WO2023085008A1 - Chemical-mechanical polishing composition, production method therefor, and polishing method - Google Patents

Chemical-mechanical polishing composition, production method therefor, and polishing method Download PDF

Info

Publication number
WO2023085008A1
WO2023085008A1 PCT/JP2022/038748 JP2022038748W WO2023085008A1 WO 2023085008 A1 WO2023085008 A1 WO 2023085008A1 JP 2022038748 W JP2022038748 W JP 2022038748W WO 2023085008 A1 WO2023085008 A1 WO 2023085008A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical polishing
chemical mechanical
polishing composition
acid
iron
Prior art date
Application number
PCT/JP2022/038748
Other languages
French (fr)
Japanese (ja)
Inventor
昂輝 石牧
弥里 山口
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2023085008A1 publication Critical patent/WO2023085008A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the zeta potential of the abrasive grains (A) in the chemical mechanical polishing composition may be less than 0 mV.
  • the pH may be 1 or more and 6 or less.
  • Examples of monovalent cations represented by M + in general formula (1) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + . That is, the functional group represented by the general formula (1) can be rephrased as "at least one functional group selected from the group consisting of a sulfo group and a salt thereof".
  • the "salt of a sulfo group” means that the hydrogen ion contained in the sulfo group (--SO 3 H) is replaced with a monovalent cation such as Li + , Na + , K + , NH 4 + Refers to functional groups.
  • the component (A) having a functional group represented by the general formula (2) has a negative zeta potential in the chemical mechanical polishing composition, and the negative potential is preferably less than 0 mV, more preferably. is -10 mV or less, particularly preferably -15 mV or less.
  • the zeta potential of the component (A) is within the above range, the electrostatic repulsive force between the abrasive grains effectively prevents the particles from aggregating, and the semiconductor substrate including the molybdenum film and the silicon oxide film can be polished at a more stable polishing rate. can be polished with
  • the apparatus mentioned above can be used for a zeta-potential measuring apparatus.
  • the zeta potential of the component (A) having the functional group represented by the general formula (2) can be adjusted by appropriately increasing or decreasing the amount of the above-described carboxylic anhydride-containing silane coupling agent or the like added.
  • iron (III) ions are a strong oxidizing agent, even if iron (III) ions are slightly excessively contained in the composition, molybdenum is excessively oxidized and corroded, resulting in stable development of polishing properties. becomes difficult.
  • the chelating agent has a high coordinating ability to metals, and even if the composition contains a slight excess of the chelating agent, it excessively coordinates to the molybdenum surface and suppresses oxidation, which greatly increases the polishing rate. It becomes difficult to exhibit stable polishing characteristics such as lowering to
  • the chelating agent is not particularly limited as long as it is a compound capable of coordinating to iron (III) ion as a bidentate or higher ligand.
  • Chelating agents such as acids, (polyhydric) oxycarboxylic acids, (polyhydric) phosphonic acids, and salts thereof can be used.
  • Preferred examples of chelating agents include glycine, citric acid, tartaric acid, acetylacetone, dihydroxyethylglycine, glycoletherdiaminetetraacetic acid, dicarboxymethylglutamic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid.
  • 1,3-propanediaminetetraacetic acid 1,3-propanediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, hydroxyethyliminodiacetic acid; pyrophosphoric acid, 1-hydroxyethylidene-1,1-diphosphonic acid, nitrilotris (methylenephosphonic acid), 2-phosphonobutane-1,2,4-tricarboxylic acid, ethylenediaminetetra(methylenephosphonic acid); and salts thereof.
  • ethylenediaminetetraacetic acid is particularly preferred.
  • These chelating agents may be used alone or in combination of two or more.
  • the nitrate ion concentration in the chemical mechanical polishing composition according to this embodiment is preferably 200 ppm or less, more preferably 190 ppm or less, and particularly preferably 180 ppm or less. Even when the chemical mechanical polishing composition according to the present embodiment contains nitrate ions, a concentration of 0.005 ppm or more is permissible, and a concentration of 0.01 ppm or more is practically permissible. can do.
  • the molybdenum film can be oxidized to facilitate polishing, and excessive reaction between molybdenum and anionic species can be prevented, thereby reducing corrosion of the molybdenum film.
  • the content of component (B) is within the above range, the molybdenum film can be oxidized to facilitate polishing, and excessive reaction between molybdenum and anionic species can be prevented, thereby reducing corrosion of the molybdenum film.
  • the chemical mechanical polishing composition according to the present embodiment has at least one functional group selected from the group consisting of amino groups and salts thereof, and is selected from the group consisting of carboxy groups, sulfo groups, and salts thereof. It may contain a compound (C) having at least one functional group (also referred to herein as "component (C)").
  • Component (C) has the effect of reducing corrosion of the molybdenum film by adsorbing on the surface of the molybdenum film to form a protective film.
  • the hydrocarbon groups represented by R 1 and R 2 may be aliphatic hydrocarbon groups, aromatic hydrocarbon groups, araliphatic hydrocarbon groups or alicyclic hydrocarbon groups. Moreover, the aliphatic of the aliphatic hydrocarbon group and the araliphatic hydrocarbon group may be saturated or unsaturated, and may be linear or branched. These hydrocarbon groups include, for example, linear, branched or cyclic alkyl groups, alkenyl groups, aralkyl groups, and aryl groups.
  • the alkenyl group is preferably a lower alkenyl group having 1 to 6 carbon atoms, more preferably a lower alkenyl group having 1 to 4 carbon atoms.
  • alkenyl groups include vinyl groups, n-propenyl groups, iso-propenyl groups, n-butenyl groups, iso-butenyl groups, sec-butenyl groups, tert-butenyl groups and the like.
  • the carboxy group and its salt include functional groups represented by the following general formula (5). - COO - M + (5) (M + represents a monovalent cation.)
  • Examples of monovalent cations represented by M + in general formula (5) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + .
  • Examples of monovalent cations represented by M + in general formula (6) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + .
  • Component (C) contains at least one functional group selected from the group consisting of amino groups and salts thereof, and at least one functional group selected from the group consisting of carboxy groups, sulfo groups, and salts thereof. Although it is not particularly limited as long as it has a structure having, it is preferable to have a structure represented by the following general formula (7) or the following general formula (8). ⁇ N(R 3 COO ⁇ M + ) n (R 4 ) 2-n (7) -N(R 3 SO 3 - M + ) n (R 4 ) 2-n (8) (In formulas (7) and (8) above, R 3 represents a substituted or unsubstituted divalent hydrocarbon group. R 4 represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group. , M + represents a monovalent cation, and n represents an integer of 1 to 2.)
  • the divalent hydrocarbon group represented by R 3 includes an alkanediyl group having 1 to 3 carbon atoms.
  • the hydrocarbon group represented by R 4 includes the hydrocarbon groups exemplified for R 1 and R 2 in general formulas (3) and (4) above. Hydrocarbon groups similar to hydrogen groups are included.
  • the monovalent cation represented by M + is not limited to these, but examples include H + , Li + , Na + , K + , NH 4+ are included.
  • the component (C) has the structure represented by the above general formula (7) or the above general formula (8), the component (C) is effectively coordinated to the surface of the molybdenum film. Corrosion can be reduced more effectively.
  • Component (C) includes, for example, N-(phosphonomethyl)iminodiacetic acid, hydroxyethyliminodiacetic acid, nitrilotriacetic acid, N-(2-carboxyethyl)iminodiacetic acid, ethylenediaminetetraacetic acid, L-glutamic acid diacetic acid tetraacetic acid sodium, glycine-N,N-bis(methylenephosphonic acid), 3,3′,3′′-nitrilotripropionic acid, octyliminodipropionate, lauryliminodipropionate, myristyliminodipropionate, stearyl Iminodipropionate, Palmityliminodipropionate, Glycoletherdiaminetetraacetic acid, Hydroxyethylethylenediaminetriacetic acid, 1,3-propanediamine-N,N,N',N'-tetraacetic acid, Triethylenetetra
  • the content of component (C) in the chemical mechanical polishing composition according to the present embodiment is preferably 0.0005% by mass or more when the total mass of the chemical mechanical polishing composition is 100% by mass. , more preferably 0.0008% by mass or more, and particularly preferably 0.001% by mass or more.
  • the content of component (C) in the chemical mechanical polishing composition according to the present embodiment is preferably 5% by mass or less when the total mass of the chemical mechanical polishing composition is 100% by mass. It is preferably 1% by mass or less, and particularly preferably 0.1% by mass or less. When the content of component (C) is within the above range, corrosion of the molybdenum film may be effectively reduced.
  • the chemical mechanical polishing composition according to the present embodiment contains, in addition to the components described above, a liquid medium, a water-soluble polymer, a nitrogen-containing heterocyclic compound, a surfactant, an organic acid and the like, if necessary. Salts, inorganic acids and their salts, basic compounds and the like may be contained.
  • the chemical mechanical polishing composition according to this embodiment contains a liquid medium.
  • the liquid medium includes water, a mixed medium of water and alcohol, a mixed medium containing water and an organic solvent compatible with water, and the like. Among these, it is preferable to use water or a mixed medium of water and alcohol, and it is more preferable to use water. Pure water can be preferably used as a raw material of water.
  • the liquid medium may be blended as the balance of each component described above.
  • the chemical mechanical polishing composition according to this embodiment may contain a water-soluble polymer.
  • the water-soluble polymer may adsorb to the surface of the surface to be polished, reduce polishing friction, and reduce the occurrence of dishing on the surface to be polished.
  • water-soluble polymers include polycarboxylic acid, polystyrenesulfonic acid, polyacrylic acid, polymethacrylic acid, polyether, polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polyethyleneimine, polyallylamine, and hydroxyethylcellulose. . These can be used singly or in combination of two or more.
  • the weight average molecular weight (Mw) of the water-soluble polymer is preferably 10,000 or more and 1,500,000 or less, more preferably 40,000 or more and 1,200,000 or less.
  • weight average molecular weight refers to weight average molecular weight in terms of polyethylene glycol measured by GPC (gel permeation chromatography).
  • the content of the water-soluble polymer is preferably It is 0.001% by mass or more, more preferably 0.002% by mass or more.
  • the content of the water-soluble polymer is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, when the total mass of the chemical mechanical polishing composition is 100% by mass.
  • a nitrogen-containing heterocyclic compound is an organic compound containing at least one heterocyclic ring selected from five- and six-membered heterocyclic rings having at least one nitrogen atom.
  • Specific examples of the heterocyclic ring include five-membered heterocyclic rings such as pyrrole structure, imidazole structure and triazole structure; six-membered heterocyclic rings such as pyridine structure, pyrimidine structure, pyridazine structure and pyrazine structure.
  • the heterocycle may form a condensed ring.
  • nitrogen-containing heterocyclic compounds include aziridine, pyridine, pyrimidine, pyrrolidine, piperidine, pyrazine, triazine, pyrrole, imidazole, indole, quinoline, isoquinoline, benzoisoquinoline, purine, pteridine, triazole, triazolidine, benzotriazole, carboxy Benzotriazoles and derivatives having these skeletons are included. Among these, at least one selected from the group consisting of benzotriazole and triazole is preferred. These nitrogen-containing heterocyclic compounds may be used singly or in combination of two or more.
  • Nonionic surfactants include, for example, nonionic surfactants having a triple bond such as acetylene glycol, acetylene glycol ethylene oxide adducts, and acetylene alcohol; polyethylene glycol type surfactants and the like. These surfactants may be used singly or in combination of two or more.
  • the chemical mechanical polishing composition according to the present embodiment includes an organic acid and a salt thereof (excluding the component (C) and the water-soluble polymer having a carboxy group or a sulfo group). )”.) may contain at least one selected from the group consisting of The organic acid and its salt may improve the polishing rate of the molybdenum film due to the synergistic effect with the component (A).
  • the organic acid and its salt are preferably compounds having a carboxy group and compounds having a sulfo group.
  • compounds having a carboxy group include stearic acid, lauric acid, oleic acid, myristic acid, alkenylsuccinic acid, lactic acid, tartaric acid, fumaric acid, glycolic acid, phthalic acid, maleic acid, formic acid, acetic acid, oxalic acid, citric acid, acids, malic acid, malonic acid, glutaric acid, succinic acid, benzoic acid, quinolinic acid, quinaldic acid, amidosulfuric acid, propionic acid, trifluoroacetic acid; and salts thereof.
  • Examples of compounds having a sulfo group include alkylbenzenesulfonic acids such as dodecylbenzenesulfonic acid and p-toluenesulfonic acid; alkylnaphthalenesulfonic acids such as butylnaphthalenesulfonic acid; ⁇ -olefinsulfonic acids such as tetradecenesulfonic acid; These salts are mentioned. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the organic acid (salt) is It is preferably 0.001% by mass or more, more preferably 0.01% by mass or more.
  • the content of the organic acid (salt) is preferably 5% by mass or less, more preferably 1% by mass or less, when the total mass of the chemical mechanical polishing composition is 100% by mass.
  • the chemical mechanical polishing composition according to the present embodiment may contain at least one selected from the group consisting of inorganic acids and salts thereof (hereinafter also referred to as “inorganic acids (salts)”).
  • the inorganic acid is preferably at least one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and salts thereof.
  • the inorganic acid may form a salt with a separately added base in the chemical mechanical polishing composition.
  • Basic compounds include organic bases and inorganic bases.
  • Preferred organic bases are amines such as triethylamine, monoethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzylamine, methylamine, ethylenediamine, diglycolamine and isopropylamine. be done.
  • examples of inorganic bases include ammonia, potassium hydroxide, sodium hydroxide and the like. Among these basic compounds, ammonia and potassium hydroxide are preferred. These basic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the chemical mechanical polishing composition according to the present embodiment may contain hydrogen peroxide, but preferably does not contain hydrogen peroxide. Hydrogen peroxide excessively oxidizes molybdenum and promotes excessive corrosion (etching) of the molybdenum film, so that a good surface to be polished cannot be obtained in many cases.
  • the pH of the chemical mechanical polishing composition according to this embodiment is preferably 1 or higher, more preferably 1.5 or higher, and particularly preferably 2 or higher.
  • the pH of the chemical mechanical polishing composition according to this embodiment is preferably 6 or less, more preferably 5 or less, and particularly preferably 4 or less.
  • the pH of the chemical mechanical polishing composition can be adjusted, for example, by adding the aforementioned component (C), organic acid (salt), inorganic acid (salt), basic compound, or the like. One or more can be used.
  • pH refers to hydrogen ion exponent, and its value can be measured using a commercially available pH meter (for example, desktop pH meter manufactured by Horiba, Ltd.).
  • the method for producing the chemical mechanical polishing composition according to the present embodiment comprises the following components: Component (A), a chelate compound of iron (III) ions as component (B), and, if necessary, It includes a step of dissolving or dispersing component (C) and/or other components in a liquid medium such as water.
  • the method of dissolving or dispersing is not particularly limited, and any method may be applied as long as it can dissolve or disperse uniformly. Also, the mixing order and mixing method of the components described above are not particularly limited.
  • a chelate compound of iron (III) ions as component (B). That is, it is not preferred to add iron(III) ions and a chelating agent separately and allow them to react in the composition to form an iron(III) ion chelate compound in situ.
  • a chelate compound of iron (III) ions as a raw material, the iron (III) ions and the chelating agent can be present in the composition in approximately stoichiometric amounts, resulting in stable polishing. Can express characteristics.
  • the chemical mechanical polishing composition can also be prepared as a concentrated type stock solution and diluted with a liquid medium such as water at the time of use.
  • a polishing method includes a step of polishing a semiconductor substrate using the chemical mechanical polishing composition described above.
  • the chemical mechanical polishing composition can polish a semiconductor substrate including a molybdenum film and a silicon oxide film at a stable polishing rate while suppressing corrosion of the molybdenum film. Therefore, the semiconductor substrate, which is the object to be processed, preferably has a portion composed of at least one selected from the group consisting of molybdenum and molybdenum alloys.
  • FIG. 1 shows an example of an object to be processed 100 applied to the chemical mechanical polishing method according to the present embodiment.
  • a substrate 10 is prepared.
  • the substrate 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed thereon. Furthermore, functional devices such as transistors may be formed on the substrate 10 .
  • a silicon oxide film 12 which is an insulating film, is formed on the substrate 10 by CVD or thermal oxidation.
  • the silicon oxide film 12 is patterned. Using this as a mask, photolithography is applied to the silicon oxide film 12 to form a via hole 14 .
  • Barrier metal film 16 includes titanium and/or titanium nitride.
  • the molybdenum film 18 is formed by applying the CVD method.
  • the barrier metal film 16 and the molybdenum film 18 are polished using the aforementioned chemical mechanical polishing composition until the silicon oxide film 12 is exposed. is. Since the chemical mechanical polishing composition described above has an excellent polishing effect not only on the molybdenum film but also on the barrier metal film, the barrier metal film 16 and the molybdenum film 18 can be polished and removed in the same processing step. .
  • the second polishing step is a step of simultaneously polishing the barrier metal film 16, the molybdenum film 18 and the silicon oxide film 12 using the chemical mechanical polishing composition described above. be. Since the chemical mechanical polishing composition described above has non-selective polishing properties for molybdenum films and silicon oxide films, it is possible to obtain a finished surface with extremely excellent flatness in the second polishing treatment step.
  • the concentration of the component (B) contained in the chemical mechanical polishing composition used in the first polishing process is within the composition range described above. may be changed as appropriate and used.
  • concentration of the component (B) so that the ratio of the polishing rate of the silicon oxide film to the polishing rate of the molybdenum film is 1 or more, excessive polishing of the molybdenum film relative to the silicon oxide film can be sufficiently suppressed.
  • a semiconductor substrate including a molybdenum film and a silicon oxide film can be polished at a stable polishing rate.
  • the ratio of the polishing rate of the silicon oxide film to the polishing rate of the molybdenum film can be adjusted to be 1 or more.
  • FIG. 4 is a perspective view schematically showing the chemical mechanical polishing apparatus 200.
  • Slurry 44 is supplied from slurry supply nozzle 42, and carrier head 52 holding semiconductor substrate 50 is brought into contact while rotating turntable 48 on which polishing cloth 46 is adhered. 4 also shows the water supply nozzle 54 and the dresser 56. As shown in FIG.
  • the polishing load of the carrier head 52 can be selected within the range of 10-980 hPa, preferably 30-490 hPa. Also, the rotation speed of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, preferably 30 to 150 rpm. The flow rate of the slurry 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10-1,000 mL/min, preferably 50-400 mL/min.
  • Examples of commercially available chemical mechanical polishing apparatuses include models “EPO-112” and “EPO-222” manufactured by Ebara Corporation; models “LGP-510” and “LGP-552” manufactured by Lapmaster SFT; Models “Mirra” and “Reflexion” manufactured by Material Co., Ltd. may be mentioned.
  • the water dispersion A was photographed at a magnification of 30,000 times using a transmission electron microscope (TEM) (manufactured by Hitachi High-Tech Co., Ltd., model "H-7650"). The distance of the longest straight line among the straight lines connecting the ends of the particle images was measured, and the average value of the values was calculated as the average primary particle size.
  • the average primary particle size of the silica particles contained in the aqueous dispersion A calculated in this manner was 15.8 nm.
  • the average primary particle size, average secondary particle size and degree of association of silica particles contained in each aqueous dispersion were measured and calculated in the same manner.
  • Aqueous Dispersion B 2520 g of Aqueous Dispersion A (15.5% colloidal silica dispersion) was heated to 60°C. After that, 15.5 g of (3-triethoxysilyl) propylsuccinic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 60°C for 4 hours. An aqueous dispersion B containing modified silica particles was obtained.
  • Palmityliminodipropionate Salt Other than using 4.7 g (19.5 mmol) of palmitylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) as the alkylamine, the above "3.2.1. Octyliminodipropionic acid Preparation of salt” to obtain palmityliminodipropionate.
  • Tables 1 to 3 show the composition of the chemical mechanical polishing composition used in each example and each comparative example and each evaluation result.
  • component (C) - Lauryliminodipropionate: Above “3.2.
  • Component (C) Lauryliminodipropionate/myristyliminodipropionate prepared in the section "Preparation of”: Myristyliminodipropionate/palmitylimino prepared in the above section "3.2.
  • Preparation of component (C)" above Preparation of component (C) above Stearyliminodipropionate and dodecylaminoethylaminoethylglycine prepared in the section ": manufactured by Sanyo Chemical Industries, Ltd., trade name “Lebon S” ⁇ Lauramidopropyl hydroxysultaine: Kawaken Fine Chemicals Co., Ltd., trade name “Softazolin LSB-R” - Lauryl hydroxysulfobetaine: manufactured by Kao Corporation, trade name “Amphitol 20HD” ⁇ Other additives> ⁇ Dodecylbenzenesulfonate ammonium salt: manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name “ammonium dodecylbenzenesulfonate” ⁇ Hydrogen peroxide: manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name “hydrogen peroxide” ⁇ Orthoperiodic acid:
  • the molybdenum film was oxidized to polish both the molybdenum film and the silicon oxide film at a stable polishing rate. It can be seen that polishing can be performed, excessive reaction between molybdenum and anion species can be prevented, and corrosion of the molybdenum film can be reduced.
  • the present invention is not limited to the above-described embodiments, and various modifications are possible.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same function, method, and result, or configurations that have the same purpose and effect).
  • the present invention includes configurations in which non-essential portions of the configurations described in the embodiments are replaced.
  • the present invention includes a configuration that achieves the same effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the present invention includes configurations obtained by adding known techniques to the configurations described in the embodiments.
  • SYMBOLS 10 Substrate, 12... Silicon oxide film, 14... Wiring groove, 16... Barrier metal film, 18... Molybdenum film, 42... Slurry supply nozzle, 44... Slurry (chemical mechanical polishing composition), 46... Polishing pad , 48... Turntable, 50... Semiconductor substrate, 52... Carrier head, 54... Water supply nozzle, 56... Dresser, 100... Object to be processed, 200... Polishing apparatus

Abstract

The present invention provides a chemical-mechanical polishing composition with which it is possible to polish a molybdenum film and a silicon dioxide film at a stable polishing rate, and suppress corrosion of the molybdenum film. A chemical-mechanical polishing composition according to the present invention contains abrasive grains (A) and an iron(III) compound (B), wherein the iron(III) compound (B) is a chelate compound.

Description

化学機械研磨用組成物およびその製造方法、ならびに研磨方法Chemical mechanical polishing composition, production method thereof, and polishing method
 本発明は、化学機械研磨用組成物およびその製造方法、ならびにそれを用いた研磨方法に関する。 The present invention relates to a chemical mechanical polishing composition, a method for producing the same, and a polishing method using the same.
 半導体集積回路の製造技術の向上に伴い、半導体素子の高集積化、高速動作が求められている。これに伴い、半導体素子における微細回路の製造工程において要求される半導体基板表面の平坦性はより厳しくなってきており、化学機械研磨(Chemical Mechanical Polishing:CMP)が半導体素子の製造工程に不可欠な技術となっている。 With the improvement of semiconductor integrated circuit manufacturing technology, there is a demand for high integration and high-speed operation of semiconductor elements. Along with this, the flatness of the semiconductor substrate surface required in the manufacturing process of fine circuits in semiconductor devices is becoming more stringent, and chemical mechanical polishing (CMP) is an indispensable technology in the manufacturing process of semiconductor devices. It has become.
 CMPを経て製造される半導体基板の、配線間を上下縦方向に電気的に接合するヴィアホールには、埋め込み性に優れたタングステンが多用されている。タングステン膜を研磨するために使用される化学機械研磨用組成物としては、過酸化水素等の酸化剤、硝酸鉄等の鉄触媒、およびシリカ等の砥粒を含有する研磨用組成物が提案されている(例えば、特許文献1参照)。さらに、近年、タングステンに比べて硬度が低く加工しやすいことから、タングステンに代わりモリブデンも使用されており、モリブデン膜を研磨するために使用される化学機械研磨用組成物が検討されている(例えば、特許文献2参照)。  Tungsten, which has excellent embedding properties, is often used in via holes that electrically connect wiring in the vertical direction of semiconductor substrates manufactured through CMP. As a chemical mechanical polishing composition used for polishing a tungsten film, a polishing composition containing an oxidizing agent such as hydrogen peroxide, an iron catalyst such as iron nitrate, and abrasive grains such as silica has been proposed. (See, for example, Patent Document 1). Furthermore, in recent years, molybdenum has been used in place of tungsten because of its lower hardness and easier processing than tungsten, and chemical mechanical polishing compositions used for polishing molybdenum films have been investigated (for example, , see Patent Document 2).
特表2008-503875号公報Japanese Patent Publication No. 2008-503875 国際公開第2013/188296号公報International Publication No. 2013/188296
 モリブデンが使用されたヴィアホールを形成するためのCMPにおいては、埋め込まれたモリブデン膜とその周囲にあるシリコン酸化膜とを同一工程で研磨して平坦化する必要がある。これを実現するために、モリブデン膜およびシリコン酸化膜を安定した研磨速度で研磨できる化学機械研磨用組成物が要求されている。また、モリブデンはタングステンに比べて硬度が低いために、CMPにおいて腐食がより発生しやすいという課題があった。 In CMP for forming via holes using molybdenum, it is necessary to polish and planarize the embedded molybdenum film and the surrounding silicon oxide film in the same process. In order to achieve this, there is a need for a chemical mechanical polishing composition capable of polishing molybdenum films and silicon oxide films at a stable polishing rate. In addition, since molybdenum has a lower hardness than tungsten, there is a problem that corrosion is more likely to occur in CMP.
 本発明に係る幾つかの態様は、モリブデン膜およびシリコン酸化膜を安定した研磨速度で研磨でき、かつ、モリブデン膜の腐食の発生を抑制することができる化学機械研磨用組成物を提供するものである。 Some aspects of the present invention provide a chemical mechanical polishing composition capable of polishing a molybdenum film and a silicon oxide film at a stable polishing rate and suppressing corrosion of the molybdenum film. be.
 本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下のいずれかの態様として実現することができる。 The present invention has been made to solve at least part of the above-mentioned problems, and can be implemented as any of the following aspects.
 本発明に係る化学機械研磨用組成物の一態様は、
 砥粒(A)と、鉄(III)化合物(B)と、を含有し、
 前記鉄(III)化合物(B)がキレート化合物である。
One aspect of the chemical mechanical polishing composition according to the present invention is
containing abrasive grains (A) and an iron (III) compound (B),
The iron (III) compound (B) is a chelate compound.
 前記化学機械研磨用組成物の一態様において、
 アミノ基およびその塩からなる群より選択される少なくとも1種の官能基と、カルボキシ基、スルホ基、およびそれらの塩からなる群より選択される少なくとも1種の官能基と、を有する化合物(C)をさらに含有してもよい。
In one aspect of the chemical mechanical polishing composition,
A compound (C ) may be further contained.
 前記化学機械研磨用組成物のいずれかの態様において、
 化学機械研磨用組成物中における前記砥粒(A)の平均二次粒子径が5nm以上100nm以下であってもよい。
In any aspect of the chemical mechanical polishing composition,
The average secondary particle size of the abrasive grains (A) in the chemical mechanical polishing composition may be 5 nm or more and 100 nm or less.
 前記化学機械研磨用組成物のいずれかの態様において、
 化学機械研磨用組成物中における前記砥粒(A)の会合度が1.0以上2.0以下であってもよい。
In any aspect of the chemical mechanical polishing composition,
The association degree of the abrasive grains (A) in the chemical mechanical polishing composition may be 1.0 or more and 2.0 or less.
 前記化学機械研磨用組成物のいずれかの態様において、
 化学機械研磨用組成物中における前記砥粒(A)のゼータ電位が0mV未満であってもよい。
In any aspect of the chemical mechanical polishing composition,
The zeta potential of the abrasive grains (A) in the chemical mechanical polishing composition may be less than 0 mV.
 前記化学機械研磨用組成物のいずれかの態様において、
 前記砥粒(A)が、下記一般式(1)で表される官能基および下記一般式(2)で表される官能基のうち少なくとも1種の官能基を有してもよい。
 -SO  ・・・・・(1)
 -COO ・・・・・(2)
(上記式(1)および(2)中、Mは1価の陽イオンを表す。)
In any aspect of the chemical mechanical polishing composition,
The abrasive grain (A) may have at least one functional group among the functional group represented by the following general formula (1) and the functional group represented by the following general formula (2).
- SO 3 - M + (1)
- COO - M + (2)
(In formulas (1) and (2) above, M + represents a monovalent cation.)
 前記化学機械研磨用組成物のいずれかの態様において、
 pHが1以上6以下であってもよい。
In any aspect of the chemical mechanical polishing composition,
The pH may be 1 or more and 6 or less.
 本発明に係る研磨方法の一態様は、
 前記いずれかの態様の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む。
One aspect of the polishing method according to the present invention is
A step of polishing a semiconductor substrate using the chemical mechanical polishing composition according to any one of the above aspects.
 前記研磨方法の一態様において、
 前記半導体基板が、モリブデンおよびモリブデン合金からなる群より選択される少なくとも1種により構成される部位を備えていてもよい。
In one aspect of the polishing method,
The semiconductor substrate may have a portion composed of at least one selected from the group consisting of molybdenum and molybdenum alloys.
 本発明に係る化学機械研磨用組成物の一態様は、
 砥粒(A)と、鉄(III)化合物(B)と、を液状媒体に溶解または分散させる工程を含み、
 前記鉄(III)化合物(B)がキレート化合物である。
One aspect of the chemical mechanical polishing composition according to the present invention is
Dissolving or dispersing abrasive grains (A) and iron (III) compound (B) in a liquid medium,
The iron (III) compound (B) is a chelate compound.
 本発明に係る化学機械研磨用組成物を用いることで、モリブデン膜の腐食の発生を抑制しつつ、モリブデン膜およびシリコン酸化膜を含む半導体基板を安定した研磨速度で研磨することができる。 By using the chemical mechanical polishing composition according to the present invention, it is possible to polish a semiconductor substrate including a molybdenum film and a silicon oxide film at a stable polishing rate while suppressing corrosion of the molybdenum film.
図1は、本実施形態に係る研磨工程での使用に適した被処理体を模式的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing an object to be processed suitable for use in the polishing process according to this embodiment. 図2は、第1研磨工程終了時での被処理体を模式的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing the object to be processed at the end of the first polishing step. 図3は、第2研磨工程終了時での被処理体を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing the object to be processed at the end of the second polishing step. 図4は、化学機械研磨装置を模式的に示した斜視図である。FIG. 4 is a perspective view schematically showing a chemical mechanical polishing apparatus.
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含む。 A preferred embodiment of the present invention will be described in detail below. In addition, the present invention is not limited to the following embodiments, and includes various modifications implemented without changing the gist of the present invention.
 本明細書において、「X~Y」のように記載された数値範囲は、数値Xを下限値として含み、かつ、数値Yを上限値として含むものとして解釈される。 In this specification, the numerical range described as "X to Y" is interpreted as including the numerical value X as the lower limit and the numerical value Y as the upper limit.
 1.化学機械研磨用組成物
 本発明の一実施形態に係る化学機械研磨用組成物は、砥粒(A)(本明細書において、「成分(A)」ともいう)と、鉄(III)化合物(B)(本明細書において、「成分(B)」ともいう)と、を含有し、前記鉄(III)化合物(B)がキレート化合物である。
1. Chemical mechanical polishing composition The chemical mechanical polishing composition according to one embodiment of the present invention comprises abrasive grains (A) (also referred to herein as “component (A)”) and an iron (III) compound ( B) (herein also referred to as “component (B)”), wherein the iron (III) compound (B) is a chelate compound.
 以下、本実施形態に係る化学機械研磨用組成物に含まれる各成分について詳細に説明する。 Each component contained in the chemical mechanical polishing composition according to the present embodiment will be described in detail below.
 1.1.成分(A)
 本実施形態に係る化学機械研磨用組成物は、砥粒(A)を含有する。成分(A)は、無機粒子または有機粒子のいずれであってもよいが、無機粒子が好ましい。無機粒子としては、シリカ、セリア、アルミナ、ジルコニア、チタニア等の無機酸化物粒子が挙げられるが、これらの中でもシリカ粒子が好ましい。シリカ粒子としては、ヒュームドシリカ、コロイダルシリカ等が挙げられるが、コロイダルシリカが好ましい。
1.1. Component (A)
The chemical mechanical polishing composition according to this embodiment contains abrasive grains (A). Component (A) may be either inorganic or organic particles, but inorganic particles are preferred. Examples of inorganic particles include inorganic oxide particles such as silica, ceria, alumina, zirconia, and titania. Among these, silica particles are preferred. Examples of silica particles include fumed silica and colloidal silica, with colloidal silica being preferred.
 成分(A)の形状は、特に限定されず、球状であっても、繭状であっても、連鎖球状であっても、表面に複数の突起を有してもよい。表面に複数の突起を有する砥粒は、例えば特開2007-153732号公報や特開2013-121631号公報に記載された方法を適用して製造することができる。 The shape of component (A) is not particularly limited, and may be spherical, cocoon-shaped, chain-spherical, or have a plurality of projections on the surface. Abrasive grains having a plurality of projections on their surfaces can be produced by applying the methods described in, for example, Japanese Patent Application Laid-Open No. 2007-153732 and Japanese Patent Application Laid-Open No. 2013-121631.
 成分(A)のゼータ電位は、化学機械研磨用組成物中において、好ましくは負のゼータ電位である0mV未満であり、より好ましくは-10mV以下であり、特に好ましくは-15mV以下である。成分(A)のゼータ電位が前記範囲にあると、砥粒間の静電反発力によって効果的に粒子同士の凝集を防ぐことができるので、化学機械研磨用組成物の貯蔵安定性が向上すると共に、モリブデン膜およびシリコン酸化膜を含む半導体基板をより安定した研磨速度で研磨することができる。なお、ゼータ電位測定装置としては、大塚電子株式会社製の「ELSZ-2000ZS」、Malvern社製の「Zetasizer Ultra」、Dispersion Technology Inc.製の「DT300」等が挙げられる。 The zeta potential of component (A) in the chemical mechanical polishing composition is preferably less than 0 mV, which is a negative zeta potential, more preferably -10 mV or less, and particularly preferably -15 mV or less. When the zeta potential of the component (A) is within the above range, the electrostatic repulsive force between the abrasive grains can effectively prevent the particles from aggregating with each other, thereby improving the storage stability of the chemical mechanical polishing composition. At the same time, a semiconductor substrate including a molybdenum film and a silicon oxide film can be polished at a more stable polishing rate. In addition, as the zeta potential measuring device, "ELSZ-2000ZS" manufactured by Otsuka Electronics Co., Ltd., "Zetasizer Ultra" manufactured by Malvern, Dispersion Technology Inc. and "DT300" manufactured by K.K.
 成分(A)は、その表面の少なくとも一部が下記一般式(1)で表される官能基および下記一般式(2)で表される官能基(以下、「特定官能基」ともいう)のうち少なくとも1種の官能基を有してもよい。
 -SO  ・・・・・(1)
 -COO ・・・・・(2)
(上記式(1)および(2)中、Mは1価の陽イオンを表す。)
At least part of the surface of component (A) is a functional group represented by the following general formula (1) and a functional group represented by the following general formula (2) (hereinafter also referred to as "specific functional group"). At least one of them may have a functional group.
- SO 3 - M + (1)
- COO - M + (2)
(In formulas (1) and (2) above, M + represents a monovalent cation.)
 表面の少なくとも一部が特定官能基によって修飾された砥粒は、特定官能基によって表面修飾されていない砥粒に比べてゼータ電位の絶対値が大きくなり、砥粒同士の静電反発力が増大する。その結果、化学機械研磨用組成物中における砥粒の分散性が向上するため、研磨傷やディッシングの発生を低減しながら、モリブデン膜およびシリコン酸化膜を含む半導体基板をより安定した研磨速度で研磨することができる場合がある。 Abrasive grains having at least a portion of the surface modified with specific functional groups have a larger absolute value of zeta potential than abrasive grains not surface-modified with specific functional groups, and the electrostatic repulsion between abrasive grains increases. do. As a result, the dispersibility of abrasive grains in the chemical mechanical polishing composition is improved, so that semiconductor substrates containing molybdenum films and silicon oxide films can be polished at a more stable polishing rate while reducing the occurrence of polishing scratches and dishing. sometimes you can.
 上記一般式(1)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。すなわち、上記一般式(1)で表される官能基は、「スルホ基およびその塩からなる群より選択される少なくとも1種の官能基」と言い換えることもできる。ここで、「スルホ基の塩」とは、スルホ基(-SOH)に含まれている水素イオンをLi、Na、K、NH 等の1価の陽イオンで置換した官能基のことをいう。上記一般式(1)で表される官能基を有する成分(A)は、その表面に上記一般式(1)で表される官能基が共有結合を介して固定された砥粒であり、その表面に上記一般式(1)で表される官能基を有する化合物が物理的あるいはイオン的に吸着したような砥粒は含まれない。 Examples of monovalent cations represented by M + in general formula (1) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + . That is, the functional group represented by the general formula (1) can be rephrased as "at least one functional group selected from the group consisting of a sulfo group and a salt thereof". Here, the "salt of a sulfo group" means that the hydrogen ion contained in the sulfo group (--SO 3 H) is replaced with a monovalent cation such as Li + , Na + , K + , NH 4 + Refers to functional groups. Component (A) having a functional group represented by the general formula (1) is an abrasive grain having a functional group represented by the general formula (1) fixed to its surface via a covalent bond. Abrasive grains to which a compound having a functional group represented by the general formula (1) is physically or ionically adsorbed on the surface are not included.
 上記一般式(1)で表される官能基を有する成分(A)は、以下のようにして製造することができる。まず、公知の方法により作成されたシリカと、メルカプト基含有シランカップリング剤を酸性媒体中で十分に攪拌することにより、シリカの表面にメルカプト基含有シランカップリング剤を共有結合させる。ここで、メルカプト基含有シランカップリング剤としては、例えば、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。次に、過酸化水素を更に適量添加して十分に放置することにより、上記一般式(1)で表される官能基を有する成分(A)を得ることができる。 The component (A) having the functional group represented by the above general formula (1) can be produced as follows. First, silica prepared by a known method and a mercapto group-containing silane coupling agent are sufficiently stirred in an acidic medium to covalently bond the mercapto group-containing silane coupling agent to the surface of the silica. Examples of mercapto group-containing silane coupling agents include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane. Next, by further adding an appropriate amount of hydrogen peroxide and allowing to stand sufficiently, the component (A) having the functional group represented by the general formula (1) can be obtained.
 上記一般式(1)で表される官能基を有する成分(A)のゼータ電位は、化学機械研磨用組成物中において負電位であり、その負電位は、好ましくは0mV未満であり、より好ましくは-10mV以下であり、特に好ましくは-15mV以下である。成分(A)のゼータ電位が前記範囲にあると、砥粒間の静電反発力によって効果的に粒子同士の凝集を防ぐと共に、モリブデン膜およびシリコン酸化膜を含む半導体基板をより安定した研磨速度で研磨できる場合がある。なお、ゼータ電位測定装置は、上述した装置を使用することができる。上記一般式(1)で表される官能基を有する成分(A)のゼータ電位は、上述したメルカプト基含有シランカップリング剤等の添加量を適宜増減することにより調整することができる。 The component (A) having a functional group represented by the general formula (1) has a negative zeta potential in the chemical mechanical polishing composition, and the negative potential is preferably less than 0 mV, more preferably. is -10 mV or less, particularly preferably -15 mV or less. When the zeta potential of the component (A) is within the above range, the electrostatic repulsive force between the abrasive grains effectively prevents the particles from aggregating, and the semiconductor substrate including the molybdenum film and the silicon oxide film can be polished at a more stable polishing rate. can be polished with In addition, the apparatus mentioned above can be used for a zeta-potential measuring apparatus. The zeta potential of component (A) having a functional group represented by general formula (1) can be adjusted by appropriately increasing or decreasing the amount of the mercapto group-containing silane coupling agent or the like added.
 上記一般式(2)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。すなわち、上記一般式(2)で表される官能基は、「カルボキシ基およびその塩からなる群より選択される少なくとも1種の官能基」と言い換えることもできる。ここで、「カルボキシ基の塩」とは、カルボキシ基(-COOH)に含まれている水素イオンをLi、Na、K、NH 等の1価の陽イオンで置換した官能基のことをいう。上記一般式(2)で表される官能基を有する成分(A)は、その表面に上記一般式(2)で表される官能基が共有結合を介して固定された砥粒であり、その表面に上記一般式(2)で表される官能基を有する化合物が物理的あるいはイオン的に吸着したような砥粒は含まれない。 Examples of monovalent cations represented by M + in general formula (2) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + . That is, the functional group represented by the above general formula (2) can also be rephrased as "at least one functional group selected from the group consisting of a carboxy group and a salt thereof". Here, the term "salt of carboxy group" refers to a functional group obtained by substituting a monovalent cation such as Li + , Na + , K + , NH 4 + for the hydrogen ion contained in the carboxy group (-COOH). That's what I mean. The component (A) having the functional group represented by the general formula (2) is an abrasive grain having the functional group represented by the general formula (2) fixed to its surface via a covalent bond. Abrasive grains to which a compound having a functional group represented by the general formula (2) is physically or ionically adsorbed on the surface are not included.
 上記一般式(2)で表される官能基を有する成分(A)は、以下のようにして製造することができる。まず、公知の方法により作成されたシリカと、カルボン酸無水物含有シランカップリング剤とを塩基性媒体中で十分に攪拌し、砥粒の表面にカルボン酸無水物含有シランカップリング剤を共有結合させることにより、上記一般式(2)で表される官能基を有する砥粒を得ることができる。ここで、カルボン酸無水物含有シランカップリング剤としては、例えば、3-(トリエトキシシリル)プロピルコハク酸無水物等が挙げられる。 The component (A) having the functional group represented by the general formula (2) can be produced as follows. First, silica prepared by a known method and a carboxylic anhydride-containing silane coupling agent are sufficiently stirred in a basic medium to covalently bond the carboxylic anhydride-containing silane coupling agent to the surface of the abrasive grains. Abrasive grains having a functional group represented by the above general formula (2) can be obtained by allowing the Examples of the carboxylic anhydride-containing silane coupling agent include 3-(triethoxysilyl)propylsuccinic anhydride.
 上記一般式(2)で表される官能基を有する成分(A)のゼータ電位は、化学機械研磨用組成物中において負電位であり、その負電位は、好ましくは0mV未満であり、より好ましくは-10mV以下であり、特に好ましくは-15mV以下である。成分(A)のゼータ電位が前記範囲にあると、砥粒間の静電反発力によって効果的に粒子同士の凝集を防ぐと共に、モリブデン膜およびシリコン酸化膜を含む半導体基板をより安定した研磨速度で研磨できる場合がある。なお、ゼータ電位測定装置は、上述した装置を使用することができる。上記一般式(2)で表される官能基を有する成分(A)のゼータ電位は、上述したカルボン酸無水物含有シランカップリング剤等の添加量を適宜増減することにより調整することができる。 The component (A) having a functional group represented by the general formula (2) has a negative zeta potential in the chemical mechanical polishing composition, and the negative potential is preferably less than 0 mV, more preferably. is -10 mV or less, particularly preferably -15 mV or less. When the zeta potential of the component (A) is within the above range, the electrostatic repulsive force between the abrasive grains effectively prevents the particles from aggregating, and the semiconductor substrate including the molybdenum film and the silicon oxide film can be polished at a more stable polishing rate. can be polished with In addition, the apparatus mentioned above can be used for a zeta-potential measuring apparatus. The zeta potential of the component (A) having the functional group represented by the general formula (2) can be adjusted by appropriately increasing or decreasing the amount of the above-described carboxylic anhydride-containing silane coupling agent or the like added.
 化学機械研磨用組成物中における成分(A)の平均二次粒子径は、好ましくは5nm以上であり、より好ましくは7nm以上であり、特に好ましくは10nm以上である。化学機械研磨用組成物中における成分(A)の平均二次粒子径は、好ましくは100nm以下であり、より好ましくは70nm以下であり、特に好ましくは60nm以下である。成分(A)の平均二次粒子径が前記範囲にあると、小粒径のため機械的な研磨性能は低下するが、表面自由エネルギーが増大することでモリブデンや酸化シリコンとの反応性が向上するため、モリブデン膜およびシリコン酸化膜を含む半導体基板をより安定した研磨速度で研磨できると共に、粒子の沈降・分離を生ずることのない安定性に優れた化学機械研磨用組成物が得られる。なお、化学機械研磨用組成物中における成分(A)の平均二次粒子径は、動的光散乱法を使用して測定する粒度分布測定装置により測定された体積基準の平均粒子径である。このような粒度分布測定装置としては、例えばMalvern社製、型式「Zetasizer Ultra」が挙げられる。 The average secondary particle size of component (A) in the chemical mechanical polishing composition is preferably 5 nm or more, more preferably 7 nm or more, and particularly preferably 10 nm or more. The average secondary particle size of component (A) in the chemical mechanical polishing composition is preferably 100 nm or less, more preferably 70 nm or less, and particularly preferably 60 nm or less. When the average secondary particle size of the component (A) is within the above range, the small particle size reduces the mechanical polishing performance, but the surface free energy increases, thereby improving the reactivity with molybdenum and silicon oxide. Therefore, it is possible to polish a semiconductor substrate containing a molybdenum film and a silicon oxide film at a more stable polishing rate, and obtain a highly stable chemical mechanical polishing composition that does not cause sedimentation and separation of particles. The average secondary particle size of the component (A) in the chemical mechanical polishing composition is the volume-based average particle size measured with a particle size distribution analyzer using a dynamic light scattering method. Examples of such a particle size distribution analyzer include model "Zetasizer Ultra" manufactured by Malvern.
 化学機械研磨用組成物中における成分(A)の平均一次粒子径は、好ましくは5nm以上であり、より好ましくは7nm以上であり、特に好ましくは10nm以上である。化学機械研磨用組成物中における成分(A)の平均一次粒子径は、好ましくは100nm以下であり、より好ましくは70nm以下であり、特に好ましくは60nm以下である。なお、化学機械研磨用組成物中における成分(A)の平均一次粒子径は、透過型電子顕微鏡観察により成分(A)の50個の粒子径の平均値を求めることにより算出することができる。 The average primary particle size of component (A) in the chemical mechanical polishing composition is preferably 5 nm or more, more preferably 7 nm or more, and particularly preferably 10 nm or more. The average primary particle size of component (A) in the chemical mechanical polishing composition is preferably 100 nm or less, more preferably 70 nm or less, and particularly preferably 60 nm or less. The average primary particle size of component (A) in the chemical mechanical polishing composition can be calculated by obtaining the average value of 50 particle sizes of component (A) by transmission electron microscope observation.
 上述のようにして測定された平均二次粒子径と平均一次粒子径より、以下の算出式を用いて成分(A)の化学機械研磨用組成物中における凝集度合いを示す指標である会合度を算出することができる。
 会合度=(平均二次粒子径(nm))/(平均一次粒子径(nm))
From the average secondary particle size and average primary particle size measured as described above, the degree of association, which is an indicator of the degree of aggregation of component (A) in the chemical mechanical polishing composition, is calculated using the following formula. can be calculated.
Degree of association = (average secondary particle size (nm)) / (average primary particle size (nm))
 化学機械研磨用組成物中における成分(A)の会合度は、好ましくは1.0以上であり、より好ましくは1.01以上である。化学機械研磨用組成物中における成分(A)の会合度は、好ましくは2.0以下であり、より好ましくは1.7以下であり、特に好ましくは1.6以下である。成分(A)の会合度が前記範囲にあると、化学機械研磨用組成物中において成分(A)の凝集が抑制され分散しており、粒子の表面自由エネルギーが増大することでモリブデンや酸化シリコンとの反応性が向上するため、モリブデン膜およびシリコン酸化膜を含む半導体基板をより安定した研磨速度で研磨できる場合がある。 The association degree of component (A) in the chemical mechanical polishing composition is preferably 1.0 or more, more preferably 1.01 or more. The association degree of component (A) in the chemical mechanical polishing composition is preferably 2.0 or less, more preferably 1.7 or less, and particularly preferably 1.6 or less. When the degree of association of the component (A) is within the above range, the aggregation of the component (A) is suppressed and dispersed in the chemical mechanical polishing composition, and the surface free energy of the particles increases to molybdenum or silicon oxide. Since the reactivity with is improved, it may be possible to polish a semiconductor substrate including a molybdenum film and a silicon oxide film at a more stable polishing rate.
 本実施形態に係る化学機械研磨用組成物中の成分(A)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1質量%以上であり、より好ましくは0.3質量%以上であり、特に好ましくは0.5質量%以上である。本実施形態に係る化学機械研磨用組成物中の成分(A)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは10質量%以下であり、より好ましくは8質量%以下であり、特に好ましくは6質量%以下である。成分(A)の含有量が前記範囲であると、モリブデン膜およびシリコン酸化膜を含む半導体基板を安定した研磨速度で研磨できると共に、化学機械研磨用組成物の保存安定性が良好となる場合がある。 The content of component (A) in the chemical mechanical polishing composition according to the present embodiment is preferably 0.1% by mass or more when the total mass of the chemical mechanical polishing composition is 100% by mass. , more preferably 0.3% by mass or more, and particularly preferably 0.5% by mass or more. The content of component (A) in the chemical mechanical polishing composition according to the present embodiment is preferably 10% by mass or less when the total mass of the chemical mechanical polishing composition is 100% by mass. It is preferably 8% by mass or less, and particularly preferably 6% by mass or less. When the content of component (A) is within the above range, a semiconductor substrate containing a molybdenum film and a silicon oxide film can be polished at a stable polishing rate, and the storage stability of the chemical mechanical polishing composition may be improved. be.
 1.2.成分(B)
 本実施形態に係る化学機械研磨用組成物は、鉄(III)化合物(B)を含有する。本発明においては、鉄(III)化合物(B)はキレート化合物であり、具体的には鉄(III)イオンのキレート化合物である。成分(B)は、モリブデン膜の表面を酸化して脆弱な改質層を作り出し、モリブデン膜の研磨を促進する作用を有する。
1.2. Component (B)
The chemical mechanical polishing composition according to this embodiment contains an iron (III) compound (B). In the present invention, the iron (III) compound (B) is a chelate compound, specifically a chelate compound of iron (III) ions. Component (B) has the action of oxidizing the surface of the molybdenum film to create a fragile modified layer and promoting polishing of the molybdenum film.
 鉄(III)イオンのキレート化合物は、鉄(III)イオンとキレート剤とを反応させることで作成することができる。本実施形態に係る化学機械研磨用組成物を調製する際には、成分(B)として鉄(III)イオンのキレート化合物を添加することが必要である。原料として鉄(III)イオンのキレート化合物を使用することにより、鉄(III)イオンとキレート剤とがほぼ化学当量的に組成物中に存在することができるので、安定した研磨特性を発現することができる。一方、鉄(III)イオンとキレート剤とを別個に添加して、それらを組成物中で反応させることによってin situで鉄(III)イオンのキレート化合物を生成させることもできるが、この場合、鉄(III)イオンとキレート剤とをほぼ等量添加したとしても化学量論的厳密さで秤量することはできない。その結果、原料として鉄(III)イオンのキレート化合物を使用する場合と比較して、過剰な鉄(III)イオンまたは過剰なキレート剤が組成物中で遊離した状態となってしまう。鉄(III)イオンは強力な酸化剤であるので、組成物中に鉄(III)イオンが少し過剰に含まれていたとしても、モリブデンを過剰に酸化・腐食するため、安定した研磨特性の発現が困難となる。一方、キレート剤は金属への配位能力が高く、組成物中にキレート剤が少し過剰に含まれていたとしても、モリブデン表面に過剰に配位して酸化を抑制するため、研磨速度を大幅に低下させるなど安定した研磨特性の発現が困難となる。 A chelate compound of iron (III) ions can be created by reacting iron (III) ions with a chelating agent. When preparing the chemical mechanical polishing composition according to the present embodiment, it is necessary to add a chelate compound of iron (III) ions as component (B). By using a chelate compound of iron (III) ions as a raw material, iron (III) ions and the chelating agent can be present in the composition in substantially chemical equivalents, so that stable polishing properties can be exhibited. can be done. Alternatively, the iron (III) ion and chelating agent can be added separately and allowed to react in the composition to form an iron (III) ion chelate compound in situ, in which case Even if iron (III) ions and chelating agents are added in approximately equal amounts, they cannot be weighed with stoichiometric precision. As a result, excessive iron (III) ions or excessive chelating agents are liberated in the composition, compared to the case where a chelate compound of iron (III) ions is used as a raw material. Since iron (III) ions are a strong oxidizing agent, even if iron (III) ions are slightly excessively contained in the composition, molybdenum is excessively oxidized and corroded, resulting in stable development of polishing properties. becomes difficult. On the other hand, the chelating agent has a high coordinating ability to metals, and even if the composition contains a slight excess of the chelating agent, it excessively coordinates to the molybdenum surface and suppresses oxidation, which greatly increases the polishing rate. It becomes difficult to exhibit stable polishing characteristics such as lowering to
 前記キレート剤としては、二座以上の配位子として鉄(III)イオンへ配位することのできる化合物であれば特に限定されないが、例えば、(多価)カルボン酸、(多価)アミノカルボン酸、(多価)オキシカルボン酸、(多価)ホスホン酸、およびこれらの塩等のキレート剤を使用することができる。キレート剤の好ましい例としては、グリシン、クエン酸、酒石酸、アセチルアセトン、ジヒドロキシエチルグリシン、グリコールエーテルジアミン四酢酸、ジカルボキシメチルグルタミン酸、エチレンジアミン四酢酸、ニトリロ三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラアミン六酢酸、1,3-プロパンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、1,3-ジアミノ-2-ヒドロキシプロパン四酢酸、ヒドロキシエチルイミノ二酢酸;ピロリン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、ニトリロトリス(メチレンホスホン酸)、2-ホスホノブタン-1,2,4-トリカルボン酸、エチレンジアミンテトラ(メチレンホスホン酸);およびこれらの塩等が挙げられる。これらの中でも、エチレンジアミン四酢酸が特に好ましい。これらのキレート剤は単独で使用してもよく、二種類以上を混合して使用してもよい。 The chelating agent is not particularly limited as long as it is a compound capable of coordinating to iron (III) ion as a bidentate or higher ligand. Chelating agents such as acids, (polyhydric) oxycarboxylic acids, (polyhydric) phosphonic acids, and salts thereof can be used. Preferred examples of chelating agents include glycine, citric acid, tartaric acid, acetylacetone, dihydroxyethylglycine, glycoletherdiaminetetraacetic acid, dicarboxymethylglutamic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraaminehexaacetic acid. , 1,3-propanediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, hydroxyethyliminodiacetic acid; pyrophosphoric acid, 1-hydroxyethylidene-1,1-diphosphonic acid, nitrilotris (methylenephosphonic acid), 2-phosphonobutane-1,2,4-tricarboxylic acid, ethylenediaminetetra(methylenephosphonic acid); and salts thereof. Among these, ethylenediaminetetraacetic acid is particularly preferred. These chelating agents may be used alone or in combination of two or more.
 なお、例えば特表2008-503875号公報に記載されたタングステンを研磨するための化学機械研磨用組成物には鉄(III)化合物が使用されており、具体的には硝酸鉄(III)が使用されている。しかしながら、本実施形態に係る化学機械研磨用組成物においては、硝酸鉄(III)を使用することはできない。硝酸鉄(III)を使用すると、硝酸イオンの作用によって、モリブデン膜の表面を過剰に酸化してしまい、モリブデン膜の腐食が発生しやすくなるからである。したがって、本実施形態に係る化学機械研磨用組成物は、硝酸イオンをできる限り含有しないことが好ましい。本実施形態に係る化学機械研磨用組成物中の硝酸イオン濃度は、200ppm以下であることが好ましく、190ppm以下であることがより好ましく、180ppm以下であることが特に好ましい。なお、本実施形態に係る化学機械研磨用組成物が硝酸イオンを含有する場合であっても、0.005ppm以上であれば許容することができ、0.01ppm以上であっても実用上は許容することができる。 For example, the chemical mechanical polishing composition for polishing tungsten described in JP-T-2008-503875 uses an iron (III) compound, specifically iron (III) nitrate. It is However, iron (III) nitrate cannot be used in the chemical mechanical polishing composition according to this embodiment. This is because when iron (III) nitrate is used, the action of nitrate ions excessively oxidizes the surface of the molybdenum film, and corrosion of the molybdenum film is likely to occur. Therefore, it is preferable that the chemical mechanical polishing composition according to the present embodiment contain as little nitrate ions as possible. The nitrate ion concentration in the chemical mechanical polishing composition according to this embodiment is preferably 200 ppm or less, more preferably 190 ppm or less, and particularly preferably 180 ppm or less. Even when the chemical mechanical polishing composition according to the present embodiment contains nitrate ions, a concentration of 0.005 ppm or more is permissible, and a concentration of 0.01 ppm or more is practically permissible. can do.
 本実施形態に係る化学機械研磨用組成物中の成分(B)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001質量%以上であり、より好ましくは0.05質量%以上であり、特に好ましくは0.01質量%以上である。本実施形態に係る化学機械研磨用組成物中の成分(B)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは1質量%以下であり、特に好ましくは0.5質量%以下である。成分(B)の含有量が前記範囲にあると、モリブデン膜を酸化させて研磨を促進させることができると共に、モリブデンとアニオン種との過剰な反応を防ぎ、モリブデン膜の腐食の発生を低減できる場合がある。 The content of component (B) in the chemical mechanical polishing composition according to the present embodiment is preferably 0.001% by mass or more when the total mass of the chemical mechanical polishing composition is 100% by mass. , more preferably 0.05% by mass or more, and particularly preferably 0.01% by mass or more. The content of component (B) in the chemical mechanical polishing composition according to the present embodiment is preferably 10% by mass or less when the total mass of the chemical mechanical polishing composition is 100% by mass. It is preferably 5% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.5% by mass or less. When the content of component (B) is within the above range, the molybdenum film can be oxidized to facilitate polishing, and excessive reaction between molybdenum and anionic species can be prevented, thereby reducing corrosion of the molybdenum film. Sometimes.
 本実施形態に係る化学機械研磨用組成物中の鉄(III)イオンの濃度は、好ましくは1ppm以上であり、より好ましくは3ppm以上であり、特に好ましくは5ppm以上である。本実施形態に係る化学機械研磨用組成物中の鉄(III)イオンの濃度は、好ましくは1000ppm以下であり、より好ましくは900ppm以下であり、特に好ましくは800ppm以下である。本実施形態に係る化学機械研磨用組成物中の鉄(III)イオンの濃度が前記範囲にあると、モリブデン膜を酸化させて研磨を促進させることができると共に、モリブデンとアニオン種との過剰な反応を防ぎ、モリブデン膜の腐食の発生を低減できる場合がある。 The concentration of iron (III) ions in the chemical mechanical polishing composition according to this embodiment is preferably 1 ppm or more, more preferably 3 ppm or more, and particularly preferably 5 ppm or more. The concentration of iron (III) ions in the chemical mechanical polishing composition according to this embodiment is preferably 1000 ppm or less, more preferably 900 ppm or less, and particularly preferably 800 ppm or less. When the concentration of iron (III) ions in the chemical mechanical polishing composition according to the present embodiment is within the above range, the molybdenum film can be oxidized to promote polishing, and excessive molybdenum and anionic species It may be possible to prevent the reaction and reduce the occurrence of corrosion of the molybdenum film.
 1.3.成分(C)
 本実施形態に係る化学機械研磨用組成物は、アミノ基およびその塩からなる群より選択される少なくとも1種の官能基と、カルボキシ基、スルホ基、およびそれらの塩からなる群より選択される少なくとも1種の官能基と、を有する化合物(C)(本明細書において、「成分(C)」ともいう)を含有してもよい。成分(C)は、モリブデン膜の表面に吸着して保護膜を形成することにより、モリブデン膜の腐食を低減させる作用を有する。
1.3. Component (C)
The chemical mechanical polishing composition according to the present embodiment has at least one functional group selected from the group consisting of amino groups and salts thereof, and is selected from the group consisting of carboxy groups, sulfo groups, and salts thereof. It may contain a compound (C) having at least one functional group (also referred to herein as "component (C)"). Component (C) has the effect of reducing corrosion of the molybdenum film by adsorbing on the surface of the molybdenum film to form a protective film.
 アミノ基およびその塩としては、下記一般式(3)または下記一般式(4)で表される官能基が挙げられる。
 -NR ・・・・・(3)
 -N ・・・・・(4)
(上記式(3)および上記式(4)中、RおよびRは各々独立して、水素原子、または置換もしくは非置換の炭化水素基を表す。Xは陰イオンを表す。)
Amino groups and salts thereof include functional groups represented by the following general formula (3) or (4).
-NR 1 R 2 (3)
−N + R 1 R 2 X ( 4)
(In the above formulas (3) and (4), R 1 and R 2 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. X - represents an anion.)
 上記一般式(3)および上記一般式(4)中、RおよびRは各々独立して、水素原子、または置換もしくは非置換の炭化水素基を表すが、RとRとが結合して環構造を形成していてもよい。 In general formulas (3) and (4) above, R 1 and R 2 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group, and R 1 and R 2 are bonded may form a ring structure.
 R~Rで表される炭化水素基としては、脂肪族炭化水素基、芳香族炭化水素基、芳香脂肪族炭化水素基、または脂環式炭化水素基のいずれでもよい。また、脂肪族炭化水素基および芳香脂肪族炭化水素基の脂肪族は、飽和でも不飽和でもよく、直鎖状でも分岐状でもよい。これらの炭化水素基としては、例えば、直鎖状、分岐状または環状の、アルキル基、アルケニル基、アラルキル基、およびアリール基等が挙げられる。 The hydrocarbon groups represented by R 1 and R 2 may be aliphatic hydrocarbon groups, aromatic hydrocarbon groups, araliphatic hydrocarbon groups or alicyclic hydrocarbon groups. Moreover, the aliphatic of the aliphatic hydrocarbon group and the araliphatic hydrocarbon group may be saturated or unsaturated, and may be linear or branched. These hydrocarbon groups include, for example, linear, branched or cyclic alkyl groups, alkenyl groups, aralkyl groups, and aryl groups.
 アルキル基としては、炭素数1~6の低級アルキル基が好ましく、炭素数1~4の低級アルキル基がより好ましい。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、iso-ペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、iso-ヘキシル基、sec-ヘキシル基、tert-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 The alkyl group is preferably a lower alkyl group having 1 to 6 carbon atoms, more preferably a lower alkyl group having 1 to 4 carbon atoms. Examples of such alkyl groups include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group and n-pentyl group. , iso-pentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, n-hexyl group, iso-hexyl group, sec-hexyl group, tert-hexyl group, cyclopentyl group, cyclohexyl group and the like.
 アルケニル基としては、炭素数1~6の低級アルケニル基が好ましく、炭素数1~4の低級アルケニル基がより好ましい。このようなアルケニル基としては、例えば、ビニル基、n-プロペニル基、iso-プロペニル基、n-ブテニル基、iso-ブテニル基、sec-ブテニル基、tert-ブテニル基等が挙げられる。 The alkenyl group is preferably a lower alkenyl group having 1 to 6 carbon atoms, more preferably a lower alkenyl group having 1 to 4 carbon atoms. Examples of such alkenyl groups include vinyl groups, n-propenyl groups, iso-propenyl groups, n-butenyl groups, iso-butenyl groups, sec-butenyl groups, tert-butenyl groups and the like.
 アラルキル基としては、炭素数7~12のものが好ましい。このようなアラルキル基としては、例えば、ベンジル基、フェネチル基、フェニルプロピル基、フェニルブチル基、フェニルヘキシル基、メチルベンジル基、メチルフェネチル基、エチルベンジル基等が挙げられる。 The aralkyl group preferably has 7 to 12 carbon atoms. Examples of such aralkyl groups include benzyl, phenethyl, phenylpropyl, phenylbutyl, phenylhexyl, methylbenzyl, methylphenethyl and ethylbenzyl groups.
 アリール基としては、炭素数6~14のものが好ましい。このようなアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,5-キシリル基、ナフチル基、アントリル基等が挙げられる。 The aryl group preferably has 6 to 14 carbon atoms. Examples of such aryl groups include phenyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2 ,6-xylyl group, 3,5-xylyl group, naphthyl group, anthryl group and the like.
 前記アリール基および前記アラルキル基の芳香環は、例えば、メチル基、エチル基等の低級アルキル基や、ハロゲン原子、ニトロ基、アミノ基、ヒドロキシ基等を、置換基として有していてもよい。 The aromatic ring of the aryl group and the aralkyl group may have, for example, a lower alkyl group such as a methyl group or an ethyl group, a halogen atom, a nitro group, an amino group, a hydroxy group, or the like, as a substituent.
 カルボキシ基およびその塩としては、下記一般式(5)で表される官能基が挙げられる。
 -COO ・・・・・(5)
(Mは1価の陽イオンを表す。)
The carboxy group and its salt include functional groups represented by the following general formula (5).
- COO - M + (5)
(M + represents a monovalent cation.)
 上記一般式(5)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。 Examples of monovalent cations represented by M + in general formula (5) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + .
 スルホ基およびその塩としては、下記一般式(6)で表される官能基が挙げられる。
 -SO  ・・・・・(6)
(Mは1価の陽イオンを表す。)
Examples of sulfo groups and salts thereof include functional groups represented by the following general formula (6).
−SO 3 M + (6)
(M + represents a monovalent cation.)
 上記一般式(6)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。 Examples of monovalent cations represented by M + in general formula (6) include, but are not limited to, H + , Li + , Na + , K + , and NH 4 + .
 成分(C)は、アミノ基およびその塩からなる群より選択される少なくとも1種の官能基と、カルボキシ基、スルホ基、およびそれらの塩からなる群より選択される少なくとも1種の官能基と、を有する構造であれば特に限定されないが、下記一般式(7)または下記一般式(8)で表される構造を有することが好ましい。
 -N(RCOO(R2-n ・・・・・(7)
 -N(RSO (R2-n ・・・・・(8)
(上記式(7)および上記式(8)中、Rは、置換もしくは非置換の二価の炭化水素基を表す。Rは、水素原子、または置換もしくは非置換の炭化水素基を表す。Mは1価の陽イオンを表す。nは1~2の整数を表す。)
Component (C) contains at least one functional group selected from the group consisting of amino groups and salts thereof, and at least one functional group selected from the group consisting of carboxy groups, sulfo groups, and salts thereof. Although it is not particularly limited as long as it has a structure having, it is preferable to have a structure represented by the following general formula (7) or the following general formula (8).
−N(R 3 COO M + ) n (R 4 ) 2-n (7)
-N(R 3 SO 3 - M + ) n (R 4 ) 2-n (8)
(In formulas (7) and (8) above, R 3 represents a substituted or unsubstituted divalent hydrocarbon group. R 4 represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group. , M + represents a monovalent cation, and n represents an integer of 1 to 2.)
 上記一般式(7)および上記一般式(8)中、Rで表される二価の炭化水素基としては、炭素数1~3のアルカンジイル基が挙げられる。上記一般式(7)および上記一般式(8)中、Rで表される炭化水素基としては、上記一般式(3)および上記一般式(4)のR~Rで例示した炭化水素基と同様の炭化水素基が挙げられる。上記一般式(7)および上記一般式(8)中、Mで表される1価の陽イオンとしては、これらに限定されないが、例えば、H、Li、Na、K、NH が挙げられる。 In general formulas (7) and (8) above, the divalent hydrocarbon group represented by R 3 includes an alkanediyl group having 1 to 3 carbon atoms. In general formulas (7) and (8) above, the hydrocarbon group represented by R 4 includes the hydrocarbon groups exemplified for R 1 and R 2 in general formulas (3) and (4) above. Hydrocarbon groups similar to hydrogen groups are included. In the general formulas (7) and (8), the monovalent cation represented by M + is not limited to these, but examples include H + , Li + , Na + , K + , NH 4+ are included.
 成分(C)が上記一般式(7)または上記一般式(8)で表される構造を有することにより、成分(C)がモリブデン膜の表面に効果的に配位されるため、モリブデン膜の腐食をより効果的に低減することができる。 Since the component (C) has the structure represented by the above general formula (7) or the above general formula (8), the component (C) is effectively coordinated to the surface of the molybdenum film. Corrosion can be reduced more effectively.
 成分(C)としては、例えば、N-(ホスホノメチル)イミノ二酢酸、ヒドロキシエチルイミノ二酢酸、ニトリロ三酢酸、N-(2-カルボキシエチル)イミノ二酢酸、エチレンジアミン四酢酸、L-グルタミン酸二酢酸四ナトリウム、グリシン-N,N-ビス(メチレンホスホン酸)、3,3’,3’’-ニトリロトリプロピオン酸、オクチルイミノジプロピオン酸塩、ラウリルイミノジプロピオン酸塩、ミリスチルイミノジプロピオン酸塩、ステアリルイミノジプロピオン酸塩、パルミチルイミノジプロピオン酸塩、グリコールエーテルジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、1,3-プロパンジアミン-N,N,N’,N’-四酢酸、トリエチレンテトラアミン六酢酸、ジヒドロキシエチルグリシン、ドデシルアミノエチルアミノエチルグリシン、(S,S)-エチレンジアミンジコハク酸三水和物、イミノ二酢酸、trans-1,2-ジアミノシクロヘキサン-N,N,N’,N’-四酢酸水和物、ラウラミドプロピルヒドロキシスルタイン、ラウリルヒドロキシスルホベタイン等が挙げられる。これらの成分(C)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Component (C) includes, for example, N-(phosphonomethyl)iminodiacetic acid, hydroxyethyliminodiacetic acid, nitrilotriacetic acid, N-(2-carboxyethyl)iminodiacetic acid, ethylenediaminetetraacetic acid, L-glutamic acid diacetic acid tetraacetic acid sodium, glycine-N,N-bis(methylenephosphonic acid), 3,3′,3″-nitrilotripropionic acid, octyliminodipropionate, lauryliminodipropionate, myristyliminodipropionate, stearyl Iminodipropionate, Palmityliminodipropionate, Glycoletherdiaminetetraacetic acid, Hydroxyethylethylenediaminetriacetic acid, 1,3-propanediamine-N,N,N',N'-tetraacetic acid, Triethylenetetramine Hexaacetic acid, dihydroxyethylglycine, dodecylaminoethylaminoethylglycine, (S,S)-ethylenediaminedisuccinic acid trihydrate, iminodiacetic acid, trans-1,2-diaminocyclohexane-N,N,N',N '-tetraacetic acid hydrate, lauramidopropylhydroxysultaine, laurylhydroxysulfobetaine and the like. These components (C) may be used individually by 1 type, and may be used in combination of 2 or more type.
 本実施形態に係る化学機械研磨用組成物中の成分(C)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.0005質量%以上であり、より好ましくは0.0008質量%以上であり、特に好ましくは0.001質量%以上である。本実施形態に係る化学機械研磨用組成物中の成分(C)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは5質量%以下であり、より好ましくは1質量%以下であり、特に好ましくは0.1質量%以下である。成分(C)の含有量が前記範囲にあると、モリブデン膜の腐食を効果的に低減できる場合がある。 The content of component (C) in the chemical mechanical polishing composition according to the present embodiment is preferably 0.0005% by mass or more when the total mass of the chemical mechanical polishing composition is 100% by mass. , more preferably 0.0008% by mass or more, and particularly preferably 0.001% by mass or more. The content of component (C) in the chemical mechanical polishing composition according to the present embodiment is preferably 5% by mass or less when the total mass of the chemical mechanical polishing composition is 100% by mass. It is preferably 1% by mass or less, and particularly preferably 0.1% by mass or less. When the content of component (C) is within the above range, corrosion of the molybdenum film may be effectively reduced.
 1.4.その他の成分
 本実施形態に係る化学機械研磨用組成物は、前述の各成分の他、必要に応じて、液状媒体、水溶性高分子、含窒素複素環化合物、界面活性剤、有機酸およびその塩、無機酸およびその塩、塩基性化合物等を含有してもよい。
1.4. Other Components The chemical mechanical polishing composition according to the present embodiment contains, in addition to the components described above, a liquid medium, a water-soluble polymer, a nitrogen-containing heterocyclic compound, a surfactant, an organic acid and the like, if necessary. Salts, inorganic acids and their salts, basic compounds and the like may be contained.
<液状媒体>
 本実施形態に係る化学機械研磨用組成物は、液状媒体を含有する。液状媒体としては、水、水およびアルコールの混合媒体、水および水との相溶性を有する有機溶媒を含む混合媒体等が挙げられる。これらの中でも、水、水およびアルコールの混合媒体を用いることが好ましく、水を用いることがより好ましい。水の原料としては純水を好ましく使用することができる。液状媒体は、前述の各成分の残部として配合されていればよい。
<Liquid medium>
The chemical mechanical polishing composition according to this embodiment contains a liquid medium. The liquid medium includes water, a mixed medium of water and alcohol, a mixed medium containing water and an organic solvent compatible with water, and the like. Among these, it is preferable to use water or a mixed medium of water and alcohol, and it is more preferable to use water. Pure water can be preferably used as a raw material of water. The liquid medium may be blended as the balance of each component described above.
<水溶性高分子>
 本実施形態に係る化学機械研磨用組成物は、水溶性高分子を含有してもよい。水溶性高分子は、被研磨面の表面に吸着して研磨摩擦を低減させ、被研磨面におけるディッシングの発生を低減できる場合がある。
<Water-soluble polymer>
The chemical mechanical polishing composition according to this embodiment may contain a water-soluble polymer. The water-soluble polymer may adsorb to the surface of the surface to be polished, reduce polishing friction, and reduce the occurrence of dishing on the surface to be polished.
 水溶性高分子の具体例としては、ポリカルボン酸、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリエーテル、ポリアクリルアミド、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンイミン、ポリアリルアミン、ヒドロキシエチルセルロース等が挙げられる。これらは、1種単独であるいは2種以上組み合わせて使用することができる。 Specific examples of water-soluble polymers include polycarboxylic acid, polystyrenesulfonic acid, polyacrylic acid, polymethacrylic acid, polyether, polyacrylamide, polyvinyl alcohol, polyvinylpyrrolidone, polyethyleneimine, polyallylamine, and hydroxyethylcellulose. . These can be used singly or in combination of two or more.
 水溶性高分子の重量平均分子量(Mw)は、好ましくは1万以上150万以下、より好ましくは4万以上120万以下である。ここで、「重量平均分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって測定されたポリエチレングリコール換算の重量平均分子量のことを指す。 The weight average molecular weight (Mw) of the water-soluble polymer is preferably 10,000 or more and 1,500,000 or less, more preferably 40,000 or more and 1,200,000 or less. Here, "weight average molecular weight" refers to weight average molecular weight in terms of polyethylene glycol measured by GPC (gel permeation chromatography).
 本実施形態に係る化学機械研磨用組成物が水溶性高分子を含有する場合、水溶性高分子の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001質量%以上であり、より好ましくは0.002質量%以上である。水溶性高分子の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.1質量%以下であり、より好ましくは0.01質量%以下である。 When the chemical mechanical polishing composition according to the present embodiment contains a water-soluble polymer, the content of the water-soluble polymer is preferably It is 0.001% by mass or more, more preferably 0.002% by mass or more. The content of the water-soluble polymer is preferably 0.1% by mass or less, more preferably 0.01% by mass or less, when the total mass of the chemical mechanical polishing composition is 100% by mass.
<含窒素複素環化合物>
 含窒素複素環化合物は、少なくとも1個の窒素原子を有する、複素五員環および複素六員環から選択される少なくとも1種の複素環を含む有機化合物である。前記複素環の具体例としては、ピロール構造、イミダゾール構造、トリアゾール構造等の複素五員環;ピリジン構造、ピリミジン構造、ピリダジン構造、ピラジン構造等の複素六員環が挙げられる。該複素環は縮合環を形成していてもよい。具体的には、インドール構造、イソインドール構造、ベンゾイミダゾール構造、ベンゾトリアゾール構造、キノリン構造、イソキノリン構造、キナゾリン構造、シンノリン構造、フタラジン構造、キノキサリン構造、アクリジン構造等が挙げられる。このような構造を有する複素環化合物のうち、ピリジン構造、キノリン構造、ベンゾイミダゾール構造、ベンゾトリアゾール構造を有する複素環化合物が好ましい。
<Nitrogen-containing heterocyclic compound>
A nitrogen-containing heterocyclic compound is an organic compound containing at least one heterocyclic ring selected from five- and six-membered heterocyclic rings having at least one nitrogen atom. Specific examples of the heterocyclic ring include five-membered heterocyclic rings such as pyrrole structure, imidazole structure and triazole structure; six-membered heterocyclic rings such as pyridine structure, pyrimidine structure, pyridazine structure and pyrazine structure. The heterocycle may form a condensed ring. Specific examples include an indole structure, an isoindole structure, a benzimidazole structure, a benzotriazole structure, a quinoline structure, an isoquinoline structure, a quinazoline structure, a cinnoline structure, a phthalazine structure, a quinoxaline structure, and an acridine structure. Among heterocyclic compounds having such structures, heterocyclic compounds having a pyridine structure, a quinoline structure, a benzimidazole structure, and a benzotriazole structure are preferred.
 含窒素複素環化合物の具体例としては、アジリジン、ピリジン、ピリミジン、ピロリジン、ピペリジン、ピラジン、トリアジン、ピロール、イミダゾール、インドール、キノリン、イソキノリン、ベンゾイソキノリン、プリン、プテリジン、トリアゾール、トリアゾリジン、ベンゾトリアゾール、カルボキシベンゾトリアゾール、およびこれらの骨格を有する誘導体が挙げられる。これらの中でも、ベンゾトリアゾールおよびトリアゾールからなる群より選択される少なくとも1種であることが好ましい。これらの含窒素複素環化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Specific examples of nitrogen-containing heterocyclic compounds include aziridine, pyridine, pyrimidine, pyrrolidine, piperidine, pyrazine, triazine, pyrrole, imidazole, indole, quinoline, isoquinoline, benzoisoquinoline, purine, pteridine, triazole, triazolidine, benzotriazole, carboxy Benzotriazoles and derivatives having these skeletons are included. Among these, at least one selected from the group consisting of benzotriazole and triazole is preferred. These nitrogen-containing heterocyclic compounds may be used singly or in combination of two or more.
<界面活性剤>
 界面活性剤としては、特に制限されず、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤等を使用することができる。アニオン性界面活性剤としては、例えば、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸塩;パーフルオロアルキル化合物等の含フッ素系界面活性剤等が挙げられる。カチオン性界面活性剤としては、例えば、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。非イオン性界面活性剤としては、例えば、アセチレングリコール、アセチレングリコールエチレンオキサイド付加物、アセチレンアルコール等の三重結合を有する非イオン性界面活性剤;ポリエチレングリコール型界面活性剤等が挙げられる。これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<Surfactant>
The surfactant is not particularly limited, and anionic surfactants, cationic surfactants, nonionic surfactants and the like can be used. Examples of anionic surfactants include sulfates such as alkyl ether sulfates and polyoxyethylene alkylphenyl ether sulfates; and fluorine-containing surfactants such as perfluoroalkyl compounds. Examples of cationic surfactants include aliphatic amine salts and aliphatic ammonium salts. Nonionic surfactants include, for example, nonionic surfactants having a triple bond such as acetylene glycol, acetylene glycol ethylene oxide adducts, and acetylene alcohol; polyethylene glycol type surfactants and the like. These surfactants may be used singly or in combination of two or more.
<有機酸およびその塩>
 本実施形態に係る化学機械研磨用組成物は、有機酸およびその塩(前記成分(C)および前記水溶性高分子のうちカルボキシ基またはスルホ基を有するものを除く。以下、「有機酸(塩)」ともいう。)からなる群より選択される少なくとも1種を含有してもよい。有機酸およびその塩は、成分(A)との相乗効果により、モリブデン膜の研磨速度を向上させることができる場合がある。
<Organic acid and its salt>
The chemical mechanical polishing composition according to the present embodiment includes an organic acid and a salt thereof (excluding the component (C) and the water-soluble polymer having a carboxy group or a sulfo group). )”.) may contain at least one selected from the group consisting of The organic acid and its salt may improve the polishing rate of the molybdenum film due to the synergistic effect with the component (A).
 有機酸およびその塩としては、カルボキシ基を有する化合物、スルホ基を有する化合物であることが好ましい。カルボキシ基を有する化合物としては、例えば、ステアリン酸、ラウリン酸、オレイン酸、ミリスチン酸、アルケニルコハク酸、乳酸、酒石酸、フマル酸、グリコール酸、フタル酸、マレイン酸、ギ酸、酢酸、シュウ酸、クエン酸、リンゴ酸、マロン酸、グルタル酸、コハク酸、安息香酸、キノリン酸、キナルジン酸、アミド硫酸、プロピオン酸、トリフルオロ酢酸;およびこれらの塩が挙げられる。スルホ基を有する化合物としては、例えば、ドデシルベンゼンスルホン酸、p-トルエンスルホン酸等のアルキルベンゼンスルホン酸;ブチルナフタレンスルホン酸等のアルキルナフタレンスルホン酸;テトラデセンスルホン酸等のα-オレフィンスルホン酸;およびこれらの塩が挙げられる。これらの化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The organic acid and its salt are preferably compounds having a carboxy group and compounds having a sulfo group. Examples of compounds having a carboxy group include stearic acid, lauric acid, oleic acid, myristic acid, alkenylsuccinic acid, lactic acid, tartaric acid, fumaric acid, glycolic acid, phthalic acid, maleic acid, formic acid, acetic acid, oxalic acid, citric acid, acids, malic acid, malonic acid, glutaric acid, succinic acid, benzoic acid, quinolinic acid, quinaldic acid, amidosulfuric acid, propionic acid, trifluoroacetic acid; and salts thereof. Examples of compounds having a sulfo group include alkylbenzenesulfonic acids such as dodecylbenzenesulfonic acid and p-toluenesulfonic acid; alkylnaphthalenesulfonic acids such as butylnaphthalenesulfonic acid; α-olefinsulfonic acids such as tetradecenesulfonic acid; These salts are mentioned. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 本実施形態に係る化学機械研磨用組成物が有機酸(塩)を含有する場合、有機酸(塩)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上である。有機酸(塩)の含有量は、化学機械研磨用組成物の全質量を100質量%としたときに、好ましくは5質量%以下であり、より好ましくは1質量%以下である。 When the chemical mechanical polishing composition according to the present embodiment contains an organic acid (salt), the content of the organic acid (salt) is It is preferably 0.001% by mass or more, more preferably 0.01% by mass or more. The content of the organic acid (salt) is preferably 5% by mass or less, more preferably 1% by mass or less, when the total mass of the chemical mechanical polishing composition is 100% by mass.
<無機酸およびその塩>
 本実施形態に係る化学機械研磨用組成物は、無機酸およびその塩(以下、「無機酸(塩)」ともいう。)からなる群より選択される少なくとも1種を含有してもよい。無機酸としては、塩酸、硝酸、硫酸、リン酸、およびこれらの塩からなる群より選択される少なくとも1種であることが好ましい。なお、無機酸は、化学機械研磨用組成物中で別途添加した塩基と塩を形成してもよい。
<Inorganic acid and its salt>
The chemical mechanical polishing composition according to the present embodiment may contain at least one selected from the group consisting of inorganic acids and salts thereof (hereinafter also referred to as “inorganic acids (salts)”). The inorganic acid is preferably at least one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and salts thereof. The inorganic acid may form a salt with a separately added base in the chemical mechanical polishing composition.
<塩基性化合物>
 塩基性化合物としては、有機塩基および無機塩基が挙げられる。有機塩基としては、アミンが好ましく、例えばトリエチルアミン、モノエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルアミン、メチルアミン、エチレンジアミン、ジグリコールアミン、イソプロピルアミン等が挙げられる。無機塩基としては、例えばアンモニア、水酸化カリウム、水酸化ナトリウム等が挙げられる。これらの塩基性化合物の中でも、アンモニア、水酸化カリウムが好ましい。これらの塩基性化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<Basic compound>
Basic compounds include organic bases and inorganic bases. Preferred organic bases are amines such as triethylamine, monoethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, benzylamine, methylamine, ethylenediamine, diglycolamine and isopropylamine. be done. Examples of inorganic bases include ammonia, potassium hydroxide, sodium hydroxide and the like. Among these basic compounds, ammonia and potassium hydroxide are preferred. These basic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
<過酸化水素>
 本実施形態に係る化学機械研磨用組成物は、過酸化水素を含有してもよいが、過酸化水素を含有しないことが好ましい。過酸化水素は、モリブデンを過剰に酸化してモリブデン膜の過剰な腐食(エッチング)を促進するので、良好な被研磨面が得られない場合が多い。
<Hydrogen peroxide>
The chemical mechanical polishing composition according to the present embodiment may contain hydrogen peroxide, but preferably does not contain hydrogen peroxide. Hydrogen peroxide excessively oxidizes molybdenum and promotes excessive corrosion (etching) of the molybdenum film, so that a good surface to be polished cannot be obtained in many cases.
 1.5.pH
 本実施形態に係る化学機械研磨用組成物のpHは、好ましくは1以上であり、より好ましくは1.5以上であり、特に好ましくは2以上である。本実施形態に係る化学機械研磨用組成物のpHは、好ましくは6以下であり、より好ましくは5以下であり、特に好ましくは4以下である。本実施形態に係る化学機械研磨用組成物のpHが前記範囲にあると、モリブデン膜の表面を効果的に酸化して脆弱な改質層を作り出しやすくなるので、モリブデン膜の研磨速度が向上する傾向にある。
1.5. pH
The pH of the chemical mechanical polishing composition according to this embodiment is preferably 1 or higher, more preferably 1.5 or higher, and particularly preferably 2 or higher. The pH of the chemical mechanical polishing composition according to this embodiment is preferably 6 or less, more preferably 5 or less, and particularly preferably 4 or less. When the pH of the chemical mechanical polishing composition according to the present embodiment is within the above range, the surface of the molybdenum film is effectively oxidized to facilitate formation of a fragile modified layer, thereby improving the polishing rate of the molybdenum film. There is a tendency.
 なお、化学機械研磨用組成物のpHは、例えば、前述の成分(C)、有機酸(塩)、無機酸(塩)、塩基性化合物等を添加することにより調整することができ、これらの1種以上を用いることができる。 The pH of the chemical mechanical polishing composition can be adjusted, for example, by adding the aforementioned component (C), organic acid (salt), inorganic acid (salt), basic compound, or the like. One or more can be used.
 本発明において、pHは、水素イオン指数のことを指し、その値は、市販のpHメーター(例えば、株式会社堀場製作所製、卓上型pHメーター)を用いて測定することができる。 In the present invention, pH refers to hydrogen ion exponent, and its value can be measured using a commercially available pH meter (for example, desktop pH meter manufactured by Horiba, Ltd.).
 1.6.化学機械研磨用組成物の製造方法
 本実施形態に係る化学機械研磨用組成物の製造方法は、成分(A)と、成分(B)として鉄(III)イオンのキレート化合物と、必要に応じて成分(C)および/またはその他の成分とを水等の液状媒体に溶解または分散させる工程を含む。溶解または分散させる方法は、特に制限されず、均一に溶解または分散できればどのような方法を適用してもよい。また、前述した各成分の混合順序や混合方法についても特に制限されない。
1.6. Method for Producing Chemical Mechanical Polishing Composition The method for producing the chemical mechanical polishing composition according to the present embodiment comprises the following components: Component (A), a chelate compound of iron (III) ions as component (B), and, if necessary, It includes a step of dissolving or dispersing component (C) and/or other components in a liquid medium such as water. The method of dissolving or dispersing is not particularly limited, and any method may be applied as long as it can dissolve or disperse uniformly. Also, the mixing order and mixing method of the components described above are not particularly limited.
 本実施形態に係る化学機械研磨用組成物の製造方法では、成分(B)として鉄(III)イオンのキレート化合物を添加することが必要である。すなわち、鉄(III)イオンとキレート剤とを別個に添加して、それらを組成物中で反応させることによってin situで鉄(III)イオンのキレート化合物を生成させることは好ましくない。上述のように、原料として鉄(III)イオンのキレート化合物を使用することにより、鉄(III)イオンとキレート剤とがほぼ化学当量的に組成物中に存在することができるので、安定した研磨特性を発現することができる。 In the method for producing a chemical mechanical polishing composition according to the present embodiment, it is necessary to add a chelate compound of iron (III) ions as component (B). That is, it is not preferred to add iron(III) ions and a chelating agent separately and allow them to react in the composition to form an iron(III) ion chelate compound in situ. As described above, by using a chelate compound of iron (III) ions as a raw material, the iron (III) ions and the chelating agent can be present in the composition in approximately stoichiometric amounts, resulting in stable polishing. Can express characteristics.
 また、化学機械研磨用組成物は、濃縮タイプの原液として調製し、使用時に水等の液状媒体で希釈して使用することもできる。 The chemical mechanical polishing composition can also be prepared as a concentrated type stock solution and diluted with a liquid medium such as water at the time of use.
 2.研磨方法
 本発明の一実施形態に係る研磨方法は、前述の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む。該化学機械研磨用組成物は、モリブデン膜の腐食の発生を抑制しつつ、モリブデン膜およびシリコン酸化膜を含む半導体基板を安定した研磨速度で研磨することができる。そのため、被処理体たる半導体基板は、モリブデンおよびモリブデン合金からなる群より選択される少なくとも1種により構成される部位を備えていることが好ましい。以下、図1~図4を参照しながら、本実施形態に係る研磨方法について詳細に説明する。
2. Polishing Method A polishing method according to an embodiment of the present invention includes a step of polishing a semiconductor substrate using the chemical mechanical polishing composition described above. The chemical mechanical polishing composition can polish a semiconductor substrate including a molybdenum film and a silicon oxide film at a stable polishing rate while suppressing corrosion of the molybdenum film. Therefore, the semiconductor substrate, which is the object to be processed, preferably has a portion composed of at least one selected from the group consisting of molybdenum and molybdenum alloys. Hereinafter, the polishing method according to this embodiment will be described in detail with reference to FIGS. 1 to 4. FIG.
 2.1.被処理体
 図1に、本実施形態に係る化学機械研磨方法に適用される被処理体100の一例を示す。
2.1. Object to be Processed FIG. 1 shows an example of an object to be processed 100 applied to the chemical mechanical polishing method according to the present embodiment.
 (1)まず、図1に示すように、基体10を用意する。基体10は、例えば、シリコン基板とその上に形成されたシリコン酸化膜から構成されていてもよい。さらに、基体10には、トランジスタ等の機能デバイスが形成されていてもよい。次に、基体10の上に、CVD法または熱酸化法を用いて絶縁膜であるシリコン酸化膜12を形成させる。 (1) First, as shown in FIG. 1, a substrate 10 is prepared. The substrate 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed thereon. Furthermore, functional devices such as transistors may be formed on the substrate 10 . Next, a silicon oxide film 12, which is an insulating film, is formed on the substrate 10 by CVD or thermal oxidation.
 (2)次に、シリコン酸化膜12をパターニングする。それをマスクとして、シリコン酸化膜12にフォトリソグラフィー法を適用してヴィアホール14を形成させる。 (2) Next, the silicon oxide film 12 is patterned. Using this as a mask, photolithography is applied to the silicon oxide film 12 to form a via hole 14 .
 (3)次に、スパッタを適用してシリコン酸化膜12の表面およびヴィアホール14の内壁面にバリアメタル膜16を形成させる。モリブデンとシリコンとの電気的接触があまり良好でないため、バリアメタル膜を介在させることで良好な電気的接触を実現している。バリアメタル膜16としては、チタンおよび/または窒化チタンが挙げられる。 (3) Next, sputtering is applied to form a barrier metal film 16 on the surface of the silicon oxide film 12 and the inner wall surface of the via hole 14 . Since the electrical contact between molybdenum and silicon is not very good, good electrical contact is achieved by interposing a barrier metal film. Barrier metal film 16 includes titanium and/or titanium nitride.
 (4)次に、CVD法を適用してモリブデン膜18を形成させる。 (4) Next, the molybdenum film 18 is formed by applying the CVD method.
 以上の工程により、被処理体100が形成される。 The object to be processed 100 is formed through the above steps.
 2.2.化学機械研磨方法
 2.2.1.第1研磨処理工程
 第1研磨処理工程は、図2に示すように、前述した化学機械研磨用組成物を用いてバリアメタル膜16およびモリブデン膜18をシリコン酸化膜12が露出するまで研磨する工程である。前述した化学機械研磨用組成物は、モリブデン膜だけでなくバリアメタル膜に対しても優れた研磨作用を有するため、バリアメタル膜16およびモリブデン膜18を同一処理工程で研磨・除去することができる。
2.2. Chemical mechanical polishing method 2.2.1. First polishing step In the first polishing step, as shown in FIG. 2, the barrier metal film 16 and the molybdenum film 18 are polished using the aforementioned chemical mechanical polishing composition until the silicon oxide film 12 is exposed. is. Since the chemical mechanical polishing composition described above has an excellent polishing effect not only on the molybdenum film but also on the barrier metal film, the barrier metal film 16 and the molybdenum film 18 can be polished and removed in the same processing step. .
 2.2.2.第2研磨処理工程
 第2研磨処理工程は、図3に示すように、前述した化学機械研磨用組成物を用いてさらにバリアメタル膜16、モリブデン膜18およびシリコン酸化膜12を同時に研磨する工程である。前述した化学機械研磨用組成物は、モリブデン膜およびシリコン酸化膜に対する非選択的研磨性を有するため、第2研磨処理工程によって極めて平坦性に優れた仕上げ面を得ることができる。
2.2.2. Second polishing step The second polishing step, as shown in FIG. 3, is a step of simultaneously polishing the barrier metal film 16, the molybdenum film 18 and the silicon oxide film 12 using the chemical mechanical polishing composition described above. be. Since the chemical mechanical polishing composition described above has non-selective polishing properties for molybdenum films and silicon oxide films, it is possible to obtain a finished surface with extremely excellent flatness in the second polishing treatment step.
 ここで、第2研磨処理工程で使用される化学機械研磨用組成物は、第1研磨処理工程で使用される化学機械研磨用組成物に含まれる成分(B)の濃度を前述した組成範囲内で適宜変更して用いてもよい。モリブデン膜の研磨速度に対するシリコン酸化膜の研磨速度の比が1以上となるように成分(B)の濃度を調整することで、シリコン酸化膜に対してモリブデン膜の過剰研磨が十分に抑制できるため、モリブデン膜およびシリコン酸化膜を含む半導体基板を安定した研磨速度で研磨することができる。また、化学機械研磨用組成物中における成分(A)中のゼータ電位あるいは会合度を調整することでも、モリブデン膜の研磨速度に対するシリコン酸化膜の研磨速度の比が1以上となるように調整できる。 Here, in the chemical mechanical polishing composition used in the second polishing process, the concentration of the component (B) contained in the chemical mechanical polishing composition used in the first polishing process is within the composition range described above. may be changed as appropriate and used. By adjusting the concentration of the component (B) so that the ratio of the polishing rate of the silicon oxide film to the polishing rate of the molybdenum film is 1 or more, excessive polishing of the molybdenum film relative to the silicon oxide film can be sufficiently suppressed. , a semiconductor substrate including a molybdenum film and a silicon oxide film can be polished at a stable polishing rate. Also, by adjusting the zeta potential or degree of association in the component (A) in the chemical mechanical polishing composition, the ratio of the polishing rate of the silicon oxide film to the polishing rate of the molybdenum film can be adjusted to be 1 or more. .
 2.2.3.化学機械研磨装置
 前記第1研磨処理工程および前記第2研磨処理工程では、例えば、図4に示すような化学機械研磨装置200を用いることができる。図4は、化学機械研磨装置200を模式的に示した斜視図である。スラリー供給ノズル42からスラリー44を供給し、かつ、研磨布46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図4には、水供給ノズル54およびドレッサー56も併せて示してある。
2.2.3. Chemical Mechanical Polishing Apparatus In the first polishing process and the second polishing process, for example, a chemical mechanical polishing apparatus 200 as shown in FIG. 4 can be used. FIG. 4 is a perspective view schematically showing the chemical mechanical polishing apparatus 200. FIG. Slurry 44 is supplied from slurry supply nozzle 42, and carrier head 52 holding semiconductor substrate 50 is brought into contact while rotating turntable 48 on which polishing cloth 46 is adhered. 4 also shows the water supply nozzle 54 and the dresser 56. As shown in FIG.
 キャリアーヘッド52の研磨荷重は、10~980hPaの範囲内で選択することができ、好ましくは30~490hPaである。また、ターンテーブル48およびキャリアーヘッド52の回転数は10~400rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給されるスラリー44の流量は、10~1,000mL/分の範囲内で選択することができ、好ましくは50~400mL/分である。 The polishing load of the carrier head 52 can be selected within the range of 10-980 hPa, preferably 30-490 hPa. Also, the rotation speed of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, preferably 30 to 150 rpm. The flow rate of the slurry 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10-1,000 mL/min, preferably 50-400 mL/min.
 市販の化学機械研磨装置としては、例えば、株式会社荏原製作所製、型式「EPO-112」、「EPO-222」;ラップマスターSFT社製、型式「LGP-510」、「LGP-552」;アプライドマテリアル社製、型式「Mirra」、「Reflexion」等が挙げられる。 Examples of commercially available chemical mechanical polishing apparatuses include models "EPO-112" and "EPO-222" manufactured by Ebara Corporation; models "LGP-510" and "LGP-552" manufactured by Lapmaster SFT; Models "Mirra" and "Reflexion" manufactured by Material Co., Ltd. may be mentioned.
 3.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本実施例における「部」および「%」は、特に断らない限り質量基準である。
3. Examples Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. "Parts" and "%" in the examples are based on mass unless otherwise specified.
 3.1.シリカ粒子水分散体の調製
 3.1.1.水分散体Aの調製
 国際公開第2008/123373号に記載の実施例3に従い、シリカ粒子を15.5質量%含む、pH7.6の水分散体Aを得た。
 水分散体Aを動的光散乱法(Malvern社製、型式「Zetasizer Ultra」)にて測定した結果、水分散体Aに含まれるシリカ粒子の体積換算における平均二次粒子径は17.3nmであった。
 また、水分散体Aを透過型電子顕微鏡(TEM)(株式会社日立ハイテク製、型式「H―7650」)を用いて30000倍の倍率で撮影し、観察されたシリカ粒子の像50個について、粒子像の端部と端部を結んだ直線のうち最も長い直線の距離を計測し、その値の平均値を平均一次粒子径として算出した。このようにして算出された水分散体Aに含まれるシリカ粒子の平均一次粒子径は15.8nmであった。
 上述の方法により算出された平均一次粒子径および平均二次粒子径を用いて、以下の算出式により会合度を算出したところ、水分散体Aに含まれるシリカ粒子の会合度は1.1であった。
 会合度=(平均二次粒子径)/(平均一次粒子径)
 以下、各水分散体に含まれるシリカ粒子の平均一次粒子径、平均二次粒子径および会合度は同様の方法により測定し算出した。
3.1. Preparation of silica particle aqueous dispersion 3.1.1. Preparation of Aqueous Dispersion A An aqueous dispersion A containing 15.5% by mass of silica particles and pH 7.6 was obtained according to Example 3 described in WO 2008/123373.
As a result of measuring the water dispersion A by a dynamic light scattering method (manufactured by Malvern, model "Zetasizer Ultra"), the average secondary particle diameter in terms of volume of the silica particles contained in the water dispersion A was 17.3 nm. there were.
Further, the water dispersion A was photographed at a magnification of 30,000 times using a transmission electron microscope (TEM) (manufactured by Hitachi High-Tech Co., Ltd., model "H-7650"). The distance of the longest straight line among the straight lines connecting the ends of the particle images was measured, and the average value of the values was calculated as the average primary particle size. The average primary particle size of the silica particles contained in the aqueous dispersion A calculated in this manner was 15.8 nm.
Using the average primary particle size and average secondary particle size calculated by the above method, the degree of association was calculated by the following formula, and the degree of association of the silica particles contained in the aqueous dispersion A was 1.1. there were.
Degree of association = (average secondary particle size) / (average primary particle size)
Hereinafter, the average primary particle size, average secondary particle size and degree of association of silica particles contained in each aqueous dispersion were measured and calculated in the same manner.
 3.1.2.水分散体Bの調製
 水分散体A(15.5%コロイダルシリカ分散液)2520gを60℃に加熱した。その後、(3-トリエトキシシリル)プロピルコハク酸無水物(東京化成工業株式会社製)15.5gを加え、さらに60℃で4時間撹拌し、平均二次粒子径17.3nmのカルボキシ基で表面修飾されたシリカ粒子を含む水分散体Bを得た。
3.1.2. Preparation of Aqueous Dispersion B 2520 g of Aqueous Dispersion A (15.5% colloidal silica dispersion) was heated to 60°C. After that, 15.5 g of (3-triethoxysilyl) propylsuccinic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 60°C for 4 hours. An aqueous dispersion B containing modified silica particles was obtained.
 3.1.3.水分散体Cの調製
 水分散体A(15.5%コロイダルシリカ分散液)2520gに25%アンモニア水(富士フイルム和光純薬株式会社製)を添加し、pH9に調整した。その後、(3-トリエトキシシリル)メルカプト基含有シランカップリング剤(商品名「KBM-803」、信越化学工業株式会社製)3.9gを滴下し、60℃で2時間撹拌した。その後、過酸化水素(富士フイルム和光純薬株式会社製)50gを添加し、常圧下で8時間還流し、平均二次粒子径17.3nmのスルホ基で表面修飾されたシリカ粒子を含む水分散体Cを得た。
3.1.3. Preparation of Water Dispersion C To 2520 g of water dispersion A (15.5% colloidal silica dispersion), 25% aqueous ammonia (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to adjust the pH to 9. After that, 3.9 g of a (3-triethoxysilyl)mercapto group-containing silane coupling agent (trade name “KBM-803” manufactured by Shin-Etsu Chemical Co., Ltd.) was added dropwise, and the mixture was stirred at 60° C. for 2 hours. After that, 50 g of hydrogen peroxide (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added, refluxed for 8 hours under normal pressure, and a water dispersion containing silica particles surface-modified with a sulfo group having an average secondary particle diameter of 17.3 nm. Got a body C.
 3.1.4.水分散体Dの調製
 PL-1(扶桑化学工業株式会社製、12%コロイダルシリカ分散液)をそのまま水分散体Dとして使用した。上記の方法で測定したところ、水分散体Dに含まれるシリカ粒子の平均二次粒子径は30.1nmであった。
3.1.4. Preparation of Aqueous Dispersion D PL-1 (manufactured by Fuso Chemical Industry Co., Ltd., 12% colloidal silica dispersion) was used as aqueous dispersion D as it was. When measured by the above method, the average secondary particle size of the silica particles contained in the aqueous dispersion D was 30.1 nm.
 3.1.5.水分散体Eの調製
 PL-1(扶桑化学工業株式会社製、12%コロイダルシリカ分散液)3250gに25%アンモニア水(富士フイルム和光純薬株式会社製)を添加し、pH9に調整した。その後、(3-トリエトキシシリル)メルカプト基含有シランカップリング剤(商品名「KBM-803」、信越化学工業株式会社製)3.9gを滴下し、60℃で2時間撹拌した。その後、過酸化水素(富士フイルム和光純薬株式会社製)50gを添加し、常圧下で8時間還流し、平均二次粒子径30.1nmのスルホ基で表面修飾されたシリカ粒子を含む水分散体Eを得た。
3.1.5. Preparation of Water Dispersion E To 3250 g of PL-1 (12% colloidal silica dispersion manufactured by Fuso Chemical Industry Co., Ltd.), 25% aqueous ammonia (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to adjust the pH to 9. After that, 3.9 g of a (3-triethoxysilyl)mercapto group-containing silane coupling agent (trade name “KBM-803” manufactured by Shin-Etsu Chemical Co., Ltd.) was added dropwise, and the mixture was stirred at 60° C. for 2 hours. After that, 50 g of hydrogen peroxide (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added, refluxed for 8 hours under normal pressure, and a water dispersion containing silica particles surface-modified with a sulfo group having an average secondary particle diameter of 30.1 nm. Got body E.
 3.1.6.水分散体Fの調製
 PL-3(扶桑化学工業株式会社製、19.5%コロイダルシリカ分散液)1950gを60℃に加熱した。その後、(3-トリエトキシシリル)プロピルコハク酸無水物(東京化成工業株式会社製)15.5gを加え、さらに60℃で4時間撹拌し、平均二次粒子径58.2nmのカルボキシ基で表面修飾されたシリカ粒子を含む水分散体Fを得た。
3.1.6. Preparation of Water Dispersion F 1950 g of PL-3 (19.5% colloidal silica dispersion manufactured by Fuso Chemical Industry Co., Ltd.) was heated to 60°C. After that, 15.5 g of (3-triethoxysilyl) propylsuccinic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 60°C for 4 hours. An aqueous dispersion F containing modified silica particles was obtained.
 3.1.7.水分散体Gの調製
 PL-3(扶桑化学工業株式会社製、19.5%コロイダルシリカ分散液)2000gに25%アンモニア水(富士フイルム和光純薬株式会社製)を添加し、pH9に調整した。その後、(3-トリエトキシシリル)メルカプト基含有シランカップリング剤(商品名「KBM-803」、信越化学工業株式会社製)3.9gを滴下し、60℃で2時間撹拌した。その後、過酸化水素(富士フイルム和光純薬株式会社製)50gを添加し、常圧下で8時間還流し、平均二次粒子径58.2nmのスルホ基で表面修飾されたシリカ粒子を含む水分散体Gを得た。
3.1.7. Preparation of Water Dispersion G PL-3 (19.5% colloidal silica dispersion manufactured by Fuso Chemical Industry Co., Ltd.) was added with 25% aqueous ammonia (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to adjust the pH to 9. . After that, 3.9 g of a (3-triethoxysilyl)mercapto group-containing silane coupling agent (trade name “KBM-803” manufactured by Shin-Etsu Chemical Co., Ltd.) was added dropwise, and the mixture was stirred at 60° C. for 2 hours. After that, 50 g of hydrogen peroxide (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added, refluxed for 8 hours under normal pressure, and a water dispersion containing silica particles surface-modified with a sulfo group having an average secondary particle diameter of 58.2 nm. Got body G.
 3.1.8.水分散体Hの調製
 PL-2L(扶桑化学工業株式会社製、20%コロイダルシリカ分散液)1950gに25%アンモニア水(富士フイルム和光純薬株式会社製)を添加し、pH9に調整した。その後、(3-トリエトキシシリル)メルカプト基含有シランカップリング剤(商品名「KBM-803」、信越化学工業株式会社製)3.9gを滴下し、60℃で2時間撹拌した。その後、過酸化水素(富士フイルム和光純薬株式会社製)50gを添加し、常圧下で8時間還流し、平均二次粒子径22.5nmのスルホ基で表面修飾されたシリカ粒子を含む水分散体Hを得た。
3.1.8. Preparation of Water Dispersion H To 1950 g of PL-2L (manufactured by Fuso Chemical Industries, Ltd., 20% colloidal silica dispersion), 25% aqueous ammonia (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to adjust the pH to 9. After that, 3.9 g of a (3-triethoxysilyl)mercapto group-containing silane coupling agent (trade name “KBM-803” manufactured by Shin-Etsu Chemical Co., Ltd.) was added dropwise, and the mixture was stirred at 60° C. for 2 hours. After that, 50 g of hydrogen peroxide (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added, refluxed for 8 hours under normal pressure, and a water dispersion containing silica particles surface-modified with a sulfo group having an average secondary particle diameter of 22.5 nm. Got body H.
 3.1.9.水分散体Iの調製
 PL-2L(扶桑化学工業株式会社製、20%コロイダルシリカ分散液)1950gを60℃に加熱した。その後、(3-トリエトキシシリル)プロピルコハク酸無水物(東京化成工業株式会社製)15.5gを加え、さらに60℃で4時間撹拌し、平均二次粒子径22.5nmのカルボキシ基で表面修飾されたシリカ粒子を含む水分散体Iを得た。
3.1.9. Preparation of Water Dispersion I 1950 g of PL-2L (20% colloidal silica dispersion manufactured by Fuso Chemical Industry Co., Ltd.) was heated to 60°C. After that, 15.5 g of (3-triethoxysilyl) propylsuccinic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 60°C for 4 hours. An aqueous dispersion I containing modified silica particles was obtained.
 3.1.10.水分散体Jの調製
 PL-06L(扶桑化学工業株式会社製、6%コロイダルシリカ分散液)6510gに25%アンモニア水(富士フイルム和光純薬株式会社製)を添加し、pH9に調整した。その後、(3-トリエトキシシリル)メルカプト基含有シランカップリング剤(商品名「KBM-803」、信越化学工業株式会社製)3.9gを滴下し、60℃で2時間撹拌した。その後、過酸化水素(富士フイルム和光純薬株式会社製)50gを添加し、常圧下で8時間還流し、平均二次粒子径7.4nmのスルホ基で表面修飾されたシリカ粒子を含む水分散体Jを得た。
3.1.10. Preparation of Water Dispersion J To 6510 g of PL-06L (manufactured by Fuso Chemical Industries, Ltd., 6% colloidal silica dispersion), 25% aqueous ammonia (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to adjust the pH to 9. After that, 3.9 g of a (3-triethoxysilyl)mercapto group-containing silane coupling agent (trade name “KBM-803” manufactured by Shin-Etsu Chemical Co., Ltd.) was added dropwise, and the mixture was stirred at 60° C. for 2 hours. After that, 50 g of hydrogen peroxide (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added, refluxed for 8 hours under normal pressure, and a water dispersion containing silica particles surface-modified with a sulfo group having an average secondary particle diameter of 7.4 nm. I got a body J.
 3.1.11.水分散体Kの調製
 PL-06L(扶桑化学工業株式会社製、6%コロイダルシリカ分散液)6510gを60℃に加熱した。その後、(3-トリエトキシシリル)プロピルコハク酸無水物(東京化成工業株式会社製)15.5gを加え、さらに60℃で4時間撹拌し、平均二次粒子径7.4nmのカルボキシ基で表面修飾されたシリカ粒子を含む水分散体Kを得た。
3.1.11. Preparation of Water Dispersion K 6510 g of PL-06L (manufactured by Fuso Chemical Industries, Ltd., 6% colloidal silica dispersion) was heated to 60.degree. After that, 15.5 g of (3-triethoxysilyl) propylsuccinic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was further stirred at 60°C for 4 hours. An aqueous dispersion K containing modified silica particles was obtained.
 3.1.12.水分散体Lの調製
 メタノール70gと3-アミノプロピルトリエトキシシラン(東京化成工業株式会社製)11.3gの混合液を、水分散体A(15.5%コロイダルシリカ分散液)2520gへ滴下し、常圧下で2時間還流を行った。その後、容量を一定に保ちつつ純水を滴下し、塔頂温が100℃に達した時点で純水の滴下を終了し、平均二次粒子径17.3nmのアミノ基で表面修飾されたシリカ粒子を含む水分散体Lを得た。
3.1.12. Preparation of Water Dispersion L A mixture of 70 g of methanol and 11.3 g of 3-aminopropyltriethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise to 2520 g of water dispersion A (15.5% colloidal silica dispersion). , and refluxed for 2 hours under normal pressure. After that, pure water was added dropwise while keeping the volume constant, and when the temperature at the top of the column reached 100°C, the dropwise addition of pure water was terminated. An aqueous dispersion L containing particles was obtained.
 3.2.成分(C)の調製
 3.2.1.オクチルイミノジプロピオン酸塩の調製
 アルキルアミンとしてオクチルアミン(東京化成工業株式会社製)2.5g(19.5mmol)、3-クロロプロピオン酸(東京化学工業株式会社製)5.7g(52.9mmol)を、水5.0mL、エタノール(関東化学株式会社製)32mLの混合溶液に加え、6時間還流撹拌した。この還流撹拌中に、水酸化カリウム(関東化学株式会社製)より調製した水酸化カリウム水溶液(5.0mol/L)7.8mLを加えpH調整を行った。その後、溶液を4℃に冷却し、沈殿物を生成した。生成した沈殿物を、エタノールにて洗浄した後、ろ過し、減圧乾燥させて固体を回収し、オクチルイミノジプロピオン酸塩を得た。
3.2. Preparation of Component (C) 3.2.1. Preparation of octyliminodipropionate As alkylamine, octylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) 2.5 g (19.5 mmol), 3-chloropropionic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 5.7 g (52.9 mmol) ) was added to a mixed solution of 5.0 mL of water and 32 mL of ethanol (manufactured by Kanto Kagaku Co., Ltd.) and stirred under reflux for 6 hours. During this reflux stirring, 7.8 mL of potassium hydroxide aqueous solution (5.0 mol/L) prepared from potassium hydroxide (manufactured by Kanto Kagaku Co., Ltd.) was added to adjust the pH. The solution was then cooled to 4° C. to form a precipitate. After washing the generated precipitate with ethanol, it was filtered and dried under reduced pressure to collect a solid to obtain octyliminodipropionate.
 3.2.2.ラウリルイミノジプロピオン酸塩の調製
 アルキルアミンとしてラウリルアミン(東京化成工業株式会社製)3.6g(19.5mmol)を用いた他は、上記「3.2.1.オクチルイミノジプロピオン酸塩の調製」と同様の操作を行い、ラウリルイミノジプロピオン酸塩を得た。
3.2.2. Preparation of lauryliminodipropionate 3.6 g (19.5 mmol) of laurylamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used as the alkylamine, but the above “3.2.1. Preparation” to obtain lauryl imino dipropionate.
 3.2.3.ミリスチルイミノジプロピオン酸塩の調製
 アルキルアミンとしてミリスチルアミン(東京化成工業株式会社製)4.2g(19.5mmol)を用いた他は、上記「3.2.1.オクチルイミノジプロピオン酸塩の調製」と同様の操作を行い、ミリスチルイミノジプロピオン酸塩を得た。
3.2.3. Preparation of myristyliminodipropionate As the alkylamine, 4.2 g (19.5 mmol) of myristylamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used, but the above "3.2.1. Octyliminodipropionate Preparation” to obtain myristyliminodipropionate.
 3.2.4.パルミチルイミノジプロピオン酸塩の調製
 アルキルアミンとしてパルミチルアミン(東京化成工業株式会社製)4.7g(19.5mmol)を用いた他は、上記「3.2.1.オクチルイミノジプロピオン酸塩の調製」と同様の操作を行い、パルミチルイミノジプロピオン酸塩を得た。
3.2.4. Preparation of Palmityliminodipropionate Salt Other than using 4.7 g (19.5 mmol) of palmitylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) as the alkylamine, the above "3.2.1. Octyliminodipropionic acid Preparation of salt” to obtain palmityliminodipropionate.
 3.2.5.ステアリルイミノジプロピオン酸塩の調製
 アルキルアミンとしてステアリルアミン(東京化成工業株式会社製)5.3g(19.5mmol)を用いた他は、上記「3.2.1.オクチルイミノジプロピオン酸塩の調製」と同様の操作を行い、ステアリルイミノジプロピオン酸塩を得た。
3.2.5. Preparation of stearyliminodipropionate As the alkylamine, 5.3 g (19.5 mmol) of stearylamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was used. Preparation” to obtain stearyliminodipropionate.
 3.3.化学機械研磨用組成物の調製
 表1~表3に示す組成となるように各成分を混合し、さらに表1~表3に示すpHとなるようにpH調整剤として、水酸化カリウム水溶液(関東化学株式会社製、商品名「48%水酸化カリウム水溶液」)、アンモニア水(富士フイルム和光純薬株式会社製、商品名「アンモニア水」、マレイン酸(富士フイルム和光純薬株式会社製、商品名「マレイン酸」)、酢酸(富士フイルム和光純薬株式会社製、商品名「酢酸」)、フマル酸(富士フイルム和光純薬株式会社製、商品名「フマル酸」)を必要に応じて添加して調整し、全成分の合計量が100質量%となるように純水を添加して、各実施例および各比較例の化学機械研磨用組成物を調製した。このようにして得られた各化学機械研磨用組成物について、ゼータ電位測定装置(Dispersion Technology Inc.製、型式「DT300」)を用いて砥粒のゼータ電位を測定した結果を表1~表3に併せて示す。
3.3. Preparation of chemical mechanical polishing composition Each component was mixed so as to have the composition shown in Tables 1 to 3, and an aqueous potassium hydroxide solution (Kanto Chemical Co., Ltd., product name “48% potassium hydroxide aqueous solution”), ammonia water (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., product name “ammonia water”, maleic acid (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., product name “maleic acid”), acetic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., trade name “acetic acid”), and fumaric acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., trade name “fumaric acid”) are added as necessary. Pure water was added so that the total amount of all components was 100% by mass to prepare the chemical mechanical polishing compositions of each example and each comparative example. Tables 1 to 3 also show the results of measuring the zeta potential of the abrasive grains of the chemical mechanical polishing composition using a zeta potential measuring device (manufactured by Dispersion Technology Inc., model "DT300").
 3.4.評価方法
 3.4.1.モリブデン膜およびシリコン酸化膜の研磨速度評価
 上記で調製した化学機械研磨用組成物を用いて、直径12インチのモリブデン膜200nm付きウエハおよび直径12インチのシリコン酸化膜(p-TEOS膜)1000nm付きウエハをそれぞれ被処理体として、下記の条件で化学機械研磨試験を行い、その後、下記の条件でブラシスクラブ洗浄を行った。
(研磨条件)
・研磨装置:アプライド・マテリアルズ社製、型式「Reflexion-LK」
・研磨パッド:富士紡績株式会社製、「多孔質ポリウレタン製パッド;H800-type1(3-1S)775」
・化学機械研磨用組成物供給速度:300mL/分
・定盤回転数:100rpm
・ヘッド回転数:90rpm
・ヘッド押し付け圧:2psi
・研磨時間:60秒
・研磨速度(nm/分)=(研磨前の膜の厚さ-研磨後の膜の厚さ)/研磨時間
(ブラシスクラブ洗浄条件)
・処理剤:純水
・上部ブラシ回転数:400rpm
・下部ブラシ回転数:400rpm
・基板回転数:50rpm
・処理剤供給速度:1200mL/分
3.4. Evaluation method 3.4.1. Polishing rate evaluation of molybdenum film and silicon oxide film Using the chemical mechanical polishing composition prepared above, a 12-inch diameter wafer with a 200 nm molybdenum film and a 12-inch diameter wafer with a 1000 nm silicon oxide film (p-TEOS film) were used as objects to be treated, chemical mechanical polishing tests were performed under the following conditions, and then brush scrub cleaning was performed under the following conditions.
(polishing conditions)
・Polishing device: Model “Reflexion-LK” manufactured by Applied Materials
・ Polishing pad: Fuji Spinning Co., Ltd., “Porous polyurethane pad; H800-type1 (3-1S) 775”
・Chemical mechanical polishing composition supply rate: 300 mL/min ・Surface plate rotation speed: 100 rpm
・Head rotation speed: 90 rpm
・Head pressing pressure: 2 psi
・Polishing time: 60 seconds ・Polishing speed (nm/min) = (thickness of film before polishing - thickness of film after polishing) / polishing time (brush scrub cleaning conditions)
・Processing agent: pure water ・Upper brush rotation speed: 400 rpm
・Lower brush rotation speed: 400 rpm
・Substrate rotation speed: 50 rpm
・Treatment agent supply rate: 1200 mL/min
 なお、モリブデン膜の厚さは、抵抗率測定機(ケーエルエー・テンコール社製、型式「RS-100」)により直流4探針法で抵抗を測定し、このシート抵抗値とモリブデンの体積抵抗率から下記式によって算出した。
 モリブデン膜の厚さ(nm)=[モリブデン膜の体積抵抗率(Ω・m)÷シート抵抗値(Ω/sq)]×10
 また、シリコン酸化膜の厚さは、光学式膜厚測定装置(ケーエルエー・テンコール社製、型式「ASET F5x」)により測定した。
The thickness of the molybdenum film is determined by measuring the resistance by the DC 4-probe method using a resistivity measuring device (manufactured by KLA-Tencor, model "RS-100"), and from the sheet resistance value and the volume resistivity of molybdenum. It was calculated by the following formula.
Molybdenum film thickness (nm)=[volume resistivity of molybdenum film (Ω·m)÷sheet resistance value (Ω/sq)]×10 9
In addition, the thickness of the silicon oxide film was measured by an optical film thickness measuring device (manufactured by KLA-Tencor, model "ASET F5x").
 モリブデン膜の研磨速度の評価基準は下記の通りである。モリブデン膜の研磨速度の評価結果を表1~表3に併せて示す。
(評価基準)
・AA:研磨速度が2.5nm/分以上30nm/分未満である場合、適切な研磨速度であるので非常に良好と判断した。
・A:研磨速度が30nm/分以上40nm/分未満である場合、研磨速度が大きく量産の際に制御に注意を要するが、実用に供することができるので良好と判断した。
・B:研磨速度が2.5nm/分未満である場合、研磨速度が小さく実用困難であるため不良と判断した。あるいは、研磨速度が40nm/分以上である場合、研磨速度が大きく量産時の制御ができず実用困難であるため不良と判断した。
The evaluation criteria for the molybdenum film polishing rate are as follows. Tables 1 to 3 also show the evaluation results of the molybdenum film polishing rate.
(Evaluation criteria)
AA: When the polishing rate was 2.5 nm/min or more and less than 30 nm/min, the polishing rate was appropriate and judged to be very good.
A: When the polishing rate is 30 nm/min or more and less than 40 nm/min, the polishing rate is high and careful control is required in mass production, but it is judged to be good because it can be put to practical use.
B: When the polishing rate was less than 2.5 nm/min, the polishing rate was so low that it was difficult to put into practical use, so it was judged to be unsatisfactory. Alternatively, when the polishing rate was 40 nm/min or more, the polishing rate was so high that it could not be controlled during mass production, making it difficult to practically use.
 また、上記で算出したモリブデン膜の研磨速度とシリコン酸化膜の研磨速度を用いて下記式に従い研磨速度比を算出した。
 研磨速度比=シリコン酸化膜の研磨速度(nm/分)/モリブデン膜の研磨速度(nm/分)
(評価基準)
・AA:研磨速度比が1以上である場合、シリコン酸化膜に対してモリブデン膜の過剰研磨が十分に抑制できるため非常に良好と判断した。
・A:研磨速度比が0.5以上1未満である場合、シリコン酸化膜に対するモリブデン膜の研磨速度が大きく量産の際に制御に注意を要するが、実用に供することができるので良好と判断した。
・B:研磨速度比が0.5未満である場合、シリコン酸化膜に対してモリブデン膜が過剰に研磨されてしまい、実用困難であるため、不良と判断した。
Using the molybdenum film polishing speed and the silicon oxide film polishing speed calculated above, the polishing speed ratio was calculated according to the following equation.
Polishing speed ratio=Polishing speed of silicon oxide film (nm/min)/Polishing speed of molybdenum film (nm/min)
(Evaluation criteria)
AA: When the polishing rate ratio was 1 or more, excessive polishing of the molybdenum film with respect to the silicon oxide film was sufficiently suppressed, so it was judged to be very good.
A: When the polishing speed ratio is 0.5 or more and less than 1, the polishing speed of the molybdenum film with respect to the silicon oxide film is large, and care must be taken in controlling it in mass production. .
B: When the polishing rate ratio was less than 0.5, the molybdenum film was excessively polished with respect to the silicon oxide film, and it was judged to be defective because it was difficult to put into practical use.
 3.4.2.モリブデン膜のエッチング速度評価
 上記で調製した化学機械研磨用組成物を60℃に昇温し、30mm×10mmに裁断したモリブデン膜200nm付きウエハ片を5分間浸漬した。その後、ウエハ片を取り出して流水で水洗し、上記「3.4.1.モリブデン膜およびシリコン酸化膜の研磨速度評価」と同様の方法によりモリブデン膜の厚さを測定した。そして、浸漬前後のモリブデン膜の厚さの変化からエッチング速度を下記式により算出した。
 モリブデン膜のエッチング速度(nm/分)=(エッチング前のモリブデン膜の厚さ(nm)-エッチング後のモリブデン膜の厚さ(nm))/エッチング時間(分)
3.4.2. Evaluation of Etching Rate of Molybdenum Film The chemical mechanical polishing composition prepared above was heated to 60° C., and a wafer piece with a molybdenum film of 200 nm cut to 30 mm×10 mm was immersed for 5 minutes. After that, the wafer piece was taken out and washed with running water, and the thickness of the molybdenum film was measured in the same manner as in "3.4.1. Polishing rate evaluation of molybdenum film and silicon oxide film" above. Then, the etching rate was calculated from the change in the thickness of the molybdenum film before and after the immersion using the following formula.
Molybdenum film etching rate (nm/min)=(thickness of molybdenum film before etching (nm)−thickness of molybdenum film after etching (nm))/etching time (min)
 モリブデン膜のエッチング速度の評価基準は下記の通りである。モリブデン膜のエッチング速度の評価結果を表1~表3に併せて示す。
(評価基準)
・A:エッチング速度が0.1nm/分未満である場合、良好と判断した。
・B:エッチング速度が0.1nm/分以上である場合、エッチング速度が大きく実用困難であるため不良と判断した。
The evaluation criteria for the etching rate of the molybdenum film are as follows. Tables 1 to 3 also show the evaluation results of the etching rate of the molybdenum film.
(Evaluation criteria)
· A: When the etching rate was less than 0.1 nm/min, it was judged to be good.
B: When the etching rate was 0.1 nm/min or more, the etching rate was too high to be practical, so it was judged to be unsatisfactory.
 3.5.評価結果
 表1~表3に、各実施例および各比較例で使用した化学機械研磨用組成物の組成ならびに各評価結果を示す。
3.5. Evaluation Results Tables 1 to 3 show the composition of the chemical mechanical polishing composition used in each example and each comparative example and each evaluation result.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上表1~上表3中の各成分は、それぞれ下記の商品または試薬を用いた。
<成分(A)>
・水分散体A~L:上記「3.1.シリカ粒子水分散体の調製」の項で調製した水分散体A~L
<成分(B)>
・エチレンジアミン四酢酸鉄アンモニウム二水塩:キレスト株式会社製、商品名「キレストFN」
・クエン酸鉄三水和物:扶桑化学工業株式会社製、商品名「富士クエン酸鉄」
・アセチルアセトン鉄:キシダ化学株式会社製、商品名「アセチルアセトン鉄(III)」
・ジエチレントリアミン五酢酸鉄二アンモニウム塩:キレスト株式会社製、商品名「キレストFNZ―50」
・1,3-ジアミノプロパン四酢酸鉄アンモニウム一水塩:キレスト株式会社製、商品名「キレストPD―FN」
・硝酸鉄(III)九水和物:富士フイルム和光純薬株式会社製、商品名「硝酸鉄(III)九水和物」
<成分(C)>
・オクチルイミノジプロピオン酸塩:上記「3.2.成分(C)の調製」の項で調製したオクチルイミノジプロピオン酸塩
・ラウリルイミノジプロピオン酸塩:上記「3.2.成分(C)の調製」の項で調製したラウリルイミノジプロピオン酸塩
・ミリスチルイミノジプロピオン酸塩:上記「3.2.成分(C)の調製」の項で調製したミリスチルイミノジプロピオン酸塩
・パルミチルイミノジプロピオン酸塩:上記「3.2.成分(C)の調製」の項で調製したパルミチルイミノジプロピオン酸塩
・ステアリルイミノジプロピオン酸塩:上記「3.2.成分(C)の調製」の項で調製したステアリルイミノジプロピオン酸塩
・ドデシルアミノエチルアミノエチルグリシン:三洋化成工業株式会社製、商品名「レボン S」
・ラウラミドプロピルヒドロキシスルタイン:川研ファインケミカル株式会社、商品名「ソフタゾリンLSB-R」
・ラウリルヒドロキシスルホベタイン:花王株式会社製、商品名「アンヒトール20HD」
<その他の添加剤>
・ドデシルベンゼンスルホン酸アンモニウム塩:富士フイルム和光純薬株式会社製、商品名「ドデシルベンゼンスルホン酸アンモニウム」
・過酸化水素:富士フイルム和光純薬株式会社製、商品名「過酸化水素」
・オルト過ヨウ素酸:富士フイルム和光純薬株式会社製、商品名「オルト過よう素酸」
・ペルオキソ二硫酸アンモニウム:富士フイルム和光純薬株式会社製、商品名「ペルオキソ二硫酸アンモニウム」
・硫酸鉄(II)七水和物:富士フイルム和光純薬株式会社製、商品名「硫酸鉄(II)七水和物」
・エチレンジアミン四酢酸二アンモニウム塩:キレスト株式会社製、商品名「キレスト2N―40」
・ジエチレントリアミン五酢酸三アンモニウム塩:キレスト株式会社製、商品名「キレストHP-3NZ50」
The following products or reagents were used for each component in Tables 1 to 3 above.
<Component (A)>
Aqueous dispersions A to L: Aqueous dispersions A to L prepared in the above section "3.1. Preparation of silica particle aqueous dispersion"
<Component (B)>
・ Ethylenediaminetetraacetic acid iron ammonium dihydrate: manufactured by Cherest Co., Ltd., trade name “Cherest FN”
・ Iron citrate trihydrate: manufactured by Fuso Chemical Industry Co., Ltd., trade name “Fuji iron citrate”
Acetylacetone iron: manufactured by Kishida Chemical Co., Ltd., trade name "acetylacetonate iron (III)"
・ Diethylenetriamine pentaacetic acid iron diammonium salt: manufactured by Cherest Co., Ltd., trade name “Cherest FNZ-50”
・ 1,3-Diaminopropanetetraacetic acid ferric ammonium monohydrate: manufactured by Cherest Co., Ltd., trade name “Cherest PD-FN”
・ Iron (III) nitrate nonahydrate: manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name “Iron (III) nitrate nonahydrate”
<Component (C)>
- Octyliminodipropionate: Octyliminodipropionate prepared in the above section "3.2. Preparation of component (C)" - Lauryliminodipropionate: Above "3.2. Component (C)" Lauryliminodipropionate/myristyliminodipropionate prepared in the section "Preparation of": Myristyliminodipropionate/palmitylimino prepared in the above section "3.2. Preparation of component (C)" Dipropionate: Palmityliminodipropionate and stearyliminodipropionate prepared in the section "3.2. Preparation of component (C)" above: Preparation of component (C) above Stearyliminodipropionate and dodecylaminoethylaminoethylglycine prepared in the section ": manufactured by Sanyo Chemical Industries, Ltd., trade name "Lebon S"
・ Lauramidopropyl hydroxysultaine: Kawaken Fine Chemicals Co., Ltd., trade name “Softazolin LSB-R”
- Lauryl hydroxysulfobetaine: manufactured by Kao Corporation, trade name "Amphitol 20HD"
<Other additives>
・ Dodecylbenzenesulfonate ammonium salt: manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name “ammonium dodecylbenzenesulfonate”
・Hydrogen peroxide: manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name “hydrogen peroxide”
・ Orthoperiodic acid: manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., trade name “orthoperiodic acid”
・ Ammonium peroxodisulfate: manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name “ammonium peroxodisulfate”
・ Iron sulfate (II) heptahydrate: manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., trade name “Iron (II) sulfate heptahydrate”
・ Ethylenediaminetetraacetic acid diammonium salt: manufactured by Cherest Co., Ltd., trade name “Cherest 2N-40”
・ Diethylenetriaminepentaacetic acid triammonium salt: manufactured by Cherest Co., Ltd., trade name “Cherest HP-3NZ50”
 成分(A)と成分(B)とを併用した実施例1~26の化学機械研磨用組成物によれば、モリブデン膜を酸化させることでモリブデン膜およびシリコン酸化膜の両者を安定した研磨速度で研磨できると共に、モリブデンとアニオン種との過剰な反応を防ぎ、モリブデン膜の腐食の発生を低減できることがわかる。 According to the chemical mechanical polishing compositions of Examples 1 to 26 in which the component (A) and the component (B) were used in combination, the molybdenum film was oxidized to polish both the molybdenum film and the silicon oxide film at a stable polishing rate. It can be seen that polishing can be performed, excessive reaction between molybdenum and anion species can be prevented, and corrosion of the molybdenum film can be reduced.
 これに対し、キレート化合物ではない硝酸鉄(III)九水和物を含有する比較例1~2の化学機械研磨用組成物によれば、モリブデン膜表面に腐食が発生しやすくなり、実用に供することが難しいことがわかる。成分(B)を含有しない比較例3~7の化学機械研磨用組成物によれば、モリブデン膜の研磨速度が低くなりすぎる、あるいは高すぎるため、実用に供することが難しいことがわかる。鉄(III)化合物とキレート剤とを別個に添加して、それらを組成物中で反応させることによってin situで鉄(III)イオンのキレート化合物を生成させた比較例8~9の化学機械研磨用組成物によれば、組成物中に鉄(III)イオンが過剰に存在することにより、モリブデン膜表面に腐食が発生しやすくなり、実用に供することが難しいことがわかる。 On the other hand, according to the chemical mechanical polishing compositions of Comparative Examples 1 and 2 containing iron (III) nitrate nonahydrate, which is not a chelate compound, the surface of the molybdenum film is likely to be corroded, so that it can be put to practical use. I know it's difficult. It can be seen that the chemical mechanical polishing compositions of Comparative Examples 3 to 7, which do not contain the component (B), are difficult to put to practical use because the molybdenum film polishing rate is too low or too high. Chemical-mechanical polishing of Comparative Examples 8-9 in which iron (III) compounds and chelating agents were added separately and reacted in the composition to form iron (III) ion chelates in situ It can be seen that the excessive presence of iron (III) ions in the composition makes the surface of the molybdenum film susceptible to corrosion, making it difficult to put it to practical use.
 本発明は、前述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same function, method, and result, or configurations that have the same purpose and effect). Moreover, the present invention includes configurations in which non-essential portions of the configurations described in the embodiments are replaced. Moreover, the present invention includes a configuration that achieves the same effects as the configuration described in the embodiment or a configuration that can achieve the same object. In addition, the present invention includes configurations obtained by adding known techniques to the configurations described in the embodiments.
10…基体、12…シリコン酸化膜、14…配線用溝、16…バリアメタル膜、18…モリブデン膜、42…スラリー供給ノズル、44…スラリー(化学機械研磨用組成物)、46…研磨用パッド、48…ターンテーブル、50…半導体基板、52…キャリアーヘッド、54…水供給ノズル、56…ドレッサー、100…被処理体、200…研磨装置 DESCRIPTION OF SYMBOLS 10... Substrate, 12... Silicon oxide film, 14... Wiring groove, 16... Barrier metal film, 18... Molybdenum film, 42... Slurry supply nozzle, 44... Slurry (chemical mechanical polishing composition), 46... Polishing pad , 48... Turntable, 50... Semiconductor substrate, 52... Carrier head, 54... Water supply nozzle, 56... Dresser, 100... Object to be processed, 200... Polishing apparatus

Claims (10)

  1.  砥粒(A)と、鉄(III)化合物(B)と、を含有し、
     前記鉄(III)化合物(B)がキレート化合物である、化学機械研磨用組成物。
    containing abrasive grains (A) and an iron (III) compound (B),
    A chemical mechanical polishing composition, wherein the iron (III) compound (B) is a chelate compound.
  2.  アミノ基およびその塩からなる群より選択される少なくとも1種の官能基と、カルボキシ基、スルホ基、およびそれらの塩からなる群より選択される少なくとも1種の官能基と、を有する化合物(C)をさらに含有する、請求項1に記載の化学機械研磨用組成物。 A compound (C ), the chemical mechanical polishing composition according to claim 1 .
  3.  化学機械研磨用組成物中における前記砥粒(A)の平均二次粒子径が5nm以上100nm以下である、請求項1または請求項2に記載の化学機械研磨用組成物。 The chemical mechanical polishing composition according to claim 1 or 2, wherein the abrasive grains (A) in the chemical mechanical polishing composition have an average secondary particle size of 5 nm or more and 100 nm or less.
  4.  化学機械研磨用組成物中における前記砥粒(A)の会合度が1.0以上2.0以下である、請求項1ないし請求項3のいずれか一項に記載の化学機械研磨用組成物。 4. The chemical mechanical polishing composition according to claim 1, wherein the degree of association of the abrasive grains (A) in the chemical mechanical polishing composition is 1.0 or more and 2.0 or less. .
  5.  化学機械研磨用組成物中における前記砥粒(A)のゼータ電位が0mV未満である、請求項1ないし請求項4のいずれか一項に記載の化学機械研磨用組成物。 The chemical mechanical polishing composition according to any one of claims 1 to 4, wherein the abrasive grains (A) in the chemical mechanical polishing composition have a zeta potential of less than 0 mV.
  6.  前記砥粒(A)が、下記一般式(1)で表される官能基および下記一般式(2)で表される官能基のうち少なくとも1種の官能基を有する、請求項1ないし請求項5のいずれか一項に記載の化学機械研磨用組成物。
     -SO  ・・・・・(1)
     -COO ・・・・・(2)
    (上記式(1)および(2)中、Mは1価の陽イオンを表す。)
    Claims 1 to 3, wherein the abrasive grains (A) have at least one functional group selected from the functional groups represented by the following general formula (1) and the following general formula (2): 6. The chemical mechanical polishing composition according to any one of 5.
    - SO 3 - M + (1)
    - COO - M + (2)
    (In formulas (1) and (2) above, M + represents a monovalent cation.)
  7.  pHが1以上6以下である、請求項1ないし請求項6のいずれか一項に記載の化学機械研磨用組成物。 The chemical mechanical polishing composition according to any one of claims 1 to 6, which has a pH of 1 or more and 6 or less.
  8.  請求項1ないし請求項7のいずれか一項に記載の化学機械研磨用組成物を用いて半導体基板を研磨する工程を含む、研磨方法。 A polishing method comprising the step of polishing a semiconductor substrate using the chemical mechanical polishing composition according to any one of claims 1 to 7.
  9.  前記半導体基板が、モリブデンおよびモリブデン合金からなる群より選択される少なくとも1種により構成される部位を備える、請求項8に記載の研磨方法。 The polishing method according to claim 8, wherein the semiconductor substrate has a portion composed of at least one selected from the group consisting of molybdenum and molybdenum alloys.
  10.  砥粒(A)と、鉄(III)化合物(B)と、を液状媒体に溶解または分散させる工程を含み、
     前記鉄(III)化合物(B)がキレート化合物である、化学機械研磨用組成物の製造方法。
    Dissolving or dispersing abrasive grains (A) and iron (III) compound (B) in a liquid medium,
    A method for producing a chemical mechanical polishing composition, wherein the iron (III) compound (B) is a chelate compound.
PCT/JP2022/038748 2021-11-12 2022-10-18 Chemical-mechanical polishing composition, production method therefor, and polishing method WO2023085008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-184832 2021-11-12
JP2021184832 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023085008A1 true WO2023085008A1 (en) 2023-05-19

Family

ID=86335578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038748 WO2023085008A1 (en) 2021-11-12 2022-10-18 Chemical-mechanical polishing composition, production method therefor, and polishing method

Country Status (2)

Country Link
TW (1) TW202320159A (en)
WO (1) WO2023085008A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235317A (en) * 2003-01-29 2004-08-19 Fuji Photo Film Co Ltd Polishing solution for metal and polishing method
JP2015525483A (en) * 2012-06-11 2015-09-03 キャボット マイクロエレクトロニクス コーポレイション Compositions and methods for polishing molybdenum
JP2019172733A (en) * 2018-03-27 2019-10-10 株式会社フジミインコーポレーテッド Polishing composition
JP2021509768A (en) * 2018-01-08 2021-04-01 シーエムシー マテリアルズ,インコーポレイティド Tungsten buffing composition with improved topography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235317A (en) * 2003-01-29 2004-08-19 Fuji Photo Film Co Ltd Polishing solution for metal and polishing method
JP2015525483A (en) * 2012-06-11 2015-09-03 キャボット マイクロエレクトロニクス コーポレイション Compositions and methods for polishing molybdenum
JP2021509768A (en) * 2018-01-08 2021-04-01 シーエムシー マテリアルズ,インコーポレイティド Tungsten buffing composition with improved topography
JP2019172733A (en) * 2018-03-27 2019-10-10 株式会社フジミインコーポレーテッド Polishing composition

Also Published As

Publication number Publication date
TW202320159A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US10066126B2 (en) Tungsten processing slurry with catalyst
EP3891236B1 (en) Composition and method for metal cmp
TWI825146B (en) Chemical mechanical polishing aqueous dispersion and manufacturing method thereof, and chemical mechanical polishing method
TW202010005A (en) Aqueous dispersion for chemical mechanical polishing and manufacturing method thereof which can suppress excessive etching of a polished surface including a wiring metal material and a barrier metal material
KR20210099166A (en) Composition for tungsten CMP
WO2023085008A1 (en) Chemical-mechanical polishing composition, production method therefor, and polishing method
WO2023085007A1 (en) Chemical-mechanical polishing composition and polishing method
JP6892035B1 (en) Composition for chemical mechanical polishing and chemical mechanical polishing method
WO2023085009A1 (en) Chemical-mechanical polishing composition and polishing method
JP2023072344A (en) Composition for chemical mechanical polishing and polishing method
WO2023026813A1 (en) Chemical mechanical polishing composition, and polishing method
WO2023026814A1 (en) Composition for chemical mechanical polishing and polishing method
WO2023026780A1 (en) Composition for chemical mechanical polishing and polishing method
WO2023026778A1 (en) Chemical mechanical polishing composition and polishing method
WO2023026779A1 (en) Composition for chemical mechanical polishing and polishing method
WO2023189400A1 (en) Method for producing abrasive grains, composition for chemical mechanical polishing, and polishing method
JP2023030893A (en) Chemical mechanical polishing composition and polishing method
JP7468811B1 (en) Chemical mechanical polishing composition and polishing method
JP6892034B1 (en) Composition for chemical mechanical polishing and chemical mechanical polishing method
JP6892033B1 (en) Composition for chemical mechanical polishing and chemical mechanical polishing method
JP7375483B2 (en) Chemical mechanical polishing composition and chemical mechanical polishing method
WO2023007938A1 (en) Composition for chemical mechanical polishing and polishing method
WO2021095415A1 (en) Chemical mechanical polishing composition and chemical mechanical polishing method
WO2021124771A1 (en) Composition for chemical mechanical polishing, chemical mechanical polishing method, and method for manufacturing particles for chemical mechanical polishing
TW202340404A (en) Composition for semiconduct process and manufacturing method of semiconduct device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559506

Country of ref document: JP