WO2023084959A1 - Electric vehicle - Google Patents

Electric vehicle Download PDF

Info

Publication number
WO2023084959A1
WO2023084959A1 PCT/JP2022/037508 JP2022037508W WO2023084959A1 WO 2023084959 A1 WO2023084959 A1 WO 2023084959A1 JP 2022037508 W JP2022037508 W JP 2022037508W WO 2023084959 A1 WO2023084959 A1 WO 2023084959A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power
power consumption
battery
electric vehicle
Prior art date
Application number
PCT/JP2022/037508
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 宮本
亮 清水
憲彦 生駒
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2023084959A1 publication Critical patent/WO2023084959A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to control technology for an electric vehicle that runs by driving a motor (electric motor) with electric power.
  • SOC state of charge
  • battery power management detects the power consumption of the drive motor and air conditioner as well as the power consumption of auxiliary equipment, and controls the power generated by the generator and the motor torque during regeneration.
  • Patent Document 1 discloses a method of correcting SOP out in order to prevent a drop in generated power.
  • Patent Document 2 discloses a method for increasing the generated power by adjusting the input limit power SOP in and the output limit power SOP out . A method of adding correction power to generated power when the difference becomes small is disclosed.
  • the background art described above is premised on accurate detection of power consumption, and cannot be an effective countermeasure when there is a detection error.
  • the detected value of the power consumption of the accessory may be smaller than the actual value due to insufficient sensor or calculation accuracy. If the detected value is smaller than the actual accessory power consumption, the drive battery charge power during power generation or regenerative braking will be too small, and the remaining SOC of the drive battery may be depleted.
  • Patent Document 1 discloses countermeasures against transient excessive discharge power, and is not suitable for correcting stationary detection errors. Further, in Japanese Patent Application Laid-Open No. 2002-200010, since correction is performed according to the power difference between SOP in and SOP out , there is a possibility that the SOC decrease cannot be effectively prevented.
  • the present invention has been devised in view of the above circumstances, and an object of the present invention is to provide an electric vehicle capable of avoiding an excessive decrease in SOC caused by an error in detecting power consumption and the resulting stoppage of the vehicle. .
  • one embodiment of the present invention provides a rechargeable battery, a generator capable of controlling generated power, a drive motor for driving a vehicle with power from the battery and/or the generator, and electrical equipment that consumes power, wherein the correction amount generation unit generates a correction amount that increases according to the amount of decrease in the state of charge value of the battery when the state of charge value of the battery drops below a predetermined value.
  • an adding unit for calculating a second power consumption value by adding the correction amount to the first power consumption value calculated from the power consumption detection value of the electrical equipment; and a vehicle driving power value for driving the vehicle.
  • the control unit that controls the power generated by the generator based on the power value including the second power consumption value and maintains the state of charge value of the battery at the predetermined value or more. Further, in one embodiment of the present invention, if the state of charge value of the battery is equal to or greater than the predetermined value, the correction amount is maintained at zero, and if it falls below the predetermined value, the correction amount is proportional to the decrease amount. The amount is increased, and the correction amount is provided with an upper limit value for overcharge protection. Moreover, one embodiment of the present invention is characterized in that the predetermined value is a discharge prohibition value of the battery.
  • an embodiment of the present invention is characterized in that the detection accuracy of the first power consumption detection value of the electrical equipment is lower than that of other detection values including the power consumption detection value of the drive motor.
  • the generator is connected to the engine, and the control section controls the required torque to the engine and the generator.
  • the correction amount when the state-of-charge value of the battery drops below a predetermined value, a correction amount that increases according to the amount of decrease in the state-of-charge value is generated, and the correction amount is applied to the consumption of electrical equipment.
  • the correction of the power consumption detection value of the electrical equipment is not executed until the decrease in the state of charge value of the battery reaches a predetermined value, and when the state of charge value decreases below the predetermined value, the decrease amount is calculated.
  • the predetermined value which is the criterion for starting execution of the correction
  • the battery discharge prohibition value is the battery discharge prohibition value, so that the vehicle stop due to insufficient battery charging power can be effectively avoided.
  • the power consumption detection value of electrical equipment whose detection or calculation accuracy is relatively low the power consumption error is relatively low, such as for auxiliary equipment in a vehicle. Even if it is large, the state-of-charge value of the battery can be properly maintained to effectively prevent the vehicle from stopping.
  • the generated power is controlled by connecting the generator to the engine, so that in a so-called hybrid vehicle, the state of charge value of the battery can be properly maintained and the vehicle stop can be avoided.
  • FIG. 1 is a block diagram showing a schematic configuration of an electric vehicle according to one embodiment of the present invention
  • FIG. FIG. 3 is a functional block diagram for explaining the operation of a vehicle ECU in the electric vehicle according to the present embodiment
  • 3 is a graph showing an example of a correction amount ⁇ of a correction amount generation unit shown in FIG. 2
  • 4 is a time chart showing an example of the operation of the control device according to the embodiment
  • the electric vehicle 10 has a drive motor 101 , a battery 102 , a generator 103 , an engine 104 and accessories 105 . Further, as their control system, the electric vehicle 10 includes a vehicle ECU (Electronic Control Unit) 200, a MCU (Motor Control Unit) 201, a BMU (Battery Control Unit) 202, a GCU (Generator Control Unit). : generator control unit) 203 , an engine (ENG) ECU 204 , and an accessory ECU 205 .
  • vehicle ECU Electric Control Unit
  • MCU Motor Control Unit
  • BMU Battery Control Unit
  • GCU Generator Control Unit
  • a solid line indicates a power line
  • a broken line indicates a communication line
  • a circuit including an inverter and a DC-DC converter is configured between the battery 102, the drive motor 101, the generator 103 and the auxiliary equipment 105.
  • the electric vehicle 10 may be a PHEV (plug-in hybrid electric vehicle: a plug-in hybrid capable of external charging or external power supply).
  • the drive motor 101 operates using electric power to rotate the driving wheels of the electric vehicle 10, and regeneratively generates power to generate regenerative braking force when the electric vehicle 10 decelerates.
  • a battery 102 stores power to operate the drive motor 101 .
  • the power stored in the battery 102 includes, for example, power generated by a generator 103 described later, power generated by regenerative power generation of the drive motor 101, and power supplied by connecting an external power supply to a charging mechanism (not shown).
  • the output (discharge) power from the battery 102 is positive, and the input (charge) power to the battery 102 is negative.
  • the generator 103 is driven by the engine 104 and generates electric power to be used by the drive motor 101 and the accessories 105 of the electric vehicle 10 .
  • a surplus of electric power generated by the generator 103 that is not used by the drive motor 101 or the auxiliary equipment 105 of the electric vehicle 10 is accumulated in the battery 102 .
  • the generator 103 generates electric power to be stored in the battery 102 when the charging rate SOC of the battery 102 becomes small.
  • the engine 104 is an internal combustion engine that operates by burning fuel, and is connected to the rotating shaft of the generator 103 . Note that so-called parallel running, in which the engine 104 rotates the drive wheels of the electric vehicle 10 based on the running state of the electric vehicle 10, may be possible.
  • the vehicle ECU 200 is connected to the MCU 201, the BMU 202, the GCU 203, the engine ECU 204, and the accessory ECU 205, and controls the entire vehicle as a control device for the electric vehicle 10.
  • Various sensors such as an accelerator pedal sensor that detects the operation amount AP of the accelerator pedal, a brake pedal sensor that detects the operation amount of the brake pedal, and a vehicle speed sensor that detects the vehicle speed V of the electric vehicle 10 are connected to the vehicle ECU 200. It is an accelerator pedal sensor that detects the operation amount AP of the accelerator pedal, a brake pedal sensor that detects the operation amount of the brake pedal, and a vehicle speed sensor that detects the vehicle speed V of the electric vehicle 10. It is an accelerator pedal sensor that detects the operation amount AP of the accelerator pedal, a brake pedal sensor that detects the operation amount of the brake pedal, and a vehicle speed sensor that detects the vehicle speed V of the electric vehicle 10. It is an accelerator pedal sensor that detects the operation amount AP of the accelerator pedal, a brake pedal
  • the MCU 201 controls the drive motor 101, the BMU 202 the battery 102, the GCU 203 the generator 103, the engine ECU 204 the engine 104, and the accessory ECU 205 the accessories 105, respectively.
  • Auxiliary equipment 105 includes electrical equipment that consumes electric power, such as an air conditioner electric compressor, front/rear glass heaters, heated door mirrors, and various lamps.
  • BMU 202 outputs information such as SOC and temperature of battery 102 to vehicle ECU 200 as battery state quantities.
  • accessory ECU 205 calculates the electric power consumed by accessory 105 using a sensor value such as a DC-DC converter, and outputs the calculated accessory power consumption value P1 to vehicle ECU 200 .
  • the vehicle ECU 200 includes a processor such as a CPU (Central Processing Unit), a ROM (Read-Only Memory) for storing control programs and the like executed by the processor, a RAM (Random Access Memory) as a work area for the control program, and peripheral circuits. It is configured including an interface unit with etc.
  • the control function according to this embodiment can be implemented by executing a program on the processor of vehicle ECU 200 .
  • the vehicle ECU 200 functioning as the control device according to this embodiment will be described in detail below.
  • the present embodiment can be applied to on-vehicle electrical equipment whose power consumption detection accuracy is lower than that of the drive motor 101 and the like, the auxiliary equipment 105 is shown here as an example of such on-vehicle equipment.
  • the reason for this is that the detected value of the power consumption of these auxiliary devices 105 may be smaller than the actual value due to insufficient sensor or calculation accuracy.
  • the SOC can be prevented from exceeding its limit, or the SOC can be increased. can be made
  • the vehicle ECU 200 has the following functions.
  • vehicle drive power Pd varies depending on accelerator operation AP and vehicle speed V
  • target charge power Ptc is set according to a decrease in SOC of battery 102 .
  • the motor power consumption Pm is the power actually consumed by the drive motor 101, and the chargeable power Pcp varies depending on the battery 102 temperature.
  • Limiting unit 305 outputs the smaller of target generated power Ptg and upper limit generated power Pug as requested generated power Prg, and requested generated power Prg is reflected in requested torque to engine 104 and generator 103 .
  • the target generated power Ptg and the upper limit generated power Pug decrease, so the motor power consumption Pm relatively increases, and the chances of charging the battery 102 decrease. do. These conditions combine to reduce the chances of charging, resulting in a decrease in SOC.
  • the output of the drive motor 101 is restricted so that the vehicle drive power Pd and the motor power consumption Pm match.
  • the functions illustrated in FIG. 2 are implemented by executing a program on the processor of vehicle ECU 200, and the functions of adders 303, 304 and limiter 305 can use existing control configurations. Therefore, the characteristic function of this embodiment can be realized by the correction amount generation section 301 and the addition section 302 . This characteristic function will be described below.
  • the correction amount generator 301 increases the correction amount ⁇ according to the amount of the drop.
  • the correction amount .DELTA. for the SOC increases as the SOC falls below a predetermined level, thereby increasing the engine power generation amount to avoid a decrease in the SOC or to quickly raise the SOC to a predetermined level or higher.
  • the correction amount ⁇ is increased according to the amount of SOC drop (region R2).
  • correction amount ⁇ is increased in proportion to the amount of SOC decrease from discharge inhibition value B1.
  • the correction amount ⁇ is limited to a range in which the battery 102 is not overcharged, and the upper limit is set to ⁇ UL here. Therefore, even if the SOC drops below the SOC value B2 ( ⁇ B1) at which the correction amount ⁇ reaches the upper limit ⁇ UL , the correction amount ⁇ does not increase any further (region R3).
  • the charging power of the battery 102 decreases, and the target charging power Ptc exceeds the chargeable power Pcp, so that the SOC of the battery 102, which tends to discharge, decreases to the discharge inhibition value B1 as shown in FIG. 4A. do.
  • vehicle ECU 200 (correction amount generation unit 301), as shown in FIG. Increase the correction amount ⁇ .
  • the correction amount ⁇ is added to the auxiliary power consumption calculation value P1 to increase the auxiliary power consumption P2.
  • the calculated value P1 of the power consumption of the accessory 105 is smaller than the actual power consumption (actual value) P0, the calculated value of the accessory power consumption By adding the correction amount ⁇ to P1, it is possible to optimize the generated power as a result, and to avoid the situation where the SOC of the battery 102 excessively decreases.
  • the correction amount ⁇ is added to the detected accessory power consumption calculation value P1 to increase the engine power generation amount. Such vehicle stop can be effectively avoided.

Abstract

This electric vehicle, comprising a battery, a generator, a drive motor, and electrical devices, further comprises: a correction amount generation unit that generates a correction amount Δ which increases in accordance with a decrease amount when a charging state value of the battery decreases below a prescribed value; an adding unit that adds the correction amount Δ to a first power consumption value P1 calculated from a power consumption detection value of the electrical devices and calculates a second power consumption value P2; and a control unit that controls generated power by the generator on the basis of a power value including a vehicle drive power value Pd for driving the vehicle and the second power consumption value P2, and maintains the charging state value of the battery at a prescribed value or higher.

Description

電動車両electric vehicle
 本発明は電力によりモータ(電動機)を駆動して走行する電動車両の制御技術に関する。 The present invention relates to control technology for an electric vehicle that runs by driving a motor (electric motor) with electric power.
 電動車両において、バッテリの充電状態値(SOC:State Of Charge)が限度を越えて低下するとバッテリが劣化しやすくなりバッテリ保護の観点からSOCの過剰な低下を避ける必要がある。そのためにバッテリの電力マネージメントにおいて、駆動モータやエアコンの消費電力および補機類の消費電力を検出し、ジェネレータの発電電力および回生時のモータトルクを制御している。 In an electric vehicle, if the state of charge (SOC) of the battery drops beyond the limit, the battery is likely to deteriorate, and from the viewpoint of battery protection, it is necessary to avoid an excessive drop in SOC. For this reason, battery power management detects the power consumption of the drive motor and air conditioner as well as the power consumption of auxiliary equipment, and controls the power generated by the generator and the motor torque during regeneration.
 たとえば放電禁止レベルまでSOCが低下すると、駆動用バッテリを充電するために発電電力を増加させた上で、放電可能電力(あるいは出力限度電力)SOP(Status Of Power)outをゼロに制限し放電を抑制する。特許文献1には発電電力低下を防止するためにSOPoutを補正する方法が開示され、また特許文献2には発電電力を増加させるために、入力限度電力SOPinと出力限度電力SOPoutとの差分が小さくなったとき発電電力に補正電力を加算する方法が開示されている。 For example, when the SOC drops to a discharge prohibition level, the generated power is increased to charge the drive battery, and the dischargeable power (or output limit power) SOP (Status Of Power) out is limited to zero to stop discharging. Suppress. Patent Document 1 discloses a method of correcting SOP out in order to prevent a drop in generated power. Patent Document 2 discloses a method for increasing the generated power by adjusting the input limit power SOP in and the output limit power SOP out . A method of adding correction power to generated power when the difference becomes small is disclosed.
日本国特開2021-118558号公報Japanese Patent Application Laid-Open No. 2021-118558 日本国特開2021-118559号公報Japanese Patent Application Laid-Open No. 2021-118559
 しかしながら、上述した背景技術では消費電力の正確な検出が前提であり、検出誤差がある場合には有効な対策となり得ない。たとえば補機の消費電力の検出値は、センサや演算精度の不足により、実際よりも小さい値となる場合がある。検出値が実際の補機消費電力より小さいと、発電時や回生ブレーキ時の駆動用バッテリ充電電力が過小となり、駆動用バッテリの残量SOCが枯渇する可能性がある。 However, the background art described above is premised on accurate detection of power consumption, and cannot be an effective countermeasure when there is a detection error. For example, the detected value of the power consumption of the accessory may be smaller than the actual value due to insufficient sensor or calculation accuracy. If the detected value is smaller than the actual accessory power consumption, the drive battery charge power during power generation or regenerative braking will be too small, and the remaining SOC of the drive battery may be depleted.
 上述した特許文献1では過渡的な放電電力超過の対策が開示されており、定常的な検出誤差の補正には適さない。また特許文献2ではSOPinとSOPoutとの電力差に応じて補正を実行するためにSOC低下を有効に防止できない可能性がある。 The aforementioned Patent Document 1 discloses countermeasures against transient excessive discharge power, and is not suitable for correcting stationary detection errors. Further, in Japanese Patent Application Laid-Open No. 2002-200010, since correction is performed according to the power difference between SOP in and SOP out , there is a possibility that the SOC decrease cannot be effectively prevented.
 このように車載電子部品類の消費電力が正確に検出されない場合、その消費電力検出値が実際より小さいと駆動用バッテリ充電電力が過小となり、実際のバッテリ残量SOCが枯渇して車両停止の可能性が高くなる。 If the power consumption of onboard electronic components is not accurately detected in this way, and the detected power consumption value is smaller than the actual value, the charging power of the drive battery will be too small, and the actual remaining battery SOC will be depleted, possibly causing the vehicle to stop. become more sexual.
 本発明は前記事情に鑑み案出されたものであって、本発明の目的は消費電力の検出誤差に起因するSOCの過剰な低下、それによる車両停止を回避できる電動車両を提供することにある。 The present invention has been devised in view of the above circumstances, and an object of the present invention is to provide an electric vehicle capable of avoiding an excessive decrease in SOC caused by an error in detecting power consumption and the resulting stoppage of the vehicle. .
 前記目的を達成するため本発明の一実施の形態は、充放電可能なバッテリと、発電電力を制御可能なジェネレータと、前記バッテリおよび/または前記ジェネレータからの電力により車両を駆動する駆動モータと、電力を消費する電気機器類と、を備える電動車両であって、前記バッテリの充電状態値が所定値より低下すると当該充電状態値の低下量に応じて増大する補正量を生成する補正量生成部と、前記電気機器類の消費電力検出値から算出された第1消費電力値に前記補正量を加算して第2消費電力値を算出する加算部と、車両を駆動するための車両駆動電力値および前記第2消費電力値を含む電力値に基づいて前記ジェネレータによる発電電力を制御し、前記バッテリの充電状態値を前記所定値以上に維持する制御部と、を備えたことを特徴とする。
 また、本発明の一実施の形態は、前記バッテリの充電状態値が前記所定値以上であれば前記補正量がゼロに維持され、前記所定値より低下すれば前記低下量に比例して前記補正量が増大し、かつ前記補正量に過充電保護のための上限値が設けられたことを特徴とする。
 また、本発明の一実施の形態は、前記所定値が前記バッテリの放電禁止値であることを特徴とする。
 また、本発明の一実施の形態は、前記電気機器類の前記第1消費電力検出値は前記駆動モータの消費電力検出値を含む他の検出値に比べて検出精度が低いことを特徴とする。
 また、本発明の一実施の形態によれば、前記ジェネレータがエンジンと連結し、前記制御部が前記エンジンおよび前記ジェネレータへの要求トルクを制御することを特徴とする。
In order to achieve the above object, one embodiment of the present invention provides a rechargeable battery, a generator capable of controlling generated power, a drive motor for driving a vehicle with power from the battery and/or the generator, and electrical equipment that consumes power, wherein the correction amount generation unit generates a correction amount that increases according to the amount of decrease in the state of charge value of the battery when the state of charge value of the battery drops below a predetermined value. an adding unit for calculating a second power consumption value by adding the correction amount to the first power consumption value calculated from the power consumption detection value of the electrical equipment; and a vehicle driving power value for driving the vehicle. and a control unit that controls the power generated by the generator based on the power value including the second power consumption value and maintains the state of charge value of the battery at the predetermined value or more.
Further, in one embodiment of the present invention, if the state of charge value of the battery is equal to or greater than the predetermined value, the correction amount is maintained at zero, and if it falls below the predetermined value, the correction amount is proportional to the decrease amount. The amount is increased, and the correction amount is provided with an upper limit value for overcharge protection.
Moreover, one embodiment of the present invention is characterized in that the predetermined value is a discharge prohibition value of the battery.
Further, an embodiment of the present invention is characterized in that the detection accuracy of the first power consumption detection value of the electrical equipment is lower than that of other detection values including the power consumption detection value of the drive motor. .
Further, according to one embodiment of the present invention, the generator is connected to the engine, and the control section controls the required torque to the engine and the generator.
 本発明の一実施の形態によれば、バッテリの充電状態値が所定値より低下すると、当該充電状態値の低下量に応じて増大する補正量を生成し、その補正量を電気機器類の消費電力検出値に加算することで、電気機器類の消費電力検出値が実際の消費電力(実値)よりも小さい値であったとしても、ジェネレータの発電電力を適正化することができ、バッテリの充電状態値を適正に維持して車両停止を回避できる。
 また、本発明の一実施の形態によれば、バッテリの充電状態値の減少が所定値までは電気機器類の消費電力検出値の補正は実行されず、所定値より低下したときに低下量に比例した補正が実行されることで、バッテリの充電状態が所定値より低下したときに低下量に応じて発電電量が増大し、バッテリの充電状態の適正化が迅速に行われる。
 また、本発明の一実施の形態によれば、上記補正の実行開始基準となる所定値がバッテリの放電禁止値であることで、バッテリ充電電力の過少状態による車両停止を有効に回避できる。
 また、本発明の一実施の形態によれば、検出あるいは演算精度が比較的低い電気機器類の消費電力検出値を補正することで、たとえば車両における補機類のように消費電力誤差が比較的大きい場合であってもバッテリの充電状態値を適正に維持して車両停止を有効に回避できる。
 また、本発明の一実施の形態によれば、ジェネレータがエンジンと連結して発電電力が制御されることで、いわゆるハイブリッド車両でバッテリの充電状態値を適正に維持して車両停止を回避できる。
According to one embodiment of the present invention, when the state-of-charge value of the battery drops below a predetermined value, a correction amount that increases according to the amount of decrease in the state-of-charge value is generated, and the correction amount is applied to the consumption of electrical equipment. By adding to the detected power value, even if the detected power consumption value of the electrical equipment is smaller than the actual power consumption (actual value), the power generated by the generator can be optimized, and the battery The state of charge value can be properly maintained to avoid vehicle stoppage.
Further, according to one embodiment of the present invention, the correction of the power consumption detection value of the electrical equipment is not executed until the decrease in the state of charge value of the battery reaches a predetermined value, and when the state of charge value decreases below the predetermined value, the decrease amount is calculated. By performing proportional correction, when the state of charge of the battery drops below a predetermined value, the amount of power generated increases according to the amount of decrease, and the state of charge of the battery is quickly optimized.
Further, according to the embodiment of the present invention, the predetermined value, which is the criterion for starting execution of the correction, is the battery discharge prohibition value, so that the vehicle stop due to insufficient battery charging power can be effectively avoided.
Further, according to one embodiment of the present invention, by correcting the power consumption detection value of electrical equipment whose detection or calculation accuracy is relatively low, the power consumption error is relatively low, such as for auxiliary equipment in a vehicle. Even if it is large, the state-of-charge value of the battery can be properly maintained to effectively prevent the vehicle from stopping.
Further, according to one embodiment of the present invention, the generated power is controlled by connecting the generator to the engine, so that in a so-called hybrid vehicle, the state of charge value of the battery can be properly maintained and the vehicle stop can be avoided.
本発明の一実施形態による電動車両の概略的構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an electric vehicle according to one embodiment of the present invention; FIG. 本実施形態による電動車両における車両ECUの動作を説明するための機能ブロック図である。FIG. 3 is a functional block diagram for explaining the operation of a vehicle ECU in the electric vehicle according to the present embodiment; 図2に示す補正量生成部の補正量Δの一例を示すグラフである。3 is a graph showing an example of a correction amount Δ of a correction amount generation unit shown in FIG. 2; 本実施形態による制御装置の動作の一例を示すタイムチャートである。4 is a time chart showing an example of the operation of the control device according to the embodiment;
 電動車両10は、駆動モータ101、バッテリ102、ジェネレータ103、エンジン104、および補機類105を有する。さらにそれらの制御系として、電動車両10は、車両ECU(Electronic Control Unit)200、MCU(Motor Control Unit;モータ制御ユニット)201、BMU(Battery Control Unit:バッテリ制御ユニット)202、GCU(Generator Control Unit:ジェネレータ制御ユニット)203、エンジン(ENG)ECU204、および補機ECU205を備える。なお、図1において、実線は電力線、破線は通信線を示し、バッテリ102、駆動モータ101、ジェネレータ103および補機類105の間にはインバータおよびDC-DCコンバータからなる回路が構成されているが、ここでは省略されている。また、電動車両10は、PHEV(Plug in Hybrid Electric Vehicle:外部充電又は外部給電が可能なプラグインハイブリッド)であってもよい。 The electric vehicle 10 has a drive motor 101 , a battery 102 , a generator 103 , an engine 104 and accessories 105 . Further, as their control system, the electric vehicle 10 includes a vehicle ECU (Electronic Control Unit) 200, a MCU (Motor Control Unit) 201, a BMU (Battery Control Unit) 202, a GCU (Generator Control Unit). : generator control unit) 203 , an engine (ENG) ECU 204 , and an accessory ECU 205 . In FIG. 1, a solid line indicates a power line, a broken line indicates a communication line, and a circuit including an inverter and a DC-DC converter is configured between the battery 102, the drive motor 101, the generator 103 and the auxiliary equipment 105. , which is omitted here. Also, the electric vehicle 10 may be a PHEV (plug-in hybrid electric vehicle: a plug-in hybrid capable of external charging or external power supply).
 駆動モータ101は電力を用いて稼働し電動車両10の駆動輪を回転させ、また電動車両10の減速時には回生発電を行い回生制動力を発生させる。バッテリ102は駆動モータ101を稼働させる電力を蓄積する。バッテリ102で蓄積する電力は、例えば後述するジェネレータ103で発電した電力、駆動モータ101の回生発電により発生した電力、図示しない充電機構により外部電源が接続されて供給される電力などが挙げられる。本実施形態では、バッテリ102からの出力(放電)電力を正、バッテリ102に対する入力(充電)電力を負として説明する。 The drive motor 101 operates using electric power to rotate the driving wheels of the electric vehicle 10, and regeneratively generates power to generate regenerative braking force when the electric vehicle 10 decelerates. A battery 102 stores power to operate the drive motor 101 . The power stored in the battery 102 includes, for example, power generated by a generator 103 described later, power generated by regenerative power generation of the drive motor 101, and power supplied by connecting an external power supply to a charging mechanism (not shown). In this embodiment, the output (discharge) power from the battery 102 is positive, and the input (charge) power to the battery 102 is negative.
 ジェネレータ103はエンジン104により駆動され、駆動モータ101や電動車両10の補機類105で用いる電力を発電する。なお、ジェネレータ103で発電した電力のうち駆動モータ101や電動車両10の補機類105で使用しない余剰分はバッテリ102に蓄積される。またジェネレータ103はバッテリ102の充電率SOCが小さくなった場合などにバッテリ102で蓄積するための電力を発電する。エンジン104は燃料を燃焼させて稼働する内燃機関であり、ジェネレータ103の回転軸に連結されている。なお、電動車両10の走行状態に基づきエンジン104が電動車両10の駆動輪を回転させる、いわゆるパラレル走行が可能であってもよい。 The generator 103 is driven by the engine 104 and generates electric power to be used by the drive motor 101 and the accessories 105 of the electric vehicle 10 . A surplus of electric power generated by the generator 103 that is not used by the drive motor 101 or the auxiliary equipment 105 of the electric vehicle 10 is accumulated in the battery 102 . Further, the generator 103 generates electric power to be stored in the battery 102 when the charging rate SOC of the battery 102 becomes small. The engine 104 is an internal combustion engine that operates by burning fuel, and is connected to the rotating shaft of the generator 103 . Note that so-called parallel running, in which the engine 104 rotates the drive wheels of the electric vehicle 10 based on the running state of the electric vehicle 10, may be possible.
 車両ECU200は、MCU201、BMU202、GCU203、エンジンECU204および補機ECU205とそれぞれ接続され、電動車両10の制御装置として車両全体の制御を司る。また、車両ECU200には、アクセルペダルの操作量APを検知するアクセルペダルセンサ、ブレーキペダルの操作量を検知するブレーキペダルセンサ、電動車両10の車速Vを検知する車速センサなどの各種センサ類が接続されている。 The vehicle ECU 200 is connected to the MCU 201, the BMU 202, the GCU 203, the engine ECU 204, and the accessory ECU 205, and controls the entire vehicle as a control device for the electric vehicle 10. Various sensors such as an accelerator pedal sensor that detects the operation amount AP of the accelerator pedal, a brake pedal sensor that detects the operation amount of the brake pedal, and a vehicle speed sensor that detects the vehicle speed V of the electric vehicle 10 are connected to the vehicle ECU 200. It is
 MCU201は駆動モータ101を、BMU202はバッテリ102を、GCU203はジェネレータ103を、エンジンECU204はエンジン104を、補機ECU205は補機類105を、それぞれ制御する。補機類105は、たとえばエアコン用電動コンプレッサー、フロント/リアガラスヒータ、ヒーテッド・ドアミラー、各種ランプ類等の電力を消費する電気機器類が含まれる。後述するように、BMU202はバッテリ状態量としてバッテリ102のSOC、温度等の情報を車両ECU200へ出力する。また補機ECU205は補機類105で消費される電力をDC-DCコンバータ等のセンサ値を用いて演算し、その補機消費電力演算値P1を車両ECU200へ出力する。 The MCU 201 controls the drive motor 101, the BMU 202 the battery 102, the GCU 203 the generator 103, the engine ECU 204 the engine 104, and the accessory ECU 205 the accessories 105, respectively. Auxiliary equipment 105 includes electrical equipment that consumes electric power, such as an air conditioner electric compressor, front/rear glass heaters, heated door mirrors, and various lamps. As will be described later, BMU 202 outputs information such as SOC and temperature of battery 102 to vehicle ECU 200 as battery state quantities. Further, accessory ECU 205 calculates the electric power consumed by accessory 105 using a sensor value such as a DC-DC converter, and outputs the calculated accessory power consumption value P1 to vehicle ECU 200 .
 なお、車両ECU200は、CPU(Central Processing Unit)等のプロセッサ、プロセッサが実行する制御プログラム等を格納するROM(Read-Only Memory)、制御プログラムの作業領域としてのRAM(Random Access Memory)、周辺回路等とのインターフェース部などを含んで構成される。本実施形態による制御機能は車両ECU200のプロセッサ上でプログラムを実行することにより実装され得る。 The vehicle ECU 200 includes a processor such as a CPU (Central Processing Unit), a ROM (Read-Only Memory) for storing control programs and the like executed by the processor, a RAM (Random Access Memory) as a work area for the control program, and peripheral circuits. It is configured including an interface unit with etc. The control function according to this embodiment can be implemented by executing a program on the processor of vehicle ECU 200 .
 以下、本実施形態による制御装置として機能する車両ECU200について詳細に説明する。本実施形態は駆動モータ101等に比べて消費電力の検出精度が低い車載電気機器類に対して適用可能であるが、ここでは補機類105をこのような車載機器類の一例として示す。その理由は、これら補機類105の消費電力の検出値がセンサや演算精度の不足により実際よりも小さい値となり得るからである。本実施形態によれば、以下詳述するように、補機類105の消費電力演算値をバッテリ102のSOCに応じて補正することでSOCの限度を越えた低下を防止し、あるいはSOCを上昇させることができる。 The vehicle ECU 200 functioning as the control device according to this embodiment will be described in detail below. Although the present embodiment can be applied to on-vehicle electrical equipment whose power consumption detection accuracy is lower than that of the drive motor 101 and the like, the auxiliary equipment 105 is shown here as an example of such on-vehicle equipment. The reason for this is that the detected value of the power consumption of these auxiliary devices 105 may be smaller than the actual value due to insufficient sensor or calculation accuracy. According to this embodiment, as will be described in detail below, by correcting the power consumption calculation value of the auxiliary equipment 105 according to the SOC of the battery 102, the SOC can be prevented from exceeding its limit, or the SOC can be increased. can be made
 図2に例示するように、車両ECU200には以下の機能が実装される。補正量生成部301は後述する補正量Δを生成し、加算部302はセンサ検出値から算出された補機消費電力演算値P1に補正量Δを加算して補機消費電力P2(=P1+Δ)を出力する。加算部303は、車両駆動電力Pdと、加算部302から入力した補機消費電力P2と、目標充電電力Ptcとを加算して目標発電電力Ptg(=Pd+P2+Ptc)を生成し制限部305へ出力する。ここで車両駆動電力Pdはアクセル操作APや車速Vにより変化し、目標充電電力Ptcはバッテリ102のSOCの低下に応じて設定される。 As illustrated in FIG. 2, the vehicle ECU 200 has the following functions. A correction amount generation unit 301 generates a correction amount Δ described later, and an addition unit 302 adds the correction amount Δ to the auxiliary machine power consumption calculation value P1 calculated from the sensor detection value to obtain the auxiliary machine power consumption P2 (=P1+Δ). to output Addition unit 303 adds vehicle driving electric power Pd, accessory consumption electric power P2 input from addition unit 302 , and target charging electric power Ptc to generate target electric power generation Ptg (=Pd+P2+Ptc), and outputs the result to limiting unit 305 . . Here, vehicle drive power Pd varies depending on accelerator operation AP and vehicle speed V, and target charge power Ptc is set according to a decrease in SOC of battery 102 .
 また加算部304は、モータ消費電力Pmと補機消費電力P2と充電可能電力Pcpとを加算して上限発電電力Pug(=Pm+P2+Pcp)を生成し制限部305へ出力する。ここでモータ消費電力Pmは実際に駆動モータ101により消費される電力であり、充電可能電力Pcpはバッテリ102の温度によって変化する。制限部305は、目標発電電力Ptgと上限発電電力Pugのうち小さい方の値を要求発電電力Prgとして出力し、要求発電電力Prgがエンジン104およびジェネレータ103への要求トルクに反映される。 Addition unit 304 also adds motor power consumption Pm, accessory power consumption P2, and chargeable power Pcp to generate upper limit generated power Pug (=Pm+P2+Pcp) and outputs it to limit unit 305 . Here, the motor power consumption Pm is the power actually consumed by the drive motor 101, and the chargeable power Pcp varies depending on the battery 102 temperature. Limiting unit 305 outputs the smaller of target generated power Ptg and upper limit generated power Pug as requested generated power Prg, and requested generated power Prg is reflected in requested torque to engine 104 and generator 103 .
 登坂路や高速道路などでの高負荷走行で、要求発電電力Prgよりもモータ消費電力Pmが大きくなると、駆動モータ101にはジェネレータ103の電力だけでなくバッテリ102の電力も供給され、バッテリ102は放電状態となる。高負荷走行が続けば、目標充電電力Ptc通りに充電できず、バッテリ102の充電機会が減少する。また、バッテリ102が低温になると充電可能電力Pcpが低下することで、上限発電電力Pugが低下し要求発電電力Prgが制限されることで、バッテリ102の充電機会が減少する。さらに、補機消費電力演算値P1が実際の値P0より小さければ、目標発電電力Ptgおよび上限発電電力Pugが低下するため、相対的にモータ消費電力Pmが大きくなり、バッテリ102の充電機会が減少する。これらの条件が相まって充電機会が減少することで、SOCが低下する。SOCの低下でバッテリ102の放電を禁止する場合は、車両駆動電力Pdとモータ消費電力Pmが一致するよう駆動モータ101の出力が制限される。放電によりSOCが放電禁止レベルに低下すると、後述するように目標発電電力Ptgは補機消費電力演算値P1に補正量Δを加算した補機消費電力P2(=P1+Δ)を用いて計算されるので、その補正量Δだけ発電電力を上昇させることができ、SOCの過剰な低下を防止できる。 When the motor power consumption Pm becomes larger than the required power generation power Prg during high-load driving on an uphill road or a highway, not only the power of the generator 103 but also the power of the battery 102 is supplied to the drive motor 101. It becomes a discharge state. If the high-load running continues, the battery 102 cannot be charged according to the target charging power Ptc, and the chances of charging the battery 102 decrease. In addition, when the temperature of the battery 102 becomes low, the chargeable power Pcp is lowered, the upper limit generated power Pug is lowered, and the required generated power Prg is restricted, thereby reducing the chances of charging the battery 102 . Furthermore, if the auxiliary machine power consumption calculation value P1 is smaller than the actual value P0, the target generated power Ptg and the upper limit generated power Pug decrease, so the motor power consumption Pm relatively increases, and the chances of charging the battery 102 decrease. do. These conditions combine to reduce the chances of charging, resulting in a decrease in SOC. When the discharge of the battery 102 is prohibited due to the decrease in SOC, the output of the drive motor 101 is restricted so that the vehicle drive power Pd and the motor power consumption Pm match. When the SOC drops to the discharge prohibited level due to discharge, the target generated power Ptg is calculated using the accessory power consumption P2 (=P1+Δ) obtained by adding the correction amount Δ to the accessory power consumption calculation value P1, as will be described later. , the generated power can be increased by the correction amount Δ, and an excessive decrease in SOC can be prevented.
 なお、図2に例示する機能は車両ECU200のプロセッサ上でプログラムを実行することにより実装され、加算部303、304および制限部305の機能は既存の制御構成を使用可能である。したがって本実施形態の特徴的機能は補正量生成部301および加算部302により実現され得る。以下、この特徴的機能について説明する。 The functions illustrated in FIG. 2 are implemented by executing a program on the processor of vehicle ECU 200, and the functions of adders 303, 304 and limiter 305 can use existing control configurations. Therefore, the characteristic function of this embodiment can be realized by the correction amount generation section 301 and the addition section 302 . This characteristic function will be described below.
 図3に例示するように、補正量生成部301はバッテリ102のSOCが所定レベルよりに低下すると、その低下量に応じて補正量Δを大きくする。SOCに対する補正量ΔはSOCが所定レベルより低下するほど大きくなり、これによりエンジン発電量を増加させ、SOCの低下を回避し、あるいは迅速に所定レベル以上に上昇させる。 As illustrated in FIG. 3, when the SOC of the battery 102 drops below a predetermined level, the correction amount generator 301 increases the correction amount Δ according to the amount of the drop. The correction amount .DELTA. for the SOC increases as the SOC falls below a predetermined level, thereby increasing the engine power generation amount to avoid a decrease in the SOC or to quickly raise the SOC to a predetermined level or higher.
 図3に例示する補正量Δは、所定レベルを予め設定されたバッテリ放電禁止SOCとすれば、SOCが放電禁止値B1以上では補正量Δ=0として補機消費電力を補正しない(領域R1)。SOCが放電禁止値B1より低下すると、SOCの低下量に応じて補正量Δを増加させる(領域R2)。ここでは放電禁止値B1からのSOC低下量に比例して補正量Δを増加させる。ただし、補正量Δはバッテリ102が過充電にならない範囲に制限され、ここではΔULを上限とする。したがって補正量Δが上限ΔULに達するSOC値B2(<B1)よりSOCが低下しても補正量Δはそれ以上増加しない(領域R3)。 The correction amount Δ illustrated in FIG. 3 does not correct the power consumption of the auxiliary equipment with the correction amount Δ=0 when the SOC is equal to or higher than the discharge prohibition value B1, provided that the predetermined level is the preset battery discharge prohibition SOC (region R1). . When the SOC drops below the discharge inhibition value B1, the correction amount Δ is increased according to the amount of SOC drop (region R2). Here, correction amount Δ is increased in proportion to the amount of SOC decrease from discharge inhibition value B1. However, the correction amount Δ is limited to a range in which the battery 102 is not overcharged, and the upper limit is set to ΔUL here. Therefore, even if the SOC drops below the SOC value B2 (<B1) at which the correction amount Δ reaches the upper limit ΔUL , the correction amount Δ does not increase any further (region R3).
 このように、補機類105の消費電力の演算値P1が実際の消費電力(実値)P0よりも小さい値であったとしても、補機消費電力の演算値P1に補正量Δを上乗せすることで、結果的に発電電力を適正化することができ、バッテリ102のSOCが過剰に低下する事態を回避できる。以下、図4を参照しながら、本実施形態による補正制御が適用された電動車両10の動作を説明する。 Thus, even if the calculated value P1 of the power consumption of the accessory 105 is smaller than the actual power consumption (actual value) P0, the correction amount Δ is added to the calculated value P1 of the accessory power consumption. As a result, it is possible to optimize the generated power and avoid the situation where the SOC of the battery 102 excessively decreases. Hereinafter, the operation of the electric vehicle 10 to which the correction control according to this embodiment is applied will be described with reference to FIG.
 図4(B)に示されるように、補機類105の消費電力の演算値P1がセンサや演算精度の不足により実際の補機消費電力P0よりも小さい場合、その過小評価された補機消費電力演算値P1に車両駆動電力Pdと目標充電電力Ptcとを加えて目標発電電力Ptg(=P1+Pd+Ptc)が生成され、それにより発電が行われる。その結果、バッテリ102の充電電力が低下し、目標充電電力Ptcが充電可能電力Pcpを上回ることで放電傾向となったバッテリ102のSOCが図4(A)に示すように放電禁止値B1まで低下する。 As shown in FIG. 4B, when the calculated value P1 of the power consumption of the accessory 105 is smaller than the actual accessory power consumption P0 due to insufficient sensor or calculation accuracy, the underestimated accessory consumption A target power generation Ptg (=P1+Pd+Ptc) is generated by adding the vehicle drive power Pd and the target charging power Ptc to the power calculation value P1, and power is generated accordingly. As a result, the charging power of the battery 102 decreases, and the target charging power Ptc exceeds the chargeable power Pcp, so that the SOC of the battery 102, which tends to discharge, decreases to the discharge inhibition value B1 as shown in FIG. 4A. do.
 時点t1にバッテリ102のSOCが放電禁止値B1まで低下したとすれば、車両ECU200(補正量生成部301)は、図3に示すように、放電禁止値B1より低下したSOC低下量に応じて補正量Δを増加させる。これにより補機消費電力演算値P1に補正量Δが加算されて補機消費電力P2が増大し、増大した補機消費電力P2に車両駆動電力Pdと目標充電電力Ptcとを加えて目標発電電力Ptg(=P2+Pd+Ptc)が生成される。したがって図4の時点t1~t2に示すように、補機消費電力P2の増加により補機消費電力演算値P1の過小評価が解消され、エンジン発電電力が増大し、それによりバッテリ102が充電状態となってSOCが放電禁止レベルまで回復し維持される。 Assuming that the SOC of battery 102 has decreased to discharge prohibition value B1 at time t1, vehicle ECU 200 (correction amount generation unit 301), as shown in FIG. Increase the correction amount Δ. As a result, the correction amount Δ is added to the auxiliary power consumption calculation value P1 to increase the auxiliary power consumption P2. Ptg (=P2+Pd+Ptc) is generated. Therefore, as shown in time points t1 to t2 in FIG. 4, the increase in the accessory power consumption P2 eliminates the underestimation of the accessory power consumption calculation value P1, and the engine generated power increases. As a result, the SOC recovers to the discharge inhibit level and is maintained.
 上述したように、本実施形態によれば、補機類105の消費電力の演算値P1が実際の消費電力(実値)P0よりも小さい値であったとしても、補機消費電力の演算値P1に補正量Δを上乗せすることで、結果的に発電電力を適正化することができ、バッテリ102のSOCが過剰に低下する事態を回避できる。 As described above, according to the present embodiment, even if the calculated value P1 of the power consumption of the accessory 105 is smaller than the actual power consumption (actual value) P0, the calculated value of the accessory power consumption By adding the correction amount Δ to P1, it is possible to optimize the generated power as a result, and to avoid the situation where the SOC of the battery 102 excessively decreases.
 従来では、図4(B)に示すように、過小評価された補機消費電力演算値P1のままでエンジン発電を行うために、バッテリ102が放電状態のままSOCが放電禁止値を越えて低下し続ける。このために図4に示す時点t3でバッテリ102の残量が枯渇し、高電圧遮断となって電動車両10が停止してしまう。 Conventionally, as shown in FIG. 4B, engine power generation is performed with the underestimated accessory power consumption calculation value P1, so that the SOC drops beyond the discharge inhibition value while the battery 102 is in a discharged state. keep doing As a result, the battery 102 runs out of power at time t3 shown in FIG.
 これに対して、本実施形態によれば、放電禁止レベルまでSOCが低下すると、検出された補機消費電力演算値P1に補正量Δを加算してエンジン発電量を増大させるので、従来例のような車両停止を有効に回避できる。 In contrast, according to the present embodiment, when the SOC drops to the discharge prohibition level, the correction amount Δ is added to the detected accessory power consumption calculation value P1 to increase the engine power generation amount. Such vehicle stop can be effectively avoided.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the spirit of the invention.
 なお、本出願は、2021年11月10日出願の日本特許出願(特願2021-183481)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-183481) filed on November 10, 2021, the contents of which are incorporated herein by reference.
10 電動車両
101 駆動モータ
102 バッテリ
103 ジェネレータ
104 エンジン
105 補機類
200 車両ECU(電子制御ユニット)
201 モータ制御ユニット(MCU)
202 バッテリ制御ユニット(BMU)
203 ジェネレータ制御ユニット(GCU)
204 エンジン制御ユニット(ENG ECU)
205 補機制御ユニット(補機ECU)
301 補正量生成部
302~304 加算部
305 制限部
10 Electric Vehicle 101 Drive Motor 102 Battery 103 Generator 104 Engine 105 Auxiliary Equipment 200 Vehicle ECU (Electronic Control Unit)
201 Motor Control Unit (MCU)
202 battery control unit (BMU)
203 Generator Control Unit (GCU)
204 engine control unit (ENG ECU)
205 accessory control unit (auxiliary ECU)
301 correction amount generators 302 to 304 adder 305 limiter

Claims (9)

  1.  充放電可能なバッテリと、発電電力を制御可能なジェネレータと、前記バッテリおよび/または前記ジェネレータからの電力により車両を駆動する駆動モータと、電力を消費する電気機器類と、を備える電動車両であって、
     前記バッテリの充電状態値が所定値より低下すると当該充電状態値の低下量に応じて増大する補正量を生成する補正量生成部と、
     前記電気機器類の消費電力検出値から算出された第1消費電力値に前記補正量を加算して第2消費電力値を算出する加算部と、
     車両を駆動するための車両駆動電力値および前記第2消費電力値を含む電力値に基づいて前記ジェネレータによる発電電力を制御し、前記バッテリの充電状態値を前記所定値以上に維持する制御部と、
     を備えたことを特徴とする電動車両。
    An electric vehicle comprising a chargeable/dischargeable battery, a generator capable of controlling generated power, a drive motor that drives the vehicle with power from the battery and/or the generator, and electrical equipment that consumes the power. hand,
    a correction amount generating unit that generates a correction amount that increases according to the amount of decrease in the state of charge value of the battery when the state of charge value of the battery drops below a predetermined value;
    an addition unit that calculates a second power consumption value by adding the correction amount to the first power consumption value calculated from the power consumption detection value of the electrical equipment;
    a control unit that controls the power generated by the generator based on the power value including the vehicle driving power value for driving the vehicle and the second power consumption value, and maintains the state of charge value of the battery at the predetermined value or higher; ,
    An electric vehicle comprising:
  2.  前記バッテリの充電状態値が前記所定値以上であれば前記補正量がゼロに維持され、前記所定値より低下すれば前記低下量に比例して前記補正量が増大し、かつ前記補正量に過充電保護のための上限値が設けられていることを特徴とする請求項1に記載の電動車両。 If the state of charge value of the battery is equal to or greater than the predetermined value, the correction amount is maintained at zero, and if it falls below the predetermined value, the correction amount increases in proportion to the decrease amount, and the correction amount exceeds the correction amount. 2. The electric vehicle according to claim 1, wherein an upper limit value is provided for charging protection.
  3.  前記所定値が前記バッテリの放電禁止値であることを特徴とする請求項1に記載の電動車両。 The electric vehicle according to claim 1, wherein the predetermined value is a discharge prohibition value of the battery.
  4.  前記所定値が前記バッテリの放電禁止値であることを特徴とする請求項2に記載の電動車両。 The electric vehicle according to claim 2, wherein the predetermined value is a discharge prohibition value of the battery.
  5.  前記電気機器類の前記消費電力検出値は前記駆動モータの消費電力検出値を含む他の検出値に比べて検出精度が低いことを特徴とする請求項1に記載の電動車両。 The electric vehicle according to claim 1, wherein the detected power consumption value of the electrical equipment has a lower detection accuracy than other detected values including the detected power consumption value of the drive motor.
  6.  前記電気機器類の前記消費電力検出値は前記駆動モータの消費電力検出値を含む他の検出値に比べて検出精度が低いことを特徴とする請求項2に記載の電動車両。 The electric vehicle according to claim 2, wherein the power consumption detection value of the electrical equipment has lower detection accuracy than other detection values including the power consumption detection value of the drive motor.
  7.  前記電気機器類の前記消費電力検出値は前記駆動モータの消費電力検出値を含む他の検出値に比べて検出精度が低いことを特徴とする請求項3に記載の電動車両。 The electric vehicle according to claim 3, wherein the power consumption detection value of the electrical equipment has lower detection accuracy than other detection values including the power consumption detection value of the drive motor.
  8.  前記電気機器類の前記消費電力検出値は前記駆動モータの消費電力検出値を含む他の検出値に比べて検出精度が低いことを特徴とする請求項4に記載の電動車両。 The electric vehicle according to claim 4, wherein the detected power consumption value of the electrical equipment has lower detection accuracy than other detected values including the detected power consumption value of the drive motor.
  9.  前記ジェネレータがエンジンと連結し、前記制御部が前記エンジンおよび前記ジェネレータへの要求トルクを制御することを特徴とする請求項1から4のいずれか1項に記載の電動車両。 The electric vehicle according to any one of claims 1 to 4, wherein the generator is connected to an engine, and the control unit controls torque required to the engine and the generator.
PCT/JP2022/037508 2021-11-10 2022-10-06 Electric vehicle WO2023084959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-183481 2021-11-10
JP2021183481 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023084959A1 true WO2023084959A1 (en) 2023-05-19

Family

ID=86335617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037508 WO2023084959A1 (en) 2021-11-10 2022-10-06 Electric vehicle

Country Status (1)

Country Link
WO (1) WO2023084959A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061909A (en) * 2009-09-07 2011-03-24 Toyota Motor Corp Electric vehicle
WO2018037480A1 (en) * 2016-08-23 2018-03-01 三菱電機株式会社 Power measuring device and power measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061909A (en) * 2009-09-07 2011-03-24 Toyota Motor Corp Electric vehicle
WO2018037480A1 (en) * 2016-08-23 2018-03-01 三菱電機株式会社 Power measuring device and power measuring method

Similar Documents

Publication Publication Date Title
JP5510116B2 (en) Hybrid vehicle regenerative control device
JP5307847B2 (en) Vehicle power supply system
US11577713B2 (en) Method and device for controlling hybrid vehicle
US10434891B2 (en) Motor vehicle electrical system with solar powered battery charging
JP4961830B2 (en) Charge / discharge control device, charge / discharge control method for electric storage device, and electric vehicle
JP6011541B2 (en) Charge control device and charge control method
EP1080983A2 (en) Control device of a hybrid vehicle
US20040070353A1 (en) Vehicle controller that stably supplies power to a battery and method thereof
JP2006280161A (en) Regenerative controller for hybrid electric vehicle
JP2004248405A (en) Battery managing device of vehicle
CN110316176A (en) Control device
JP6711315B2 (en) Control device and in-vehicle system
JP2005218250A (en) Torque controller
JP3700531B2 (en) Control device for hybrid vehicle
JP4858277B2 (en) Vehicle power generation control device
JP3906925B2 (en) Torque control device
JP2004229447A (en) Power unit for vehicle
WO2023084959A1 (en) Electric vehicle
JP2001157306A (en) Control device of hybrid vehicle
JP5450238B2 (en) Electric vehicle
JP2001268707A (en) Hybrid vehicle control device
JP2018034542A (en) Control device for hybrid vehicle
JP2002112406A (en) Control device for hybrid electric automobile
JP5954188B2 (en) Secondary battery management device
JP2001173481A (en) Control device for vehicular generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892459

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)