WO2023085206A1 - Solid polymer-type water electrolysis membrane-electrode joint body and water electrolysis device - Google Patents

Solid polymer-type water electrolysis membrane-electrode joint body and water electrolysis device Download PDF

Info

Publication number
WO2023085206A1
WO2023085206A1 PCT/JP2022/041156 JP2022041156W WO2023085206A1 WO 2023085206 A1 WO2023085206 A1 WO 2023085206A1 JP 2022041156 W JP2022041156 W JP 2022041156W WO 2023085206 A1 WO2023085206 A1 WO 2023085206A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
catalyst layer
solid polymer
polymer electrolyte
water electrolysis
Prior art date
Application number
PCT/JP2022/041156
Other languages
French (fr)
Japanese (ja)
Inventor
匠 奥山
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023085206A1 publication Critical patent/WO2023085206A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded

Definitions

  • the present invention relates to a polymer electrolyte membrane electrode assembly for water electrolysis and a water electrolysis device.
  • Patent Document 1 discloses a solid polymer type water electrolysis device having a membrane electrode assembly including an anode and a cathode each having a catalyst layer, and a solid polymer electrolyte membrane disposed between the anode and the cathode. It is
  • the present invention has been made in view of the above problems, and aims to provide a polymer electrolyte membrane electrode assembly for water electrolysis and a water electrolysis apparatus that can achieve a low electrolysis voltage and suppress decomposition of the fluorine-containing polymer contained therein.
  • the present inventors have found that a solid polymer type having an anode catalyst layer, a cathode catalyst layer, and a solid polymer electrolyte membrane disposed between the anode catalyst layer and the cathode catalyst layer
  • cerium ions are contained in the region overlapping with the cathode catalyst layer, and the above
  • the inventors have found that a desired effect can be obtained if the amount of cerium ions in the region and the amount of ion-exchange groups in the fluorine-containing polymer contained in the cathode catalyst layer satisfy a predetermined relationship, leading to the present invention. .
  • a polymer electrolyte membrane electrode assembly for water electrolysis comprising an anode catalyst layer disposed on the other side of the solid polymer electrolyte membrane, When observed from the normal direction of the surface of the polymer electrolyte membrane electrode assembly for water electrolysis, the region overlapping with the cathode catalyst layer contains cerium ions,
  • a polymer electrolyte membrane electrode assembly for water electrolysis characterized in that it satisfies the relationship of formula (X).
  • a Ce represents the substance amount (mol) of cerium ions contained in the region
  • a IEG_C represents the substance amount (mol) of the ion exchange groups in the fluorine-containing polymer contained in the cathode catalyst layer. mol).
  • the content of the fluorine-containing polymer contained in the solid polymer electrolyte membrane is 80 to 100% by mass with respect to the total mass of the polymer in the solid polymer electrolyte membrane, [1] or [ 2].
  • R f1 is a perfluoroalkylene group that may contain an oxygen atom between the carbon atoms and the carbon atoms
  • R f2 is a single bond or a carbon a perfluoroalkylene group optionally containing an oxygen atom between atoms
  • R f3 is a single bond or a perfluoroalkylene group optionally containing an oxygen atom between carbon atoms
  • r is is 0 or 1
  • m is 0 or 1
  • M is a hydrogen atom, an alkali metal or a quaternary ammonium cation.
  • a polymer electrolyte membrane electrode assembly for water electrolysis and a water electrolysis device that can achieve a low electrolysis voltage and suppress decomposition of the fluorine-containing polymer contained therein.
  • FIG. 2 is a plan view schematically showing an example of the surface of the polymer electrolyte membrane electrode assembly for water electrolysis of the present invention observed from the normal direction.
  • An "ion-exchange group” is a group capable of exchanging at least part of the ions contained in this group with other ions, and examples thereof include the following sulfonic acid-type functional groups and carboxylic acid-type functional groups.
  • a "sulfonic acid-type functional group” means a sulfonic acid group (--SO 3 H) or a sulfonic acid group.
  • the form of the sulfonate group includes, for example, (-SO 3 - )Ma + , (-SO 3 - ) 2 Mb 2+ and (-SO 3 - ) 3 Mc 3+ (with the proviso that Ma + is an alkali metal ion or a quaternary ammonium cation, Mb 2+ is a divalent metal ion and Mc 3+ is a trivalent metal ion).
  • Ma + is an alkali metal ion or a quaternary ammonium cation
  • Mb 2+ is a divalent metal ion
  • Mc 3+ is a trivalent metal ion
  • Carboxylic acid-type functional group means a carboxylic acid group (--COOH) or a carboxylic acid group.
  • Examples of forms of carboxylic acid groups include (-COO - ) Ma + , (-COO - ) 2 Mb 2+ and (-COO - ) 3 Mc 3+ (where Ma + is alkaline are metal ions or quaternary ammonium cations, Mb 2+ is a divalent metal ion and Mc 3+ is a trivalent metal ion).
  • Ma + is alkaline are metal ions or quaternary ammonium cations
  • Mb 2+ is a divalent metal ion
  • Mc 3+ is a trivalent metal ion.
  • a “precursor membrane” is a membrane comprising a polymer having groups that can be converted to ion exchange groups.
  • the “group convertible to an ion-exchange group” means a group convertible to an ion-exchange group by treatment such as hydrolysis treatment or acidification treatment.
  • the “group convertible to a sulfonic acid type functional group” means a group convertible to a sulfonic acid type functional group by treatment such as hydrolysis treatment or acidification treatment.
  • the “group convertible to a carboxylic acid type functional group” means a group convertible to a carboxylic acid type functional group by a known treatment such as hydrolysis treatment or acidification treatment.
  • a "unit" in a polymer means an atomic group derived from one molecule of a monomer formed by polymerizing the monomer.
  • the unit may be an atomic group directly formed by the polymerization reaction, or may be an atomic group in which a part of the atomic group is converted to another structure by treating the polymer obtained by the polymerization reaction. good.
  • a numerical range expressed using " ⁇ " means a range that includes the numerical values described before and after " ⁇ " as lower and upper limits.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
  • the polymer electrolyte membrane electrode assembly for water electrolysis of the present invention (hereinafter also simply referred to as “membrane electrode assembly”) is a fluorine-containing polymer having ion exchange groups (hereinafter simply “fluoropolymer (I)”). and a fluoropolymer having ion-exchange groups disposed on one side of the solid polymer electrolyte membrane (hereinafter simply referred to as “fluoropolymer (II)"). and an anode catalyst layer disposed on the other side of the solid polymer electrolyte membrane.
  • fluoropolymer (I) fluorine-containing polymer having ion exchange groups
  • fluoropolymer (II) fluoropolymer having ion-exchange groups
  • the membrane electrode assembly of the present invention contains cerium ions in the region overlapping with the cathode catalyst layer when observed from the normal direction of the surface of the membrane electrode assembly. Moreover, the membrane electrode assembly of the present invention satisfies the relationship of formula (X) described later. INDUSTRIAL APPLICABILITY
  • the membrane electrode assembly of the present invention can achieve a low electrolysis voltage and suppress decomposition of the fluoropolymer contained in the membrane electrode assembly when applied to a water electrolysis apparatus. Although the details of this reason have not been clarified, it is presumed to be due to the following reason.
  • cerium ions provide the above advantages, depending on the content of cerium ions, the proton conductivity of the fluorine-containing polymer having ion exchange groups in the solid polymer electrolyte membrane or catalyst layer may decrease. Therefore, the electrolysis voltage may be high. Therefore, there is a trade-off relationship between achieving a low electrolysis voltage and suppressing decomposition of the fluoropolymer.
  • a Ce represents the amount (mol) of cerium ions contained in the above region
  • a IEG_C represents ions in the fluorine-containing polymer (fluorine-containing polymer (II)) contained in the cathode catalyst layer. It represents the amount (mol) of the exchange group. Note that “3” in “A Ce ⁇ 3” means the valence of cerium ions.
  • cations constituting ion-exchange groups in the fluoropolymer (fluoropolymer (II)) contained in the cathode catalyst layer are replaced by cerium ions present in the vicinity of the cathode catalyst layer.
  • fluoropolymer (fluoropolymer (II)) contained in the cathode catalyst layer for example, H + when the ion-exchange groups are —SO 3 H
  • cerium ions present in the vicinity of the cathode catalyst layer In a water electrolyzer, water moves from the anode side to the cathode side, so cerium ions contained in the membrane electrode assembly tend to gather on the cathode side.
  • the relationship between the substance amount (mol) of the ion-exchange groups in the fluorine-containing polymer contained in the cathode catalyst layer and the substance amount (mol) of the cerium ions contained in the region is I am paying attention.
  • the above formula (X) is an index showing the extent to which the cations constituting the ion-exchange groups of the fluoropolymer (II) are likely to be replaced by cerium ions. For example, when (A Ce ⁇ 3)/A IEG_C is 1 or more, it means that all the cations of the ion exchange groups in the fluoropolymer (II) may be replaced with cerium ions. do.
  • a Ce is preferably 0.02 ⁇ mol or more, more preferably 0.20 ⁇ mol or more, and even more preferably 0.60 ⁇ mol or more, from the viewpoint of further suppressing the decomposition of the fluoropolymer.
  • a Ce is preferably 2.00 ⁇ mol or less, more preferably 1.90 ⁇ mol or less, and even more preferably 1.40 ⁇ mol or less, in terms of further reducing the electrolysis voltage.
  • a IEG_C is preferably 1.00 ⁇ mol or more, more preferably 1.50 ⁇ mol or more, in terms of further reducing the electrolysis voltage and providing sufficient mechanical strength to the catalyst layer.
  • a IEG_C is preferably 25.00 ⁇ mol or less, more preferably 10.00 ⁇ mol or less, and even more preferably 8.00 ⁇ mol or less, in terms of further reducing the electrolysis voltage.
  • a Ce and A IEG_C are determined by the method described in the Examples section below.
  • FIG. 1 is a cross-sectional view schematically showing an example of the membrane electrode assembly of the present invention.
  • the membrane electrode assembly 20 includes the electrolyte membrane 10, the cathode catalyst layer 26B disposed in contact with one surface of the electrolyte membrane 10, and the cathode catalyst layer 26B opposite the electrolyte membrane 10.
  • the cathode gas diffusion layer 28B arranged on the side surface, the anode catalyst layer 26A arranged in contact with the other surface of the electrolyte membrane 10, and the surface of the anode catalyst layer 26A opposite to the electrolyte membrane 10 and a disposed anode gas diffusion layer 28A.
  • the electrolyte membrane may have a multi-layer structure.
  • a specific aspect of the electrolyte membrane having a multilayer structure is an aspect in which a plurality of electrolyte membranes having different ion exchange capacities are laminated.
  • the thickness of the electrolyte membrane is preferably 30 ⁇ m or more.
  • the thickness of the electrolyte membrane is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, even more preferably 100 ⁇ m or less.
  • the thickness of the electrolyte membrane means the total thickness of each layer.
  • the thickness of the electrolyte membrane is measured using a magnified image (for example, objective lens magnification of 50) of the cross section of the electrolyte membrane photographed by a laser microscope (product name “VK-X1000”, manufactured by Keyence Corporation).
  • the electrolyte membrane may contain a polymer other than the fluoropolymer (I), but the polymer in the electrolyte membrane is preferably substantially composed of the fluoropolymer (I) in order to further reduce the electrolysis voltage.
  • Consisting essentially of the fluoropolymer (I) means that the content of the fluoropolymer (I) is 95% by mass or more with respect to the total mass of the polymer in the electrolyte membrane.
  • the upper limit of the content of the fluoropolymer (I) is 100% by mass relative to the total mass of the polymer in the electrolyte membrane.
  • polymers other than the fluoropolymer (I) include polymers of heterocyclic compounds containing at least one nitrogen atom in the ring, and at least one nitrogen atom in the ring and an oxygen atom and/or or one or more polyazole compounds selected from the group consisting of polymers of heterocyclic compounds containing sulfur atoms.
  • polyazole compounds include polyimidazole compounds, polybenzimidazole compounds, polybenzobisimidazole compounds, polybenzoxazole compounds, polyoxazole compounds, polythiazole compounds, and polybenzothiazole compounds. From the standpoint of oxidation resistance of the electrolyte membrane, other polymers include polyphenylene sulfide resins and polyphenylene ether resins.
  • the fluoropolymer (I) has ion exchange groups.
  • ion exchange groups include sulfonic acid-type functional groups and carboxylic acid-type functional groups. Functional groups are preferred.
  • fluoropolymer (S) fluoropolymer having a sulfonic acid-type functional group
  • TFE is preferable from the viewpoint of the production cost of the monomer, the reactivity with other monomers, and the excellent properties of the obtained fluoropolymer (S).
  • a fluorine-containing olefin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a unit represented by the formula (1) is preferable as the unit having a sulfonic acid type functional group and a fluorine atom.
  • M is a hydrogen atom, an alkali metal or a quaternary ammonium cation. Also, when there are multiple Ms, the multiple Ms may be different. In formula (1), n is 1 or 2.
  • the unit represented by formula (1) includes a unit represented by formula (1-1), a unit represented by formula (1-2), a unit represented by formula (1-3), or a unit represented by formula (
  • the unit represented by 1-4) is preferable, and the unit represented by formula (1-3) or the unit represented by formula (1-4) can further reduce the electrolysis voltage when applied to a water electrolysis device. units are more preferred.
  • R f1 is a perfluoroalkylene group optionally containing an oxygen atom between carbon atoms.
  • the number of carbon atoms in the perfluoroalkylene group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
  • R f2 is a single bond or a perfluoroalkylene group optionally containing an oxygen atom between carbon atoms.
  • the number of carbon atoms in the perfluoroalkylene group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
  • R f3 is a single bond or a perfluoroalkylene group optionally containing an oxygen atom between carbon atoms.
  • the number of carbon atoms in the perfluoroalkylene group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
  • r is 0 or 1.
  • m is 0 or 1.
  • M is a hydrogen atom, an alkali metal or a quaternary ammonium cation. Also, when there are multiple Ms, the multiple Ms may be different.
  • the unit represented by formula (1-5) is more preferable.
  • Formula (1-5) -[CF 2 -CF(-(CF 2 ) x -(OCF 2 CFY) y -O-(CF 2 ) z -SO 3 M)]-
  • x is 0 or 1
  • y is an integer from 0 to 2
  • z is an integer from 1 to 4
  • Y is F or CF3 .
  • M is as described above.
  • units represented by formula (1-1) include the following units.
  • w in the formula is an integer of 1-8, and x is an integer of 1-5.
  • M in the formula is as described above. -[ CF2 -CF(-O-( CF2 ) w - SO3M )]- -[ CF2 -CF(-O- CF2CF ( CF3 )-O-( CF2 ) w- SO3M )]- -[ CF2 -CF(-(O- CF2CF ( CF3 )) x - SO3M )]-
  • units represented by formula (1-2) include the following units.
  • w in the formula is an integer of 1-8.
  • M in the formula is as described above. -[ CF2 -CF(-( CF2 ) w - SO3M )]- -[ CF2 -CF( -CF2 -O-( CF2 ) w - SO3M )]-
  • Units represented by formula (1-3) are preferably units represented by formula (1-3-1).
  • the definition of M in the formula is as described above.
  • R f4 is a linear perfluoroalkylene group having 1 to 6 carbon atoms
  • R f5 may contain a single bond or an oxygen atom between carbon atoms. It is a linear perfluoroalkylene group having 1 to 6 carbon atoms.
  • the definitions of r and M are as described above.
  • Units having a sulfonic acid-type functional group and a fluorine atom may be used singly or in combination of two or more.
  • the electrolyte membrane may further contain components other than those described above. Specific examples of such components include cerium ions. Details of the cerium ion will be described later.
  • the ratio of the amount of cerium ions to the amount of ion-exchange groups of the fluoropolymer (I) in the electrolyte membrane is preferably 1 mol % or less, more preferably 0.5 mol % or less. , 0.4 mol % or less is more preferable.
  • a polymer of a fluoromonomer having a group convertible to an ion-exchange group (hereinafter also referred to as a fluoromonomer (I′)) (hereinafter referred to as a “fluoropolymer (I′)”)
  • a fluoropolymer (I′) (hereinafter referred to as a “fluoropolymer (I′)”)
  • a reinforcing material hereinafter also referred to as "precursor membrane”
  • a method of converting to a group is exemplified. An electrolyte membrane is thus obtained.
  • fluoropolymer (I') a polymer of a fluoromonomer having a group convertible to a sulfonic acid type functional group (hereinafter also referred to as “fluoromonomer (S')”) (hereinafter referred to as “fluoropolymer ( S′)”) is preferred, and copolymers of a fluorine-containing olefin with a monomer having a group convertible to a sulfonic acid type functional group and a fluorine atom are particularly preferred.
  • fluorine-containing polymer (S') will be described in detail below.
  • fluorine-containing olefin examples include those exemplified above, and TFE is preferable from the viewpoint of the production cost of the monomer, reactivity with other monomers, and excellent properties of the obtained fluorine-containing polymer (S).
  • a fluorine-containing olefin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the compounds represented by formula (2) include compounds represented by formula (2-1), compounds represented by formula (2-2), compounds represented by formula (2-3) and formula ( Compounds represented by 2-4) are preferred.
  • Formula (2-1) CF 2 CF-OR f1 -A
  • Formula (2-2) CF 2 CF-R f1 -A
  • R f1 , R f2 , R f3 , r, m and A in the formula are as described above.
  • CF2 CF-( CF2 ) x- ( OCF2CFY ) y -O-( CF2 ) z - SO3M
  • M, x, y, z and Y in the formula are as described above.
  • w in the formula is an integer of 1-8, and x is an integer of 1-5.
  • w in the formula is an integer of 1-8.
  • CF 2 CF-(CF 2 ) w -SO 2 F
  • CF2 CF-CF2 - O-( CF2 ) w - SO2F
  • R f4 , R f5 , r and A in the formula are as described above.
  • the compound represented by formula (2-4) is preferably a compound represented by formula (2-4-1).
  • the fluorine-containing monomer (S') may be used alone or in combination of two or more.
  • other monomers may be used to produce the fluorine-containing polymer (S').
  • Other monomers include those exemplified above.
  • the ion exchange capacity of the fluoropolymer (I') can be adjusted by changing the content of groups convertible to ion exchange groups in the fluoropolymer (I').
  • a specific example of the method for producing the precursor film is an extrusion method.
  • a specific example of the manufacturing method when the precursor film contains the reinforcing material is as follows. First, a film (I') containing a fluorine-containing polymer (I') is formed. After that, the film (I'), the reinforcing material, and the film (I') are arranged in this order, and these are laminated using a lamination roll or a vacuum lamination device.
  • Specific examples of the method for converting the groups convertible into ion-exchange groups in the precursor film to ion-exchange groups include a method of subjecting the precursor film to hydrolysis treatment, acidification treatment, or the like. Among them, the method of contacting the precursor film and the alkaline aqueous solution is preferable.
  • the method of contacting the precursor film with the alkaline aqueous solution include a method of immersing the precursor film in the alkaline aqueous solution and a method of spray coating the surface of the precursor film with the alkaline aqueous solution.
  • the temperature of the alkaline aqueous solution is preferably 30-100°C, particularly preferably 40-100°C.
  • the contact time between the precursor film and the alkaline aqueous solution is preferably 3 to 150 minutes, particularly preferably 5 to 50 minutes.
  • the alkaline aqueous solution preferably contains an alkali metal hydroxide, a water-soluble organic solvent and water.
  • Alkali metal hydroxides include sodium hydroxide and potassium hydroxide.
  • water-soluble organic solvent refers to an organic solvent that readily dissolves in water. 0.5 g or more of organic solvent is particularly preferred.
  • the water-soluble organic solvent preferably contains at least one selected from the group consisting of aprotic organic solvents, alcohols and aminoalcohols, and particularly preferably contains aprotic organic solvents.
  • One of the water-soluble organic solvents may be used alone, or two or more thereof may be used in combination.
  • aprotic organic solvents include dimethylsulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and dimethylsulfoxide is preferable.
  • alcohols include methanol, ethanol, isopropanol, butanol, methoxyethoxyethanol, butoxyethanol, butylcarbitol, hexyloxyethanol, octanol, 1-methoxy-2-propanol, and ethylene glycol.
  • aminoalcohols include ethanolamine, N-methylethanolamine, N-ethylethanolamine, 1-amino-2-propanol, 1-amino-3-propanol, 2-aminoethoxyethanol, 2-aminothio ethoxyethanol, 2-amino-2-methyl-1-propanol.
  • the concentration of the alkali metal hydroxide in the alkaline aqueous solution is preferably 1% by mass or more, more preferably 3% by mass or more, and is preferably 60% by mass or less, more preferably 55% by mass or less.
  • the content of the water-soluble organic solvent is preferably 1% by mass or more, more preferably 3% by mass or more, and preferably 60% by mass or less, more preferably 55% by mass or less, in the alkaline aqueous solution.
  • the concentration of water is preferably 39-80% by mass in the alkaline aqueous solution.
  • anode catalyst layer is a layer containing a catalyst and a polymer having ion exchange groups.
  • the catalyst include supported catalysts in which platinum, platinum alloys, or platinum-containing catalysts having a core-shell structure are supported on carbon supports, iridium oxide catalysts, alloys containing iridium oxide, and iridium oxides having a core-shell structure. catalysts.
  • carbon supports include carbon black powder.
  • Polymers having ion-exchange groups include fluorine-containing polymers having ion-exchange groups. Specific examples of the fluoropolymer having ion-exchange groups may be the same as the fluoropolymer (I) contained in the electrolyte membrane described above, including preferred embodiments thereof.
  • the anode catalyst layer is formed, for example, by a known method using an anode catalyst ink containing a catalyst, a polymer having an ion exchange group, a solvent (water, organic solvent), and optionally a water-soluble cerium salt. can be manufactured.
  • the film thickness of the anode catalyst layer is preferably 5 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m or less, and particularly preferably 15 ⁇ m or less, from the viewpoint that the effect of the present invention is more excellent.
  • the film thickness of the anode catalyst layer is measured using an image obtained by measuring a section cut in the film thickness direction of the membrane electrode assembly with a laser microscope, and is an arithmetic average value at 20 arbitrary points.
  • a specific example of the cathode catalyst layer is a layer containing a catalyst and a fluorine-containing polymer (II).
  • Specific examples of the catalyst are the same as those contained in the anode catalyst layer, including preferred embodiments.
  • Specific examples of the fluoropolymer (II) may be the same as the fluoropolymer (I) described above, including preferred embodiments thereof.
  • the mass of the catalyst per 1 cm 2 of the cathode catalyst layer is preferably 0.05 mg/cm 2 or more, more preferably 0.10 mg/cm 2 or more, and preferably 1.00 mg/cm 2 or less, and 0.50 mg/cm 2 or less. 2 or less is more preferable, and 0.40 mg/cm 2 or less is even more preferable.
  • the mass ratio of the catalyst to the fluoropolymer (II) in the cathode catalyst layer is preferably 0.3 or more, preferably 1.0 or less, and 0.3. 7 or less is more preferable, and 0.5 or less is even more preferable.
  • the cathode catalyst layer may further contain components other than those described above. Specific examples of such components include cerium ions. Details of the cerium ion will be described later.
  • the ratio of the amount of cerium ions to the amount of ion-exchange groups of the fluoropolymer (II) in the cathode catalyst layer is preferably 0.1 mol % or more, and preferably 0.3 mol. % or more, preferably 15 mol % or less, and more preferably 10 mol % or less.
  • the cathode catalyst layer is formed according to a known method using, for example, a cathode catalyst ink containing a catalyst, a fluorine-containing polymer (II), a solvent (water, organic solvent), and optionally a water-soluble cerium salt. can be manufactured.
  • the film thickness of the cathode catalyst layer is preferably 5 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m or less, and particularly preferably 15 ⁇ m or less, from the viewpoint that the effect of the present invention is more excellent.
  • the method for measuring the film thickness of the cathode is the same as the method for measuring the film thickness of the anode.
  • the above region corresponds to a portion of the membrane electrode assembly 20 where the cathode catalyst layer 26B is projected along the thickness direction (normal line) of the membrane electrode assembly 20 .
  • the above regions are the portion of the cathode gas diffusion layer 28B that overlaps the cathode catalyst layer 26B along the thickness direction, the entire cathode catalyst layer 26B, and the electrolyte membrane 10 along the thickness direction.
  • the cerium ions need only be contained in the above region, but are preferably contained in at least one of the solid polymer electrolyte membrane present in the region and the cathode catalyst layer present in the region.
  • the cerium ions may be contained outside the above region as long as they are contained within the above region.
  • the cerium ions contained in the region are preferably trivalent cerium ions.
  • Specific examples of methods for introducing cerium ions into the region include a method using an electrolyte membrane containing cerium ions and a method using a cathode catalyst layer containing cerium ions.
  • a laminate having an anode catalyst layer and a release base material e.g., ETFE sheet
  • a cathode catalyst layer and a release base material e.g., ETFE sheet
  • a laminate having, the catalyst layers (anode catalyst layer and cathode catalyst layer) are joined to both surfaces of the electrolyte membrane, and then the releasable substrate is peeled off.
  • the laminate may have a gas diffusion layer between the catalyst layer and the release substrate. In this case, gas diffusion layers (anode gas diffusion layer and cathode gas diffusion layer) can be formed on the opposite side of the catalyst layer to the electrolyte membrane.
  • a Ce which is the amount of cerium ions contained in the region overlapping the cathode catalyst layer when observed from the normal direction of the surface of the membrane electrode assembly, is the amount of cerium ions from the membrane electrode assembly to the cathode.
  • the amount of cerium ions was measured in the same manner as in the method for measuring the amount of cerium ions using the membrane, except that a sample cut out only from the region overlapping the catalyst layer was used.
  • the sample was obtained by cutting off the peripheral portion of the membrane electrode assembly (that is, the portion where the cathode catalyst layer was not provided), and had the same size (4 cm ⁇ 4 cm) as the cathode catalyst layer.
  • the samples include a cathode catalyst layer, an electrolyte membrane and an anode catalyst layer.
  • the membrane electrode assembly was sandwiched between platinum-plated titanium fiber sintered bodies (manufactured by Bekaert) with a thickness of 0.25 mm and a porosity of 60% .
  • the membrane electrode assembly was incorporated into a single cell of the above and evaluated. When sandwiching the membrane electrode assembly, it was fastened so that a pressure of 1.5 MPa was applied to the electrode portion. Next, 50 mL of pure water having a conductivity of 1.0 ⁇ S/cm or less, a temperature of 60° C. and normal pressure was applied to the anode catalyst layer side and the cathode catalyst layer side in order to sufficiently hydrate the solid polymer electrolyte membrane and both electrode ionomers. /min for 8 hours.
  • the membrane electrode assembly was sandwiched between platinum-plated titanium fiber sintered bodies (manufactured by Bekaert) with a thickness of 0.25 mm and a porosity of 60% .
  • the membrane electrode assembly was incorporated into a single cell of the above and evaluated. When sandwiching the membrane electrode assembly, it was fastened so that a pressure of 1.5 MPa was applied to the electrode portion. Next, 50 mL of pure water having a conductivity of 1.0 ⁇ S/cm or less, a temperature of 60° C. and normal pressure was applied to the anode catalyst layer side and the cathode catalyst layer side in order to sufficiently hydrate the solid polymer electrolyte membrane and both electrode ionomers. /min for 8 hours.
  • the amount of water supplied to the anode catalyst layer was changed to 150 mL/min, the back pressure was changed to 50 kPa for both the anode and the cathode, and the operation was continued at a current density of 1 A/cm 2 for 1000 hours.
  • Waste water discharged from the cathode catalyst layer side was sampled between 500 hours and 1000 hours after the break-in operation.
  • the amount of fluoride ions contained in this waste water was quantified by ion chromatography and averaged to calculate the average amount of fluoride ions per unit electrode area/unit time, and evaluated as the fluorine release rate according to the following criteria.
  • TFE Tetrafluoroethylene
  • P2SVE a monomer represented by the following formula m32-1
  • a dispersion liquid (hereinafter also referred to as "dispersion liquid X”) was obtained by dispersing at a solid content concentration of 20.0%.
  • the obtained dispersion liquid X was coated on a 100 ⁇ m ethylene-tetrafluoroethylene copolymer (ETFE) sheet with a die coater to form a film, which was dried at 80° C. for 15 minutes, and further dried at 160° C.
  • EFE ethylene-tetrafluoroethylene copolymer
  • Example 1-2 A solid polymer electrolyte membrane M-2 was obtained in the same manner as in Example 1-1, except that the amount of the 9.8 mmol/L cerium (III) nitrate aqueous solution added was changed to 1.15 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
  • a solid polymer electrolyte membrane M-4 was obtained in the same manner as in Example 1-1, except that the amount of the L cerium (III) nitrate aqueous solution was changed to 1.01 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
  • Cerium ions were introduced into this electrolyte membrane in the same manner as in Example 1-1, except that the amount of the 9.8 mmol/L cerium (III) nitrate aqueous solution to be added was changed to 0.99 g. Got 5.
  • Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
  • a solid polymer electrolyte membrane M-6 was obtained in the same manner as in Example 1-1 except that the weight was changed to 27 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
  • Example 1-7 As the solid polymer electrolyte membrane, the woven fabric reinforced electrolyte membrane described in Example 1 of WO 2020/162511 is used, and the amount of 9.8 mmol/L cerium (III) nitrate aqueous solution to be added is 1.03 g. A solid polymer electrolyte membrane M-7 was obtained in the same manner as in Example 1-1 except for the change. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
  • Example 1-8> A solid polymer electrolyte membrane M-8 containing no cerium ions was obtained in the same manner as in Example 1-1, except that the 9.8 mmol/L cerium (III) nitrate aqueous solution was not added. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
  • Example 1-9 A solid polymer electrolyte membrane M-9 was obtained in the same manner as in Example 1-1, except that the amount of the 9.8 mmol/L cerium (III) nitrate aqueous solution added was changed to 6.50 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
  • Example 1-10 A solid polymer electrolyte membrane M-10 was obtained in the same manner as in Example 1-1, except that the amount of the 9.8 mmol/L cerium (III) nitrate aqueous solution added was changed to 3.19 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
  • Example 2-1 Water (59.4 g) and ethanol (39.6 g) are added to a supported catalyst ("TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) (11 g) in which 46% by mass of platinum is supported on carbon powder, and mixed and pulverized using an ultrasonic homogenizer. to obtain a catalyst dispersion.
  • the cathode catalyst ink was applied to the ETFE sheet with a die coater, dried at 80° C., and heat-treated at 150° C. for 15 minutes to obtain a cathode catalyst layer decal D-1 having a platinum content of 0.4 mg/cm 2 . .
  • Example 2-2 Dispersion Y (50 g) and cerium (III) carbonate octahydrate (0.43 g) were mixed for 3 days at room temperature to obtain a dispersion. This dispersion was heated at 160° C. for 3 hours, and the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups (sulfonic acid groups) of the fluorine-containing polymer obtained by removing the solvent is shown in Table 2. show. In the table, the ratio of the amount of cerium ions to the amount of ion exchange groups is abbreviated as "Ce/IEG (mol %) in the cathode catalyst layer". A cathode catalyst layer decal D-2 was obtained in the same manner as in Example 2-1, except that 20.1 g of this dispersion was added in place of dispersion Y as the polymer dispersion used in the cathode catalyst ink.
  • Example 2-3 Dispersion Y (50 g) and cerium (III) carbonate octahydrate (0.014 g) were mixed for 3 days at room temperature to obtain a dispersion. This dispersion was heated at 160° C. for 3 hours, and the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups (sulfonic acid groups) of the fluorine-containing polymer obtained by removing the solvent is shown in Table 2. show.
  • a cathode catalyst layer decal D-3 was obtained in the same manner as in Example 2-1, except that 20.1 g of this dispersion was added in place of dispersion Y as the polymer dispersion used in the cathode catalyst ink.
  • Dispersion liquid Y (33.0 g) was added with ethanol (18.06 g) and Zeorola-H (manufactured by Nippon Zeon) (10.58 g), and a rotation and revolution mixer (Thinky's Awatori Mixer) was used at 2200 rpm for 5 minutes.
  • ethanol 18.06 g
  • Zeorola-H manufactured by Nippon Zeon
  • a rotation and revolution mixer (Thinky's Awatori Mixer) was used at 2200 rpm for 5 minutes.
  • Ethanol (46.44 g) and water (75.75 g) were added to the mixed composition (54.06 g), and an iridium oxide catalyst (Tanaka Kikinzoku Co.) (40.0 g) was added.
  • the resulting mixture was treated with a planetary bead mill (rotational speed: 300 rpm) for 90 minutes to obtain an anode catalyst ink having a solid content concentration of 22% by mass.
  • An anode catalyst ink was applied to the ETFE sheet with an applicator so that the iridium content was 1.0 mg/cm 2 , dried at 80° C. for 10 minutes, and further subjected to heat treatment at 150° C. for 15 minutes to form an anode catalyst layer decal. Obtained.
  • Example 3-2 to 3-7 Membrane electrode assemblies were obtained in the same manner as in Example 3-1, except that solid polymer electrolyte membranes M-2 to M-7 were used instead of solid polymer electrolyte membrane M-1. Table 3 shows the evaluation results.
  • Examples 3-8 to 3-9> In the same manner as in Example 3-1, except that a solid polymer electrolyte membrane M-8 was used instead of the solid polymer electrolyte membrane M-1, and D-2 or D-3 was used instead of the cathode catalyst layer decal D-1. A membrane electrode assembly was obtained. Table 3 shows the evaluation results.
  • Example 3-10> A membrane electrode assembly was prepared in the same manner as in Example 3-1, except that a solid polymer electrolyte membrane M-3 was used instead of the solid polymer electrolyte membrane M-1, and D-2 was used instead of the cathode catalyst layer decal D-1. got Table 3 shows the evaluation results.
  • Example 4-1 to 4-3 Membrane electrode assemblies were obtained in the same manner as in Example 3-1 except that solid polymer electrolyte membranes M-9, M-10 and M-8 were used instead of solid polymer electrolyte membrane M-1. Table 3 shows the evaluation results.

Abstract

Provided are a solid polymer-type water electrolysis membrane-electrode joint body and a water electrolysis device, which can achieve a low electrolytic voltage and can suppress degradation of a fluorine-containing polymer included therein. A solid polymer-type water electrolysis membrane-electrode joint body according to the present invention: includes a solid polymer electrolysis membrane containing a fluorine-containing polymer having an ion exchange group, a cathode catalyst layer disposed on one surface side of the solid polymer electrolysis membrane and containing a fluorine-containing polymer having an ion exchange group, and an anode catalyst layer disposed on the other surface side of the solid polymer electrolysis membrane; contains cerium ions in a region overlapping the cathode catalyst layer when the surface of the solid polymer-type water electrolysis membrane-electrode joint body is observed in a normal line direction; and satisfies the relation of formula (X). In formula (X), ACe represents the substance quantity of cerium ions contained in said region, and AIEG_C represents the substance quantity of the ion exchange groups in the fluorine-containing polymer contained in the cathode catalyst layer. Formula (X): (ACe×3)/AIEG_C≤0.90

Description

固体高分子型水電解用膜電極接合体および水電解装置Solid polymer type membrane electrode assembly for water electrolysis and water electrolysis device
 本発明は、固体高分子型水電解用膜電極接合体および水電解装置に関する。 The present invention relates to a polymer electrolyte membrane electrode assembly for water electrolysis and a water electrolysis device.
 パワーツーガス、すなわち余剰の電力を気体に変換して貯蔵および利用する点から、固体高分子型水電解装置(PEM型水電解装置)の利用が検討されている。
 例えば、特許文献1では、触媒層を有するアノードおよびカソードと、アノードとカソードとの間に配置された固体高分子電解質膜と、を含む膜電極接合体を有する固体高分子型水電解装置が開示されている。
From the point of view of power-to-gas, that is, surplus electric power is converted into gas for storage and utilization, the use of polymer electrolyte water electrolyzers (PEM water electrolyzers) is being studied.
For example, Patent Document 1 discloses a solid polymer type water electrolysis device having a membrane electrode assembly including an anode and a cathode each having a catalyst layer, and a solid polymer electrolyte membrane disposed between the anode and the cathode. It is
国際公開第2019/088299号WO2019/088299
 近年、水電解装置のさらなる性能向上が求められており、具体的には、電解電圧を低くできることが求められている。
 本発明者が、特許文献1に記載されているような膜電極接合体を含む水電解装置を評価したところ、低い電解電圧を達成できるものの、膜電極接合体に含まれる含フッ素ポリマーの分解が生じる場合があることを見出した。
In recent years, there has been a demand for further improvement in the performance of water electrolysis devices, and specifically, it is demanded that the electrolysis voltage can be lowered.
When the inventors of the present invention evaluated a water electrolysis apparatus including a membrane electrode assembly as described in Patent Document 1, it was found that although a low electrolysis voltage could be achieved, the decomposition of the fluorine-containing polymer contained in the membrane electrode assembly was observed. I found that it can happen.
 本発明は、上記問題に鑑みてなされ、低い電解電圧を達成でき、かつ、含まれる含フッ素ポリマーの分解を抑制できる、固体高分子型水電解用膜電極接合体および水電解装置の提供を課題とする。 The present invention has been made in view of the above problems, and aims to provide a polymer electrolyte membrane electrode assembly for water electrolysis and a water electrolysis apparatus that can achieve a low electrolysis voltage and suppress decomposition of the fluorine-containing polymer contained therein. and
 本発明者らは、上記課題について鋭意検討した結果、アノード触媒層と、カソード触媒層と、アノード触媒層およびカソード触媒層の間に配置された固体高分子電解質膜と、を有する固体高分子型水電解用膜電極接合体において、固体高分子型水電解用膜電極接合体の表面の法線方向から観察した際に、カソード触媒層と重複している領域内にセリウムイオンが含まれ、上記領域内におけるセリウムイオンの物質量とカソード触媒層に含まれる含フッ素ポリマー中のイオン交換基の物質量とが所定の関係を満たせば、所望の効果が得られることを見出し、本発明に至った。 As a result of intensive studies on the above problems, the present inventors have found that a solid polymer type having an anode catalyst layer, a cathode catalyst layer, and a solid polymer electrolyte membrane disposed between the anode catalyst layer and the cathode catalyst layer In the membrane electrode assembly for water electrolysis, when observed from the normal direction of the surface of the solid polymer membrane electrode assembly for water electrolysis, cerium ions are contained in the region overlapping with the cathode catalyst layer, and the above The inventors have found that a desired effect can be obtained if the amount of cerium ions in the region and the amount of ion-exchange groups in the fluorine-containing polymer contained in the cathode catalyst layer satisfy a predetermined relationship, leading to the present invention. .
 すなわち、発明者らは、以下の構成により上記課題が解決できることを見出した。
[1] イオン交換基を有する含フッ素ポリマーを含む固体高分子電解質膜と、
 上記固体高分子電解質膜の一方の面側に配置された、イオン交換基を有する含フッ素ポリマーを含むカソード触媒層と、
 上記固体高分子電解質膜の他方の面側に配置された、アノード触媒層と、を含む固体高分子型水電解用膜電極接合体であって、
 上記固体高分子型水電解用膜電極接合体の表面の法線方向から観察した際に、上記カソード触媒層と重複している領域内にセリウムイオンが含まれ、
 式(X)の関係を満たすことを特徴とする、固体高分子型水電解用膜電極接合体。
  (ACe×3)/AIEG_C≦0.90  式(X)
 式(X)中、ACeは上記領域内に含まれるセリウムイオンの物質量(mol)を表し、AIEG_Cは上記カソード触媒層に含まれる上記含フッ素ポリマー中の上記イオン交換基の物質量(mol)を表す。
[2] 上記固体高分子電解質膜に含まれる上記含フッ素ポリマーのイオン交換容量が1.10ミリ当量/グラム乾燥樹脂以上である、[1]に記載の固体高分子型水電解用膜電極接合体。
[3] 上記固体高分子電解質膜に含まれる上記含フッ素ポリマーの含有量が、上記固体高分子電解質膜中のポリマーの合計質量に対して、80~100質量%である、[1]又は[2]に記載の固体高分子型水電解用膜電極接合体。
[4] 上記セリウムイオンが上記固体高分子電解質膜に含まれる、[1]~[3]のいずれかに記載の固体高分子型水電解用膜電極接合体。
[5] 上記セリウムイオンが上記カソード触媒層に含まれる、[1]~[4]のいずれかに記載の固体高分子型水電解用膜電極接合体。
[6] 上記固体高分子電解質膜に含まれる上記含フッ素ポリマーが有する上記イオン交換基が、スルホン酸型官能基である、[1]~[5]のいずれかに記載の固体高分子型水電解用膜電極接合体。
[7] 上記固体高分子電解質膜に含まれる上記含フッ素ポリマーが、後述の式(1-3)で表される単位、および、後述の式(1-4)で表される単位からなる群から選択される少なくとも1種の単位を含む、[1]~[6]のいずれかに記載の固体高分子型水電解用膜電極接合体。
 後述の式(1-3)および式(1-4)中、Rf1は、炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基であり、Rf2は、単結合または炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基であり、Rf3は、単結合または炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基であり、rは0または1であり、mは0または1であり、Mは水素原子、アルカリ金属または第4級アンモニウムカチオンである。
[8] 上記固体高分子電解質膜がさらに補強材を含む、[1]~[7]のいずれかに記載の固体高分子型水電解用膜電極接合体。
[9] [1]~[8]のいずれかに記載の固体高分子型水電解用膜電極接合体と、
 上記固体高分子型水電解用膜電極接合体におけるカソード触媒層側およびアノード触媒層側と接続している電力供給部と、
 上記アノード触媒層側に水を供給する水供給部と、を有することを特徴とする、水電解装置。
That is, the inventors have found that the above problems can be solved by the following configuration.
[1] a solid polymer electrolyte membrane containing a fluorine-containing polymer having ion exchange groups;
a cathode catalyst layer containing a fluorine-containing polymer having an ion-exchange group, disposed on one side of the solid polymer electrolyte membrane;
A polymer electrolyte membrane electrode assembly for water electrolysis, comprising an anode catalyst layer disposed on the other side of the solid polymer electrolyte membrane,
When observed from the normal direction of the surface of the polymer electrolyte membrane electrode assembly for water electrolysis, the region overlapping with the cathode catalyst layer contains cerium ions,
A polymer electrolyte membrane electrode assembly for water electrolysis, characterized in that it satisfies the relationship of formula (X).
(A Ce × 3)/A IEG_C ≤ 0.90 Formula (X)
In formula (X), A Ce represents the substance amount (mol) of cerium ions contained in the region, and A IEG_C represents the substance amount (mol) of the ion exchange groups in the fluorine-containing polymer contained in the cathode catalyst layer. mol).
[2] The membrane electrode junction for solid polymer type water electrolysis according to [1], wherein the ion exchange capacity of the fluorine-containing polymer contained in the solid polymer electrolyte membrane is 1.10 meq/g dry resin or more. body.
[3] The content of the fluorine-containing polymer contained in the solid polymer electrolyte membrane is 80 to 100% by mass with respect to the total mass of the polymer in the solid polymer electrolyte membrane, [1] or [ 2].
[4] The solid polymer membrane electrode assembly for water electrolysis according to any one of [1] to [3], wherein the cerium ions are contained in the solid polymer electrolyte membrane.
[5] The polymer electrolyte membrane electrode assembly for water electrolysis according to any one of [1] to [4], wherein the cathode catalyst layer contains the cerium ions.
[6] The solid polymer-type water according to any one of [1] to [5], wherein the ion-exchange group possessed by the fluorine-containing polymer contained in the solid polymer electrolyte membrane is a sulfonic acid-type functional group. Membrane electrode assembly for electrolysis.
[7] A group in which the fluorine-containing polymer contained in the solid polymer electrolyte membrane consists of a unit represented by formula (1-3) below and a unit represented by formula (1-4) below. The solid polymer membrane electrode assembly for water electrolysis according to any one of [1] to [6], comprising at least one unit selected from
In formulas (1-3) and (1-4) described below, R f1 is a perfluoroalkylene group that may contain an oxygen atom between the carbon atoms and the carbon atoms, and R f2 is a single bond or a carbon a perfluoroalkylene group optionally containing an oxygen atom between atoms, R f3 is a single bond or a perfluoroalkylene group optionally containing an oxygen atom between carbon atoms, r is is 0 or 1, m is 0 or 1, and M is a hydrogen atom, an alkali metal or a quaternary ammonium cation.
[8] The solid polymer membrane electrode assembly for water electrolysis according to any one of [1] to [7], wherein the solid polymer electrolyte membrane further contains a reinforcing material.
[9] the polymer electrolyte membrane electrode assembly for water electrolysis according to any one of [1] to [8];
a power supply section connected to the cathode catalyst layer side and the anode catalyst layer side of the polymer electrolyte membrane electrode assembly for water electrolysis;
and a water supply unit that supplies water to the anode catalyst layer side.
 本発明によれば、低い電解電圧を達成でき、かつ、含まれる含フッ素ポリマーの分解を抑制できる、固体高分子型水電解用膜電極接合体および水電解装置を提供できる。 According to the present invention, it is possible to provide a polymer electrolyte membrane electrode assembly for water electrolysis and a water electrolysis device that can achieve a low electrolysis voltage and suppress decomposition of the fluorine-containing polymer contained therein.
本発明の固体高分子型水電解用膜電極接合体の一例を模式的に示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows typically an example of the solid polymer type membrane electrode assembly for water electrolysis of this invention. 本発明の固体高分子型水電解用膜電極接合体の表面を法線方向から観察した場合の一例を模式的に示す平面図である。FIG. 2 is a plan view schematically showing an example of the surface of the polymer electrolyte membrane electrode assembly for water electrolysis of the present invention observed from the normal direction.
 以下の用語の定義は、特に断りのない限り、本明細書および特許請求の範囲にわたって適用される。
 「イオン交換基」とは、この基に含まれるイオンの少なくとも一部を、他のイオンに交換しうる基であり、例えば、下記のスルホン酸型官能基、カルボン酸型官能基が挙げられる。
 「スルホン酸型官能基」とは、スルホン酸基(-SOH)、またはスルホン酸塩基を意味する。ここで、スルホン酸塩基の形態としては、例えば、(-SO )Ma、(-SO Mb2+、および、(-SO Mc3+が挙げられる(ただし、Maはアルカリ金属イオンまたは第4級アンモニウムカチオンであり、Mb2+は2価の金属イオンであり、Mc3+は3価の金属イオンである。)。なお、配位子が2つの場合、イオン交換基の数は2、配位子が3つの場合、イオン交換基の数は3と数える。
 「カルボン酸型官能基」とは、カルボン酸基(-COOH)、またはカルボン酸塩基を意味する。ここで、カルボン酸塩基の形態としては、例えば、(-COO)Ma、(-COOMb2+、および、(-COOMc3+が挙げられる(ただし、Maはアルカリ金属イオンまたは第4級アンモニウムカチオンであり、Mb2+は2価の金属イオンであり、Mc3+は3価の金属イオンである。)。なお、配位子が2つの場合、イオン交換基の数は2、配位子が3つの場合、イオン交換基の数は3と数える。
 「前駆体膜」とは、イオン交換基に変換できる基を有するポリマーを含む膜である。
 「イオン交換基に変換できる基」とは、加水分解処理、酸型化処理等の処理によって、イオン交換基に変換できる基を意味する。
 「スルホン酸型官能基に変換できる基」とは、加水分解処理、酸型化処理等の処理によって、スルホン酸型官能基に変換できる基を意味する。
 「カルボン酸型官能基に変換できる基」とは、加水分解処理、酸型化処理等の公知の処理によって、カルボン酸型官能基に変換できる基を意味する。
The following term definitions apply throughout the specification and claims unless otherwise indicated.
An "ion-exchange group" is a group capable of exchanging at least part of the ions contained in this group with other ions, and examples thereof include the following sulfonic acid-type functional groups and carboxylic acid-type functional groups.
A "sulfonic acid-type functional group" means a sulfonic acid group (--SO 3 H) or a sulfonic acid group. Here, the form of the sulfonate group includes, for example, (-SO 3 - )Ma + , (-SO 3 - ) 2 Mb 2+ and (-SO 3 - ) 3 Mc 3+ (with the proviso that Ma + is an alkali metal ion or a quaternary ammonium cation, Mb 2+ is a divalent metal ion and Mc 3+ is a trivalent metal ion). When there are two ligands, the number of ion-exchange groups is counted as two, and when there are three ligands, the number of ion-exchange groups is counted as three.
"Carboxylic acid-type functional group" means a carboxylic acid group (--COOH) or a carboxylic acid group. Examples of forms of carboxylic acid groups include (-COO - ) Ma + , (-COO - ) 2 Mb 2+ and (-COO - ) 3 Mc 3+ (where Ma + is alkaline are metal ions or quaternary ammonium cations, Mb 2+ is a divalent metal ion and Mc 3+ is a trivalent metal ion). When there are two ligands, the number of ion-exchange groups is counted as two, and when there are three ligands, the number of ion-exchange groups is counted as three.
A "precursor membrane" is a membrane comprising a polymer having groups that can be converted to ion exchange groups.
The “group convertible to an ion-exchange group” means a group convertible to an ion-exchange group by treatment such as hydrolysis treatment or acidification treatment.
The “group convertible to a sulfonic acid type functional group” means a group convertible to a sulfonic acid type functional group by treatment such as hydrolysis treatment or acidification treatment.
The “group convertible to a carboxylic acid type functional group” means a group convertible to a carboxylic acid type functional group by a known treatment such as hydrolysis treatment or acidification treatment.
 ポリマーにおける「単位」は、モノマーが重合することによって形成された、該モノマー1分子に由来する原子団を意味する。単位は、重合反応によって直接形成された原子団であってもよく、重合反応によって得られたポリマーを処理することによって該原子団の一部が別の構造に変換された原子団であってもよい。 A "unit" in a polymer means an atomic group derived from one molecule of a monomer formed by polymerizing the monomer. The unit may be an atomic group directly formed by the polymerization reaction, or may be an atomic group in which a part of the atomic group is converted to another structure by treating the polymer obtained by the polymerization reaction. good.
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 A numerical range expressed using "~" means a range that includes the numerical values described before and after "~" as lower and upper limits. In the numerical ranges described stepwise in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise. Moreover, in the numerical ranges described in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
[膜電極接合体]
 本発明の固体高分子型水電解用膜電極接合体(以下、単に「膜電極接合体」ともいう。)は、イオン交換基を有する含フッ素ポリマー(以下、単に「含フッ素ポリマー(I)」ともいう。)を含む固体高分子電解質膜と、上記固体高分子電解質膜の一方の面側に配置された、イオン交換基を有する含フッ素ポリマー(以下、単に「含フッ素ポリマー(II)」ともいう。)を含むカソード触媒層と、上記固体高分子電解質膜の他方の面側に配置されたアノード触媒層と、を含む。また、本発明の膜電極接合体は、膜電極接合体の表面の法線方向から観察した際に、上記カソード触媒層と重複している領域内にセリウムイオンが含まれる。また、本発明の膜電極接合体は、後述の式(X)の関係を満たす。
 本発明の膜電極接合体は、水電解装置に適用した際に、低い電解電圧を達成でき、かつ、膜電極接合体に含まれる含フッ素ポリマーの分解を抑制できる。この理由の詳細は明らかになっていないが、以下の理由によると推測される。
[Membrane electrode assembly]
The polymer electrolyte membrane electrode assembly for water electrolysis of the present invention (hereinafter also simply referred to as "membrane electrode assembly") is a fluorine-containing polymer having ion exchange groups (hereinafter simply "fluoropolymer (I)"). and a fluoropolymer having ion-exchange groups disposed on one side of the solid polymer electrolyte membrane (hereinafter simply referred to as "fluoropolymer (II)"). and an anode catalyst layer disposed on the other side of the solid polymer electrolyte membrane. In addition, the membrane electrode assembly of the present invention contains cerium ions in the region overlapping with the cathode catalyst layer when observed from the normal direction of the surface of the membrane electrode assembly. Moreover, the membrane electrode assembly of the present invention satisfies the relationship of formula (X) described later.
INDUSTRIAL APPLICABILITY The membrane electrode assembly of the present invention can achieve a low electrolysis voltage and suppress decomposition of the fluoropolymer contained in the membrane electrode assembly when applied to a water electrolysis apparatus. Although the details of this reason have not been clarified, it is presumed to be due to the following reason.
 水電解装置の運転時において、系内に過酸化水素が発生する場合がある。過酸化水素から生じたOHラジカルが固体高分子電解質膜やカソード触媒層に含まれる含フッ素ポリマーと反応すると、含フッ素ポリマーの分解が生じるという問題がある。
 この問題に対して、本発明者らは、セリウムイオンを含む膜電極接合体を用いれば、含フッ素ポリマーの分解を抑制できることを見出した。すなわち、セリウムイオンによってOHラジカルがクエンチされる結果、含フッ素ポリマーの分解を抑制できたと推定している。
During operation of the water electrolyzer, hydrogen peroxide may be generated in the system. When OH radicals generated from hydrogen peroxide react with the fluorine-containing polymer contained in the solid polymer electrolyte membrane or the cathode catalyst layer, there is a problem that the fluorine-containing polymer is decomposed.
To address this problem, the present inventors have found that the decomposition of the fluoropolymer can be suppressed by using a membrane electrode assembly containing cerium ions. That is, it is presumed that the decomposition of the fluorine-containing polymer was suppressed as a result of quenching of OH radicals by cerium ions.
 ここで、セリウムイオンを含むことで上述の利点がある一方で、セリウムイオンの含有量によっては、固体高分子電解質膜または触媒層中のイオン交換基を有する含フッ素ポリマーのプロトン伝導性が低下して、電解電圧が高くなる場合がある。そのため、低い電解電圧の達成と含フッ素ポリマーの分解抑制とはトレードオフの関係にある。
 この問題に対して、膜電極接合体の表面の法線方向から観察した際に、カソード触媒層と重複している領域内に含まれるセリウムイオンの物質量と、カソード触媒層に含まれる含フッ素ポリマー(含フッ素ポリマー(II))中のイオン交換基の物質量とが下記式(X)を満たしていれば、膜電極接合体がセリウムイオンを含む場合であっても、低い電解電圧を達成できることを本発明者らは見出した。
Here, although the inclusion of cerium ions provides the above advantages, depending on the content of cerium ions, the proton conductivity of the fluorine-containing polymer having ion exchange groups in the solid polymer electrolyte membrane or catalyst layer may decrease. Therefore, the electrolysis voltage may be high. Therefore, there is a trade-off relationship between achieving a low electrolysis voltage and suppressing decomposition of the fluoropolymer.
Regarding this problem, when observed from the normal direction of the surface of the membrane electrode assembly, the amount of cerium ions contained in the region overlapping the cathode catalyst layer and the fluorine-containing content of the cathode catalyst layer If the amount of ion exchange groups in the polymer (fluoropolymer (II)) satisfies the following formula (X), a low electrolysis voltage can be achieved even when the membrane electrode assembly contains cerium ions. The inventors have found that it is possible.
  (ACe×3)/AIEG_C≦0.90  式(X)
 式(X)中、ACeは、上記領域内に含まれるセリウムイオンの物質量(mol)を表し、AIEG_Cはカソード触媒層に含まれる含フッ素ポリマー(含フッ素ポリマー(II))中のイオン交換基の物質量(mol)を表す。
 なお、「ACe×3」の「3」は、セリウムイオンの価数を意味する。
(A Ce × 3)/A IEG_C ≤ 0.90 Formula (X)
In formula (X), A Ce represents the amount (mol) of cerium ions contained in the above region, and A IEG_C represents ions in the fluorine-containing polymer (fluorine-containing polymer (II)) contained in the cathode catalyst layer. It represents the amount (mol) of the exchange group.
Note that “3” in “A Ce ×3” means the valence of cerium ions.
 ここで、カソード触媒層に含まれる含フッ素ポリマー(含フッ素ポリマー(II))中のイオン交換基を構成する陽イオン(例えば、イオン交換基が-SOHである場合には、H)は、カソード触媒層の近傍に存在するセリウムイオンによって置換される。水電解装置では、アノード側からカソード側に向かって水の移動が起こるので、膜電極接合体に含まれるセリウムイオンは、カソード側に集まりやすい。そのため、上記式(X)では、カソード触媒層に含まれる含フッ素ポリマー中のイオン交換基の物質量(mol)と、上記領域内に含まれるセリウムイオンの物質量(mol)と、の関係に着目している。
 上記式(X)は、含フッ素ポリマー(II)のイオン交換基を構成する陽イオンがセリウムイオンによってどの程度置換される可能性があるかを示す指標である。例えば、(ACe×3)/AIEG_Cが1以上である場合には、含フッ素ポリマー(II)中のイオン交換基の全ての陽イオンがセリウムイオンによって置換される可能性があることを意味する。
 本発明者らは、上記領域内に含まれる全てのセリウムイオンが含フッ素ポリマー(II)のイオン交換基を構成する陽イオンと置換した場合であっても、セリウムイオンで置換されていないイオン交換基がある程度残っていることで、含フッ素ポリマー(II)のプロトン伝導性が良好となって、低い電解電圧を達成できたと推定している。
Here, cations constituting ion-exchange groups in the fluoropolymer (fluoropolymer (II)) contained in the cathode catalyst layer (for example, H + when the ion-exchange groups are —SO 3 H) are replaced by cerium ions present in the vicinity of the cathode catalyst layer. In a water electrolyzer, water moves from the anode side to the cathode side, so cerium ions contained in the membrane electrode assembly tend to gather on the cathode side. Therefore, in the above formula (X), the relationship between the substance amount (mol) of the ion-exchange groups in the fluorine-containing polymer contained in the cathode catalyst layer and the substance amount (mol) of the cerium ions contained in the region is I am paying attention.
The above formula (X) is an index showing the extent to which the cations constituting the ion-exchange groups of the fluoropolymer (II) are likely to be replaced by cerium ions. For example, when (A Ce ×3)/A IEG_C is 1 or more, it means that all the cations of the ion exchange groups in the fluoropolymer (II) may be replaced with cerium ions. do.
The present inventors found that even when all the cerium ions contained in the above region are replaced with cations constituting the ion-exchange groups of the fluoropolymer (II), ion exchange It is presumed that the presence of a certain amount of groups left the fluorine-containing polymer (II) with good proton conductivity, thereby achieving a low electrolysis voltage.
 式(X)において、(ACe×3)/AIEG_Cは0.90以下であり、電解電圧をより低減できる点から、0.80以下が好ましく、0.60以下がより好ましく、0.50以下がさらに好ましい。
 式(X)において、(ACe×3)/AIEG_Cは、含フッ素ポリマーの分解をより抑制できる点から、0.01以上が好ましく、0.10以上がより好ましく、0.30以上がさらに好ましい。
In the formula (X), (A Ce ×3)/A IEG_C is 0.90 or less, and from the viewpoint of further reducing the electrolysis voltage, it is preferably 0.80 or less, more preferably 0.60 or less, and 0.50. More preferred are:
In the formula (X), (A Ce ×3)/A IEG_C is preferably 0.01 or more, more preferably 0.10 or more, and further preferably 0.30 or more, because the decomposition of the fluoropolymer can be further suppressed. preferable.
 ACeは、含フッ素ポリマーの分解をより抑制できる点から、0.02μmol以上が好ましく、0.20μmol以上がより好ましく、0.60μmol以上がさらに好ましい。
 ACeは、電解電圧をより低減できる点から、2.00μmol以下が好ましく、1.90μmol以下がより好ましく、1.40μmol以下がさらに好ましい。
A Ce is preferably 0.02 μmol or more, more preferably 0.20 μmol or more, and even more preferably 0.60 μmol or more, from the viewpoint of further suppressing the decomposition of the fluoropolymer.
A Ce is preferably 2.00 μmol or less, more preferably 1.90 μmol or less, and even more preferably 1.40 μmol or less, in terms of further reducing the electrolysis voltage.
 AIEG_Cは、電解電圧をより低減できる点、及び触媒層に十分な機械的強度をもたせる点から、1.00μmol以上が好ましく、1.50μmol以上がより好ましい。
 AIEG_Cは、電解電圧をより低減できる点から、25.00μmol以下が好ましく、10.00μmol以下がより好ましく、8.00μmol以下がさらに好ましい。
A IEG_C is preferably 1.00 μmol or more, more preferably 1.50 μmol or more, in terms of further reducing the electrolysis voltage and providing sufficient mechanical strength to the catalyst layer.
A IEG_C is preferably 25.00 μmol or less, more preferably 10.00 μmol or less, and even more preferably 8.00 μmol or less, in terms of further reducing the electrolysis voltage.
 ACeおよびAIEG_Cは、後述の実施例欄に記載の方法によって求められる。 A Ce and A IEG_C are determined by the method described in the Examples section below.
 図1は、本発明の膜電極接合体の一例を模式的に示す断面図である。図1の例では、膜電極接合体20は、電解質膜10と、電解質膜10の一方の面に接した状態で配置されたカソード触媒層26Bと、カソード触媒層26Bの電解質膜10とは反対側の面に配置されたカソードガス拡散層28Bと、電解質膜10の他方の面に接した状態で配置されたアノード触媒層26Aと、アノード触媒層26Aの電解質膜10とは反対側の面に配置されたアノードガス拡散層28Aと、を含む。 FIG. 1 is a cross-sectional view schematically showing an example of the membrane electrode assembly of the present invention. In the example of FIG. 1, the membrane electrode assembly 20 includes the electrolyte membrane 10, the cathode catalyst layer 26B disposed in contact with one surface of the electrolyte membrane 10, and the cathode catalyst layer 26B opposite the electrolyte membrane 10. The cathode gas diffusion layer 28B arranged on the side surface, the anode catalyst layer 26A arranged in contact with the other surface of the electrolyte membrane 10, and the surface of the anode catalyst layer 26A opposite to the electrolyte membrane 10 and a disposed anode gas diffusion layer 28A.
 図1の例では、電解質膜が単層構造である場合を示したが、電解質膜は多層構造であってもよい。多層構造である電解質膜の具体的な態様としては、イオン交換容量が互いに異なる電解質膜を複数積層させた態様が挙げられる。 Although the example of FIG. 1 shows the case where the electrolyte membrane has a single-layer structure, the electrolyte membrane may have a multi-layer structure. A specific aspect of the electrolyte membrane having a multilayer structure is an aspect in which a plurality of electrolyte membranes having different ion exchange capacities are laminated.
<電解質膜>
 電解質膜は、含フッ素ポリマー(I)を含む。
<Electrolyte membrane>
The electrolyte membrane contains the fluoropolymer (I).
 電解質膜の厚さは、30μm以上が好ましい。
 電解質膜の厚さは、200μm以下が好ましく、150μm以下がより好ましく、100μm以下がさらに好ましい。
 なお、電解質膜が多層構造である場合、電解質膜の厚さは、各層の合計厚さを意味する。
 電解質膜の厚さは、レーザー顕微鏡(製品名「VK-X1000」、キーエンス社製)によって撮影された電解質膜の断面の拡大画像(例えば、対物レンズ倍率50倍)を用いて測定する。
The thickness of the electrolyte membrane is preferably 30 μm or more.
The thickness of the electrolyte membrane is preferably 200 μm or less, more preferably 150 μm or less, even more preferably 100 μm or less.
When the electrolyte membrane has a multilayer structure, the thickness of the electrolyte membrane means the total thickness of each layer.
The thickness of the electrolyte membrane is measured using a magnified image (for example, objective lens magnification of 50) of the cross section of the electrolyte membrane photographed by a laser microscope (product name “VK-X1000”, manufactured by Keyence Corporation).
(含フッ素ポリマー(I))
 含フッ素ポリマー(I)のイオン交換容量は、水電解装置に適用した際の電解電圧をより低減できる点から、1.10ミリ当量/グラム乾燥樹脂以上が好ましく、1.25ミリ当量/グラム乾燥樹脂以上がより好ましく、1.40ミリ当量/グラム乾燥樹脂以上がさらに好ましい。
 含フッ素ポリマー(I)のイオン交換容量は、膜電極接合体の強度の点から、1.90ミリ当量/グラム乾燥樹脂以下が好ましく、1.80ミリ当量/グラム乾燥樹脂以下がより好ましい。
 含フッ素ポリマー(I)は1種のみを使用してもよく、2種以上を積層または混合して使用してもよい。
(Fluorine-containing polymer (I))
The ion-exchange capacity of the fluoropolymer (I) is preferably 1.10 meq/g dry resin or more, more preferably 1.25 meq/g dry, because the electrolysis voltage can be further reduced when applied to a water electrolysis device. Resin or greater is more preferred, and 1.40 meq/g dry resin or greater is even more preferred.
From the viewpoint of the strength of the membrane electrode assembly, the ion exchange capacity of the fluoropolymer (I) is preferably 1.90 meq/g dry resin or less, more preferably 1.80 meq/g dry resin or less.
The fluorine-containing polymer (I) may be used alone, or two or more may be laminated or mixed to be used.
 電解質膜は、含フッ素ポリマー(I)以外のポリマーを含んでいてもよいが、電解電圧をより低減できる点から、電解質膜中のポリマーは実質的に含フッ素ポリマー(I)からなるのが好ましい。実質的に含フッ素ポリマー(I)からなるとは、電解質膜中のポリマーの合計質量に対して、含フッ素ポリマー(I)の含有量が95質量%以上であるのを意図する。含フッ素ポリマー(I)の含有量の上限としては、電解質膜中のポリマーの合計質量に対して、100質量%が挙げられる。
 含フッ素ポリマー(I)以外の他のポリマーの具体例としては、環内に窒素原子を1個以上含む複素環化合物の重合体、並びに、環内に窒素原子を1個以上と酸素原子および/または硫黄原子とを含む複素環化合物の重合体からなる群から選択される1種以上のポリアゾール化合物が挙げられる。
 ポリアゾール化合物の具体例としては、ポリイミダゾール化合物、ポリベンズイミダゾール化合物、ポリベンゾビスイミダゾール化合物、ポリベンゾオキサゾール化合物、ポリオキサゾール化合物、ポリチアゾール化合物、ポリベンゾチアゾール化合物が挙げられる。
 また、電解質膜の耐酸化性の点から、他のポリマーとしては、ポリフェニレンスルフィド樹脂、ポリフェニレンエーテル樹脂も挙げられる。
The electrolyte membrane may contain a polymer other than the fluoropolymer (I), but the polymer in the electrolyte membrane is preferably substantially composed of the fluoropolymer (I) in order to further reduce the electrolysis voltage. . Consisting essentially of the fluoropolymer (I) means that the content of the fluoropolymer (I) is 95% by mass or more with respect to the total mass of the polymer in the electrolyte membrane. The upper limit of the content of the fluoropolymer (I) is 100% by mass relative to the total mass of the polymer in the electrolyte membrane.
Specific examples of polymers other than the fluoropolymer (I) include polymers of heterocyclic compounds containing at least one nitrogen atom in the ring, and at least one nitrogen atom in the ring and an oxygen atom and/or or one or more polyazole compounds selected from the group consisting of polymers of heterocyclic compounds containing sulfur atoms.
Specific examples of polyazole compounds include polyimidazole compounds, polybenzimidazole compounds, polybenzobisimidazole compounds, polybenzoxazole compounds, polyoxazole compounds, polythiazole compounds, and polybenzothiazole compounds.
From the standpoint of oxidation resistance of the electrolyte membrane, other polymers include polyphenylene sulfide resins and polyphenylene ether resins.
 含フッ素ポリマー(I)は、イオン交換基を有する。イオン交換基の具体例としては、スルホン酸型官能基およびカルボン酸型官能基が挙げられ、水電解装置に電解質膜を適用した際の電解電圧をより低減することができる点から、スルホン酸型官能基が好ましい。
 以下では、主に、スルホン酸型官能基を有する含フッ素ポリマー(以下、「含フッ素ポリマー(S)」ともいう。)の態様について詳述する。
The fluoropolymer (I) has ion exchange groups. Specific examples of ion exchange groups include sulfonic acid-type functional groups and carboxylic acid-type functional groups. Functional groups are preferred.
Hereinafter, embodiments of the fluoropolymer having a sulfonic acid-type functional group (hereinafter also referred to as "fluoropolymer (S)") will be mainly described in detail.
 含フッ素ポリマー(S)は、含フッ素オレフィンに基づく単位およびスルホン酸型官能基およびフッ素原子を有する単位を含むのが好ましい。
 含フッ素オレフィンとしては、例えば、分子中に1個以上のフッ素原子を有する炭素数が2~3のフルオロオレフィンが挙げられる。フルオロオレフィンの具体例としては、テトラフルオロエチレン(以下、「TFE」ともいう。)、クロロトリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、ヘキサフルオロプロピレンが挙げられる。なかでも、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマー(S)の特性に優れる点から、TFEが好ましい。
 含フッ素オレフィンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The fluorine-containing polymer (S) preferably contains units based on a fluorine-containing olefin and units having a sulfonic acid-type functional group and a fluorine atom.
Examples of fluorine-containing olefins include fluoroolefins having 2 to 3 carbon atoms and having one or more fluorine atoms in the molecule. Specific examples of fluoroolefins include tetrafluoroethylene (hereinafter also referred to as “TFE”), chlorotrifluoroethylene, vinylidene fluoride, vinyl fluoride, and hexafluoropropylene. Among these, TFE is preferable from the viewpoint of the production cost of the monomer, the reactivity with other monomers, and the excellent properties of the obtained fluoropolymer (S).
A fluorine-containing olefin may be used individually by 1 type, and may be used in combination of 2 or more type.
 スルホン酸型官能基およびフッ素原子を有する単位としては、式(1)で表される単位が好ましい。
 式(1)  -[CF-CF(-L-(SOM))]-
A unit represented by the formula (1) is preferable as the unit having a sulfonic acid type functional group and a fluorine atom.
Formula (1) -[CF 2 -CF(-L-(SO 3 M) n )]-
 式(1)中、Lは、エーテル性酸素原子を含んでいてもよいn+1価のペルフルオロ炭化水素基である。
 エーテル性酸素原子は、ペルフルオロ炭化水素基中の末端に位置していても、炭素原子-炭素原子間に位置していてもよい。
 n+1価のペルフルオロ炭化水素基中に炭素数は、1以上が好ましく、2以上が特に好ましく、20以下が好ましく、10以下が特に好ましい。
In formula (1), L is an n+1-valent perfluorohydrocarbon group which may contain an etheric oxygen atom.
The etheric oxygen atom may be located terminally or between carbon atoms in the perfluorohydrocarbon group.
The number of carbon atoms in the n+1-valent perfluorohydrocarbon group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
 Lとしては、エーテル性酸素原子を含んでいてもよいn+1価のペルフルオロ脂肪族炭化水素基が好ましく、n=1の態様である、エーテル性酸素原子を含んでいてもよい2価のペルフルオロアルキレン基、または、n=2の態様である、エーテル性酸素原子を含んでいてもよい3価のペルフルオロ脂肪族炭化水素基が特に好ましい。
 上記2価のペルフルオロアルキレン基は、直鎖状および分岐鎖状のいずれであってもよい。
L is preferably an n+1 valent perfluoroaliphatic hydrocarbon group which may contain an etheric oxygen atom, and a divalent perfluoroalkylene group which may contain an etheric oxygen atom, in which n=1. , or a trivalent perfluoroaliphatic hydrocarbon group optionally containing an etheric oxygen atom, in which n=2, is particularly preferred.
The divalent perfluoroalkylene group may be linear or branched.
 式(1)中、Mは、水素原子、アルカリ金属または第4級アンモニウムカチオンである。また、Mが複数存在する場合、複数のMは異なっていても良い。
 式(1)中、nは、1または2である。
In formula (1), M is a hydrogen atom, an alkali metal or a quaternary ammonium cation. Also, when there are multiple Ms, the multiple Ms may be different.
In formula (1), n is 1 or 2.
 式(1)で表される単位としては、式(1-1)で表される単位、式(1-2)で表される単位、式(1-3)で表される単位または式(1-4)で表される単位が好ましく、水電解装置に適用した際の電解電圧をより低減できる点から、式(1-3)で表される単位または式(1-4)で表される単位がより好ましい。 The unit represented by formula (1) includes a unit represented by formula (1-1), a unit represented by formula (1-2), a unit represented by formula (1-3), or a unit represented by formula ( The unit represented by 1-4) is preferable, and the unit represented by formula (1-3) or the unit represented by formula (1-4) can further reduce the electrolysis voltage when applied to a water electrolysis device. units are more preferred.
 式(1-1)  -[CF-CF(-O-Rf1-SOM)]-
 式(1-2)  -[CF-CF(-Rf1-SOM)]-
Formula (1-1) -[CF 2 -CF(-OR f1 -SO 3 M)]-
Formula (1-2) -[CF 2 -CF(-R f1 -SO 3 M)]-
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式中、Rf1は、炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基である。上記ペルフルオロアルキレン基中の炭素数は、1以上が好ましく、2以上が特に好ましく、20以下が好ましく、10以下が特に好ましい。 In the above formula, R f1 is a perfluoroalkylene group optionally containing an oxygen atom between carbon atoms. The number of carbon atoms in the perfluoroalkylene group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
 上記式中、Rf2は、単結合または炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基である。上記ペルフルオロアルキレン基中の炭素数は、1以上が好ましく、2以上が特に好ましく、20以下が好ましく、10以下が特に好ましい。 In the above formula, R f2 is a single bond or a perfluoroalkylene group optionally containing an oxygen atom between carbon atoms. The number of carbon atoms in the perfluoroalkylene group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
 上記式中、Rf3は、単結合または炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基である。上記ペルフルオロアルキレン基中の炭素数は、1以上が好ましく、2以上が特に好ましく、20以下が好ましく、10以下が特に好ましい。 In the above formula, R f3 is a single bond or a perfluoroalkylene group optionally containing an oxygen atom between carbon atoms. The number of carbon atoms in the perfluoroalkylene group is preferably 1 or more, particularly preferably 2 or more, preferably 20 or less, and particularly preferably 10 or less.
 上記式中、rは0または1である。
 上記式中、mは0または1である。
 Mは水素原子、アルカリ金属または第4級アンモニウムカチオンである。また、Mが複数存在する場合、複数のMは異なっていても良い。
In the above formula, r is 0 or 1.
In the above formula, m is 0 or 1.
M is a hydrogen atom, an alkali metal or a quaternary ammonium cation. Also, when there are multiple Ms, the multiple Ms may be different.
 式(1-1)で表される単位および式(1-2)で表される単位としては、式(1-5)で表される単位がより好ましい。
 式(1-5)  -[CF-CF(-(CF-(OCFCFY)-O-(CF-SOM)]-
 式(1-5)中、xは0または1であり、yは0~2の整数であり、zは1~4の整数であり、YはFまたはCFである。Mは、上述した通りである。
As the unit represented by formula (1-1) and the unit represented by formula (1-2), the unit represented by formula (1-5) is more preferable.
Formula (1-5) -[CF 2 -CF(-(CF 2 ) x -(OCF 2 CFY) y -O-(CF 2 ) z -SO 3 M)]-
In formula (1-5), x is 0 or 1, y is an integer from 0 to 2, z is an integer from 1 to 4, and Y is F or CF3 . M is as described above.
 式(1-1)で表される単位の具体例としては、以下の単位が挙げられる。式中のwは1~8の整数であり、xは1~5の整数である。式中のMの定義は、上述した通りである。
 -[CF-CF(-O-(CF-SOM)]-
 -[CF-CF(-O-CFCF(CF)-O-(CF-SOM)]-
 -[CF-CF(-(O-CFCF(CF))-SOM)]-
Specific examples of units represented by formula (1-1) include the following units. w in the formula is an integer of 1-8, and x is an integer of 1-5. The definition of M in the formula is as described above.
-[ CF2 -CF(-O-( CF2 ) w - SO3M )]-
-[ CF2 -CF(-O- CF2CF ( CF3 )-O-( CF2 ) w- SO3M )]-
-[ CF2 -CF(-(O- CF2CF ( CF3 )) x - SO3M )]-
 式(1-2)で表される単位の具体例としては、以下の単位が挙げられる。式中のwは1~8の整数である。式中のMの定義は、上述した通りである。
 -[CF-CF(-(CF-SOM)]-
 -[CF-CF(-CF-O-(CF-SOM)]-
Specific examples of units represented by formula (1-2) include the following units. w in the formula is an integer of 1-8. The definition of M in the formula is as described above.
-[ CF2 -CF(-( CF2 ) w - SO3M )]-
-[ CF2 -CF( -CF2 -O-( CF2 ) w - SO3M )]-
 式(1-3)で表される単位としては、式(1-3-1)で表される単位が好ましい。式中のMの定義は、上述した通りである。 Units represented by formula (1-3) are preferably units represented by formula (1-3-1). The definition of M in the formula is as described above.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1-3-1)中、Rf4は炭素数1~6の直鎖状のペルフルオロアルキレン基であり、Rf5は単結合または炭素原子-炭素原子間に酸素原子を含んでいてもよい炭素数1~6の直鎖状のペルフルオロアルキレン基である。rおよびMの定義は、上述した通りである。 In formula (1-3-1), R f4 is a linear perfluoroalkylene group having 1 to 6 carbon atoms, and R f5 may contain a single bond or an oxygen atom between carbon atoms. It is a linear perfluoroalkylene group having 1 to 6 carbon atoms. The definitions of r and M are as described above.
 式(1-3-1)で表される単位の具体例としては、以下が挙げられる。 Specific examples of units represented by formula (1-3-1) include the following.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1-4)で表される単位としては、式(1-4-1)で表される単位が好ましい。式中のRf1、Rf2およびMの定義は、上述した通りである。 As the unit represented by formula (1-4), a unit represented by formula (1-4-1) is preferable. The definitions of R f1 , R f2 and M in the formula are as described above.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1-4-1)で表される単位の具体例としては、以下が挙げられる。 Specific examples of units represented by formula (1-4-1) include the following.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 スルホン酸型官能基およびフッ素原子を有する単位は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Units having a sulfonic acid-type functional group and a fluorine atom may be used singly or in combination of two or more.
 含フッ素ポリマー(I)は、含フッ素オレフィンに基づく単位、並びに、スルホン酸型官能基およびフッ素原子を有する単位以外の、他のモノマーに基づく単位を含んでいてもよい。
 他のモノマーの具体例としては、CF=CFRf6(ただし、Rf6は炭素数2~10のペルフルオロアルキル基である。)、CF=CF-ORf7(ただし、Rf7は炭素数1~10のペルフルオロアルキル基である。)、CF=CFO(CFCF=CF(ただし、vは1~3の整数である。)が挙げられる。
 他のモノマーに基づく単位の含有量は、イオン交換性能の維持の点から、含フッ素ポリマー(I)中の全単位に対して、30質量%以下が好ましい。
The fluorine-containing polymer (I) may contain units based on other monomers other than units based on the fluorine-containing olefin and units having a sulfonic acid type functional group and a fluorine atom.
Specific examples of other monomers include CF 2 =CFR f6 (where R f6 is a perfluoroalkyl group having 2 to 10 carbon atoms), CF 2 =CF-OR f7 (where R f7 has 1 carbon 1 to 10 perfluoroalkyl groups), CF 2 =CFO(CF 2 ) v CF=CF 2 (where v is an integer of 1 to 3).
The content of units derived from other monomers is preferably 30% by mass or less with respect to all units in the fluoropolymer (I) from the viewpoint of maintaining ion exchange performance.
 電解電圧を低減できる点から、含フッ素ポリマー(I)の含有量は、電解質膜の全質量に対して、80~100質量%が好ましく、90~100質量%であることがより好ましい。 The content of the fluoropolymer (I) is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, based on the total mass of the electrolyte membrane, from the viewpoint of reducing the electrolysis voltage.
(補強材)
 電解質膜は、さらに補強材を含んでいてもよい。これにより、電解質膜の強度を向上できる。
 補強材の具体例としては、多孔体、繊維、織布、不織布が挙げられる。
 補強材は、ポリテトラフルオロエチレン(以下、「PTFE」ともいう。)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(以下、「PFA」ともいう。)、ポリエーテルエーテルケトン、および、ポリフェニレンサルファイドからなる群から選択される少なくとも1種の材料から構成されるのが好ましい。
(reinforcing material)
The electrolyte membrane may further contain a reinforcing material. Thereby, the strength of the electrolyte membrane can be improved.
Specific examples of reinforcing materials include porous bodies, fibers, woven fabrics, and non-woven fabrics.
The reinforcing material is polytetrafluoroethylene (hereinafter also referred to as "PTFE"), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (hereinafter also referred to as "PFA"), polyether ether ketone, and polyphenylene sulfide. It is preferably composed of at least one material selected from the group consisting of
 電解質膜が補強材を含む場合、補強材の含有量は、電解質膜の全質量に対して、3質量%以上が好ましく、5質量%以上がより好ましく、また、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。 When the electrolyte membrane contains a reinforcing material, the content of the reinforcing material is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 50% by mass or less, with respect to the total mass of the electrolyte membrane. % by mass or less is more preferable, and 30% by mass or less is even more preferable.
(他の成分)
 電解質膜は、上記以外の成分を更に含んでいてもよい。このような成分の具体例としては、セリウムイオンが挙げられる。なお、セリウムイオンの詳細については、後述する。
 電解質膜がセリウムイオンを含む場合、電解質膜における、含フッ素ポリマー(I)のイオン交換基の物質量に対するセリウムイオンの物質量の割合は、1mol%以下が好ましく、0.5mol%以下がより好ましく、0.4mol%以下がさらに好ましい。
(other ingredients)
The electrolyte membrane may further contain components other than those described above. Specific examples of such components include cerium ions. Details of the cerium ion will be described later.
When the electrolyte membrane contains cerium ions, the ratio of the amount of cerium ions to the amount of ion-exchange groups of the fluoropolymer (I) in the electrolyte membrane is preferably 1 mol % or less, more preferably 0.5 mol % or less. , 0.4 mol % or less is more preferable.
(電解質膜の製造方法)
 電解質膜の製造方法の一例としては、イオン交換基に変換できる基を有する含フッ素モノマー(以下、含フッ素モノマー(I’)ともいう。)のポリマー(以下、「含フッ素ポリマー(I’)」ともいう。)、および、必要に応じて用いる補強材を含む膜(以下「前駆体膜」ともいう。)を製造し、次に、前駆体膜中のイオン交換基に変換できる基をイオン交換基に変換する方法が挙げられる。これにより、電解質膜が得られる。
 また、セリウムイオンを含む電解質膜の製造方法としては、上記のようにして得られた電解質膜を水溶性セリウム塩を含む溶液に浸漬させた後、膜を乾燥して、セリウムイオンを含む電解質膜を得る方法が挙げられる。水溶性セリウム塩の具体例としては、酢酸セリウム、塩化セリウム、硝酸セリウム、硫酸セリウム、炭酸セリウムが挙げられる。
(Manufacturing method of electrolyte membrane)
As an example of a method for producing an electrolyte membrane, a polymer of a fluoromonomer having a group convertible to an ion-exchange group (hereinafter also referred to as a fluoromonomer (I′)) (hereinafter referred to as a “fluoropolymer (I′)”) ), and optionally a reinforcing material (hereinafter also referred to as "precursor membrane") is produced, and then groups convertible to ion-exchange groups in the precursor membrane are ion-exchanged. A method of converting to a group is exemplified. An electrolyte membrane is thus obtained.
Further, as a method for producing an electrolyte membrane containing cerium ions, the electrolyte membrane obtained as described above is immersed in a solution containing a water-soluble cerium salt, and then the membrane is dried to obtain an electrolyte membrane containing cerium ions. is obtained. Specific examples of water-soluble cerium salts include cerium acetate, cerium chloride, cerium nitrate, cerium sulfate, and cerium carbonate.
 含フッ素ポリマー(I’)としては、スルホン酸型官能基に変換できる基を有する含フッ素モノマー(以下、「含フッ素モノマー(S’)」ともいう。)のポリマー(以下、「含フッ素ポリマー(S’)」ともいう。)が好ましく、含フッ素オレフィンと、スルホン酸型官能基に変換できる基およびフッ素原子を有するモノマーとの共重合ポリマーが特に好ましい。
 以下、含フッ素ポリマー(S’)について詳述する。
As the fluoropolymer (I'), a polymer of a fluoromonomer having a group convertible to a sulfonic acid type functional group (hereinafter also referred to as "fluoromonomer (S')") (hereinafter referred to as "fluoropolymer ( S′)”) is preferred, and copolymers of a fluorine-containing olefin with a monomer having a group convertible to a sulfonic acid type functional group and a fluorine atom are particularly preferred.
The fluorine-containing polymer (S') will be described in detail below.
 含フッ素ポリマー(S’)の共重合の方法は、溶液重合、懸濁重合、乳化重合等の公知の方法を採用できる。 Known methods such as solution polymerization, suspension polymerization, and emulsion polymerization can be employed for copolymerizing the fluoropolymer (S').
 含フッ素オレフィンとしては、先に例示したものが挙げられ、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマー(S)の特性に優れる点から、TFEが好ましい。
 含フッ素オレフィンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the fluorine-containing olefin include those exemplified above, and TFE is preferable from the viewpoint of the production cost of the monomer, reactivity with other monomers, and excellent properties of the obtained fluorine-containing polymer (S).
A fluorine-containing olefin may be used individually by 1 type, and may be used in combination of 2 or more type.
 含フッ素モノマー(S’)としては、分子中に1個以上のフッ素原子を有し、エチレン性の二重結合を有し、かつ、スルホン酸型官能基に変換できる基を有する化合物が挙げられる。
 含フッ素モノマー(S’)としては、モノマーの製造コスト、他のモノマーとの反応性、得られる含フッ素ポリマー(S)の特性に優れる点から、式(2)で表される化合物が好ましい。
 式(2)  CF=CF-L-(A)
 式(2)中のLおよびnの定義は、上述した通りである。
 Aは、スルホン酸型官能基に変換できる基である。スルホン酸型官能基に変換できる基は、加水分解によってスルホン酸型官能基に変換し得る官能基が好ましい。スルホン酸型官能基に変換できる基の具体例としては、-SOF、-SOCl、-SOBrが挙げられる。
Examples of the fluorine-containing monomer (S') include compounds having one or more fluorine atoms in the molecule, having an ethylenic double bond, and having a group convertible to a sulfonic acid type functional group. .
As the fluorine-containing monomer (S'), a compound represented by formula (2) is preferable from the viewpoints of production cost of the monomer, reactivity with other monomers, and excellent properties of the obtained fluorine-containing polymer (S).
Formula (2) CF 2 = CF-L-(A) n
The definitions of L and n in formula (2) are as described above.
A is a group that can be converted to a sulfonic acid type functional group. The group convertible to a sulfonic acid type functional group is preferably a functional group convertible to a sulfonic acid type functional group by hydrolysis. Specific examples of groups convertible to sulfonic acid-type functional groups include -SO 2 F, -SO 2 Cl, and -SO 2 Br.
 式(2)で表される化合物としては、式(2-1)で表される化合物、式(2-2)で表される化合物、式(2-3)で表される化合物および式(2-4)で表される化合物が好ましい。
 式(2-1)  CF=CF-O-Rf1-A
 式(2-2)  CF=CF-Rf1-A
The compounds represented by formula (2) include compounds represented by formula (2-1), compounds represented by formula (2-2), compounds represented by formula (2-3) and formula ( Compounds represented by 2-4) are preferred.
Formula (2-1) CF 2 =CF-OR f1 -A
Formula (2-2) CF 2 =CF-R f1 -A
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中のRf1、Rf2、rおよびAの定義は、上述した通りである。 The definitions of R f1 , R f2 , r and A in the formula are as described above.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式中のRf1、Rf2、Rf3、r、mおよびAの定義は、上述した通りである。 The definitions of R f1 , R f2 , R f3 , r, m and A in the formula are as described above.
 式(2-1)で表される化合物および式(2-1)で表される化合物としては、式(2-5)で表される化合物が好ましい。
 式(2-5)  CF=CF-(CF-(OCFCFY)-O-(CF-SO
 式中のM、x、y、zおよびYの定義は、上述した通りである。
As the compound represented by formula (2-1) and the compound represented by formula (2-1), the compound represented by formula (2-5) is preferable.
Formula (2-5) CF2 =CF-( CF2 ) x- ( OCF2CFY ) y -O-( CF2 ) z - SO3M
The definitions of M, x, y, z and Y in the formula are as described above.
 式(2-1)で表される化合物の具体例としては、以下の化合物が挙げられる。式中のwは1~8の整数であり、xは1~5の整数である。
 CF=CF-O-(CF-SO
 CF=CF-O-CFCF(CF)-O-(CF-SO
 CF=CF-[O-CFCF(CF)]-SO
Specific examples of the compound represented by formula (2-1) include the following compounds. w in the formula is an integer of 1-8, and x is an integer of 1-5.
CF2 =CF-O-( CF2 ) w - SO2F
CF2 =CF-O- CF2CF ( CF3 )-O-( CF2 ) w- SO2F
CF 2 =CF-[O-CF 2 CF(CF 3 )] x -SO 2 F
 式(2-2)で表される化合物の具体例としては、以下の化合物が挙げられる。式中のwは、1~8の整数である。
 CF=CF-(CF-SO
 CF=CF-CF-O-(CF-SO
Specific examples of the compound represented by formula (2-2) include the following compounds. w in the formula is an integer of 1-8.
CF 2 =CF-(CF 2 ) w -SO 2 F
CF2 =CF-CF2 - O-( CF2 ) w - SO2F
 式(2-3)で表される化合物としては、式(2-3-1)で表される化合物が好ましい。 The compound represented by formula (2-3) is preferably a compound represented by formula (2-3-1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中のRf4、Rf5、rおよびAの定義は、上述した通りである。 The definitions of R f4 , R f5 , r and A in the formula are as described above.
 式(2-3-1)で表される化合物の具体例としては、以下が挙げられる。 Specific examples of the compound represented by formula (2-3-1) include the following.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(2-4)で表される化合物としては、式(2-4-1)で表される化合物が好ましい。 The compound represented by formula (2-4) is preferably a compound represented by formula (2-4-1).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中のRf1、Rf2およびAの定義は、上述した通りである。 The definitions of R f1 , R f2 and A in the formula are as described above.
 式(2-4-1)で表される化合物の具体例としては、以下が挙げられる。 Specific examples of the compound represented by formula (2-4-1) include the following.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 含フッ素モノマー(S’)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 含フッ素ポリマー(S’)の製造には、含フッ素オレフィンおよび含フッ素モノマー(S’)に加えて、さらに他のモノマーを用いてもよい。他のモノマーとしては、先に例示したものが挙げられる。
The fluorine-containing monomer (S') may be used alone or in combination of two or more.
In addition to the fluorine-containing olefin and the fluorine-containing monomer (S'), other monomers may be used to produce the fluorine-containing polymer (S'). Other monomers include those exemplified above.
 含フッ素ポリマー(I’)のイオン交換容量は、含フッ素ポリマー(I’)中のイオン交換基に変換できる基の含有量を変化させて、調整できる。 The ion exchange capacity of the fluoropolymer (I') can be adjusted by changing the content of groups convertible to ion exchange groups in the fluoropolymer (I').
 前駆体膜の製造方法の具体例としては、押し出し法が挙げられる。
 前駆体膜が補強材を含む場合の製造方法の具体例としては、次の通りである。まず、含フッ素ポリマー(I’)を含む膜(I’)を形成する。その後、膜(I’)、補強材、膜(I’)の順に配置して、積層ロールまたは真空積層装置を用いてこれらを積層する方法が挙げられる。
A specific example of the method for producing the precursor film is an extrusion method.
A specific example of the manufacturing method when the precursor film contains the reinforcing material is as follows. First, a film (I') containing a fluorine-containing polymer (I') is formed. After that, the film (I'), the reinforcing material, and the film (I') are arranged in this order, and these are laminated using a lamination roll or a vacuum lamination device.
 前駆体膜中のイオン交換基に変換できる基をイオン交換基に変換する方法の具体例としては、前駆体膜に加水分解処理または酸型化処理等の処理を施す方法が挙げられる。
 なかでも、前駆体膜とアルカリ性水溶液とを接触させる方法が好ましい。
Specific examples of the method for converting the groups convertible into ion-exchange groups in the precursor film to ion-exchange groups include a method of subjecting the precursor film to hydrolysis treatment, acidification treatment, or the like.
Among them, the method of contacting the precursor film and the alkaline aqueous solution is preferable.
 前駆体膜とアルカリ性水溶液とを接触させる方法の具体例としては、前駆体膜をアルカリ性水溶液中に浸漬する方法、前駆体膜の表面にアルカリ性水溶液をスプレー塗布する方法が挙げられる。
 アルカリ性水溶液の温度は、30~100℃が好ましく、40~100℃が特に好ましい。前駆体膜とアルカリ性水溶液との接触時間は、3~150分が好ましく、5~50分が特に好ましい。
Specific examples of the method of contacting the precursor film with the alkaline aqueous solution include a method of immersing the precursor film in the alkaline aqueous solution and a method of spray coating the surface of the precursor film with the alkaline aqueous solution.
The temperature of the alkaline aqueous solution is preferably 30-100°C, particularly preferably 40-100°C. The contact time between the precursor film and the alkaline aqueous solution is preferably 3 to 150 minutes, particularly preferably 5 to 50 minutes.
 アルカリ性水溶液は、アルカリ金属水酸化物、水溶性有機溶剤および水を含むのが好ましい。
 アルカリ金属水酸化物としては、水酸化ナトリウムおよび水酸化カリウムが挙げられる。
 本明細書において、水溶性有機溶剤とは、水に容易に溶解する有機溶剤であり、具体的には、水1000ml(20℃)に対する溶解性が、0.1g以上の有機溶剤が好ましく、0.5g以上の有機溶剤が特に好ましい。水溶性有機溶剤は、非プロトン性有機溶剤、アルコール類およびアミノアルコール類からなる群より選ばれる少なくとも1種を含むのが好ましく、非プロトン性有機溶剤を含むのが特に好ましい。
 水溶性有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The alkaline aqueous solution preferably contains an alkali metal hydroxide, a water-soluble organic solvent and water.
Alkali metal hydroxides include sodium hydroxide and potassium hydroxide.
As used herein, the term "water-soluble organic solvent" refers to an organic solvent that readily dissolves in water. 0.5 g or more of organic solvent is particularly preferred. The water-soluble organic solvent preferably contains at least one selected from the group consisting of aprotic organic solvents, alcohols and aminoalcohols, and particularly preferably contains aprotic organic solvents.
One of the water-soluble organic solvents may be used alone, or two or more thereof may be used in combination.
 非プロトン性有機溶剤の具体例としては、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンが挙げられ、ジメチルスルホキシドが好ましい。
 アルコール類の具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、メトキシエトキシエタノール、ブトキシエタノール、ブチルカルビトール、ヘキシルオキシエタノール、オクタノール、1-メトキシ-2-プロパノール、エチレングリコールが挙げられる。
 アミノアルコール類の具体例としては、エタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、1-アミノ-2-プロパノール、1-アミノ-3-プロパノール、2-アミノエトキシエタノール、2-アミノチオエトキシエタノール、2-アミノ-2-メチル-1-プロパノールが挙げられる。
Specific examples of aprotic organic solvents include dimethylsulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and dimethylsulfoxide is preferable.
Specific examples of alcohols include methanol, ethanol, isopropanol, butanol, methoxyethoxyethanol, butoxyethanol, butylcarbitol, hexyloxyethanol, octanol, 1-methoxy-2-propanol, and ethylene glycol.
Specific examples of aminoalcohols include ethanolamine, N-methylethanolamine, N-ethylethanolamine, 1-amino-2-propanol, 1-amino-3-propanol, 2-aminoethoxyethanol, 2-aminothio ethoxyethanol, 2-amino-2-methyl-1-propanol.
 アルカリ金属水酸化物の濃度は、アルカリ性水溶液中、1質量%以上が好ましく、3質量%以上がより好ましく、また、60質量%以下が好ましく、55質量%以下がより好ましい。
 水溶性有機溶剤の含有量は、アルカリ性水溶液中、1質量%以上が好ましく、3質量%以上がより好ましく、また、60質量%以下が好ましく、55質量%以下がより好ましい。
 水の濃度は、アルカリ性水溶液中、39~80質量%が好ましい。
The concentration of the alkali metal hydroxide in the alkaline aqueous solution is preferably 1% by mass or more, more preferably 3% by mass or more, and is preferably 60% by mass or less, more preferably 55% by mass or less.
The content of the water-soluble organic solvent is preferably 1% by mass or more, more preferably 3% by mass or more, and preferably 60% by mass or less, more preferably 55% by mass or less, in the alkaline aqueous solution.
The concentration of water is preferably 39-80% by mass in the alkaline aqueous solution.
 前駆体膜とアルカリ性水溶液との接触後に、アルカリ性水溶液を除去する処理を行ってもよい。アルカリ性水溶液を除去する方法としては、例えば、アルカリ性水溶液で接触させた前駆体膜を水洗する方法が挙げられる。 After the precursor film is brought into contact with the alkaline aqueous solution, a treatment for removing the alkaline aqueous solution may be performed. A method for removing the alkaline aqueous solution includes, for example, a method of washing the precursor film contacted with the alkaline aqueous solution.
 前駆体膜とアルカリ性水溶液との接触後に、得られた膜を酸性水溶液と接触させて、イオン交換基を酸型に変換してもよい。
 前駆体膜と酸性水溶液とを接触させる方法の具体例としては、前駆体膜を酸性水溶液中に浸漬する方法、前駆体膜の表面に酸性水溶液をスプレー塗布する方法が挙げられる。
 酸性水溶液は、酸成分および水を含むのが好ましい。
 酸成分の具体例としては、塩酸、硫酸が挙げられる。
After contacting the precursor film with the alkaline aqueous solution, the resulting film may be contacted with an acidic aqueous solution to convert the ion-exchange groups to their acid form.
Specific examples of the method of contacting the precursor film with the acidic aqueous solution include a method of immersing the precursor film in the acidic aqueous solution and a method of spray coating the surface of the precursor film with the acidic aqueous solution.
The acidic aqueous solution preferably contains an acid component and water.
Specific examples of acid components include hydrochloric acid and sulfuric acid.
<アノード触媒層>
 アノード触媒層の具体例としては、触媒と、イオン交換基を有するポリマーとを含む層が挙げられる。
 触媒の具体例としては、カーボン担体に、白金、白金合金またはコアシェル構造を有する白金を含む触媒を担持した担持触媒、酸化イリジウム触媒、酸化イリジウムを含有する合金、コアシェル構造を有する酸化イリジウムを含有する触媒が挙げられる。カーボン担体としては、カーボンブラック粉末が挙げられる。
 イオン交換基を有するポリマーとしては、イオン交換基を有する含フッ素ポリマーが挙げられる。イオン交換基を有する含フッ素ポリマーの具体例は、上述の電解質膜に含まれる含フッ素ポリマー(I)と、その好ましい態様も含めて同じであってもよい。
<Anode catalyst layer>
A specific example of the anode catalyst layer is a layer containing a catalyst and a polymer having ion exchange groups.
Specific examples of the catalyst include supported catalysts in which platinum, platinum alloys, or platinum-containing catalysts having a core-shell structure are supported on carbon supports, iridium oxide catalysts, alloys containing iridium oxide, and iridium oxides having a core-shell structure. catalysts. Examples of carbon supports include carbon black powder.
Polymers having ion-exchange groups include fluorine-containing polymers having ion-exchange groups. Specific examples of the fluoropolymer having ion-exchange groups may be the same as the fluoropolymer (I) contained in the electrolyte membrane described above, including preferred embodiments thereof.
 アノード触媒層1cm当たりの触媒の質量は、0.05mg/cm以上が好ましく、0.10mg/cm以上がより好ましく、0.20mg/cm以上がさらに好ましく、また、2.00mg/cm以下が好ましく、1.50mg/cm以下がより好ましく、1.00mg/cm以下がさらに好ましい。
 アノード触媒層中におけるイオン交換基を有するポリマーに対する触媒の質量比(触媒の質量/イオン交換基を有するポリマーの質量)は、1~4が好ましい。
The mass of the catalyst per 1 cm 2 of the anode catalyst layer is preferably 0.05 mg/cm 2 or more, more preferably 0.10 mg/cm 2 or more, still more preferably 0.20 mg/cm 2 or more, and 2.00 mg/cm 2 or more. cm 2 or less is preferable, 1.50 mg/cm 2 or less is more preferable, and 1.00 mg/cm 2 or less is even more preferable.
The mass ratio of the catalyst to the polymer having ion-exchange groups in the anode catalyst layer (mass of catalyst/mass of polymer having ion-exchange groups) is preferably 1-4.
 アノード触媒層は、上記以外の成分を更に含んでいてもよい。このような成分の具体例としては、セリウムイオンが挙げられる。なお、セリウムイオンの詳細については、後述する。 The anode catalyst layer may further contain components other than the above. Specific examples of such components include cerium ions. Details of the cerium ion will be described later.
 アノード触媒層は、例えば、触媒、イオン交換基を有するポリマー、溶媒(水、有機溶媒)、および、必要に応じて用いる水溶性セリウム塩等を含むアノード触媒インクを用いて、公知の方法にしたがって製造できる。 The anode catalyst layer is formed, for example, by a known method using an anode catalyst ink containing a catalyst, a polymer having an ion exchange group, a solvent (water, organic solvent), and optionally a water-soluble cerium salt. can be manufactured.
 アノード触媒層の膜厚は、本発明の効果がより優れる点から、5μm以上が好ましく、また、100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましく、15μm以下が特に好ましい。
 アノード触媒層の膜厚は、膜電極接合体の膜厚方向に向かって切断した断面をレーザー顕微鏡で測定して得られた画像を用いて測定され、任意の20箇所における算術平均値である。
The film thickness of the anode catalyst layer is preferably 5 μm or more, preferably 100 μm or less, more preferably 50 μm or less, still more preferably 30 μm or less, and particularly preferably 15 μm or less, from the viewpoint that the effect of the present invention is more excellent.
The film thickness of the anode catalyst layer is measured using an image obtained by measuring a section cut in the film thickness direction of the membrane electrode assembly with a laser microscope, and is an arithmetic average value at 20 arbitrary points.
<カソード触媒層>
 カソード触媒層の具体例としては、触媒と、含フッ素ポリマー(II)とを含む層が挙げられる。
 触媒の具体例は、アノード触媒層に含まれる触媒と、好ましい態様も含めて同様である。
 含フッ素ポリマー(II)の具体例は、上述の含フッ素ポリマー(I)と、その好ましい態様も含めて同じであってもよい。
<Cathode catalyst layer>
A specific example of the cathode catalyst layer is a layer containing a catalyst and a fluorine-containing polymer (II).
Specific examples of the catalyst are the same as those contained in the anode catalyst layer, including preferred embodiments.
Specific examples of the fluoropolymer (II) may be the same as the fluoropolymer (I) described above, including preferred embodiments thereof.
 カソード触媒層1cm当たりの触媒の質量は、0.05mg/cm以上が好ましく、0.10mg/cm以上がより好ましく、また、1.00mg/cm以下が好ましく、0.50mg/cm以下がより好ましく、0.40mg/cm以下がさらに好ましい。
 カソード触媒層中における含フッ素ポリマー(II)に対する触媒の質量比(触媒の質量/含フッ素ポリマー(II)の質量)は、0.3以上が好ましく、また、1.0以下が好ましく、0.7以下がより好ましく、0.5以下がさらに好ましい。
The mass of the catalyst per 1 cm 2 of the cathode catalyst layer is preferably 0.05 mg/cm 2 or more, more preferably 0.10 mg/cm 2 or more, and preferably 1.00 mg/cm 2 or less, and 0.50 mg/cm 2 or less. 2 or less is more preferable, and 0.40 mg/cm 2 or less is even more preferable.
The mass ratio of the catalyst to the fluoropolymer (II) in the cathode catalyst layer (mass of the catalyst/mass of the fluoropolymer (II)) is preferably 0.3 or more, preferably 1.0 or less, and 0.3. 7 or less is more preferable, and 0.5 or less is even more preferable.
 カソード触媒層は、上記以外の成分を更に含んでいてもよい。このような成分の具体例としては、セリウムイオンが挙げられる。なお、セリウムイオンの詳細については、後述する。
 カソード触媒層がセリウムイオンを含む場合、カソード触媒層中における、含フッ素ポリマー(II)のイオン交換基の物質量に対するセリウムイオンの物質量の割合は、0.1mol%以上が好ましく、0.3mol%以上がより好ましく、また、15mol%以下が好ましく、10mol%以下がより好ましい。
The cathode catalyst layer may further contain components other than those described above. Specific examples of such components include cerium ions. Details of the cerium ion will be described later.
When the cathode catalyst layer contains cerium ions, the ratio of the amount of cerium ions to the amount of ion-exchange groups of the fluoropolymer (II) in the cathode catalyst layer is preferably 0.1 mol % or more, and preferably 0.3 mol. % or more, preferably 15 mol % or less, and more preferably 10 mol % or less.
 カソード触媒層は、例えば、触媒、含フッ素ポリマー(II)、溶媒(水、有機溶媒)、および、必要に応じて用いる水溶性セリウム塩等を含むカソード触媒インクを用いて、公知の方法にしたがって製造できる。 The cathode catalyst layer is formed according to a known method using, for example, a cathode catalyst ink containing a catalyst, a fluorine-containing polymer (II), a solvent (water, organic solvent), and optionally a water-soluble cerium salt. can be manufactured.
 カソード触媒層の膜厚は、本発明の効果がより優れる点から、5μm以上が好ましく、また、100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましく、15μm以下が特に好ましい。
 カソードの膜厚の測定方法は、アノードの膜厚の測定方法と同様である。
The film thickness of the cathode catalyst layer is preferably 5 μm or more, preferably 100 μm or less, more preferably 50 μm or less, still more preferably 30 μm or less, and particularly preferably 15 μm or less, from the viewpoint that the effect of the present invention is more excellent.
The method for measuring the film thickness of the cathode is the same as the method for measuring the film thickness of the anode.
<ガス拡散層>
 ガス拡散層(アノードガス拡散層およびカソードガス拡散層)は、触媒層に均一にガスを拡散させる機能および集電体としての機能を有する。ガス拡散層の具体例としては、カーボンペーパー、カーボンクロス、カーボンフェルト、酸化チタン繊維焼結体、酸化チタン粒子焼結体が挙げられる。酸化チタン焼結体は必要に応じて白金などによりめっきされていてもよい。
 カソードガス拡散層は、PTFE等によって撥水化処理されているのが好ましい。
 図1の膜電極接合体においてはアノードガス拡散層28Aおよびカソードガス拡散層28Aが含まれるが、ガス拡散層(アノードガス拡散層Aおよびカソードガス拡散層B)は任意の部材であり、膜電極接合体に含まれていなくてもよい。
<Gas diffusion layer>
The gas diffusion layers (anode gas diffusion layer and cathode gas diffusion layer) have the function of diffusing gas uniformly in the catalyst layer and the function of current collectors. Specific examples of the gas diffusion layer include carbon paper, carbon cloth, carbon felt, titanium oxide fiber sintered bodies, and titanium oxide particle sintered bodies. The titanium oxide sintered body may be plated with platinum or the like, if necessary.
The cathode gas diffusion layer is preferably treated with PTFE or the like to make it water-repellent.
Although the membrane electrode assembly of FIG. 1 includes the anode gas diffusion layer 28A and the cathode gas diffusion layer 28A, the gas diffusion layers (anode gas diffusion layer A and cathode gas diffusion layer B) are optional members, and the membrane electrodes It does not have to be included in the conjugate.
<セリウムイオン>
 セリウムイオンは、膜電極接合体の表面の法線方向から観察した際に、上記カソード触媒層と重複している領域内に含まれる。上記領域内に存在するセリウムイオンは、水電解装置の駆動時における水の移動によって、カソード触媒層の近傍に集まりやすい。
 上記領域について、図2を用いて詳細に説明する。図2は、本発明の膜電極接合体の表面を法線方向から観察した場合の一例を模式的に示す平面図であり、具体的には図1の矢印方向から膜電極接合体20を観察した場合の平面図である。
 図2に示すように、カソード触媒層26Bは電解質膜10の表面の一部に形成されている。したがって、上記領域は、膜電極接合体20中における、膜電極接合体20の厚さ方向(法線)に沿ってカソード触媒層26Bを投影した部分に相当する。
 図1の例では、上記領域は、カソードガス拡散層28Bのうち厚さ方向に沿ってカソード触媒層26Bと重複する部分、カソード触媒層26Bの全体、電解質膜10のうち厚さ方向に沿ってカソード触媒層26Bと重複する部分、アノード触媒層26Aのうち厚さ方向に沿ってカソード触媒層26Bと重複する部分、および、アノードガス拡散層28Aのうち厚さ方向に沿ってカソード触媒層26Bと重複する部分である。
<Cerium ion>
The cerium ions are contained in the region overlapping with the cathode catalyst layer when observed from the normal direction of the surface of the membrane electrode assembly. The cerium ions present in the above region tend to gather in the vicinity of the cathode catalyst layer due to movement of water during operation of the water electrolysis device.
The above area will be described in detail with reference to FIG. FIG. 2 is a plan view schematically showing an example of observing the surface of the membrane electrode assembly of the present invention from the normal direction. Specifically, the membrane electrode assembly 20 is observed from the direction of the arrow in FIG. It is a plan view in the case of.
As shown in FIG. 2, the cathode catalyst layer 26B is formed on part of the surface of the electrolyte membrane 10. As shown in FIG. Therefore, the above region corresponds to a portion of the membrane electrode assembly 20 where the cathode catalyst layer 26B is projected along the thickness direction (normal line) of the membrane electrode assembly 20 .
In the example of FIG. 1, the above regions are the portion of the cathode gas diffusion layer 28B that overlaps the cathode catalyst layer 26B along the thickness direction, the entire cathode catalyst layer 26B, and the electrolyte membrane 10 along the thickness direction. A portion of the cathode catalyst layer 26B that overlaps with the cathode catalyst layer 26B, a portion of the anode catalyst layer 26A that overlaps the cathode catalyst layer 26B along the thickness direction, and a portion of the anode gas diffusion layer 28A that overlaps with the cathode catalyst layer 26B along the thickness direction. It is a duplicate part.
 セリウムイオンは、上記領域内に含まれていればよいが、上記領域内に存在する固体高分子電解質膜、および、上記領域内に存在するカソード触媒層の少なくとも一方に含まれることが好ましい。
 セリウムイオンは、上記領域内に含まれていれば、上記領域外にも含まれていてもよい。
The cerium ions need only be contained in the above region, but are preferably contained in at least one of the solid polymer electrolyte membrane present in the region and the cathode catalyst layer present in the region.
The cerium ions may be contained outside the above region as long as they are contained within the above region.
 上記領域内に含まれるセリウムイオンは、3価のセリウムイオンであるのが好ましい。
 セリウムイオンを上記領域内に導入する方法の具体例としては、セリウムイオンを含む電解質膜を用いる方法、セリウムイオンを含むカソード触媒層を用いる方法が挙げられる。
The cerium ions contained in the region are preferably trivalent cerium ions.
Specific examples of methods for introducing cerium ions into the region include a method using an electrolyte membrane containing cerium ions and a method using a cathode catalyst layer containing cerium ions.
<膜電極接合体の製造方法>
 膜電極接合体の製造方法としては、例えば、アノード触媒層と離型性基材(例えば、ETFEシート)とを有する積層体と、カソード触媒層と離型性基材(例えば、ETFEシート)とを有する積層体を用いて、電解質膜の両面に触媒層(アノード触媒層およびカソード触媒層)を接合した後、離型性基材を剥離する方法が挙げられる。
 上記積層体は、触媒層と離型性基材との間にガス拡散層を有していてもよい。この場合には、触媒層における電解質膜とは反対面にガス拡散層(アノードガス拡散層およびカソードガス拡散層)を形成できる。
 なお、触媒層の製造方法は、触媒層形成用塗工液を所定の位置(例えば、離型性基材の表面)に塗布して、必要に応じて乾燥させる方法が挙げられる。触媒層形成用塗工液は、イオン交換基を有するポリマーおよび触媒を分散媒に分散させた液である。
<Method for manufacturing membrane electrode assembly>
As a method for producing a membrane electrode assembly, for example, a laminate having an anode catalyst layer and a release base material (e.g., ETFE sheet), a cathode catalyst layer and a release base material (e.g., ETFE sheet), and using a laminate having, the catalyst layers (anode catalyst layer and cathode catalyst layer) are joined to both surfaces of the electrolyte membrane, and then the releasable substrate is peeled off.
The laminate may have a gas diffusion layer between the catalyst layer and the release substrate. In this case, gas diffusion layers (anode gas diffusion layer and cathode gas diffusion layer) can be formed on the opposite side of the catalyst layer to the electrolyte membrane.
In addition, examples of the method for producing the catalyst layer include a method in which the catalyst layer-forming coating solution is applied to a predetermined position (for example, the surface of the releasable base material) and dried as necessary. The catalyst layer-forming coating liquid is a liquid in which a polymer having an ion-exchange group and a catalyst are dispersed in a dispersion medium.
<用途>
 本発明の膜電極接合体は、固体高分子型水電解装置に用いられる。
<Application>
The membrane electrode assembly of the present invention is used in a solid polymer type water electrolysis device.
[水電解装置]
 本発明の水電解装置は、上述の膜電極接合体と、アノード触媒層側に水を供給する水供給部と、アノード触媒層側およびカソード触媒層側と電気的に接続している電力供給部と、を有する。
 本発明の水電解装置において、水供給部によってアノード触媒層側に水が供給された状態で電力供給部によって直流電圧が印加されると、アノード触媒層側では、水が分解して、酸素とプロトンが発生する。また、カソード触媒層側では、電解質膜を介してカソード触媒層側に移動したプロトンが電子を得て、水素が発生する。
 本発明の水電解装置は、上述の膜電極接合体を含むので、膜電極接合体に含まれる含フッ素ポリマーの分解を抑制でき、かつ、低い電解電圧を達成できる。
 本発明の水電解装置は、上述の各部材を有する以外は、公知の水電解装置と同様の構成(例えば、発生した酸素を回収する酸素回収部材、発生した水素を回収する水素回収部材)を有することができる。
[Water electrolysis device]
The water electrolysis apparatus of the present invention includes the membrane electrode assembly described above, a water supply section for supplying water to the anode catalyst layer side, and a power supply section electrically connected to the anode catalyst layer side and the cathode catalyst layer side. and have
In the water electrolysis apparatus of the present invention, when a DC voltage is applied by the power supply unit while water is being supplied to the anode catalyst layer side by the water supply unit, water is decomposed on the anode catalyst layer side into oxygen. Protons are generated. Further, on the cathode catalyst layer side, the protons that have migrated to the cathode catalyst layer side via the electrolyte membrane obtain electrons to generate hydrogen.
Since the water electrolysis apparatus of the present invention includes the membrane electrode assembly described above, it is possible to suppress the decomposition of the fluoropolymer contained in the membrane electrode assembly and achieve a low electrolysis voltage.
The water electrolysis device of the present invention has the same configuration as a known water electrolysis device (for example, an oxygen recovery member for recovering the generated oxygen and a hydrogen recovery member for recovering the generated hydrogen) except for having each member described above. can have
 以下、例を挙げて本発明を詳細に説明する。例1-1~例1-10および例2-1~例2-3は膜(層)の作製例であり、例3-1~例3-10は実施例であり、例4-1~例4-3は比較例である。ただし本発明はこれらの例に限定されない。 The present invention will be described in detail below with examples. Examples 1-1 to 1-10 and Examples 2-1 to 2-3 are examples of film (layer) production, Examples 3-1 to 3-10 are examples, and Examples 4-1 to 4-1 to Example 4-3 is a comparative example. However, the present invention is not limited to these examples.
[含フッ素ポリマーのイオン交換容量]
 乾燥窒素を流したグローブボックス中に含フッ素ポリマーを24時間おき、含フッ素ポリマーの乾燥質量を測定した。その後、含フッ素ポリマーを2モル/Lの塩化ナトリウム水溶液に60℃で1時間浸漬した。含フッ素ポリマーを超純水で洗浄した後、取り出し、含フッ素ポリマーを浸漬していた液を0.1モル/Lの水酸化ナトリウム水溶液で滴定することによって、含フッ素ポリマーのイオン交換容量(ミリ当量/グラム乾燥樹脂)を求めた。
 なお、後述の表中、IEC(meq/g)はイオン交換容量(ミリ当量/グラム乾燥樹脂)を意味する。
[Ion Exchange Capacity of Fluoropolymer]
The fluoropolymer was placed in a glove box in which dry nitrogen was flowed for 24 hours, and the dry mass of the fluoropolymer was measured. After that, the fluoropolymer was immersed in a 2 mol/L sodium chloride aqueous solution at 60° C. for 1 hour. After washing the fluoropolymer with ultrapure water, the ion exchange capacity (millimeter equivalents/gram dry resin) was determined.
In the tables below, IEC (meq/g) means ion exchange capacity (meq/g dry resin).
[固体高分子電解質膜の厚さ]
 固体高分子電解質膜の厚さは、温度:23℃、相対湿度:50%RHの条件にて、レーザー顕微鏡(製品名「VK-X1000」、キーエンス社製)を用いて撮影された電解質層の断面の拡大画像(対物レンズ倍率50倍)を用いて測定した。
[Thickness of solid polymer electrolyte membrane]
The thickness of the solid polymer electrolyte membrane was measured using a laser microscope (product name “VK-X1000” manufactured by Keyence Corporation) under the conditions of temperature: 23° C. and relative humidity: 50% RH. It was measured using a magnified image of the cross section (objective lens magnification of 50 times).
[含フッ素ポリマー中のイオン交換基の物質量]
 含フッ素ポリマーに含まれるイオン交換基の物質量(mol)は、以下の式からイオン交換基のミリ当量を求めて、得られたイオン交換基のミリ当量をイオン交換基のイオン価数で割ることで算出した。例えば、イオン交換基がスルホン酸基の場合、イオン価数は1である。
  イオン交換基のミリ当量=含フッ素ポリマーの乾燥質量(g)×イオン交換容量(ミリ当量/g乾燥樹脂)
[Substance amount of ion-exchange groups in fluorine-containing polymer]
The amount (mol) of the ion-exchange group substance contained in the fluoropolymer is obtained by obtaining the milliequivalent of the ion-exchange group from the following formula and dividing the obtained milliequivalent of the ion-exchange group by the ion valence of the ion-exchange group. calculated by For example, when the ion exchange group is a sulfonic acid group, the ion valence is one.
Milliequivalent of ion-exchange group = dry mass of fluoropolymer (g) x ion-exchange capacity (milliequivalent/g dry resin)
 ここで、含フッ素ポリマーの乾燥質量(g)は、以下のようにして求めた。
 膜(例えば、電解質膜)を用いて含フッ素ポリマーの乾燥質量を測定する場合には、膜を7cm×7cmに切り出し、乾燥窒素をフローしたグローブボックス中で72時間乾燥させた後、同グローブボックス中で質量を測定した。
 含フッ素ポリマーを含む分散液(例えば、カソード触媒層の製造に用いる含フッ素ポリマーを含む分散液)を用いて、含フッ素ポリマーの乾燥質量を測定する場合には、分散液の固形分濃度(質量%)と分散液の質量に基づいて、分散液中の含フッ素ポリマーの乾燥質量を算出した。
Here, the dry mass (g) of the fluorine-containing polymer was determined as follows.
When measuring the dry mass of a fluoropolymer using a membrane (e.g., an electrolyte membrane), the membrane is cut into 7 cm x 7 cm pieces, dried for 72 hours in a glove box in which dry nitrogen is flowed, and then placed in the same glove box. The mass was measured in
When measuring the dry mass of a fluoropolymer using a dispersion containing a fluoropolymer (for example, a dispersion containing a fluoropolymer used for producing a cathode catalyst layer), the solid content concentration (mass %) and the mass of the dispersion, the dry mass of the fluoropolymer in the dispersion was calculated.
 なお、カソード触媒層に含まれる含フッ素ポリマー中のイオン交換基の物質量である「AIEG_C」は、カソード触媒層の製造に用いる含フッ素ポリマーを含む分散液を用いて、上述の方法で算出した。 "A IEG_C ", which is the amount of ion exchange groups in the fluorine-containing polymer contained in the cathode catalyst layer, is calculated by the above-described method using the dispersion containing the fluorine-containing polymer used for manufacturing the cathode catalyst layer. bottom.
[セリウムイオンの物質量]
 膜(例えば、電解質膜)を用いたセリウムイオンの物質量を測定方法は、次の通りである。
 まず、4cm×4cmのサイズに切り出した膜を10mLの塩酸中で温度80℃にて3時間浸漬することで、膜中のセリウムイオンを抽出した。膜を取り出し、塩酸中のセリウムイオン濃度をICP発光分析で分析することで、膜中に含まれるセリウムイオンの物質量(mol)を求めた。
[Substance amount of cerium ion]
A method for measuring the amount of cerium ions using a membrane (for example, an electrolyte membrane) is as follows.
First, a film cut into a size of 4 cm×4 cm was immersed in 10 mL of hydrochloric acid at a temperature of 80° C. for 3 hours to extract cerium ions in the film. The film was taken out and the concentration of cerium ions in the hydrochloric acid was analyzed by ICP emission spectrometry to determine the substance amount (mol) of cerium ions contained in the film.
 含フッ素ポリマーを含む分散液(例えば、カソード触媒層の製造に用いる含フッ素ポリマーを含む分散液)を用いたセリウムイオンの物質量は、分散液の製造時に添加したセリウム塩の質量に基づいて算出した。 The amount of cerium ions in a dispersion containing a fluoropolymer (for example, a dispersion containing a fluoropolymer used for producing a cathode catalyst layer) is calculated based on the mass of the cerium salt added during production of the dispersion. bottom.
 なお、膜電極接合体の表面の法線方向から観察した際に、カソード触媒層と重複している領域内に含まれるセリウムイオンの物質量である「ACe」は、膜電極接合体からカソード触媒層と重複する領域のみを切り出したサンプルを用いる以外は、上記膜を用いたセリウムイオンの物質量の測定方法と同様にして測定した。
 ここで、上記サンプルは、膜電極接合体の周縁部(すなわち、カソード触媒層が設けられていない部分)を切り落として得られ、カソード触媒層と同じサイズ(4cm×4cm)である。上記サンプルには、カソード触媒層、電解質膜およびアノード触媒層が含まれる。
Note that "A Ce ", which is the amount of cerium ions contained in the region overlapping the cathode catalyst layer when observed from the normal direction of the surface of the membrane electrode assembly, is the amount of cerium ions from the membrane electrode assembly to the cathode. The amount of cerium ions was measured in the same manner as in the method for measuring the amount of cerium ions using the membrane, except that a sample cut out only from the region overlapping the catalyst layer was used.
Here, the sample was obtained by cutting off the peripheral portion of the membrane electrode assembly (that is, the portion where the cathode catalyst layer was not provided), and had the same size (4 cm×4 cm) as the cathode catalyst layer. The samples include a cathode catalyst layer, an electrolyte membrane and an anode catalyst layer.
[電解電圧]
 厚さ0.25mm、空隙率60%の白金めっきしたチタン繊維焼結体(べカルト社製)で膜電極接合体を挟み、ストレート流路付きの白金めっきチタン板をセパレーターとした電極面積16cmの単セルに膜電極接合体を組み込んで評価した。膜電極接合体を挟む際には電極部分に1.5MPaの圧力がかかるように締結した。
 次に、固体高分子電解質膜および両電極アイオノマーを充分含水させるため、アノード触媒層側とカソード触媒層側とに、伝導度1.0μS/cm以下、温度60℃、常圧の純水を50mL/minの流量で8時間供給した。その後、カソード触媒層側への水供給を止め、アノード触媒層側には伝導度1.0μS/cm以下、温度60℃の純水を50mL/minの流量で供給し、背圧はアノード触媒層、カソード触媒層ともに常圧としながら、大電流ポテンシオ/ガルバノスタットHCP-803(バイオロジック社製)により16A(電流密度1A/cm)で保持しながら4時間慣らし運転として水電解を実施した。その後、本測定として、0~48A(電流密度0~3A/cm)の範囲で電流を2Aずつ段階的に上昇させた。各段階では5分間電流を保持し、電流48A(電流密度3A/cm)のときの電解電圧を下記基準にて評価した。
 ◎: 1.80より小さい
 ○: 1.80V以上1.83V以下
 ×: 1.83Vより大きい
[Electrolytic voltage]
The membrane electrode assembly was sandwiched between platinum-plated titanium fiber sintered bodies (manufactured by Bekaert) with a thickness of 0.25 mm and a porosity of 60% . The membrane electrode assembly was incorporated into a single cell of the above and evaluated. When sandwiching the membrane electrode assembly, it was fastened so that a pressure of 1.5 MPa was applied to the electrode portion.
Next, 50 mL of pure water having a conductivity of 1.0 μS/cm or less, a temperature of 60° C. and normal pressure was applied to the anode catalyst layer side and the cathode catalyst layer side in order to sufficiently hydrate the solid polymer electrolyte membrane and both electrode ionomers. /min for 8 hours. After that, water supply to the cathode catalyst layer side is stopped, and pure water having a conductivity of 1.0 μS/cm or less and a temperature of 60° C. is supplied to the anode catalyst layer side at a flow rate of 50 mL/min, and the back pressure is applied to the anode catalyst layer. Water electrolysis was carried out as a preconditioning operation for 4 hours while maintaining the pressure at 16 A (current density 1 A/cm 2 ) with a large current potentio/galvanostat HCP-803 (manufactured by Biologic) while keeping both the cathode catalyst layers at normal pressure. After that, for the main measurement, the current was increased stepwise by 2 A in the range of 0 to 48 A (current density 0 to 3 A/cm 2 ). At each stage, the current was held for 5 minutes, and the electrolysis voltage at a current of 48 A (current density of 3 A/cm 2 ) was evaluated according to the following criteria.
◎: less than 1.80 ○: 1.80 V or more and 1.83 V or less ×: greater than 1.83 V
[フッ素リリース速度]
 厚さ0.25mm、空隙率60%の白金めっきしたチタン繊維焼結体(べカルト社製)で膜電極接合体を挟み、ストレート流路付きの白金めっきチタン板をセパレーターとした電極面積16cmの単セルに膜電極接合体を組み込んで評価した。膜電極接合体を挟む際には電極部分に1.5MPaの圧力がかかるように締結した。
 次に、固体高分子電解質膜および両電極アイオノマーを充分含水させるため、アノード触媒層側とカソード触媒層側とに、伝導度1.0μS/cm以下、温度60℃、常圧の純水を50mL/minの流量で8時間供給した。その後、アノード触媒層側には伝導度1.0μS/cm以下、温度60℃の純水を50mL/minの流量で供給し、背圧はアノード触媒層、カソード触媒層ともに常圧としながら、大電流ポテンシオ/ガルバノスタットHCP-803(バイオロジック社製)により16A(電流密度1A/cm)で保持しながら4時間慣らし運転として水電解を実施した。その後、アノード触媒層への供給水量を150mL/min、背圧をアノード、カソードともに50kPaに変更し、電流密度1A/cmでの運転を1000時間継続した。
 慣らし運転後500時間から1000時間の間にカソード触媒層側から排出される排水をサンプリングした。この排水中に含まれるフッ化物イオンの量をイオンクロマトグラフィーにより定量し平均することで単位電極面積・単位時間あたりの平均フッ化物イオン量を算出し、フッ素リリース速度として下記基準にて評価した。フッ素リリース速度の値が小さいほど、含フッ素ポリマーの分解が抑制されているといえる。
 〇:3.0×10-6mg/(h・cm)未満
 ×:3.0×10-6mg/(h・cm)以上
[Fluorine release rate]
The membrane electrode assembly was sandwiched between platinum-plated titanium fiber sintered bodies (manufactured by Bekaert) with a thickness of 0.25 mm and a porosity of 60% . The membrane electrode assembly was incorporated into a single cell of the above and evaluated. When sandwiching the membrane electrode assembly, it was fastened so that a pressure of 1.5 MPa was applied to the electrode portion.
Next, 50 mL of pure water having a conductivity of 1.0 μS/cm or less, a temperature of 60° C. and normal pressure was applied to the anode catalyst layer side and the cathode catalyst layer side in order to sufficiently hydrate the solid polymer electrolyte membrane and both electrode ionomers. /min for 8 hours. After that, pure water having a conductivity of 1.0 μS/cm or less and a temperature of 60° C. was supplied to the anode catalyst layer side at a flow rate of 50 mL/min, and the back pressure was increased to normal pressure for both the anode catalyst layer and the cathode catalyst layer. Water electrolysis was carried out as a 4-hour preconditioning operation while maintaining at 16 A (current density 1 A/cm 2 ) by current potentio/galvanostat HCP-803 (manufactured by Biologic). After that, the amount of water supplied to the anode catalyst layer was changed to 150 mL/min, the back pressure was changed to 50 kPa for both the anode and the cathode, and the operation was continued at a current density of 1 A/cm 2 for 1000 hours.
Waste water discharged from the cathode catalyst layer side was sampled between 500 hours and 1000 hours after the break-in operation. The amount of fluoride ions contained in this waste water was quantified by ion chromatography and averaged to calculate the average amount of fluoride ions per unit electrode area/unit time, and evaluated as the fluorine release rate according to the following criteria. It can be said that the smaller the value of the fluorine release rate, the more suppressed the decomposition of the fluoropolymer.
○: Less than 3.0×10 −6 mg/(h·cm 2 ) ×: 3.0×10 −6 mg/(h·cm 2 ) or more
[略号]
 TFE:テトラフルオロエチレン
 PSVE:CF=CFOCFCF(CF)OCFCFSO
 P2SVE:下記式m32-1で表されるモノマー
[Abbreviation]
TFE : Tetrafluoroethylene PSVE : CF2 = CFOCF2CF ( CF3 ) OCF2CF2SO2F
P2SVE: a monomer represented by the following formula m32-1
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[固体高分子電解質膜の作製]
<例1-1>
 TFEとPSVEとを共重合し、加水分解および酸処理を経て酸型としたポリマー(イオン交換容量:1.25ミリ当量/グラム乾燥樹脂)を水/エタノール=40/60(質量%)の溶媒に固形分濃度20.0%で分散させた分散液(以下、「分散液X」ともいう。)を得た。得られた分散液Xを100μmのエチレン-テトラフルオロエチレンコポリマー(ETFE)製シート上に、ダイコーターにて塗工して製膜し、これを80℃で15分間乾燥し、さらに160℃で30分の熱処理を施し、電解質膜を得た。なお、乾燥後の電解質膜の膜厚が100μmになるように、液状組成物の塗工量を調節した。
 次に、PFA製の容器に超純水(100g)と10cm×15cmの大きさの電解質膜とを入れ、電解質膜を超純水に浸漬した。さらに9.8mmol/L硝酸セリウム(III)水溶液(1.79g)を加え、常温で16時間静置した。16時間後、容器内の液体を捨て、電解質膜を超純水で洗浄した。洗浄後、膜を取り出し、ろ紙に挟んで3日間風乾することで、固体高分子電解質膜M-1を得た。
 上述の方法で求めたイオン交換基(スルホン酸基)の物質量とセリウムイオンの物質量から算出した、固体高分子電解質膜M-1のイオン交換基の物質量に対するセリウムイオンの物質量の割合(mol%)を表1に示す。なお、表中、イオン交換基の物質量に対するセリウムイオンの物質量の割合を「電解質膜におけるCe/IEG(mol%)」と略記した。
[Preparation of Solid Polymer Electrolyte Membrane]
<Example 1-1>
A polymer (ion exchange capacity: 1.25 meq/g dry resin) obtained by copolymerizing TFE and PSVE and converted into an acid form through hydrolysis and acid treatment was added to a solvent of water/ethanol = 40/60 (mass%). A dispersion liquid (hereinafter also referred to as "dispersion liquid X") was obtained by dispersing at a solid content concentration of 20.0%. The obtained dispersion liquid X was coated on a 100 μm ethylene-tetrafluoroethylene copolymer (ETFE) sheet with a die coater to form a film, which was dried at 80° C. for 15 minutes, and further dried at 160° C. for 30 minutes. A heat treatment was performed for a minute to obtain an electrolyte membrane. The coating amount of the liquid composition was adjusted so that the film thickness of the electrolyte membrane after drying was 100 μm.
Next, ultrapure water (100 g) and an electrolyte membrane having a size of 10 cm×15 cm were placed in a container made of PFA, and the electrolyte membrane was immersed in the ultrapure water. Further, a 9.8 mmol/L cerium (III) nitrate aqueous solution (1.79 g) was added, and the mixture was allowed to stand at room temperature for 16 hours. After 16 hours, the liquid in the container was discarded, and the electrolyte membrane was washed with ultrapure water. After washing, the membrane was taken out, sandwiched between filter papers and air-dried for 3 days to obtain a solid polymer electrolyte membrane M-1.
The ratio of the amount of cerium ions to the amount of ion-exchange groups in the solid polymer electrolyte membrane M-1, which is calculated from the amount of ion-exchange groups (sulfonic acid groups) and cerium ions obtained by the above method. (mol%) is shown in Table 1. In the table, the ratio of the substance amount of cerium ions to the substance amount of ion-exchange groups is abbreviated as "Ce/IEG (mol%) in the electrolyte membrane".
<例1-2>
 添加する9.8mmol/L硝酸セリウム(III)水溶液の量を1.15gに変更した以外は例1-1と同様にして固体高分子電解質膜M-2を得た。イオン交換基の物質量に対するセリウムイオンの物質量の割合(mol%)を表1に示す。
<Example 1-2>
A solid polymer electrolyte membrane M-2 was obtained in the same manner as in Example 1-1, except that the amount of the 9.8 mmol/L cerium (III) nitrate aqueous solution added was changed to 1.15 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
<例1-3>
 添加する9.8mmol/L硝酸セリウム(III)水溶液の量を0.26gに変更した以外は例1-1と同様にして固体高分子電解質膜M-3を得た。イオン交換基の物質量に対するセリウムイオンの物質量の割合(mol%)を表1に示す。
<Example 1-3>
A solid polymer electrolyte membrane M-3 was obtained in the same manner as in Example 1-1, except that the amount of the 9.8 mmol/L cerium (III) nitrate aqueous solution added was changed to 0.26 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
<例1-4>
 固体高分子電解質膜を形成する際の分散液として、TFEとPSVEとを共重合し、加水分解および酸処理を経て酸型としたポリマー(イオン交換容量:1.10ミリ当量/グラム乾燥樹脂)を水/エタノール=40/60(質量%)の溶媒に固形分濃度26.0%で分散させた分散液(以下、「分散液Y」ともいう。)を使用し、添加する9.8mmol/L硝酸セリウム(III)水溶液の量を1.01gに変更した以外は例1-1と同様にして固体高分子電解質膜M-4を得た。イオン交換基の物質量に対するセリウムイオンの物質量の割合(mol%)を表1に示す。
<Example 1-4>
As a dispersion liquid for forming a solid polymer electrolyte membrane, a polymer obtained by copolymerizing TFE and PSVE and converted into an acid form through hydrolysis and acid treatment (ion exchange capacity: 1.10 meq/g dry resin) is dispersed in a solvent of water / ethanol = 40/60 (mass%) at a solid content concentration of 26.0% (hereinafter also referred to as "dispersion liquid Y"). A solid polymer electrolyte membrane M-4 was obtained in the same manner as in Example 1-1, except that the amount of the L cerium (III) nitrate aqueous solution was changed to 1.01 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
<例1-5>
 例1-1と同様の手順で、固体高分子電解質膜を形成する際の分散液として、TFEとP2SVEとを共重合し、加水分解および酸処理を経て酸型としたポリマー(イオン交換容量:1.95ミリ当量/グラム乾燥樹脂)を水/プロパノール=30/70(質量%)の溶媒に固形分濃度13.0%で分散させた分散液を使用し、膜厚が50μmになるように塗工量を調節し、50μmの電解質膜を得た。この電解質膜に、添加する9.8mmol/L硝酸セリウム(III)水溶液の量を0.99gに変更する以外は例1-1と同様にしてセリウムイオンを導入し、固体高分子電解質膜M-5を得た。イオン交換基の物質量に対するセリウムイオンの物質量の割合(mol%)を表1に示す。
<Example 1-5>
In the same procedure as in Example 1-1, TFE and P2SVE were copolymerized as a dispersion liquid when forming a solid polymer electrolyte membrane, and the polymer was converted into an acid form through hydrolysis and acid treatment (ion exchange capacity: 1.95 meq/g dry resin) was dispersed in a solvent of water/propanol = 30/70 (% by mass) at a solid content concentration of 13.0%, and the film thickness was adjusted to 50 µm. By adjusting the coating amount, an electrolyte membrane of 50 μm was obtained. Cerium ions were introduced into this electrolyte membrane in the same manner as in Example 1-1, except that the amount of the 9.8 mmol/L cerium (III) nitrate aqueous solution to be added was changed to 0.99 g. Got 5. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
<例1-6>
 固体高分子電解質膜を形成する際の分散液として、TFEとPSVEとを共重合し、加水分解および酸処理を経て酸型としたポリマー(イオン交換容量:1.38ミリ当量/グラム乾燥樹脂)を水/エタノール=40/60(質量%)の溶媒に固形分濃度20.0%で分散させた分散液を使用し、添加する9.8mmoL/L硝酸セリウム(III)水溶液の量を1.27gに変更した以外は例1-1と同様にして固体高分子電解質膜M-6を得た。イオン交換基の物質量に対するセリウムイオンの物質量の割合(mol%)を表1に示す。
<Example 1-6>
As a dispersion liquid for forming a solid polymer electrolyte membrane, a polymer obtained by copolymerizing TFE and PSVE and converted into an acid form through hydrolysis and acid treatment (ion exchange capacity: 1.38 meq/g dry resin) was dispersed in a solvent of water/ethanol = 40/60 (% by mass) at a solid content concentration of 20.0%, and the amount of 9.8 mmol/L cerium (III) nitrate aqueous solution to be added was 1. A solid polymer electrolyte membrane M-6 was obtained in the same manner as in Example 1-1 except that the weight was changed to 27 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
<例1-7>
 固体高分子電解質膜として、国際公開第2020/162511号の実施例1に記載の織布補強電解質膜を使用し、添加する9.8mmol/L硝酸セリウム(III)水溶液の量を1.03gに変更した以外は例1-1と同様にして固体高分子電解質膜M-7を得た。イオン交換基の物質量に対するセリウムイオンの物質量の割合(mol%)を表1に示す。
<Example 1-7>
As the solid polymer electrolyte membrane, the woven fabric reinforced electrolyte membrane described in Example 1 of WO 2020/162511 is used, and the amount of 9.8 mmol/L cerium (III) nitrate aqueous solution to be added is 1.03 g. A solid polymer electrolyte membrane M-7 was obtained in the same manner as in Example 1-1 except for the change. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
<例1-8>
 9.8mmol/L硝酸セリウム(III)水溶液を添加しない以外は例1-1と同様にしてセリウムイオンが含まれない固体高分子電解質膜M-8を得た。イオン交換基の物質量に対するセリウムイオンの物質量の割合(mol%)を表1に示す。
<Example 1-8>
A solid polymer electrolyte membrane M-8 containing no cerium ions was obtained in the same manner as in Example 1-1, except that the 9.8 mmol/L cerium (III) nitrate aqueous solution was not added. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
<例1-9>
 添加する9.8mmol/L硝酸セリウム(III)水溶液の量を6.50gに変更した以外は例1-1と同様にして固体高分子電解質膜M-9を得た。イオン交換基の物質量に対するセリウムイオンの物質量の割合(mol%)を表1に示す。
<Example 1-9>
A solid polymer electrolyte membrane M-9 was obtained in the same manner as in Example 1-1, except that the amount of the 9.8 mmol/L cerium (III) nitrate aqueous solution added was changed to 6.50 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
<例1-10>
 添加する9.8mmol/L硝酸セリウム(III)水溶液の量を3.19gに変更した以外は例1-1と同様にして固体高分子電解質膜M-10を得た。イオン交換基の物質量に対するセリウムイオンの物質量の割合(mol%)を表1に示す。
<Example 1-10>
A solid polymer electrolyte membrane M-10 was obtained in the same manner as in Example 1-1, except that the amount of the 9.8 mmol/L cerium (III) nitrate aqueous solution added was changed to 3.19 g. Table 1 shows the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
[カソード触媒層デカールの作製]
<例2-1>
 カーボン粉末に白金を46質量%担持した担持触媒(田中貴金属工業社製 “TEC10E50E”)(11g)に水(59.4g)、エタノール(39.6g)を加え、超音波ホモジナイザーを用いて混合粉砕し、触媒の分散液を得た。
 触媒の分散液に、分散液Y(20.1g)とエタノール(11g)とゼオローラ-H(日本ゼオン製)(6.3g)とをあらかじめ混合・混練した混合液(29.2g)とを加えた。さらに、得られた分散液に、水(3.66g)、エタノール(7.63g)を加えてペイントコンディショナーを用いて60分間混合し、固形分濃度を10.0質量%とし、カソード触媒インクを得た。
 ETFEシート上にカソード触媒インクをダイコーターで塗布し、80℃で乾燥させ、さらに150℃で15分間熱処理を施し、白金量が0.4mg/cmのカソード触媒層デカールD-1を得た。
[Preparation of Cathode Catalyst Layer Decal]
<Example 2-1>
Water (59.4 g) and ethanol (39.6 g) are added to a supported catalyst ("TEC10E50E" manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) (11 g) in which 46% by mass of platinum is supported on carbon powder, and mixed and pulverized using an ultrasonic homogenizer. to obtain a catalyst dispersion.
A mixture (29.2 g) obtained by previously mixing and kneading Dispersion Y (20.1 g), ethanol (11 g), and Zeorola-H (manufactured by Nippon Zeon) (6.3 g) was added to the catalyst dispersion. rice field. Furthermore, water (3.66 g) and ethanol (7.63 g) were added to the obtained dispersion and mixed for 60 minutes using a paint conditioner to adjust the solid content concentration to 10.0% by mass. Obtained.
The cathode catalyst ink was applied to the ETFE sheet with a die coater, dried at 80° C., and heat-treated at 150° C. for 15 minutes to obtain a cathode catalyst layer decal D-1 having a platinum content of 0.4 mg/cm 2 . .
<例2-2>
 分散液Y(50g)と炭酸セリウム(III)八水和物(0.43g)を3日間常温で混合して分散液を得た。この分散液を160℃で3時間加熱し、溶媒を除去して得た含フッ素ポリマーのイオン交換基(スルホン酸基)の物質量に対するセリウムイオンの物質量の割合(mol%)を表2に示す。なお、表中、イオン交換基の物質量に対するセリウムイオンの物質量の割合を「カソード触媒層におけるCe/IEG(mol%)」と略記した。
 カソード触媒インクに使用するポリマー分散液として分散液Yの代わりにこの分散液を20.1g加えた以外は例2-1と同様にしてカソード触媒層デカールD-2を得た。
<Example 2-2>
Dispersion Y (50 g) and cerium (III) carbonate octahydrate (0.43 g) were mixed for 3 days at room temperature to obtain a dispersion. This dispersion was heated at 160° C. for 3 hours, and the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups (sulfonic acid groups) of the fluorine-containing polymer obtained by removing the solvent is shown in Table 2. show. In the table, the ratio of the amount of cerium ions to the amount of ion exchange groups is abbreviated as "Ce/IEG (mol %) in the cathode catalyst layer".
A cathode catalyst layer decal D-2 was obtained in the same manner as in Example 2-1, except that 20.1 g of this dispersion was added in place of dispersion Y as the polymer dispersion used in the cathode catalyst ink.
<例2-3>
 分散液Y(50g)と炭酸セリウム(III)八水和物(0.014g)を3日間常温で混合して分散液を得た。この分散液を160℃で3時間加熱し、溶媒を除去して得た含フッ素ポリマーのイオン交換基(スルホン酸基)の物質量に対するセリウムイオンの物質量の割合(mol%)を表2に示す。カソード触媒インクに使用するポリマー分散液として分散液Yの代わりにこの分散液を20.1g加えた以外は例2-1と同様にしてカソード触媒層デカールD-3を得た。
<Example 2-3>
Dispersion Y (50 g) and cerium (III) carbonate octahydrate (0.014 g) were mixed for 3 days at room temperature to obtain a dispersion. This dispersion was heated at 160° C. for 3 hours, and the ratio (mol %) of the amount of cerium ions to the amount of ion exchange groups (sulfonic acid groups) of the fluorine-containing polymer obtained by removing the solvent is shown in Table 2. show. A cathode catalyst layer decal D-3 was obtained in the same manner as in Example 2-1, except that 20.1 g of this dispersion was added in place of dispersion Y as the polymer dispersion used in the cathode catalyst ink.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<アノード触媒層デカールの作製>
 分散液Y(33.0g)に、エタノール(18.06g)、ゼオローラ―H(日本ゼオン製)(10.58g)を加え、自転公転ミキサー(シンキー製 あわとり練太郎)で2200rpmにて5分間混合した。混合後の組成物(54.06g)に、エタノール(46.44g)、水(75.75g)を加え、さらにイリジウムを74.8質量%含む比表面積100m/gの酸化イリジウム触媒(田中貴金属社製)(40.0g)を加えた。得られた混合物を遊星ビーズミル(回転数300rpm)で90分間処理して固形分濃度を22質量%としたアノード触媒インクを得た。
 ETFEシート上に、アノード触媒インクをイリジウムが1.0mg/cmとなるようアプリケーターで塗工し、80℃で10分間乾燥させ、さらに150℃で15分間熱処理を施して、アノード触媒層デカールを得た。
<Production of anode catalyst layer decal>
Dispersion liquid Y (33.0 g) was added with ethanol (18.06 g) and Zeorola-H (manufactured by Nippon Zeon) (10.58 g), and a rotation and revolution mixer (Thinky's Awatori Mixer) was used at 2200 rpm for 5 minutes. Mixed. Ethanol (46.44 g) and water (75.75 g) were added to the mixed composition (54.06 g), and an iridium oxide catalyst (Tanaka Kikinzoku Co.) (40.0 g) was added. The resulting mixture was treated with a planetary bead mill (rotational speed: 300 rpm) for 90 minutes to obtain an anode catalyst ink having a solid content concentration of 22% by mass.
An anode catalyst ink was applied to the ETFE sheet with an applicator so that the iridium content was 1.0 mg/cm 2 , dried at 80° C. for 10 minutes, and further subjected to heat treatment at 150° C. for 15 minutes to form an anode catalyst layer decal. Obtained.
[膜電極接合体の作製]
<例3-1>
 7cm×7cmに切り出した固体高分子電解質膜M-1の一方の面に4cm×4cmに切り出したアノード触媒層デカールの触媒層が存在する面を対向させ、固体高分子電解質膜M-1のもう一方の面に4cm×4cmに切り出したカソード触媒層デカールD-1の触媒層が存在する面を対向させ、プレス温度150℃で10分間、圧力3MPaの条件で加熱プレスした。温度を70℃まで下げたのち圧力を解放して取り出し、アノード触媒層デカールとカソード触媒層デカールのETFEシートを剥離して、電極面積16cmの膜電極接合体を得た。得られた膜電極接合体を電解電圧およびフッ素リリース速度の評価に供した。評価結果を表3に示す。
[Fabrication of membrane electrode assembly]
<Example 3-1>
The surface where the catalyst layer of the anode catalyst layer decal cut into 4 cm × 4 cm faces one surface of the solid polymer electrolyte membrane M-1 cut out to 7 cm × 7 cm, and the other surface of the solid polymer electrolyte membrane M-1 is cut out. The surface on which the catalyst layer of the cathode catalyst layer decal D-1 cut to 4 cm×4 cm was placed was opposed to one surface, and hot-pressed at a press temperature of 150° C. for 10 minutes and a pressure of 3 MPa. After the temperature was lowered to 70° C., the pressure was released, the assembly was taken out, and the ETFE sheets of the anode catalyst layer decal and the cathode catalyst layer decal were peeled off to obtain a membrane electrode assembly with an electrode area of 16 cm 2 . The resulting membrane electrode assembly was subjected to evaluation of electrolytic voltage and fluorine release rate. Table 3 shows the evaluation results.
<例3-2~3-7>
 固体高分子電解質膜M-1の代わりに固体高分子電解質膜M-2~M-7を使用した以外は例3-1と同様にして膜電極接合体を得た。評価結果を表3に示す。
<Examples 3-2 to 3-7>
Membrane electrode assemblies were obtained in the same manner as in Example 3-1, except that solid polymer electrolyte membranes M-2 to M-7 were used instead of solid polymer electrolyte membrane M-1. Table 3 shows the evaluation results.
<例3-8~3-9>
 固体高分子電解質膜M-1の代わりに固体高分子電解質膜M-8、カソード触媒層デカールD-1の代わりにD-2またはD-3を使用した以外は例3-1と同様にして膜電極接合体を得た。評価結果を表3に示す。
<Examples 3-8 to 3-9>
In the same manner as in Example 3-1, except that a solid polymer electrolyte membrane M-8 was used instead of the solid polymer electrolyte membrane M-1, and D-2 or D-3 was used instead of the cathode catalyst layer decal D-1. A membrane electrode assembly was obtained. Table 3 shows the evaluation results.
<例3-10>
 固体高分子電解質膜M-1の代わりに固体高分子電解質膜M-3、カソード触媒層デカールD-1の代わりにD-2を使用した以外は例3-1と同様にして膜電極接合体を得た。評価結果を表3に示す。
<Example 3-10>
A membrane electrode assembly was prepared in the same manner as in Example 3-1, except that a solid polymer electrolyte membrane M-3 was used instead of the solid polymer electrolyte membrane M-1, and D-2 was used instead of the cathode catalyst layer decal D-1. got Table 3 shows the evaluation results.
<例4-1~4-3>
 固体高分子電解質膜M-1の代わりに固体高分子電解質膜M-9、M-10、M-8をそれぞれ使用した以外は例3-1と同様にして膜電極接合体を得た。評価結果を表3に示す。
<Examples 4-1 to 4-3>
Membrane electrode assemblies were obtained in the same manner as in Example 3-1 except that solid polymer electrolyte membranes M-9, M-10 and M-8 were used instead of solid polymer electrolyte membrane M-1. Table 3 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 例3-1~例3-10の膜電極接合体はいずれも、膜電極接合体の表面の法線方向から観察した際に、カソード触媒層と重複している領域内にセリウムイオンが含まれていた。 All of the membrane electrode assemblies of Examples 3-1 to 3-10 contained cerium ions in the region overlapping the cathode catalyst layer when observed from the normal direction of the surface of the membrane electrode assembly. was
 表1の結果から、本発明に係る例3-1~例3-10の膜電極接合体を用いた場合、例4-1~例4-3と比べて、低い電解電圧を達成でき、かつ、含まれる含フッ素ポリマーの分解を抑制できることが確認された。 From the results in Table 1, when using the membrane electrode assemblies of Examples 3-1 to 3-10 according to the present invention, a lower electrolytic voltage can be achieved than in Examples 4-1 to 4-3, and , it was confirmed that decomposition of the contained fluoropolymer can be suppressed.
 なお、2021年11月9日に出願された日本特許出願2021-182813号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2021-182813 filed on November 9, 2021 are cited here, and as a disclosure of the specification of the present invention, It is taken in.
 10  電解質膜
 20  膜電極接合体
 22  アノード
 24  カソード
 26A  アノード触媒層
 26B  カソード触媒層
 28  ガス拡散層
REFERENCE SIGNS LIST 10 electrolyte membrane 20 membrane electrode assembly 22 anode 24 cathode 26A anode catalyst layer 26B cathode catalyst layer 28 gas diffusion layer

Claims (9)

  1.  イオン交換基を有する含フッ素ポリマーを含む固体高分子電解質膜と、
     前記固体高分子電解質膜の一方の面側に配置された、イオン交換基を有する含フッ素ポリマーを含むカソード触媒層と、
     前記固体高分子電解質膜の他方の面側に配置された、アノード触媒層と、を含む固体高分子型水電解用膜電極接合体であって、
     前記固体高分子型水電解用膜電極接合体の表面の法線方向から観察した際に、前記カソード触媒層と重複している領域内にセリウムイオンが含まれ、
     式(X)の関係を満たすことを特徴とする、固体高分子型水電解用膜電極接合体。
      (ACe×3)/AIEG_C≦0.90  式(X)
     式(X)中、ACeは前記領域内に含まれるセリウムイオンの物質量(mol)を表し、AIEG_Cは前記カソード触媒層に含まれる前記含フッ素ポリマー中の前記イオン交換基の物質量(mol)を表す。
    a solid polymer electrolyte membrane containing a fluorine-containing polymer having ion exchange groups;
    a cathode catalyst layer containing a fluorine-containing polymer having an ion-exchange group, disposed on one side of the solid polymer electrolyte membrane;
    A polymer electrolyte membrane electrode assembly for water electrolysis, comprising: an anode catalyst layer disposed on the other surface side of the solid polymer electrolyte membrane;
    When observed from the normal direction of the surface of the polymer electrolyte membrane electrode assembly for water electrolysis, the region overlapping with the cathode catalyst layer contains cerium ions,
    A polymer electrolyte membrane electrode assembly for water electrolysis, characterized in that it satisfies the relationship of formula (X).
    (A Ce × 3)/A IEG_C ≤ 0.90 Formula (X)
    In the formula (X), A Ce represents the substance amount (mol) of cerium ions contained in the region, and A IEG_C represents the substance amount (mol) of the ion exchange groups in the fluorine-containing polymer contained in the cathode catalyst layer. mol).
  2.  前記固体高分子電解質膜に含まれる前記含フッ素ポリマーのイオン交換容量が1.10ミリ当量/グラム乾燥樹脂以上である、請求項1に記載の固体高分子型水電解用膜電極接合体。 The solid polymer membrane electrode assembly for water electrolysis according to claim 1, wherein the ion exchange capacity of the fluorine-containing polymer contained in the solid polymer electrolyte membrane is 1.10 meq/g dry resin or more.
  3.  前記固体高分子電解質膜に含まれる前記含フッ素ポリマーの含有量が、前記固体高分子電解質膜中のポリマーの合計質量に対して、80~100質量%である、請求項1又は2に記載の固体高分子型水電解用膜電極接合体。 3. The solid polymer electrolyte membrane according to claim 1, wherein the content of said fluorine-containing polymer contained in said solid polymer electrolyte membrane is 80 to 100% by mass with respect to the total mass of polymers in said solid polymer electrolyte membrane. Solid polymer type membrane electrode assembly for water electrolysis.
  4.  前記セリウムイオンが前記固体高分子電解質膜に含まれる、請求項1~3のいずれか1項に記載の固体高分子型水電解用膜電極接合体。 The solid polymer membrane electrode assembly for water electrolysis according to any one of claims 1 to 3, wherein the cerium ions are contained in the solid polymer electrolyte membrane.
  5.  前記セリウムイオンが前記カソード触媒層に含まれる、請求項1~4のいずれか1項に記載の固体高分子型水電解用膜電極接合体。 The polymer electrolyte membrane electrode assembly for water electrolysis according to any one of claims 1 to 4, wherein the cerium ions are contained in the cathode catalyst layer.
  6.  前記固体高分子電解質膜に含まれる前記含フッ素ポリマーが有する前記イオン交換基が、スルホン酸型官能基である、請求項1~5のいずれか1項に記載の固体高分子型水電解用膜電極接合体。 The polymer electrolyte membrane for water electrolysis according to any one of claims 1 to 5, wherein the ion exchange group possessed by the fluorine-containing polymer contained in the polymer electrolyte membrane is a sulfonic acid type functional group. electrode junction.
  7.  前記固体高分子電解質膜に含まれる前記含フッ素ポリマーが、式(1-3)で表される単位、および、式(1-4)で表される単位からなる群から選択される少なくとも1種の単位を含む、請求項1~6のいずれか1項に記載の固体高分子型水電解用膜電極接合体。
    Figure JPOXMLDOC01-appb-C000001
     式(1-3)および式(1-4)中、Rf1は、炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基であり、Rf2は、単結合または炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基であり、Rf3は、単結合または炭素原子-炭素原子間に酸素原子を含んでいてもよいペルフルオロアルキレン基であり、rは0または1であり、mは0または1であり、Mは水素原子、アルカリ金属または第4級アンモニウムカチオンである。
    The fluorine-containing polymer contained in the solid polymer electrolyte membrane is at least one selected from the group consisting of units represented by formula (1-3) and units represented by formula (1-4). The polymer electrolyte membrane electrode assembly for water electrolysis according to any one of claims 1 to 6, comprising a unit of
    Figure JPOXMLDOC01-appb-C000001
    In formulas (1-3) and (1-4), R f1 is a perfluoroalkylene group that may contain an oxygen atom between carbon atoms and carbon atoms, and R f2 is a single bond or a carbon atom- a perfluoroalkylene group optionally containing an oxygen atom between carbon atoms, R f3 is a single bond or a perfluoroalkylene group optionally containing an oxygen atom between carbon atoms, r is 0 or is 1, m is 0 or 1, and M is a hydrogen atom, an alkali metal or a quaternary ammonium cation.
  8.  前記固体高分子電解質膜がさらに補強材を含む、請求項1~7のいずれか1項に記載の固体高分子型水電解用膜電極接合体。 The solid polymer membrane electrode assembly for water electrolysis according to any one of claims 1 to 7, wherein the solid polymer electrolyte membrane further contains a reinforcing material.
  9.  請求項1~8のいずれか1項に記載の固体高分子型水電解用膜電極接合体と、
     前記固体高分子型水電解用膜電極接合体におけるカソード触媒層側およびアノード触媒層側と接続している電力供給部と、
     前記アノード触媒層側に水を供給する水供給部と、を有することを特徴とする、水電解装置。
    a solid polymer membrane electrode assembly for water electrolysis according to any one of claims 1 to 8;
    a power supply section connected to the cathode catalyst layer side and the anode catalyst layer side of the polymer electrolyte membrane electrode assembly for water electrolysis;
    and a water supply unit for supplying water to the anode catalyst layer side.
PCT/JP2022/041156 2021-11-09 2022-11-04 Solid polymer-type water electrolysis membrane-electrode joint body and water electrolysis device WO2023085206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021182813 2021-11-09
JP2021-182813 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023085206A1 true WO2023085206A1 (en) 2023-05-19

Family

ID=86336010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041156 WO2023085206A1 (en) 2021-11-09 2022-11-04 Solid polymer-type water electrolysis membrane-electrode joint body and water electrolysis device

Country Status (1)

Country Link
WO (1) WO2023085206A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060789A (en) * 2016-09-30 2018-04-12 東レ株式会社 Polymer electrolyte composition and polymer electrolyte membrane prepared therewith, electrolyte membrane with catalyst layer, membrane electrode complex, solid polymer fuel cell, electrochemical hydrogen pump and water-electrolytic hydrogen generating device
WO2019088299A1 (en) * 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer
JP2019083123A (en) * 2017-10-30 2019-05-30 株式会社豊田中央研究所 Film-electrode-gas diffusion layer junction body
JP2019125429A (en) * 2018-01-12 2019-07-25 株式会社豊田中央研究所 Membrane-electrode-gas diffusion layer assembly
WO2020116647A1 (en) * 2018-12-07 2020-06-11 Agc株式会社 Acid-type sulfonate group-containing polymer, liquid composition, solid polymer electrolyte membrane, membrane electrode joint body, solid polymer fuel cell, and ion exchange membrane for water electrolysis
WO2020116645A1 (en) * 2018-12-07 2020-06-11 Agc株式会社 Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060789A (en) * 2016-09-30 2018-04-12 東レ株式会社 Polymer electrolyte composition and polymer electrolyte membrane prepared therewith, electrolyte membrane with catalyst layer, membrane electrode complex, solid polymer fuel cell, electrochemical hydrogen pump and water-electrolytic hydrogen generating device
JP2019083123A (en) * 2017-10-30 2019-05-30 株式会社豊田中央研究所 Film-electrode-gas diffusion layer junction body
WO2019088299A1 (en) * 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer
JP2019125429A (en) * 2018-01-12 2019-07-25 株式会社豊田中央研究所 Membrane-electrode-gas diffusion layer assembly
WO2020116647A1 (en) * 2018-12-07 2020-06-11 Agc株式会社 Acid-type sulfonate group-containing polymer, liquid composition, solid polymer electrolyte membrane, membrane electrode joint body, solid polymer fuel cell, and ion exchange membrane for water electrolysis
WO2020116645A1 (en) * 2018-12-07 2020-06-11 Agc株式会社 Liquid composition, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell

Similar Documents

Publication Publication Date Title
JP6005065B2 (en) Redox flow secondary battery and electrolyte membrane for redox flow secondary battery
EP2577787B1 (en) Reinforced electrolyte membrane
JP5823601B2 (en) Polymer electrolyte membrane
EP2161770A1 (en) Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
JP2010534274A (en) Cation-conducting membrane comprising a polysulfonic acid polymer and a metal salt having an F-containing anion
WO2020162511A1 (en) Membrane electrode assembly and water-electrolysis device
JP2012092345A (en) Liquid composition, method for producing the same, and method for manufacturing membrane-electrode assembly for polymer electrolyte fuel cell
JP7384036B2 (en) Solid polymer electrolyte membranes, membrane electrode assemblies, and water electrolyzers
JP7359139B2 (en) Laminated electrolyte membrane, membrane electrode assembly, water electrolysis type hydrogen generator, and method for manufacturing the laminated electrolyte membrane
US20220251264A1 (en) Fluorosulfonyl group-containing fluoropolymer and method for producing same, sulfonic acid group-containing fluoropolymer and method for producing same, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JP2007095433A (en) Electrolyte film for solid polymer fuel cells, and its manufacturing method
JP2007031718A (en) Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell
JP2007031718A5 (en)
US20220396890A1 (en) Ion exchange membrane with catalyst layer, ion exchange membrane and electrolytic hydrogenation apparatus
WO2023085206A1 (en) Solid polymer-type water electrolysis membrane-electrode joint body and water electrolysis device
US9631105B2 (en) PPS electrode reinforcing material/crack mitigant
JP2006324094A (en) Forming method of polymer electrolyte fuel cell membrane and manufacturing method of membrane/electrode conjugate for polymer electrolyte fuel cell
WO2023277068A1 (en) Solid polymer-type water electrolysis membrane-electrode joint body and water electrolysis device
JP6105215B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
WO2024058172A1 (en) Solid polymer electrolyte membrane, membrane electrode assembly, membrane electrode assembly production method, and water electrolysis apparatus
US20140045093A1 (en) Imbibing PolyPhenyleneSulfide (PPS) and Sulfonated-PPS Fibers with Ionomer
WO2024058177A1 (en) Solid polymer electrolyte membrane, membrane electrode assembly, method for producing membrane electrode assembly, and water electrolysis device
JP2006164777A (en) Membrane-electrode conjugate for direct methanol fuel cell and its manufacturing method
WO2022050363A1 (en) Membrane electrode assembly, solid polymer electrolyte membrane, waer electrolysis system and electrolytic hydrogenation system
JP6198388B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892705

Country of ref document: EP

Kind code of ref document: A1