WO2023084690A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2023084690A1
WO2023084690A1 PCT/JP2021/041541 JP2021041541W WO2023084690A1 WO 2023084690 A1 WO2023084690 A1 WO 2023084690A1 JP 2021041541 W JP2021041541 W JP 2021041541W WO 2023084690 A1 WO2023084690 A1 WO 2023084690A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
environmental air
index
measurement data
correlation
Prior art date
Application number
PCT/JP2021/041541
Other languages
French (fr)
Japanese (ja)
Inventor
英孝 宮▲崎▼
昌彦 金子
Original Assignee
日本未来科学研究所合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本未来科学研究所合同会社 filed Critical 日本未来科学研究所合同会社
Priority to PCT/JP2021/041541 priority Critical patent/WO2023084690A1/en
Publication of WO2023084690A1 publication Critical patent/WO2023084690A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to an information processing device, an information processing method, and a program.
  • Patent Document 1 discloses signal communication between a carbon dioxide sensor that detects an instantaneous value of the carbon dioxide concentration in the air in the indoor environment of a building, a control unit, and the carbon dioxide sensor and the control unit.
  • a method is proposed for controlling the air quality in the indoor environment of a building by means of a system comprising a communication unit and a storage unit.
  • Patent Document 1 only deals with carbon dioxide in the indoor environment, and does not mention measuring or controlling other measurement items that affect air quality. In addition, even if all stipulated items are regularly checked against the standard values, there is a high level of concern about the existence of pathogens such as viruses that cause infectious diseases in the air in the environment. However, there is a problem that the information that can be an important index for human infection prevention behavior is not provided at all.
  • One of the objects of the present invention is to provide an information processing device, an information processing method, and a program capable of calculating and presenting in real time an index indicating environmental air quality based on a plurality of measurement items.
  • An information processing apparatus provides environmental air information, which is a plurality of types of measurement data relating to properties and components of environmental air, together with measurement position information, which is information indicating the location where the environmental air information was measured. acquire, hold a correlation between the acquired environmental air information and an environmental air index that is information indicating the quality of the environmental air, acquire the correlation from the correlation holding unit, and store the environmental air
  • a processing unit configured to calculate the ambient air index by applying the correlation to the information and to output the calculated ambient air index in a predetermined format.
  • an index indicating environmental air quality can be calculated and presented in real time based on multiple measurement items.
  • FIG. 1 is a system configuration diagram illustrating the configuration of an environmental air monitoring system according to one embodiment of the present invention
  • FIG. 1 is a block diagram illustrating the configuration of hardware and functional blocks of a sensor device according to an embodiment of the present invention
  • FIG. 1 is a block diagram illustrating the configuration of hardware and functional blocks of an environmental air monitoring device according to an embodiment of the present invention
  • FIG. 2 is a block diagram illustrating the configuration of hardware and functional blocks of a terminal device according to one embodiment of the present invention
  • FIG. 4 is a flowchart illustrating the flow of environmental air index calculation processing of the environmental air monitoring device in one embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration example of inference data in one embodiment of the present invention
  • FIG. 4 is a diagram showing an example of a management screen of the environmental air monitoring device according to one embodiment of the present invention
  • FIG. 4 is a diagram showing an example of a management screen of the environmental air monitoring device according to one embodiment of the present invention
  • FIG. 4 is a diagram showing an output display example of the environmental air monitoring device in one embodiment of the present invention
  • FIG. 4 is a diagram showing another output display example of the environmental air monitoring device in one embodiment of the present invention
  • FIG. 4 is a block diagram illustrating the configuration of hardware and functional blocks of an environmental air monitoring device according to another embodiment of the present invention
  • 9 is a flow chart illustrating the flow of learning processing of the environmental air monitoring device in another embodiment of the present invention
  • 9 is a flowchart illustrating the flow of environmental air index calculation processing of the environmental air monitoring device in another embodiment of the present invention
  • FIG. 1 is a block diagram illustrating the overall configuration of an environmental air monitoring system 1 according to one embodiment of the invention.
  • the environmental air monitoring system 1 includes an environmental air monitoring device 10 , a sensor device 20 and a terminal device 30 .
  • the environmental air monitoring device 10 and the sensor device 20 and the environmental air monitoring device 10 and the terminal device 30 are communicably connected by a communication network 40 .
  • the communication network 40 includes communication lines such as the Internet, WAN, LAN, and dedicated lines, and is configured to establish connection by wire or wireless communication as appropriate.
  • the environmental air monitoring device 10, which is the information processing device of the present invention may be configured as a cloud computing system composed of a plurality of computers (nodes) on the communication network 40 instead of an independent computer. In that case, the data processing that realizes the functions of the environmental air monitoring device 10, which will be described later, can be distributed in the cloud. In addition, various parameters and data used for the data processing can be appropriately distributed and stored in storage distributed in the cloud.
  • the environmental air monitoring device 10 receives a plurality of types of sensor measurement data sent from a plurality of sensor devices 20 connected via a communication network 40, and the sensor devices 20 are installed using predetermined data processing to be described later. Calculate an index for the air quality of the ambient air in a location where In addition, the environmental air monitoring device 10 acquires event information about various events occurring in various places from other databases through the communication network 40, and uses it for calculating the index. Specifically, this event information is, for example, information on the occurrence of infected persons of a specific infectious disease, its scale (the number of infected persons), and the condition of the infected persons, but is not necessarily limited to this.
  • the sensor device 20 is a device that is installed at a place where the air quality of the environmental air should be evaluated, acquires a predetermined type of sensor measurement data regarding air, and has a function of sending it to the environmental air monitoring device 10 via the communication network 40.
  • the sensor device 20 may be installed indoors or outdoors, and may be carried by a person such as a delivery man who patrols the city.
  • the terminal device 30 has a function of receiving output data including various indices created by the environmental air monitoring device 10 based on sensor measurement data of the sensor device 20 and outputting it to a display screen or the like.
  • An application that operates as a client of the environmental air monitoring device 10 may be installed in the terminal device 30 .
  • FIG. 2 shows a functional block diagram of a configuration example of the sensor device 20 according to the present embodiment.
  • the sensor device 20 illustrated in FIG. 2 is a sensor device for measuring various data related to air quality, and includes a processor 21, a memory 22, a sensor group 23, a position signal receiver 24, a data IF unit 25, and a communication device. A portion 26 is provided.
  • the processor 21 performs predetermined data processing on various sensor measurement data measured by the sensor group 23 and executes various programs for controlling the overall operation of the sensor device 20 .
  • Processor 21 may be, for example, a CPU.
  • the memory 22 is a storage device that stores various programs executed by the processor 21 and various data used for executing the programs, and includes hardware such as ROM, RAM, and flash memory.
  • the sensor group 23 includes sensor devices that measure sensor measurement data that are the basis for the environmental air monitoring apparatus 10 of the present embodiment to calculate various air quality indices.
  • temperature and humidity sensor 231 carbon dioxide (CO 2 ) sensor 232, carbon monoxide (CO) sensor 233, ozone (O 3 ) sensor 234, nitrogen dioxide (NO 2 ) sensor 235, volatile organic compounds ( VOC) sensor 236 , formaldehyde (CH 2 O) sensor 237 , and particulate matter (PM) sensor 238 .
  • CO 2 carbon dioxide
  • CO carbon monoxide
  • O 3 ozone
  • NO 2 nitrogen dioxide
  • VOC volatile organic compounds
  • CH 2 O formaldehyde
  • PM particulate matter
  • the CO2 sensor 232, CO sensor 233, O3 sensor 234, and NO2 sensor 235 are devices that measure the CO2 concentration, CO concentration, O3 concentration, and NO2 concentration in the air, respectively.
  • the device may be a semiconductor type or any measurement type device.
  • VOC sensor 236 measures the total amount of VOCs present in the air, for example, by non-dispersive infrared analysis.
  • the CH 2 O sensor 237 also measures the CH 2 O concentration in the air in a similar manner, for example.
  • the PM sensor 238 classifies the concentration of particulate matter in the air into PM1.0, PM2.5, and PM10 according to its size, and measures it optically using scattered light, for example.
  • the various sensors used in the sensor group 23 described above are not limited to the devices of the types illustrated, and devices that can be used in this embodiment can be appropriately adopted.
  • the position signal receiving unit 24 is a processing unit that receives information about the position of the sensor device 20 from the outside, and can be configured as a satellite radio wave receiving module of the global navigation satellite system (GNSS). It is conceivable that the sensor device 20 is installed indoors in many cases. By obtaining altitude information in addition to plane coordinates, it is possible to determine on which floor of a specific building the sensor device 20 is located.
  • GNSS global navigation satellite system
  • the data IF unit 25 has a function of transmitting sensor measurement data measured by the sensor group 23 and processed by a program stored in the memory 22 to the communication network 40 via the communication unit 26, It is an interface circuit having functions such as receiving various control data to the sensor device 20 .
  • the communication unit 26 is a communication module that controls the communication function of the sensor device 20 , and has the function of transmitting data from the data IF unit 25 to the communication network 40 and transferring data received from the communication network 40 to the data IF unit 25 .
  • the communication unit 26 is implemented as hardware such as a mobile communication module, a wireless LAN module such as Wi-Fi, and a Near Field Communication (NFC) module such as Bluetooth (registered trademark).
  • NFC Near Field Communication
  • the memory 22 stores functional units such as a sensor control unit 221 , a sensor data processing unit 222 , a position information acquisition unit 223 and a data input/output unit 224 .
  • the sensor control unit 221 has a function of controlling the sensors included in the sensor group 23 in response to instructions from the environmental air monitoring device 10, such as activation and deactivation of each sensor, requests for sensor status, and the like.
  • the sensor data processing unit 222 executes processing such as correction and calibration of measurement data output from each sensor of the sensor group 23 .
  • the position information acquisition unit 223 determines whether the sensor device 20 exists based on the information regarding the position of the sensor device 20 such as the coordinate information from the GNSS received by the position signal reception unit 24 or the positioning result based on the position of the wireless LAN base station. Information about the position of the object, such as plane coordinates and altitude, is calculated.
  • the data input/output unit 224 has a function of performing data transmission/reception processing between each program and the outside. Note that the configuration of the program that implements the functions of the sensor device 20 is not necessarily limited to that illustrated in FIG.
  • FIG. 3 is a functional block diagram showing a configuration example of the environmental air monitoring device 10 of this embodiment.
  • the processor 11 is hardware that realizes the overall functions of the environmental air monitoring device 10 by executing each program stored in the memory 12, and can be configured as a CPU, for example.
  • the memory 12 is composed of storage devices such as RAM, ROM, flash memory, etc., and stores various programs for realizing the functions of the environmental air monitoring device 10 .
  • the auxiliary storage unit 13 stores inference data 131 used by the programs stored in the memory 12, result data calculated as a result of executing these programs, and the like.
  • the auxiliary storage unit 13 can be configured with a storage device such as a semiconductor drive (SSD) or hard disk drive (HDD). All or part of the programs stored in the memory 12 may be stored in the auxiliary storage unit 13 in advance and read out from the auxiliary storage unit 13 to the memory 12 when the processor 11 executes them.
  • SSD semiconductor drive
  • HDD hard disk drive
  • the input/output unit 14 includes input devices such as a touch panel, keyboard, mouse, and microphone for receiving data input operations to the environmental air monitoring device 10, and output devices such as an appropriate format display and speakers.
  • the data IF unit 15 is an interface circuit that has a function of transferring sensor measurement data received from the sensor group 23 to each program in the memory 12, a function of sending various control data from each program to the sensor device 20, and the like.
  • the communication unit 16 is a communication module that controls the communication function of the environmental air monitoring device 10 , sends data from the data IF unit 15 to the communication network 40 , and transfers data received from the communication network 40 to the data IF unit 15 . It has the function to The communication unit 16 is implemented as hardware such as a mobile communication module, a network interface card (NIC), or a wireless LAN module.
  • NIC network interface card
  • the functions of the environmental air monitoring device 10 are realized by the processor 11 executing the inference unit 121, the index calculation unit 122, the output display control unit 123, and the data input/output unit 124, which are programs stored in the memory 12. be.
  • the environmental air monitoring device 10 of the present embodiment combines various sensor measurement data collected from the sensor device 20 and the position information of the sensor device 20, and event information collected from an external database or the like via the communication network 40. Based on this, an index representing the air quality of the ambient air at the location of each sensor device 20 is calculated and output.
  • the inference unit 121 has a function of receiving sensor measurement data acquired from the sensor devices 20 and position information of the installation location of the sensor device 20 from each sensor device 20 and applying a predetermined rule to execute inference based on the input information. have.
  • FIG. 6A shows a conceptual model of inference data in this embodiment.
  • fuzzy inference is used to derive the air quality index from the sensor measurement data.
  • the conceptual model illustrated in FIG. 6A is the membership function applied to this fuzzy reasoning.
  • a comprehensive air quality index which is an index indicating the comprehensive air quality at the measurement target location.
  • infection with a pathogenic virus such as the novel coronavirus is assumed as the specific event.
  • virus presence probability which is an index that indicates the probability that pathogens, including the new coronavirus, exist in the location (space) being measured, is being measured.
  • An infection risk degree which is an index representing the degree of virus infection risk in a place (space), is adopted.
  • the comprehensive air quality index is based on the building environmental hygiene management standards applied when air conditioning equipment is installed in the Building Management Law, the amount of suspended dust (PM), CO, CO 2 , CH 2 Inference data are applied to measured data for O, temperature (room temperature), and relative humidity.
  • the virus presence probability is higher when the CO 2 concentration is relatively high and therewith the content of fine particles such as PM2.5 is relatively high. It is presumed that when the CO2 concentration is high, there are more people in the space exhaling, and more PM in the air means more pathogens in the exhalation. This is because it is thought to indicate that virus-sized objects are included.
  • the degree of infection risk is set to be high when both the CO 2 concentration and PM content are relatively high under conditions where the relative humidity in the space to be measured is relatively high or low.
  • the risk of infection is set so that the higher the VOC concentration, the higher the risk of infection, since it is believed that the respiratory irritation caused by VOCs increases the risk of infection.
  • the membership function for fuzzy inference illustrated in FIG. 6 is set based on the above-described conventional knowledge. That is, among the sensor measurement data, the temperature and humidity for which preferred numerical ranges are defined are set so as to form a trapezoid with the preferred numerical ranges as upper sides. In addition, the lower the CO concentration, the CO 2 concentration, the PM content, the CH 2 O concentration, and the VOC concentration, the better the measurement data, so they are set linearly with a constant slope. As for the ozone concentration, it is generally considered that the lower the concentration, the better.
  • the shape of the membership function applied to fuzzy inference shown in FIG. 6 is an example in this embodiment, and tuning such as changing the shape as appropriate according to each index obtained can be performed. For example, in a restaurant or the like that always handles fire indoors, it is conceivable to modify the membership function relating to the CO 2 concentration.
  • the index calculation unit 122 calculates the air quality of the environmental air in the location where each sensor device 20 is installed.
  • the overall air quality index which is an index for comprehensive evaluation, the virus presence probability at the location where the sensor is installed, and the degree of infection risk.
  • the comprehensive air quality index is calculated as a numerical value in the range of 0 to 9.9, and the higher the numerical value, the poorer the air quality.
  • the virus presence probability and the degree of infection risk are each represented by a numerical value between 0% and 100%.
  • a specific index calculation method may be specified through normalization of each sensor measurement data, adjustment of a membership function, and the like.
  • the output display control unit 123 has a function of generating output display data using sensor measurement data, position information, and various index data calculated by the index calculation unit 122 .
  • the data input/output unit 124 has an interface function for inputting data such as sensor measurement data and position information used by the inference unit 121 and the index calculation unit 122, and outputting output screen data generated by the output display control unit 123.
  • FIG. 4 is a block diagram showing a configuration example of the terminal device 30 according to this embodiment.
  • the terminal device 30 receives and displays various sensor measurement data, index data, etc. from the environmental air monitoring device 10 while communicating with the environmental air monitoring device 10 via the communication network 40, and also displays the data to the environmental air monitoring device 10. It is a terminal device that transmits a request for data update or the like.
  • the terminal device 30 can be configured by, for example, a smart phone, a tablet terminal, or a personal computer having a communication function.
  • a terminal device 30 illustrated in FIG. 1 A terminal device 30 illustrated in FIG.
  • the processor 31 is hardware that realizes the overall functions of the terminal device 30 by executing each program stored in the memory 32, and can be configured as a CPU, for example.
  • the memory 32 is composed of storage devices such as RAM, ROM, and flash memory, and stores various programs for realizing the functions of the terminal device 30 .
  • the auxiliary storage unit 33 stores data used by the programs stored in the memory 32, result data calculated as a result of executing the programs, and the like.
  • the auxiliary storage unit 33 can be composed of a storage device such as a semiconductor drive (SSD). All or part of the programs stored in the memory 32 may be stored in the auxiliary storage unit 33 in advance and read out from the auxiliary storage unit 33 to the memory 32 when the processor 11 executes them.
  • SSD semiconductor drive
  • the input/output unit 34 includes input devices such as a touch panel, keyboard, mouse, and microphone for receiving data input operations to the terminal device 30, and output devices such as an appropriate format display and speakers.
  • the data IF section 35 is an interface circuit having a function of transferring data received from the environmental air monitoring device 10 to each program in the memory 32, a function of sending various control data from each program, and the like.
  • the communication unit 36 is a communication module that controls the communication function of the terminal device 30 , transmits data from the data IF unit 35 to the communication network 40 , and transfers data received from the communication network 40 to the data IF unit 35 .
  • the communication unit 36 includes hardware such as a mobile communication module, a wireless LAN module, and an NFC module.
  • the memory 32 includes an application 321 that causes the terminal device 30 to function as a client of the environmental air monitoring device 10 and a data input/output unit 322 .
  • the memory 32 may store other programs (not shown).
  • browser software installed in the terminal device 30 may be used as a client of the environmental air monitoring device 10 without using the application 321 .
  • the application 321 includes a communication control unit 3211, a request transmission unit 3212, and a screen display control unit 3213.
  • the communication control unit 3211 provides a function of performing data transmission/reception processing between the application 321 and the environmental air monitoring device 10 .
  • the request transmission unit 3212 provides a function of requesting transmission of various data from the application 321 to the environmental air monitoring device 10 .
  • the screen display control unit 3213 provides a data output function to an output device such as a display of the input/output unit 34 based on the output screen data and the like received from the environmental air monitoring device 10 .
  • the data input/output unit 322 is an interface unit that provides data input/output processing functions to the application 321 .
  • FIG. 5 shows a flow chart illustrating the process of calculating the inference and various indices.
  • the data processing illustrated in FIG. 5 is data processing executed by the inference unit 121 and the index calculation unit 122 of the environmental air monitoring device 10, and is executed, for example, when the environmental air monitoring device 10 is started and at predetermined time intervals thereafter. can be made
  • step S500 the inference unit 121 acquires sensor measurement data and position information from the sensor device 20 via the data input/output unit 124. These data can be temporarily stored in the auxiliary storage unit 13 .
  • step S510 the inference unit 121 acquires the membership function as the inference data 131 from the auxiliary storage unit 13.
  • step S520 the inference unit 121 applies a membership function as inference data to the acquired sensor measurement data and position information to perform fuzzy inference. Then, the index calculator 122 calculates the overall air quality index, the virus existence probability, and the infection risk degree from the fuzzy inference results.
  • step S530 the index calculation unit 122 stores each calculated index in the auxiliary storage unit 13.
  • the newly acquired sensor measurement data and the position information of the sensor device 20 are used to calculate the overall air quality index, virus presence probability, and infection risk degree related to the environmental air. It can be calculated, and it will be possible to objectively know the environmental air quality and the risk of infection with pathogenic viruses in the target location.
  • FIG. 7A shows an example of a management screen output and displayed on the display device that constitutes the input/output unit of the environmental air monitoring apparatus 10.
  • the installation location and identification ID of the sensor device 20 the overall air quality index calculated from the measurement data at the corresponding installation location, and the infection risk are displayed in a table format.
  • temperature, and virus presence probability, temperature (°C), humidity (RH%), CO concentration (ppm), CO2 concentration (ppm), O3 concentration (ppm), and PM2.5 content measured at the installation location Amounts ( ⁇ g) are indicated.
  • a detail button is provided for each installation location, and by operating this button, detailed information about the corresponding installation location is displayed in the lower half of FIG.
  • this detailed information includes a map of the vicinity of the installation location, the address and organization of the installation location, warning messages recorded for the installation location, notes about the warning message, temperature at the installation location, CO 2 Concentration, including graphs showing changes in O3 concentration over time.
  • the management screen illustrated in FIG. 7A it is possible to list the indicators and main measurement values regarding the air quality of the location where the sensor device 20 is installed, and the state requiring attention regarding the air quality. You can immediately determine where you are. Further, by operating the detail button, it is possible to obtain detailed information about a specific location, for example, a location determined to require attention regarding air quality, which can be used to find the cause and countermeasures for problems related to air quality.
  • FIG. 7B shows an example of another form of management screen output and displayed on the display device that constitutes the input/output unit of the environmental air monitoring apparatus 10 .
  • the installation location and identification ID (device ID) of the sensor device 20 the overall air quality index calculated from the measurement data at the corresponding installation location, the infection risk and the virus presence probability are displayed.
  • a 3D map of the surroundings of the installation location is also displayed in the upper half so that the installation location of the sensor device 20 can be visually grasped.
  • a switch is provided for turning on/off the power of the sensor device 20 and the number of revolutions of the electric fan from this management screen, and it is configured so that the change can be reflected by operating the action button.
  • the temperature (° C.), humidity (RH%), CO2 concentration (ppm), and PM2.5 content ( ⁇ g) measured at the installation location are In the form of a round analog display meter, it is displayed with digital readings.
  • an area display indicating the legal reference value corresponding to each measurement item is provided.
  • a safe area e.g. blue band display
  • 800-1000 ppm is a caution area
  • over 1000 ppm is a warning area (e.g. red band display).
  • FIG. 8 shows an output screen display example of the terminal device 30.
  • the output display control section 123 of the environmental air monitoring device 10 generates output screen data and transmits it to the terminal device 30 that made the request.
  • the position information corresponding to the displayed measurement data (in the example of FIG. 8, “1F, Z Building, Y Town, X Ward”), the total spatial index, which is the calculated environmental air index, the degree of infection risk, and Temperature, CO2 concentration, humidity, CO concentration, NO2 concentration, O3 concentration, PM2.5 content, VOC concentration as aerosol, sensor measurement data are displayed.
  • the bottom graph shows the measurement history of CO2 concentration over the last 24 hours.
  • a text display field is provided near the center of the screen, and is configured to display an alert when the measured value exceeds a predetermined threshold value (for example, the legal allowable upper limit value).
  • a predetermined threshold value for example, the legal allowable upper limit value.
  • the example of FIG. 8 indicates that the CO 2 concentration at the measurement point is at a level that requires ventilation.
  • FIG. 9 shows another display example of the output screen of the terminal device 30.
  • FIG. FIG. 9 displays a map on the screen of the terminal device 30, and shows, on the map, the state of the environmental air at each point as seen from the environmental air index in 3D graphics.
  • the environmental air condition is displayed in three levels of "GOOD", "FAIR”, and "POOR”.
  • the information of the point for example, store name, building name, altitude (number of floors) of the measurement place, etc.
  • the information of the point for example, store name, building name, altitude (number of floors) of the measurement place, etc.
  • the output screen example described above it is possible to know in detail the state of the environmental air in the location where the specific sensor device 20 is located, and to report the degree of risk of infectious disease infection in that location on an easy-to-understand scale. can. In addition, it is possible to inform intuitively which places are safe and secure in terms of environmental air on the map. In addition, since altitude information can be included in the location, even in a large-scale building such as a high-rise building, detailed locations including the floor on which the location is located can be presented.
  • FIG. 10 is a functional block diagram illustrating a configuration example of the environmental air monitoring device 10 of this embodiment.
  • the basic configuration of the environmental air monitoring device 10 illustrated in FIG. 10 is the same as that of the first embodiment illustrated in FIG.
  • the program of the learning unit 121A is stored in the memory 12, and the learning data 131A used by the learning unit 121A and the trained model 132 generated by the learning unit 121A are stored in the auxiliary storage unit 13. Points are different.
  • the memory 12 stores the program of the learning unit 121A, and learning is performed using the learning data 131A, which is teacher data stored in the auxiliary storage unit 13.
  • the learning data 131A includes event information acquired from the outside via the communication unit 16 .
  • this event information is the occurrence of a cluster due to infection with a specific pathogenic virus.
  • Event information is based on a combination of the location and date of occurrence of this cluster.
  • temperature, CO 2 concentration, humidity, CO concentration, NO 2 concentration which are sensor measurement data at the relevant date and time of the sensor device 20 installed at the corresponding location, are associated with the information regarding the occurrence of the cluster.
  • O 3 concentration, PM content, VOC concentration, and position information of the sensor device 20 are held.
  • the total air quality index, the degree of infection risk, and the virus existence probability calculated using those measurement data are also associated.
  • the learning data 131A is a combination of the date and time of occurrence of the cluster, the location, the corresponding sensor measurement data, and the calculated index value. Thereby, the relationship between cluster generation, sensor measurement data, and each index value is learned. In addition, it is assumed that information on the occurrence of clusters as event information will be obtained from materials published by the competent authorities.
  • the memory 12 stores the program of the learning unit 121A, and uses the learning data 131A to learn and learn the relationship between the set of sensor measurement data, position information, the presence or absence of cluster occurrence, and the number of infected people in the occurrence cluster.
  • a finished model 132 is generated and stored in the auxiliary storage unit 13 .
  • the index calculation unit 122 is an index for comprehensively evaluating the air quality of the ambient air in the location where each sensor device 20 is installed based on the sensor measurement data received from each sensor device 20 and the position information. Calculate the overall air quality index. Also, the index calculation unit 122 calculates the infection risk level and the virus existence probability using the learned model 132 based on the sensor measurement data and the position information.
  • FIG. 11 shows a flowchart illustrating the learning process.
  • the data processing illustrated in FIG. 11 is processing for generating the learned model 132 that is used when the index calculator 122 of the environmental air monitoring device 10 calculates an index related to environmental air. , and at predetermined time intervals thereafter.
  • step S1000 the learning unit 121A acquires the learning data 131A stored in the auxiliary storage unit 13 via the data input/output unit 124.
  • the learning unit 121A In step S1010, the learning unit 121A generates a trained model 132 using the acquired learning data 131A.
  • the learning unit 121A can typically be a deep learning engine having two or more hidden layers, but is not limited to this.
  • the input to the learning unit 121A is a combination of the date and time of occurrence of the cluster, the location, the corresponding sensor measurement data, and the calculated index value, which constitute the learning data 131A.
  • step S1020 the learning unit 121A stores the generated trained model 132 in the auxiliary storage unit 13.
  • the risk of infection with a specific pathogenic virus infection and the extent to which the virus is expected to exist in the environmental air are calculated from the newly acquired sensor measurement data and the position information of the sensor device 20.
  • FIG. 12 is a flow chart illustrating the processing flow for calculating the ambient air index by the ambient air monitoring device 10 of this embodiment.
  • the environmental air index is calculated by the index calculator 122 of the environmental air monitoring device 10 .
  • the calculation timing can be, for example, when the environmental air monitoring device 10 is started and after every predetermined time. Alternatively, the time when it is determined that there is a change in the sensor measurement data or the position information acquired from the sensor device 20 may be used as the calculation timing.
  • step S ⁇ b>1110 the index calculation unit 122 acquires the learned model 132 stored in the auxiliary storage unit 13 via the data input/output unit 124 .
  • step S1120 the index calculation unit 122 applies the learned model 132 to the acquired sensor measurement data and position information to calculate the environmental air index value.
  • step S1130 the index calculation unit 122 outputs the calculated environmental air index value and ends the process.
  • the environmental air index calculation process described above based on the sensor measurement data acquired from a specific sensor device 20, it is possible to calculate and output the index related to the environmental air at the location where the sensor device 20 is located.
  • the correlation between the sensor measurement data and the environmental air index value is a membership function representing the relationship between the sensor measurement data and the environmental air index value, and the membership function is applied to the obtained sensor measurement data to generate a fuzzy
  • the ambient air index value may be calculated by performing inference. In this way, a statistically appropriate environmental air index value can be calculated by fuzzy inference.
  • Collecting event information which is information including the place where a predetermined event occurred and the content of the event, and measuring the place and date and time of the event occurrence related to the event information and measurement data of each sensor corresponding to the place and date and time
  • a trained model is generated by learning big data obtained by associating a value with an environmental air index value corresponding to the measured value, and the measured value of each newly acquired sensor measurement data is used as the learned model
  • the environmental air index value at the corresponding position may be calculated. In this way, it is possible to accurately calculate the environmental air index value by retrieving cluster generation information from information sources on the Internet, etc., and learning the correlation between the sensor measurement data and the big data including the environmental air index value. can.
  • the sensor measurement data includes measurement data of at least one of temperature, humidity, CO 2 , CO, O 3 , NO 2 , VOC, CH 2 O, and PM, and the event information is a cluster for a predetermined infectious disease.
  • Occurrence information a correlation between the measured data and the cluster occurrence information may be derived to calculate the probability of cluster occurrence at the location where the new sensor measurement data is obtained. In this way, cluster occurrence probabilities can be calculated and presented based on past data.
  • the ambient air index value and the measured value of measured data may be output and displayed, wherein the measured value of the sensor measured data is substantially displayed in the form of an analog indicating meter. may be output and displayed in real time. In this way, the ambient air index value at each measurement location can be intuitively grasped almost in real time.
  • the environmental air index value or a phrase indicating the condition of the environmental air represented by the environmental air index value, and the measurement location of the measurement data used as the basis for the calculation of the environmental air index, are displayed in association with each other on a map, including altitude information. You can do it. By doing so, it is possible to identify a detailed location including the number of floors in the building and know the state of the environmental air at that location.
  • the environmental air monitoring device 10 According to the environmental air monitoring device 10 according to the present embodiment described above, it is possible to calculate and present an index indicating the quality of the environmental air in real time based on a plurality of measurement items.
  • FIGS. 2-4 and 10 are merely examples and are not particularly limited. That is, it suffices if the environmental air monitoring device 10 is provided with a function capable of executing the series of processes described above as a whole. is not limited to the example of Also, one functional block may be composed of hardware alone, software alone, or a combination thereof.
  • the functional configuration in this embodiment is realized by a processor that executes arithmetic processing, and processors that can be used in this embodiment are composed of various single processing units such as single processors, multiprocessors, and multicore processors. In addition to these, it also includes combinations of these various processing devices and processing circuits such as ASICs (Application Specific Integrated Circuits) and FPGAs (Field-Programmable Gate Arrays).
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field-Programmable Gate Arrays
  • the computer may be a computer built into dedicated hardware.
  • the computer may also be a computer capable of executing various functions by installing various programs, such as a general-purpose personal computer.
  • a recording medium containing such a program is not only constituted by a removable medium such as a USB memory that is distributed separately from the main body of the device in order to provide the program to the user, but is also preinstalled in the main body of the device and stored by the user. It consists of a recording medium, etc. provided to Removable media are composed of, for example, magnetic disks (including floppy disks), optical disks, or magneto-optical disks. Optical discs are composed of, for example, CD-ROMs (Compact Disk-Read Only Memory), DVDs (Digital Versatile Disks), Blu-ray (registered trademark) Discs (Blu-ray Discs), and the like.
  • the magneto-optical disk is composed of an MD (Mini-Disk) or the like.
  • the recording medium provided to the user in a state of being pre-installed in the apparatus main body is composed of, for example, a ROM in which the program is recorded and a storage device such as a hard disk included in the auxiliary storage units 13 and 33 .
  • the steps of writing a program recorded on a recording medium are not only processes that are performed chronologically in that order, but also processes that are not necessarily chronologically processed, and that are performed in parallel or individually. It also includes the processing to be executed.

Landscapes

  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The purpose of the present invention is to calculate and present an indicator of ambient air quality in real time on the basis of a plurality of measurement items. An ambient air monitoring device 10 is provided with a processing unit configured to: acquire ambient air information, which is a plurality of types of measurement data regarding properties and components of ambient air, together with measurement location information, which is information indicating the location where the ambient air information was measured; store a correlation between the acquired ambient air information and an ambient air indicator, which is information indicating the quality of the ambient air; acquire the correlation from a correlation storage unit and apply the correlation to the ambient air information to calculate the ambient air indicator; and output the calculated ambient air indicator in a prescribed format.

Description

情報処理装置、情報処理方法及びプログラムInformation processing device, information processing method and program
 本発明は、情報処理装置、情報処理方法及びプログラムに関する。 The present invention relates to an information processing device, an information processing method, and a program.
 感染症が世界的な社会問題となっていることもあり、人が日常呼吸している環境の空気の質に対する関心が高まっている。空気質については、例えば日本の関連法令(労働安全衛生法・事務所衛生基準規則(空気調和設備))では、浮遊粉じん量、一酸化炭素、二酸化炭素、ホルムアルデヒド、室温(温度)、相対湿度の各項目について遵守すべき基準値が規定されており、定期的に測定して基準値を超えていないか確認することが求められている。 With infectious diseases becoming a global social problem, there is growing interest in the quality of the air in the environment where people breathe on a daily basis. Regarding air quality, for example, Japanese laws and regulations (Industrial Safety and Health Law, Office Sanitation Standard Regulations (Air Conditioning Equipment)) stipulate the amount of airborne dust, carbon monoxide, carbon dioxide, formaldehyde, room temperature (temperature), and relative humidity. Standard values to be complied with for each item are stipulated, and it is required to periodically measure and check whether the standard values are exceeded.
 この点に関し、例えば特許文献1は、建物の室内環境の空気中の二酸化炭素濃度の瞬時値を検出する二酸化炭素センサと、制御ユニットと、二酸化炭素センサと制御ユニットとの間の信号通信を行う通信ユニットと、記憶ユニットとを含むシステムによって、建物の室内環境中の空気質を制御する方法を提案している。 In this regard, for example, Patent Document 1 discloses signal communication between a carbon dioxide sensor that detects an instantaneous value of the carbon dioxide concentration in the air in the indoor environment of a building, a control unit, and the carbon dioxide sensor and the control unit. A method is proposed for controlling the air quality in the indoor environment of a building by means of a system comprising a communication unit and a storage unit.
特開2021-117999号公報Japanese Patent Application Laid-Open No. 2021-117999
 しかしながら、特許文献1が取り扱うのは室内環境中の二酸化炭素のみであり、空気質に影響を与える他の測定項目については測定することも制御することも言及していない。また、たとえ規定されているすべての項目について定期的に基準値に照らした確認を行ったとしても、環境の空気中に感染症の原因となるウイルス等の病原体が存在しているか、といった極めて関心が高くまた人の感染防止行動について重要な指標となりうるような情報はまったく提供されることがない、という問題があった。 However, Patent Document 1 only deals with carbon dioxide in the indoor environment, and does not mention measuring or controlling other measurement items that affect air quality. In addition, even if all stipulated items are regularly checked against the standard values, there is a high level of concern about the existence of pathogens such as viruses that cause infectious diseases in the air in the environment. However, there is a problem that the information that can be an important index for human infection prevention behavior is not provided at all.
 本発明の目的の一つは、環境空気の質を示す指標を複数の測定項目に基づいてリアルタイムに算出して提示することができる情報処理装置、情報処理方法及びプログラムを提供することである。 One of the objects of the present invention is to provide an information processing device, an information processing method, and a program capable of calculating and presenting in real time an index indicating environmental air quality based on a plurality of measurement items.
 本発明の一つの態様による情報処理装置は、環境空気の性質及び成分に関する複数の種類の測定データである環境空気情報を、当該環境空気情報が測定された場所を示す情報である測定位置情報とともに取得し、取得されている前記環境空気情報と、環境空気の質を示す情報である環境空気指標との相関関係を保持し、前記相関関係保持部から前記相関関係を取得して、前記環境空気情報に当該相関関係を適用することにより前記環境空気指標を算出し、算出された前記環境空気指標を所定のフォーマットで出力するように構成されている処理部を備えている。 An information processing apparatus according to one aspect of the present invention provides environmental air information, which is a plurality of types of measurement data relating to properties and components of environmental air, together with measurement position information, which is information indicating the location where the environmental air information was measured. acquire, hold a correlation between the acquired environmental air information and an environmental air index that is information indicating the quality of the environmental air, acquire the correlation from the correlation holding unit, and store the environmental air A processing unit configured to calculate the ambient air index by applying the correlation to the information and to output the calculated ambient air index in a predetermined format.
 本発明によれば、環境空気の質を示す指標を複数の測定項目に基づいてリアルタイムに算出して提示することができる。 According to the present invention, an index indicating environmental air quality can be calculated and presented in real time based on multiple measurement items.
本発明の一実施形態における環境空気監視システムの構成を例示するシステム構成図である。1 is a system configuration diagram illustrating the configuration of an environmental air monitoring system according to one embodiment of the present invention; FIG. 本発明の一実施形態におけるセンサ装置のハードウェア及び機能ブロックの構成を例示するブロック図である。1 is a block diagram illustrating the configuration of hardware and functional blocks of a sensor device according to an embodiment of the present invention; FIG. 本発明の一実施形態における環境空気監視装置のハードウェア及び機能ブロックの構成を例示するブロック図である。1 is a block diagram illustrating the configuration of hardware and functional blocks of an environmental air monitoring device according to an embodiment of the present invention; FIG. 本発明の一実施形態における端末装置のハードウェア及び機能ブロックの構成を例示するブロック図である。2 is a block diagram illustrating the configuration of hardware and functional blocks of a terminal device according to one embodiment of the present invention; FIG. 本発明の一実施形態における環境空気監視装置の環境空気指標算出処理の流れを例示するフローチャートである。4 is a flowchart illustrating the flow of environmental air index calculation processing of the environmental air monitoring device in one embodiment of the present invention. 本発明の一実施形態における推論用データの構成例を示す図である。FIG. 4 is a diagram showing a configuration example of inference data in one embodiment of the present invention; 本発明の一実施形態における環境空気監視装置の管理画面例を示す図である。FIG. 4 is a diagram showing an example of a management screen of the environmental air monitoring device according to one embodiment of the present invention; 本発明の一実施形態における環境空気監視装置の管理画面例を示す図である。FIG. 4 is a diagram showing an example of a management screen of the environmental air monitoring device according to one embodiment of the present invention; 本発明の一実施形態における環境空気監視装置の一の出力表示例を示す図である。FIG. 4 is a diagram showing an output display example of the environmental air monitoring device in one embodiment of the present invention; 本発明の一実施形態における環境空気監視装置の他の出力表示例を示す図である。FIG. 4 is a diagram showing another output display example of the environmental air monitoring device in one embodiment of the present invention; 本発明の他の実施形態における環境空気監視装置のハードウェア及び機能ブロックの構成を例示するブロック図である。FIG. 4 is a block diagram illustrating the configuration of hardware and functional blocks of an environmental air monitoring device according to another embodiment of the present invention; 本発明の他の実施形態における環境空気監視装置の学習処理の流れを例示するフローチャートである。9 is a flow chart illustrating the flow of learning processing of the environmental air monitoring device in another embodiment of the present invention; 本発明の他の実施形態における環境空気監視装置の環境空気指標算出処理の流れを例示するフローチャートである。9 is a flowchart illustrating the flow of environmental air index calculation processing of the environmental air monitoring device in another embodiment of the present invention;
 以下、本発明について、その実施形態に即して添付図面を参照しながら説明する。
<第1実施形態>
[環境空気監視システムの全体構成]
 まず、本発明の一実施形態に係る環境空気監視システムの全体構成について説明する。図1は、本発明の一実施形態に係る環境空気監視システム1の全体構成を例示するブロック図である。環境空気監視システム1は、環境空気監視装置10と、センサ装置20と、端末装置30とを備えている。環境空気監視装置10とセンサ装置20との間、環境空気監視装置10と端末装置30との間は、通信ネットワーク40によって通信可能に接続されている。通信ネットワーク40には、インターネット、WAN、LAN、専用線等の通信回線が含まれ、適宜有線又は無線通信で接続が確立されるように構成されている。なお、本発明の情報処理装置である環境空気監視装置10は、独立したコンピュータではなく、通信ネットワーク40上にある複数のコンピュータ(ノード)からなるクラウドコンピューティングシステムとして構成してもよい。その場合、後述する環境空気監視装置10の機能を実現するデータ処理はクラウドにおいて分散処理することができる。また、そのデータ処理に使用される各種パラメータ、データは、クラウドに分散配置されるストレージ内に適宜分散させて格納させておくことができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in line with its embodiments with reference to the accompanying drawings.
<First embodiment>
[Overall Configuration of Environmental Air Monitoring System]
First, the overall configuration of an environmental air monitoring system according to one embodiment of the present invention will be described. FIG. 1 is a block diagram illustrating the overall configuration of an environmental air monitoring system 1 according to one embodiment of the invention. The environmental air monitoring system 1 includes an environmental air monitoring device 10 , a sensor device 20 and a terminal device 30 . The environmental air monitoring device 10 and the sensor device 20 and the environmental air monitoring device 10 and the terminal device 30 are communicably connected by a communication network 40 . The communication network 40 includes communication lines such as the Internet, WAN, LAN, and dedicated lines, and is configured to establish connection by wire or wireless communication as appropriate. The environmental air monitoring device 10, which is the information processing device of the present invention, may be configured as a cloud computing system composed of a plurality of computers (nodes) on the communication network 40 instead of an independent computer. In that case, the data processing that realizes the functions of the environmental air monitoring device 10, which will be described later, can be distributed in the cloud. In addition, various parameters and data used for the data processing can be appropriately distributed and stored in storage distributed in the cloud.
 環境空気監視装置10は、通信ネットワーク40を介して接続されている複数のセンサ装置20から送られる複数種類のセンサ測定データを受け取って、後述する所定のデータ処理を利用してセンサ装置20が設置されている場所の環境空気の空気質に関する指標を算出する。また、環境空気監視装置10は、通信ネットワーク40を通じて他のデータベースから、様々な場所で発生した種々のイベントに関するイベント情報を取得して、前記指標の算出に利用する。具体的には、このイベント情報は、例えば特定の感染症の感染者発生とその規模(感染人数)及び感染者の容態に関する情報であるが、必ずしもこれに限定されるものではない。 The environmental air monitoring device 10 receives a plurality of types of sensor measurement data sent from a plurality of sensor devices 20 connected via a communication network 40, and the sensor devices 20 are installed using predetermined data processing to be described later. Calculate an index for the air quality of the ambient air in a location where In addition, the environmental air monitoring device 10 acquires event information about various events occurring in various places from other databases through the communication network 40, and uses it for calculating the index. Specifically, this event information is, for example, information on the occurrence of infected persons of a specific infectious disease, its scale (the number of infected persons), and the condition of the infected persons, but is not necessarily limited to this.
 センサ装置20は、環境空気の空気質を評価すべき場所に設置され、空気に関する所定種類のセンサ測定データを取得して、通信ネットワーク40を介して環境空気監視装置10へ送る機能を有するデバイスである。設置場所は屋内屋外を問わないし、また市中を巡回しつつ移動する配達員のような人が携帯するようにしてもよい。 The sensor device 20 is a device that is installed at a place where the air quality of the environmental air should be evaluated, acquires a predetermined type of sensor measurement data regarding air, and has a function of sending it to the environmental air monitoring device 10 via the communication network 40. be. It may be installed indoors or outdoors, and may be carried by a person such as a delivery man who patrols the city.
 端末装置30は、環境空気監視装置10がセンサ装置20のセンサ測定データ等に基づいて作成した種々の指標を含む出力データを受け取って、表示画面等に出力する機能を有する。端末装置30には、環境空気監視装置10のクライアントとして動作するアプリケーションをインストールするようにしてもよい。 The terminal device 30 has a function of receiving output data including various indices created by the environmental air monitoring device 10 based on sensor measurement data of the sensor device 20 and outputting it to a display screen or the like. An application that operates as a client of the environmental air monitoring device 10 may be installed in the terminal device 30 .
 次に、環境空気監視装置10、センサ装置20、及び端末装置30それぞれの構成について説明する。
[センサ装置20の構成]
 図2に、本実施形態に係るセンサ装置20の構成例を、機能ブロック図で示している。図2に例示するセンサ装置20は、空気質に関する種々のデータを測定するためのセンサデバイスであって、プロセッサ21、メモリ22、センサ群23、位置信号受信部24、データIF部25、及び通信部26を備えている。プロセッサ21は、センサ群23によって測定された各種センサ測定データに対して所定のデータ処理を行うとともに、センサ装置20の全体動作を制御するための各種プログラムを実行する。プロセッサ21は例えばCPUであってよい。
Next, configurations of the environmental air monitoring device 10, the sensor device 20, and the terminal device 30 will be described.
[Structure of sensor device 20]
FIG. 2 shows a functional block diagram of a configuration example of the sensor device 20 according to the present embodiment. The sensor device 20 illustrated in FIG. 2 is a sensor device for measuring various data related to air quality, and includes a processor 21, a memory 22, a sensor group 23, a position signal receiver 24, a data IF unit 25, and a communication device. A portion 26 is provided. The processor 21 performs predetermined data processing on various sensor measurement data measured by the sensor group 23 and executes various programs for controlling the overall operation of the sensor device 20 . Processor 21 may be, for example, a CPU.
 メモリ22はプロセッサ21によって実行される各種プログラム、そのプログラム実行に使用される各種データ等を格納する記憶デバイスであり、ROM,RAM,フラッシュメモリ等のハードウェアを備える。 The memory 22 is a storage device that stores various programs executed by the processor 21 and various data used for executing the programs, and includes hardware such as ROM, RAM, and flash memory.
 センサ群23は、本実施形態の環境空気監視装置10が各種空気質の指標を算出するための基礎となるセンサ測定データを測定するセンサデバイスを含む。本実施形態では、温湿度センサ231、二酸化炭素(CO)センサ232、一酸化炭素(CO)センサ233、オゾン(O)センサ234、二酸化窒素(NO)センサ235、揮発性有機化合物(VOC)センサ236、ホルムアルデヒド(CHO)センサ237、及び粒子状物質(PM)センサ238の8種類のセンサを備えている。温湿度センサ231は例えばアナログ電圧出力のセンサモジュールを用いることができる。COセンサ232、COセンサ233、Oセンサ234、NOセンサ235は、それぞれ空気中のCO濃度、CO濃度、O濃度、NO濃度を測定するデバイスで、光学式、電気化学式、半導体式、いずれの測定方式のデバイスであってもよい。VOCセンサ236は、空気中に存在するVOCの総量を例えば非分散型赤外線分析によって測定する。CHOセンサ237も例えば同様にして空気中のCHO濃度を測定する。PMセンサ238は、空気中の粒子状物質の濃度を、そのサイズに応じてPM1.0、PM2.5、PM10に区分して、例えば散乱光を利用した光学式で測定するものである。なお、上記したセンサ群23において使用される各種センサは、例示した形式の機器に限定されることなく、本実施形態に使用可能な機器を適宜採用することができる。 The sensor group 23 includes sensor devices that measure sensor measurement data that are the basis for the environmental air monitoring apparatus 10 of the present embodiment to calculate various air quality indices. In this embodiment, temperature and humidity sensor 231, carbon dioxide (CO 2 ) sensor 232, carbon monoxide (CO) sensor 233, ozone (O 3 ) sensor 234, nitrogen dioxide (NO 2 ) sensor 235, volatile organic compounds ( VOC) sensor 236 , formaldehyde (CH 2 O) sensor 237 , and particulate matter (PM) sensor 238 . For the temperature/humidity sensor 231, for example, an analog voltage output sensor module can be used. The CO2 sensor 232, CO sensor 233, O3 sensor 234, and NO2 sensor 235 are devices that measure the CO2 concentration, CO concentration, O3 concentration, and NO2 concentration in the air, respectively. The device may be a semiconductor type or any measurement type device. VOC sensor 236 measures the total amount of VOCs present in the air, for example, by non-dispersive infrared analysis. The CH 2 O sensor 237 also measures the CH 2 O concentration in the air in a similar manner, for example. The PM sensor 238 classifies the concentration of particulate matter in the air into PM1.0, PM2.5, and PM10 according to its size, and measures it optically using scattered light, for example. The various sensors used in the sensor group 23 described above are not limited to the devices of the types illustrated, and devices that can be used in this embodiment can be appropriately adopted.
 位置信号受信部24は、センサ装置20が存在する位置に関する情報を外部から受信する処理部であり、全地球航法衛星システム(GNSS)の衛星電波受信モジュールとして構成することができる。センサ装置20は屋内に設置する場合も多いと考えられるが、その場合は、GNSSをサポートする屋内測位方式(例えば無線LANの基地局位置に基づいて測位する方式等)と適宜組み合わせることができ、平面座標に加えて高度情報も得られることで、特定の建築物のいずれの階層にセンサ装置20が位置しているか判定可能となるように構成することができる。 The position signal receiving unit 24 is a processing unit that receives information about the position of the sensor device 20 from the outside, and can be configured as a satellite radio wave receiving module of the global navigation satellite system (GNSS). It is conceivable that the sensor device 20 is installed indoors in many cases. By obtaining altitude information in addition to plane coordinates, it is possible to determine on which floor of a specific building the sensor device 20 is located.
 データIF部25は、センサ群23によって測定されメモリ22に格納されているプログラムによって処理されたセンサ測定データを、通信部26を介して通信ネットワーク40へ送出する機能、及び環境空気監視装置10からセンサ装置20への各種制御データの受信等の機能を備えているインタフェース回路である。 The data IF unit 25 has a function of transmitting sensor measurement data measured by the sensor group 23 and processed by a program stored in the memory 22 to the communication network 40 via the communication unit 26, It is an interface circuit having functions such as receiving various control data to the sensor device 20 .
 通信部26はセンサ装置20の通信機能を制御する通信モジュールであり、データIF部25からのデータを通信ネットワーク40へ送出し、また通信ネットワーク40から受信するデータをデータIF部25へ転送する機能を有する。通信部26は、例えば移動体通信モジュール、Wi-Fi等の無線LANモジュール、Bluetooth(登録商標)等の近距離無線通信(Near Field Communication,NFC)モジュールのようなハードウェアとして実現される。 The communication unit 26 is a communication module that controls the communication function of the sensor device 20 , and has the function of transmitting data from the data IF unit 25 to the communication network 40 and transferring data received from the communication network 40 to the data IF unit 25 . have The communication unit 26 is implemented as hardware such as a mobile communication module, a wireless LAN module such as Wi-Fi, and a Near Field Communication (NFC) module such as Bluetooth (registered trademark).
 次に、センサ装置20のメモリ22に格納されている各プログラムについて説明する。メモリ22には、センサ制御部221、センサデータ処理部222、位置情報取得部223、及びデータ入出力部224の各機能部が格納されている。 Next, each program stored in the memory 22 of the sensor device 20 will be described. The memory 22 stores functional units such as a sensor control unit 221 , a sensor data processing unit 222 , a position information acquisition unit 223 and a data input/output unit 224 .
 センサ制御部221は、センサ群23に含まれる各センサに対する環境空気監視装置10からの指示、例えば各センサの起動、停止、センサステータスの要求等に応じてセンサを制御する機能を有する。センサデータ処理部222は、センサ群23の各センサから出力される測定データの補正、校正等の処理を実行する。位置情報取得部223は、位置信号受信部24が受信したGNSSからの座標情報、あるいは無線LAN基地局位置に基づく測位結果等のセンサ装置20の位置に関する情報に基づいて、センサ装置20が存在している位置に関する情報、例えば平面座標、高度を算出する。データ入出力部224は、各プログラムと外部とのデータ送受信処理を行う機能を有する。なお、センサ装置20の機能を実現するプログラムの構成は必ずしも図2に例示したものに限定されることなく、設計上の要請などにより他の異なる構成をとることも差し支えない。 The sensor control unit 221 has a function of controlling the sensors included in the sensor group 23 in response to instructions from the environmental air monitoring device 10, such as activation and deactivation of each sensor, requests for sensor status, and the like. The sensor data processing unit 222 executes processing such as correction and calibration of measurement data output from each sensor of the sensor group 23 . The position information acquisition unit 223 determines whether the sensor device 20 exists based on the information regarding the position of the sensor device 20 such as the coordinate information from the GNSS received by the position signal reception unit 24 or the positioning result based on the position of the wireless LAN base station. Information about the position of the object, such as plane coordinates and altitude, is calculated. The data input/output unit 224 has a function of performing data transmission/reception processing between each program and the outside. Note that the configuration of the program that implements the functions of the sensor device 20 is not necessarily limited to that illustrated in FIG.
[環境空気監視装置10の構成]
 次に、環境空気監視装置10の構成例について説明する。図3は、本実施形態の環境空気監視装置10の構成例を示す機能ブロック図である。図3に例示する情報処理装置としての環境空気監視装置10は、プロセッサ11、メモリ12、補助記憶部13、入出力部14、データインタフェース(IF)部15、及び通信部16を備えている。
[Configuration of Environmental Air Monitoring Device 10]
Next, a configuration example of the environmental air monitoring device 10 will be described. FIG. 3 is a functional block diagram showing a configuration example of the environmental air monitoring device 10 of this embodiment. An environmental air monitoring device 10 as an information processing device illustrated in FIG.
 プロセッサ11はメモリ12に格納される各プログラムを実行することにより、環境空気監視装置10の全体機能を実現するハードウェアであり、例えばCPUとして構成することができる。 The processor 11 is hardware that realizes the overall functions of the environmental air monitoring device 10 by executing each program stored in the memory 12, and can be configured as a CPU, for example.
 メモリ12は、RAM、ROM、フラッシュメモリ等の記憶デバイスで構成されており、環境空気監視装置10としての機能を実現するための各種プログラムが格納されている。 The memory 12 is composed of storage devices such as RAM, ROM, flash memory, etc., and stores various programs for realizing the functions of the environmental air monitoring device 10 .
 補助記憶部13は、メモリ12に格納されているプログラムが使用する推論用データ131、それらプログラムが実行された結果算出された結果データ等を格納している。補助記憶部13は、半導体ドライブ(SSD)、ハードディスクドライブ(HDD)等の記憶デバイスで構成することができる。なお、メモリ12に格納されているプログラムの全部又は一部は、あらかじめ補助記憶部13に格納しておき、プロセッサ11が実行するときに補助記憶部13からメモリ12に読み出すとしてもよい。 The auxiliary storage unit 13 stores inference data 131 used by the programs stored in the memory 12, result data calculated as a result of executing these programs, and the like. The auxiliary storage unit 13 can be configured with a storage device such as a semiconductor drive (SSD) or hard disk drive (HDD). All or part of the programs stored in the memory 12 may be stored in the auxiliary storage unit 13 in advance and read out from the auxiliary storage unit 13 to the memory 12 when the processor 11 executes them.
 入出力部14は、環境空気監視装置10へのデータ入力操作を受け付けるためのタッチパネル、キーボード、マウス、マイク等の入力デバイスと、適宜の形式のディスプレイ、スピーカ等の出力デバイスを備える。 The input/output unit 14 includes input devices such as a touch panel, keyboard, mouse, and microphone for receiving data input operations to the environmental air monitoring device 10, and output devices such as an appropriate format display and speakers.
 データIF部15は、センサ群23から受信するセンサ測定データをメモリ12の各プログラムへ受け渡す機能、各プログラムからセンサ装置20への各種制御データの送出機能等を備えているインタフェース回路である。通信部16は環境空気監視装置10の通信機能を制御する通信モジュールであり、データIF部15からのデータを通信ネットワーク40へ送出し、また通信ネットワーク40から受信するデータをデータIF部15へ転送する機能を有する。通信部16は、例えば移動体通信モジュール、ネットワークインタフェースカード(NIC)、無線LANモジュールのようなハードウェアとして実現される。 The data IF unit 15 is an interface circuit that has a function of transferring sensor measurement data received from the sensor group 23 to each program in the memory 12, a function of sending various control data from each program to the sensor device 20, and the like. The communication unit 16 is a communication module that controls the communication function of the environmental air monitoring device 10 , sends data from the data IF unit 15 to the communication network 40 , and transfers data received from the communication network 40 to the data IF unit 15 . It has the function to The communication unit 16 is implemented as hardware such as a mobile communication module, a network interface card (NIC), or a wireless LAN module.
 次に、環境空気監視装置10の機能について説明する。環境空気監視装置10の機能は、メモリ12に格納されているプログラムである推論部121、指標算出部122、出力表示制御部123、及びデータ入出力部124をプロセッサ11が実行することにより実現される。本実施形態の環境空気監視装置10は、センサ装置20から収集される各種センサ測定データとセンサ装置20の位置情報との組み合わせ、及び外部のデータベース等から通信ネットワーク40を介して収集されるイベント情報とから所定のルールで推論を実行し、それに基づいて各センサ装置20の所在地における環境空気の空気質を表す指標を算出して出力する。 Next, the functions of the environmental air monitoring device 10 will be explained. The functions of the environmental air monitoring device 10 are realized by the processor 11 executing the inference unit 121, the index calculation unit 122, the output display control unit 123, and the data input/output unit 124, which are programs stored in the memory 12. be. The environmental air monitoring device 10 of the present embodiment combines various sensor measurement data collected from the sensor device 20 and the position information of the sensor device 20, and event information collected from an external database or the like via the communication network 40. Based on this, an index representing the air quality of the ambient air at the location of each sensor device 20 is calculated and output.
 推論部121は、センサ装置20から取得されるセンサ測定データ、センサ装置20の設置場所の位置情報を各センサ装置20から受け取り、所定のルールを適用して入力情報に基づく推論を実行する機能を有する。 The inference unit 121 has a function of receiving sensor measurement data acquired from the sensor devices 20 and position information of the installation location of the sensor device 20 from each sensor device 20 and applying a predetermined rule to execute inference based on the input information. have.
 図6Aに、本実施形態における推論用データの概念モデルを示している。本実施形態ではセンサ測定データから空気質に関する指標を導出するにあたって、ファジィ推論を用いている。図6Aに例示している概念モデルは、このファジィ推論に適用されるメンバシップ関数である。 FIG. 6A shows a conceptual model of inference data in this embodiment. In this embodiment, fuzzy inference is used to derive the air quality index from the sensor measurement data. The conceptual model illustrated in FIG. 6A is the membership function applied to this fuzzy reasoning.
 本実施形態では、測定対象の場所における総合的な空気の質を示す指標である総合空気質指数が算出される。また、本実施形態では、特定イベントとして新型コロナウイルス等の病原ウイルスの感染を想定している。ウイルスの感染リスクを定量的に示す指標としては、測定対象となっている場所(空間)に、新型コロナウイルスを含む病原体が存在する確率を示す指標であるウイルス存在確率、測定対象となっている場所(空間)におけるウイルス感染リスクの程度を表す指標である感染リスク度を採用する。 In this embodiment, a comprehensive air quality index, which is an index indicating the comprehensive air quality at the measurement target location, is calculated. In addition, in the present embodiment, infection with a pathogenic virus such as the novel coronavirus is assumed as the specific event. As an index that quantitatively indicates the risk of viral infection, the virus presence probability, which is an index that indicates the probability that pathogens, including the new coronavirus, exist in the location (space) being measured, is being measured. An infection risk degree, which is an index representing the degree of virus infection risk in a place (space), is adopted.
 総合空気質指数は、一例として、ビル管理法における空気調和設備が設置されている場合に適用される建築物環境衛生管理基準に基づいて、浮遊粉じん量(PM)、CO、CO、CHO、温度(室温)、及び相対湿度の測定データに推論データを適用する。 As an example, the comprehensive air quality index is based on the building environmental hygiene management standards applied when air conditioning equipment is installed in the Building Management Law, the amount of suspended dust (PM), CO, CO 2 , CH 2 Inference data are applied to measured data for O, temperature (room temperature), and relative humidity.
 ウイルス存在確率は、従来の知見に基づいて、CO濃度が比較的高く、それとともに、PM2.5等の微粒子の含有量が比較的大きい場合に高くなると想定される。これは、CO濃度が高い場合その空間により多くの人が存在して呼気を排出していると推定され、またその空気中に多くのPMが存在することは、その呼気中により多くの病原ウイルスサイズの物体が含まれていることを示していると考えられるためである。 Based on conventional knowledge, it is assumed that the virus presence probability is higher when the CO 2 concentration is relatively high and therewith the content of fine particles such as PM2.5 is relatively high. It is presumed that when the CO2 concentration is high, there are more people in the space exhaling, and more PM in the air means more pathogens in the exhalation. This is because it is thought to indicate that virus-sized objects are included.
 感染リスク度は、従来の知見に基づいて、測定対象の空間における相対湿度が比較的高い、あるいは低い条件において、CO濃度とPM含有量がともに比較的高い場合に高くなるように設定される。また感染リスク度においては、VOCによる呼吸器への刺激が感染リスクを増大させると考えられるため、VOC濃度が比較的高くなると感染リスク度も高くなるように設定されている。 Based on conventional knowledge, the degree of infection risk is set to be high when both the CO 2 concentration and PM content are relatively high under conditions where the relative humidity in the space to be measured is relatively high or low. . In addition, the risk of infection is set so that the higher the VOC concentration, the higher the risk of infection, since it is believed that the respiratory irritation caused by VOCs increases the risk of infection.
 図6に例示するファジィ推論用メンバシップ関数は、上記したような従来の知見等に基づいて設定されている。すなわち、センサ測定データのうち、好適な数値範囲が規定されている温度、湿度については、概ね好適な数値範囲を上辺とする台形となるように設定される。また、CO濃度、CO濃度、PM含有量、CHO濃度、VOC濃度については低いほど好ましい測定データであるので、傾き一定の線形に設定している。また、オゾン濃度については、一般に低いほど好ましいと考えられるが、少量であれば一定の殺菌効果を期待することができるため、少量の含有は指数を高めるように設定されている。 The membership function for fuzzy inference illustrated in FIG. 6 is set based on the above-described conventional knowledge. That is, among the sensor measurement data, the temperature and humidity for which preferred numerical ranges are defined are set so as to form a trapezoid with the preferred numerical ranges as upper sides. In addition, the lower the CO concentration, the CO 2 concentration, the PM content, the CH 2 O concentration, and the VOC concentration, the better the measurement data, so they are set linearly with a constant slope. As for the ozone concentration, it is generally considered that the lower the concentration, the better.
 なお、図6に示したファジィ推論に適用されるメンバシップ関数の形状は本実施形態における一例であって、得られる各指数に応じて適宜形状を変更する等のチューニングを行うことができる。例えば常時室内で火気を扱う飲食店等においては、CO濃度に関するメンバシップ関数に修正を加える等の対応が考えられる。 Note that the shape of the membership function applied to fuzzy inference shown in FIG. 6 is an example in this embodiment, and tuning such as changing the shape as appropriate according to each index obtained can be performed. For example, in a restaurant or the like that always handles fire indoors, it is conceivable to modify the membership function relating to the CO 2 concentration.
 指標算出部122は、推論部121の推論結果から、各センサ装置20から受信されるセンサ測定データ、前記位置情報に基づいて、各センサ装置20が設置されている場所の環境空気の空気質を総合的に評価する指数である総合空気質指数、センサ設置場所におけるウイルス存在確率、及び感染リスク度を算出する。総合空気質指数は、0~9.9の範囲の数値として算出され、数値が大きいほど空気質が好ましくないことを表す。ウイルス存在確率、及び感染リスク度は、それぞれ0~100%の間の数値で表す。具体的な指標算出方式は、各センサ測定データの正規化、メンバシップ関数の調整等を通じて規定すればよい。 Based on the inference result of the inference unit 121, the sensor measurement data received from each sensor device 20, and the location information, the index calculation unit 122 calculates the air quality of the environmental air in the location where each sensor device 20 is installed. Calculate the overall air quality index, which is an index for comprehensive evaluation, the virus presence probability at the location where the sensor is installed, and the degree of infection risk. The comprehensive air quality index is calculated as a numerical value in the range of 0 to 9.9, and the higher the numerical value, the poorer the air quality. The virus presence probability and the degree of infection risk are each represented by a numerical value between 0% and 100%. A specific index calculation method may be specified through normalization of each sensor measurement data, adjustment of a membership function, and the like.
 出力表示制御部123は、センサ測定データ、位置情報、指標算出部122が算出した各種指標のデータを用いて出力表示用データを生成する機能を有する。 The output display control unit 123 has a function of generating output display data using sensor measurement data, position information, and various index data calculated by the index calculation unit 122 .
 データ入出力部124は、推論部121、指標算出部122が使用するセンサ測定データ、位置情報等のデータ入力処理、及び出力表示制御部123が生成した出力画面データの出力処理等を行うインタフェース機能を有する。 The data input/output unit 124 has an interface function for inputting data such as sensor measurement data and position information used by the inference unit 121 and the index calculation unit 122, and outputting output screen data generated by the output display control unit 123. have
[端末装置30の構成]
 次に、端末装置30の構成例について説明する。図4は、本実施形態に係る端末装置30の構成例を示すブロック図である。端末装置30は、通信ネットワーク40を介して環境空気監視装置10と通信しながら環境空気監視装置10から各種センサ測定データ、指標データ等を受信して表示するとともに、環境空気監視装置10に対してデータ更新等の要求を送信する端末装置である。端末装置30は、例えばスマートフォン、タブレット端末、通信機能を備えたパーソナルコンピュータで構成することができる。
[Configuration of terminal device 30]
Next, a configuration example of the terminal device 30 will be described. FIG. 4 is a block diagram showing a configuration example of the terminal device 30 according to this embodiment. The terminal device 30 receives and displays various sensor measurement data, index data, etc. from the environmental air monitoring device 10 while communicating with the environmental air monitoring device 10 via the communication network 40, and also displays the data to the environmental air monitoring device 10. It is a terminal device that transmits a request for data update or the like. The terminal device 30 can be configured by, for example, a smart phone, a tablet terminal, or a personal computer having a communication function.
 図4に例示する端末装置30は、プロセッサ31、メモリ32、補助記憶部33、入出力部34、データIF部35、及び通信部36を備えている。 A terminal device 30 illustrated in FIG.
 プロセッサ31はメモリ32に格納される各プログラムを実行することにより、端末装置30の全体機能を実現するハードウェアであり、例えばCPUとして構成することができる。 The processor 31 is hardware that realizes the overall functions of the terminal device 30 by executing each program stored in the memory 32, and can be configured as a CPU, for example.
 メモリ32は、RAM、ROM、フラッシュメモリ等の記憶デバイスで構成されており、端末装置30としての機能を実現するための各種プログラムが格納されている。補助記憶部33は、メモリ32に格納されているプログラムが使用するデータ、それらプログラムが実行された結果算出された結果データ等を格納する。 The memory 32 is composed of storage devices such as RAM, ROM, and flash memory, and stores various programs for realizing the functions of the terminal device 30 . The auxiliary storage unit 33 stores data used by the programs stored in the memory 32, result data calculated as a result of executing the programs, and the like.
 補助記憶部33は、半導体ドライブ(SSD)等の記憶デバイスで構成することができる。なお、メモリ32に格納されているプログラムの全部又は一部は、あらかじめ補助記憶部33に格納しておき、プロセッサ11が実行するときに補助記憶部33からメモリ32に読み出すとしてもよい。 The auxiliary storage unit 33 can be composed of a storage device such as a semiconductor drive (SSD). All or part of the programs stored in the memory 32 may be stored in the auxiliary storage unit 33 in advance and read out from the auxiliary storage unit 33 to the memory 32 when the processor 11 executes them.
 入出力部34は、端末装置30へのデータ入力操作を受け付けるためのタッチパネル、キーボード、マウス、マイク等の入力デバイスと、適宜の形式のディスプレイ、スピーカ等の出力デバイスを備える。 The input/output unit 34 includes input devices such as a touch panel, keyboard, mouse, and microphone for receiving data input operations to the terminal device 30, and output devices such as an appropriate format display and speakers.
 データIF部35は、環境空気監視装置10から受信するデータをメモリ32の各プログラムへ受け渡す機能、各プログラムからの各種制御データの送出機能等を備えているインタフェース回路である。 The data IF section 35 is an interface circuit having a function of transferring data received from the environmental air monitoring device 10 to each program in the memory 32, a function of sending various control data from each program, and the like.
 通信部36は、端末装置30の通信機能を制御する通信モジュールであり、データIF部35からのデータを通信ネットワーク40へ送出し、また通信ネットワーク40から受信するデータをデータIF部35へ転送する機能を有する。通信部36は、例えば移動体通信モジュール、無線LANモジュール、NFCモジュールのようなハードウェアを含む。 The communication unit 36 is a communication module that controls the communication function of the terminal device 30 , transmits data from the data IF unit 35 to the communication network 40 , and transfers data received from the communication network 40 to the data IF unit 35 . have a function. The communication unit 36 includes hardware such as a mobile communication module, a wireless LAN module, and an NFC module.
 次に、端末装置30のメモリ32に格納される各プログラムについて説明する。メモリ32には、端末装置30を環境空気監視装置10のクライアントとして機能させるアプリケーション321、及びデータ入出力部322を備える。なお、メモリ32には、図示しない他のプログラムを格納してもよい。また、アプリケーション321を用いることなく、端末装置30に実装されているブラウザソフトウェアを環境空気監視装置10のクライアントとして利用してもよい。 Next, each program stored in the memory 32 of the terminal device 30 will be described. The memory 32 includes an application 321 that causes the terminal device 30 to function as a client of the environmental air monitoring device 10 and a data input/output unit 322 . Note that the memory 32 may store other programs (not shown). Also, browser software installed in the terminal device 30 may be used as a client of the environmental air monitoring device 10 without using the application 321 .
 アプリケーション321は、通信制御部3211、リクエスト送信部3212、及び画面表示制御部3213を含む。通信制御部3211は、アプリケーション321と環境空気監視装置10との間でのデータ送受信処理を行う機能を提供する。リクエスト送信部3212は、アプリケーション321から環境空気監視装置10に各種データの送信を要求する機能を提供する。画面表示制御部3213は、環境空気監視装置10から受信した出力画面データ等に基づいて入出力部34のディスプレイ等の出力デバイスへのデータ出力機能を提供する。 The application 321 includes a communication control unit 3211, a request transmission unit 3212, and a screen display control unit 3213. The communication control unit 3211 provides a function of performing data transmission/reception processing between the application 321 and the environmental air monitoring device 10 . The request transmission unit 3212 provides a function of requesting transmission of various data from the application 321 to the environmental air monitoring device 10 . The screen display control unit 3213 provides a data output function to an output device such as a display of the input/output unit 34 based on the output screen data and the like received from the environmental air monitoring device 10 .
 データ入出力部322は、アプリケーション321へのデータ入出力処理機能を提供するインタフェース部である。 The data input/output unit 322 is an interface unit that provides data input/output processing functions to the application 321 .
[センサ測定データに基づく推論及び各種指標の算出プロセス]
 次に、本実施形態の環境空気監視装置10によるセンサ測定データに基づく推論及び各種指標の算出プロセスについて説明する。図5に、推論及び各種指標の算出プロセスを例示するフローチャートを示している。図5に例示するデータ処理は、環境空気監視装置10の推論部121及び指標算出部122によって実行されるデータ処理であり、例えば環境空気監視装置10の起動時、及びその後所定の時間間隔で実行させることができる。
[Inference based on sensor measurement data and calculation process of various indicators]
Next, the process of inference and calculation of various indexes based on sensor measurement data by the environmental air monitoring device 10 of this embodiment will be described. FIG. 5 shows a flow chart illustrating the process of calculating the inference and various indices. The data processing illustrated in FIG. 5 is data processing executed by the inference unit 121 and the index calculation unit 122 of the environmental air monitoring device 10, and is executed, for example, when the environmental air monitoring device 10 is started and at predetermined time intervals thereafter. can be made
 推論及び各種指標の算出処理フローが開始されると、まず、ステップS500において、推論部121は、データ入出力部124を介してセンサ装置20からのセンサ測定データ及び位置情報を取得する。これらのデータは、補助記憶部13に一時的に格納しておくことができる。 When the processing flow for inference and calculation of various indices is started, first, in step S500, the inference unit 121 acquires sensor measurement data and position information from the sensor device 20 via the data input/output unit 124. These data can be temporarily stored in the auxiliary storage unit 13 .
 ステップS510において、推論部121は、補助記憶部13から、推論用データ131としてのメンバシップ関数を取得する。 In step S510, the inference unit 121 acquires the membership function as the inference data 131 from the auxiliary storage unit 13.
 ステップS520において、推論部121は、取得したセンサ測定データ、位置情報に対して推論データとしてのメンバシップ関数を適用してファジィ推論を実行する。そして、指標算出部122は、ファジィ推論の結果から総合空気質指数、ウイルス存在確率、及び感染リスク度を算出する。 In step S520, the inference unit 121 applies a membership function as inference data to the acquired sensor measurement data and position information to perform fuzzy inference. Then, the index calculator 122 calculates the overall air quality index, the virus existence probability, and the infection risk degree from the fuzzy inference results.
 ステップS530において、指標算出部122は、算出した各指標を補助記憶部13に格納する。 In step S530, the index calculation unit 122 stores each calculated index in the auxiliary storage unit 13.
 以上のセンサ測定データに基づく推論及び各種指標の算出処理フローにより、あらたに取得されるセンサ測定データ、センサ装置20の位置情報から環境空気に関する総合空気質指数、ウイルス存在確率、及び感染リスク度を算出することができ、対象となっている場所における環境空気の質、及び病原ウイルスへの感染リスクを客観的に知ることができるようになる。 Based on the inference based on the above sensor measurement data and the calculation processing flow of various indices, the newly acquired sensor measurement data and the position information of the sensor device 20 are used to calculate the overall air quality index, virus presence probability, and infection risk degree related to the environmental air. It can be calculated, and it will be possible to objectively know the environmental air quality and the risk of infection with pathogenic viruses in the target location.
[各種データの出力表示]
 次に、環境空気監視装置10によって算出された各種指標を含むデータ出力の形態について説明する。
[Output display of various data]
Next, the form of data output including various indices calculated by the environmental air monitoring device 10 will be described.
 図7Aに、環境空気監視装置10の入出力部を構成する表示デバイスに出力表示される管理画面例を示している。図7Aに示すように、この管理画面の上半部には、表形式で、センサ装置20の設置場所及び識別ID、該当する設置場所での測定データから算出された総合空気質指数、感染リスク度、及びウイルス存在確率、該当設置場所で測定された気温(℃)、湿度(RH%)、CO濃度(ppm)、CO濃度(ppm)、O濃度(ppm)、及びPM2.5含有量(μg)が表示されている。また、各設置場所について、詳細ボタンが設けられており、このボタンを操作することによって、図7Aの下半部に、対応する設置場所に関する詳細な情報が表示されるように構成されている。図7Aの例では、この詳細情報は、設置場所付近の地図、設置場所の住所と所在する組織、当該設置場所について記録されている警告メッセージ、警告メッセージに関するメモ、該当設置場所における温度、CO濃度、O濃度の経時変化を示すグラフを含んでいる。このように、図7Aに例示する管理画面によれば、センサ装置20が設置されている場所の空気質に関する指標、及び主要な測定値を一覧することができ、空気質に関して注意を要する状態になっている場所を即座に判別することができる。また、詳細ボタンの操作により、特定の場所、例えば空気質に関して注意を要すると判別された場所についての詳細な情報を取得することができ、空気質に関する問題の原因と対策に役立てることができる。
 図7Bには、環境空気監視装置10の入出力部を構成する表示デバイスに出力表示される、他の形態の管理画面例を示している。図7Bに示すように、この管理画面の上半部には、センサ装置20の設置場所及び識別ID(デバイスID)、該当する設置場所での測定データから算出された総合空気質指数、感染リスク度、及びウイルス存在確率が表示されるように構成されている。またその上半部にはあわせて、センサ装置20の設置場所をビジュアルに把握することができるように、設置場所周辺の3Dマップを表示している。また、この管理画面からセンサ装置20の電源のオンオフ、電動ファンの回転数を操作可能とするスイッチが設けられ、アクションボタンの操作で変更を反映することができるように構成されている。
 図7Bに例示する管理画面の下半部には、該当設置場所で測定された気温(℃)、湿度(RH%)、CO濃度(ppm)、及びPM2.5含有量(μg)が、丸形アナログ表示メータの形式で、デジタル測定値とともに表示されている。また、各メータのメモリの周囲には、各測定項目に対応した法令上の基準値を示す領域表示が設けられている。例えばCOについては、800ppmまでが安全領域(例えば青色バンド表示)、800~1000ppmの範囲が注意領域(例えば黄色バンド表示)、1000ppmを超える範囲が警報領域(例えば赤色バンド表示)と区分して表示することにより、表示されている測定値がどのような状態を意味しているかを即座に理解することができる。あわせて、各メータの下方には、その測定項目が空気質に与える影響がテキストで記載され、関連法令上の基準値も示されているので、管理画面を見る者は各測定項目と空気質との関係、法令上の許容範囲について知ることができる。なお、図7Bの管理画面例では、例示した4項目以外の測定項目についても同様の形態で表示させることができる。また、各測定項目について、「グラフ」ボタンを操作することにより、丸形メータ表示から測定値の経時変化を示すグラフ表示に切り替えることができる。このように、図7Bに例示する管理画面によれば、センサ装置20が設置されている場所の空気質に関する指標、及び主要な測定値を実質的にリアルタイムで一覧することができ、空気質に関して注意を要する状態になっている場所を即座に判別することができる。
 なお、図7A,図7Bの管理画面例については、システムの要求仕様等に基づいて、表示項目、表示形式の変更を自由に行うことができるものである。あらかじめ表示項目、表示形式についてのテンプレートを用意しておき、任意のタイミングで変更可能としておいてもよい。
FIG. 7A shows an example of a management screen output and displayed on the display device that constitutes the input/output unit of the environmental air monitoring apparatus 10. As shown in FIG. As shown in FIG. 7A, in the upper half of this management screen, the installation location and identification ID of the sensor device 20, the overall air quality index calculated from the measurement data at the corresponding installation location, and the infection risk are displayed in a table format. temperature, and virus presence probability, temperature (°C), humidity (RH%), CO concentration (ppm), CO2 concentration (ppm), O3 concentration (ppm), and PM2.5 content measured at the installation location Amounts (μg) are indicated. Further, a detail button is provided for each installation location, and by operating this button, detailed information about the corresponding installation location is displayed in the lower half of FIG. 7A. In the example of FIG. 7A, this detailed information includes a map of the vicinity of the installation location, the address and organization of the installation location, warning messages recorded for the installation location, notes about the warning message, temperature at the installation location, CO 2 Concentration, including graphs showing changes in O3 concentration over time. In this way, according to the management screen illustrated in FIG. 7A , it is possible to list the indicators and main measurement values regarding the air quality of the location where the sensor device 20 is installed, and the state requiring attention regarding the air quality. You can immediately determine where you are. Further, by operating the detail button, it is possible to obtain detailed information about a specific location, for example, a location determined to require attention regarding air quality, which can be used to find the cause and countermeasures for problems related to air quality.
FIG. 7B shows an example of another form of management screen output and displayed on the display device that constitutes the input/output unit of the environmental air monitoring apparatus 10 . As shown in FIG. 7B, in the upper half of this management screen, the installation location and identification ID (device ID) of the sensor device 20, the overall air quality index calculated from the measurement data at the corresponding installation location, the infection risk and the virus presence probability are displayed. A 3D map of the surroundings of the installation location is also displayed in the upper half so that the installation location of the sensor device 20 can be visually grasped. In addition, a switch is provided for turning on/off the power of the sensor device 20 and the number of revolutions of the electric fan from this management screen, and it is configured so that the change can be reflected by operating the action button.
In the lower half of the management screen illustrated in FIG. 7B, the temperature (° C.), humidity (RH%), CO2 concentration (ppm), and PM2.5 content (μg) measured at the installation location are In the form of a round analog display meter, it is displayed with digital readings. Around the memory of each meter, an area display indicating the legal reference value corresponding to each measurement item is provided. For example, for CO2 , up to 800 ppm is a safe area (e.g. blue band display), 800-1000 ppm is a caution area (e.g. yellow band display), and over 1000 ppm is a warning area (e.g. red band display). By displaying, it is possible to immediately understand what state the displayed measured value means. In addition, below each meter, the effect of the measurement item on air quality is described in text, and the standard values under related laws and regulations are also shown, so those who view the management screen can easily understand each measurement item and air quality. You can learn about the relationship with and the legal allowable range. In addition, in the management screen example of FIG. 7B, measurement items other than the four items illustrated can be displayed in the same form. In addition, for each measurement item, by operating the "graph" button, the circular meter display can be switched to a graph display showing changes in measured values over time. In this way, according to the management screen illustrated in FIG. 7B , it is possible to view the air quality indicators and main measurement values of the location where the sensor device 20 is installed substantially in real time. Locations requiring attention can be immediately determined.
It should be noted that the management screen examples of FIGS. 7A and 7B can be freely changed in terms of display items and display format based on the required specifications of the system. Templates for display items and display formats may be prepared in advance so that they can be changed at any timing.
 図8に、端末装置30の出力画面表示例を示している。端末装置30からのリクエストに対応して、環境空気監視装置10の出力表示制御部123は、出力画面データを生成して要求元の端末装置30へ送信する。 FIG. 8 shows an output screen display example of the terminal device 30. FIG. In response to the request from the terminal device 30, the output display control section 123 of the environmental air monitoring device 10 generates output screen data and transmits it to the terminal device 30 that made the request.
 出力画面には、表示されている測定データに対応する位置情報(図8の例では「X区Y町Zビル 1F」)、算出された環境空気指標である総合空間指数、感染リスク度、及びエアロゾル、センサ測定データとしての温度、CO濃度、湿度、CO濃度、NO濃度、O濃度、PM2.5含有量、VOC濃度の各測定値が表示される。最下部のグラフは直近24時間のCO濃度の測定履歴を示している。また画面中央付近にはテキスト表示フィールドが設けられており、測定値が所定閾値(例えば法定の許容上限値)を超えている場合にアラートが表示されるように構成されている。図8の例では、測定地点のCO濃度が換気を要するレベルであることが表示されている。これらの表示項目は一例であって、これらの項目のいずれかに代えて、あるいは追加して他の項目を表示してもよいし、表示項目を削減しても差し支えない。 On the output screen, the position information corresponding to the displayed measurement data (in the example of FIG. 8, “1F, Z Building, Y Town, X Ward”), the total spatial index, which is the calculated environmental air index, the degree of infection risk, and Temperature, CO2 concentration, humidity, CO concentration, NO2 concentration, O3 concentration, PM2.5 content, VOC concentration as aerosol, sensor measurement data are displayed. The bottom graph shows the measurement history of CO2 concentration over the last 24 hours. A text display field is provided near the center of the screen, and is configured to display an alert when the measured value exceeds a predetermined threshold value (for example, the legal allowable upper limit value). The example of FIG. 8 indicates that the CO 2 concentration at the measurement point is at a level that requires ventilation. These display items are only examples, and other items may be displayed in place of or in addition to any of these items, or the number of display items may be reduced.
 図9に、端末装置30の出力画面の他の表示例を示している。図9は、端末装置30の画面上に地図を表示し、その地図上に、環境空気指標から見た地点ごとの環境空気の状況を3Dグラフィックで示している。例えば図9の例では、環境空気の状態を「GOOD」、「FAIR」、「POOR」の3段階で表示するようにしている。それぞれのアイコン上をタップ、あるいはマウスオーバーすることにより、その地点の情報(例えば店名、ビル名、測定場所の高度(階数)等)が表示されるように構成している。 9 shows another display example of the output screen of the terminal device 30. FIG. FIG. 9 displays a map on the screen of the terminal device 30, and shows, on the map, the state of the environmental air at each point as seen from the environmental air index in 3D graphics. For example, in the example of FIG. 9, the environmental air condition is displayed in three levels of "GOOD", "FAIR", and "POOR". By tapping or mouse over each icon, the information of the point (for example, store name, building name, altitude (number of floors) of the measurement place, etc.) is displayed.
 以上の出力画面例によれば、特定のセンサ装置20が所在する場所の環境空気の状態を詳細に知ることができるとともに、その場所における感染症感染リスクの程度をわかりやすい尺度にて報知することができる。また、地図上で、どの場所が環境空気の点で安心安全であるかを直感的に報知することができる。また場所には高度情報も含めることができるので、高層ビルディングのような大規模建築物であってもその場所が所在するフロアを含めて詳細な位置を提示することができる。 According to the output screen example described above, it is possible to know in detail the state of the environmental air in the location where the specific sensor device 20 is located, and to report the degree of risk of infectious disease infection in that location on an easy-to-understand scale. can. In addition, it is possible to inform intuitively which places are safe and secure in terms of environmental air on the map. In addition, since altitude information can be included in the location, even in a large-scale building such as a high-rise building, detailed locations including the floor on which the location is located can be presented.
<第2実施形態>
 次に、本発明の第2実施形態による環境空気監視システム1について説明する。本実施形態の環境空気監視システム1の構成は図1に例示した第1実施形態と同様であるが、環境空気監視装置10におけるセンサ測定データ、位置情報、イベント情報等の処理、当該処理に基づく各種環境空気に関する指標算出処理の態様が第1実施形態とは異なっている。以下、本実施形態の構成について、第1実施形態と異なる構成について説明する。
<Second embodiment>
Next, an environmental air monitoring system 1 according to a second embodiment of the invention will be described. The configuration of the environmental air monitoring system 1 of this embodiment is similar to that of the first embodiment illustrated in FIG. The aspect of the index calculation processing regarding various environmental airs differs from that of the first embodiment. The configuration of the present embodiment will be described below with respect to the configuration different from that of the first embodiment.
[環境空気監視装置10の構成]
 図10は、本実施形態の環境空気監視装置10の構成例を例示する機能ブロック図である。図10に例示する環境空気監視装置10の基本構成は、図3に例示した第1実施形態と同様である。ただし、メモリ12に学習部121Aのプログラムが格納されており、補助記憶部13に、学習部121Aが使用する学習用データ131Aと、学習部121Aによって生成された学習済みモデル132が格納されている点が異なる。
[Configuration of Environmental Air Monitoring Device 10]
FIG. 10 is a functional block diagram illustrating a configuration example of the environmental air monitoring device 10 of this embodiment. The basic configuration of the environmental air monitoring device 10 illustrated in FIG. 10 is the same as that of the first embodiment illustrated in FIG. However, the program of the learning unit 121A is stored in the memory 12, and the learning data 131A used by the learning unit 121A and the trained model 132 generated by the learning unit 121A are stored in the auxiliary storage unit 13. Points are different.
 本実施形態の環境空気監視装置10では、メモリ12に学習部121Aのプログラムが格納されており、補助記憶部13に格納されている教師データである学習用データ131Aを用いて学習を行う。 In the environmental air monitoring device 10 of the present embodiment, the memory 12 stores the program of the learning unit 121A, and learning is performed using the learning data 131A, which is teacher data stored in the auxiliary storage unit 13.
 学習用データ131Aは、外部から通信部16を経由して取得されたイベント情報を含む。本実施形態では、このイベント情報は、特定の病原ウイルス感染によるクラスターの発生である。イベント情報としては、このクラスター発生の場所と日時の組み合わせが基本となる。学習用データ131Aには、前記のクラスター発生に関する情報と関連付けて、対応する場所に設置されたセンサ装置20の該当日時におけるセンサ測定データである温度、CO濃度、湿度、CO濃度、NO濃度、O濃度、PM含有量、VOC濃度の少なくともいずれかと、センサ装置20の位置情報のセットが保持されている。またさらに、それらの測定データを用いて算出された総合空気質指数、感染リスク度、及びウイルス存在確率も対応付けられている。このように、学習用データ131Aは、クラスター発生日時、場所と、それに対応するセンサ測定データ、算出指標値との組み合わせである。これにより、クラスター発生とセンサ測定データ及び各指標値との関係を学習させる。なお、イベント情報としてのクラスター発生に関する情報は、所管官庁の公表資料等から入手することが想定される。 The learning data 131A includes event information acquired from the outside via the communication unit 16 . In this embodiment, this event information is the occurrence of a cluster due to infection with a specific pathogenic virus. Event information is based on a combination of the location and date of occurrence of this cluster. In the learning data 131A, temperature, CO 2 concentration, humidity, CO concentration, NO 2 concentration, which are sensor measurement data at the relevant date and time of the sensor device 20 installed at the corresponding location, are associated with the information regarding the occurrence of the cluster. , O 3 concentration, PM content, VOC concentration, and position information of the sensor device 20 are held. Furthermore, the total air quality index, the degree of infection risk, and the virus existence probability calculated using those measurement data are also associated. In this way, the learning data 131A is a combination of the date and time of occurrence of the cluster, the location, the corresponding sensor measurement data, and the calculated index value. Thereby, the relationship between cluster generation, sensor measurement data, and each index value is learned. In addition, it is assumed that information on the occurrence of clusters as event information will be obtained from materials published by the competent authorities.
 メモリ12には、学習部121Aのプログラムが格納されており、学習用データ131Aを用いてセンサ測定データ、位置情報のセットと、クラスター発生有無、及び発生クラスターの感染人数の関係を学習し、学習済みモデル132を生成して補助記憶部13に格納する。 The memory 12 stores the program of the learning unit 121A, and uses the learning data 131A to learn and learn the relationship between the set of sensor measurement data, position information, the presence or absence of cluster occurrence, and the number of infected people in the occurrence cluster. A finished model 132 is generated and stored in the auxiliary storage unit 13 .
 指標算出部122は、各センサ装置20から受信されるセンサ測定データ、前記位置情報に基づいて、各センサ装置20が設置されている場所の環境空気の空気質を総合的に評価する指数である総合空気質指数を算出する。また、指標算出部122は、センサ測定データ、位置情報に基づいて、学習済みモデル132を用いて感染リスク度、ウイルス存在確率を算出する。 The index calculation unit 122 is an index for comprehensively evaluating the air quality of the ambient air in the location where each sensor device 20 is installed based on the sensor measurement data received from each sensor device 20 and the position information. Calculate the overall air quality index. Also, the index calculation unit 122 calculates the infection risk level and the virus existence probability using the learned model 132 based on the sensor measurement data and the position information.
[学習プロセス]
 次に、本実施形態の環境空気監視装置10による学習プロセスについて説明する。図11に、学習プロセスを例示するフローチャートを示している。図11に例示するデータ処理は、環境空気監視装置10の指標算出部122が環境空気に関する指標を算出する場合に利用する学習済みモデル132を生成するための処理であり、例えば環境空気監視装置10の起動時、及びその後所定の時間間隔で実行することができる。
[Learning process]
Next, the learning process by the environmental air monitoring device 10 of this embodiment will be described. FIG. 11 shows a flowchart illustrating the learning process. The data processing illustrated in FIG. 11 is processing for generating the learned model 132 that is used when the index calculator 122 of the environmental air monitoring device 10 calculates an index related to environmental air. , and at predetermined time intervals thereafter.
 学習処理フローが開始されると、まず、ステップS1000において、学習部121Aは、データ入出力部124を介して補助記憶部13に格納されている学習用データ131Aを取得する。 When the learning process flow starts, first, in step S1000, the learning unit 121A acquires the learning data 131A stored in the auxiliary storage unit 13 via the data input/output unit 124.
 ステップS1010において、学習部121Aは、取得した学習用データ131Aを用いて、学習済みモデル132を生成する。学習部121Aは、典型的には2以上の隠れ層を有する深層学習エンジンとすることができるが、これに限定されるものではない。本実施形態において、学習部121Aの入力は、学習用データ131Aを構成しているクラスター発生日時、場所と、それに対応するセンサ測定データ、算出指標値との組み合わせである。 In step S1010, the learning unit 121A generates a trained model 132 using the acquired learning data 131A. The learning unit 121A can typically be a deep learning engine having two or more hidden layers, but is not limited to this. In the present embodiment, the input to the learning unit 121A is a combination of the date and time of occurrence of the cluster, the location, the corresponding sensor measurement data, and the calculated index value, which constitute the learning data 131A.
 ステップS1020において、学習部121Aは、生成した学習済みモデル132を補助記憶部13に格納する。 In step S1020, the learning unit 121A stores the generated trained model 132 in the auxiliary storage unit 13.
 以上の学習処理フローにより、あらたに取得されるセンサ測定データ、センサ装置20の位置情報から環境空気に関して特定の病原ウイルス感染症に対しての感染リスク、ウイルス存在がどの程度見込まれるかを算出することができるようになる。 According to the learning processing flow described above, the risk of infection with a specific pathogenic virus infection and the extent to which the virus is expected to exist in the environmental air are calculated from the newly acquired sensor measurement data and the position information of the sensor device 20. be able to
[環境空気指標の算出]
 次に、生成された学習済みモデル132に基づく環境空気指標値の算出処理について説明する。図12は、本実施形態の環境空気監視装置10による環境空気指標の算出処理フローを例示するフローチャートである。環境空気指標は、環境空気監視装置10の指標算出部122によって算出される。算出タイミングとしては、例えば環境空気監視装置10の起動時、及びその後の所定時間経過ごととすることができる。あるいは、センサ装置20から取得されるセンサ測定データ又は位置情報に変化があったと判定した時点を算出タイミングとしてもよい。
[Calculation of ambient air index]
Next, calculation processing of the ambient air index value based on the generated learned model 132 will be described. FIG. 12 is a flow chart illustrating the processing flow for calculating the ambient air index by the ambient air monitoring device 10 of this embodiment. The environmental air index is calculated by the index calculator 122 of the environmental air monitoring device 10 . The calculation timing can be, for example, when the environmental air monitoring device 10 is started and after every predetermined time. Alternatively, the time when it is determined that there is a change in the sensor measurement data or the position information acquired from the sensor device 20 may be used as the calculation timing.
 指標算出部122が処理を開始すると、まずステップS1100において、各センサ装置20からセンサ測定データ及び位置情報を取得する。 When the index calculation unit 122 starts processing, first, sensor measurement data and position information are acquired from each sensor device 20 in step S1100.
 ステップS1110において、指標算出部122は、補助記憶部13に格納されている学習済みモデル132を、データ入出力部124を介して取得する。 In step S<b>1110 , the index calculation unit 122 acquires the learned model 132 stored in the auxiliary storage unit 13 via the data input/output unit 124 .
 ステップS1120において、指標算出部122は、取得したセンサ測定データ、及び位置情報に学習済みモデル132を適用して環境空気指標値を算出する。 In step S1120, the index calculation unit 122 applies the learned model 132 to the acquired sensor measurement data and position information to calculate the environmental air index value.
 ステップS1130において、指標算出部122は、算出した環境空気指標値を出力して処理を終了する。 In step S1130, the index calculation unit 122 outputs the calculated environmental air index value and ends the process.
 以上の環境空気指標算出処理によれば、特定のセンサ装置20から取得されたセンサ測定データに基づいて、そのセンサ装置20が所在する場所における環境空気に関する指標を算出して出力することができる。 According to the environmental air index calculation process described above, based on the sensor measurement data acquired from a specific sensor device 20, it is possible to calculate and output the index related to the environmental air at the location where the sensor device 20 is located.
 センサ測定データと環境空気指標値との相関関係が、センサ測定データと前記環境空気指標値との関係を表すメンバシップ関数であり、取得されたセンサ測定データに前記メンバシップ関数を適用してファジィ推論を実行することによって前記環境空気指標値を算出するとしてもよい。
 このようにすれば、ファジィ推論により統計的に適正な環境空気指標値を算出することができる。
The correlation between the sensor measurement data and the environmental air index value is a membership function representing the relationship between the sensor measurement data and the environmental air index value, and the membership function is applied to the obtained sensor measurement data to generate a fuzzy The ambient air index value may be calculated by performing inference.
In this way, a statistically appropriate environmental air index value can be calculated by fuzzy inference.
 所定のイベントが発生した場所と当該イベントの内容とを含む情報であるイベント情報を収集し、前記イベント情報に係るイベント発生の場所及び日時と、その場所、日時に対応する各センサ測定データの測定値と、その測定値に対応する環境空気指標値とを関連させてなるビッグデータを学習させることにより学習済みモデルを生成し、あらたに取得された各センサ測定データの測定値を、前記学習済みモデルに入力することにより、該当位置における環境空気指標値を算出するように構成してもよい。
 このようにすれば、インターネット上の情報源等からクラスター発生情報を取り込み、センサ測定データ、及び環境空気指標値を含むビッグデータの相関を学習させることで環境空気指標値を精度よく算出することができる。
Collecting event information, which is information including the place where a predetermined event occurred and the content of the event, and measuring the place and date and time of the event occurrence related to the event information and measurement data of each sensor corresponding to the place and date and time A trained model is generated by learning big data obtained by associating a value with an environmental air index value corresponding to the measured value, and the measured value of each newly acquired sensor measurement data is used as the learned model By inputting into the model, the environmental air index value at the corresponding position may be calculated.
In this way, it is possible to accurately calculate the environmental air index value by retrieving cluster generation information from information sources on the Internet, etc., and learning the correlation between the sensor measurement data and the big data including the environmental air index value. can.
 センサ測定データは、温度、湿度、CO、CO、O、NO、VOC、CHO、PMのうちの少なくともいずれかの測定データを含み、前記イベント情報は所定の感染症についてのクラスター発生情報であり、前記測定データと前記クラスター発生情報との間の相関関係を導出し、あらたにセンサ測定データが取得された場所におけるクラスター発生に関する確率を算出するとしてもよい。
 このようにすれば、過去のデータに基づいて、クラスター発生確率を算出、提示することができる。
The sensor measurement data includes measurement data of at least one of temperature, humidity, CO 2 , CO, O 3 , NO 2 , VOC, CH 2 O, and PM, and the event information is a cluster for a predetermined infectious disease. Occurrence information, a correlation between the measured data and the cluster occurrence information may be derived to calculate the probability of cluster occurrence at the location where the new sensor measurement data is obtained.
In this way, cluster occurrence probabilities can be calculated and presented based on past data.
 センサ測定データのうちの少なくともいずれかを含む測定データの測定値と、前記環境空気指標値とを出力表示するとしてもよく、前記センサ測定データの測定値が、アナログ指示メータの形式で、実質的にリアルタイムに出力表示されるようにしてもよい。
 このようにすれば、各測定場所における環境空気指標値をほぼリアルタイムで直感的に把握することができる。
The ambient air index value and the measured value of measured data, including at least one of the sensor measured data, may be output and displayed, wherein the measured value of the sensor measured data is substantially displayed in the form of an analog indicating meter. may be output and displayed in real time.
In this way, the ambient air index value at each measurement location can be intuitively grasped almost in real time.
 前記環境空気指標値又は当該環境空気指標値が表す環境空気の状態を示す語句と、当該環境空気指標算出の基となった測定データの測定場所を、高度情報を含めて地図上に関連付けて表示するとしてもよい。
 このようにすれば、建物内の階数も含めた詳細な場所を特定して、その場所における環境空気の状態を知ることが可能となる。
The environmental air index value or a phrase indicating the condition of the environmental air represented by the environmental air index value, and the measurement location of the measurement data used as the basis for the calculation of the environmental air index, are displayed in association with each other on a map, including altitude information. You can do it.
By doing so, it is possible to identify a detailed location including the number of floors in the building and know the state of the environmental air at that location.
 以上説明した本実施形態に係る環境空気監視装置10によれば、環境空気の質を示す指標を複数の測定項目に基づいてリアルタイムに算出して提示することができる。 According to the environmental air monitoring device 10 according to the present embodiment described above, it is possible to calculate and present an index indicating the quality of the environmental air in real time based on a plurality of measurement items.
 上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。換言すると、図2~4、10の機能的構成は例示に過ぎず、特に限定されない。即ち、上述した一連の処理を全体として実行できる機能が環境空気監視装置10に備えられていれば足り、この機能を実現するためにどのような機能ブロックを用いるのかは特に図2~4、10の例に限定されない。また、一つの機能ブロックは、ハードウェア単体で構成してもよいし、ソフトウェア単体で構成してもよいし、それらの組み合わせで構成してもよい。本実施形態における機能的構成は、演算処理を実行するプロセッサによって実現され、本実施形態に用いることが可能なプロセッサには、シングルプロセッサ、マルチプロセッサ及びマルチコアプロセッサ等の各種処理装置単体によって構成されるものの他、これら各種処理装置と、ASIC(Application Specific Integrated Circuit)やFPGA(Field‐Programmable Gate Array)等の処理回路とが組み合わせられたものを含む。 The series of processes described above can be executed by hardware or by software. In other words, the functional configurations of FIGS. 2-4 and 10 are merely examples and are not particularly limited. That is, it suffices if the environmental air monitoring device 10 is provided with a function capable of executing the series of processes described above as a whole. is not limited to the example of Also, one functional block may be composed of hardware alone, software alone, or a combination thereof. The functional configuration in this embodiment is realized by a processor that executes arithmetic processing, and processors that can be used in this embodiment are composed of various single processing units such as single processors, multiprocessors, and multicore processors. In addition to these, it also includes combinations of these various processing devices and processing circuits such as ASICs (Application Specific Integrated Circuits) and FPGAs (Field-Programmable Gate Arrays).
 一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータ等にネットワークや記録媒体からインストールされる。コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えば汎用のパーソナルコンピュータであってもよい。 When a series of processes is executed by software, the programs that make up the software are installed on a computer or the like from a network or recording medium. The computer may be a computer built into dedicated hardware. The computer may also be a computer capable of executing various functions by installing various programs, such as a general-purpose personal computer.
 このようなプログラムを含む記録媒体は、ユーザにプログラムを提供するために装置本体とは別に配布されるUSBメモリ等のリムーバブルメディアにより構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに提供される記録媒体等で構成される。リムーバブルメディアは、例えば、磁気ディスク(フロッピディスクを含む)、光ディスク、又は光磁気ディスク等により構成される。光ディスクは、例えば、CD-ROM(Compact Disk-Read Only Memory),DVD(Digital Versatile Disk),Blu-ray(登録商標) Disc(ブルーレイディスク)等により構成される。光磁気ディスクは、MD(Mini-Disk)等により構成される。また、装置本体に予め組み込まれた状態でユーザに提供される記録媒体は、例えば、プログラムが記録されているROMや、補助記憶部13,33に含まれるハードディスク等の記憶デバイスで構成される。 A recording medium containing such a program is not only constituted by a removable medium such as a USB memory that is distributed separately from the main body of the device in order to provide the program to the user, but is also preinstalled in the main body of the device and stored by the user. It consists of a recording medium, etc. provided to Removable media are composed of, for example, magnetic disks (including floppy disks), optical disks, or magneto-optical disks. Optical discs are composed of, for example, CD-ROMs (Compact Disk-Read Only Memory), DVDs (Digital Versatile Disks), Blu-ray (registered trademark) Discs (Blu-ray Discs), and the like. The magneto-optical disk is composed of an MD (Mini-Disk) or the like. Further, the recording medium provided to the user in a state of being pre-installed in the apparatus main body is composed of, for example, a ROM in which the program is recorded and a storage device such as a hard disk included in the auxiliary storage units 13 and 33 .
 なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的或いは個別に実行される処理をも含むものである。 In this specification, the steps of writing a program recorded on a recording medium are not only processes that are performed chronologically in that order, but also processes that are not necessarily chronologically processed, and that are performed in parallel or individually. It also includes the processing to be executed.
 以上、本発明のいくつかの実施形態について説明したが、これらの実施形態は、例示に過ぎず、本発明の技術的範囲を限定するものではない。本発明はその他の様々な実施形態を取ることが可能であり、上記実施形態と変形例の各構成を組み合わせることも可能である。更に、本発明の要旨を逸脱しない範囲で、省略や置換等種々の変更を行うことができる。これら実施形態やその変形は、本明細書等に記載された発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are merely examples and do not limit the technical scope of the present invention. The present invention can take various other embodiments, and it is also possible to combine the configurations of the above-described embodiment and modifications. Furthermore, various modifications such as omissions and substitutions can be made without departing from the gist of the present invention. These embodiments and modifications thereof are included in the scope and gist of the invention described in this specification and the like, and are included in the scope of the invention described in the claims and equivalents thereof.
 1 環境空気監視システム
 10 環境空気監視装置
 20 センサ装置
 30 端末装置
 11,21,31 プロセッサ
 12,22,32 メモリ
 13,33 補助記憶部
 121 推論部
 121A 学習部
 122 指標算出部
 123 出力表示制御部
 131 推論用データ
 131A 学習用データ
 132 学習済みモデル

 
1 Environmental Air Monitoring System 10 Environmental Air Monitoring Device 20 Sensor Device 30 Terminal Device 11, 21, 31 Processor 12, 22, 32 Memory 13, 33 Auxiliary Storage Section 121 Inference Section 121A Learning Section 122 Index Calculation Section 123 Output Display Control Section 131 Inference data 131A Learning data 132 Trained model

Claims (9)

  1.  環境空気の性質及び成分に関する複数の種類の測定データである環境空気情報を、当該環境空気情報が測定された場所を示す情報である測定位置情報とともに取得しと、
     取得されている前記環境空気情報と、環境空気の質を示す情報である環境空気指標との相関関係を保持し、
     前記相関関係を取得して、前記環境空気情報に当該相関関係を適用することにより前記環境空気指標を算出し、
     算出された前記環境空気指標を所定のフォーマットで出力するように構成されている処理部
    を備えている情報処理装置。
    Acquiring environmental air information, which is a plurality of types of measurement data regarding the properties and components of the environmental air, together with measurement location information, which is information indicating the location where the environmental air information was measured;
    holding a correlation between the acquired environmental air information and an environmental air index, which is information indicating the quality of the environmental air;
    obtaining the correlation and calculating the ambient air index by applying the correlation to the ambient air information;
    An information processing device comprising a processing unit configured to output the calculated ambient air index in a predetermined format.
  2.  前記相関関係が、前記環境空気情報と前記環境空気指標との関係を表すメンバシップ関数であり、前記処理部が、取得された前記環境空気情報に前記メンバシップ関数を適用してファジィ推論を実行することによって前記環境空気指標を算出する、請求項1に記載の情報処理装置。 The correlation is a membership function representing the relationship between the environmental air information and the environmental air index, and the processing unit applies the membership function to the acquired environmental air information to perform fuzzy inference. The information processing apparatus according to claim 1, wherein the ambient air index is calculated by:
  3.  前記処理部が、所定のイベントが発生した場所と当該イベントの内容とを含む情報であるイベント情報を収集し、
     前記イベント情報に係るイベント発生の場所及び日時と、その場所、日時に対応する前記環境空気情報を構成する各測定データの測定値と、その測定値に対応する環境空気指標とを関連させてなるビッグデータを学習させることにより学習済みモデルを生成し、あらたに取得された前記環境空気情報を構成する各測定データの測定値を、前記学習済みモデルに入力することにより、該当位置における環境空気指標を算出するように構成されている、請求項1に記載の情報処理装置。
    The processing unit collects event information, which is information including the location where a predetermined event occurred and the content of the event,
    The place and date of occurrence of the event related to the event information, the measured value of each measurement data constituting the environmental air information corresponding to the place and date, and the environmental air index corresponding to the measured value are associated. A trained model is generated by learning big data, and the measured values of each measurement data constituting the newly acquired environmental air information are input to the trained model to obtain an environmental air index at the relevant position. 2. The information processing apparatus according to claim 1, configured to calculate .
  4.  前記複数の種類の測定データは、温度、湿度、CO、CO、O、NO、VOC、CHO、PMのうちの少なくともいずれかの測定データを含み、前記イベントは所定の感染症についてのクラスター発生情報であり、前記処理部は、前記測定データと前記クラスター発生情報との間の相関関係を導出し、あらたに環境空気情報が取得された場所におけるクラスター発生に関する確率を算出する、請求項3に記載の情報処理装置。 The plurality of types of measurement data includes measurement data of at least one of temperature, humidity, CO 2 , CO, O 3 , NO 2 , VOC, CH 2 O, and PM, and the event is a predetermined infectious disease. and the processing unit derives a correlation between the measured data and the cluster occurrence information, and calculates the probability of cluster occurrence at the location where the environmental air information is newly acquired. The information processing apparatus according to claim 3.
  5.  前記処理部は、前記測定データのうちの少なくともいずれかを含む測定データの測定値と、前記環境空気指標とを出力表示する、請求項1から4までのいずれか一項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 4, wherein the processing unit outputs and displays a measurement value of measurement data including at least one of the measurement data and the environmental air index. .
  6.  前記測定データの測定値が、アナログ指示メータの形式で、実質的にリアルタイムに出力表示される、請求項5に記載の情報処理装置。 The information processing apparatus according to claim 5, wherein the measured values of the measurement data are output and displayed substantially in real time in the form of an analog indicator meter.
  7.  前記処理部は、前記環境空気指標又は当該環境空気指標が表す環境空気の状態を示す語句と、当該環境空気指標の算出の基となった測定データの測定場所を、高度情報を含めて地図上に関連付けて表示する、請求項1から6までのいずれか一項に記載の情報処理装置。 The processing unit stores the environmental air index or a phrase indicating the state of the environmental air represented by the environmental air index and the measurement location of the measurement data on which the environmental air index was calculated, including altitude information, on a map. 7. The information processing apparatus according to any one of claims 1 to 6, which is displayed in association with .
  8.  情報処理装置が、
     環境空気の性質及び成分に関する複数の種類の測定データである環境空気情報を、当該環境空気情報が測定された場所を示す情報である測定位置情報とともに取得し、
     取得されている前記環境空気情報と、環境空気の質を示す情報である環境空気指標との相関関係を保持し、
     保持されている前記相関関係を取得して、前記環境空気情報に当該相関関係を適用することにより前記環境空気指標を算出し、
     算出された前記環境空気指標を所定のフォーマットで出力する、
    情報処理方法。
    The information processing device
    Acquiring environmental air information, which is a plurality of types of measurement data regarding the properties and components of the environmental air, together with measurement location information, which is information indicating the location where the environmental air information was measured;
    holding a correlation between the acquired environmental air information and an environmental air index, which is information indicating the quality of the environmental air;
    obtaining the held correlation and calculating the ambient air index by applying the correlation to the ambient air information;
    outputting the calculated ambient air index in a predetermined format;
    Information processing methods.
  9.  情報処理装置に、
     環境空気の性質及び成分に関する複数の種類の測定データである環境空気情報を、当該環境空気情報が測定された場所を示す情報である測定位置情報とともに取得する処理と、
     取得されている前記環境空気情報と、環境空気の質を示す情報である環境空気指標との相関関係を保持する処理と、
     保持されている前記相関関係を取得して、前記環境空気情報に当該相関関係を適用することにより前記環境空気指標を算出する処理と、
     算出された前記環境空気指標を所定のフォーマットで出力する処理と、
    を実行させるプログラム。

     
    information processing equipment,
    A process of acquiring environmental air information, which is a plurality of types of measurement data relating to the properties and components of the environmental air, together with measurement location information, which is information indicating the location where the environmental air information was measured;
    a process of holding a correlation between the acquired environmental air information and an environmental air index, which is information indicating the quality of the environmental air;
    a process of obtaining the held correlation and calculating the ambient air index by applying the correlation to the ambient air information;
    a process of outputting the calculated ambient air index in a predetermined format;
    program to run.

PCT/JP2021/041541 2021-11-11 2021-11-11 Information processing device, information processing method, and program WO2023084690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041541 WO2023084690A1 (en) 2021-11-11 2021-11-11 Information processing device, information processing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041541 WO2023084690A1 (en) 2021-11-11 2021-11-11 Information processing device, information processing method, and program

Publications (1)

Publication Number Publication Date
WO2023084690A1 true WO2023084690A1 (en) 2023-05-19

Family

ID=86335355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041541 WO2023084690A1 (en) 2021-11-11 2021-11-11 Information processing device, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2023084690A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013221A (en) * 2018-07-13 2020-01-23 東芝情報システム株式会社 Dwelling environment notification system
JP2020024586A (en) * 2018-08-07 2020-02-13 東京瓦斯株式会社 Air quality evaluation system, data structure, and program
JP2020198026A (en) * 2019-06-05 2020-12-10 本田技研工業株式会社 Monitoring system, information acquisition device, and information processing device
JP2021176074A (en) * 2020-04-25 2021-11-04 Assest Co Ltd Infectious disease infection risk determination program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013221A (en) * 2018-07-13 2020-01-23 東芝情報システム株式会社 Dwelling environment notification system
JP2020024586A (en) * 2018-08-07 2020-02-13 東京瓦斯株式会社 Air quality evaluation system, data structure, and program
JP2020198026A (en) * 2019-06-05 2020-12-10 本田技研工業株式会社 Monitoring system, information acquisition device, and information processing device
JP2021176074A (en) * 2020-04-25 2021-11-04 Assest Co Ltd Infectious disease infection risk determination program

Similar Documents

Publication Publication Date Title
US11295862B2 (en) Predictive modeling of respiratory disease risk and events
US11389062B2 (en) System and method for determining a risk level of a respiratory attack
US20210398690A1 (en) Devices, systems, and methods for assessing facility compliance with infectious disease guidance
Xu et al. Weather, air pollution, and SARS-CoV-2 transmission: a global analysis
US20200335226A1 (en) Pathogen distribution information provision system, pathogen distribution information provision server, and method for providing pathogen distribution information
Byers et al. Short-term effects of ambient air pollutants on asthma-related emergency department visits in Indianapolis, Indiana, 2007–2011
KR101517332B1 (en) System for providing Environment Information
Xu et al. Weather conditions and COVID-19 transmission: estimates and projections
Hou et al. Bayesian calibration of using CO2 sensors to assess ventilation conditions and associated COVID-19 airborne aerosol transmission risk in schools
US20200281518A1 (en) Arrangement for proactively notifying and advising users in terms of potentially health-affecting location-related phenomena, related method and computer program
JP6967329B1 (en) Infection risk quantification system and infection risk quantification method
Vilcassim et al. Gaps and future directions in research on health effects of air pollution
US20190373426A1 (en) Method and apparatus for hyper-local testing and personalized analysis of chemical compositions and environmental conditions
WO2023084690A1 (en) Information processing device, information processing method, and program
KR101890190B1 (en) Care system for fine dust
Magzamen et al. Association of ambient pollution with inhaler use among patients with COPD: a panel study
Styczynski et al. Ventilation and detection of airborne SARS-CoV-2: elucidating high-risk spaces in naturally ventilated healthcare settings
US20220270464A1 (en) Healthy indoor environment and air quality monitoring system and method for accessing and sharing information, publicly
Saad et al. Implementation of index for real-time monitoring indoor air quality system
JP7266612B2 (en) System and method for determining allergens that may pose a respiratory attack risk to a user of the system
Shriram et al. A study and analysis of air quality index and related health impact on public health
Biondo Real-time indoor air quality (IAQ) monitoring system for smart buildings
Kapoor et al. Prognosis of Viral Transmission in Naturally Ventilated Office Rooms Using ML
Lin et al. Investigating the effects of absolute humidity and human encounters on transmission of COVID-19 in the United States
US20240029893A1 (en) Systems and methods for assessing and mitigating personal health hazards in an indoor environment for a plurality of occupants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023559304

Country of ref document: JP

Kind code of ref document: A