 A1 WO2012002618 A1 WO 2012002618A1
Authority
WO
WIPO (PCT)
Prior art keywords
power factor
power
factor correction
unit
voltage
Prior art date
Application number
PCT/KR2010/006565
Other languages
French (fr)
Korean (ko)
Inventor
김석곤
박용업
양승호
이정렬
김상준
신동열
이명원
정금영
이건행
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2012002618A1 publication Critical patent/WO2012002618A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators

Definitions

  • the present invention relates to a power factor correction system of the present invention.
  • Power factor refers to the ratio of active power to apparent power, and a low power factor means that a large amount of unnecessary reactive power returned to the power supply side is not consumed by power in a load such as an electric motor.
  • Apparent power is derived from a combination of active and reactive power.
  • the larger the reactive power the larger the current flowing through the system and the greater the transmission loss such as heat loss, thereby increasing the capacity of the transmission and distribution facilities such as transformers and distribution facilities.
  • the power factor improvement on the power line side needs to consider the dimension of the line and voltage adjustment, it is difficult to expect the power factor improvement effect. Therefore, the power factor is mainly controlled at the load end of the consumer side.
  • the problem to be solved by the present invention is to compensate for the power factor by detecting the power factor information by using a power meter to measure the power consumption of the power consumer and by transmitting a switch open / close signal according to the power factor information to the power factor correction device installed adjacent to the load side through a communication network. It is to provide a power factor correction system.
  • a power factor correction system is provided.
  • the power factor correction system includes a transformer unit for converting a voltage supplied from a power supply side to a load side, a power converter unit connected to the primary and secondary sides of the transformer unit to receive a voltage and a current, and selectively transform or rectify the received voltage and current; Receives the voltage and current from the power converter, detects the power and power factor using the received voltage and current, and receives a power meter and an open / close signal outputting an open / close signal for compensating the power factor to compensate for the power factor of the load side. And a power factor correction device for controlling the connection of the power factor correction element.
  • the watt-hour meter is a power input selector for selecting a path for detecting the voltage and current supplied to the load by controlling the power converter, a power detector for detecting power and power factor using the received voltage and current And a switching device controller configured to generate an open / close signal by calculating a compensation value of the power factor and transmit the open / close signal to a switching device in the power factor correction device.
  • the switching device control unit receives a power factor and calculates a compensation value of the power factor, transmits the open and close signal generation unit for generating the open and close signal according to the calculation result of the operation unit and the open / close signal to the power factor compensation device It may include a first communication unit.
  • the calculator may determine the power factor level using the power factor received from the detector and calculate an adjustment value of the power factor according to the magnitude of the effective and reactive power.
  • the calculator may compare the power factor with a preset allowable range and calculate a compensation value of the power factor when the comparison result exceeds the allowable range.
  • the power factor correction apparatus may include a power factor correction element bank including at least one power factor compensation element and a switching device unit configured to receive an opening / closing signal to control a connection between the power factor correction element bank and the load side. .
  • the switching device unit includes a second communication unit for receiving the open / close signal and a switch corresponding to each power factor compensation element of the power factor correction element bank to control the connection between the power factor correction element and the load side, and the open / close signal It may include a switching unit that opens and closes according to.
  • the power factor correction device may include at least one of a capacitor and a reactor.
  • the apparatus may further include a communication network connecting the power meter and the power factor correction apparatus.
  • the power converter may include a first channel unit connected to the primary side of the transformer unit and a second channel unit connected to the secondary side of the transformer unit.
  • the electricity meter selectively controls the path of one of the first channel portion and the second channel portion to detect voltage and current supplied from one of the primary side of the transformer portion and the secondary side of the transformer portion. You can choose the path.
  • the power factor correction element for compensating the power factor in a method of controlling power factor using a telecommunication network can be effectively connected to the secondary side of the transformer to perform power factor compensation for the inductive load device of the customer side.
  • the opening and closing signal transmitted to the power factor correction device is intermittently generated, the communication efficiency and the compensation efficiency are excellent, and the power factor calculation and control unit is not installed in the field, thereby reducing the installation cost of the power factor correction device.
  • the power factor correction system stores the capacitor capacity calculation information for switching the power factor and switching device control information, and transmits the stored information to the management server using a transmission function of the communication unit, thereby easily utilizing the control information.
  • the power factor correction system according to the present invention has a simple structure of the power factor correction device, and thus can effectively perform power factor correction for a load device.
  • the power factor correction system can reduce the installation cost of the power factor correction device.
  • the power factor correction system transmits only the on / off control signal for each switch through the first and second communication units, thereby minimizing the function of the first and second communication units and reducing the manufacturing cost.
  • the power factor correction system can significantly reduce the possibility of transmission error, thereby increasing the reliability of the transmission data.
  • FIG. 1 is a view showing a power factor correction system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a power detector shown in FIG. 1.
  • FIG. 3 is a diagram illustrating a switching device control unit shown in FIG. 1.
  • FIG. 4 is a flowchart illustrating an operation of the electricity meter shown in FIG. 1.
  • FIG. 5 is a diagram illustrating the switching device unit illustrated in FIG. 1.
  • FIG. 6 is a diagram illustrating a power factor correction device bank unit illustrated in FIG. 1.
  • FIG. 7 illustrates a power factor correction system according to another embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a power factor correction system according to another embodiment of the present invention.
  • one component when one component is referred to as “connected” or “connected” with another component, the one component may be directly connected or directly connected to the other component, but in particular It is to be understood that, unless there is an opposite substrate, it may be connected or connected via another component in the middle.
  • FIG. 1 is a view showing a power factor correction system according to an embodiment of the present invention.
  • the power factor correction system 10 includes a transformer 110, a power converter 120, a power meter 140, and a power factor correction device 190.
  • the transformer 110 transforms the voltage supplied from the power supply side 20 to the load side 30.
  • the transformer unit 110 includes a primary coil and a secondary coil having a predetermined winding ratio (the reciprocal of the transformer ratio).
  • the transformer 110 is connected between the power supply side 20 and the load side 30, and outputs the transformed voltage induced in the secondary coil to the load side 30.
  • the power converter 120 converts the voltage or current supplied from the power supply side 20.
  • the power converter 120 includes a first channel unit 121 and a second channel unit 123.
  • the first channel part 121 is connected to the primary side of the transformer 110.
  • the first channel unit 121 receives the voltage and current supplied to the high voltage customer, and transforms and converts them.
  • the first channel unit 121 may include a metering out fit (MOF) to convert the voltage or current of the primary side of the transformer unit 110.
  • MOF metering out fit
  • the second channel part 123 is connected to the secondary side of the transformer unit 110.
  • the second channel unit 123 receives the voltage and the current supplied to the low voltage customer and flows the current.
  • the second channel unit 123 transfers the received voltage to the electricity meter 140 as it is.
  • the second power converter 130 may include a current transformer (CT) for converting current on the secondary side of the transformer 110.
  • CT current transformer
  • the power converter 120 selectively connects the lines connected to the primary side and the secondary side of the transformer unit 110 by controlling the first channel unit 121 and the second channel unit 123 under external control. .
  • the electricity meter 140 includes a power input selector 150, a power detector 160, and a switching device controller 170.
  • the power input selection unit 150 includes a voltage measuring unit 151 and a channel determination unit 153.
  • the voltage measuring unit 151 measures the voltage input from the power converter 120.
  • the channel determiner 153 determines and selects a channel of the power converter 120 based on the voltage value measured by the voltage measurer 151.
  • the power input selector 150 controls the power converter 120 to selectively receive the voltage and current supplied from the primary and secondary sides of the transformer 110 from the power converter 120. For example, the power input selector 150 selects a reception path of a voltage and a current supplied to one of a high voltage customer and a low voltage customer. Here, the power input selection unit 150 receives the voltage and current supplied to the high voltage customer when the reception path is selected by the first power converter 120. In addition, the power input selection unit 150 receives a voltage and a current supplied to the low voltage customer when the reception path is selected by the second power converter 130.
  • the power detector 160 detects the phase difference between the voltage and the current, the active power, the reactive power, the apparent power, or the power factor using the received voltage and current to measure the power consumption.
  • the power factor may be detected as a ratio of effective power to apparent power.
  • the power detector 160 provides the power factor information including the phase difference of the detected voltage and current, the active power, the reactive power, the apparent power, or the power factor to the switching device controller 170.
  • the power detector 160 will be described in more detail with reference to FIG. 2.
  • the switching device controller 170 receives the power factor information from the power detector 160 and calculates a compensation value of the power factor.
  • the switching device controller 170 generates an open / close signal for controlling the power factor correction device 180 based on the calculated compensation value.
  • the switching device controller 170 transmits the open / close signal to the power factor correction device 180.
  • the switching device controller 170 will be described in more detail with reference to FIG. 2.
  • the electricity meter 140 has a structure that can be selectively accommodated and applied to both the high pressure customer installing the meter on the primary side of the transformer unit 110 and the low pressure customer installing the meter on the secondary side of the transformer unit 110. .
  • the power factor correction device 180 includes a switching device unit 190 and a power factor correction element bank unit 200.
  • the switching device unit 190 adjusts the power factor by the voltage and the current supplied to the load side 30 through the control of the switching operation connecting the load side 30 and the power factor correction element bank unit 200.
  • the switching device unit 190 will be described in more detail with reference to FIG. 3.
  • the power factor correction element bank unit 200 includes at least one power factor correction element to compensate for the power factor.
  • the power factor correction element bank unit 200 may include at least one of a capacitor and a reactor.
  • the capacity and quantity of the power factor correction element of the power factor correction element bank unit 200 may be determined according to the capacity of the inductive load of the load side 30 to be the power factor correction and the number of lines of the power supply side 20.
  • the power factor correction element bank unit 200 will be described in more detail with reference to FIG. 4.
  • the communication network 210 may be a wired or wireless network for remote communication between the electricity meter 140 and the power factor correction device 180.
  • the communication network 210 may be formed of a network utilizing communication technologies such as binary CDMA, Zigbee, Bluetooth, or serial wired communication.
  • FIG. 2 is a diagram illustrating a power detector shown in FIG. 1.
  • the power detector 160 includes a power factor measuring unit 161, a metering mode setting unit 163, and a power amount metering unit 165.
  • the power factor measurer 161 calculates power using the voltage and current received from the power input selector 150. In addition, the power factor measurement unit 161 calculates the power factor using the calculated power.
  • the metering mode setting unit 163 selectively sets a high or low voltage power metering function to measure power corresponding to a customer input voltage determined by the power input selector 150.
  • the amount of electricity metering unit 165 measures the low or high pressure power according to the setting of the metering mode setting unit 163.
  • FIG. 3 is a diagram illustrating a switching device control unit shown in FIG. 1.
  • the switching device controller 170 includes a calculator 171, a storage 173, an open / close signal generator 174, and a first communication unit 175.
  • the calculator 171 determines the power factor level using the power factor received from the power detector 160 and calculates a compensation value of the power factor according to the magnitudes of the active power and the reactive power. For example, the calculator 171 determines whether the power factor is appropriate, such as an allowable range, an excess level, or a lower level of the power factor based on the power factor information acquired through the power factor measurer 161 of the power detector 160.
  • the calculator 171 may compare the power factor with a preset reference value.
  • the calculator 171 receives the active power, the reactive power, and the power factor measured by the power detector 160 and compares them with a reference value set to an appropriate level.
  • the reference value here has an acceptable range.
  • the calculation unit 171 calculates the capacity of the power factor correction element for compensating the power factor of the power supplied to the load side 30 according to the magnitude of the active power and the reactive power when the comparison result exceeds the allowable range.
  • the calculation unit 171 may calculate the adjustment value of the power factor only when the power factor exceeds the allowable range as a result of the comparison.
  • the storage unit 173 may store capacitance calculation related information and switching control history information of the power factor correction device for power factor correction.
  • the storage unit 173 may store a reference value for determining the level of the power factor. In this case, the storage unit 173 may also store an allowable range of the reference value.
  • the open / close signal generator 174 generates an open / close signal for controlling on / off switching of the power factor correction device in order to compensate for the power factor according to the calculation result of the calculator 171.
  • the open / close signal generator 174 may generate an open / close signal to selectively select a switch that is an on / off control target in the switching device unit 190.
  • the opening and closing signal generator 174 may generate the opening and closing signal only when the power factor exceeds the allowable range.
  • the first communication unit 175 receives the open / close signal from the calculator 171 and performs the processing and transmission processing of the open / close signal.
  • the first communication unit 175 may include a communication device such as an analog input (AI), a digital input (DI), a digital output (DO), a universal asynchronous receiver transmitter (UART), or a modem.
  • the first communication unit 175 may be implemented as an asynchronous semiconductor such as an ASIC or other integrated semiconductor chip.
  • the first communication unit 175 receives the open / close signal from the calculator 171 and generates the on / off switching control signal for the individual power factor correction device again.
  • the first communication unit 175 transmits the on / off switching control signal for the individual power factor correction device to the power factor correction device 180 through the communication network 210 through a UART or a modem.
  • the first communication unit 175 may include a semiconductor transmission / reception device such as a universal synchronous receiver transmitter (USART) in addition to the UART.
  • USART universal synchronous receiver transmitter
  • the switching device controller 170 may contribute to the efficient operation of the power system by enabling periodic monitoring and information utilization of the power factor compensation control information such as on / off time of the power factor correction device and input capacity of the power factor correction device for each time zone.
  • FIG. 4 is a flowchart illustrating an operation of the electricity meter shown in FIG. 1. Although the operations of FIG. 4 are performed by the components included in the electricity meter, it will be described as being performed by the electricity meter on behalf of the components for convenience.
  • the power meter 140 measures the voltage provided from the power converter 120 through the voltage measuring unit 151 of the power input selection unit 150.
  • the measured voltage is included in the range of 110 V ⁇ 10%. It is determined that the power detection path for the high voltage customer is set.
  • the power meter 140 may include the power detection path for the low voltage customer when the measured voltage is included in the 220 V wh 10% range. It is determined that is set (S20).
  • the low and high voltage customer's power metering voltage can also be applied when the operating voltage differs from 110V or 220V, and the measured voltage range can be set at 10% of the grid voltage or at a different ratio.
  • the electricity meter 140 turns on the first channel unit 121 of the power converter 120 and turns off the second channel unit 123.
  • the electricity meter 140 turns off the first channel unit 121 of the power converter 120 and turns on the second channel unit 123 (S30).
  • the operation of the electricity meter 140 is divided into electricity quantity metering and power factor measurement.
  • the electricity meter 140 After selecting a path for detecting power in an operation of metering the amount of electricity, the electricity meter 140 selects a power metering mode for the high or low pressure customer. (S31) Next, the electricity meter 140 meters the amount of electricity according to the selected metering mode. (S33)
  • the electricity meter 140 calculates power using the input voltage and current and measures the power factor using the calculated power.
  • the power meter 140 determines whether the power factor is normal. (S50) Here, the power meter 140 returns to step S40 when the power factor is normal. Alternatively, if the power factor is abnormal, the power meter 140 calculates the power factor value as much as the abnormality compared with the normal range of the power factor.
  • the power meter 140 calculates the capacity of the capacitor corresponding to the calculated power factor value to compensate for the abnormal power factor.
  • the electricity meter 140 generates a switch opening / closing signal for controlling the connection of the load device 30 and the switching device unit 190 of the power factor correction device 180 to compensate for the power factor of the load side according to the calculated capacity of the capacitor. (S80)
  • the electricity meter 140 transmits the generated switch open / close signal to the power factor correction device 180.
  • FIG. 5 is a diagram illustrating the switching device unit illustrated in FIG. 1.
  • the switching device unit 190 includes a second communication unit 191 and a switching unit 193.
  • the second communication unit 191 receives the on / off switching control signal for the individual power factor correction device, which is an open / close signal, from the first communication unit 175 of the switching device controller 170 through the communication network 210.
  • the second communication unit 191 is configured to receive data through the communication network 210.
  • the second communication unit 191 may include a communication device such as a digital input output (DIO), a universal asynchronous receiver transmitter (UART), or a modem.
  • DIO digital input output
  • UART universal asynchronous receiver transmitter
  • the second communication unit 191 transmits an on / off switching control signal for the received individual power factor correction device to the switching unit 193.
  • the switching unit 193 includes at least one switch.
  • the switching unit 193 includes a switch corresponding to each power factor correction element of the power factor correction element bank unit 200.
  • the switch may include a relay.
  • the switching unit 193 receives an open / close signal from the switching device controller 170 to determine an on / off state of each switch according to the command of the switching device controller 170.
  • a power factor correction element connected to an on switch is connected to a power line of the load side 30.
  • the input / disconnect connection point of the power factor correction element bank unit 200 through the switching unit 193 is connected to the secondary side of the transformer unit 110 closest to the load which causes the power factor lowering factor.
  • the switching device 190 maximizes the effect of improving the power factor of the load side 30 as compared to the power factor control method of the load through the primary side of the transformer 110.
  • FIG. 6 is a diagram illustrating a power factor correction device bank unit illustrated in FIG. 1.
  • the power factor correction element bank unit 200 includes a capacitor bank 201 and a reactor bank 203.
  • the power factor correction element bank unit 200 configures a blocking filter using the capacitor bank 201 and the reactor bank 203.
  • the power factor correction element bank unit 200 maintains an appropriate power factor by adjusting the impedance under the control of the switching device controller 170.
  • the power factor correction element for compensating the power factor in a method of controlling a power factor using a telecommunication network can be connected to the secondary side of the transformer to effectively perform power factor compensation for the inductive load device of the customer.
  • the opening and closing signal transmitted to the power factor correction device is intermittently generated, the communication efficiency and the compensation efficiency are excellent, and the power factor calculation and control unit is not installed in the field, thereby reducing the installation cost of the power factor correction device.
  • the power factor correction system stores the capacitor capacity calculation information and switching control information for power factor adjustment and transmits the stored information to the management server using a transmission function of the communication unit, thereby easily utilizing the control information.
  • the power factor correction system can perform power factor correction for a load device effectively because the structure of the power factor correction device is simple. In addition, the power factor correction system can reduce the installation cost of the power factor correction device.
  • the power factor correction system transmits only the on / off control signal for each switch through the first and second communication units, thereby minimizing the function of the first and second communication units and reducing the manufacturing cost. .
  • the power factor correction system can significantly reduce the possibility of transmission error, thereby increasing the reliability of the transmission data.
  • FIG. 7 illustrates a power factor correction system according to another embodiment of the present invention. A detailed description of the same components will be omitted here as compared with FIG. 1.
  • the power input selector of FIG. 7 includes a voltage measurer and a channel determiner in the same manner as the power input selector of FIG. 1, but is not illustrated for convenience.
  • the power factor correction system 10 may include a transformer 110, a first power converter 120, a second power converter 130, a power meter 140, And a switching device controller 170 and a power factor correction device 180.
  • the power factor correction system 10 is configured to separate the switching device controller 170 from the electricity meter 140 separately.
  • the electricity meter 140 includes a power input selector 150 and a power detector 160.
  • the electricity meter 140 receives the voltage and the current supplied to the load side 30 and provides the power factor information including the phase difference, the active power, the reactive power, the apparent power, or the power factor of the voltage and the current to the switching device controller 170.
  • the switching device controller 170 includes a calculator 171, a storage 173, an open / close signal generator 174, and a first communicator 175.
  • the switching device controller 170 receives power factor information from the power detector 160 of the electricity meter 140 and calculates an adjustment value of the power factor.
  • the switching device controller 170 generates an open / close signal for controlling the power factor correction device 180 based on the calculated adjustment value.
  • the switching device controller 170 transmits the open / close signal to the power factor correction device 180.
  • the switching device controller 170 stores the capacity calculation related information of the power factor correction element and switching control history information for power factor correction.
  • the power factor correction system 10 may be configured in various structures for controlling the power factor correction apparatus through remote communication by separately separating the switching device controller 170 from the electricity meter 140.
  • FIG. 8 is a diagram illustrating a power factor correction system according to another embodiment of the present invention. A detailed description of the same components will be omitted here as compared with FIG. 1.
  • the power input selection unit of FIG. 8 includes a voltage measuring unit and a channel determination unit similarly to the power input selection unit of FIG. 1, but is not shown for convenience.
  • the power factor correction system 10 may include a transformer 110, a first power converter 120, a second power converter 130, and a power meter 140.
  • the first communication unit 175 and the power factor correction device 180 are included.
  • the power factor correction system 10 is configured by separating the first communication unit 175 separately from the electricity meter 140.
  • the electricity meter 140 includes a power input selector 150, a power detector 160, a calculator 171, and a storage 173.
  • the electricity meter 140 receives the voltage and current supplied to the load side 30 and calculates an adjustment value of the power factor according to the power factor information including the phase difference of the voltage and current, the active power, the reactive power, the apparent power, or the power factor.
  • the electricity meter 140 generates an opening / closing signal according to the calculation result and provides it to the first communication unit 175.
  • the first communication unit 175 receives the open / close signal from the electricity meter 140 to perform the processing and transmission processing of the open / close signal.
  • the first communication unit 175 receives the open / close signal from the calculator 171 and generates the on / off switching control signal for the individual power factor correction device again.
  • the first communication unit 175 transmits the on / off switching control signal for the individual power factor correction device to the power factor correction device 180 through the communication network 210 through a UART or a modem.
  • the power factor correction system 10 may be configured in various structures to control the power factor correction apparatus through remote communication by separately separating the switching device controller 170 from the electricity meter 140.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Disclosed is a power factor correction system. The power factor correction system comprises: a transformer part changing a voltage supplied from a power source to a load; a power changer part connected to a primary side and to a secondary side of the transformer part to receive voltage and current and selectively change the received voltage and current; a watt-hour meter receiving voltage and current from the power changer part, detecting power and a power factor on the basis of the received voltage and current, and outputting an on/off signal for correcting a power factor; and a power factor correction apparatus receiving the on/off signal and controlling the connection between a power factor correction device and the load to correct a power factor at the load.

Description

역률 보상 시스템Power factor correction system
본 발명의 역률 보상 시스템에 관한 것이다.The present invention relates to a power factor correction system of the present invention.
역률(Power Factor)이란 피상전력에 대한 유효전력의 비율을 말하는 것으로서 역률이 낮다는 것은 전동기 등의 부하에서 동력으로 소비되지 않고 전원 측으로 되돌려지는 불필요한 무효전력이 크다는 의미이다.Power factor refers to the ratio of active power to apparent power, and a low power factor means that a large amount of unnecessary reactive power returned to the power supply side is not consumed by power in a load such as an electric motor.
피상 전력은 유효전력 및 무효전력의 조합으로 도출된다. 여기서 무효전력이 커지면 계통에 흐르는 전류의 크기가 커지고 열손실과 같은 송전 손실이 커지게 되어 변압기 등 송변전 설비 및 배전 설비의 설비 용량이 증가한다.Apparent power is derived from a combination of active and reactive power. In this case, the larger the reactive power, the larger the current flowing through the system and the greater the transmission loss such as heat loss, thereby increasing the capacity of the transmission and distribution facilities such as transformers and distribution facilities.
전력 선로 측에서 역률을 개선하는 것은 선로 및 전압 조정의 차원까지 고려해야 하므로 역률 개선 효과를 기대하기 어려우므로 주로 수용가측의 부하단에서 역률을 제어한다.Since the power factor improvement on the power line side needs to consider the dimension of the line and voltage adjustment, it is difficult to expect the power factor improvement effect. Therefore, the power factor is mainly controlled at the load end of the consumer side.
본 발명이 해결하고자 하는 과제는 전력 수용가의 전력 사용량을 측정하는 전력량계를 이용하여 역률 정보를 검출하고 통신망을 통해 부하측에 인접하여 설치된 역률 보상 장치로 역률 정보에 따른 스위치 개폐 신호를 전송하여 역률을 보상하는 역률 보상 시스템을 제공하는 것이다.The problem to be solved by the present invention is to compensate for the power factor by detecting the power factor information by using a power meter to measure the power consumption of the power consumer and by transmitting a switch open / close signal according to the power factor information to the power factor correction device installed adjacent to the load side through a communication network. It is to provide a power factor correction system.
본 발명의 일 측면에 따르면, 역률 보상 시스템을 제공한다.According to an aspect of the present invention, a power factor correction system is provided.
역률 보상 시스템은 전원측에서 부하측으로 공급되는 전압을 변환하는 변압부, 변압부의 1차측 및 2차측에 연결되어 전압과 전류를 수신하며, 수신한 전압 및 전류를 선택적으로 변압하거나 변류하는 전력 변환부, 전력 변환부로부터 전압과 전류를 수신하고, 수신된 전압과 전류를 이용하여 전력 및 역률을 검출하며, 역률를 보상하기 위한 개폐 신호를 출력하는 전력량계 및 개폐 신호를 수신하여 부하측의 역률을 보상하기 위해 부하측과 역률 보상 소자의 연결을 제어하는 역률 보상 장치를 포함한다.The power factor correction system includes a transformer unit for converting a voltage supplied from a power supply side to a load side, a power converter unit connected to the primary and secondary sides of the transformer unit to receive a voltage and a current, and selectively transform or rectify the received voltage and current; Receives the voltage and current from the power converter, detects the power and power factor using the received voltage and current, and receives a power meter and an open / close signal outputting an open / close signal for compensating the power factor to compensate for the power factor of the load side. And a power factor correction device for controlling the connection of the power factor correction element.
본 발명의 일 실시 예에 따르면, 전력량계는 전력 변환부를 제어하여 부하측으로 공급되는 전압과 전류의 검출 경로를 선택하는 전원입력 선택부, 수신된 전압과 전류를 이용하여 전력 및 역률을 검출하는 전력 검출부 및 역률의 보상값을 계산하여 개폐 신호를 생성하고, 개폐 신호를 역률 보상 장치 내의 스위칭 장치부에 전송하는 스위칭 장치 제어부를 포함할 수 있다.According to an embodiment of the present invention, the watt-hour meter is a power input selector for selecting a path for detecting the voltage and current supplied to the load by controlling the power converter, a power detector for detecting power and power factor using the received voltage and current And a switching device controller configured to generate an open / close signal by calculating a compensation value of the power factor and transmit the open / close signal to a switching device in the power factor correction device.
본 발명의 일 실시 예에 따르면, 스위칭 장치 제어부는 역률을 수신하여역률의 보상값을 계산하는 연산부, 연산부의 계산 결과에 따라 개폐 신호를 생성하는 개폐 신호 생성부 및 개폐 신호를 역률 보상 장치로 전송하는 제1 통신부를 포함할 수 있다.According to an embodiment of the present invention, the switching device control unit receives a power factor and calculates a compensation value of the power factor, transmits the open and close signal generation unit for generating the open and close signal according to the calculation result of the operation unit and the open / close signal to the power factor compensation device It may include a first communication unit.
본 발명의 일 실시 예에 따르면, 연산부는 검출부로부터 수신한 역률을 이용하여 역률 수준을 판단하고 유효 및 무효 전력의 크기에 따라 역률의 조정값을 계산할 수 있다.According to an embodiment of the present disclosure, the calculator may determine the power factor level using the power factor received from the detector and calculate an adjustment value of the power factor according to the magnitude of the effective and reactive power.
본 발명의 일 실시 예에 따르면, 연산부는 역률을 미리 설정된 허용 범위와 비교하고, 비교 결과 허용 범위를 초과할 경우 역률의 보상값을 계산할 수 있다.According to an embodiment of the present disclosure, the calculator may compare the power factor with a preset allowable range and calculate a compensation value of the power factor when the comparison result exceeds the allowable range.
본 발명의 일 실시 예에 따르면, 역률 보상 장치는 적어도 하나의 역률 보상 소자를 포함하는 역률 보상 소자 뱅크 및 개폐 신호를 수신하여 역률 보상 소자 뱅크와 부하측의 접속을 제어하는 스위칭 장치부를 포함할 수 있다.According to an embodiment of the present disclosure, the power factor correction apparatus may include a power factor correction element bank including at least one power factor compensation element and a switching device unit configured to receive an opening / closing signal to control a connection between the power factor correction element bank and the load side. .
본 발명의 일 실시 예에 따르면, 스위칭 장치부는 개폐 신호를 수신하는 제2 통신부 및 역률 보상 소자 뱅크의 각 역률 보상 소자에 대응하는 스위치를 포함하여 역률 보상 소자와 부하측의 연결을 제어하고, 개폐 신호에 따라 개폐되는 스위칭부를 포함할 수 있다.According to an embodiment of the present invention, the switching device unit includes a second communication unit for receiving the open / close signal and a switch corresponding to each power factor compensation element of the power factor correction element bank to control the connection between the power factor correction element and the load side, and the open / close signal It may include a switching unit that opens and closes according to.
본 발명의 일 실시 예에 따르면, 역률 보상 소자는 콘덴서 및 리액터 중 적어도 하나를 포함할 수 있다.According to an embodiment of the present invention, the power factor correction device may include at least one of a capacitor and a reactor.
본 발명의 일 실시 예에 따르면, 전력량계와 역률 보상 장치를 연결하는 통신망을 더 포함할 수 있다.According to an embodiment of the present disclosure, the apparatus may further include a communication network connecting the power meter and the power factor correction apparatus.
본 발명의 일 실시 예에 따르면, 전력 변환부는 변압부의 1차측에 연결되는 제1 채널부 및 변압부의 2차측에 연결되는 제2 채널부를 포함할 수 있다.According to an embodiment of the present disclosure, the power converter may include a first channel unit connected to the primary side of the transformer unit and a second channel unit connected to the secondary side of the transformer unit.
본 발명의 일 실시 예에 따르면, 전력량계는 제1 채널부 및 제2 채널부 중 하나의 경로를 선택적으로 제어하여 상기 변압부의 1차측 및 상기 변압부의 2차측 중 하나로부터 공급되는 전압 및 전류의 검출 경로를 선택할 수 있다.According to an embodiment of the present invention, the electricity meter selectively controls the path of one of the first channel portion and the second channel portion to detect voltage and current supplied from one of the primary side of the transformer portion and the secondary side of the transformer portion. You can choose the path.
본 발명에 따른 역률 보상 시스템은 원격 통신망을 이용한 역률을 제어하는 방식에 있어서 역률을 보상하는 역률 보상 소자가 변압부의 2차측에 접속하여 고객측의 유도성 부하 기기에 대한 역률 보상을 효과적으로 수행할 수 있다. 또한, 역률 보상 장치로 전송되는 개폐 신호가 간헐적으로 발생하므로 통신 효율과 보상 효율이 우수하고 역률 계산 및 제어부가 현장에 설치되지 않으므로 역률 보상 장치의 설치 비용을 절감할 수 있다.In the power factor correction system according to the present invention, the power factor correction element for compensating the power factor in a method of controlling power factor using a telecommunication network can be effectively connected to the secondary side of the transformer to perform power factor compensation for the inductive load device of the customer side. have. In addition, since the opening and closing signal transmitted to the power factor correction device is intermittently generated, the communication efficiency and the compensation efficiency are excellent, and the power factor calculation and control unit is not installed in the field, thereby reducing the installation cost of the power factor correction device.
본 발명에 따른 역률 보상 시스템은 역률 조정을 위한 콘덴서 용량 계산 정보와 스위칭 장치 제어 정보를 저장하고 통신부의 전송 기능을 이용하여 관리 서버로 저장된 정보를 전송하여 제어 정보의 활용이 용이하다.The power factor correction system according to the present invention stores the capacitor capacity calculation information for switching the power factor and switching device control information, and transmits the stored information to the management server using a transmission function of the communication unit, thereby easily utilizing the control information.
본 발명에 따른 역률 보상 시스템은 역률 보상 장치의 구조가 간단하므로 부하 기기에 대한 역률 보상을 효과적으로 수행할 수 있다. 또한, 역률 보상 시스템은 역률 보상 장치의 설치 비용을 절감할 수 있다.The power factor correction system according to the present invention has a simple structure of the power factor correction device, and thus can effectively perform power factor correction for a load device. In addition, the power factor correction system can reduce the installation cost of the power factor correction device.
본 발명에 따른 역률 보상 시스템은 제1 및 제2 통신부를 통해 각 스위치에 대한 온/오프 제어 신호만을 전송하므로 제1 및 제2 통신부의 기능 최소화와 함께 제조 비용을 절감할 수 있다. 또한, 역률 보상 시스템은 전송에러의 발생가능성을 현저히 줄여 전송데이터의 신뢰성을 높일 수 있다.The power factor correction system according to the present invention transmits only the on / off control signal for each switch through the first and second communication units, thereby minimizing the function of the first and second communication units and reducing the manufacturing cost. In addition, the power factor correction system can significantly reduce the possibility of transmission error, thereby increasing the reliability of the transmission data.
도 1은 본 발명의 일 실시 예에 따른 역률 보상 시스템을 나타내는 도면이다.1 is a view showing a power factor correction system according to an embodiment of the present invention.
도 2는 도 1에 도시된 전력 검출부를 나타내는 도면이다.FIG. 2 is a diagram illustrating a power detector shown in FIG. 1.
도 3은 도 1에 도시된 스위칭 장치 제어부를 나타내는 도면이다.FIG. 3 is a diagram illustrating a switching device control unit shown in FIG. 1.
도 4는 도 1에 도시된 전력량계의 동작을 설명하기 위해 도시한 순서도이다.4 is a flowchart illustrating an operation of the electricity meter shown in FIG. 1.
도 5는 도 1에 도시된 스위칭 장치부를 나타내는 도면이다.FIG. 5 is a diagram illustrating the switching device unit illustrated in FIG. 1.
도 6은 도 1에 도시된 역률 보상 소자 뱅크부를 나타내는 도면이다.FIG. 6 is a diagram illustrating a power factor correction device bank unit illustrated in FIG. 1.
도 7은 본 발명의 다른 실시 예에 따른 역률 보상 시스템을 나타내는 도면이다.7 illustrates a power factor correction system according to another embodiment of the present invention.
도 8은 본 발명의 또 다른 실시 예에 따른 역률 보상 시스템을 나타내는 도면이다.8 is a diagram illustrating a power factor correction system according to another embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention may be variously modified and have various embodiments, and specific embodiments will be illustrated in the drawings and described in detail with reference to the accompanying drawings. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.In describing the present invention, when it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, numerals (eg, first, second, etc.) used in the description process of the present specification are merely identification symbols for distinguishing one component from another component.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.In addition, in the present specification, when one component is referred to as "connected" or "connected" with another component, the one component may be directly connected or directly connected to the other component, but in particular It is to be understood that, unless there is an opposite substrate, it may be connected or connected via another component in the middle.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예들에 따른 역률 보상 시스템에 관하여 상세히 설명한다.Hereinafter, a power factor correction system according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시 예에 따른 역률 보상 시스템을 나타내는 도면이다.1 is a view showing a power factor correction system according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 역률 보상 시스템(10)은 변압부(110), 전력 변환부(120), 전력량계(140) 및 역률 보상 장치(190)를 포함한다.Referring to FIG. 1, the power factor correction system 10 according to an embodiment of the present invention includes a transformer 110, a power converter 120, a power meter 140, and a power factor correction device 190.
변압부(110)는 전원측(20)에서 부하측(30)으로 공급되는 전압을 변압한다. 변압부(110)는 소정 권선비(변압비의 역수)를 갖는 1차 코일과 2차 코일을 포함한다. 변압부(110)는 전원측(20)과 부하측(30) 사이에 연결되며, 2차 코일에 유기된 변압 전압을 부하측(30)으로 출력한다.The transformer 110 transforms the voltage supplied from the power supply side 20 to the load side 30. The transformer unit 110 includes a primary coil and a secondary coil having a predetermined winding ratio (the reciprocal of the transformer ratio). The transformer 110 is connected between the power supply side 20 and the load side 30, and outputs the transformed voltage induced in the secondary coil to the load side 30.
전력 변환부(120)는 전원측(20)으로부터 공급되는 전압 또는 전류를 변환한다. 전력 변환부(120)는 제1 채널부(121) 및 제2 채널부(123)를 포함한다.The power converter 120 converts the voltage or current supplied from the power supply side 20. The power converter 120 includes a first channel unit 121 and a second channel unit 123.
제1 채널부(121)는 변압부(110)의 1차측에 연결된다. 제1 채널부(121)는 고압 고객으로 공급되는 전압 및 전류를 수신하여 이들을 변압 및 변류한다. 제1 채널부(121)는 변압부(110)의 1차측의 전압 또는 전류를 변환하도록 계기용 변성기(MOF: Metering Out Fit)를 포함할 수 있다.The first channel part 121 is connected to the primary side of the transformer 110. The first channel unit 121 receives the voltage and current supplied to the high voltage customer, and transforms and converts them. The first channel unit 121 may include a metering out fit (MOF) to convert the voltage or current of the primary side of the transformer unit 110.
제2 채널부(123)는 변압부(110)의 2차측에 연결된다. 제2 채널부(123)는 저압 고객으로 공급되는 전압 및 전류를 수신하여 전류를 변류한다. 이때, 제2 채널부(123)는 수신한 전압을 그대로 전력량계(140)로 전달한다. 이를 위해 제2 전력 변환부(130)는 변압부(110)의 2차측의 전류를 변환하도록 계기용 변류기(CT: Current Transformer)를 포함할 수 있다.The second channel part 123 is connected to the secondary side of the transformer unit 110. The second channel unit 123 receives the voltage and the current supplied to the low voltage customer and flows the current. In this case, the second channel unit 123 transfers the received voltage to the electricity meter 140 as it is. To this end, the second power converter 130 may include a current transformer (CT) for converting current on the secondary side of the transformer 110.
전력 변환부(120)는 외부의 제어에 따라 제1 채널부(121) 및 제2 채널부(123)를 제어하여 변압부(110)의 1차측 및 2차측에 접속되는 선로를 선택적으로 연결한다.The power converter 120 selectively connects the lines connected to the primary side and the secondary side of the transformer unit 110 by controlling the first channel unit 121 and the second channel unit 123 under external control. .
전력량계(140)는 전원입력 선택부(150), 전력 검출부(160) 및 스위칭 장치 제어부(170)를 포함한다.The electricity meter 140 includes a power input selector 150, a power detector 160, and a switching device controller 170.
전원입력 선택부(150)는 전압 측정부(151) 및 채널 판단부(153)를 포함한다. 전압 측정부(151)는 전력 변환부(120)로부터 입력되는 전압을 측정한다. 채널 판단부(153)는 전압 측정부(151)에서 측정된 전압값에 기초하여 전력 변환부(120)의 채널을 판단하여 선택한다.The power input selection unit 150 includes a voltage measuring unit 151 and a channel determination unit 153. The voltage measuring unit 151 measures the voltage input from the power converter 120. The channel determiner 153 determines and selects a channel of the power converter 120 based on the voltage value measured by the voltage measurer 151.
전원입력 선택부(150)는 전력 변환부(120)로부터 변압부(110)의 1차측 및 2차측에서 공급되는 전압 및 전류를 선택적으로 수신하도록 전력 변환부(120)를 제어한다. 예를 들어, 전원입력 선택부(150)는 고압 고객 및 저압 고객 중 어느 하나로 공급되는 전압 및 전류의 수신 경로를 선택한다. 여기서 전원입력 선택부(150)는 제1 전력 변환부(120)로 수신 경로를 선택할 경우 고압 고객에게 공급되는 전압과 전류를 수신한다. 또한, 전원입력 선택부(150)는 제2 전력 변환부(130)로 수신 경로를 선택할 경우 저압 고객에게 공급되는 전압과 전류를 수신한다.The power input selector 150 controls the power converter 120 to selectively receive the voltage and current supplied from the primary and secondary sides of the transformer 110 from the power converter 120. For example, the power input selector 150 selects a reception path of a voltage and a current supplied to one of a high voltage customer and a low voltage customer. Here, the power input selection unit 150 receives the voltage and current supplied to the high voltage customer when the reception path is selected by the first power converter 120. In addition, the power input selection unit 150 receives a voltage and a current supplied to the low voltage customer when the reception path is selected by the second power converter 130.
전력 검출부(160)는 전력사용량을 계량하기 위해 수신된 전압과 전류를 이용하여 전압과 전류의 위상차, 유효 전력, 무효 전력, 피상 전력 또는 역률 등을 검출한다. 여기서 역률은 피상 전력에 대한 유효 전력의 비율로 검출될 수 있다.The power detector 160 detects the phase difference between the voltage and the current, the active power, the reactive power, the apparent power, or the power factor using the received voltage and current to measure the power consumption. Here, the power factor may be detected as a ratio of effective power to apparent power.
전력 검출부(160)는 검출된 전압과 전류의 위상차, 유효 전력, 무효 전력, 피상 전력 또는 역률을 포함하는 역률 정보를 스위칭 장치 제어부(170)로 제공한다. 전력 검출부(160)는 도 2를 참조하여 보다 상세하게 설명한다.The power detector 160 provides the power factor information including the phase difference of the detected voltage and current, the active power, the reactive power, the apparent power, or the power factor to the switching device controller 170. The power detector 160 will be described in more detail with reference to FIG. 2.
스위칭 장치 제어부(170)는 전력 검출부(160)로부터 역률 정보를 수신하여 역률의 보상값을 계산한다. 스위칭 장치 제어부(170)는 계산된 보상값에 기초하여 역률 보상 장치(180)를 제어하는 개폐 신호를 생성한다. 스위칭 장치 제어부(170)는 개폐 신호를 역률 보상 장치(180)에 전송한다. 스위칭 장치 제어부(170)는 도 2를 참조하여 보다 상세하게 설명한다.The switching device controller 170 receives the power factor information from the power detector 160 and calculates a compensation value of the power factor. The switching device controller 170 generates an open / close signal for controlling the power factor correction device 180 based on the calculated compensation value. The switching device controller 170 transmits the open / close signal to the power factor correction device 180. The switching device controller 170 will be described in more detail with reference to FIG. 2.
전력량계(140)는 변압부(110)의 1차측에 계량기를 설치하는 고압용 고객과 변압부(110)의 2차측에 계량기를 설치하는 저압용 고객 모두에 대해 선택적으로 수용 및 적용 가능한 구조를 갖는다.The electricity meter 140 has a structure that can be selectively accommodated and applied to both the high pressure customer installing the meter on the primary side of the transformer unit 110 and the low pressure customer installing the meter on the secondary side of the transformer unit 110. .
역률 보상 장치(180)는 스위칭 장치부(190) 및 역률 보상 소자 뱅크부(200)를 포함한다.The power factor correction device 180 includes a switching device unit 190 and a power factor correction element bank unit 200.
스위칭 장치부(190)는 부하측(30)과 역률 보상 소자 뱅크부(200)를 연결하는 스위칭 동작의 제어를 통해 부하측(30)으로 공급되는 전압 및 전류에 의한 역률을 조정한다. 스위칭 장치부(190)는 도 3을 참조하여 보다 상세하게 설명한다.The switching device unit 190 adjusts the power factor by the voltage and the current supplied to the load side 30 through the control of the switching operation connecting the load side 30 and the power factor correction element bank unit 200. The switching device unit 190 will be described in more detail with reference to FIG. 3.
역률 보상 소자 뱅크부(200)는 역률을 보상하기 위해 적어도 하나의 역률 보상 소자를 포함한다. 역률 보상 소자 뱅크부(200)는 콘덴서 및 리액터 중 적어도 하나를 포함할 수 있다. 여기서 역률 보상 소자 뱅크부(200)의 역률 보상 소자의 용량 및 수량은 역률 보상의 대상이 되는 부하측(30)의 유도성 부하의 용량과 전원측(20)의 선로수에 따라 결정될 수 있다.The power factor correction element bank unit 200 includes at least one power factor correction element to compensate for the power factor. The power factor correction element bank unit 200 may include at least one of a capacitor and a reactor. The capacity and quantity of the power factor correction element of the power factor correction element bank unit 200 may be determined according to the capacity of the inductive load of the load side 30 to be the power factor correction and the number of lines of the power supply side 20.
역률 보상 소자 뱅크부(200)는 도 4를 참조하여 보다 상세하게 설명한다.The power factor correction element bank unit 200 will be described in more detail with reference to FIG. 4.
통신망(210)은 전력량계(140)와 역률 보상 장치(180) 사이의 원격 통신을 위해 유무선 네트워크로 이루어질 수 있다. 예를 들면, 통신망(210)은 Binary CDMA, Zigbee, 블루투스 또는 시리얼 유선통신 등의 통신 기술을 활용하는 네트워크로 이루어질 수 있다.The communication network 210 may be a wired or wireless network for remote communication between the electricity meter 140 and the power factor correction device 180. For example, the communication network 210 may be formed of a network utilizing communication technologies such as binary CDMA, Zigbee, Bluetooth, or serial wired communication.
도 2는 도 1에 도시된 전력 검출부를 나타내는 도면이다.FIG. 2 is a diagram illustrating a power detector shown in FIG. 1.
도 2를 참조하면, 전력 검출부(160)는 역률 측정부(161), 계량모드 설정부(163) 및 전력량 계량부(165)를 포함한다.Referring to FIG. 2, the power detector 160 includes a power factor measuring unit 161, a metering mode setting unit 163, and a power amount metering unit 165.
역률 측정부(161)는 전원입력 선택부(150)로부터 입력받은 전압 및 전류를 이용하여 전력을 계산한다. 또한, 역률 측정부(161)는 계산된 전력을 이용하여 역률을 계산한다.The power factor measurer 161 calculates power using the voltage and current received from the power input selector 150. In addition, the power factor measurement unit 161 calculates the power factor using the calculated power.
계량모드 설정부(163)는 전원입력 선택부(150)에서 판단한 고객별 입력 전압에 해당하는 전력을 계량하기 위해 고압 또는 저압용 전력 계량 기능을 선택적으로 설정한다.The metering mode setting unit 163 selectively sets a high or low voltage power metering function to measure power corresponding to a customer input voltage determined by the power input selector 150.
전력량 계량부(165)는 계량모드 설정부(163)의 설정에 따라 저압 또는 고압용 전력을 계량한다.The amount of electricity metering unit 165 measures the low or high pressure power according to the setting of the metering mode setting unit 163.
도 3은 도 1에 도시된 스위칭 장치 제어부를 나타내는 도면이다.FIG. 3 is a diagram illustrating a switching device control unit shown in FIG. 1.
도 3을 참조하면, 스위칭 장치 제어부(170)는 연산부(171), 저장부(173), 개폐신호 발생부(174) 및 제1 통신부(175)를 포함한다.Referring to FIG. 3, the switching device controller 170 includes a calculator 171, a storage 173, an open / close signal generator 174, and a first communication unit 175.
연산부(171)는 전력 검출부(160)로부터 수신한 역률을 이용하여 역률 수준을 판단하고, 유효 전력 및 무효 전력의 크기에 따라 역률의 보상값을 계산한다. 예를 들어 연산부(171)는 전력 검출부(160)의 역률 측정부(161)를 통하여 취득된 역률 정보를 바탕으로 역률의 허용범위, 초과 수준 또는 미달 수준 등의 역률 적정 여부를 판단한다.The calculator 171 determines the power factor level using the power factor received from the power detector 160 and calculates a compensation value of the power factor according to the magnitudes of the active power and the reactive power. For example, the calculator 171 determines whether the power factor is appropriate, such as an allowable range, an excess level, or a lower level of the power factor based on the power factor information acquired through the power factor measurer 161 of the power detector 160.
이때, 연산부(171)는 역률을 미리 설정된 기준값과 비교할 수 있다. 예를 들면, 연산부(171)는 전력 검출부(160)로부터 측정된 유효 전력, 무효 전력 및 역률을 전송받아 적정 수준으로 설정된 기준값과 비교한다. 여기서 기준값은 허용 범위를 갖는다. 연산부(171)는 비교 결과 허용 범위를 초과하는 경우 유효 전력과 무효 전력의 크기에 따라 부하측(30)으로 공급되는 전력의 역률을 보상하기 위한 역률 보상 소자의 용량을 계산한다.In this case, the calculator 171 may compare the power factor with a preset reference value. For example, the calculator 171 receives the active power, the reactive power, and the power factor measured by the power detector 160 and compares them with a reference value set to an appropriate level. The reference value here has an acceptable range. The calculation unit 171 calculates the capacity of the power factor correction element for compensating the power factor of the power supplied to the load side 30 according to the magnitude of the active power and the reactive power when the comparison result exceeds the allowable range.
한편, 연산부(171)는 비교 결과 역률이 허용 범위를 초과할 경우에만 역률의 조정값을 계산할 수 있다. On the other hand, the calculation unit 171 may calculate the adjustment value of the power factor only when the power factor exceeds the allowable range as a result of the comparison.
저장부(173)는 역률 보상을 위한 역률 보상 소자의 용량계산 관련 정보와 스위칭 제어 이력 정보 등을 저장할 수 있다. 또한, 저장부(173)는 역률의 수준을 판단하기 위한 기준값을 저장할 수 있다. 이때, 저장부(173)는 기준값의 허용 범위도 저장할 수 있다.The storage unit 173 may store capacitance calculation related information and switching control history information of the power factor correction device for power factor correction. In addition, the storage unit 173 may store a reference value for determining the level of the power factor. In this case, the storage unit 173 may also store an allowable range of the reference value.
개폐신호 발생부(174)는 연산부(171)의 계산 결과에 따라 역률을 보상하기 위해 역률 보상 소자의 온/오프 스위칭을 제어하는 개폐 신호를 생성한다. 이때, 개폐신호 발생부(174)는 스위칭 장치부(190) 내의 온/오프 제어 대상인 스위치를 선별적으로 선택할 수 있도록 개폐 신호를 생성할 수 있다. 한편, 개폐신호 발생부(174)는 역률이 허용 범위를 초과할 경우에만 개폐 신호를 생성할 수도 있다.The open / close signal generator 174 generates an open / close signal for controlling on / off switching of the power factor correction device in order to compensate for the power factor according to the calculation result of the calculator 171. In this case, the open / close signal generator 174 may generate an open / close signal to selectively select a switch that is an on / off control target in the switching device unit 190. On the other hand, the opening and closing signal generator 174 may generate the opening and closing signal only when the power factor exceeds the allowable range.
제1 통신부(175)는 연산부(171)로부터 개폐 신호를 수신하여 개폐 신호의 가공 및 전송 처리를 수행한다. 제1 통신부(175)는 AI(Analog Input), DI(Digital Input), DO(Digital Output), UART(Universal Asynchronous Receiver Transmitter) 또는 모뎀 등의 통신 장치를 포함할 수 있다. 또한, 제1 통신부(175)는 ASIC 등의 비동기 방식 반도체 또는 기타의 집적화된 반도체 칩으로 구현될 수 있다. 제1 통신부(175)는 연산부(171)로부터 개폐 신호를 수신하여 개별 역률 보상 소자에 대한 온/오프 스위칭 제어 신호를 재차 생성한다. 제1 통신부(175)는 개별 역률 보상 소자에 대한 온/오프 스위칭 제어 신호를 UART 또는 모뎀 등을 거쳐 통신망(210)을 통해 역률 보상 장치(180)로 전송한다. 여기서 제1 통신부(175)는 UART 외에도 USART(Universal Synchronous Asynchronous Receiver Transmitter) 등의 반도체 송수신 소자를 포함할 수 있다.The first communication unit 175 receives the open / close signal from the calculator 171 and performs the processing and transmission processing of the open / close signal. The first communication unit 175 may include a communication device such as an analog input (AI), a digital input (DI), a digital output (DO), a universal asynchronous receiver transmitter (UART), or a modem. In addition, the first communication unit 175 may be implemented as an asynchronous semiconductor such as an ASIC or other integrated semiconductor chip. The first communication unit 175 receives the open / close signal from the calculator 171 and generates the on / off switching control signal for the individual power factor correction device again. The first communication unit 175 transmits the on / off switching control signal for the individual power factor correction device to the power factor correction device 180 through the communication network 210 through a UART or a modem. The first communication unit 175 may include a semiconductor transmission / reception device such as a universal synchronous receiver transmitter (USART) in addition to the UART.
스위칭 장치 제어부(170)는 역률 보상 소자의 온/오프 시간, 시간대별 역률 보상 소자의 투입용량 등의 역률보상 제어정보의 주기적 감시와 정보 활용이 가능하여 전력계통의 효율적 운용에 기여할 수 있다.The switching device controller 170 may contribute to the efficient operation of the power system by enabling periodic monitoring and information utilization of the power factor compensation control information such as on / off time of the power factor correction device and input capacity of the power factor correction device for each time zone.
도 4는 도 1에 도시된 전력량계의 동작을 설명하기 위해 도시한 순서도이다. 도 4의 동작들은 전력량계에 포함된 구성 요소들에 의해 수행되나 편의상 구성 요소들을 대표하여 전력량계가 수행하는 것으로 설명한다.4 is a flowchart illustrating an operation of the electricity meter shown in FIG. 1. Although the operations of FIG. 4 are performed by the components included in the electricity meter, it will be described as being performed by the electricity meter on behalf of the components for convenience.
도 4를 참조하면, 전력량계(140)는 전원입력 선택부(150)의 전압 측정부(151)를 통해 전력 변환부(120)로부터 제공받은 전압을 측정한다.(S10)Referring to FIG. 4, the power meter 140 measures the voltage provided from the power converter 120 through the voltage measuring unit 151 of the power input selection unit 150.
다음, 전력량계(140)는 전력 검출부(160)의 채널 판단부(153)에서 고압 고객의 전력 계량을 위한 상 전압이 110V로 운영중인 계통의 예에서는 측정 전압이 110Vㅁ10% 범위에 포함될 경우에는 고압 고객에 대한 전력 검출 경로가 설정된 것으로 판단한다. 또는 전력량계(140)는 채널 판단부(153)에서 저압 고객의 전력 계량을 위한 상 전압이 220V로 운영중인 계통의 예에서는 측정 전압이 220Vㅁ10% 범위에 포함될 경우에는 저압 고객에 대한 전력 검출 경로가 설정된 것으로 판단한다.(S20)Next, in the example of the system in which the phase voltage for power metering of the high voltage customer is 110 V in the channel determination unit 153 of the power detector 160, the measured voltage is included in the range of 110 V ㅁ 10%. It is determined that the power detection path for the high voltage customer is set. Alternatively, in the example of a system in which the phase voltage for measuring the power of the low voltage customer is 220 V, the power meter 140 may include the power detection path for the low voltage customer when the measured voltage is included in the 220 V wh 10% range. It is determined that is set (S20).
여기서 저압 및 고압 고객의 전력 계량 전압이 운용 전압인 110V 또는 220V와 다른 경우에도 적용 가능하며, 이때의 측정 전압 범위는 계통 전압의 ㅁ10%로 설정하거나 다른 비율값으로 적용할 수 있다.The low and high voltage customer's power metering voltage can also be applied when the operating voltage differs from 110V or 220V, and the measured voltage range can be set at 10% of the grid voltage or at a different ratio.
다음, 전력량계(140)는 고압 고객에 대한 전력 검출 경로가 설정된 경우 전력 변환부(120)의 제1 채널부(121)를 온시키고, 제2 채널부(123)를 오프시킨다. 또는 전력량계(140)는 저압 고객에 대한 전력 검출 경로가 설정된 경우 전력 변환부(120)의 제1 채널부(121)를 오프시키고, 제2 채널부(123)를 온시킨다.(S30)Next, when the power detection path is set for the high voltage customer, the electricity meter 140 turns on the first channel unit 121 of the power converter 120 and turns off the second channel unit 123. Alternatively, when the power detection path is set for the low voltage customer, the electricity meter 140 turns off the first channel unit 121 of the power converter 120 and turns on the second channel unit 123 (S30).
이후 전력량계(140)의 동작은 전력량 계량과 역률 측정으로 나뉜다.Thereafter, the operation of the electricity meter 140 is divided into electricity quantity metering and power factor measurement.
전력량을 계량하는 동작에서 전력을 검출하는 경로를 선택한 후 전력량계(140)는 고압 또는 저압 고객에 대한 전력 계량 모드를 선택한다.(S31) 다음, 전력량계(140)는 선택된 계량 모드에 따라 전력량을 계량한다.(S33)After selecting a path for detecting power in an operation of metering the amount of electricity, the electricity meter 140 selects a power metering mode for the high or low pressure customer. (S31) Next, the electricity meter 140 meters the amount of electricity according to the selected metering mode. (S33)
역률을 측정하는 동작에서 전력을 검출하는 경로를 선택한 후 전력량계(140)는 입력받은 전압 및 전류를 이용하여 전력을 계산하고 계산된 전력을 이용하여 역률을 측정한다.(S40)After selecting a path for detecting power in the operation of measuring the power factor, the electricity meter 140 calculates power using the input voltage and current and measures the power factor using the calculated power.
다음, 전력량계(140)는 역률이 정상 수준인지 판별한다.(S50) 여기서 전력량계(140)는 역률이 정상일 경우 S40 단계로 돌아간다. 또는 전력량계(140)는 역률이 비정상일 경우 역률의 정상 범위와 비교하여 비정상만큼의 역률값을 계산한다.(S60)Next, the power meter 140 determines whether the power factor is normal. (S50) Here, the power meter 140 returns to step S40 when the power factor is normal. Alternatively, if the power factor is abnormal, the power meter 140 calculates the power factor value as much as the abnormality compared with the normal range of the power factor.
다음, 전력량계(140)는 비정상인 역률을 보상하기 위해 계산된 역률값에 상응하는 콘덴서의 용량을 계산한다.(S70)Next, the power meter 140 calculates the capacity of the capacitor corresponding to the calculated power factor value to compensate for the abnormal power factor.
다음, 전력량계(140)는 계산된 콘덴서의 용량에 따라 부하측의 역률을 보상하기 위해 부하측(30)과 역률 보상 장치(180)의 스위칭 장치부(190)의 연결을 제어하는 스위치 개폐 신호를 생성한다.(S80)Next, the electricity meter 140 generates a switch opening / closing signal for controlling the connection of the load device 30 and the switching device unit 190 of the power factor correction device 180 to compensate for the power factor of the load side according to the calculated capacity of the capacitor. (S80)
다음, 전력량계(140)는 생성된 스위치 개폐 신호를 역률 보상 장치(180)로 전송한다.Next, the electricity meter 140 transmits the generated switch open / close signal to the power factor correction device 180.
도 5는 도 1에 도시된 스위칭 장치부를 나타내는 도면이다.FIG. 5 is a diagram illustrating the switching device unit illustrated in FIG. 1.
도 5를 참조하면, 스위칭 장치부(190)는 제2 통신부(191) 및 스위칭부(193)를 포함한다.Referring to FIG. 5, the switching device unit 190 includes a second communication unit 191 and a switching unit 193.
제2 통신부(191)는 통신망(210)을 통해 스위칭 장치 제어부(170)의 제1 통신부(175)로부터 개폐 신호인 개별 역률 보상 소자에 대한 온/오프 스위칭 제어 신호를 수신한다. 제2 통신부(191)는 통신망(210)을 통해 데이터를 수신할 수 있도록 구성된다. 제2 통신부(191)는 DIO(Digital Input Output), UART(Universal Asynchronous Receiver Transmitter) 또는 모뎀 등의 통신 장치를 포함할 수 있다. 제2 통신부(191)는 수신된 개별 역률 보상 소자에 대한 온/오프 스위칭 제어 신호를 스위칭부(193)로 전송한다.The second communication unit 191 receives the on / off switching control signal for the individual power factor correction device, which is an open / close signal, from the first communication unit 175 of the switching device controller 170 through the communication network 210. The second communication unit 191 is configured to receive data through the communication network 210. The second communication unit 191 may include a communication device such as a digital input output (DIO), a universal asynchronous receiver transmitter (UART), or a modem. The second communication unit 191 transmits an on / off switching control signal for the received individual power factor correction device to the switching unit 193.
스위칭부(193)는 적어도 하나의 스위치를 구비한다. 보다 상세하게는 스위칭부(193)는 역률 보상 소자 뱅크부(200)의 각 역률 보상 소자에 대응하는 스위치를 구비한다. 여기서 스위치는 릴레이(Relay)를 포함할 수 있다. 스위칭부(193)는 스위칭 장치 제어부(170)로부터 개폐 신호를 전송받아 스위칭 장치 제어부(170)의 명령에 따라 각 스위치의 온/오프 상태가 결정된다. 스위칭부(193)는 온 상태의 스위치에 연결된 역률 보상 소자가 부하측(30)의 전력선에 연결된다.The switching unit 193 includes at least one switch. In more detail, the switching unit 193 includes a switch corresponding to each power factor correction element of the power factor correction element bank unit 200. Here, the switch may include a relay. The switching unit 193 receives an open / close signal from the switching device controller 170 to determine an on / off state of each switch according to the command of the switching device controller 170. In the switching unit 193, a power factor correction element connected to an on switch is connected to a power line of the load side 30.
스위칭부(193)를 통한 역률 보상 소자 뱅크부(200)의 투입/차단 접속점은 역률 저하 요인이 되는 부하에서 가장 가까운 변압부(110)의 2차측에 연결된다. 이를 통해 스위칭 장치부(190)는 변압부(110)의 1차측을 통한 부하의 역률 제어 방식에 비해 부하측(30)의 역률 개선 효과를 극대화시킨다.The input / disconnect connection point of the power factor correction element bank unit 200 through the switching unit 193 is connected to the secondary side of the transformer unit 110 closest to the load which causes the power factor lowering factor. Through this, the switching device 190 maximizes the effect of improving the power factor of the load side 30 as compared to the power factor control method of the load through the primary side of the transformer 110.
도 6은 도 1에 도시된 역률 보상 소자 뱅크부를 나타내는 도면이다.FIG. 6 is a diagram illustrating a power factor correction device bank unit illustrated in FIG. 1.
도 6을 참조하면, 역률 보상 소자 뱅크부(200)는 콘덴서 뱅크(201) 및 리액터 뱅크(203)를 포함한다.Referring to FIG. 6, the power factor correction element bank unit 200 includes a capacitor bank 201 and a reactor bank 203.
역률 보상 소자 뱅크부(200)는 콘덴서 뱅크(201)와 리액터 뱅크(203)를 이용하여 블로킹 필터를 구성한다. 역률 보상 소자 뱅크부(200)는 스위칭 장치 제어부(170)의 제어에 따라 임피던스를 조절하여 적정 역률을 유지한다.The power factor correction element bank unit 200 configures a blocking filter using the capacitor bank 201 and the reactor bank 203. The power factor correction element bank unit 200 maintains an appropriate power factor by adjusting the impedance under the control of the switching device controller 170.
본 발명에 따른 역률 보상 시스템은 원격 통신망을 이용한 역률을 제어하는 방식에 있어서 역률을 보상하는 역률 보상 소자가 변압부의 2차측에 접속하여 고객측의 유도성 부하 기기에 대한 역률 보상을 효과적으로 수행할 수 있다. 또한, 역률 보상 장치로 전송되는 개폐 신호가 간헐적으로 발생하므로 통신 효율과 보상 효율이 우수하고 역률 계산 및 제어부가 현장에 설치되지 않으므로 역률 보상 장치의 설치 비용을 절감할 수 있다.In the power factor correction system according to the present invention, the power factor correction element for compensating the power factor in a method of controlling a power factor using a telecommunication network can be connected to the secondary side of the transformer to effectively perform power factor compensation for the inductive load device of the customer. have. In addition, since the opening and closing signal transmitted to the power factor correction device is intermittently generated, the communication efficiency and the compensation efficiency are excellent, and the power factor calculation and control unit is not installed in the field, thereby reducing the installation cost of the power factor correction device.
본 발명의 일 실시 예에 따른 역률 보상 시스템은 역률 조정을 위한 콘덴서 용량 계산 정보와 스위칭 제어 정보를 저장하고 통신부의 전송 기능을 이용하여 관리 서버로 저장된 정보를 전송하여 제어 정보의 활용이 용이하다.The power factor correction system according to an embodiment of the present invention stores the capacitor capacity calculation information and switching control information for power factor adjustment and transmits the stored information to the management server using a transmission function of the communication unit, thereby easily utilizing the control information.
본 발명의 일 실시 예에 따른 역률 보상 시스템은 역률 보상 장치의 구조가 간단하므로 부하 기기에 대한 역률 보상을 효과적으로 수행할 수 있다. 또한, 역률 보상 시스템은 역률 보상 장치의 설치 비용을 절감할 수 있다.The power factor correction system according to an embodiment of the present invention can perform power factor correction for a load device effectively because the structure of the power factor correction device is simple. In addition, the power factor correction system can reduce the installation cost of the power factor correction device.
본 발명의 일 실시 예에 따른 역률 보상 시스템은 제1 및 제2 통신부를 통해 각 스위치에 대한 온/오프 제어 신호만을 전송하므로 제1 및 제2 통신부의 기능 최소화와 함께 제조 비용을 절감할 수 있다. 또한, 역률 보상 시스템은 전송에러의 발생가능성을 현저히 줄여 전송데이터의 신뢰성을 높일 수 있다.The power factor correction system according to an embodiment of the present invention transmits only the on / off control signal for each switch through the first and second communication units, thereby minimizing the function of the first and second communication units and reducing the manufacturing cost. . In addition, the power factor correction system can significantly reduce the possibility of transmission error, thereby increasing the reliability of the transmission data.
도 7은 본 발명의 다른 실시 예에 따른 역률 보상 시스템을 나타내는 도면이다. 여기서는 도 1과 비교하여 동일한 구성 요소에 대한 상세한 설명을 생략한다. 도 7의 전원입력 선택부는 도 1의 전원입력 선택부와 동일하게 전압 측정부 및 채널 판단부를 포함하나 편의상 도시하지 않았다.7 illustrates a power factor correction system according to another embodiment of the present invention. A detailed description of the same components will be omitted here as compared with FIG. 1. The power input selector of FIG. 7 includes a voltage measurer and a channel determiner in the same manner as the power input selector of FIG. 1, but is not illustrated for convenience.
도 7을 참조하면, 본 발명의 다른 실시 예에 따른 역률 보상 시스템(10)은 변압부(110), 제1 전력 변환부(120), 제2 전력 변환부(130), 전력량계(140), 스위칭 장치 제어부(170) 및 역률 보상 장치(180)를 포함한다. 여기서 역률 보상 시스템(10)은 스위칭 장치 제어부(170)를 전력량계(140)와 별도로 분리하여 구성한다.Referring to FIG. 7, the power factor correction system 10 according to another embodiment of the present invention may include a transformer 110, a first power converter 120, a second power converter 130, a power meter 140, And a switching device controller 170 and a power factor correction device 180. Here, the power factor correction system 10 is configured to separate the switching device controller 170 from the electricity meter 140 separately.
전력량계(140)는 전원입력 선택부(150) 및 전력 검출부(160)를 포함한다. 전력량계(140)는 부하측(30)으로 공급되는 전압 및 전류를 수신하여 전압과 전류의 위상차, 유효 전력, 무효 전력, 피상 전력 또는 역률을 포함하는 역률 정보를 스위칭 장치 제어부(170)로 제공한다.The electricity meter 140 includes a power input selector 150 and a power detector 160. The electricity meter 140 receives the voltage and the current supplied to the load side 30 and provides the power factor information including the phase difference, the active power, the reactive power, the apparent power, or the power factor of the voltage and the current to the switching device controller 170.
스위칭 장치 제어부(170)는 연산부(171), 저장부(173), 개폐신호 발생부(174)및 제1 통신부(175)를 포함한다. 스위칭 장치 제어부(170)는 전력량계(140)의 전력 검출부(160)로부터 역률 정보를 수신하여 역률의 조정값을 계산한다. 스위칭 장치 제어부(170)는 계산된 조정값에 기초하여 역률 보상 장치(180)를 제어하는 개폐 신호를 생성한다. 스위칭 장치 제어부(170)는 개폐 신호를 역률 보상 장치(180)에 전송한다. 스위칭 장치 제어부(170)는 역률 보상을 위한 역률 보상 소자의 용량계산 관련 정보와 스위칭 제어 이력 정보 등을 저장한다.The switching device controller 170 includes a calculator 171, a storage 173, an open / close signal generator 174, and a first communicator 175. The switching device controller 170 receives power factor information from the power detector 160 of the electricity meter 140 and calculates an adjustment value of the power factor. The switching device controller 170 generates an open / close signal for controlling the power factor correction device 180 based on the calculated adjustment value. The switching device controller 170 transmits the open / close signal to the power factor correction device 180. The switching device controller 170 stores the capacity calculation related information of the power factor correction element and switching control history information for power factor correction.
본 발명의 다른 실시 예에 따른 역률 보상 시스템(10)은 스위칭 장치 제어부(170)를 전력량계(140)와 별로도 분리함으로써 원격 통신을 통해 역률 보상 장치를 제어하는 다양한 구조로 구성될 수 있다.The power factor correction system 10 according to another embodiment of the present invention may be configured in various structures for controlling the power factor correction apparatus through remote communication by separately separating the switching device controller 170 from the electricity meter 140.
도 8은 본 발명의 또 다른 실시 예에 따른 역률 보상 시스템을 나타내는 도면이다. 여기서는 도 1과 비교하여 동일한 구성 요소에 대한 상세한 설명을 생략한다. 도 8의 전원입력 선택부는 도 1의 전원입력 선택부와 동일하게 전압 측정부 및 채널 판단부를 포함하나 편의상 도시하지 않았다.8 is a diagram illustrating a power factor correction system according to another embodiment of the present invention. A detailed description of the same components will be omitted here as compared with FIG. 1. The power input selection unit of FIG. 8 includes a voltage measuring unit and a channel determination unit similarly to the power input selection unit of FIG. 1, but is not shown for convenience.
도 8을 참조하면, 본 발명의 또 다른 실시 예에 따른 역률 보상 시스템(10)은 변압부(110), 제1 전력 변환부(120), 제2 전력 변환부(130), 전력량계(140), 제1 통신부(175) 및 역률 보상 장치(180)를 포함한다. 여기서 역률 보상 시스템(10)은 제1 통신부(175)를 전력량계(140)와 별도로 분리하여 구성한다.Referring to FIG. 8, the power factor correction system 10 according to another embodiment of the present invention may include a transformer 110, a first power converter 120, a second power converter 130, and a power meter 140. The first communication unit 175 and the power factor correction device 180 are included. Here, the power factor correction system 10 is configured by separating the first communication unit 175 separately from the electricity meter 140.
전력량계(140)는 전원입력 선택부(150), 전력 검출부(160), 연산부(171) 및 저장부(173)를 포함한다. 전력량계(140)는 부하측(30)으로 공급되는 전압 및 전류를 수신하여 전압과 전류의 위상차, 유효 전력, 무효 전력, 피상 전력 또는 역률을 포함하는 역률 정보에 따라 역률의 조정값을 계산한다. 또한, 전력량계(140)는 계산 결과에 따라 개폐 신호를 생성하여 제1 통신부(175)로 제공한다.The electricity meter 140 includes a power input selector 150, a power detector 160, a calculator 171, and a storage 173. The electricity meter 140 receives the voltage and current supplied to the load side 30 and calculates an adjustment value of the power factor according to the power factor information including the phase difference of the voltage and current, the active power, the reactive power, the apparent power, or the power factor. In addition, the electricity meter 140 generates an opening / closing signal according to the calculation result and provides it to the first communication unit 175.
제1 통신부(175)는 전력량계(140)로부터 개폐 신호를 수신하여 개폐 신호의 가공 및 전송 처리를 수행한다. 제1 통신부(175)는 연산부(171)로부터 개폐 신호를 수신하여 개별 역률 보상 소자에 대한 온/오프 스위칭 제어 신호를 재차 생성한다. 제1 통신부(175)는 개별 역률 보상 소자에 대한 온/오프 스위칭 제어 신호를 UART 또는 모뎀 등을 거쳐 통신망(210)을 통해 역률 보상 장치(180)로 전송한다.The first communication unit 175 receives the open / close signal from the electricity meter 140 to perform the processing and transmission processing of the open / close signal. The first communication unit 175 receives the open / close signal from the calculator 171 and generates the on / off switching control signal for the individual power factor correction device again. The first communication unit 175 transmits the on / off switching control signal for the individual power factor correction device to the power factor correction device 180 through the communication network 210 through a UART or a modem.
본 발명의 또 다른 실시 예에 따른 역률 보상 시스템(10)은 스위칭 장치 제어부(170)를 전력량계(140)와 별로도 분리함으로써 원격 통신을 통해 역률 보상 장치를 제어하는 다양한 구조로 구성될 수 있다.The power factor correction system 10 according to another embodiment of the present invention may be configured in various structures to control the power factor correction apparatus through remote communication by separately separating the switching device controller 170 from the electricity meter 140.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (11)

  1. 역률 보상 시스템에 있어서,In power factor correction system,
    전원측에서 부하측으로 공급되는 전압을 변환하는 변압부;A transformer for converting a voltage supplied from a power supply side to a load side;
    상기 변압부의 1차측 및 2차측에 연결되어 전압과 전류를 수신하며, 수신한 전압 및 전류를 선택적으로 변압하거나 변류하는 전력 변환부;A power converter connected to the primary side and the secondary side of the transformer unit to receive a voltage and a current, and selectively transform or rectify the received voltage and current;
    상기 전력 변환부로부터 전압과 전류를 수신하고, 수신된 전압과 전류를이용하여 전력 및 역률을 검출하며, 상기 역률를 보상하기 위한 개폐 신호를 출력하는 전력량계; 및A power meter that receives a voltage and a current from the power converter, detects power and a power factor using the received voltage and current, and outputs an open / close signal for compensating the power factor; And
    상기 개폐 신호를 수신하여 상기 부하측의 역률을 보상하기 위해 상기 부하측과 역률 보상 소자의 연결을 제어하는 역률 보상 장치를 포함하는 역률 보상 시스템.And a power factor correction device for controlling the connection between the load side and the power factor correction element to receive the open / close signal to compensate for the power factor of the load side.
  2. 제1 항에 있어서,According to claim 1,
    상기 전력량계는The electricity meter
    상기 전력 변환부를 제어하여 상기 부하측으로 공급되는 전압과 전류의 검출 경로를 선택하는 전원입력 선택부;A power input selection unit controlling the power conversion unit to select a detection path of a voltage and a current supplied to the load side;
    상기 수신된 전압과 전류를 이용하여 상기 전력 및 상기 역률을 검출하는 전력 검출부; 및A power detector configured to detect the power and the power factor using the received voltage and current; And
    상기 역률의 보상값을 계산하여 상기 개폐 신호를 생성하고, 상기 개폐 신호를 상기 역률 보상 장치에 전송하는 스위칭 장치 제어부를 포함하는 것을 특징으로 하는 역률 보상 시스템.And a switching device controller configured to calculate the compensation value of the power factor to generate the open / close signal and to transmit the open / close signal to the power factor correction device.
  3. 제2 항에 있어서,The method of claim 2,
    상기 스위칭 장치 제어부는The switching device control unit
    상기 역률을 수신하여 상기 역률의 보상값을 계산하는 연산부;A calculator configured to receive the power factor and calculate a compensation value of the power factor;
    상기 연산부의 계산 결과에 따라 상기 개폐 신호를 생성하는 개폐 신호 생성부; 및An opening and closing signal generation unit generating the opening and closing signal according to a calculation result of the calculation unit; And
    상기 개폐 신호를 상기 역률 보상 장치로 전송하는 제1 통신부를 포함하는 것을 특징으로 하는 역률 보상 시스템.And a first communication unit configured to transmit the open / close signal to the power factor correction device.
  4. 제3 항에 있어서,The method of claim 3, wherein
    상기 연산부는The calculation unit
    상기 전력 검출부로부터 수신한 상기 역률을 이용하여 역률 수준을 판단하고 유효 및 무효 전력의 크기에 따라 상기 역률의 보상값을 계산하는 것을 특징으로 하는 역률 보상 시스템.The power factor correction system of claim 1, wherein the power factor is determined using the power factor received from the power detector, and the compensation value of the power factor is calculated according to the magnitude of the effective and reactive power.
  5. 제4 항에 있어서,The method of claim 4, wherein
    상기 스위칭 장치 제어부는The switching device control unit
    상기 역률을 미리 설정된 허용 범위와 비교하고,Compare the power factor with a preset allowable range,
    비교 결과 상기 허용 범위를 초과할 경우 상기 역률의 보상값을 계산하여 상기 개폐 신호를 생성하는 것을 특징으로 하는 역률 보상 시스템.And a power factor correction system for generating the open / close signal by calculating a compensation value of the power factor when the comparison result exceeds the allowable range.
  6. 제1 항에 있어서,According to claim 1,
    상기 역률 보상 장치는The power factor correction device
    적어도 하나의 상기 역률 보상 소자를 포함하는 역률 보상 소자 뱅크; 및A power factor correction element bank including at least one power factor correction element; And
    상기 개폐 신호를 수신하여 상기 역률 보상 소자 뱅크와 상기 부하측의 접속을 제어하는 스위칭 장치부를 포함하는 것을 특징으로 하는 역률 보상 시스템.And a switching device unit configured to receive the open / close signal to control a connection between the power factor correction element bank and the load side.
  7. 제6 항에 있어서,The method of claim 6,
    상기 스위칭 장치부는The switching device unit
    상기 개폐 신호를 수신하는 제2 통신부; 및A second communication unit configured to receive the open / close signal; And
    상기 역률 보상 소자 뱅크의 각 역률 보상 소자에 대응하는 스위치를 포함하여 상기 역률 보상 소자와 상기 부하측을 연결하고, 상기 개폐 신호에 따라 개폐되는 스위칭부를 포함하는 것을 특징으로 하는 역률 보상 시스템.And a switching unit connected to the power factor correction element and the load side, the switch including a switch corresponding to each power factor compensation element of the power factor correction element bank, and switching to open or close according to the open / close signal.
  8. 제6 항에 있어서,The method of claim 6,
    상기 역률 보상 소자는The power factor correction device
    콘덴서 및 리액터 중 적어도 하나를 포함하는 것을 특징으로 하는 역률 보상 시스템.A power factor correction system comprising at least one of a capacitor and a reactor.
  9. 제1 항에 있어서,According to claim 1,
    상기 전력량계와 상기 역률 보상 장치를 연결하는 통신망을 더 포함하는 것을 특징으로 하는 역률 보상 시스템.And a communication network connecting the electricity meter and the power factor correction device.
  10. 제1 항에 있어서,According to claim 1,
    상기 전력 변환부는 상기 변압부의 1차측에 연결되는 제1 채널부 및 상기 변압부의 2차측에 연결되는 제2 채널부를 포함하는 것을 특징으로 하는 역률 보상 시스템.And the power converter includes a first channel unit connected to the primary side of the transformer unit and a second channel unit connected to the secondary side of the transformer unit.
  11. 제10 항에 있어서,The method of claim 10,
    상기 전력량계는 상기 제1 채널부 및 상기 제2 채널부 중 하나의 경로를 선택적으로 제어하여 상기 변압부의 1차측 및 상기 변압부의 2차측 중 하나로 + 부터 공급되는 전압 및 전류의 검출 경로를 선택하는 것을 특징으로 하는 역률 보상 시스템.The electricity meter selectively controls a path of one of the first channel portion and the second channel portion to select a path for detecting voltage and current supplied from + to one of the primary side of the transformer and the secondary side of the transformer. A power factor correction system characterized by the above.
PCT/KR2010/006565 2010-06-28 2010-09-28 Power factor correction system WO2012002618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0061416 2010-06-28
KR1020100061416A KR101028795B1 (en) 2010-06-28 2010-06-28 System of power factor compensation

Publications (1)

Publication Number Publication Date
WO2012002618A1 true WO2012002618A1 (en) 2012-01-05

Family

ID=44050007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006565 WO2012002618A1 (en) 2010-06-28 2010-09-28 Power factor correction system

Country Status (2)

Country Link
KR (1) KR101028795B1 (en)
WO (1) WO2012002618A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513650A (en) * 2018-07-30 2021-03-16 德克萨斯仪器股份有限公司 Current sensor configuration and calibration

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370036B1 (en) * 2013-11-14 2014-03-05 대한기전 주식회사 Distributing board capable of adjusting power factor automatically
KR101901579B1 (en) * 2017-06-30 2018-09-27 (주)에스엔 Power factor controller and method
KR101929004B1 (en) * 2018-05-10 2018-12-13 주식회사 텔다 Hybrid power conversion system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356440A (en) * 1980-09-18 1982-10-26 The Charles Stark Draper Laboratory, Inc. Power factor correction system
KR20050041557A (en) * 2003-10-31 2005-05-04 한국전력공사 An electronic watthours-meter and mornitoring system with electronic watthours-meter
KR20090100584A (en) * 2008-03-20 2009-09-24 엘에스산전 주식회사 Power factor correction system using electronic electricity meter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749343B1 (en) 2005-05-16 2007-08-14 최은순 Automatic power factor controller
KR200433994Y1 (en) 2006-08-25 2006-12-14 엘에스산전 주식회사 An electronic watt-hour meter
KR100945368B1 (en) 2007-12-27 2010-03-08 엘에스산전 주식회사 Electronic watt hour meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356440A (en) * 1980-09-18 1982-10-26 The Charles Stark Draper Laboratory, Inc. Power factor correction system
KR20050041557A (en) * 2003-10-31 2005-05-04 한국전력공사 An electronic watthours-meter and mornitoring system with electronic watthours-meter
KR20090100584A (en) * 2008-03-20 2009-09-24 엘에스산전 주식회사 Power factor correction system using electronic electricity meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513650A (en) * 2018-07-30 2021-03-16 德克萨斯仪器股份有限公司 Current sensor configuration and calibration
CN112513650B (en) * 2018-07-30 2024-06-25 德克萨斯仪器股份有限公司 Current sensor configuration and calibration

Also Published As

Publication number Publication date
KR101028795B1 (en) 2011-04-12

Similar Documents

Publication Publication Date Title
WO2013047928A1 (en) System and method for detecting an abnormal waveform in a power distribution system
CA2273167C (en) Apparatus for and method of evenly distributing an electrical load across an n-phase power distribution network
WO2016171347A1 (en) Device for detecting improper wiring of watt-hour meter and method therefor
US9046553B2 (en) Method and apparatus for dynamic signal switching of a merging unit in an electrical power system
WO2018079905A1 (en) Apparatus for controlling output voltage for single-type converter, and method therefor
WO2012002618A1 (en) Power factor correction system
WO2013024919A1 (en) Connection error detecting apparatus and method which detect a connection error in a smart meter
WO2005091958A2 (en) Power line sensors and systems incorporating same
CN102142667A (en) Breaker and power monitoring system
WO2018230769A1 (en) Ami system for performing phase detection and synchronization in ami communication network employing relay communication scheme, and method therefor
WO2017043855A1 (en) Electrical device management system
WO2017043754A1 (en) Electronic watt-hour meter for transmitting power failure information in real-time and method for transmitting power failure information in real-time
WO2015147447A1 (en) Solar inverter diagnostic system and method therefor
WO2020159026A1 (en) Earth leakage circuit breaker and leakage current detection method thereof
WO2019156343A1 (en) Monitoring and load controlling system for switchboard
US10033194B2 (en) Intelligent electrical power network device
WO2018105875A1 (en) Power conversion apparatus and uninterruptible power supply comprising same
WO2020130357A1 (en) Magnetic field energy harvesting connection method and device considering voltage drop in power line
WO2020105844A1 (en) Earth leakage breaker and method for controlling earth leakage breaker
WO2022196846A1 (en) Energy storage system hierarchical management system
WO2021132867A1 (en) Electronic power meter having function of automatic correction and minimization of tolerance of measurement circuit element
WO2018074861A1 (en) Magnetic induction power supply device
WO2016060319A1 (en) Reactive power compensation apparatus and reactive power compensation method
WO2011129525A2 (en) Greenhouse gas measuring device for automatically calculating greenhouse gas emission volumes having a separable magnetic field sensor capable of being fitted without interruption in power
WO2023075258A1 (en) System for controlling power distribution system by using smart transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854164

Country of ref document: EP

Kind code of ref document: A1