WO2023085540A1 - 싸이올화 헤파린 및 골형성단백질-2 (bmp-2)로 표면개질된 폴리에테르에테르케톤 (peek)을 포함하는 임플란트 재료 및 그 제조방법 - Google Patents

싸이올화 헤파린 및 골형성단백질-2 (bmp-2)로 표면개질된 폴리에테르에테르케톤 (peek)을 포함하는 임플란트 재료 및 그 제조방법 Download PDF

Info

Publication number
WO2023085540A1
WO2023085540A1 PCT/KR2022/007023 KR2022007023W WO2023085540A1 WO 2023085540 A1 WO2023085540 A1 WO 2023085540A1 KR 2022007023 W KR2022007023 W KR 2022007023W WO 2023085540 A1 WO2023085540 A1 WO 2023085540A1
Authority
WO
WIPO (PCT)
Prior art keywords
peek
heparin
bmp
thiolated
polyetheretherketone
Prior art date
Application number
PCT/KR2022/007023
Other languages
English (en)
French (fr)
Inventor
태기융
김영하
고메이친
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2023085540A1 publication Critical patent/WO2023085540A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0003Not used, see subgroups
    • A61C8/0004Consolidating natural teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0003Not used, see subgroups
    • A61C8/0004Consolidating natural teeth
    • A61C8/0006Periodontal tissue or bone regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0013Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy with a surface layer, coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0016Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy polymeric material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3093Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for promoting ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses

Definitions

  • the present invention relates to an implant material comprising surface-modified polyetheretherketone (PEEK), and more particularly, to polyetheretherketone (PEEK) surface-modified with thiolated heparin or bone morphogenetic protein-2 (BMP-2). ), including polyetheretherketone (PEEK) surface-modified with thiolated heparin loaded with thiolated heparin, which can promote osseointegration and increase therapeutic effect after being implanted into the human body, and a manufacturing method thereof.
  • PEEK polyetheretherketone
  • BMP-2 bone morphogenetic protein-2
  • An implant material is a medical device for implantation in a living body that is implanted into a living body and exhibits an intended function. Therefore, implant materials must have biocompatibility with biological tissues and must meet chemical compatibility and mechanical compatibility. To date, the most widely used implant materials are titanium and titanium alloys with excellent biocompatibility. In addition, polyetheretherketone (PEEK), a synthetic semi-crystalline linear polyaromatic thermoplastic, has attracted great attention as an alternative biomedical implant to replace titanium and titanium alloys in orthopedic and dental devices. are receiving
  • PEEK Polyetheretherketone
  • PEEK has many superior properties over metal implants, including non-metal allergy, excellent chemical stability, biocompatibility and mechanical properties, radiolucency, and sterilization resistance.
  • One of the most important properties of PEEK is that its modulus of elasticity closely matches that of human bones, which can mitigate the effects of stress shielding.
  • PEEK has a relatively hydrophobic surface
  • cell adhesion is limited by its low surface energy. Since this unique bioinert property of PEEK reduces osseointegration, it has acted as a major obstacle to the clinical application of PEEK to orthopedic and dental implants. As such, the physical and chemical properties of the surface of the implant are important factors in cellular response, and are the factors that have the greatest influence on the process of osseointegration between the implant and bone tissue. Therefore, it is possible to improve the osseointegration ability when used as an implant by changing the surface properties of PEEK.
  • an osteoinductive agent such as BMP-2 (Bone morphogenetic protein-2) is one of the approaches to improve osseointegration of an implant through osteogenic differentiation of osteoblast precursors or stem cells due to its high osteoinductivity.
  • BMP-2 bone morphogenetic protein-2
  • BMP-2 is rapidly degraded in vivo, high initial doses and repeated administrations are required to achieve biological activity and maintain effective concentrations.
  • side effects such as bone overgrowth and immune abnormalities are a concern. Therefore, methods of providing controlled release of BMP-2 for effective delivery of BMP-2 are being studied.
  • BMP-2 as heparin has a high affinity to various growth factors such as bFGF (basic fibroblast growth factor), HGF (hepatocyte growth factor), and VEGF (vascular endothelial growth factor) while having the effect of preventing degradation.
  • bFGF basic fibroblast growth factor
  • HGF hepatocyte growth factor
  • VEGF vascular endothelial growth factor
  • TMAEMA 2-methacryloyloxyethyl trimethylammonium chloride
  • BMP-2 Breast growth factor-2
  • EGF epidermal growth factor
  • the present inventors implanted thiolated heparin on the PEEK surface and studied loading BMP-2 onto the thiolated heparin.
  • a technical problem to be achieved by the present invention is polyetheretherketone (PEEK) surface-modified with thiolated heparin and bone morphogenetic protein-2 (BMP-2), which has the effect of improving osteointegration and osteogenic activity of all osteoblasts.
  • PEEK polyetheretherketone
  • BMP-2 bone morphogenetic protein-2
  • an implant material containing polyetheretherketone (PEEK) surface-modified with thiolated heparin is provided.
  • the thiolated heparin may be obtained by reacting a compound containing a thiol group with heparin.
  • the conversion rate of the carboxy group of the heparin to a thiol group may be 5% or more and 60% or less.
  • the surface modification may be transplantation of thiolated heparin to the surface of polyetheretherketone (PEEK) at 0.1 ⁇ g/cm 2 or more and 100 ⁇ g/cm 2 or less.
  • PEEK polyetheretherketone
  • the water contact angle of the surface-modified polyether ether ketone may be greater than or equal to 5° and less than or equal to 50°.
  • the polyether ether ketone (PEEK) surface-modified with the thiolated heparin is prepared by modifying the carboxylic acid group of heparin to prepare thiolated heparin and the thiolated polyether ether ketone (PEEK) on the surface. It can be prepared by a manufacturing method comprising the step of transplanting heparin.
  • the thiolated heparin may be prepared by reacting the heparin with a compound containing a thiol group.
  • the concentration of the heparin aqueous solution may be 0.1 wt% or more and 30 wt% or less.
  • the step of transplanting the thiolated heparin comprises: treating the surface of the polyether ether ketone (PEEK) with ozone; adding the ozonated polyether ether ketone (PEEK) to an aqueous solution of thiolated heparin; , drying the polyether ether ketone (PEEK) taken out of the aqueous solution, and irradiating the dried polyether ether ketone (PEEK) with ultraviolet rays (UV).
  • PEEK polyether ether ketone
  • UV ultraviolet rays
  • the ozone treatment may be performed for 1 minute or more and 90 minutes or less.
  • the ultraviolet (UV) irradiation may be performed for 1 minute or more and 90 minutes or less.
  • an implant material comprising polyetheretherketone (PEEK) surface-modified with thiolated heparin loaded with bone morphogenetic protein-2 (BMP-2) is provided.
  • PEEK polyetheretherketone
  • the bone morphogenetic protein-2 may be loaded in the surface-modified polyetheretherketone (PEEK) at 10 ng/cm 2 to 100 ⁇ g/cm 2 .
  • PEEK polyetheretherketone
  • the bone morphogenetic protein-2 (BMP-2) loaded in the surface-modified polyetheretherketone (PEEK) may be maintained at 10% or more of the initial loading amount 2 weeks after loading.
  • the polyether ether ketone (PEEK) surface-modified with thiolated heparin loaded with bone morphogenetic protein-2 (BMP-2) is prepared by modifying the carboxylic acid group of heparin to produce thiolated heparin. and grafting the thiolated heparin onto the surface of the polyetheretherketone (PEEK). 2 (BMP-2).
  • the bone morphogenetic protein-2 (BMP-2) solution is applied to the polyether ether ketone (PEEK) surface implanted with the thiolated heparin. It may include dropping and incubating.
  • PEEK polyether ether ketone
  • Polyetheretherketone (PEEK) surface-modified with thiolated heparin according to the present invention increased the amount of MG63 cell proliferation by about 1.8 times, increased ALP activity by about 1.6 times, and mineralized MG 63 cells compared to unmodified PEEK. It was confirmed that the osseointegration and osteogenic activity of the cells were improved by increasing about 1.8 times.
  • thiolated heparin and bone morphogenetic protein-2 BMP-2
  • BMP-2 bone morphogenetic protein-2
  • PEEK polyetheretherketone
  • BMP-2 bone morphogenetic protein-2
  • Polyether ether ketone (PEEK) surface-modified with MG63 cells increased about 1.8 times, ALP activity increased about 3 times, and MG 63 cell mineralization increased about 4 times compared to unmodified PEEK. Osteogenic markers were found to be more increased.
  • the surface-modified polyether ether ketone (PEEK) uses a thiol-ol reaction through a simple procedure of ozone and ultraviolet (UV) treatment without using chemical reagents or organic solvents. It can be prepared by grafting into PEEK.
  • the implant material comprising polyetheretherketone (PEEK) surface-modified with thiolated heparin or PEEK surface-modified with thiolated heparin and bone morphogenetic protein-2 (BMP-2) according to the present invention is inexpensive. It is easy to handle, can be applied to implants with complex shapes, and can be usefully used as dental or orthopedic implants by improving osseointegration and osteogenic activity of pre-osteoblasts.
  • PEEK polyetheretherketone
  • BMP-2 bone morphogenetic protein-2
  • FIG. 1 is a schematic diagram of the synthesis of thiolated heparin (Hep-cysh).
  • Figure 2 is a schematic diagram showing the loading of BMP-2 after grafting thiolated heparin (Hep-cysh) into PEEK.
  • 3 is a graph showing the amount of peroxide produced according to the ozone treatment time.
  • FIG. 5 shows XPS wide-scan spectra and detailed spectra in the range of 159 to 171 eV of PEEK, PEEK irradiated with UV after ozone treatment (oPEEK), and PEEK implanted with thiolated heparin (hPEEK).
  • FIG. 7 is a graph showing water contact angles of PEEK, oPEEK, and hPEEK.
  • FIG. 9 is a graph showing the cytotoxicity test results of PEEK and hPEEK on osteoblasts (MG-63).
  • FIG. 10 is a graph showing cell proliferation results of MG63 cultured in PEEK, hPEEK, PEEK/BMP2, and hPEEK/BMP2 as measured by an alamar blue assay.
  • 11 is a graph showing relative alkaline phosphatase (ALP) activities of PEEK, hPEEK, PEEK/BMP2, and hPEEK/BMP2 after 7 days and 14 days.
  • ALP alkaline phosphatase
  • the present invention provides an implant material comprising polyetheretherketone (PEEK) surface-modified with thiolated heparin.
  • PEEK polyetheretherketone
  • PEEK polyetheretherketone
  • PEEK polyetheretherketone
  • the modulus of elasticity of polyetheretherketone (PEEK) closely matches that of human bones, which can mitigate the effect of stress shielding.
  • the thiolated heparin can be obtained through a reaction between a compound containing a thiol group and heparin, and preferably through a reaction between L-cysteine or cysteamine and heparin.
  • the surface-modifying material consists of L-cysteine, a natural amino acid, and heparin, which is previously used as an anticoagulant in the human body. . Therefore, in the case of using thiolated heparin, there is an advantage in that it is composed only of natural substances present in the human body, and thus has safety that does not cause biocompatibility problems even after decomposition in vivo.
  • the conversion rate of the carboxy group of heparin to a thiol group may be 5% or more and 60% or less, preferably 10% or more and 60% or less, and more preferably 10% or more and 40% or less.
  • the conversion rate (degree of thiolation) of heparin's carboxy group to thiol group can be changed. The ability to swell is reduced, so the release of human growth hormone can be slow.
  • the surface modification of the polyether ether ketone is performed through a thiol-ol chemical bond between the thiol group of thiolated heparin and the hydroxy group of polyether ether ketone (PEEK), so that the thiolated heparin is converted to polyether ether. It may be implanted on the surface of ketone (PEEK).
  • the thiolated heparin is present on the surface of polyetheretherketone (PEEK) in an amount of 0.1 ⁇ g/cm 2 or more and 100 ⁇ g/cm 2 or less, preferably 10 ⁇ g/cm 2 or more and 100 ⁇ g/cm 2 or less, more preferably 30 ⁇ g /cm 2 or more and 100 ⁇ g/cm 2 or less.
  • PEEK polyetheretherketone
  • the water contact angle of the surface-modified polyetheretherketone (PEEK) according to the present invention may be 5° or more and 50° or less, preferably 5° or more and 40° or less, more preferably 5° or more and 30° or less.
  • the surface-modified polyether ether ketone (PEEK) has a water contact angle in the above range, thereby improving the surface properties of the relatively hydrophobic polyether ether ketone (PEEK) and increasing the hydrophilicity of the surface to improve osseointegration.
  • the preparation method includes preparing thiolated heparin by modifying the carboxylic acid group of heparin.
  • the thiolated heparin may be prepared by reacting an aqueous solution of heparin with a compound containing a thiol group, preferably by reacting with L-cysteine or cysteamine.
  • the reaction between L-cysteine and heparin is carried out by reacting the amine group of L-cysteine with the carboxylic acid group of heparin to form an amide bond (-CO-NH-bond). It contains a thiol group (-SH).
  • the concentration of the heparin aqueous solution may be 0.1 wt% or more and 30 wt% or less, preferably 0.5 wt% or more and 20 wt% or less, and more preferably 1 wt% or more and 10 wt% or less.
  • the manufacturing method includes implanting the thiolated heparin on the surface of polyetheretherketone (PEEK).
  • the step of implanting the thiolated heparin includes ozone treatment on the surface of the polyether ether ketone (PEEK), putting the ozonated polyether ether ketone (PEEK) into an aqueous solution of thiolated heparin, and Drying the polyether ether ketone (PEEK) and irradiating the dried polyether ether ketone (PEEK) with ultraviolet rays (UV) may be included.
  • PEEK polyether etherketone
  • UV ultraviolet rays
  • the ozone treatment may be performed for 1 minute or more and 90 minutes or less, preferably 5 minutes or more and 60 minutes or less.
  • peroxide is generated on the surface of polyether ether ketone (PEEK), and the longer the ozone treatment time, the more peroxide is generated.
  • PEEK polyether ether ketone
  • the ultraviolet (UV) irradiation may be performed for 1 minute or more and 20 minutes or less, preferably 5 minutes or more and 10 minutes or less.
  • the wavelength of the ultraviolet (UV) may be 365 nm.
  • the present invention provides an implant material comprising polyetheretherketone (PEEK) loaded with bone morphogenetic protein-2 (BMP-2) and surface-modified with thiolated heparin.
  • PEEK polyetheretherketone
  • BMP-2 bone morphogenetic protein-2
  • BMP-2 is a strong stimulating factor for the differentiation of osteoblasts, and is used clinically to induce bone formation in spinal fixation and specific gastric fractures.
  • the bone morphogenetic protein-2 (BMP-2) is added to the surface-modified polyetheretherketone (PEEK) in an amount of 10 ng/cm 2 to 100 ⁇ g/cm 2 , preferably 100 ng/cm 2 to 100 ⁇ g/cm 2 , more preferably 150 ng/cm 2 to 100 ⁇ g/cm 2 .
  • the bone morphogenetic protein-2 (BMP-2) loaded in the surface-modified polyetheretherketone (PEEK) is 10% or more of the initial loading amount 2 weeks after loading, preferably 70% or more, More preferably, it may be maintained at 90% or more. Since BMP-2 is rapidly degraded in vivo, it is important to effectively deliver BMP-2 through controlled release of BMP-2 to achieve biological activity and maintain an effective concentration. If the loaded BMP-2 is released slowly without excessive release at the beginning, and the loaded bone morphogenetic protein-2 (BMP-2) is maintained on the surface of the surface-modified polyetheretherketone (PEEK) even after 2 weeks after loading, The effective concentration of BMP-2 can be maintained for a long time.
  • Polyetheretherketone (PEEK) surface-modified with thiolated heparin loaded with bone morphogenetic protein-2 (BMP-2) is prepared by modifying the carboxylic acid group of heparin to produce thiolated heparin and polyetheretherketone (PEEK) Bone morphogenetic protein-2 (BMP-2) on thiolated heparin of polyetheretherketone (PEEK) surface-modified with thiolated heparin, prepared by a manufacturing method comprising the step of implanting the thiolated heparin on the surface. ) It can be prepared by a manufacturing method comprising the step of loading.
  • BMP-2 bone morphogenetic protein-2
  • the step of loading the bone morphogenetic protein-2 (BMP-2) is the step of dropping and incubating the bone morphogenetic protein-2 (BMP-2) solution on the surface of the polyetheretherketone (PEEK) implanted with the thiolated heparin. It may contain.
  • the concentration of the bone morphogenetic protein-2 (BMP-2) solution may be 0.1 ng/uL or more and 1 ng/uL or less, preferably 0.15 ng/uL or more and 0.5 ng/uL or less.
  • the incubation may be performed at a temperature of 0 °C to 5 °C, preferably 4 °C for 12 to 24 hours or less, preferably 15 to 18 hours or less.
  • PEEK sheets were purchased from CS Hyde (Lake Villa, IL, USA). Heparin (sodium salt of porcine intestinal mucosa, MW 12 kDa) was purchased from Cellsus Ins (Cincinnati, IA, USA). Ethylcarbodiimide hydrochloride (EDC), 1-hydroxy-benzotriazole hydrate (HOBt), L-cysteine 97%, DL-dithiothreitol (DTT), ⁇ -glycerophosphate disodium salt hydrate, L- Ascorbic acid and Alizarin Red S were purchased from Sigma (St. Louis, MO, USA). Dexamethasone was purchased from Tokyo Chemical Industry (Tokyo, Japan).
  • Human/murine/rat recombinant BMP-2 and human/murine/rat BMP-2 standard ABTS ELISA development kits were purchased from Peprotech (Rocky Hill, NJ, USA). LabAssay ALP was manufactured by Fujifilm Wako Pure Chemical Co. (Osaka, Japan). (1-Hexadecyl) pyridinium chloride monohydrate (98%), Ellman's reagent and Micro BCA protein assay kit were purchased from ThermoFisher Scientific (Waltham, MA, USA). The 3.5 kDa MW cutoff dialysis membrane was purchased from Spectrum Laboratories, Inc. (Piscataway, NJ, USA).
  • Hep-cySH Thiolated heparin
  • the PEEK sheets were washed in 70% ethanol for 20 min followed by deionized water for 20 min in a sonicator and dried under vacuum before use in all experiments.
  • the PEEK sheet was treated with ozone generated from dried oxygen gas passed through an ozone generator (Ozone generator LAB-I, Ozonetech) at a pressure of 2 bar and an oxygen flow rate of about 0.3 l/min in a pyrex vessel.
  • the density of peroxide produced according to the ozone treatment time was analyzed.
  • PEEK sheets were ozonated for 5, 15, 30, 60, 75 and 90 minutes. Then, the peroxide produced on the surface of the ozone-treated PEEK sheet was measured spectrophotometrically by the iodide method.
  • the treated sheet was placed in benzene-isopropyl alcohol (volume ratio 1:6) containing potassium iodide and 1 ppm ferric chloride and held at 60 DEG C for 10 minutes.
  • oxidized iodine as triiodide anion was determined from the absorbance of the solution with a molar absorbance of 2.3 x 10 4 l/mol cm at 360 nm.
  • the density of peroxide was expressed as moles of peroxide per cm 2 of the PEEK sheet.
  • Thiolated heparin was implanted onto the ozonated PEEK surface by irradiation with UV light. Briefly, after ozone treatment for 60 minutes, the PEEK sheet was immediately put into 1 wt% aqueous solution of thiolated heparin (Hep-cySH) for 15 minutes, taken out for drying at room temperature for 20 minutes or less, and then the surface was gently blown with compressor air. Then, the sheet was irradiated with 365 nm UV light for 10 minutes in the presence of air using an OmniCure series 1000 light source (EXFO, Vanier, Quebec, Canada) with a distance of 12 cm between the sample and the UV probe.
  • Hep-cySH thiolated heparin
  • the sheet was thoroughly washed with distilled water containing a surfactant for 24 hours and then washed with distilled water. After washing, the PEEK sheets were blow-dried with compressed air and stored under an argon gas purge vessel for further testing.
  • the amount of heparin implanted on the PEEK sheets was determined by TBO assay. Briefly, sheets were incubated in 200 ⁇ L of 0.005% TBO in aqueous 0.01 M HCl/0.2 wt% NaCl for 1 hour at 37o with gentle shaking. In this process, a Hep (heparin)/TBO (toluidine blueO) complex was formed on the surface of the sheet, and then the sheet was rinsed with distilled water.
  • PEEK unmodified PEEK
  • oPEEK ozone-treated and UV-irradiated PEEK
  • the surface wettability of unmodified peek (PEEK), UV-irradiated PEEK (oPEEK) after ozone treatment, and heparin-grafted PEEK (hPEEK) was measured using a contact angle goniometer (Phoenix 300, Surface Electro Optics). All samples were completely dried before measurement. Touch mode was applied with a droplet volume of 2 ⁇ L. An average of three individual samples were taken.
  • Human/murine/rat recombinant BMP-2 was loaded onto a PEEK sheet (0.5 cm x 0.5 cm) by physical adsorption at 4°C. Briefly, 50ng/200uL BMP-2 solution was dropped onto PEEK and hPEEK sheets and incubated at 4 °C for 18 h. After incubation, the concentration of BMP-2 in the instillation solution was measured by human/murine/rat BMP-2 Standard ABTS ELISA Development Kit. The amount of BMP-2 immobilized on the PEEK sheet was calculated as the difference between the amount of BMP2 in the original solution and the final solution. To investigate the release kinetics of BMP-2, the sheets were incubated for predetermined time points at 37oC in PBS containing 0.1% BSA and 0.01% sodium azide. The amount of BMP-2 released was measured using ELISA.
  • MG-63 cells from the Korean Cell Line Bank (Seoul, Korea). With BMP-2 loading, cell proliferation, alkaline phosphatase activity and mineralization of MG-63 cells were evaluated. Cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% FBS and 1% antibiotic-antimycotic prior to isolation for experiments. For all in vitro cell response experiments, PEEK sheets were sterilized with 70% ethanol and rinsed with sterile deionized water before use. The dimensions of the PEEK sheet were 0.5 cm x 0.5 cm.
  • DMEM Dulbecco's Modified Eagle Medium
  • the cytotoxicity test of the PEEK sheet was performed according to ISO/EN 10993 Part 5 guidelines. To obtain the extraction medium, DMEM medium was incubated with PEEK and hPEEK respectively at 37oC for 24 hours. MG-63 cells were seeded in a 48-well plate at a concentration of 1 x 10 4 cells/well and incubated at 37oC for 24 hours. After 24 hours incubation, the medium was replaced with extraction medium and the cells were incubated for an additional 24 hours. Cell viability was analyzed by CCK-8 assay.
  • MG63 cells were seeded in a PEEK sample in a 48-well plate at a density of 1 ⁇ 10 4 cells/mL.
  • the culture medium contained 10% FBS, 1% antibiotic-antimycotic, 10 nM dexamethasone, 10 mM ⁇ -Glycerophosphate disodium salt hydrate, 50 ⁇ M/mL L-ascorbic acid. It was changed to an osteogenic induction medium composed of Dulbecco's modified Eagle's medium (DMEM) containing (L-ascorbic acid).
  • DMEM Dulbecco's modified Eagle's medium
  • samples were rinsed with phosphate buffered saline (PBS), then transferred to a new well plate and treated with Alamar blue reagent for 2 hours.
  • the incubation solution was then transferred to a 96-well plate and fluorescence was measured with a microplate reader (Varioskan LUX, Thermofisher Scientific) using excitation/emission wavelengths of 560/590 nm.
  • the cell seeding and culturing procedure was the same as the cell propagation procedure. After 7 and 14 days of culture, the sheets were rinsed with PBS and 0.9% NaCl and then the cells were lysed with 1% Triton-X in deionized water. Then, the conversion of p-nitrophenyl phosphate disodium to p-nitrophenol at 37 °C by measuring the absorbance at 405 nm using a microplate reader. By determining the extent, the ALP activity of MG 63 cells on the sheet was measured via LabAssay ALP. The total protein content of the same samples was determined using the Micro Bicinchoninic acid (BCA) method. ALP activity was calculated relative to the total amount of protein in the sample.
  • BCA Micro Bicinchoninic acid
  • Cell seeding and culturing procedures were performed identically to cell proliferation procedures. After 14 days of culture, the samples were washed three times with PBS, fixed in 10% formalin for 20 minutes and carefully aspirated with deionized water. The samples were then stained with 1% Alizarin red solution for 30 minutes at room temperature. After that, the sample was washed several times with distilled water. For semi-quantification of staining, the stained cells were destained with 10% cetylpyridinium chloride and measured at a wavelength of 562 nm using a microplate reader.
  • Data were expressed as mean ⁇ standard deviation. Data were statistically analyzed using Student's t-test. Differences were considered significant when p ⁇ 0.05.
  • thiolated heparin was prepared using natural amino acid L-cysteine instead of cysteamine (FIG. 1). Therefore, thiolated heparin is composed only of natural substances present in the human body. L-cysteine has been used in pharmaceutical substances, pharmaceuticals and nutraceuticals, and heparin has been used as an anticoagulant. Therefore, degradation products of thiolated heparin in vivo are unlikely to cause biocompatibility problems.
  • Replacing cysteamine with L-cysteine did not significantly change the thiolation of heparin. The degree of thiolation can be adjusted from 10% to 40% with the amount of EDC/HOBt relative to the carboxyl group of heparin.
  • ozone treatment and UV irradiation are used to implant thiolated heparin (Hep-cySH) into PEEK surfaces, which is an easy and efficient method for industrial application.
  • Hep-cySH thiolated heparin
  • the PEEK sheet was treated with ozone to introduce peroxide to the surface. Since the ozone treatment time is one of the variables, the peroxide formation on the PEEK surface as a function of the ozone treatment time was analyzed spectrophotometrically using the iodide method. The peroxide concentration of PEEK increased linearly with ozone treatment time and reached a plateau after 60 min (Fig. 3). Therefore, 60 minutes was chosen as the ozone treatment time for further experiments.
  • Peroxide formation on the PEEK surface was further verified by XPS O1s spectra as shown in FIG. 4 . Then, adsorption of Hep-cySH to the oxidized PEEK sheet was induced by immersing the peroxide-functionalized PEEK sheet in 1 wt% Hep-cySH aqueous solution at room temperature. Next, the PEEK sheet to which Hep-cySH was adsorbed was taken out of the solution, and thiol or disulfide group of Hep-cySH bound to the PEEK sheet was reacted through thiol-ol reaction for 10 minutes. It was fixed by UV irradiation.
  • Hep-cySH is mediated by a reaction mechanism similar to that of the preceding literature (K. Gwon, E. et al., 2017).
  • the amount of thiolated heparin implanted was 31 ⁇ 3.0 ⁇ g/cm 2 quantified by TBO assay.
  • heparin was either covalently or non-covalently immobilized on the PEEK surface.
  • introducing a functional group for covalently immobilizing heparin on the PEEK surface required a series of complex chemical treatment steps. This method may also have limitations in biomedical applications due to the adverse effects of residues from chemical treatment.
  • thiolated heparin is covalently bonded to the PEEK surface by combining ozone treatment and UV irradiation by introducing a thiol-ol chemical bond between thiol and hydroxyl groups with the help of UV irradiation in the presence of oxygen. It has been demonstrated that grafting is possible. Both of these methods are low cost, easy to handle and industrial friendly, so they have the potential to be scaled up for industrial applications.
  • the graph on the left of FIG. 5 shows XPS wide-scan spectra of PEEK, oPEEK, and hPEEK, and the graph inserted on the right shows the respective S2p core-level spectra. Characteristic peaks of S2p and N1s were only detected in hPEEK compared to PEEK or oPEEK. This supports the successful transplantation of thiolated heparin into PEEK.
  • the high-resolution S2p spectrum of hPEEK shows two peak regions with binding energies of ⁇ 162 and ⁇ 168 eV.
  • the higher binding energy portion assigned to a sulfur atom bonded to two or three oxygen atoms is a thiol-ol reaction or thiolated heparin itself. It is due to the sulfone group (-SO 3 ) generated from bonding the hydroxyl group of PEEK through the sulfonate of . On the other hand, the low binding energy part is due to the remaining unreacted thiol groups (-SH) of thiolated heparin.
  • hPEEK Compared to thiolated heparin, hPEEK had a higher ratio of -SO 3 peak to -SH peak (Fig. 6), supporting the covalent binding of heparin in PEEK. Therefore, it was confirmed by the results of the XPS spectra that heparin was successfully implanted on the PEEK surface.
  • the water contact angles of PEEK, oPEEK and hPEEK were measured (FIG. 7). Since PEEK itself is very hydrophobic, the water contact angle of PEEK is 85° ⁇ 2°, whereas the water contact angle is reduced to 35° ⁇ 2° for oPEEK treated with ozone and only UV irradiation. This result showed that the surface became more hydrophilic after ozone treatment and UV irradiation. By implanting heparin into PEEK, the water contact angle was further reduced to 28° ⁇ 2° due to the additional hydrophilicity of heparin. Since proper hydrophilicity of the implant is one of the important factors for cellular response, the biological activity of PEEK can be improved as the hydrophobicity of the PEEK surface is reduced by implantation with thiolated heparin.
  • Heparin implanted on the PEEK surface enables BMP-2 loading due to its heparin binding affinity for BMP-2.
  • unmodified peeks can also load BMP-2 by non-specific physisorption.
  • the difference in BMP-2 loading between PEEK and hPEEK was significant and large, but less than 50% (FIG. 8A). Therefore, the benefit of transplantation with thiolated heparin simply in terms of BMP-2 loading is not dramatic.
  • the thiolated heparin implantation method used in the present invention did not cause a noticeable cytotoxicity problem, which is an obvious result considering the green chemistry used in the present invention, which does not use any organic solvent or chemical reagent.
  • a hydrophilic surface with a water contact angle of 20° to 40° has been reported to be advantageous for cell attachment and proliferation. Therefore, MG63 cells cultured in hPEEK with a water contact angle of 28° ⁇ 2° may exhibit a higher proliferation rate compared to PEEK/BMP2 (49° ⁇ 3°) or PEEK (81° ⁇ 2°). That is, the hydrophilicity of PEEK to which BMP-2 was physisorbed (PEEK/BMP2) could contribute to a higher proliferation rate than PEEK.
  • the implantation of thiolated heparin onto the PEEK surface in the present invention significantly improved the proliferation of osteoblasts, but the additional cell proliferation enhancement effect obtained by loading BMP-2 on PEEK (hPEEK) implanted with thiolated heparin was not observed
  • ALP activity increased over time in all PEEKs.
  • the hPEEK/BMP2 group showed the highest ALP activity compared to the other groups at both 7 and 14 days.
  • the ALP activity (hPEEK/BMP2 vs. hPEEK) was greatly enhanced by BMP-2 loading on hPEEK, clearly showing that BMP-2 has a positive effect on the osteogenic activity of the hPEEK surface. This result was different from the cell proliferation results in which hPEEK and hPEEK/BMP2 showed similar patterns. Therefore, it became clear that the role of BMP-2 is to enhance more specific osteogenic activity.
  • PEEK/BMP2 in which BMP-2 was loaded into unmodified PEEK did not increase ALP activity compared to unmodified PEEK. This indicates that it is important to implant heparin into PEEK for proper osteogenic activity of loaded BMP-2.
  • the three-dimensional structure is damaged and denatured, and bioactivity may be lost due to proper interaction with the receptor.
  • the PEEK implanted with heparin of the present invention showed an effect of increasing the hydrophilicity of PEEK and the proliferation of osteoblasts, and showed an effect of increasing the osteogenic activity of the PEEK surface even when BMP-2 was not loaded.
  • heparin was transplanted into PEEK in a relatively eco-friendly manner through a thiol-ol reaction using ozone and UV treatment without using chemical reagents or organic solvents.
  • the present invention is inexpensive, easy to handle, and can be applied to complex shapes such as commercially available PEEK implants.
  • the implantation of thiolated heparin of the present invention was confirmed by XPS and water contact angle analysis.
  • the thiolated heparin-implanted PEEK of the present invention provides more efficient BMP-2 loading than unmodified PEEK in which the loaded BMP-2 is rapidly released.
  • transplantation of thiolated heparin into PEEK also improved the bioactivity of PEEK in terms of proliferation and osteogenic differentiation of MG 63 compared to unmodified PEEK.
  • Effects related to more characteristic osteogenic activity, including ALP activity and calcium deposition of MG 63, according to BMP-2 loading on PEEK were only seen after implantation with thiolated heparin. Further in vivo studies on the BMP-2-loaded thiolated heparin-implanted PEEK of the present invention will provide more reliable results on enhancement of osteogenic activity as well as osseointegration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Dentistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Ceramic Engineering (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developmental Biology & Embryology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 싸이올화 헤파린 및 골형성단백질-2 (BMP-2)로 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하는 임플란트 재료 및 그 제조방법에 관한 것이다. 본 발명에 따른 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하는 임플란트 재료는 비용이 저렴하고 취급이 간편하며 복잡한 모양의 임플란트에도 적용할 수 있고, 비개질 PEEK 에 대비하여BMP-2 를 효율적으로 로딩하고, 더 긴 시간 동안 방출할 수 있어 전 조골세포의 골유착 및 골형성 활성을 개선하여 치과 또는 정형외과 임플란트로서 유용하게 사용될 수 있다.

Description

싸이올화 헤파린 및 골형성단백질-2 (BMP-2)로 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하는 임플란트 재료 및 그 제조방법
본 발명은 표면개질된 폴리에테르에테르케톤(PEEK)을 포함하는 임플란트 재료에 관한 것으로, 더욱 상세하게는 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK) 또는 골형성단백질-2 (BMP-2)가 로딩된 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하여, 인체 내에 이식된 후 골유착을 촉진하고 치료 효과를 높일 수 있는 임플란트 재료 및 그 제조방법에 관한 것이다.
임플란트 재료는 생체 내에 이식되어 소기의 기능을 발휘하는 생체 이식용 의료기구이다. 따라서, 임플란트 재료는 생체조직에 대하여 생체 친화성을 가져야 하고, 화학적 적합성 및 기계적 적합성을 충족시켜야 한다. 현재까지 임플란트 재료로서 가장 많이 사용되고 있는 것은 생체 적합성이 뛰어난 티타늄 및 티타늄 합금이 있다. 그 외에도 합성 반결정질 (semi-crystalline) 선형 다방향족 (polyaromatic) 열가소성 수지인 폴리에테르에테르케톤 (PEEK)은 정형외과 및 치과 기기에서 티타늄과 티타늄 합금을 대체할 수 있는 대체 생체의학 임플란트로 큰 주목을 받고 있다.
폴리에테르에테르케톤 (PEEK)는 금속 알러지가 없고, 화학적 안정성, 생체 적합성 및 기계적 특성이 우수하고, 방사선 투과성이 있고, 멸균 내성이 있는 점을 포함하여 금속 임플란트보다 많은 우수한 특성을 가진다. PEEK의 가장 중요한 특성 중 하나는 탄성 계수가 인체 뼈와 밀접하게 일치하여 응력 차폐의 영향을 완화할 수 있다는 것이다.
그러나, PEEK는 상대적으로 소수성인 표면을 가지므로, 낮은 표면 에너지에 의해 세포 접착이 제한된다. PEEK의 이러한 고유한 생체 비활성 특성은 골유착을 저하시키므로, PEEK의 정형외과 및 치과 임플란트로의 임상적 적용에 큰 장애물로 작용하였다. 이와 같이, 임플란트의 표면의 물리적 특성 및 화학적 특성은 세포 반응에 중요한 요소이며, 임플란트와 골조직 간의 골유착 과정에 가장 큰 영향을 주는 인자이다. 따라서, PEEK 의 표면 특성을 변경하여 임플란트로서 사용되었을 때 골 유착 능력을 향상시킬 수 있다.
이에, 지난 몇 년 동안 PEEK의 골 형성 활동과 뼈-임플란트 통합을 향상시키기 위해 PEEK의 표면 특성을 변경하기 위한 수많은 연구가 진행되었다. 줄기세포 및 전 조골세포의 세포 접착, 골형성 및 뼈-임플란트 통합을 향상시키기 위하여, 금속, 세라믹, 펩타이드 또는 단백질이 증착 기술을 통해 PEEK의 표면에 코팅되었다. 한편으로는, PEEK 의 친수성 및 생체 활성을 향상시키기 위하여, 습식 화학 기술을 사용하여 수산기, 카르복실기, 설폰산기, 인산기와 같은 다양한 작용기가 PEEK 의 표면에 도입되었다.
한편, BMP-2 (Bone morphogenetic protein-2)와 같은 골유도제의 전달은 높은 골유도성으로 인해 조골세포 전구체 또는 줄기세포의 골형성 분화를 통해 임플란트의 골유착을 개선하는 접근법 중 하나이다. BMP-2 는 생체 내에서 빨리 분해되기 때문에, 생물학적 활성을 달성하고 유효 농도를 유지하기 위해서는 높은 초기 용량과 반복 투여가 필요하다. 그러나, BMP-2 가 과다-생리적 농도인 경우, 뼈의 과성장 및 면역 이상반응과 같은 부작용이 우려된다. 따라서 BMP-2의 효과적인 전달을 위해 BMP-2의 제어 방출을 제공하는 방법이 연구되고 있다.
헤파린은 분해를 방지하는 효과를 가지면서도 bFGF(basic fibroblast growth factor), HGF(hepatocyte growth factor), VEGF(vascular endothelial growth factor)와 같은 다양한 성장인자에도 높은 결합력을 가지고 있으므로, BMP-2 의 효과적인 전달을 위해 헤파린 이식이 널리 적용되고 있다. 헤파린이 이식된 물질을 통해 BMP-2의 방출을 조절하여 골형성 활성 및 골-임플란트 통합의 개선을 보여주는 많은 연구가 있다.
PEEK 표면에 헤파린을 이식하는 것에 대해서는 여러 연구가 있다. Sun Hui와 동료들은 아크릴산의 UV 그래프팅을 통해 카르복실기를 도입한 다음 아민 기능화를 위해 아디프산 아민을 통합하여 PEEK 표면에 헤파린을 성공적으로 이식했다. 그런 다음, EDC/NHS 화학을 사용하여 아민 기능화된(functionalized) PEEK에 헤파린을 공유 결합시켰다. 이 연구에서는 헤파린 처리된 PEEK의 표면 형태, 물 접촉각 및 화학적 조성만을 조사했다.
또 다른 연구자 그룹은 광유도 자가-개시 그래프트 중합(photoinduced self-initiated graft polymerization)에 의해 PEEK 표면에 도입된 양이온성 2-메타크릴로일옥시에틸 트리메틸암모늄 클로라이드(TMAEMA)에 이온 결합에 의해 PEEK 표면에 헤파린을 이식했다. 이 연구의 목적은 혈액 응고가 오래 지속되는 새로운 생체 물질을 개발하는 것이다.
선행문헌(K. Gwon, E. et al., 2017) 에서는 섬유연골 재생을 위한 BMP-2(Bone morphogenetic protein-2), 상처 치유 촉진을 위한 표피 성장 인자(EGF), 인간 유래 지방 줄기 세포의 간 분화를 위한 다중 성장 인자(bFGF, EGF 및 HGF)와 같은 성장 인자의 제어 방출을 보여주는 생리활성 싸이올화 헤파린 기반 하이드로겔 시스템을 개발했다.
그러나, 현재까지는 전 조골 세포의 더 나은 골 형성 활성을 제공하기 위해 싸이올화 헤파린이 이식된 PEEK 표면에서의 BMP-2의 제어 방출에 관한 연구는 없다.
이에, 본 발명자들은 전 조골세포 (pre-osteoblast) 의 골 형성 활성을 개선하기 위하여, PEEK 표면에 싸이올화 헤파린을 이식하고, BMP-2 를 싸이올화 헤파린에 로딩하는 것을 연구하였다.
본 발명이 이루고자 하는 기술적 과제는 전 조골세포의 골유착 및 골형성 활성을 개선하는 효과를 가지는, 싸이올화 헤파린 및 골형성단백질-2 (BMP-2)로 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하는 임플란트 재료를 제공하고자 한다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 측면에 따라, 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하는 임플란트 재료가 제공된다.
일 구현 예에서, 상기 싸이올화 헤파린은 싸이올기를 포함하는 화합물과 헤파린의 반응을 통해 얻어지는 것일 수 있다.
일 구현 예에서, 상기 헤파린의 카르복시기의 싸이올기로의 전환율은 5 % 이상 60 % 이하인 것일 수 있다.
일 구현 예에서, 상기 표면개질은 폴리에테르에테르케톤 (PEEK)의 표면에 싸이올화 헤파린이 0.1 μg/cm2 이상 100 μg/cm2 이하로 이식되는 것일 수 있다.
일 구현 예에서, 상기 표면개질된 폴리에테르에테르케톤 (PEEK)의 물 접촉각은 5° 이상 50° 이하인 것일 수 있다.
일 구현 예에서, 상기 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)은, 헤파린의 카르복실산기를 변형시킴으로써 싸이올화 헤파린을 제조하는 단계 및 폴리에테르에테르케톤 (PEEK)표면에 상기 싸이올화 헤파린을 이식하는 단계를 포함하는 제조방법으로 제조될 수 있다.
일 구현 예에서, 상기 싸이올화 헤파린은, 상기 헤파린을 싸이올기를 포함하는 화합물과 반응시킴으로써 제조되는 것일 수 있다.
일 구현 예에서, 상기 헤파린 수용액의 농도는, 0.1 wt% 이상 30 wt % 이하인 것일 수 있다.
일 구현 예에서, 상기 싸이올화 헤파린을 이식하는 단계는, 상기 폴리에테르에테르케톤 (PEEK)표면에 오존 처리를 하는 단계, 상기 오존 처리된 폴리에테르에테르케톤 (PEEK)을 싸이올화 헤파린 수용액에 넣는 단계, 상기 수용액으로부터 꺼낸 폴리에테르에테르케톤 (PEEK)을 건조시키는 단계 및 상기 건조된 폴리에테르에테르케톤 (PEEK)에 자외선 (UV)을 조사시키는 단계를 포함하는 것일 수 있다.
일 구현 예에서, 상기 오존 처리는 1 분 이상 90 분 이하 동안 수행되는 것일 수 있다.
일 구현 예에서, 상기 자외선 (UV)조사는 1분 이상 90 분 이하 동안 수행되는 것일 수 있다.
본 발명의 또 다른 측면에 따라, 골형성단백질-2 (BMP-2)가 로딩된 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하는 임플란트 재료가 제공된다.
일 구현 예에서, 상기 골형성단백질-2 (BMP-2)는 상기 표면개질된 폴리에테르에테르케톤 (PEEK)에 10 ng/cm2 내지 100 μg/cm2 으로 로딩되는 것일 수 있다.
일 구현 예에서, 상기 표면개질된 폴리에테르에테르케톤 (PEEK)에 로딩된 상기 골형성단백질-2 (BMP-2)는 로딩 후 2 주 후에 초기 로딩량의 10 % 이상 유지되는 것일 수 있다.
일 구현 예에서, 상기 골형성단백질-2 (BMP-2)가 로딩된 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)은, 헤파린의 카르복실산기를 변형시킴으로써 싸이올화 헤파린을 제조하는 단계 및 폴리에테르에테르케톤(PEEK) 표면에 상기 싸이올화 헤파린을 이식하는 단계를 포함하는 제조방법으로 제조된, 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK) 의 싸이올화 헤파린에 골형성단백질-2 (BMP-2)를 로딩하는 단계를 포함하는 제조방법으로 제조될 수 있다.
일 구현 예에서, 상기 골형성단백질-2 (BMP-2)을 로딩하는 단계는, 상기 싸이올화 헤파린이 이식된 폴리에테르에테르케톤(PEEK) 표면에 골형성단백질-2 (BMP-2)용액을 떨어뜨리고 인큐베이션 하는 단계를 포함하는 것일 수 있다.
본 발명에 따른 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)는 비개질 PEEK 에 대비하여 MG63 세포 증식양이 약 1.8 배 증가하고, ALP 활성이 약 1.6배 증가하고, MG 63세포 미네랄화가 약 1.8 배 증가하여 세포의 골유착 및 골형성 활성이 개선되었음이 확인되었다.
또한, 상기 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)에 골형성단백질-2 (BMP-2)이 추가로 포함된, 본 발명에 따른 싸이올화 헤파린 및 골형성단백질-2 (BMP-2) 로 표면개질된 폴리에테르에테르케톤 (PEEK)는 비개질 PEEK 에 대비하여 MG63 세포 증식양이 약 1.8 배 증가하고, ALP 활성이 약 3 배 증가하고, MG 63세포 미네랄화가 약 4 배 증가하여 골형성 마커가 보다 더 증가한 것으로 나타났다.
또한, 본 발명에 따른 표면개질된 폴리에테르에테르케톤 (PEEK)은 화학시약이나 유기 용매를 사용하지 않고, 오존과 자외선(UV) 처리라는 간편한 절차를 통해 싸이올-올 반응을 이용함으로써 친환경적으로 헤파린을 PEEK에 이식하여 제조될 수 있다.
따라서, 본 발명에 따른 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK) 또는 싸이올화 헤파린 및 골형성단백질-2 (BMP-2)로 표면개질된 PEEK 을 포함하는 임플란트 재료는, 비용이 저렴하고 취급이 간편하며 복잡한 모양의 임플란트에도 적용할 수 있고, 전 조골세포의 골유착 및 골형성 활성을 개선하여, 치과 또는 정형외과 임플란트로서 유용하게 사용될 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
첨부된 도면은 해당 기술 분야의 통상의 기술자에게 본 발명의 내용을 보다 상세하게 설명하기 위한 것으로 본 발명의 기술적 사상이 이에 한정되는 것은 아니다.
도 1은, 싸이올화 헤파린 (Hep-cysh)의 합성 개략도 (scheme) 이다.
도 2는, PEEK에 싸이올화 헤파린 (Hep-cysh)을 이식한 뒤 BMP-2 을 로딩하는 것을 나타낸 개략도이다.
도 3은, 오존 처리 시간에 따른 과산화물 생성량을 나타낸 그래프이다.
도 4 는, 비개질 (Pristine) PEEK 및 60분 오존 처리 후(After ozonation) PEEK의 O1s 코어 레벨 스펙트럼이다.
도 5 는, PEEK, 오존 처리 후 UV 조사된 PEEK (oPEEK) 및 싸이올화 헤파린이 이식된 PEEK (hPEEK) 의 XPS 와이드 스캔 (wide-scan) 스펙트럼 및 159 ~ 171 eV 구간의 상세 스펙트럼이다.
도 6 은, 싸이올화 헤파린 (Thiolated Heparin) 및 hPEEK (Heparin-grafted PEEK) 의 S2p 코어 레벨 스펙트럼이다.
도 7 은, PEEK, oPEEK 및 hPEEK 의 물 접촉각을 나타낸 그래프이다.
도 8 는 (A) 실험관내(in vitro) 에서 PEEK 및 hPEEK 표면에 로딩된 BMP-2 의 양을 나타낸 그래프이고, (B) 실험관내 (in vitro) 에서 14일 동안 PEEK 및 hPEEK 로부터 방출된 BMP-2 의 양을 나타낸 그래프이다.
도 9 는, 조골세포 (MG-63) 에 대한 PEEK 및 hPEEK 의 세포독성 시험 결과를 나타낸 그래프이다.
도 10 은, 알라마 블루 측정법 (alamar blue assay) 으로 측정한 PEEK, hPEEK, PEEK/BMP2 및 hPEEK/BMP2 에 배양된 MG63의 세포 증식 결과를 나타낸 그래프이다.
도 11 은, PEEK, hPEEK, PEEK/BMP2 및 hPEEK/BMP2 의 7일 후 및 14 일 후의 상대적인 ALP (Alkaline phosphatase) 활성을 나타내는 그래프이다.
도 12는 (A) PEEK, hPEEK, PEEK/BMP2 및 hPEK/BMP2의 알리자린 레드(alizarin red) 염색 결과를 나타낸 사진이고, (B) PEEK, hPEEK, PEEK/BMP2 및 hPEEK/BMP2의 알리자린 레드 (alizarin red) 염색의 반정량적 (Semi-quantitative) 분석 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며, 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 발명은 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하는 임플란트 재료를 제공한다. 폴리에테르에테르케톤 (PEEK)는 금속 알러지가 없고, 화학적 안정성, 생체 적합성 및 기계적 특성이 우수한 열가소성 수지이다. 따라서, 폴리에테르에테르케톤 (PEEK)를 임플란트 재료로서 사용하면, 티타늄 및 티타늄 합금 임플란트의 큰 문제점이었던 알러지 (allergy) 반응을 해결할 수 있다. 또한, 폴리에테르에테르케톤 (PEEK)의 탄성 계수는 인체 뼈와 밀접하게 일치하여 응력 차폐의 영향을 완화할 수 있다.
본 발명에서, 상기 싸이올화 헤파린은 싸이올기를 포함하는 화합물과 헤파린의 반응을 통해 얻어질 수 있고, 바람직하게는 L-시스테인 또는 시스테아민과 헤파린의 반응을 통해 얻어질 수 있다. PEEK 표면을 표면개질하는 물질로서 L-시스테인과 헤파린의 반응을 통해 얻은 싸이올화 헤파린을 사용하는 경우에는, 표면개질 물질이 천연 아미노산인 L-시스테인과 기존에 인체에 항응고제로서 사용되고 있는 헤파린으로 구성된다. 따라서, 싸이올화 헤파린을 사용하는 경우에는 인간 몸에 존재하는 천연 물질로만 구성되어, 생체 내에서 분해 후에도 생체 적합성 문제를 일으킬 우려가 없는 안전성을 갖는 물질이라는 장점이 있다.
본 발명에서, 상기 헤파린의 카르복시기의 싸이올기로의 전환율은 5 % 이상 60 % 이하, 바람직하게는 10 % 이상 60 % 이하, 보다 바람직하게는 10 % 이상 40% 이하일 수 있다. 반응물 간의 몰비를 조절함으로써 헤파린의 카르복시기의 싸이올기로의 전환율 (싸이올화 정도)를 변화시킬 수 있고, 헤파린의 싸이올화 정도가 클수록, 가교 정도가 크기 때문에 수화젤의 강도가 커지며, 또한 수용액 환경에서 부풀어 오르는 능력이 감소하게 되어, 인간 성장 호르몬의 방출이 천천히 진행될 수 있다.
본 발명에서, 상기 폴리에테르에테르케톤 (PEEK)의 표면개질은 싸이올화 헤파린의 싸이올기와 폴리에테르에테르케톤 (PEEK)의 하이드록시기의 싸이올-올 화학결합을 통해 싸이올화 헤파린이 폴리에테르에테르케톤 (PEEK)의 표면에 이식되는 것일 수 있다. 상기 싸이올화 헤파린은 폴리에테르에테르케톤 (PEEK)의 표면에 0.1 μg/cm2 이상 100 μg/cm2 이하, 바람직하게는 10 μg/cm2 이상 100 μg/cm2 이하, 보다 바람직하게는 30 μg/cm2 이상 100 μg/cm2 이하로 이식될 수 있다.
본 발명에 따른 상기 표면개질된 폴리에테르에테르케톤 (PEEK)의 물 접촉각은 5°이상 50°이하, 바람직하게는 5°이상 40°이하, 보다 바람직하게는 5°이상 30°이하 일 수 있다. 상기 표면개질된 폴리에테르에테르케톤 (PEEK)는 상기 범위의 물 접촉각을 가짐으로써, 상대적으로 소수성인 폴리에테르에테르케톤 (PEEK)의 표면 특성을 개선하여, 표면의 친수성을 증가시켜 골유착을 개선할 수 있다.
상기 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)은, 헤파린의 카르복실산기를 변형시킴으로써 싸이올화 헤파린을 제조하는 단계 및 폴리에테르에테르케톤 (PEEK) 표면에 상기 싸이올화 헤파린을 이식하는 단계를 포함하는 제조방법으로 제조될 수 있다.
이하, 상기 제조방법을 각 단계별로 상세히 설명한다.
먼저, 상기 제조방법은 헤파린의 카르복실산기를 변형시킴으로써 싸이올화 헤파린을 제조하는 단계를 포함한다. 이때, 상기 싸이올화 헤파린은 헤파린 수용액을 싸이올기를 포함하는 화합물과 반응시킴으로써 제조될 수 있고, 바람직하게는 L-시스테인 또는 시스테아민과 반응시킴으로써 제조될 수 있다. L-시스테인과 헤파린의 반응은, L-시스테인의 아민기와 헤파린의 카르복실산기가 반응하여 아미드 결합 (-CO-NH-결합) 을 형성함으로써 이루어지고, 이로써 제조된 싸이올화 헤파린은 L-시스테인의 싸이올기(-SH) 를 포함한다.
상기 헤파린 수용액의 농도는 0.1 wt% 이상 30 wt % 이하, 바람직하게는 0.5 wt% 이상 20 wt % 이하, 더욱 바람직하게는 1 wt% 이상 10 wt% 이하일 수 있다.
다음으로, 상기 제조방법은 폴리에테르에테르케톤 (PEEK)표면에 상기 싸이올화 헤파린을 이식하는 단계를 포함한다. 상기 싸이올화 헤파린을 이식하는 단계는, 상기 폴리에테르에테르케톤 (PEEK)표면에 오존 처리를 하는 단계, 상기 오존 처리된 폴리에테르에테르케톤 (PEEK)을 싸이올화 헤파린 수용액에 넣는 단계, 상기 수용액으로부터 꺼낸 폴리에테르에테르케톤 (PEEK)을 건조시키는 단계 및 상기 건조된 폴리에테르에테르케톤 (PEEK)에 자외선 (UV)을 조사시키는 단계를 포함하는 것일 수 있다.
본 발명에서, 상기 오존 처리는 1 분 이상 90 분 이하, 바람직하게는 5분 이상 60분 이하동안 수행될 수 있다. 상기 오존 처리에 의하여, 폴리에테르에테르케톤 (PEEK)의 표면에 과산화물이 생성되며, 오존 처리 시간이 길수록 과산화물이 많이 생성된다.
본 발명에서, 상기 자외선(UV) 조사는 1분 이상 20분 이하, 바람직하게는 5분 이상 10 분 이하 동안 수행될 수 있다. 상기 자외선(UV)의 파장은 365nm 일 수 있다. 상기 자외선(UV) 조사에 의하여, 폴리에테르에테르케톤 (PEEK)의 표면에 싸이올화 헤파린이 이식된다.
또한, 본 발명은, 골형성단백질-2 (BMP-2)가 로딩된 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하는 임플란트 재료를 제공한다. 상기 골형성단백질-2 (BMP-2)는 조골세포의 분화의 강력한 자극 인자이며, 척추 고정 및 특정한 위관절 골절에 있어서 뼈의 형성을 유도하기 위해서 임상적으로 사용되고 있다.
본 발명에서, 상기 골형성단백질-2 (BMP-2)는 상기 표면개질된 폴리에테르에테르케톤 (PEEK)에 10 ng/cm2 내지 100 μg/cm2, 바람직하게는 100 ng/cm2 내지 100 μg/cm2, 보다 바람직하게는150 ng/cm2내지 100 μg/cm2 으로 로딩될 수 있다.
본 발명에서, 상기 표면개질된 폴리에테르에테르케톤 (PEEK)에 로딩된 상기 골형성단백질-2 (BMP-2) 은 로딩 후 2 주 후에 초기 로딩량의 10 % 이상, 바람직하게는 70% 이상, 더욱 바람직하게는 90 % 이상 유지되는 것일 수 있다. BMP-2 는 생체 내에서 빨리 분해되기 때문에, 생물학적 활성을 달성하고 유효 농도를 유지하기 위하여, BMP-2의 제어 방출을 통해 BMP-2 를 효과적으로 전달하는 것이 중요하다. 로딩된 BMP-2 가 초기에 과다방출 되지 않고 천천히 방출되어, 로딩 후 2 주 후에도 로딩된 골형성단백질-2 (BMP-2) 가 표면개질된 폴리에테르에테르케톤 (PEEK) 의 표면에 유지되면, BMP-2 의 유효 농도를 오랫동안 유지할 수 있다.
상기 골형성단백질-2 (BMP-2)가 로딩된 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)은, 헤파린의 카르복실산기를 변형시킴으로써 싸이올화 헤파린을 제조하는 단계 및 폴리에테르에테르케톤 (PEEK) 표면에 상기 싸이올화 헤파린을 이식하는 단계를 포함하는 제조방법으로 제조된, 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)의 싸이올화 헤파린에 골형성단백질-2 (BMP-2)를 로딩하는 단계를 포함하는 제조방법으로 제조될 수 있다.
이하, 골형성단백질-2 (BMP-2)를 로딩하는 단계를 상세히 설명한다.
상기 골형성단백질-2 (BMP-2)을 로딩하는 단계는, 상기 싸이올화 헤파린이 이식된 폴리에테르에테르케톤 (PEEK) 표면에 골형성단백질-2 (BMP-2) 용액을 떨어뜨리고 인큐베이션 하는 단계를 포함하는 것일 수 있다. 이때, 상기 골형성단백질-2 (BMP-2) 용액의 농도는 0.1 ng/uL 이상 1 ng/uL 이하, 바람직하게는 0.15 ng/uL 이상 0.5 ng/uL 이하인 것일 수 있다.
상기 BMP-2로딩 단계에 있어서, 상기 인큐베이션은 0 °C 내지 5 °C, 바람직하게는 4 °C 의 온도에서 12 시간 내지 24 시간 이하, 바람직하게는 15 시간 내지 18 시간 이하 동안 이루어질 수 있다.
이하, 본 발명을 실시예 및 실험예를 통하여 더욱 상세히 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.
<실시예>
1. 물질 및 실험방법
1.1. 화합물 및 물질
PEEK 시트는 CS Hyde(Lake Villa, IL, USA)에서 구입했다. 헤파린 (돼지 장 점막의 나트륨 염, MW 12 kDa) 은 Cellsus Ins (Cincinnati, IA, USA) 에서 구입했다. 에틸카르보디이미드 염산염 (EDC), 1-히드록시-벤조트리아졸 수화물 (HOBt), L-시스테인 97%, DL-디티오트레이톨 (DTT), β-글리세로포스페이트 이나트륨 염 수화물, L-아스코르브산 및 Alizarin Red S는 Sigma(St. Louis, MO, USA)에서 구입했다. 덱사메타손은 Tokyo Chemical Industry (Tokyo, Japan) 에서 구입했다. 인간/뮤린 (murine) /랫트 (rat) 재조합 BMP-2 및 인간/뮤린 (murine) /랫트 (rat) BMP-2 표준 ABTS ELISA 개발 키트는 Peprotech (Rocky Hill, NJ, USA) 에서 구입했다. LabAssay ALP는 Fujifilm Wako Pure Chemical Co. (Osaka, Japan) 에서 구입했다. (1-헥사데실) 피리디늄 클로라이드 일수화물 (98%), Ellman 시약 및 Micro BCA 단백질 분석 키트는 ThermoFisher Scientific(Waltham, MA, USA) 에서 구입했다. 3.5kDa MW 컷오프 투석막은 Spectrum Laboratories, Inc. (Piscataway, NJ, USA) 에서 구입했다.
1.2. 싸이올화 헤파린 (Hep-cySH) 의 제조
싸이올화 헤파린 (Thiolated heparin, Hep-cySH) 은 선행문헌 (K. Gwon, E. et al., 2017) 의 방법을 변형하여 합성하였다. 시스테아민 대신 L-시스테인을 싸이올 (thiol) 기의 제공물질로 사용하였다. 요약하면, EDC, HOBt 및 과량의 L-시스테인을 헤파린 (1wt%) 수용액에 첨가하고 실온 및 pH 6.8에서 교반하면서 반응을 계속하였다. 다음으로, 3.5kDa 투석막을 사용하여 반응 용액을 투석하여 반응하지 않은 작은 분자를 모두 제거하였다. 그 후, 10배 몰 (mole) 과량의 DTT (헤파린의 COOH당 몰) 를 첨가하여 이황화 결합을 끊고 유리 싸이올기를 얻었다. 이 혼합액을 pH 8 로 조절하고 12시간 동안 반응시킨 후, pH 3.5로 조절한 후 100mM NaCl이 포함된 묽은 HCl(pH 3.5) 용액으로 투석하였다. 마지막으로 싸이올화 헤파린 (Hep-CySH) 용액을 0.2μm 여과막을 통해 여과하고 동결건조하였다. 반응물 간의 몰비를 조절하여 변화시킬 수 있는 싸이올 전환율 (Thiolation) 는 엘만 어세이 (Ellman assay) 로 결정하였다 (표 1, 헤파린의 싸이올화 정도를 조절하는 반응 조건). 이 연구에 사용된 싸이올화 헤파린에서, 카르복실산기에서 싸이올기로의 전환율은 ~40% 였다.
화합물 몰비 (Molar Ratio)
Hep-cySH(10) Hep-cySH(20) Hep-cySH(30) Hep-cySH(40)
Heparin (-COOH) 1 1 1 1
EDC 0.5 1 1.75 3.5
HOBT 0.5 1 1.1 2.2
L-cysteine 97% 2 2 2.2 3.3
카르복실산기에서 싸이올기로의 전환율(Thiolation) (%) 13.1 ± 1.3 23.7 ± 1.6 31.8 ± 2.7 42.1 ± 5.0
1.3. 과산화물 도입을 위한 PEEK 표면의 오존 처리
PEEK 시트를 20분 동안 70% 에탄올로 세척한 다음 초음파 처리기에서 20분 동안 탈이온수로 세척하고 모든 실험에 사용하기 전에 진공 하에 건조했다. PEEK 시트는 파이렉스 용기 (pyrex vessel) 에서 2 bar의 압력과 약 0.3 l/min의 산소유량으로 오존발생기 (Ozone generator LAB-I, Ozonetech) 를 통과한 건조된 산소가스로 발생된 오존으로 처리되었다. 오존 처리한 시간에 따라 생성된 과산화물 밀도를 분석했다. PEEK 시트는 5, 15, 30, 60, 75 및 90분 동안 오존 처리되었다. 그 후, 오존 처리된 PEEK 시트의 표면에서 생성된 과산화물은 요오드화물 방법 (iodide method) 에 의해 분광광도법으로 측정되었다. 요약하면, 처리된 시트를 요오드화칼륨 및 1ppm 염화제이철을 함유하는 벤젠-이소프로필 알코올 (부피비 1:6) 에 넣고 60℃에서 10분 동안 유지하였다. 반응을 중지시키기 위해 물을 첨가한 후, 360 nm에서 2.3 x 104 l/mol cm의 몰 흡광도를 갖는 용액의 흡광도로부터 트리요오다이드 음이온으로서 산화된 요오드를 측정하였다. 과산화물의 밀도는 PEEK 시트의 cm2당 과산화물의 몰로 표시되었다.
1.4. PEEK 시트 표면에 싸이올화 헤파린(Hep-cySH) 이식
싸이올화 헤파린은 UV 광 조사에 의해 오존 처리된 PEEK 표면에 이식되었다. 요약하면, 60분 동안 오존 처리 후 PEEK 시트를 즉시 1wt% 싸이올화 헤파린(Hep-cySH) 수용액에 15분 동안 넣고 실온에서 20분 이하동안 건조를 위해 꺼낸 다음 압축기 공기로 표면을 부드럽게 불어 넣었다. 그런 다음 OmniCure 시리즈 1000 광원(EXFO, Vanier, Quebec, Canada)을 사용하여 샘플과 UV 프로브 사이의 거리를 12cm로 두고 공기 존재 하에 10분 동안 시트에 365nm UV 광을 조사하였다. UV 조사 후, 시트를 계면활성제가 함유된 증류수로 24시간 동안 완전히 세척한 후 증류수로 세척하였다. 세척 후, PEEK 시트를 압축 공기로 불어 건조시키고 추가 실험을 위해 아르곤 가스 퍼지 용기 아래에 보관했다. PEEK 시트에 이식된 헤파린의 양은 TBO 분석에 의해 결정되었다. 요약하면, 시트는 37º에서 1시간 동안 부드럽게 흔들면서 수성 0.01M HCl/0.2wt% NaCl에서 0.005% TBO 200μL에서 배양되었다. 이 과정에서 시트 표면에 Hep (헤파린) /TBO (톨루이딘블루O (toluidine blueO)) 복합체가 형성되고, 이후 시트를 증류수로 헹구었다. 그 후, 에탄올과 수성 0.1M NaOH의 4:1(v/v) 혼합물 300㎕를 첨가하여 Hep/TBO 복합체를 용해시켰다. 상층액을 96 웰 플레이트로 옮기고 마이크로플레이트 판독기를 사용하여 530nm에서 흡광도를 얻었다. 흡광도는 보정 곡선을 통해 고정된 헤파린의 양을 계산하는 데 사용되었다. 헤파린의 양은 PEEK 시트의 cm2당 헤파린의 μg으로 표시되었다.
1.5 싸이올화 헤파린이 이식된 PEEK (hPEEK) 시트의 표면 특성
1.5.1 XPS(X-ray photoelectron spectroscopy)
헤파린이 접목된 PEEK 시트의 표면 화학 특성은 X선 광전자 분광법 (NEXSA, Thermo Fisher Scientific) 으로 분석하였다. 스펙트럼은 100eV에서 800eV까지의 결합 에너지로 기록되었다. 대조군으로 비개질 PEEK (이하, PEEK) 및 오존 처리 후 UV 조사한 PEEK (이하, oPEEK) 를 사용하였다.
1.5.2 물 접촉각(Water contact angle)
비개질 peek (PEEK), 오존 처리 후 UV 조사된 PEEK (oPEEK) 및 heparin-grafted PEEK (hPEEK) 의 표면 젖음성은 접촉각 각도계 (Phoenix 300, Surface Electro Optics) 를 사용하여 측정하였다. 모든 샘플은 측정 전에 완전히 건조하였다. 터치 모드는 2 μL의 물방울 부피로 적용되었다. 평균 3개의 개별 샘플을 취했다.
1.6 실험관 내 ( in vitro ) BMP-2 로딩 및 방출 연구
인간/뮤린 (murine) /랫트 (rat) 재조합 BMP-2는 4°C에서 물리적 흡착에 의해 PEEK 시트 (0.5cm x 0.5cm) 에 로딩하였다. 요약하면, 50ng/200uL BMP-2 용액을 PEEK 및 hPEEK 시트에 떨어뜨리고 4°C에서 18시간 동안 인큐베이션했다. 인큐베이션 후, 점적 용액 내 BMP-2의 농도는 인간/뮤린 (murine) /랫트 (rat) BMP-2 Standard ABTS ELISA Development Kit에 의해 측정되었다. PEEK 시트에 고정된 BMP-2의 양은 원래 용액과 최종 용액의 BMP2 양의 차이로 계산하였다. BMP-2의 방출 역학을 조사하기 위해 시트를 0.1% BSA 및 0.01% 아지드화 나트륨을 함유한 PBS에서 37ºC에서 미리 결정된 시점 동안 배양하였다. BMP-2의 방출량은 ELISA를 사용하여 측정하였다.
1.7 실험관내 ( in vitro ) 생체 적합성 연구
한국 세포주 은행(Seoul, Korea)의 MG-63 세포를 사용하여 비개질 PEEK와 표면 개질된 PEEK의 생체 적합성을 확인했다. BMP-2 로딩으로, 세포 증식, 알칼리성 포스파타제 활성 및 MG-63 세포의 미네랄화도를 평가하였다. 세포는 실험을 위해 분리하기 전에 10% FBS 및 1% 항생제-항진균제가 함유된 Dulbecco의 변형 독수리 배지(DMEM) 보충제에서 배양되었다. 모든 시험관 내 세포 반응 실험을 위해 PEEK 시트를 70% 에탄올로 멸균하고 사용 전에 멸균된 탈이온수로 헹구었다. PEEK 시트의 치수는 0.5 cm x 0.5 cm였다.
1.7.1 PEEK 시트의 세포독성(Cytotoxicity) 시험
PEEK 시트의 세포독성 시험은 ISO/EN 10993 Part 5 지침에 따라 수행되었다. 추출 배지를 얻기 위해 DMEM 배지를 각각 PEEK 및 hPEEK와 함께 37ºC에서 24시간 동안 인큐베이션했다. MG-63 세포를 48웰 플레이트에 1 x 104 cells/well 농도로 접종하고 37ºC에서 24시간 동안 배양했다. 24시간 인큐베이션 후, 배지를 추출 배지로 교체하고, 세포를 추가로 24시간 동안 인큐베이션하였다. 세포 생존력은 CCK-8 분석에 의해 분석되었다.
1.7.2 세포 증식
PEEK, BMP-2가 탑재된 PEEK (PEEK/BMP2), 싸이올화 헤파린이 이식된 PEEK (hPEEK) 및 BMP-2가 탑재된 싸이올화 헤파린 이식된 PEEK (hPEEK/BMP2) 에서 MG63 세포의 증식을 연구하는 데 Alamar blue assay를 사용하였다. MG63 세포를 48웰 플레이트의 PEEK 샘플에 밀도 1 x 104세포/mL로 시딩(seeding)했다. 24시간 배양 후, 배양 배지는 10% FBS, 1% 항생제-항진균제, 10nM 덱사메타손 (dexamethasone), 10mM 베타-글리세로포스페이트 디소듐 염 하이드레이트 (β-Glycerophosphate disodium salt hydrate), 50μM/mL L-아스코르브산 (L-ascorbic acid) 가 포함된 둘베코수정이글배지 (DMEM, Dulbecco's modified Eagle's medium) 로 구성된 골형성 유도 배지로 변경하였다. 미리 결정된 시점에서 샘플을 인산염 완충 식염수(PBS)로 헹군 다음 새 웰 플레이트로 옮기고 Alamar blue 시약으로 2시간 동안 처리했다. 이어서, 인큐베이션 용액을 96-웰 플레이트로 옮기고, 560/590 nm의 여기/방출 파장을 사용하여 마이크로플레이트 판독기 (Varioskan LUX, Thermofisher Scientific) 로 형광을 측정하였다.
1.7.3 ALP(Alkaline phosphatase) 활성 시험
세포 시딩 및 배양 절차는 세포 증식 절차와 동일하였다. 배양 7일 및 14일 후, 시트를 PBS 및 0.9% NaCl로 헹군 다음 세포를 탈이온수에서 1% Triton-X로 용해시켰다. 그런 다음, 마이크로플레이트 리더 (microplate reader) 를 사용하여 405nm 에서의 흡광도를 측정하여 37°C에서 p-니트로페닐 포스페이트 디소듐 (p-nitrophenyl phosphate disodium) 에서 p-니트로페놀 (p-nitrophenol) 로의 전환 정도를 결정함으로써, LabAssay ALP를 통해 시트 상의 MG 63 세포의 ALP 활성을 측정하였다. Micro Bicinchoninic acid (BCA) 방법을 사용하여 동일한 샘플의 총 단백질 함량을 결정했다. 샘플의 총 단백질 양에 대한 ALP 활성을 계산했다.
1.7.4 MG 63 세포의 미네랄화(Mineralization)
세포 시딩 및 배양 절차는 세포 증식 절차와 동일하게 수행하였다. 배양 14일 후, 샘플을 PBS로 3회 세척하고 10% 포르말린으로 20분간 고정하고 탈이온수로 조심스럽게 흡인하였다. 그런 다음 샘플을 실온에서 30분 동안 1% 알리자린 레드(Alizarin red) 용액으로 염색했다. 그 후, 샘플을 증류수로 여러 번 세척하였다. 염색의 반정량화 (semi quantification) 를 위해 염색된 세포를 10% 세틸피리디늄 클로라이드 (cetylpyridinium chloride) 로 탈염색하고 마이크로플레이트 리더로 562 nm 파장에서 측정하였다.
1.8 통계분석
데이터는 평균 ± 표준 편차로 표현되었다. 데이터는 Student's t-test를 사용하여 통계적으로 분석되었다. 차이는 p<0.05일 때 유의미한 것으로 간주되었다.
2. 실험 결과
2.1 PEEK 에 싸이올화 헤파린 (Hep-cySH) 이식 (hPEEK)
이 연구에서는 시스테아민 대신 천연 아미노산인 L-시스테인을 사용하여 싸이올화 헤파린을 제조했다 (도 1). 따라서 싸이올화 헤파린은 인간 몸에 존재하는 천연 물질로만 구성되었다. L-시스테인은 약제물질, 의약품 및 기능식품에 사용되어 왔으며, 헤파린은 항응고제로 사용되어 왔다. 따라서 생체 내에서 싸이올화 헤파린의 분해된 제품은 생체 적합성 문제를 일으킬 가능성이 없다. 시스테아민을 L-시스테인으로 대체한 것은 헤파린의 싸이올화 반응을 유의하게 변화시키지 않았다. 싸이올화 정도는 헤파린의 카르복실기에 대한 EDC/HOBt의 양으로 10% 에서 40% 까지 조절할 수 있다. 이전에 40% 이하의 싸이올화는 헤파린의 항응고 활성의 상당한 손실과 대조적으로 헤파린 결합 분자에 대한 헤파린의 결합 친화도에 유의한 영향을 미치지 않는 것으로 보고되었다. PEEK에 대한 싸이올화 헤파린 이식의 목적과 더 나은 이식을 위한 더 높은 싸이올 밀도의 명백한 이점을 고려하여 40% 이하의 싸이올화를 갖는 Hep-cySH를 PEEK에 이식하는 데 사용했다.
BMP-2의 적절한 전달은 전조골 세포의 골유착 뿐만 아니라 골형성 활성 개선에 효과적이므로, 오존 처리 및 UV 조사를 하여 싸이올화 헤파린 (Hep-cySH) 을 PEEK 표면에 이식하는 산업적 응용을 위한 쉽고 효율적인 방법을 개발하는 것을 목표로 하였다 (도 2).
먼저 PEEK 시트를 오존으로 처리하여 표면에 과산화물을 도입했다. 오존 처리 시간은 변수 중 하나이기 때문에, 오존 처리 시간에 따른 PEEK 표면에서 과산화물 생성은, 요오드화물 방법을 사용하여 분광 광도계로 분석되었다. PEEK의 과산화물 농도는 오존 처리 시간에 따라 선형으로 증가하고 60분 후에 안정기에 도달하였다 (도 3). 따라서 추가 실험을 위한 오존 처리 시간으로 60분이 선택되었다.
PEEK 표면의 과산화물 생성은 도 4 와 같이 XPS O1s 스펙트럼에 의해 추가로 입증되었다. 그 다음, 과산화물-기능화된 (functionalized) PEEK 시트를 실온에서 1wt% Hep-cySH 수용액에 침지함으로써 산화된 PEEK 시트에 Hep-cySH 의 흡착을 유도하였다. 다음으로, Hep-cySH 가 흡착된 PEEK 시트를 용액에서 꺼내고, thiol-ol 반응을 통해 PEEK 시트에 결합된 Hep-cySH 의 싸이올 (thiol) 또는 디설피드 기 (disulfide group) 의 반응을 위해 10분간 UV 조사하여 고정하였다. 공기 존재 하에서 Hep-cySH 는 선행문헌 (K. Gwon, E. et al., 2017) 과 유사한 반응 메커니즘에 의해 매개된다. 싸이올화 헤파린이 이식된 양은 TBO assay로 정량한 31 ± 3.0 μg/cm2였다.
이전 연구에서 헤파린은 PEEK 표면에 공유결합으로 또는 비공유결합으로 고정되었다. 그러나 PEEK 표면에 헤파린을 공유결합으로 고정하기 위한 작용기를 도입하기 위해서는 일련의 복잡한 화학 처리 단계가 수반되었다. 이 방법은 또한 화학물질 처리로 인한 잔류물의 부작용으로 인해 생물 의학 응용에 제한이 있을 수 있다.
반면에, 이온 상호작용을 통한 PEEK 표면의 헤파린 비공유 결합은 비공유 결합이 헤파린 탈착을 유발하여 혈류로 점진적으로 방출될 수 있기 때문에 안정성 문제를 일으킬 수 있다. 본 발명에서는, 산소가 있는 상태에서 UV 조사의 도움으로 싸이올과 히드록실 기 사이의 싸이올-올 화학결합을 도입함으로써 오존 처리와 UV 조사를 결합하여 싸이올화된 헤파린을 PEEK 표면에 공유결합으로 그래프팅할 수 있음을 입증했다. 이 두 가지 방법 모두 비용이 저렴하고 취급이 간편하며 산업 친화적이므로 산업 적용을 위해 확장할 가능성이 있다.
2.2 싸이올화 헤파린이 이식된 PEEK 표면의 특성
PEEK 표면에 싸이올화 헤파린의 이식을 확인하기 위해 비개질 peek (PEEK), 오존 처리 후 UV 조사된 PEEK(oPEEK) 및 싸이올화 헤파린이 이식된 PEEK (hPEEK) 를 XPS로 분석했다.
도 5 의 좌측 그래프는 PEEK, oPEEK 및 hPEEK 의 XPS 와이드 스캔(wide-scan) 스펙트럼을 나타내고, 우측에 삽입된 그래프는 각각의 S2p 코어 레벨 (core-level) 스펙트럼을 나타낸다. S2p 및 N1s의 특징적 피크는 PEEK 또는 oPEEK와 비교하여 hPEEK에서만 검출되었다. 이는 PEEK에 싸이올화 헤파린 이식이 성공적으로 수행되었음을 뒷받침한다. hPEEK의 고해상도 S2p 스펙트럼에는 ~162 및 ~168 eV의 결합 에너지를 갖는 두 개의 피크 부분이 나타나있다. 설폰 (Sulfone), 설포네이트 (sulfonate) 또는 설폰산 (sulfonic acid) 과 같은 2개 또는 3개의 산소 원자에 결합된 황 원자에 할당되는 더 높은 결합 에너지 부분은 싸이올-올 반응 또는 싸이올화 헤파린 자체의 설포네이트를 통해 PEEK의 하이드록시기 결합에서 생성된 설폰기 (-SO3) 에 기인한다. 한편, 낮은 결합 에너지 부분은 싸이올화 헤파린의 나머지 미반응 싸이올기 (-SH) 에 기인한다.
싸이올화 헤파린과 비교하여 hPEEK의 -SO3 피크 대 -SH 피크의 비율은 더 높았으며 (도 6), 이는 PEEK에서 헤파린의 공유 결합을 뒷받침한다. 따라서, XPS 스펙트럼의 결과에 의해 헤파린이 PEEK 표면에 성공적으로 이식되었음이 확인되었다.
PEEK 표면의 소수성 변화를 분석하기 위해 PEEK, oPEEK 및 hPEEK의 물 접촉각을 측정했다(도 7). PEEK 자체는 매우 소수성이므로 PEEK의 물 접촉은 85°± 2°인 반면, 오존 처리 및 UV 조사만 거친 oPEEK의 경우 물 접촉각이 35°± 2°로 감소했다. 이 결과는 오존 처리와 UV 조사 후에 표면이 더 친수성을 갖게됨을 보여주었다. 헤파린을 PEEK 에 이식함으로써 헤파린의 추가적인 친수성으로 인해 물 접촉각이 28°± 2°로 더 감소했다. 임플란트의 적절한 친수성은 세포 반응에 중요한 요소 중 하나이기 때문에 PEEK 표면의 소수성이 싸이올화 헤파린 이식에 의해 감소됨에 따라 PEEK의 생물학적 활성이 향상될 수 있다.
2.3 실험관내( In vitro) BMP-2 의 로딩과 방출
PEEK 표면에 이식된 헤파린은 BMP-2에 대한 헤파린 결합 친화성으로 인해 BMP-2 로딩을 가능하게 한다. 그러나 비개질 peek도 비특이적 물리흡착에 의해 BMP-2를 로드할 수 있다. PEEK와 hPEEK 간 BMP-2 로딩량의 차이는 상당하고 컸지만 50% 미만이었다 (도 8A). 따라서 단순히 BMP-2의 로딩량 측면에서 싸이올화 헤파린 이식의 이점은 극적이지 않다고 볼 수 있다.
그러나 PEEK 표면에서 로드된 BMP-2의 방출은 분명한 차이를 보여주었다 (도 8B). hPEEK표면에서는 BMP-2이 초기 과다방출 없이 매우 느리게 방출되는 것이 관찰되었다. 로딩된 BMP-2의 90% 이상이 hPEEK 표면에 남아 있었다. 이와는 대조적으로, PEEK에서는 약간의 초기 과다방출과 함께 훨씬 더 빠른 방출 (2주 내에 ~ 40% 방출) 이 관찰되었다. 따라서 BMP-2의 생물학적 활성을 고려하지 않더라도 싸이올화 헤파린 이식은 PEEK 표면에 BMP-2를 고정시키는 극적인 이점을 제공할 수 있다.
2.4 In vitro (시험관내) 세포 반응 (cellular responses)
2.4.1 세포독성
BMP-2가 로딩된 PEEK 표면의 생체 활성을 분석하기 전에 비개질 PEEK(PEEK)와 싸이올화 헤파린 이식 PEEK (hPEEK) 의 생체 적합성을 평가했다. PEEK 및 hPEEK의 세포독성 시험은 MG 63 세포를 이용하여 수행하였다.  5% DMSO는 음성 대조군이고 TCP는 양성 대조군이다. PEEK와 hPEEK 모두에 대해 24시간 배양 기간 동안 세포독성이 관찰되지 않았다 (도 9)
따라서, 본 발명에서 사용한 싸이올화 헤파린 이식 방법은 눈에 띄는 세포독성 문제를 일으키지 않았으며, 이는 어떠한 유기용매나 화학 시약을 사용하지 않은 본 발명에 사용된 그린 케미스트리를 고려할 때 자명한 결과이다.
2.4.2 조골세포(Osteoblast) 증식
BMP-2 가 로딩되거나 로딩되지 않은, 싸이올화 헤파린 이식된 PEEK의 생물학적 활성을 조사하기 위해, 비개질 PEEK(PEEK), 싸이올화 헤파린 이식된 PEEK (hPEEK), BMP-2 로딩된 비개질 PEEK (PEEK/BMP2), BMP-2 로딩된 싸이올화 헤파린 이식 PEEK (hPEEK/BMP2) 에서 MG 63 세포의 세포 증식을 배양 1일, 3일, 5일 및 7일에 평가했다. 형광세기는 1일차의 PEEK 에 따라 정규화되었다(*: p<0.05 ,**: p< 0.001, ***: p<0.0001).
도 10에 도시된 바와 같이, 배양된 세포는 모두 시간에 따라 증식하였다. 그러나 비개질 PEEK에서의 세포의 증식은 모든 배양 시점에서 다른 그룹들보다 유의하게 적었다.
싸이올화 헤파린 이식 없이 단순한 물리흡착에 의해 BMP-2가 로딩된 PEEK (PEEK/BMP-2) 에서의 세포 증식속도는, 비개질 PEEK (PEEK) 에서의 세포 증식속도에 비해 더 높게 나타났다. 그러나 BMP-2 가 로딩되지 않은 싸이올화 헤파린 이식 PEEK (hPEEK) 에서 배양된 MG 63 세포는 PEEK 뿐만 아니라 PEEK/BMP2보다도 더 높은 증식율을 보였다.
20°내지 40°의 물 접촉각을 갖는 친수성의 표면은 세포 부착 및 증식에 유리한 것으로 보고되었다. 따라서 28°± 2°물 접촉각을 갖는 hPEEK에서 배양된 MG63 세포는 PEEK/BMP2 (49°± 3°) 또는 PEEK (81° ± 2°)에 비해 더 높은 증식 속도를 나타낼 수 있다. 즉, BMP-2가 물리흡착된 PEEK (PEEK/BMP2)의 친수성은 PEEK에 비해 높은 증식율에 기여할 수 있었다. 반면, 싸이올화 헤파린이 이식된 후 BMP-2가 로딩된 PEEK (hPEEK/BMP2) 에서의 세포 증식은 싸이올화 헤파린이 이식된 후 BMP-2가 로딩되지 않은 PEEK (hPEEK)에서의 세포 증식에 비해 크게 변하지 않는 것으로 밝혀졌다.
요약하면, 본 발명에서의 PEEK 표면으로의 싸이올화 헤파린 이식은 조골 세포의 증식을 유의하게 향상시켰으나, 싸이올화 헤파린이 이식된 PEEK (hPEEK) 에 BMP-2 을 로딩함으로써 얻는 추가적인 세포 증식 향상 효과는 관찰되지 않았다.
2.4.3 ALP (Alkaline phosphatase) 활성 및 미네랄화(mineralization)
BMP-2 로딩되거나 로딩되지 않은, 싸이올화 헤파린 이식된 PEEK의 구체적인 골형성 생물학적 활성을 조사하기 위해, 비개질 PEEK(PEEK), 싸이올화 헤파린 이식된 PEEK(hPEEK), BMP-2 로딩된 비개질 PEEK(PEEK/BMP2), BMP-2 로딩된 싸이올화 헤파린 이식 PEEK(hPEEK/BMP2)에서 조골세포 분화의 대표적인 골형성 마커인 ALP 활성을 세포 배양 7일 및 14일에 평가했다.
도 11에 도시된 바와 같이, ALP 활성은 모든 PEEK 에서 시간이 지남에 따라 증가하였다. 그러나 hPEEK/BMP2 그룹은 7일과 14일 모두 다른 그룹에 비해 가장 높은 ALP 활성을 보였다. 또한, hPEEK 상 BMP-2 로딩에 의한 ALP 활성(hPEEK/BMP2 vs. hPEEK)이 크게 향상되었으며, 이는 BMP-2가 hPEEK 표면의 골 형성 활성에 긍정적 효과를 미친다는 것을 명확히 보여준다. 이 결과는 hPEEK 및 hPEEK/BMP2가 유사한 양상을 나타낸 세포 증식 결과와는 다르게 나타났다. 따라서 BMP-2의 역할은 보다 구체적인 골형성 활성을 향상시키는 것임이 명확해졌다.
본 발명에서는, 비개질 PEEK 에 BMP-2를 로딩한 PEEK/BMP2은 비개질 PEEK와 비교하여 ALP 활성이 증가하지 않았다. 이는 로딩된 BMP-2의 적절한 골형성 활성을 위해서는 PEEK에 헤파린를 이식하는 것이 중요하다는 것을 나타낸다. 비개질PEEK의 소수성 표면에서는 BMP-2가 비특이적 흡착시 3차원 구조에 손상이 가해져, 변성을 일으켜서 수용체와의 적절한 상호작용에 의한 생체 활성을 잃을 수도 있다.
또한 흥미롭게도, BMP-2 가 로딩되지 않은hPEEK 의 ALP 활성이 비개질 PEEK 또는 PEEK/BMP2에 비해 증가하였다.
일부 연구에 따르면 티타늄 표면과 PEEK 표면에 설포네이트 (sulfonate) 그룹을 도입하면 조골 세포 또는 줄기 세포의 골 형성 분화뿐만 아니라 접착, 퍼짐, 증식이 크게 증가하는 것이 보고되었다. 설폰화 (sulfonation) 가 조골세포 반응을 향상시키는 이유를 설명하는 명확한 기전은 밝혀지지 않았지만, 설폰화 후 표면 친수성 개선과 관련이 있을 수 있다.
본 발명의 헤파린을 이식한 PEEK 는 PEEK의 친수성과 조골 세포의 증식을 증가시키는 효과를 나타내었으며, BMP-2가 로딩되지 않더라도 PEEK 표면의 골 형성 활성을 증가시키는 효과를 나타내었다.
조골 세포에 의해 유도된 미네랄화 (mineraliztion) 는 세포가 무기질 기질을 침착시키기 시작하여 칼슘 침착을 유도하는 조골 세포 분화의 후기 단계에서 발생한다. 14일 배양 후 PEEK 샘플의 세포를 알리자린 레드 S(Alizarin red S)로 염색하여 칼슘 침착을 정성적 및 정량적으로 평가했다. 전반적으로 칼슘 침착 결과는 ALP 활성 결과와 유사했다. 도 12A에 도시된 바와 같이, hPEEK 및 hPEEK/BMP2에서 강한 양성 염색(밝은 붉은 색)이 발생하였고 hPEEK/BMP2에 대해 더 강하게 염색되었다.
알리자린 레드 S를 추출하여 칼슘 침착물을 반정량적으로 분석한 결과(도 9B)에 의해 싸이올화 헤파린 이식의 칼슘 침착 증가 효과와 싸이올화 헤파린 이식 후 BMP-2 로딩에 의하여 추가적인 칼슘 침착 증가 효과가 확인되었으며, 싸이올화 헤파린 이식 없이BMP-2 이 로딩되는 경우에는 큰 효과가 없음을 나타내었다.
이 결과는 싸이올화 헤파린 이식 및 BMP-2 로딩에 의한 골 형성 활성이, 생체 내 적용을 위해 주변의 뼈와의 골 유착능에 필요한, PEEK 표면의 조골 세포에 의한 미네랄화(칼슘 침착)를 성공적으로 유도할 수 있음을 나타내었다.
따라서, ALP 활성 및 칼슘 침착의 결과에 의해 싸이올화 헤파린 및 BMP-2가 골형성 분화에 있어서 상승 효과 (synergistic effect) 를 나타냄이 확인되었다. 싸이올화 헤파린 이식과 관련된 기존 연구들과 달리, 본 발명은 정형외과나 치과용 임플란트를 적용할 때 가장 중요한 특성인 PEEK의 골형성 활성을 성공적으로 향상시켰다.
3. 결론
본 발명은 화학 시약이나 유기 용매를 사용하지 않고, 오존과 UV 처리를 이용하여 싸이올-올 반응을 통해 비교적 친환경적으로 헤파린을 PEEK에 이식하였다. 또한 본 발명은 비용이 저렴하고 취급이 간편하며 상용 PEEK 임플란트와 같이 복잡한 모양에 적용될 수 있다. 본 발명의 싸이올화 헤파린 이식은 XPS 및 물 접촉각 분석에 의해 확인되었다. 본 발명의 싸이올화 헤파린이 이식된PEEK는, 로딩된 BMP-2이 빠르게 방출되는 비개질 PEEK보다 더 효율적인 BMP-2로딩을 제공한다. 본 발명에서, PEEK에 대한 싸이올화 헤파린 이식 자체도 비개질 PEEK와 비교하여 MG 63의 증식 및 골 형성 분화 측면에서 PEEK의 생체 활성을 향상시켰다. PEEK에 대한 BMP-2 로딩에 따른 ALP 활성 및 MG 63의 칼슘 침착을 포함한 보다 특징적인 골형성 활성과 관련된 효과는 싸이올화 헤파린 이식 후에만 나타났다. 본 발명의 BMP-2 로딩된 싸이올화 헤파린 이식 PEEK에 대한 추가적인 생체내 연구에 의해 골유착뿐만 아니라 골형성 활성 증진에 대하여 보다 확실한 결과를 얻을 수 있을 것이다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (16)

  1. 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하는, 임플란트 재료.
  2. 제 1 항에 있어서,
    상기 싸이올화 헤파린은 싸이올기를 포함하는 화합물과 헤파린의 반응을 통해 얻어지는 것을 특징으로 하는, 임플란트 재료.
  3. 제 2 항에 있어서,
    상기 헤파린의 카르복시기의 싸이올기로의 전환율은 5 % 이상 60 % 이하인 것을 특징으로 하는, 임플란트 재료.
  4. 제 1 항에 있어서,
    상기 표면개질은 폴리에테르에테르케톤 (PEEK)의 표면에 싸이올화 헤파린이 0.1 μg/cm2 이상 100 μg/cm2 이하로 이식되는 것을 특징으로 하는, 임플란트 재료.
  5. 제 1 항에 있어서,
    상기 표면개질된 폴리에테르에테르케톤 (PEEK)의 물 접촉각은 5°이상 50°이하인 것을 특징으로 하는, 임플란트 재료.
  6. 헤파린의 카르복실산기를 변형시킴으로써 싸이올화 헤파린을 제조하는 단계; 및
    폴리에테르에테르케톤 (PEEK) 표면에 상기 싸이올화 헤파린을 이식하는 단계;
    를 포함하는, 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)의 제조방법.
  7. 제 6 항에 있어서,
    상기 싸이올화 헤파린은, 헤파린 수용액을 싸이올기를 포함하는 화합물과 반응시킴으로써 제조되는 것을 특징으로 하는, 제조방법.
  8. 제 7 항에 있어서,
    상기 헤파린 수용액의 농도는 0.1 wt% 이상 30 wt % 이하인 것을 특징으로 하는, 제조방법.
  9. 제 6 항에 있어서,
    상기 싸이올화 헤파린을 이식하는 단계는,
    상기 폴리에테르에테르케톤 (PEEK) 표면에 오존 처리를 하는 단계;
    상기 오존 처리된 폴리에테르에테르케톤 (PEEK)을 싸이올화 헤파린 수용액에 넣는 단계;
    상기 수용액으로부터 꺼낸 폴리에테르에테르케톤 (PEEK)을 건조시키는 단계; 및
    상기 건조된 폴리에테르에테르케톤 (PEEK)에 자외선 (UV)을 조사시키는 단계;
    를 포함하는 것을 특징으로 하는, 제조방법.
  10. 제 9 항에 있어서,
    상기 오존 처리는 1 분 이상 90 분 이하 동안 수행되는 것을 특징으로 하는, 제조방법.
  11. 제 9 항에 있어서,
    상기 자외선 (UV) 조사는 1분 이상 90분 이하 동안 수행되는 것을 특징으로 하는, 제조방법.
  12. 골형성단백질-2 (BMP-2)가 로딩된 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)을 포함하는, 임플란트 재료.
  13. 제 12 항에 있어서,
    상기 골형성단백질-2 (BMP-2)는 상기 표면개질된 폴리에테르에테르케톤 (PEEK)에 10 ng/cm2 내지 100 μg/cm2 으로 로딩되는 것을 특징으로 하는, 임플란트 재료.
  14. 제 12 항에 있어서,
    상기 표면개질된 폴리에테르에테르케톤 (PEEK)에 로딩된 상기 골형성단백질-2 (BMP-2)는 로딩 후 2 주 후 초기 로딩량의 10 % 이상 유지되는 것을 특징으로 하는, 임플란트 재료.
  15. 청구항 제 6 항에 의해 제조된 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)의 싸이올화 헤파린에 골형성단백질-2 (BMP-2)를 로딩하는 단계를 포함하는, 골형성단백질-2 (BMP-2)가 로딩된 싸이올화 헤파린으로 표면개질된 폴리에테르에테르케톤 (PEEK)의 제조방법.
  16. 제 15 항에 있어서,
    상기 골형성단백질-2 (BMP-2)을 로딩하는 단계는,
    상기 싸이올화 헤파린이 이식된 폴리에테르에테르케톤 (PEEK) 표면에 골형성단백질-2 (BMP-2) 용액을 떨어뜨리고 인큐베이션 하는 단계를 포함하는 것을 특징으로 하는, 제조방법.
PCT/KR2022/007023 2021-11-12 2022-05-17 싸이올화 헤파린 및 골형성단백질-2 (bmp-2)로 표면개질된 폴리에테르에테르케톤 (peek)을 포함하는 임플란트 재료 및 그 제조방법 WO2023085540A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0155989 2021-11-12
KR1020210155989A KR20230070109A (ko) 2021-11-12 2021-11-12 싸이올화 헤파린 및 골형성단백질-2 (bmp-2)로 표면개질된 폴리에테르에테르케톤 (peek)을 포함하는 임플란트 재료 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2023085540A1 true WO2023085540A1 (ko) 2023-05-19

Family

ID=86336160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007023 WO2023085540A1 (ko) 2021-11-12 2022-05-17 싸이올화 헤파린 및 골형성단백질-2 (bmp-2)로 표면개질된 폴리에테르에테르케톤 (peek)을 포함하는 임플란트 재료 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20230070109A (ko)
WO (1) WO2023085540A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500104A (ja) * 2004-05-27 2008-01-10 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド ステント様インプラントにコートされたヘパリンを含有するブロックコポリマー
KR20160100057A (ko) * 2015-02-13 2016-08-23 한국과학기술연구원 카테콜기를 함유한 접착 유도체가 도입된 생체 적합성 고분자로 표면 개질된 생체 재료 및 그 제조 방법
KR101768160B1 (ko) * 2010-11-01 2017-08-16 광주과학기술원 헤파린 결합 생체 분자의 전달을 위한 과황산화 헤파린 및 그 제조방법
KR101920284B1 (ko) * 2017-05-25 2018-11-21 한국세라믹기술원 성장인자의 서방형 전달을 위한 헤파린 나노스폰지 및 이의 제조방법
KR102264231B1 (ko) * 2019-07-19 2021-06-11 울산과학기술원 생체고분자와 금속-유기 프레임워크가 결합된 복합체 및 이의 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500104A (ja) * 2004-05-27 2008-01-10 アドヴァンスド カーディオヴァスキュラー システムズ, インコーポレイテッド ステント様インプラントにコートされたヘパリンを含有するブロックコポリマー
KR101768160B1 (ko) * 2010-11-01 2017-08-16 광주과학기술원 헤파린 결합 생체 분자의 전달을 위한 과황산화 헤파린 및 그 제조방법
KR20160100057A (ko) * 2015-02-13 2016-08-23 한국과학기술연구원 카테콜기를 함유한 접착 유도체가 도입된 생체 적합성 고분자로 표면 개질된 생체 재료 및 그 제조 방법
KR101920284B1 (ko) * 2017-05-25 2018-11-21 한국세라믹기술원 성장인자의 서방형 전달을 위한 헤파린 나노스폰지 및 이의 제조방법
KR102264231B1 (ko) * 2019-07-19 2021-06-11 울산과학기술원 생체고분자와 금속-유기 프레임워크가 결합된 복합체 및 이의 용도

Also Published As

Publication number Publication date
KR20230070109A (ko) 2023-05-22

Similar Documents

Publication Publication Date Title
Stewart et al. A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions
Zhou et al. Biomimetic AgNPs@ antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration
Zhang et al. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion
Xiao et al. Fabrication of dexamethasone-loaded dual-metal–organic frameworks on polyetheretherketone implants with bacteriostasis and angiogenesis properties for promoting bone regeneration
Chien et al. Dopamine‐assisted immobilization of hydroxyapatite nanoparticles and RGD peptides to improve the osteoconductivity of titanium
EP2560694B1 (en) Implantable device with antibacterial properties and multifunctional surface
Lee et al. Development of a three-dimensionally printed scaffold grafted with bone forming peptide-1 for enhanced bone regeneration with in vitro and in vivo evaluations
WO2018026204A1 (ko) 과산화칼슘을 이용한 서방형 산소 방출형 in situ 가교 하이드로젤의 제조방법 및 이의 생의학적 용도
JP4991032B2 (ja) ケラチン含有医療デバイスのための生物活性コーティング
Akhavan et al. Radical-functionalized plasma polymers: Stable biomimetic interfaces for bone implant applications
CN113750290A (zh) 聚醚醚酮复合植入物及其制备方法和应用
Zarghami et al. In vitro bactericidal and drug release properties of vancomycin-amino surface functionalized bioactive glass nanoparticles
KR20210069391A (ko) 바이오 잉크 조성물, 3 차원 스캐폴드의 제조방법 및 그에 의해 제조된 3 차원 스캐폴드
Zhang et al. Treatment methods toward improving the anti-infection ability of poly (etheretherketone) implants for medical applications
Xiao et al. 13 Biochemical Modification of Titanium Surfaces
WO2023085540A1 (ko) 싸이올화 헤파린 및 골형성단백질-2 (bmp-2)로 표면개질된 폴리에테르에테르케톤 (peek)을 포함하는 임플란트 재료 및 그 제조방법
Pazarceviren et al. Alginate/gelatin/boron-doped hydroxyapatite-coated Ti implants: in vitro and in vivo evaluation of osseointegration
Steinhaus et al. Polysialic acid immobilized on silanized glass surfaces: a test case for its use as a biomaterial for nerve regeneration
Shi et al. A mussel-bioinspired coating strategy to licence PCL osteoinductive activity for repairing bone defects
Zhang et al. Functional chitosan gel coating enhances antimicrobial properties and osteogenesis of titanium alloy under persistent chronic inflammation
Kang et al. Healing with precision: A multi-functional hydrogel-bioactive glass dressing boosts infected wound recovery and enhances neurogenesis in the wound bed
Lao et al. Click-based injectable bioactive PEG-hydrogels guide rapid craniomaxillofacial bone regeneration by the spatiotemporal delivery of rhBMP-2
US20100015203A1 (en) Biocompatible fibrinogen matrix on a solid support
Heydari et al. Modification of the titan surface with photoreactive gelatin to regulate cell attachment
KR101240075B1 (ko) 의료용 임플란트 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE