WO2023084608A1 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
WO2023084608A1
WO2023084608A1 PCT/JP2021/041210 JP2021041210W WO2023084608A1 WO 2023084608 A1 WO2023084608 A1 WO 2023084608A1 JP 2021041210 W JP2021041210 W JP 2021041210W WO 2023084608 A1 WO2023084608 A1 WO 2023084608A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
unit
temperature
representative
degree
Prior art date
Application number
PCT/JP2021/041210
Other languages
French (fr)
Japanese (ja)
Inventor
守 濱田
寛光 穂苅
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023559237A priority Critical patent/JPWO2023084608A1/ja
Priority to PCT/JP2021/041210 priority patent/WO2023084608A1/en
Publication of WO2023084608A1 publication Critical patent/WO2023084608A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data

Definitions

  • the present disclosure relates to control of an air conditioner.
  • Patent Literature 1 discloses an air conditioner in which a plurality of indoor units are connected to one outdoor unit. Patent Document 1 discloses a configuration that achieves both energy saving and comfort. Specifically, in Patent Literature 1, the air conditioning capacity required for each indoor unit (hereinafter referred to as the required air conditioning capacity) is obtained. Then, the target evaporation temperature and the target degree of superheat are set according to the maximum requested air-conditioning capacity among the acquired requested air-conditioning capacities.
  • Patent Literature 1 searching for the target evaporation temperature is started after each indoor unit is operated. Therefore, the target evaporating temperature is searched for during operation of each indoor unit. Therefore, with the technique of Patent Document 1, it takes time to set the target evaporation temperature.
  • the required air conditioning capacity of any indoor unit fluctuates while searching for the target evaporating temperature, intermittent operation occurs in the corresponding indoor unit, resulting in a problem of reduced operating efficiency.
  • the target degree of superheat of the indoor unit is changed according to the decrease in the cooling temperature (indoor temperature). Therefore, it is difficult to match the air conditioning capacity of the indoor unit with the required air conditioning capacity. Therefore, the technique of Patent Document 1 has a problem that intermittent operation occurs in one of the indoor units, resulting in a decrease in operating efficiency.
  • One of the main purposes of this disclosure is to solve the above problems. Specifically, the main purpose of the present disclosure is to prevent the occurrence of intermittent operation in each indoor unit and to prevent a decrease in operating efficiency.
  • a control device includes: A representative of the plurality of indoor units, each of which is assigned an air-conditioned space to be air-conditioned, based on the required air-conditioning capacity, which is the air-conditioning capacity required for each indoor unit. a selection unit that selects an indoor unit to be used as a representative indoor unit; A learning model obtained by machine learning is used to set a target temperature of either the evaporating temperature or the condensing temperature that allows the air conditioning capacity of the representative indoor unit to match the required air conditioning capacity of the representative indoor unit.
  • the air conditioning capacity of each indoor unit is a calculating unit that calculates either the degree of superheating or the degree of supercooling that matches the required air conditioning capacity of the indoor unit.
  • an appropriate target temperature (evaporating temperature or condensing temperature) is set early by using a learning model.
  • the degree of superheating and the degree of supercooling of each indoor unit whose air conditioning capability matches the required air conditioning capability of the indoor unit are calculated. That is, in the present disclosure, an appropriate degree of superheating or supercooling that does not cause intermittent operation in each indoor unit is calculated for each indoor unit. Therefore, according to the present disclosure, it is possible to prevent the occurrence of intermittent operation in each indoor unit and prevent a decrease in operating efficiency.
  • FIG. 1 is a diagram showing a configuration example of an air conditioning system according to Embodiment 1;
  • FIG. 2 is a diagram showing a functional configuration example of a control device according to Embodiment 1;
  • FIG. 2 is a diagram showing a hardware configuration example of a control device according to Embodiment 1;
  • FIG. 1 is a diagram showing a configuration example of an air conditioning system according to Embodiment 1;
  • FIG. 2 is a diagram showing a functional configuration example of a control device according to Embodiment 1;
  • FIG. 2 is a diagram showing a hardware configuration example of a control device according to Embodiment 1;
  • 4 is a flowchart showing an operation example of the control device in the operation phase (during cooling operation) according to the first embodiment; 4 is a flowchart showing an operation example of the control device in the operation phase (at the time of heating operation) according to the first embodiment; 4 is a flowchart showing an operation example of the control device in a learning phase (during cooling operation) according to the first embodiment; 4 is a flowchart showing an operation example of the control device in a learning phase (during heating operation) according to Embodiment 1; 9 is a flowchart showing an example of the operation of the control device in the operation phase (during cooling operation) according to the second embodiment; 9 is a flowchart showing an example of the operation of the control device in the operation phase (during heating operation) according to the second embodiment; 9 is a flowchart showing an example of the operation of the control device in the learning phase (during cooling operation) according to the second embodiment; 9 is a flowchart showing an example of the operation of the control device in the learning phase (during cooling
  • FIG. 1 shows a configuration example of an air conditioning system 500 according to this embodiment.
  • Air conditioning system 500 according to the present embodiment has control device 100 and air conditioner 400 .
  • the air conditioner 400 is composed of one outdoor unit 200 and a plurality of indoor units 300 .
  • a plurality of indoor units 300 are connected to one outdoor unit 200 . Although three indoor units 300 are connected to the outdoor unit 200 in FIG. 1, the number of indoor units 300 may be other than three.
  • the outdoor unit 200 is installed outside the building. Each indoor unit 300 is installed inside the building.
  • Each indoor unit 300 is individually assigned a space (for example, a room) to be air-conditioned.
  • the space to be air-conditioned that is assigned to each indoor unit 300 is hereinafter referred to as an air-conditioned space.
  • a control device 100 controls an outdoor unit 200 and a plurality of indoor units 300 .
  • the control device 100 has a learning phase and an operation phase as operation phases.
  • the control device 100 performs machine learning in the learning phase.
  • the control device 100 controls the outdoor unit 200 and the plurality of indoor units 300 using the results of machine learning.
  • the control device 100 collects operating data from the outdoor unit 200 and the multiple indoor units 300 .
  • the control device 100 performs machine learning using the collected driving data, and generates a learning model that reflects the results of the machine learning.
  • the control device 100 collects operation data from the outdoor unit 200 and the plurality of indoor units 300 .
  • the control device 100 also applies the operation data to the learning model to generate control target values for controlling the operation of the outdoor unit 200 and the plurality of indoor units 300 . Then, the control device 100 outputs the control target value to the outdoor unit 200 and each indoor unit 300 to control the operation of the outdoor unit 200 and each indoor unit 300 .
  • the operating data are represented by solid-line arrows. Also, the control target value is indicated by a dashed arrow. Details of the operation data and the control target value will be described later. Also, the details of the machine learning method and the application method of the learning model will be described later.
  • the operating procedure of the control device 100 corresponds to the control method.
  • FIG. 2 shows an example of the functional configuration of the control device 100.
  • FIG. 3 shows a hardware configuration example of the control device 100.
  • FIG. First a hardware configuration example of the control device 100 will be described with reference to FIG.
  • Control device 100 is a computer.
  • the control device 100 includes a processor 901, a main storage device 902, an auxiliary storage device 903, a communication device 904, and an input/output device 905 as hardware.
  • the control device 100 includes a collection unit 101, an estimation unit 102, a selection unit 103, a learning unit 104, a setting unit 105, a calculation unit 106, a control unit 107, and an operation data storage unit 108 as a functional configuration.
  • the functions of the collecting unit 101, the estimating unit 102, the selecting unit 103, the learning unit 104, the setting unit 105, the calculating unit 106, and the control unit 107 are implemented by, for example, programs.
  • Auxiliary storage device 903 stores programs for realizing the functions of collection unit 101 , estimation unit 102 , selection unit 103 , learning unit 104 , setting unit 105 , calculation unit 106 and control unit 107 . These programs are loaded from the auxiliary storage device 903 to the main storage device 902 . Then, the processor 901 executes these programs to perform operations of the collecting unit 101, the estimating unit 102, the selecting unit 103, the learning unit 104, the setting unit 105, the calculating unit 106, and the control unit 107, which will be described later.
  • the driving data storage unit 108 is realized by the auxiliary storage device 903, for example.
  • the collection unit 101 uses the communication device 904 to collect operation data from the outdoor unit 200 and each indoor unit 300 .
  • the collection unit 101 collects the outside air temperature, the set temperature in each air-conditioned space, the measured temperature measured in each air-conditioned space, and the temperature of each indoor unit 300 as operation data. , the degree of superheat of each indoor unit 300, and the operating status value of each indoor unit 300 are obtained.
  • the operating data include the outside air temperature, the measured temperature measured in each air-conditioned space, the condensation temperature of each indoor unit 300, and the degree of supercooling of each indoor unit 300. , to obtain the operating status value of each indoor unit 300 .
  • the measured temperature of each indoor unit 300 is also called room temperature. Evaporation temperature is also called ET.
  • the degree of superheat is also called SH.
  • the condensation temperature is also called CT.
  • the degree of supercooling is also called SC.
  • the operating status value is a value that indicates the operating status of each indoor unit 300 for a predetermined period of time (for example, 10 minutes; the same applies hereinafter).
  • the operating status value is a value between 0 and 1.0.
  • the operating status value is the ratio of the time during which the indoor unit 300 is operating to the predetermined time. When the indoor unit 300 continues to operate for the predetermined time (when intermittent operation does not occur), the operation status value is 1.0. If the indoor unit 300 continues to stop for the predetermined time, the operating status value is 0.
  • the operation status value is 0.5.
  • Intermittent operation refers to an operating state in which the indoor unit 300 intermittently repeats operation and stop.
  • the operating status value is also called Thermo ON/OFF.
  • the collection unit 101 outputs the collected driving data to the estimation unit 102 .
  • the estimation unit 102 estimates the required air conditioning capacity of each indoor unit 300 using the operating data.
  • the required air conditioning capacity is the air conditioning capacity required for each indoor unit 300 . That is, the required air conditioning capacity is the air conditioning capacity required in the air conditioning space of each indoor unit 300 .
  • the required air-conditioning capacity is the air-conditioning capacity required to match the room temperature of the air-conditioned space of each indoor unit 300 with the set temperature.
  • the required air conditioning capacity is also called load.
  • the required air conditioning capacity is the cooling capacity required of each indoor unit 300 (hereinafter referred to as the required cooling capacity).
  • the required air conditioning capacity is the heating capacity required of each indoor unit 300 (hereinafter referred to as required heating capacity).
  • required heating capacity the heating capacity required of each indoor unit 300
  • the estimation unit 102 notifies the selection unit 103 of the required air conditioning capacity of each indoor unit 300 .
  • the estimation unit 102 also stores the driving data in the driving data storage unit 108 .
  • the selection unit 103 selects the indoor unit 300 with the maximum required air conditioning capacity from among the plurality of indoor units 300 as the learning indoor unit or the representative indoor unit. In the learning phase, the selection unit 103 selects the indoor unit 300 with the maximum required air conditioning capacity as the learning indoor unit. On the other hand, in the operation phase, the selection unit 103 selects the indoor unit 300 with the maximum required air conditioning capacity as the representative indoor unit.
  • the learning indoor unit is the indoor unit 300 representing the plurality of indoor units 300 in the learning phase.
  • the learning indoor unit is the indoor unit 300 used for machine learning in the learning unit 104, which will be described later.
  • a representative indoor unit is an indoor unit 300 that represents a plurality of indoor units 300 in the operation phase.
  • the representative indoor unit is the indoor unit 300 used for setting the target temperature in the setting unit 105, which will be described later.
  • the selection unit 103 notifies the learning unit 104 of the indoor unit 300 selected as the learning indoor unit.
  • the selection unit 103 notifies the setting unit 105 of the indoor unit 300 selected as the representative indoor unit.
  • the selection unit 103 notifies the calculation unit 106 of the required cooling capacity of the indoor units 300 other than the representative indoor unit.
  • the learning unit 104 acquires operation data of the learned indoor unit from the operation data storage unit 108 . Then, the learning unit 104 performs machine learning using the operation data of the learning indoor unit, and generates the learning model 110 in which the result of the machine learning is reflected.
  • the learning unit 104 learns an evaporating temperature or a condensing temperature that does not cause intermittent operation of the learning indoor unit for a predetermined time. That is, the learning unit 104 learns the evaporating temperature or the condensing temperature that can match the air conditioning capacity of the learned indoor unit with the required air conditioning capacity of the learned indoor unit.
  • the learning unit 104 learns the evaporation temperature that allows the cooling capacity of the learned indoor unit to match the required cooling capacity of the learned indoor unit.
  • the learning unit 104 learns the condensing temperature that allows the heating capacity of the learned indoor unit to match the required heating capacity of the learned indoor unit.
  • the learning unit 104 calculates the set temperature of the air-conditioned space of the learning indoor unit, the measured temperature measured in the air-conditioned space of the learning indoor unit, and the temperature of the learning indoor unit.
  • the relationship between the operating status value, the evaporating temperature measured by the learning indoor unit, the outside air temperature, the degree of superheat measured by the learning indoor unit, and the cooling capacity of the learning indoor unit is learned. More specifically, the learning unit 104 uses the operating data of the learning indoor unit to determine the input (set temperature, measured temperature, operating status value, evaporating temperature, outside temperature, degree of superheat) and output (cooling of the learning indoor unit). ability) is calculated. Then, the learning unit 104 accumulates the calculated correlation formula in the learning model 110 .
  • the setting unit 105 sets the measured temperature, the set temperature, the operating status value, the evaporation temperature, the outside air temperature, the degree of superheat, and the required cooling capacity of the representative indoor unit. is applied to the learning model 110 (correlation formula), it is possible to derive the target evaporating temperature at which the cooling capacity of the representative indoor unit matches the required cooling capacity.
  • the learning unit 104 determines the set temperature of the air-conditioned space of the learning indoor unit, the measured temperature measured in the air-conditioned space of the learning indoor unit, It learns the relationship between the operating status value of the machine, the condensing temperature measured by the learning indoor unit, the outside air temperature, the degree of subcooling measured by the learning indoor unit, and the heating capacity of the learning indoor unit. More specifically, the learning unit 104 uses the operating data of the learning indoor unit to obtain input (set temperature, measured temperature, operating status value, condensation temperature, outside air temperature, degree of supercooling) and output (learning indoor unit heating capacity). Then, the learning unit 104 accumulates the calculated correlation formula in the learning model 110 .
  • the setting unit 105 sets the measured temperature, the set temperature, the operating status value, the condensing temperature, the outside air temperature, the degree of subcooling, and the required heating capacity of the representative indoor unit.
  • the learning model 110 correlation formula
  • the setting unit 105 acquires the operating data of the representative indoor unit from the operating data storage unit 108 . Then, the setting unit 105 applies the operating data of the representative indoor unit to the learning model 110 to set the target temperature. The setting unit 105 sets the target evaporation temperature as the target temperature when the air conditioner 400 is performing cooling operation. The setting unit 105 uses the learning model 110 to set, as the target evaporating temperature, a target evaporating temperature at which intermittent operation does not occur in the representative indoor unit for a predetermined time. That is, the setting unit 105 uses the learning model 110 to set the target evaporation temperature as the target evaporation temperature at which the cooling capacity of the representative indoor unit can match the required cooling capacity of the representative indoor unit for a predetermined time. .
  • the setting unit 105 determines the set temperature in the air-conditioned space of the representative indoor unit, the measured temperature measured in the air-conditioned space of the representative indoor unit, the operating status value, and the temperature measured in the representative indoor unit.
  • the obtained evaporation temperature, the outside air temperature, the fixed degree of superheat, and the required cooling capacity of the representative indoor unit are applied to the learning model 110 (correlation formula) to obtain the target evaporation temperature.
  • the setting unit 105 sets the target condensing temperature as the target temperature.
  • the setting unit 105 uses the learning model 110 to set, as the target condensation temperature, a target temperature at which intermittent operation does not occur in the representative indoor unit for a predetermined time.
  • the setting unit 105 uses the learning model 110 to set the target condensing temperature at which the heating capacity of the representative indoor unit matches the required heating capacity of the representative indoor unit for a predetermined time. Set as temperature. More specifically, the setting unit 105 determines the set temperature in the air-conditioned space of the representative indoor unit, the measured temperature measured in the air-conditioned space of the representative indoor unit, the operating status value of the representative indoor unit, and the The condensing temperature measured by the machine, the outside air temperature, the fixed degree of subcooling, and the required cooling capacity of the representative indoor unit are applied to the learning model 110 to obtain the target condensing temperature.
  • the setting unit 105 notifies the calculation unit 106 of the set target temperature (target evaporation temperature or target condensation temperature) and a fixed degree of superheat (in the case of cooling operation) or a fixed degree of supercooling (in the case of heating operation). do.
  • the calculation unit 106 converts the degree of superheating (in the case of cooling operation) or the degree of supercooling (in the case of heating operation) of the representative indoor unit to the fixed degree of superheating or the fixed degree of supercooling used to set the target temperature. set. Further, the calculation unit 106 calculates the degree of superheat (in the case of cooling operation) or the degree of supercooling (in the case of heating operation) of each indoor unit 300 other than the representative indoor unit based on the target temperature (target evaporating temperature or target condensing temperature). calculated by More specifically, when the air conditioner 400 is performing cooling operation, the calculation unit 106 matches the evaporation temperature of each indoor unit 300 with the target evaporation temperature.
  • a degree of superheat at which the cooling capacity of each indoor unit 300 matches the required cooling capacity of the indoor unit 300 for a predetermined time is calculated.
  • the calculation unit 106 calculates the degree of superheat of each indoor unit 300 in which intermittent operation does not occur in each indoor unit 300 .
  • the calculation unit 106 calculates, for each indoor unit 300, when the condensing temperature in each indoor unit 300 matches the target condensing temperature.
  • the degree of supercooling at which the heating capacity of each indoor unit 300 matches the required heating capacity of the indoor unit 300 is calculated. That is, the calculation unit 106 calculates the degree of supercooling of each indoor unit 300 at which intermittent operation does not occur in each indoor unit 300 .
  • the control unit 107 generates a control target value based on the target evaporation temperature and the degree of superheat of each indoor unit 300 when the air conditioner 400 is performing cooling operation. Then, the control unit 107 outputs the generated control target value to the outdoor unit 200 and each indoor unit 300 . Further, when the air conditioner 400 is performing heating operation, the control unit 107 generates a control target value based on the target condensing temperature and the degree of supercooling of each indoor unit 300 . Then, the control unit 107 outputs the generated control target value to the outdoor unit 200 and each indoor unit 300 . The control unit 107 controls the operation of the outdoor unit 200 and each indoor unit 300 by outputting the control target value.
  • FIG. 4 shows an operation example of the control device 100 when the air conditioner 400 is performing cooling operation.
  • FIG. 5 shows an operation example of the control device 100 when the air conditioner 400 is performing heating operation.
  • step S101 the collection unit 101 collects driving data.
  • the collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the evaporation temperature of each indoor unit 300, the degree of superheat of each indoor unit 300, and the temperature of each indoor unit 300. Get the health status value of .
  • the collection unit 101 acquires the set temperature, the measured temperature, the degree of superheat, and the operating status value from each indoor unit 300 .
  • the evaporation temperature is collectively managed by the outdoor unit 200 . Therefore, the collection unit 101 acquires the evaporation temperature from the outdoor unit 200 .
  • the collection unit 101 also acquires the outside air temperature from the outdoor unit 200 .
  • the collection unit 101 outputs the collected driving data to the estimation unit 102 .
  • the estimation unit 102 estimates the required cooling capacity of each indoor unit 300 .
  • the estimation unit 102 estimates the required cooling capacity L1 [kW] of each indoor unit 300, for example, according to the following equation (1).
  • L1 (measured temperature - ET - SH) x
  • Thermo formula (1) ET is the evaporation temperature.
  • SH is the degree of superheat.
  • Thermo is an operational status value.
  • the estimation unit 102 notifies the selection unit 103 of the required cooling capacity L1 of each indoor unit 300 .
  • step S103 the selection unit 103 selects a representative indoor unit. Specifically, the selection unit 103 selects the indoor unit 300 with the maximum required cooling capacity L1 as the representative indoor unit. The selecting unit 103 notifies the setting unit 105 of the selected representative indoor unit and the requested cooling capacity L1 of the representative indoor unit. Further, the selection unit 103 notifies the calculation unit 106 of the required cooling capacity L1 of the indoor units 300 other than the representative indoor unit.
  • the setting unit 105 sets the target evaporation temperature.
  • the setting unit 105 acquires the operating data of the representative indoor unit from the operating data storage unit 108 . Specifically, the setting unit 105 acquires the measured temperature, the set temperature, the operating status value, the outside air temperature, and the evaporating temperature of the representative indoor unit from the operation data storage unit 108 . Then, the setting unit 105 acquires the measured temperature, the set temperature, the operating status value, the outside temperature, and the evaporation temperature of the representative indoor unit acquired from the operation data storage unit 108, the degree of superheat of the fixed value, and the required cooling capacity of the representative indoor unit. and L1 are applied to the learning model 110 to set the target evaporating temperature.
  • the target evaporating temperature set by the setting unit 105 is the highest evaporating temperature at which intermittent operation does not occur in the representative indoor unit for a predetermined time, that is, the highest evaporating temperature at which the cooling capacity of the representative indoor unit does not fall short of the required cooling capacity L1.
  • the cooling capacity of the representative indoor unit can be matched with the required cooling capacity L1 means matching the measured temperature in the air-conditioned space of the representative indoor unit with the set temperature in the air-conditioned space of the representative indoor unit. means.
  • the setting unit 105 uses the correlation equation of the learning model 110 to identify the highest evaporating temperature among the evaporating temperatures that allow the cooling capacity of the representative indoor unit to match the required cooling capacity L1, and sets the identified evaporating temperature to Set the target evaporation temperature.
  • step S105 the calculation unit 106 sets the target degree of superheat of the representative indoor unit. Specifically, the calculation unit 106 sets the degree of superheat of the fixed value notified from the setting unit 105 as the target degree of superheat of the representative indoor unit.
  • Calculation unit 106 then calculates SH that makes the right side and left side of Equation (1) match as the target degree of superheat.
  • the calculation unit 106 acquires the measured temperature of each indoor unit 300 from the operating data storage unit 108 .
  • the target degree of superheat calculated by the calculation unit 106 is the degree of superheat at which intermittent operation does not occur in each indoor unit 300 for a predetermined time when the evaporation temperature in each indoor unit 300 is matched with the target evaporation temperature, that is, It is the degree of superheat that allows the cooling capacity of each indoor unit 300 to match the required cooling capacity L1 of each indoor unit 300 .
  • “Matching the cooling capacity of each indoor unit 300 with the required cooling capacity L1 of each indoor unit 300” means that the measured temperature in the air-conditioned space of each indoor unit 300 is set to the set temperature in the air-conditioned space of each indoor unit 300. means to match The calculation unit 106 notifies the control unit 107 of the target evaporation temperature and the target degree of superheat of each indoor unit 300 including the representative indoor unit.
  • step S107 the control unit 107 generates a control instruction.
  • the control unit 107 determines the operating speed of the compressor based on the target evaporation temperature. The operating speed of the compressor is adjusted by the outdoor unit 200 . Also, the control unit 107 determines the degree of opening of the indoor expansion valve for each indoor unit 300 based on the target degree of superheat of each indoor unit 300 . The opening degree of the indoor expansion valve is a different value for each indoor unit 300 . The degree of opening of the indoor expansion valve is adjusted by each indoor unit 300 .
  • the control unit 107 generates a control instruction to the outdoor unit 200 indicating the determined operating rotation speed of the compressor. Further, the control unit 107 generates a control instruction to each indoor unit 300 indicating the determined degree of opening of the indoor expansion valve.
  • control unit 107 outputs respective control instructions to the outdoor unit 200 and each indoor unit 300 .
  • the operation of the outdoor unit 200 and the plurality of indoor units 300 is controlled by the outdoor unit 200 and the indoor units 300 operating according to the control instructions. That is, the control unit 107 can match the cooling capacity of each indoor unit 300 with the required cooling capacity of each indoor unit 300 by outputting the control instruction, and the intermittent operation of each indoor unit 300 does not occur.
  • step S201 the collection unit 101 collects driving data.
  • the collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the condensation temperature of each indoor unit 300, the degree of supercooling of each indoor unit 300, each indoor unit 300 operating status values are obtained.
  • the collection unit 101 acquires the set temperature, the measured temperature, the degree of supercooling, and the operating status value from each indoor unit 300 .
  • the condensation temperature is collectively managed by the outdoor unit 200 . Therefore, the collection unit 101 acquires the condensation temperature from the outdoor unit 200 .
  • the collection unit 101 also acquires the outside air temperature from the outdoor unit 200 .
  • the collection unit 101 outputs the collected driving data to the estimation unit 102 .
  • the estimation unit 102 estimates the required heating capacity of each indoor unit 300 .
  • the estimation unit 102 estimates the required heating capacity L2 [kW] of each indoor unit 300, for example, according to the following equation (2).
  • L2 (CT-SC-room temperature) x
  • CT is the condensation temperature.
  • SC is the degree of supercooling.
  • Thermo is an operational status value.
  • the estimation unit 102 notifies the selection unit 103 of the required heating capacity L2 of each indoor unit 300 .
  • the selection unit 103 selects a representative indoor unit. Specifically, the selection unit 103 selects the indoor unit 300 with the maximum required heating capacity L2 as the representative indoor unit. The selecting unit 103 notifies the setting unit 105 of the selected representative indoor unit and the requested heating capacity L2 of the representative indoor unit. Further, the selection unit 103 notifies the calculation unit 106 of the required heating capacity L2 of the indoor units 300 other than the representative indoor unit.
  • the setting unit 105 sets the target condensing temperature.
  • the setting unit 105 acquires the operating data of the representative indoor unit from the operating data storage unit 108 . Specifically, the setting unit 105 acquires the measured temperature, set temperature, operating status value, outside air temperature, and condensing temperature of the representative indoor unit from the operation data storage unit 108 . Then, the setting unit 105 acquires the measured temperature, the set temperature, the operating status value, the outside air temperature, and the condensing temperature of the representative indoor unit acquired from the operation data storage unit 108, the degree of subcooling of the fixed value, and the required heating of the representative indoor unit. L2 and L2 are applied to the learning model 110 to set the target condensing temperature.
  • the target condensing temperature set by the setting unit 105 is the lowest condensing temperature at which intermittent operation does not occur in the representative indoor unit for a predetermined time, that is, the lowest temperature at which the heating capacity of the representative indoor unit does not fall short of the required heating capacity L2. is the condensation temperature. That is, the target condensing temperature is the lowest condensing temperature among the condensing temperatures that allow the heating capacity of the representative indoor unit to match the required heating capacity L2.
  • the heating capacity of the representative indoor unit can be matched with the required heating capacity L2 means matching the measured temperature in the air-conditioned space of the representative indoor unit with the set temperature in the air-conditioned space of the representative indoor unit. means.
  • the setting unit 105 uses the correlation equation of the learning model 110 to identify the lowest condensation temperature among the condensation temperatures that allow the heating capacity of the representative indoor unit to match the required heating capacity L2, and sets the identified condensation temperature to Set target condensing temperature.
  • step S205 the calculation unit 106 sets the target degree of supercooling of the representative indoor unit. Specifically, the calculation unit 106 sets the degree of supercooling of the fixed value notified from the setting unit 105 as the target degree of supercooling of the representative indoor unit.
  • Calculation unit 106 then calculates SC that matches the right side and left side of equation (2) as the target degree of supercooling. Note that the calculation unit 106 acquires the measured temperature of each indoor unit 300 from the operating data storage unit 108 .
  • the target supercooling degree calculated by the calculating unit 106 is the degree of supercooling that does not cause intermittent operation in each indoor unit 300 for a predetermined time when the condensation temperature in each indoor unit 300 is matched with the target condensation temperature. That is, it is the degree of subcooling that allows the heating capacity of each indoor unit 300 to match the required heating capacity L2 of each indoor unit 300 .
  • “Match the heating capacity of each indoor unit 300 with the required heating capacity L2 of each indoor unit 300” means that the measured temperature in the air-conditioned space of each indoor unit 300 is set to the set temperature in the air-conditioned space of each indoor unit 300. means to match The calculation unit 106 notifies the control unit 107 of the target condensation temperature and the target supercooling degree of each indoor unit 300 including the representative indoor unit.
  • step S207 the control unit 107 generates a control instruction.
  • the control unit 107 determines the operating speed of the compressor based on the target evaporation temperature. The operating speed of the compressor is adjusted by the outdoor unit 200 . Also, the control unit 107 determines the degree of opening of the indoor expansion valve for each indoor unit 300 based on the target degree of subcooling of each indoor unit 300 . The opening degree of the indoor expansion valve is a different value for each indoor unit 300 . The degree of opening of the indoor expansion valve is adjusted by each indoor unit 300 .
  • the control unit 107 generates a control instruction to the outdoor unit 200 indicating the determined operating rotation speed of the compressor. Further, the control unit 107 generates a control instruction to each indoor unit 300 indicating the determined degree of opening of the indoor expansion valve.
  • control unit 107 outputs respective control instructions to the outdoor unit 200 and each indoor unit 300 .
  • the operation of the outdoor unit 200 and the plurality of indoor units 300 is controlled by the outdoor unit 200 and the indoor units 300 operating according to the control instructions. That is, the control unit 107 can match the heating capacity of each indoor unit 300 with the required heating capacity of each indoor unit 300 by outputting the control instruction, and the intermittent operation of each indoor unit 300 does not occur.
  • FIG. 6 shows an operation example of the control device 100 when the air conditioner 400 is performing cooling operation.
  • FIG. 7 shows an operation example of the control device 100 when the air conditioner 400 is performing heating operation.
  • step S301 the collection unit 101 collects driving data.
  • the collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the evaporation temperature of each indoor unit 300, the degree of superheat of each indoor unit 300, and the temperature of each indoor unit 300. Get the health status value of .
  • the outdoor unit 200 randomly changes the evaporation temperature.
  • the collection unit 101 outputs the collected driving data to the estimation unit 102 .
  • step S ⁇ b>302 the estimation unit 102 estimates the required cooling capacity of each indoor unit 300 .
  • the estimating unit 102 estimates the required cooling capacity L1 of each indoor unit 300 according to Equation (1) described above.
  • the outdoor unit 200 randomly changes the evaporating temperature.
  • the estimation unit 102 notifies the selection unit 103 of the required cooling capacity L1 of each indoor unit 300 for each evaporation temperature.
  • step S303 the selection unit 103 selects the learning indoor unit. Specifically, the selecting unit 103 selects the indoor unit 300 with the maximum required cooling capacity L1 among the required cooling capacities L1 notified from the estimating unit 102 as the learning indoor unit. The selection unit 103 notifies the learning unit 104 of the selected learning indoor unit.
  • step S305 the learning unit 104 performs machine learning.
  • the learning unit 104 uses the operating data of the learning indoor unit and the fixed superheat degree set in step S304 to determine the highest evaporating temperature at which intermittent operation does not occur in the learning indoor unit, that is, the cooling capacity of the learning indoor unit.
  • the highest evaporating temperature among the evaporating temperatures that can match the maximum required cooling capacity L1 is learned.
  • the cooling capacity of the learning indoor unit can match the maximum required cooling capacity L1 means that when the learning indoor unit is operated at the maximum required cooling capacity L1, the measurement in the air-conditioned space of the learning indoor unit It means matching the temperature with the set temperature in the air-conditioned space of the learning indoor unit.
  • the learning unit 104 uses the operating data of the learning indoor unit as machine learning to obtain input (set temperature, measured temperature, operation status value, evaporation temperature, outside temperature, degree of superheat) and output (learning indoor unit (air conditioner cooling capacity).
  • the learning unit 104 may perform either supervised learning or unsupervised learning.
  • step S306 the learning unit 104 generates the learning model 110 that reflects the results of the machine learning performed in step S305.
  • step S401 the collection unit 101 collects driving data.
  • the collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the condensation temperature of each indoor unit 300, the degree of supercooling of each indoor unit 300, each indoor unit 300 operating status values are obtained.
  • the outdoor unit 200 randomly changes the condensation temperature.
  • the collection unit 101 outputs the collected driving data to the estimation unit 102 .
  • step S ⁇ b>402 the estimation unit 102 estimates the required heating capacity of each indoor unit 300 .
  • the estimation unit 102 estimates the required heating capacity L2 of each indoor unit 300 according to the above equation (2).
  • the outdoor unit 200 randomly changes the condensing temperature.
  • the estimation unit 102 notifies the selection unit 103 of the required heating capacity L2 of each indoor unit 300 for each condensation temperature.
  • the selection unit 103 selects the learning indoor unit. Specifically, the selecting unit 103 selects the indoor unit 300 with the maximum required heating capacity L2 among the required heating capacities L2 notified from the estimating unit 102 as the learning indoor unit. The selection unit 103 notifies the learning unit 104 of the selected learning indoor unit.
  • step S405 the learning unit 104 performs machine learning.
  • the learning unit 104 uses the operating data of the learning indoor unit and the fixed value of supercooling degree set in step S404 to determine the lowest condensing temperature at which intermittent operation does not occur in the learning indoor unit, that is, the heating capacity of the learning indoor unit. is the lowest condensing temperature among the condensing temperatures that can match the maximum required heating capacity L2.
  • the heating capacity of the learning indoor unit can be matched to the maximum required heating capacity L2 means that when the learning indoor unit is operated at the maximum required heating capacity L2, the measurement in the air conditioning space of the learning indoor unit It means matching the temperature with the set temperature in the air-conditioned space of the learning indoor unit.
  • the learning unit 104 uses the operating data of the learning indoor unit to obtain input (set temperature, measured temperature, operation status value, condensing temperature, outside air temperature, degree of supercooling) and output (learning Calculate the correlation with the heating capacity of the indoor unit).
  • the learning unit 104 may perform either supervised learning or unsupervised learning.
  • step S406 the learning unit 104 generates the learning model 110 that reflects the results of the machine learning performed in step S405.
  • an appropriate target temperature (evaporating temperature or condensing temperature) is set early by using a learning model. Further, in the present embodiment, an appropriate degree of superheating or supercooling that does not cause intermittent operation in each indoor unit is calculated for each indoor unit based on the set target temperature. Therefore, according to the present embodiment, it is possible to prevent the occurrence of intermittent operation in each indoor unit and prevent the deterioration of the operating efficiency. In addition, since intermittent operation of each indoor unit is prevented, fluctuations in room temperature are suppressed and comfort is improved.
  • the indoor unit it is possible to operate the indoor unit at an appropriate evaporation temperature that does not cause insufficient cooling capacity. Similarly, according to the present embodiment, it is possible to operate the indoor unit at an appropriate condensation temperature that does not cause insufficient heating capacity. Therefore, according to the present embodiment, it is possible to save energy while maintaining comfort.
  • machine learning is performed using only the parameters of the learning indoor unit, which is the indoor unit with the maximum required cooling capacity or required heating capacity. Therefore, according to this embodiment, machine learning can be completed in a short time.
  • setting unit 105 uses learning model 110 to derive a target evaporating temperature and an appropriate degree of superheat as the target degree of superheat of the representative indoor unit. Further, in the present embodiment, an example will be described in which the setting unit 105 uses the learning model 110 to derive the target condensing temperature and an appropriate supercooling degree as the target supercooling degree of the representative indoor unit.
  • FIG. 2 shows an example of the functional configuration of the control device 100 according to this embodiment.
  • the operations of the learning unit 104, the setting unit 105, and the calculation unit 106 are different from those in the first embodiment.
  • a hardware configuration example of the control device 100 according to the present embodiment is as shown in FIG.
  • FIG. 8 shows an operation example of the control device 100 when the air conditioner 400 is performing cooling operation.
  • FIG. 8 corresponds to FIG. 4 shown in the first embodiment.
  • FIG. 9 shows an operation example of the control device 100 when the air conditioner 400 is performing heating operation.
  • FIG. 9 corresponds to FIG. 5 shown in the first embodiment.
  • Steps S101 to S103 in FIG. 8 are the same as those shown in FIG. Therefore, the description is omitted.
  • step S115 the setting unit 105 sets the target evaporation temperature and the target degree of superheat of the representative indoor unit.
  • the setting unit 105 acquires the operating data of the representative indoor unit from the operating data storage unit 108 .
  • the learning unit 104 acquires the measured temperature, set temperature, operating status value, outside air temperature, and evaporating temperature of the representative indoor unit from the operating data storage unit 108 .
  • the setting unit 105 stores the measured temperature, set temperature, operating status value, outside temperature, and evaporation temperature of the representative indoor unit acquired from the operation data storage unit 108, and the required cooling capacity L1 of the representative indoor unit in the learning model 110. Apply to set the target evaporating temperature and the target superheat of the representative indoor unit.
  • the target evaporating temperature and target degree of superheat set in step S115 allow the cooling capacity of the representative indoor unit to match the required cooling capacity L1 for a predetermined period of time, and further minimize the power consumption of the representative indoor unit. It is the combination of the optimum evaporation temperature and superheating temperature and superheating degree. That is, the target evaporating temperature and target degree of superheat set in step S115 are a combination of the highest evaporating temperature and the highest degree of superheat that satisfy these conditions.
  • the setting unit 105 notifies the calculation unit 106 of the set target evaporation temperature and the target superheat degree of the representative indoor unit.
  • Steps S106 to S108 are the same as those shown in FIG. Therefore, the description is omitted.
  • Steps S201 to S203 in FIG. 9 are the same as those shown in FIG. Therefore, the description is omitted.
  • the setting unit 105 sets the target condensation temperature and the target supercooling degree of the representative indoor unit.
  • the setting unit 105 acquires the operating data of the representative indoor unit from the operating data storage unit 108 .
  • the learning unit 104 acquires the measured temperature, set temperature, operating status value, outside air temperature, and condensing temperature of the representative indoor unit from the operating data storage unit 108 .
  • the setting unit 105 stores the measured temperature, the set temperature, the operating status value, the outside temperature, and the condensation temperature of the representative indoor unit acquired from the operation data storage unit 108, and the required heating capacity L2 of the representative indoor unit in the learning model 110. Apply to set the target condensing temperature and the target subcooling degree of the representative indoor unit.
  • the target condensing temperature and the target supercooling degree set in step S215 can match the heating capacity of the representative indoor unit with the required heating capacity L2 for a predetermined time, and furthermore, can minimize the power consumption of the representative indoor unit. It is the optimum combination of the condensation temperature and the degree of supercooling among the condensation temperature and the degree of supercooling. That is, the target condensing temperature and the target supercooling degree set in step S215 are a combination of the highest condensing temperature and the highest supercooling degree that satisfy these conditions.
  • the setting unit 105 notifies the calculation unit 106 of the set target condensation temperature and the target degree of subcooling of the representative indoor unit.
  • Steps S206 to S208 are the same as those shown in FIG. Therefore, the description is omitted.
  • FIG. 10 shows an operation example of the control device 100 when the air conditioner 400 is performing cooling operation.
  • FIG. 11 shows an operation example of the control device 100 when the air conditioner 400 is performing heating operation.
  • step S311 the collection unit 101 collects driving data.
  • the collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the evaporation temperature of each indoor unit 300, the degree of superheat of each indoor unit 300, and the temperature of each indoor unit 300. and the power consumption value of each indoor unit 300 are acquired.
  • the collection unit 101 also acquires the power consumption value of each indoor unit 300 in step S311.
  • step S311 the outdoor unit 200 randomly changes the evaporation temperature, and each indoor unit 300 randomly changes the degree of superheat.
  • the collection unit 101 outputs the collected driving data to the estimation unit 102 .
  • step S ⁇ b>312 the estimation unit 102 estimates the required cooling capacity of each indoor unit 300 .
  • the estimating unit 102 estimates the required cooling capacity L1 of each indoor unit 300 according to Equation (1) described above.
  • the outdoor unit 200 randomly changes the evaporating temperature
  • each indoor unit 300 randomly changes the degree of superheat.
  • the required cooling capacity L1 of each indoor unit 300 is estimated for each combination.
  • the estimation unit 102 notifies the selection unit 103 of the required cooling capacity L1 of each indoor unit 300 for each combination of the evaporation temperature and the degree of superheat.
  • Step S303 is the same as that shown in FIG. Therefore, the description is omitted.
  • the learning unit 104 performs machine learning.
  • the learning unit 104 uses the operation data of the learned indoor unit to match the cooling capacity of the learned indoor unit with the maximum required cooling capacity L1, and furthermore, the evaporation temperature that can minimize the power consumption of the learned indoor unit.
  • the learning unit 104 may perform either supervised learning or unsupervised learning.
  • Step S306 is the same as that shown in FIG. Therefore, the description is omitted.
  • step S411 the collection unit 101 collects driving data.
  • the collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the condensation temperature of each indoor unit 300, the degree of supercooling of each indoor unit 300, each indoor unit 300 and the power consumption value of each indoor unit 300 are acquired.
  • the collection unit 101 also acquires the power consumption value of each indoor unit 300 in step S411.
  • the outdoor unit 200 randomly changes the condensation temperature, and each indoor unit 300 randomly changes the supercooling degree.
  • the collection unit 101 outputs the collected driving data to the estimation unit 102 .
  • step S ⁇ b>412 the estimation unit 102 estimates the required heating capacity of each indoor unit 300 .
  • the estimation unit 102 estimates the required heating capacity L2 of each indoor unit 300 according to the above equation (2).
  • the outdoor unit 200 randomly changes the condensing temperature
  • each indoor unit 300 randomly changes the degree of supercooling.
  • the required heating capacity L2 of each indoor unit 300 is estimated for each combination of degrees.
  • the estimation unit 102 notifies the selection unit 103 of the required heating capacity L2 of each indoor unit 300 for each combination of the condensation temperature and the degree of supercooling.
  • Step S403 is the same as that shown in FIG. Therefore, the description is omitted.
  • the learning unit 104 performs machine learning.
  • the learning unit 104 uses the operation data of the learning indoor unit to match the heating capacity of the learning indoor unit to the maximum required heating capacity L2, and furthermore, the condensing temperature that can minimize the power consumption of the learning indoor unit. Learn the optimum combination of condensing temperature and degree of supercooling among degrees of supercooling. That is, the learning unit 104 learns the combination of the highest condensing temperature and the highest degree of supercooling that satisfy such conditions.
  • the learning unit 104 may perform either supervised learning or unsupervised learning.
  • Step S406 is the same as that shown in FIG. Therefore, the description is omitted.
  • the target degree of superheat of the representative indoor unit can be set to an appropriate degree of superheat.
  • the target degree of supercooling of the representative indoor unit can be set to an appropriate degree of supercooling.
  • the power consumption of each indoor unit can be suppressed.
  • Embodiment 3 In Embodiments 1 and 2, the example in which the required cooling capacity L1 is calculated according to the formula (1) has been described. Further, in Embodiments 1 and 2, the example in which the required heating capacity L2 is calculated according to the equation (2) has been described. However, the required cooling capacity L1 may be calculated using another formula instead of the formula (1). Moreover, the required heating capacity L2 may be calculated using another formula instead of the formula (2). In this embodiment, an example using formulas other than formulas (1) and (2) will be described.
  • FIG. 2 shows an example of the functional configuration of the control device 100 according to this embodiment.
  • the operations of the estimation unit 102, the learning unit 104, and the calculation unit 106 are different from those in the first embodiment.
  • a hardware configuration example of the control device 100 according to the present embodiment is as shown in FIG.
  • control device 100 performs the operations shown in FIGS. 4 and 5 as operations in the operation phase.
  • step S101 the collection unit 101 collects driving data.
  • the collecting unit 101 collects values described later in addition to the values collected in the first embodiment.
  • the estimation unit 102 estimates the required cooling capacity L1 [kW] of each indoor unit 300 in accordance with the following equations (3) and (4) in step S102.
  • L1 (heo-hei) ⁇ Gr formula (3)
  • Gr 7.59 ⁇ 10 -4 ⁇ Cv ⁇ ((Ph-Ps) ⁇ ⁇ l ⁇ 1000) 0.5
  • hei [kJ/kg] in equation (3) is the enthalpy at the inlet of the evaporator of the indoor unit 300 .
  • heo [kJ/kg] in equation (3) is the enthalpy at the outlet of the evaporator of the indoor unit 300 .
  • hei is determined from the outlet temperature of the condenser of the outdoor unit 200 .
  • heo is determined from the outlet temperature of the condenser of the outdoor unit 200 and Ps.
  • Gr [kg/s] in Equation (3) is the amount of refrigerant flowing through the indoor unit 300 .
  • Gr can be calculated by Equation (4).
  • Ph [MPa] is the high pressure value (the refrigerant discharge pressure value in the compressor).
  • Ps [MPa] is the low pressure value (refrigerant suction pressure value in the compressor).
  • Cv is an index representing the ease of fluid flow. Cv can be obtained from the indoor unit expansion valve opening Li [Pulse]. The relationship between Li and Cv is determined by the expansion valve. It is assumed that the control device 100 holds data indicating the relationship between Li and Cv in advance as a database.
  • ⁇ l in equation (4) is the density of the refrigerant at the inlet of the expansion valve. ⁇ l is determined from the outlet temperature of the condenser of the outdoor unit 200 .
  • the collection unit 101 collects Ph, Ps, Li, and the outlet temperature of the condenser as operating data in addition to the values shown in the first embodiment.
  • the estimating unit 102 calculates hei in Equation (3) from the outlet temperature of the condenser obtained as the operating data.
  • the estimating unit 102 also calculates heo from the condenser outlet temperature and Ps obtained as the operating data.
  • the estimating unit 102 obtains Cv in Equation (4) using Li obtained as the operating data and data in the database.
  • the estimating unit 102 also calculates ⁇ l in Equation (4) from the outlet temperature of the condenser obtained as the operating data.
  • Estimating section 102 then calculates Gr according to equation (4). Further, estimation unit 102 calculates required cooling capacity L1 from calculated Gr, hei, and heo according to equation (3).
  • Steps S103 to S105 in FIG. 4 are the same as those shown in the first embodiment. Therefore, the description is omitted.
  • step S106 the calculation unit 106 calculates the degree of superheat of each indoor unit 300 other than the representative indoor unit according to the formula (1) shown in the first embodiment.
  • the value set for L1 in Equation (1) is the value of L1 calculated according to Equation (3) in step S102.
  • Other values of formula (1) are the same as those shown in the first embodiment.
  • Steps S107 and S108 in FIG. 4 are the same as those shown in the first embodiment. Therefore, the description is omitted.
  • step S201 the collection unit 101 collects driving data.
  • the collecting unit 101 collects values described later in addition to the values collected in the first embodiment.
  • estimation unit 102 estimates required heating capacity L2 [kW] of each indoor unit 300 in step S202 according to the following equations (5) and (6).
  • L2 (hco-hci) ⁇ Gr Formula (5)
  • Gr 7.59 ⁇ 10 -4 ⁇ Cv ⁇ ((Ph-Ps) ⁇ ⁇ l ⁇ 1000) 0.5
  • hci [kJ/kg] in equation (5) is the inlet enthalpy of the condenser of the indoor unit 300 .
  • hco [kJ/kg] in equation (5) is the enthalpy at the outlet of the condenser of the indoor unit 300 .
  • hci is determined from the inlet temperature of the evaporator of the outdoor unit 200 and Ph.
  • hco is determined from the inlet temperature of the evaporator of the outdoor unit 200 .
  • Gr [kg/s] in Equation (5) is the amount of refrigerant flowing through indoor unit 300 .
  • Gr can be calculated by Equation (6).
  • ⁇ l in equation (6) is determined from the inlet temperature of the evaporator of the outdoor unit 200 .
  • the collection unit 101 collects Ph, Ps, Li, and the inlet temperature of the evaporator as operation data in addition to the values shown in the first embodiment.
  • the estimation unit 102 calculates hci in Equation (5) from the evaporator inlet temperature and Ph obtained as the operating data.
  • the estimating unit 102 also calculates hco from the inlet temperature of the evaporator obtained as the operating data.
  • the estimating unit 102 obtains Cv in Equation (6) using Li obtained as the operating data and data in the database.
  • the estimating unit 102 also calculates ⁇ l in Equation (6) from the evaporator inlet temperature obtained as the operating data.
  • Estimating section 102 then calculates Gr according to equation (6). Further, estimation unit 102 calculates requested heating capacity L2 from calculated Gr, hci, and hco according to equation (5).
  • Steps S203 to S205 in FIG. 5 are the same as those shown in the first embodiment. Therefore, the description is omitted.
  • step S206 the calculation unit 106 calculates the degree of supercooling of each indoor unit 300 other than the representative indoor unit according to the formula (2) shown in the first embodiment.
  • the value set for L2 in Equation (2) is the value of L2 calculated according to Equation (5) in step S202.
  • Other values of formula (2) are the same as those shown in the first embodiment.
  • Steps S207 and S208 in FIG. 5 are the same as those shown in the first embodiment. Therefore, the description is omitted.
  • control device 100 performs the operations shown in FIGS. 6 and 7 as operations in the learning phase.
  • step S301 the collection unit 101 collects driving data.
  • the collection unit 101 collects the same driving data as that collected in step S101 in this embodiment.
  • step S302 the estimation unit 102 estimates the required cooling capacity L1 of each indoor unit 300 for each evaporating temperature according to Equation (3).
  • the operations after step S303 are the same as those shown in the first embodiment. Therefore, the description is omitted.
  • step S401 the collection unit 101 collects driving data.
  • the collection unit 101 collects the same driving data as that collected in step S201 in this embodiment.
  • step S402 the estimation unit 102 estimates the required heating capacity L2 of each indoor unit 300 according to the equation (2) for each condensing temperature.
  • the operations after step S403 are the same as those shown in the first embodiment. Therefore, the description is omitted.
  • required cooling capacity L1 is calculated using equations (3) and (4) instead of equation (1).
  • required cooling capacity L1 can be calculated more accurately than when using equation (1).
  • required heating capacity L2 is calculated using equations (5) and (6) instead of equation (2).
  • the required heating capacity L2 can be calculated more accurately than when using the equation (2). Therefore, according to the present embodiment, each indoor unit 300 can be controlled more precisely than in the first embodiment.
  • first to third embodiments have been described above, two or more of these embodiments may be combined for implementation. Alternatively, one of these embodiments may be partially implemented. Alternatively, two or more of these embodiments may be partially combined for implementation. Also, the configurations and procedures described in these embodiments may be changed as necessary.
  • a processor 901 shown in FIG. 3 is an IC (Integrated Circuit) that performs processing.
  • the processor 901 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
  • the main memory device 902 shown in FIG. 3 is a RAM (Random Access Memory).
  • the auxiliary storage device 903 shown in FIG. 3 is a ROM (Read Only Memory), flash memory, HDD (Hard Disk Drive), or the like.
  • the communication device 904 shown in FIG. 3 is an electronic circuit that performs data communication processing.
  • the communication device 904 is, for example, a communication chip or a NIC (Network Interface Card).
  • the input/output device 905 is a keyboard, mouse, display, and the like.
  • the auxiliary storage device 903 also stores an OS (Operating System). At least part of the OS is executed by the processor 901 .
  • the processor 901 executes a program that implements the functions of the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107 while executing at least part of the OS. Task management, memory management, file management, communication control, and the like are performed by the processor 901 executing the OS.
  • At least one of information, data, signal values, and variable values indicating the processing results of the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107 It is stored in at least one of a main memory device 902, an auxiliary memory device 903, a register in the processor 901, and a cache memory.
  • a program that implements the functions of the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107 can be a magnetic disk, a flexible disk, an optical disk, a compact disk, a Blu-ray ( It may be stored in a portable recording medium such as a registered trademark) disk, DVD, or the like.
  • a portable recording medium in which a program for realizing the functions of the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107 is stored may be distributed.
  • the “units” of the collecting unit 101, the estimating unit 102, the selecting unit 103, the learning unit 104, the setting unit 105, the calculating unit 106, and the control unit 107 are replaced with “circuit”, “process”, “procedure”, or “processing”. Or you may read it as “circuitry”.
  • the control device 100 may be realized by a processing circuit.
  • the processing circuits are, for example, logic ICs (Integrated Circuits), GAs (Gate Arrays), ASICs (Application Specific Integrated Circuits), and FPGAs (Field-Programmable Gate Arrays).
  • the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107 are each implemented as part of the processing circuit.
  • the general concept of processors and processing circuits is referred to as "processing circuitry.”
  • processors and processing circuitry are each examples of "processing circuitry.”
  • control device 101 collection unit, 102 estimation unit, 103 selection unit, 104 learning unit, 105 setting unit, 106 calculation unit, 107 control unit, 108 operation data storage unit, 110 learning model, 200 outdoor unit, 300 indoor unit, 400 air conditioner, 500 air conditioning system, 901 processor, 902 main storage device, 903 auxiliary storage device, 904 communication device, 905 input/output device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

In the present invention, a selection unit (103) selects, from among a plurality of indoor units each being assigned an air conditioning space representing a target for air conditioning, an indoor unit serving as a representative indoor unit representing the plurality of indoor units, such selection being on the basis of a required air conditioning capacity which is the air conditioning capacity required by each indoor unit. A setting unit (105) uses a trained model (110) obtained through machine learning to set a target temperature for either an evaporation temperature or a condensation temperature at which the air conditioning capacity of the representative indoor unit can be matched to the required air conditioning capacity of the representative indoor unit. In a case where, for each indoor unit of the plurality of indoor units excluding the representative indoor unit, either the evaporation temperature or the condensation temperature in each indoor unit matches the target temperature, a calculation unit (106) calculates either the degree of superheating or the degree of supercooling with which the air conditioning capacity of each indoor unit matches the required air conditioning capacity of the indoor unit.

Description

制御装置及び制御方法Control device and control method
 本開示は、空気調和機の制御に関する。 The present disclosure relates to control of an air conditioner.
 本開示に関連する技術として、特許文献1の技術がある。特許文献1では、1台の室外機に複数の室内機が接続されている空気調和機が開示されている。
 そして、特許文献1では、省エネルギー性と快適性とを両立させる構成が開示されている。具体的には、特許文献1では、各室内機に要求される空気調和能力(以下、要求空気調和能力という)が取得される。そして、取得された要求空気調和能力の中で最大の要求空気調和能力に応じて、目標蒸発温度と目標過熱度が設定される。そして、最大の要求空気調和能力の室内機以外の室内機で、冷房温度(室内温度)が目標冷房温度(目標室内温度)よりも既定値以上低下した場合に、該当する室内機の目標過熱度が変更される。
As a technology related to the present disclosure, there is a technology disclosed in Patent Document 1. Patent Literature 1 discloses an air conditioner in which a plurality of indoor units are connected to one outdoor unit.
Patent Document 1 discloses a configuration that achieves both energy saving and comfort. Specifically, in Patent Literature 1, the air conditioning capacity required for each indoor unit (hereinafter referred to as the required air conditioning capacity) is obtained. Then, the target evaporation temperature and the target degree of superheat are set according to the maximum requested air-conditioning capacity among the acquired requested air-conditioning capacities. Then, when the cooling temperature (indoor temperature) of an indoor unit other than the indoor unit with the maximum required air conditioning capacity falls below the target cooling temperature (target indoor temperature) by a predetermined value or more, the target degree of superheat of the corresponding indoor unit is changed.
特開2018-138841号公報JP 2018-138841 A
 特許文献1の技術では、各室内機の運転後に目標蒸発温度の探索が開始される。従って、各室内機の運転中に目標蒸発温度の探索が行われる。このため、特許文献1の技術では、目標蒸発温度の設定までに時間を要する。そして、目標蒸発温度の探索中にいずれかの室内機の要求空気調和能力が変動した場合に、該当の室内機で間欠運転が発生し、運転効率が低下するという課題がある。
 また、特許文献1の技術では、冷房温度(室内温度)の低下に応じて室内機の目標過熱度を変更する。このため、室内機の空気調和能力を要求空気調和能力に一致させることが困難である。従って、特許文献1の技術では、いずれかの室内機で間欠運転が発生し、運転効率が低下するという課題がある。
In the technique disclosed in Patent Literature 1, searching for the target evaporation temperature is started after each indoor unit is operated. Therefore, the target evaporating temperature is searched for during operation of each indoor unit. Therefore, with the technique of Patent Document 1, it takes time to set the target evaporation temperature. When the required air conditioning capacity of any indoor unit fluctuates while searching for the target evaporating temperature, intermittent operation occurs in the corresponding indoor unit, resulting in a problem of reduced operating efficiency.
Further, in the technique of Patent Document 1, the target degree of superheat of the indoor unit is changed according to the decrease in the cooling temperature (indoor temperature). Therefore, it is difficult to match the air conditioning capacity of the indoor unit with the required air conditioning capacity. Therefore, the technique of Patent Document 1 has a problem that intermittent operation occurs in one of the indoor units, resulting in a decrease in operating efficiency.
 本開示は、上記のような課題を解決することを主な目的の一つとする。具体的には、本開示は、各室内機での間欠運転の発生を防止し、運転効率の低下を防止することを主な目的とする。 One of the main purposes of this disclosure is to solve the above problems. Specifically, the main purpose of the present disclosure is to prevent the occurrence of intermittent operation in each indoor unit and to prevent a decrease in operating efficiency.
 本開示に係る制御装置は、
 各々に空気調和の対象となる空気調和空間が割り当てられている複数の室内機の中から、各室内機に要求される空気調和能力である要求空気調和能力に基づき、前記複数の室内機を代表する室内機を代表室内機として選択する選択部と、
 機械学習により得られた学習モデルを用いて、前記代表室内機の空気調和能力を前記代表室内機の要求空気調和能力に一致させることができる蒸発温度及び凝縮温度のいずれかの目標温度を設定する設定部と、
 前記代表室内機を除く前記複数の室内機の室内機ごとに、各室内機での蒸発温度及び凝縮温度のいずれかを前記目標温度に一致させた場合に、各室内機の空気調和能力が当該室内機の要求空気調和能力と一致する過熱度及び過冷却度のいずれかを算出する算出部とを有する。
A control device according to the present disclosure includes:
A representative of the plurality of indoor units, each of which is assigned an air-conditioned space to be air-conditioned, based on the required air-conditioning capacity, which is the air-conditioning capacity required for each indoor unit. a selection unit that selects an indoor unit to be used as a representative indoor unit;
A learning model obtained by machine learning is used to set a target temperature of either the evaporating temperature or the condensing temperature that allows the air conditioning capacity of the representative indoor unit to match the required air conditioning capacity of the representative indoor unit. a setting unit;
For each indoor unit of the plurality of indoor units excluding the representative indoor unit, when either the evaporation temperature or the condensation temperature in each indoor unit is made to match the target temperature, the air conditioning capacity of each indoor unit is a calculating unit that calculates either the degree of superheating or the degree of supercooling that matches the required air conditioning capacity of the indoor unit.
 本開示では、学習モデルを用いることで早期に適切な目標温度(蒸発温度又は凝縮温度)を設定する。また、本開示では、設定した目標温度に基づいて、各室内機の空気調和能力が当該室内機の要求空気調和能力と一致する各室内機の過熱度及び過冷却度を算出する。つまり、本開示では、各室内機で間欠運転を発生させない適切な過熱度又は過冷却度を室内機ごとに算出する。
 このため、本開示によれば、各室内機での間欠運転の発生を防止し、運転効率の低下を防止することができる。
In the present disclosure, an appropriate target temperature (evaporating temperature or condensing temperature) is set early by using a learning model. In addition, in the present disclosure, based on the set target temperature, the degree of superheating and the degree of supercooling of each indoor unit whose air conditioning capability matches the required air conditioning capability of the indoor unit are calculated. That is, in the present disclosure, an appropriate degree of superheating or supercooling that does not cause intermittent operation in each indoor unit is calculated for each indoor unit.
Therefore, according to the present disclosure, it is possible to prevent the occurrence of intermittent operation in each indoor unit and prevent a decrease in operating efficiency.
実施の形態1に係る空気調和システムの構成例を示す図。1 is a diagram showing a configuration example of an air conditioning system according to Embodiment 1; FIG. 実施の形態1に係る制御装置の機能構成例を示す図。2 is a diagram showing a functional configuration example of a control device according to Embodiment 1; FIG. 実施の形態1に係る制御装置のハードウェア構成例を示す図。2 is a diagram showing a hardware configuration example of a control device according to Embodiment 1; FIG. 実施の形態1に係る、運用フェーズ(冷房運転時)での制御装置の動作例を示すフローチャート。4 is a flowchart showing an operation example of the control device in the operation phase (during cooling operation) according to the first embodiment; 実施の形態1に係る、運用フェーズ(暖房運転時)での制御装置の動作例を示すフローチャート。4 is a flowchart showing an operation example of the control device in the operation phase (at the time of heating operation) according to the first embodiment; 実施の形態1に係る、学習フェーズ(冷房運転時)での制御装置の動作例を示すフローチャート。4 is a flowchart showing an operation example of the control device in a learning phase (during cooling operation) according to the first embodiment; 実施の形態1に係る、学習フェーズ(暖房運転時)での制御装置の動作例を示すフローチャート。4 is a flowchart showing an operation example of the control device in a learning phase (during heating operation) according to Embodiment 1; 実施の形態2に係る、運用フェーズ(冷房運転時)での制御装置の動作例を示すフローチャート。9 is a flowchart showing an example of the operation of the control device in the operation phase (during cooling operation) according to the second embodiment; 実施の形態2に係る、運用フェーズ(暖房運転時)での制御装置の動作例を示すフローチャート。9 is a flowchart showing an example of the operation of the control device in the operation phase (during heating operation) according to the second embodiment; 実施の形態2に係る、学習フェーズ(冷房運転時)での制御装置の動作例を示すフローチャート。9 is a flowchart showing an example of the operation of the control device in the learning phase (during cooling operation) according to the second embodiment; 実施の形態2に係る、学習フェーズ(暖房運転時)での制御装置の動作例を示すフローチャート。9 is a flowchart showing an example of the operation of a control device in a learning phase (during heating operation) according to Embodiment 2;
 以下、実施の形態を図を用いて説明する。以下の実施の形態の説明及び図面において、同一の符号を付したものは、同一の部分又は相当する部分を示す。 An embodiment will be described below with reference to the drawings. In the following description of the embodiments and drawings, the same reference numerals denote the same or corresponding parts.
 実施の形態1.
***構成の説明***
 図1は、本実施の形態に係る空気調和システム500の構成例を示す。
 本実施の形態に係る空気調和システム500は、制御装置100と空気調和機400とを有する。
Embodiment 1.
*** Configuration description ***
FIG. 1 shows a configuration example of an air conditioning system 500 according to this embodiment.
Air conditioning system 500 according to the present embodiment has control device 100 and air conditioner 400 .
 空気調和機400は、1つの室外機200と複数の室内機300で構成される。複数の室内機300は、1つの室外機200に接続されている。図1では、3つの室内機300が室外機200に接続しているが、室内機300の個数は3つ以外であってもよい。
 室外機200は、建物の外部に設置されている。
 各室内機300は、建物の内部に設置されている。各室内機300には、個別に、空気調和の対象となる空間(例えば、部屋)が割り当てられている。各室内機300に割り当てられている空気調和の対象となる空間を、以下、空気調和空間という。
The air conditioner 400 is composed of one outdoor unit 200 and a plurality of indoor units 300 . A plurality of indoor units 300 are connected to one outdoor unit 200 . Although three indoor units 300 are connected to the outdoor unit 200 in FIG. 1, the number of indoor units 300 may be other than three.
The outdoor unit 200 is installed outside the building.
Each indoor unit 300 is installed inside the building. Each indoor unit 300 is individually assigned a space (for example, a room) to be air-conditioned. The space to be air-conditioned that is assigned to each indoor unit 300 is hereinafter referred to as an air-conditioned space.
 制御装置100は、室外機200と複数の室内機300を制御する。
 制御装置100には、動作フェーズとして、学習フェーズと運用フェーズとがある。
 制御装置100は、学習フェーズにおいて、機械学習を行う。また、制御装置100は、運用フェーズにおいて、機械学習の結果を用いて室外機200及び複数の室内機300を制御する。
 学習フェーズでは、制御装置100は、室外機200及び複数の室内機300から、運転データを収集する。そして、制御装置100は、収集した運転データを用いた機械学習を行い、機械学習の結果を反映する学習モデルを生成する。
 運用フェーズにおいても、制御装置100は、室外機200及び複数の室内機300から、運転データを収集する。また、制御装置100は、運転データを学習モデルに適用して、室外機200及び複数の室内機300の運転を制御するための制御目標値を生成する。そして、制御装置100は、制御目標値を室外機200及び各室内機300に出力して、室外機200及び各室内機300の運転を制御する。図1では、運転データが実線の矢印で表されている。また、制御目標値が破線の矢印で表されている。
 運転データ及び制御目標値の詳細は後述する。また、機械学習の方法及び学習モデルの適用方法の詳細も後述する。
 制御装置100の動作手順は、制御方法に相当する。
A control device 100 controls an outdoor unit 200 and a plurality of indoor units 300 .
The control device 100 has a learning phase and an operation phase as operation phases.
The control device 100 performs machine learning in the learning phase. Also, in the operation phase, the control device 100 controls the outdoor unit 200 and the plurality of indoor units 300 using the results of machine learning.
In the learning phase, the control device 100 collects operating data from the outdoor unit 200 and the multiple indoor units 300 . Then, the control device 100 performs machine learning using the collected driving data, and generates a learning model that reflects the results of the machine learning.
Also in the operation phase, the control device 100 collects operation data from the outdoor unit 200 and the plurality of indoor units 300 . The control device 100 also applies the operation data to the learning model to generate control target values for controlling the operation of the outdoor unit 200 and the plurality of indoor units 300 . Then, the control device 100 outputs the control target value to the outdoor unit 200 and each indoor unit 300 to control the operation of the outdoor unit 200 and each indoor unit 300 . In FIG. 1, the operating data are represented by solid-line arrows. Also, the control target value is indicated by a dashed arrow.
Details of the operation data and the control target value will be described later. Also, the details of the machine learning method and the application method of the learning model will be described later.
The operating procedure of the control device 100 corresponds to the control method.
 図2は、制御装置100の機能構成例を示す。図3は、制御装置100のハードウェア構成例を示す。
 先ず、図3を参照して、制御装置100のハードウェア構成例を説明する。
FIG. 2 shows an example of the functional configuration of the control device 100. As shown in FIG. FIG. 3 shows a hardware configuration example of the control device 100. As shown in FIG.
First, a hardware configuration example of the control device 100 will be described with reference to FIG.
 本実施の形態に係る制御装置100は、コンピュータである。
 制御装置100は、ハードウェアとして、プロセッサ901、主記憶装置902、補助記憶装置903、通信装置904及び入出力装置905を備える。
 図2に示すように、制御装置100は、機能構成として、収集部101、推定部102、選択部103、学習部104、設定部105、算出部106、制御部107及び運転データ記憶部108を備える。
 収集部101、推定部102、選択部103、学習部104、設定部105、算出部106及び制御部107の機能は、例えば、プログラムにより実現される。
 補助記憶装置903には、収集部101、推定部102、選択部103、学習部104、設定部105、算出部106及び制御部107の機能を実現するプログラムが記憶されている。
 これらプログラムは、補助記憶装置903から主記憶装置902にロードされる。そして、プロセッサ901がこれらプログラムを実行して、後述する収集部101、推定部102、選択部103、学習部104、設定部105、算出部106及び制御部107の動作を行う。
 図3は、プロセッサ901が収集部101、推定部102、選択部103、学習部104、設定部105、算出部106及び制御部107の機能を実現するプログラムを実行している状態を模式的に表している。
 運転データ記憶部108は、例えば、補助記憶装置903により実現される。
Control device 100 according to the present embodiment is a computer.
The control device 100 includes a processor 901, a main storage device 902, an auxiliary storage device 903, a communication device 904, and an input/output device 905 as hardware.
As shown in FIG. 2, the control device 100 includes a collection unit 101, an estimation unit 102, a selection unit 103, a learning unit 104, a setting unit 105, a calculation unit 106, a control unit 107, and an operation data storage unit 108 as a functional configuration. Prepare.
The functions of the collecting unit 101, the estimating unit 102, the selecting unit 103, the learning unit 104, the setting unit 105, the calculating unit 106, and the control unit 107 are implemented by, for example, programs.
Auxiliary storage device 903 stores programs for realizing the functions of collection unit 101 , estimation unit 102 , selection unit 103 , learning unit 104 , setting unit 105 , calculation unit 106 and control unit 107 .
These programs are loaded from the auxiliary storage device 903 to the main storage device 902 . Then, the processor 901 executes these programs to perform operations of the collecting unit 101, the estimating unit 102, the selecting unit 103, the learning unit 104, the setting unit 105, the calculating unit 106, and the control unit 107, which will be described later.
FIG. 3 schematically shows a state in which the processor 901 is executing a program that implements the functions of the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107. represent.
The driving data storage unit 108 is realized by the auxiliary storage device 903, for example.
 次に、図2を参照して、制御装置100の機能構成例を説明する。 Next, an example of the functional configuration of the control device 100 will be described with reference to FIG.
 収集部101は、通信装置904を用いて、室外機200及び各室内機300から運転データを収集する。
 収集部101は、空気調和機400が冷房運転を行っている場合は、運転データとして、外気温、各空気調和空間での設定温度、各空気調和空間で計測された計測温度、各室内機300の蒸発温度、各室内機300の過熱度、各室内機300の稼動状況値を取得する。
 一方、空気調和機400が暖房運転を行っている場合は、運転データとして、外気温、各空気調和空間で計測された計測温度、各室内機300の凝縮温度、各室内機300の過冷却度、各室内機300の稼動状況値を取得する。
 なお、以下では、各室内機300の計測温度は、室温ともいう。また、蒸発温度はETともいう。また、過熱度はSHともいう。また、凝縮温度はCTともいう。また、過冷却度はSCともいう。
 稼動状況値は、既定時間の間(例えば10分間、以下も同様)の各室内機300の稼動状況を示す値である。稼動状況値は0から1.0の間の値である。稼動状況値は、室内機300が動作している時間の既定時間に対する割合である。既定時間の間室内機300が継続して動作している場合(間欠運転が発生していない場合)は、稼動状況値は1.0をとる。既定時間の間室内機300が継続して停止している場合は、稼動状況値は0をとる。既定時間の間室内機300で間欠運転が発生して、室内機300が動作している時間が既定時間の半分である場合は、稼動状況値は0.5をとる。
 間欠運転とは、室内機300が断続的に動作と停止を繰り返す運転状態をいう。
 稼動状況値はThermoON/OFFともいう。
 収集部101は、収集した運転データを推定部102に出力する。
The collection unit 101 uses the communication device 904 to collect operation data from the outdoor unit 200 and each indoor unit 300 .
When the air conditioner 400 is performing cooling operation, the collection unit 101 collects the outside air temperature, the set temperature in each air-conditioned space, the measured temperature measured in each air-conditioned space, and the temperature of each indoor unit 300 as operation data. , the degree of superheat of each indoor unit 300, and the operating status value of each indoor unit 300 are obtained.
On the other hand, when the air conditioner 400 is performing heating operation, the operating data include the outside air temperature, the measured temperature measured in each air-conditioned space, the condensation temperature of each indoor unit 300, and the degree of supercooling of each indoor unit 300. , to obtain the operating status value of each indoor unit 300 .
In addition, below, the measured temperature of each indoor unit 300 is also called room temperature. Evaporation temperature is also called ET. The degree of superheat is also called SH. The condensation temperature is also called CT. The degree of supercooling is also called SC.
The operating status value is a value that indicates the operating status of each indoor unit 300 for a predetermined period of time (for example, 10 minutes; the same applies hereinafter). The operating status value is a value between 0 and 1.0. The operating status value is the ratio of the time during which the indoor unit 300 is operating to the predetermined time. When the indoor unit 300 continues to operate for the predetermined time (when intermittent operation does not occur), the operation status value is 1.0. If the indoor unit 300 continues to stop for the predetermined time, the operating status value is 0. If the intermittent operation occurs in the indoor unit 300 for the predetermined time and the time during which the indoor unit 300 is operating is half of the predetermined time, the operation status value is 0.5.
Intermittent operation refers to an operating state in which the indoor unit 300 intermittently repeats operation and stop.
The operating status value is also called Thermo ON/OFF.
The collection unit 101 outputs the collected driving data to the estimation unit 102 .
 推定部102は、運転データを用いて各室内機300の要求空気調和能力を推定する。要求空気調和能力は、各室内機300に要求される空気調和能力である。つまり、要求空気調和能力は、各室内機300の空気調和空間で要求される空気調和能力である。換言すると、要求空気調和能力は、各室内機300の空気調和空間の室温を設定温度に一致させるのに必要な空気調和能力である。要求空気調和能力は負荷ともいう。
 空気調和機400が冷房運転を行う場合は、要求空気調和能力は、各室内機300に要求される冷房能力(以下、要求冷房能力という)である。一方、空気調和機400が暖房運転を行う場合は、要求空気調和能力は、各室内機300に要求される暖房能力(以下、要求暖房能力という)である。
 要求空気調和能力の推定方法の詳細は後述する。
 推定部102は、各室内機300の要求空気調和能力を選択部103に通知する。
 また、推定部102は、運転データを運転データ記憶部108に格納する。
The estimation unit 102 estimates the required air conditioning capacity of each indoor unit 300 using the operating data. The required air conditioning capacity is the air conditioning capacity required for each indoor unit 300 . That is, the required air conditioning capacity is the air conditioning capacity required in the air conditioning space of each indoor unit 300 . In other words, the required air-conditioning capacity is the air-conditioning capacity required to match the room temperature of the air-conditioned space of each indoor unit 300 with the set temperature. The required air conditioning capacity is also called load.
When the air conditioner 400 performs cooling operation, the required air conditioning capacity is the cooling capacity required of each indoor unit 300 (hereinafter referred to as the required cooling capacity). On the other hand, when the air conditioner 400 performs the heating operation, the required air conditioning capacity is the heating capacity required of each indoor unit 300 (hereinafter referred to as required heating capacity).
The details of the method of estimating the required air conditioning capacity will be described later.
The estimation unit 102 notifies the selection unit 103 of the required air conditioning capacity of each indoor unit 300 .
The estimation unit 102 also stores the driving data in the driving data storage unit 108 .
 選択部103は、複数の室内機300の中から、要求空気調和能力が最大の室内機300を学習室内機又は代表室内機として選択する。
 学習フェーズでは、選択部103は、要求空気調和能力が最大の室内機300を学習室内機として選択する。一方、運用フェーズでは、選択部103は、要求空気調和能力が最大の室内機300を代表室内機として選択する。
 学習室内機は、学習フェーズにおいて、複数の室内機300を代表する室内機300である。学習室内機は、後述する学習部104での機械学習に用いられる室内機300である。
 代表室内機は、運用フェーズにおいて、複数の室内機300を代表する室内機300である。代表室内機は、後述する設定部105での目標温度の設定に用いられる室内機300である。
 選択部103は、学習フェーズでは、学習室内機として選択した室内機300を学習部104に通知する。一方、運用フェーズでは、選択部103は、代表室内機として選択した室内機300を設定部105に通知する。また、選択部103は、代表室内機以外の室内機300の要求冷房能力を算出部106に通知する。
The selection unit 103 selects the indoor unit 300 with the maximum required air conditioning capacity from among the plurality of indoor units 300 as the learning indoor unit or the representative indoor unit.
In the learning phase, the selection unit 103 selects the indoor unit 300 with the maximum required air conditioning capacity as the learning indoor unit. On the other hand, in the operation phase, the selection unit 103 selects the indoor unit 300 with the maximum required air conditioning capacity as the representative indoor unit.
The learning indoor unit is the indoor unit 300 representing the plurality of indoor units 300 in the learning phase. The learning indoor unit is the indoor unit 300 used for machine learning in the learning unit 104, which will be described later.
A representative indoor unit is an indoor unit 300 that represents a plurality of indoor units 300 in the operation phase. The representative indoor unit is the indoor unit 300 used for setting the target temperature in the setting unit 105, which will be described later.
In the learning phase, the selection unit 103 notifies the learning unit 104 of the indoor unit 300 selected as the learning indoor unit. On the other hand, in the operation phase, the selection unit 103 notifies the setting unit 105 of the indoor unit 300 selected as the representative indoor unit. Further, the selection unit 103 notifies the calculation unit 106 of the required cooling capacity of the indoor units 300 other than the representative indoor unit.
 学習部104は、運転データ記憶部108から学習室内機の運転データを取得する。
 そして、学習部104は、学習室内機の運転データを用いた機械学習を行って、機械学習の結果が反映される学習モデル110を生成する。
 学習部104は、既定時間の間、学習室内機で間欠運転を発生させない蒸発温度又は凝縮温度を学習する。つまり、学習部104は、学習室内機の空気調和能力を学習室内機の要求空気調和能力に一致させることができる蒸発温度又は凝縮温度を学習する。空気調和機400が冷房運転を行っている場合は、学習部104は、学習室内機の冷房能力を学習室内機の要求冷房能力に一致させることができる蒸発温度を学習する。空気調和機400が暖房運転を行っている場合は、学習部104は、学習室内機の暖房能力を学習室内機の要求暖房能力に一致させることができる凝縮温度を学習する。
 空気調和機400が冷房運転を行っている場合は、学習部104は、学習室内機の空気調和空間の設定温度と、学習室内機の空気調和空間で計測された計測温度と、学習室内機の稼動状況値と、学習室内機で計測された蒸発温度と、外気温度と、学習室内機で計測された過熱度と、学習室内機の冷房能力との関係を学習する。より具体的には、学習部104は、学習室内機の運転データを用いて、入力(設定温度、計測温度、稼動状況値、蒸発温度、外気温度、過熱度)と出力(学習室内機の冷房能力)との相関式を算出する。そして、学習部104は算出した相関式を学習モデル110に蓄積する。
 設定部105は、後述するように、代表室内機の要求冷房能力が与えられたときに、計測温度、設定温度、稼働状況値、蒸発温度、外気温度、過熱度及び代表室内機の要求冷房能力を学習モデル110(相関式)に適用することで、代表室内機の冷房能力が要求冷房能力と一致する目標蒸発温度を導出することができる。
 また、空気調和機400が暖房運転を行っている場合は、学習部104は、学習室内機の空気調和空間の設定温度と、学習室内機の空気調和空間で計測された計測温度と、学習室内機の稼動状況値と、学習室内機で計測された凝縮温度と、外気温度と、学習室内機で計測された過冷却度と、学習室内機の暖房能力との関係を学習する。より具体的には、学習部104は、学習室内機の運転データを用いて、入力(設定温度、計測温度、稼動状況値、凝縮温度、外気温度、過冷却度)と出力(学習室内機の暖房能力)との相関式を算出する。そして、学習部104は算出した相関式を学習モデル110に蓄積する。
 設定部105は、後述するように、代表室内機の要求暖房能力が与えられたときに、計測温度、設定温度、稼働状況値、凝縮温度、外気温度、過冷却度及び代表室内機の要求暖房能力を学習モデル110(相関式)に適用することで、代表室内機の暖房能力が要求暖房能力と一致する目標凝縮温度を導出することができる。
The learning unit 104 acquires operation data of the learned indoor unit from the operation data storage unit 108 .
Then, the learning unit 104 performs machine learning using the operation data of the learning indoor unit, and generates the learning model 110 in which the result of the machine learning is reflected.
The learning unit 104 learns an evaporating temperature or a condensing temperature that does not cause intermittent operation of the learning indoor unit for a predetermined time. That is, the learning unit 104 learns the evaporating temperature or the condensing temperature that can match the air conditioning capacity of the learned indoor unit with the required air conditioning capacity of the learned indoor unit. When the air conditioner 400 is performing cooling operation, the learning unit 104 learns the evaporation temperature that allows the cooling capacity of the learned indoor unit to match the required cooling capacity of the learned indoor unit. When the air conditioner 400 is performing heating operation, the learning unit 104 learns the condensing temperature that allows the heating capacity of the learned indoor unit to match the required heating capacity of the learned indoor unit.
When the air conditioner 400 is performing cooling operation, the learning unit 104 calculates the set temperature of the air-conditioned space of the learning indoor unit, the measured temperature measured in the air-conditioned space of the learning indoor unit, and the temperature of the learning indoor unit. The relationship between the operating status value, the evaporating temperature measured by the learning indoor unit, the outside air temperature, the degree of superheat measured by the learning indoor unit, and the cooling capacity of the learning indoor unit is learned. More specifically, the learning unit 104 uses the operating data of the learning indoor unit to determine the input (set temperature, measured temperature, operating status value, evaporating temperature, outside temperature, degree of superheat) and output (cooling of the learning indoor unit). ability) is calculated. Then, the learning unit 104 accumulates the calculated correlation formula in the learning model 110 .
As will be described later, when the required cooling capacity of the representative indoor unit is given, the setting unit 105 sets the measured temperature, the set temperature, the operating status value, the evaporation temperature, the outside air temperature, the degree of superheat, and the required cooling capacity of the representative indoor unit. is applied to the learning model 110 (correlation formula), it is possible to derive the target evaporating temperature at which the cooling capacity of the representative indoor unit matches the required cooling capacity.
Further, when the air conditioner 400 is performing heating operation, the learning unit 104 determines the set temperature of the air-conditioned space of the learning indoor unit, the measured temperature measured in the air-conditioned space of the learning indoor unit, It learns the relationship between the operating status value of the machine, the condensing temperature measured by the learning indoor unit, the outside air temperature, the degree of subcooling measured by the learning indoor unit, and the heating capacity of the learning indoor unit. More specifically, the learning unit 104 uses the operating data of the learning indoor unit to obtain input (set temperature, measured temperature, operating status value, condensation temperature, outside air temperature, degree of supercooling) and output (learning indoor unit heating capacity). Then, the learning unit 104 accumulates the calculated correlation formula in the learning model 110 .
As will be described later, when the required heating capacity of the representative indoor unit is given, the setting unit 105 sets the measured temperature, the set temperature, the operating status value, the condensing temperature, the outside air temperature, the degree of subcooling, and the required heating capacity of the representative indoor unit. By applying the capacity to the learning model 110 (correlation formula), it is possible to derive the target condensing temperature at which the heating capacity of the representative indoor unit matches the required heating capacity.
 設定部105は、運転データ記憶部108から代表室内機の運転データを取得する。
 そして、設定部105は、代表室内機の運転データを学習モデル110に適用して、目標温度を設定する。
 設定部105は、空気調和機400が冷房運転を行っている場合は、目標温度として、目標蒸発温度を設定する。設定部105は、学習モデル110を用いて、既定時間の間代表室内機で間欠運転が発生しない蒸発温度の目標温度を目標蒸発温度として設定する。つまり、設定部105は、学習モデル110を用いて、既定時間の間代表室内機の冷房能力を代表室内機の要求冷房能力に一致させることができる蒸発温度の目標温度を目標蒸発温度として設定する。より具体的には、設定部105は、代表室内機の空気調和空間での設定温度と、代表室内機の空気調和空間で計測された計測温度と、稼動状況値と、代表室内機で計測された蒸発温度と、外気温度と、固定値の過熱度と、代表室内機の要求冷房能力とを学習モデル110(相関式)に適用して、目標蒸発温度を得る。
 一方、空気調和機400が暖房運転を行っている場合は、設定部105は、目標温度として、目標凝縮温度を設定する。設定部105は、学習モデル110を用いて、既定時間の間代表室内機で間欠運転が発生しない凝縮温度の目標温度を目標凝縮温度として設定する。つまり、設定部105は、学習モデル110を用いて、既定時間の間代表室内機の代表室内機の暖房能力を代表室内機の要求暖房能力に一致させることができる凝縮温度の目標温度を目標凝縮温度として設定する。より具体的には、設定部105は、代表室内機の空気調和空間での設定温度と、代表室内機の空気調和空間で計測された計測温度と、代表室内機の稼動状況値と、代表室内機で計測された凝縮温度と、外気温度と、固定値の過冷却度と、代表室内機の要求冷房能力とを学習モデル110に適用して、目標凝縮温度を得る。
 設定部105は、設定した目標温度(目標蒸発温度又は目標凝縮温度)と、固定値の過熱度(冷房運転の場合)又は固定値の過冷却度(暖房運転の場合)を算出部106に通知する。
The setting unit 105 acquires the operating data of the representative indoor unit from the operating data storage unit 108 .
Then, the setting unit 105 applies the operating data of the representative indoor unit to the learning model 110 to set the target temperature.
The setting unit 105 sets the target evaporation temperature as the target temperature when the air conditioner 400 is performing cooling operation. The setting unit 105 uses the learning model 110 to set, as the target evaporating temperature, a target evaporating temperature at which intermittent operation does not occur in the representative indoor unit for a predetermined time. That is, the setting unit 105 uses the learning model 110 to set the target evaporation temperature as the target evaporation temperature at which the cooling capacity of the representative indoor unit can match the required cooling capacity of the representative indoor unit for a predetermined time. . More specifically, the setting unit 105 determines the set temperature in the air-conditioned space of the representative indoor unit, the measured temperature measured in the air-conditioned space of the representative indoor unit, the operating status value, and the temperature measured in the representative indoor unit. The obtained evaporation temperature, the outside air temperature, the fixed degree of superheat, and the required cooling capacity of the representative indoor unit are applied to the learning model 110 (correlation formula) to obtain the target evaporation temperature.
On the other hand, when the air conditioner 400 is performing heating operation, the setting unit 105 sets the target condensing temperature as the target temperature. The setting unit 105 uses the learning model 110 to set, as the target condensation temperature, a target temperature at which intermittent operation does not occur in the representative indoor unit for a predetermined time. That is, the setting unit 105 uses the learning model 110 to set the target condensing temperature at which the heating capacity of the representative indoor unit matches the required heating capacity of the representative indoor unit for a predetermined time. Set as temperature. More specifically, the setting unit 105 determines the set temperature in the air-conditioned space of the representative indoor unit, the measured temperature measured in the air-conditioned space of the representative indoor unit, the operating status value of the representative indoor unit, and the The condensing temperature measured by the machine, the outside air temperature, the fixed degree of subcooling, and the required cooling capacity of the representative indoor unit are applied to the learning model 110 to obtain the target condensing temperature.
The setting unit 105 notifies the calculation unit 106 of the set target temperature (target evaporation temperature or target condensation temperature) and a fixed degree of superheat (in the case of cooling operation) or a fixed degree of supercooling (in the case of heating operation). do.
 算出部106は、代表室内機の過熱度(冷房運転の場合)又は過冷却度(暖房運転の場合)を、目標温度の設定に用いられた固定値の過熱度又は固定値の過冷却度に設定する。
 また、算出部106は、代表室内機以外の各室内機300の過熱度(冷房運転の場合)又は過冷却度(暖房運転の場合)を、目標温度(目標蒸発温度又は目標凝縮温度)に基づいて算出する。より具体的には、算出部106は、空気調和機400が冷房運転を行っている場合は、室内機300ごとに、各室内機300での蒸発温度を目標蒸発温度に一致させた場合に、既定時間の間各室内機300の冷房能力が当該室内機300の要求冷房能力と一致する過熱度を算出する。算出部106は、つまり、各室内機300で間欠運転が発生しない各室内機300の過熱度を算出する。また、算出部106は、空気調和機400が暖房運転を行っている場合は、室内機300ごとに、各室内機300での凝縮温度を目標凝縮温度に一致させた場合に、既定時間の間各室内機300の暖房能力が当該室内機300の要求暖房能力と一致する過冷却度を算出する。つまり、算出部106は、各室内機300で間欠運転が発生しない各室内機300の過冷却度を算出する。
The calculation unit 106 converts the degree of superheating (in the case of cooling operation) or the degree of supercooling (in the case of heating operation) of the representative indoor unit to the fixed degree of superheating or the fixed degree of supercooling used to set the target temperature. set.
Further, the calculation unit 106 calculates the degree of superheat (in the case of cooling operation) or the degree of supercooling (in the case of heating operation) of each indoor unit 300 other than the representative indoor unit based on the target temperature (target evaporating temperature or target condensing temperature). calculated by More specifically, when the air conditioner 400 is performing cooling operation, the calculation unit 106 matches the evaporation temperature of each indoor unit 300 with the target evaporation temperature. A degree of superheat at which the cooling capacity of each indoor unit 300 matches the required cooling capacity of the indoor unit 300 for a predetermined time is calculated. The calculation unit 106 calculates the degree of superheat of each indoor unit 300 in which intermittent operation does not occur in each indoor unit 300 . In addition, when the air conditioner 400 is performing the heating operation, the calculation unit 106 calculates, for each indoor unit 300, when the condensing temperature in each indoor unit 300 matches the target condensing temperature. The degree of supercooling at which the heating capacity of each indoor unit 300 matches the required heating capacity of the indoor unit 300 is calculated. That is, the calculation unit 106 calculates the degree of supercooling of each indoor unit 300 at which intermittent operation does not occur in each indoor unit 300 .
 制御部107は、空気調和機400が冷房運転を行っている場合は、目標蒸発温度と各室内機300の過熱度とに基づき制御目標値を生成する。そして、制御部107は、生成した制御目標値を室外機200と各室内機300に出力する。
 また、制御部107は、空気調和機400が暖房運転を行っている場合は、目標凝縮温度と各室内機300の過冷却度とに基づき制御目標値を生成する。そして、制御部107は、生成した制御目標値を室外機200と各室内機300に出力する。
 制御部107は、制御目標値の出力により、室外機200及び各室内機300の運転を制御する。
The control unit 107 generates a control target value based on the target evaporation temperature and the degree of superheat of each indoor unit 300 when the air conditioner 400 is performing cooling operation. Then, the control unit 107 outputs the generated control target value to the outdoor unit 200 and each indoor unit 300 .
Further, when the air conditioner 400 is performing heating operation, the control unit 107 generates a control target value based on the target condensing temperature and the degree of supercooling of each indoor unit 300 . Then, the control unit 107 outputs the generated control target value to the outdoor unit 200 and each indoor unit 300 .
The control unit 107 controls the operation of the outdoor unit 200 and each indoor unit 300 by outputting the control target value.
***動作の説明***
 次に、本実施の形態に係る制御装置100の動作例を説明する。
 先ず、図4及び図5を参照して、運用フェーズにおける制御装置100の動作例を説明する。
 図4及び図5のフローの開始時には、学習モデル110は生成済みであるとする。
 図4は、空気調和機400が冷房運転を行っている場合の制御装置100の動作例を示す。
 図5は、空気調和機400が暖房運転を行っている場合の制御装置100の動作例を示す。
***Description of operation***
Next, an operation example of the control device 100 according to this embodiment will be described.
First, an operation example of the control device 100 in the operation phase will be described with reference to FIGS. 4 and 5. FIG.
It is assumed that the learning model 110 has already been generated at the start of the flow of FIGS. 4 and 5 .
FIG. 4 shows an operation example of the control device 100 when the air conditioner 400 is performing cooling operation.
FIG. 5 shows an operation example of the control device 100 when the air conditioner 400 is performing heating operation.
 最初に、図4を参照して、冷房運転時の制御装置100の動作を説明する。 First, referring to FIG. 4, the operation of the control device 100 during cooling operation will be described.
 図4では、先ず、ステップS101において、収集部101が運転データを収集する。
 収集部101は、運転データとして、外気温、各空気調和空間での設定温度、各空気調和空間での計測温度、各室内機300の蒸発温度、各室内機300の過熱度、各室内機300の稼動状況値を取得する。収集部101は、設定温度、計測温度、過熱度及び稼動状況値を各室内機300から取得する。蒸発温度は、室外機200で一括して管理されている。このため、収集部101は、蒸発温度を室外機200から取得する。また、収集部101は、外気温も室外機200から取得する。
 収集部101は、収集した運転データを推定部102に出力する。
In FIG. 4, first, in step S101, the collection unit 101 collects driving data.
The collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the evaporation temperature of each indoor unit 300, the degree of superheat of each indoor unit 300, and the temperature of each indoor unit 300. Get the health status value of . The collection unit 101 acquires the set temperature, the measured temperature, the degree of superheat, and the operating status value from each indoor unit 300 . The evaporation temperature is collectively managed by the outdoor unit 200 . Therefore, the collection unit 101 acquires the evaporation temperature from the outdoor unit 200 . The collection unit 101 also acquires the outside air temperature from the outdoor unit 200 .
The collection unit 101 outputs the collected driving data to the estimation unit 102 .
 次に、ステップS102において、推定部102が各室内機300の要求冷房能力を推定する。
 推定部102は、例えば、以下の式(1)に従って、各室内機300の要求冷房能力L1[kW]を推定する。
 L1=(計測温度-ET-SH)×Thermo      式(1)
 ETは蒸発温度である。SHは過熱度である。Thermoは稼動状況値である。
 推定部102は、各室内機300の要求冷房能力L1を選択部103に通知する。
Next, in step S<b>102 , the estimation unit 102 estimates the required cooling capacity of each indoor unit 300 .
The estimation unit 102 estimates the required cooling capacity L1 [kW] of each indoor unit 300, for example, according to the following equation (1).
L1 = (measured temperature - ET - SH) x Thermo formula (1)
ET is the evaporation temperature. SH is the degree of superheat. Thermo is an operational status value.
The estimation unit 102 notifies the selection unit 103 of the required cooling capacity L1 of each indoor unit 300 .
 次に、ステップS103において、選択部103が代表室内機を選択する。
 具体的には、選択部103は、要求冷房能力L1が最大の室内機300を代表室内機として選択する。
 選択部103は、選択した代表室内機と、代表室内機の要求冷房能力L1とを設定部105に通知する。
 また、選択部103は、代表室内機以外の室内機300の要求冷房能力L1を算出部106に通知する。
Next, in step S103, the selection unit 103 selects a representative indoor unit.
Specifically, the selection unit 103 selects the indoor unit 300 with the maximum required cooling capacity L1 as the representative indoor unit.
The selecting unit 103 notifies the setting unit 105 of the selected representative indoor unit and the requested cooling capacity L1 of the representative indoor unit.
Further, the selection unit 103 notifies the calculation unit 106 of the required cooling capacity L1 of the indoor units 300 other than the representative indoor unit.
 次に、ステップS104において、設定部105が目標蒸発温度を設定する。
 設定部105は、運転データ記憶部108から、代表室内機の運転データを取得する。具体的には、設定部105は、運転データ記憶部108から、代表室内機の計測温度、設定温度、稼働状況値、外気温度及び蒸発温度を取得する。
 そして、設定部105は、運転データ記憶部108から取得した代表室内機の計測温度、設定温度、稼働状況値、外気温度及び蒸発温度と、固定値の過熱度と、代表室内機の要求冷房能力L1とを学習モデル110に適用して、目標蒸発温度を設定する。
 設定部105は、固定値の過熱度として、過熱度として許容される最小値(例えばSH=2K)を適用する。
 なお、設定部105により設定される目標蒸発温度は、既定時間の間代表室内機で間欠運転が発生しない最も高い蒸発温度、すなわち、代表室内機の冷房能力が要求冷房能力L1に不足しない最も高い蒸発温度である。つまり、目標蒸発温度は、代表室内機の冷房能力を要求冷房能力L1に一致させることができる蒸発温度の中で最も高い蒸発温度である。「代表室内機の冷房能力を要求冷房能力L1に一致させることができる」とは、代表室内機の空気調和空間での計測温度を代表室内機の空気調和空間での設定温度に一致させることを意味する。
 設定部105は、代表室内機の冷房能力を要求冷房能力L1に一致させることができる蒸発温度の中で最も高い蒸発温度を、学習モデル110の相関式を用いて特定し、特定した蒸発温度を目標蒸発温度に設定する。
 設定部105は、目標蒸発温度と固定値の過熱度(例えばSH=2K)を算出部106に通知する。
Next, in step S104, the setting unit 105 sets the target evaporation temperature.
The setting unit 105 acquires the operating data of the representative indoor unit from the operating data storage unit 108 . Specifically, the setting unit 105 acquires the measured temperature, the set temperature, the operating status value, the outside air temperature, and the evaporating temperature of the representative indoor unit from the operation data storage unit 108 .
Then, the setting unit 105 acquires the measured temperature, the set temperature, the operating status value, the outside temperature, and the evaporation temperature of the representative indoor unit acquired from the operation data storage unit 108, the degree of superheat of the fixed value, and the required cooling capacity of the representative indoor unit. and L1 are applied to the learning model 110 to set the target evaporating temperature.
The setting unit 105 applies the minimum allowable superheating degree (for example, SH=2K) as the fixed value of the superheating degree.
The target evaporating temperature set by the setting unit 105 is the highest evaporating temperature at which intermittent operation does not occur in the representative indoor unit for a predetermined time, that is, the highest evaporating temperature at which the cooling capacity of the representative indoor unit does not fall short of the required cooling capacity L1. is the evaporation temperature. That is, the target evaporating temperature is the highest evaporating temperature among the evaporating temperatures at which the cooling capacity of the representative indoor unit can be matched with the required cooling capacity L1. "The cooling capacity of the representative indoor unit can be matched with the required cooling capacity L1" means matching the measured temperature in the air-conditioned space of the representative indoor unit with the set temperature in the air-conditioned space of the representative indoor unit. means.
The setting unit 105 uses the correlation equation of the learning model 110 to identify the highest evaporating temperature among the evaporating temperatures that allow the cooling capacity of the representative indoor unit to match the required cooling capacity L1, and sets the identified evaporating temperature to Set the target evaporation temperature.
The setting unit 105 notifies the calculation unit 106 of the target evaporation temperature and the fixed superheat degree (for example, SH=2K).
 次に、ステップS105において、算出部106が、代表室内機の目標過熱度を設定する。
 具体的には、算出部106は、設定部105から通知された固定値の過熱度を、代表室内機の目標過熱度に設定する。
Next, in step S105, the calculation unit 106 sets the target degree of superheat of the representative indoor unit.
Specifically, the calculation unit 106 sets the degree of superheat of the fixed value notified from the setting unit 105 as the target degree of superheat of the representative indoor unit.
 次に、ステップS106において、算出部106は、代表室内機以外の各室内機300の過熱度を、上述の式(1)に従って算出する。
 具体的には、算出部106は、式(1)のL1に、選択部103から通知された各室内機300の要求冷房能力L1を設定する。また、算出部106は、式(1)の計測温度には、各室内機300の空気調和空間で計測された計測温度を設定する。また、算出部106は、式(1)のETには、設定部105から通知された目標蒸発温度を設定する。また、算出部106は、式(1)のThermoには、各室内機300で共通に値1(Thermo=1)を設定する。そして、算出部106は、式(1)の右辺と左辺とを一致させるSHを目標過熱度として算出する。なお、算出部106は、運転データ記憶部108から各室内機300の計測温度を取得する。
 算出部106により算出される目標過熱度は、各室内機300での蒸発温度を目標蒸発温度に一致させた場合に、既定時間の間各室内機300で間欠運転が発生しない過熱度、すなわち、各室内機300の冷房能力を各室内機300の要求冷房能力L1に一致させることができる過熱度である。「各室内機300の冷房能力を各室内機300の要求冷房能力L1に一致させる」とは、各室内機300の空気調和空間での計測温度を各室内機300の空気調和空間での設定温度に一致させることを意味する。
 算出部106は、目標蒸発温度と、代表室内機を含む各室内機300の目標過熱度を制御部107に通知する。
Next, in step S106, the calculation unit 106 calculates the degree of superheat of each indoor unit 300 other than the representative indoor unit according to the above equation (1).
Specifically, the calculation unit 106 sets the required cooling capacity L1 of each indoor unit 300 notified from the selection unit 103 to L1 in Equation (1). Further, the calculation unit 106 sets the measured temperature measured in the air-conditioned space of each indoor unit 300 as the measured temperature in Equation (1). Further, the calculation unit 106 sets the target evaporation temperature notified from the setting unit 105 to ET in the formula (1). Further, the calculation unit 106 sets Thermo in Equation (1) to a value of 1 (Thermo=1) in common among the indoor units 300 . Calculation unit 106 then calculates SH that makes the right side and left side of Equation (1) match as the target degree of superheat. Note that the calculation unit 106 acquires the measured temperature of each indoor unit 300 from the operating data storage unit 108 .
The target degree of superheat calculated by the calculation unit 106 is the degree of superheat at which intermittent operation does not occur in each indoor unit 300 for a predetermined time when the evaporation temperature in each indoor unit 300 is matched with the target evaporation temperature, that is, It is the degree of superheat that allows the cooling capacity of each indoor unit 300 to match the required cooling capacity L1 of each indoor unit 300 . "Matching the cooling capacity of each indoor unit 300 with the required cooling capacity L1 of each indoor unit 300" means that the measured temperature in the air-conditioned space of each indoor unit 300 is set to the set temperature in the air-conditioned space of each indoor unit 300. means to match
The calculation unit 106 notifies the control unit 107 of the target evaporation temperature and the target degree of superheat of each indoor unit 300 including the representative indoor unit.
 次に、ステップS107において、制御部107が制御指示を生成する。
 制御部107は、目標蒸発温度に基づき、圧縮機の運転回転数を決定する。圧縮機の運転回転数は室外機200で調整される。
 また、制御部107は、室内機300ごとに、各室内機300の目標過熱度に基づき、室内膨張弁の開度を決定する。室内膨張弁の開度は室内機300ごとに異なる値である。室内膨張弁の開度は各室内機300で調整される。
 制御部107は、決定した圧縮機の運転回転数が示される室外機200への制御指示を生成する。また、制御部107は、決定した室内膨張弁の開度が示される各室内機300への制御指示を生成する。
Next, in step S107, the control unit 107 generates a control instruction.
The control unit 107 determines the operating speed of the compressor based on the target evaporation temperature. The operating speed of the compressor is adjusted by the outdoor unit 200 .
Also, the control unit 107 determines the degree of opening of the indoor expansion valve for each indoor unit 300 based on the target degree of superheat of each indoor unit 300 . The opening degree of the indoor expansion valve is a different value for each indoor unit 300 . The degree of opening of the indoor expansion valve is adjusted by each indoor unit 300 .
The control unit 107 generates a control instruction to the outdoor unit 200 indicating the determined operating rotation speed of the compressor. Further, the control unit 107 generates a control instruction to each indoor unit 300 indicating the determined degree of opening of the indoor expansion valve.
 次に、制御部107は、室外機200及び各室内機300に、各々の制御指示を出力する。
 室外機200及び各室内機300が制御指示に従って動作することにより、室外機200及び複数の室内機300の運転が制御される。
 つまり、制御部107は、制御指示を出力することで、各室内機300の冷房能力を各室内機300の要求冷房能力に一致させることができ、各室内機300で間欠運転が発生しない。
Next, the control unit 107 outputs respective control instructions to the outdoor unit 200 and each indoor unit 300 .
The operation of the outdoor unit 200 and the plurality of indoor units 300 is controlled by the outdoor unit 200 and the indoor units 300 operating according to the control instructions.
That is, the control unit 107 can match the cooling capacity of each indoor unit 300 with the required cooling capacity of each indoor unit 300 by outputting the control instruction, and the intermittent operation of each indoor unit 300 does not occur.
 次に、図5を参照して、暖房運転時の制御装置100の動作を説明する。 Next, the operation of the control device 100 during heating operation will be described with reference to FIG.
 図5では、先ず、ステップS201において、収集部101が運転データを収集する。
 収集部101は、運転データとして、外気温、各空気調和空間での設定温度、各空気調和空間での計測温度、各室内機300の凝縮温度、各室内機300の過冷却度、各室内機300の稼動状況値を取得する。収集部101は、設定温度、計測温度、過冷却度及び稼動状況値を各室内機300から取得する。凝縮温度は、室外機200で一括して管理されている。このため、収集部101は、凝縮温度を室外機200から取得する。また、収集部101は、外気温も室外機200から取得する。
 収集部101は、収集した運転データを推定部102に出力する。
In FIG. 5, first, in step S201, the collection unit 101 collects driving data.
The collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the condensation temperature of each indoor unit 300, the degree of supercooling of each indoor unit 300, each indoor unit 300 operating status values are obtained. The collection unit 101 acquires the set temperature, the measured temperature, the degree of supercooling, and the operating status value from each indoor unit 300 . The condensation temperature is collectively managed by the outdoor unit 200 . Therefore, the collection unit 101 acquires the condensation temperature from the outdoor unit 200 . The collection unit 101 also acquires the outside air temperature from the outdoor unit 200 .
The collection unit 101 outputs the collected driving data to the estimation unit 102 .
 次に、ステップS202において、推定部102が各室内機300の要求暖房能力を推定する。
 推定部102は、例えば、以下の式(2)に従って、各室内機300の要求暖房能力L2[kW]を推定する。
 L2=(CT-SC-室内温度)×Thermo      式(2)
 CTは凝縮温度である。SCは過冷却度である。Thermoは稼動状況値である。
 推定部102は、各室内機300の要求暖房能力L2を選択部103に通知する。
Next, in step S<b>202 , the estimation unit 102 estimates the required heating capacity of each indoor unit 300 .
The estimation unit 102 estimates the required heating capacity L2 [kW] of each indoor unit 300, for example, according to the following equation (2).
L2 = (CT-SC-room temperature) x Thermo formula (2)
CT is the condensation temperature. SC is the degree of supercooling. Thermo is an operational status value.
The estimation unit 102 notifies the selection unit 103 of the required heating capacity L2 of each indoor unit 300 .
 次に、ステップS203において、選択部103が代表室内機を選択する。
 具体的には、選択部103は、要求暖房能力L2が最大の室内機300を代表室内機として選択する。
 選択部103は、選択した代表室内機と、代表室内機の要求暖房能力L2とを設定部105に通知する。
 また、選択部103は、代表室内機以外の室内機300の要求暖房能力L2を算出部106に通知する。
Next, in step S203, the selection unit 103 selects a representative indoor unit.
Specifically, the selection unit 103 selects the indoor unit 300 with the maximum required heating capacity L2 as the representative indoor unit.
The selecting unit 103 notifies the setting unit 105 of the selected representative indoor unit and the requested heating capacity L2 of the representative indoor unit.
Further, the selection unit 103 notifies the calculation unit 106 of the required heating capacity L2 of the indoor units 300 other than the representative indoor unit.
 次に、ステップS204において、設定部105が目標凝縮温度を設定する。
 設定部105は、運転データ記憶部108から、代表室内機の運転データを取得する。具体的には、設定部105は、運転データ記憶部108から、代表室内機の計測温度、設定温度、稼働状況値、外気温度及び凝縮温度を取得する。
 そして、設定部105は、運転データ記憶部108から取得した代表室内機の計測温度、設定温度、稼働状況値、外気温度及び凝縮温度と、固定値の過冷却度と、代表室内機の要求暖房能力L2とを学習モデル110に適用して、目標凝縮温度を設定する。
 設定部105は、固定値の過冷却度として、過冷却度として許容される最小値(例えばSC=5K)を適用する。
 なお、設定部105により設定される目標凝縮温度は、既定時間の間代表室内機で間欠運転が発生しない最も低い凝縮温度、すなわち、代表室内機の暖房能力が要求暖房能力L2に不足しない最も低い凝縮温度である。つまり、目標凝縮温度は、代表室内機の暖房能力を要求暖房能力L2に一致させることができる凝縮温度の中で最も低い凝縮温度である。「代表室内機の暖房能力を要求暖房能力L2に一致させることができる」とは、代表室内機の空気調和空間での計測温度を代表室内機の空気調和空間での設定温度に一致させることを意味する。
 設定部105は、代表室内機の暖房能力を要求暖房能力L2に一致させることができる凝縮温度の中で最も低い凝縮温度を、学習モデル110の相関式を用いて特定し、特定した凝縮温度を目標凝縮温度に設定する。
 設定部105は、目標凝縮温度と固定値の過冷却度(例えばSC=5K)を算出部106に通知する。
Next, in step S204, the setting unit 105 sets the target condensing temperature.
The setting unit 105 acquires the operating data of the representative indoor unit from the operating data storage unit 108 . Specifically, the setting unit 105 acquires the measured temperature, set temperature, operating status value, outside air temperature, and condensing temperature of the representative indoor unit from the operation data storage unit 108 .
Then, the setting unit 105 acquires the measured temperature, the set temperature, the operating status value, the outside air temperature, and the condensing temperature of the representative indoor unit acquired from the operation data storage unit 108, the degree of subcooling of the fixed value, and the required heating of the representative indoor unit. L2 and L2 are applied to the learning model 110 to set the target condensing temperature.
The setting unit 105 applies the minimum allowable degree of supercooling (for example, SC=5K) as the fixed value of the degree of supercooling.
Note that the target condensing temperature set by the setting unit 105 is the lowest condensing temperature at which intermittent operation does not occur in the representative indoor unit for a predetermined time, that is, the lowest temperature at which the heating capacity of the representative indoor unit does not fall short of the required heating capacity L2. is the condensation temperature. That is, the target condensing temperature is the lowest condensing temperature among the condensing temperatures that allow the heating capacity of the representative indoor unit to match the required heating capacity L2. "The heating capacity of the representative indoor unit can be matched with the required heating capacity L2" means matching the measured temperature in the air-conditioned space of the representative indoor unit with the set temperature in the air-conditioned space of the representative indoor unit. means.
The setting unit 105 uses the correlation equation of the learning model 110 to identify the lowest condensation temperature among the condensation temperatures that allow the heating capacity of the representative indoor unit to match the required heating capacity L2, and sets the identified condensation temperature to Set target condensing temperature.
The setting unit 105 notifies the calculation unit 106 of the target condensing temperature and a fixed degree of supercooling (for example, SC=5K).
 次に、ステップS205において、算出部106が、代表室内機の目標過冷却度を設定する。
 具体的には、算出部106は、設定部105から通知された固定値の過冷却度を、代表室内機の目標過冷却度に設定する。
Next, in step S205, the calculation unit 106 sets the target degree of supercooling of the representative indoor unit.
Specifically, the calculation unit 106 sets the degree of supercooling of the fixed value notified from the setting unit 105 as the target degree of supercooling of the representative indoor unit.
 次に、ステップS206において、算出部106は、代表室内機以外の各室内機300の過冷却度を、上述の式(2)に従って算出する。
 具体的には、算出部106は、式(2)のL2に、選択部103から通知された各室内機300の要求暖房能力L2を設定する。また、算出部106は、式(2)の計測温度には、各室内機300の空気調和空間で計測された計測温度を設定する。また、算出部106は、式(2)のCTには、設定部105から通知された目標凝縮温度を設定する。また、算出部106は、式(2)のThermoには、各室内機300で共通に値1(Thermo=1)を設定する。そして、算出部106は、式(2)の右辺と左辺とを一致させるSCを目標過冷却度として算出する。なお、算出部106は、運転データ記憶部108から各室内機300の計測温度を取得する。
 算出部106により算出される目標過冷却度は、各室内機300での凝縮温度を目標凝縮温度に一致させた場合に、既定時間の間各室内機300で間欠運転が発生しない過冷却度、すなわち、各室内機300の暖房能力を各室内機300の要求暖房能力L2に一致させることができる過冷却度である。「各室内機300の暖房能力を各室内機300の要求暖房能力L2に一致させる」とは、各室内機300の空気調和空間での計測温度を各室内機300の空気調和空間での設定温度に一致させることを意味する。
 算出部106は、目標凝縮温度と、代表室内機を含む各室内機300の目標過冷却度を制御部107に通知する。
Next, in step S206, the calculation unit 106 calculates the degree of supercooling of each indoor unit 300 other than the representative indoor unit according to the above equation (2).
Specifically, the calculation unit 106 sets the required heating capacity L2 of each indoor unit 300 notified from the selection unit 103 to L2 of the equation (2). In addition, the calculation unit 106 sets the measured temperature measured in the air-conditioned space of each indoor unit 300 as the measured temperature in Equation (2). Further, the calculation unit 106 sets the target condensing temperature notified from the setting unit 105 to CT in Equation (2). Further, the calculation unit 106 sets Thermo in Equation (2) to a value of 1 (Thermo=1) in common among the indoor units 300 . Calculation unit 106 then calculates SC that matches the right side and left side of equation (2) as the target degree of supercooling. Note that the calculation unit 106 acquires the measured temperature of each indoor unit 300 from the operating data storage unit 108 .
The target supercooling degree calculated by the calculating unit 106 is the degree of supercooling that does not cause intermittent operation in each indoor unit 300 for a predetermined time when the condensation temperature in each indoor unit 300 is matched with the target condensation temperature. That is, it is the degree of subcooling that allows the heating capacity of each indoor unit 300 to match the required heating capacity L2 of each indoor unit 300 . "Match the heating capacity of each indoor unit 300 with the required heating capacity L2 of each indoor unit 300" means that the measured temperature in the air-conditioned space of each indoor unit 300 is set to the set temperature in the air-conditioned space of each indoor unit 300. means to match
The calculation unit 106 notifies the control unit 107 of the target condensation temperature and the target supercooling degree of each indoor unit 300 including the representative indoor unit.
 次に、ステップS207において、制御部107が制御指示を生成する。
 制御部107は、目標蒸発温度に基づき、圧縮機の運転回転数を決定する。圧縮機の運転回転数は室外機200で調整される。
 また、制御部107は、室内機300ごとに、各室内機300の目標過冷却度に基づき、室内膨張弁の開度を決定する。室内膨張弁の開度は室内機300ごとに異なる値である。室内膨張弁の開度は各室内機300で調整される。
 制御部107は、決定した圧縮機の運転回転数が示される室外機200への制御指示を生成する。また、制御部107は、決定した室内膨張弁の開度が示される各室内機300への制御指示を生成する。
Next, in step S207, the control unit 107 generates a control instruction.
The control unit 107 determines the operating speed of the compressor based on the target evaporation temperature. The operating speed of the compressor is adjusted by the outdoor unit 200 .
Also, the control unit 107 determines the degree of opening of the indoor expansion valve for each indoor unit 300 based on the target degree of subcooling of each indoor unit 300 . The opening degree of the indoor expansion valve is a different value for each indoor unit 300 . The degree of opening of the indoor expansion valve is adjusted by each indoor unit 300 .
The control unit 107 generates a control instruction to the outdoor unit 200 indicating the determined operating rotation speed of the compressor. Further, the control unit 107 generates a control instruction to each indoor unit 300 indicating the determined degree of opening of the indoor expansion valve.
 次に、制御部107は、室外機200及び各室内機300に、各々の制御指示を出力する。
 室外機200及び各室内機300が制御指示に従って動作することにより、室外機200及び複数の室内機300の運転が制御される。
 つまり、制御部107は、制御指示を出力することで、各室内機300の暖房能力を各室内機300の要求暖房能力に一致させることができ、各室内機300で間欠運転が発生しない。
Next, the control unit 107 outputs respective control instructions to the outdoor unit 200 and each indoor unit 300 .
The operation of the outdoor unit 200 and the plurality of indoor units 300 is controlled by the outdoor unit 200 and the indoor units 300 operating according to the control instructions.
That is, the control unit 107 can match the heating capacity of each indoor unit 300 with the required heating capacity of each indoor unit 300 by outputting the control instruction, and the intermittent operation of each indoor unit 300 does not occur.
 次に、図6及び図7を参照して、学習フェーズにおける制御装置100の動作例を説明する。
 制御装置100は、例えば、1か月の期間を学習フェーズの期間とし、1ヶ月の間、図6又は図7のフローを繰り返す。
 図6は、空気調和機400が冷房運転を行っている場合の制御装置100の動作例を示す。
 図7は、空気調和機400が暖房運転を行っている場合の制御装置100の動作例を示す。
Next, an operation example of the control device 100 in the learning phase will be described with reference to FIGS. 6 and 7. FIG.
For example, the control device 100 sets a period of one month as the period of the learning phase, and repeats the flow of FIG. 6 or 7 for one month.
FIG. 6 shows an operation example of the control device 100 when the air conditioner 400 is performing cooling operation.
FIG. 7 shows an operation example of the control device 100 when the air conditioner 400 is performing heating operation.
 最初に、図6を参照して、冷房運転時の制御装置100の動作を説明する。 First, referring to FIG. 6, the operation of the control device 100 during cooling operation will be described.
 図6では、先ず、ステップS301において、収集部101が運転データを収集する。
 収集部101は、運転データとして、外気温、各空気調和空間での設定温度、各空気調和空間での計測温度、各室内機300の蒸発温度、各室内機300の過熱度、各室内機300の稼動状況値を取得する。
 なお、学習フェーズでは、室外機200は、蒸発温度をランダムに変化させる。また、各室内機300は、過熱度を最小値(例えばSH=2K)に固定する。
 収集部101は、収集した運転データを推定部102に出力する。
In FIG. 6, first, in step S301, the collection unit 101 collects driving data.
The collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the evaporation temperature of each indoor unit 300, the degree of superheat of each indoor unit 300, and the temperature of each indoor unit 300. Get the health status value of .
In the learning phase, the outdoor unit 200 randomly changes the evaporation temperature. Also, each indoor unit 300 fixes the degree of superheat to a minimum value (for example, SH=2K).
The collection unit 101 outputs the collected driving data to the estimation unit 102 .
 次に、ステップS302において、推定部102が各室内機300の要求冷房能力を推定する。
 推定部102は、前述の式(1)に従って、各室内機300の要求冷房能力L1を推定する。
 なお、前述したように、学習フェーズでは、室外機200が蒸発温度をランダムに変化させているので、推定部102は、蒸発温度ごとに、式(1)に従って、各室内機300の要求冷房能力L1を推定する。
 推定部102は、蒸発温度ごとの各室内機300の要求冷房能力L1を選択部103に通知する。
Next, in step S<b>302 , the estimation unit 102 estimates the required cooling capacity of each indoor unit 300 .
The estimating unit 102 estimates the required cooling capacity L1 of each indoor unit 300 according to Equation (1) described above.
As described above, in the learning phase, the outdoor unit 200 randomly changes the evaporating temperature. Estimate L1.
The estimation unit 102 notifies the selection unit 103 of the required cooling capacity L1 of each indoor unit 300 for each evaporation temperature.
 次に、ステップS303において、選択部103が学習室内機を選択する。
 具体的には、選択部103は、推定部102から通知された要求冷房能力L1の中で最大の要求冷房能力L1の室内機300を学習室内機として選択する。
 選択部103は、選択した学習室内機を学習部104に通知する。
Next, in step S303, the selection unit 103 selects the learning indoor unit.
Specifically, the selecting unit 103 selects the indoor unit 300 with the maximum required cooling capacity L1 among the required cooling capacities L1 notified from the estimating unit 102 as the learning indoor unit.
The selection unit 103 notifies the learning unit 104 of the selected learning indoor unit.
 次に、ステップS304において、学習部104が固定値の過熱度を設定する。
 具体的には、学習部104は、最小値(例えばSH=2K)の過熱度を設定する。
Next, in step S304, the learning unit 104 sets a fixed degree of superheat.
Specifically, the learning unit 104 sets the degree of superheat to a minimum value (for example, SH=2K).
 次に、ステップS305において、学習部104が機械学習を行う。
 学習部104は、学習室内機の運転データ及びステップS304で設定された固定値の過熱度を用いて、学習室内機で間欠運転が発生しない最も高い蒸発温度、すなわち、学習室内機の冷房能力を最大の要求冷房能力L1に一致させることができる蒸発温度の中で最も高い蒸発温度を学習する。「学習室内機の冷房能力を最大の要求冷房能力L1に一致させることができる」とは、学習室内機が最大の要求冷房能力L1で運転する場合に、学習室内機の空気調和空間での計測温度を学習室内機の空気調和空間での設定温度に一致させることを意味する。
 前述したように、学習部104は、機械学習として、学習室内機の運転データを用いて、入力(設定温度、計測温度、稼動状況値、蒸発温度、外気温度、過熱度)と出力(学習室内機の冷房能力)との相関式を算出する。
 学習部104は、教師あり学習及び教師なし学習のいずれを行ってもよい。
Next, in step S305, the learning unit 104 performs machine learning.
The learning unit 104 uses the operating data of the learning indoor unit and the fixed superheat degree set in step S304 to determine the highest evaporating temperature at which intermittent operation does not occur in the learning indoor unit, that is, the cooling capacity of the learning indoor unit. The highest evaporating temperature among the evaporating temperatures that can match the maximum required cooling capacity L1 is learned. "The cooling capacity of the learning indoor unit can match the maximum required cooling capacity L1" means that when the learning indoor unit is operated at the maximum required cooling capacity L1, the measurement in the air-conditioned space of the learning indoor unit It means matching the temperature with the set temperature in the air-conditioned space of the learning indoor unit.
As described above, the learning unit 104 uses the operating data of the learning indoor unit as machine learning to obtain input (set temperature, measured temperature, operation status value, evaporation temperature, outside temperature, degree of superheat) and output (learning indoor unit (air conditioner cooling capacity).
The learning unit 104 may perform either supervised learning or unsupervised learning.
 最後に、ステップS306において、学習部104は、ステップS305で行った機械学習の結果が反映される学習モデル110を生成する。 Finally, in step S306, the learning unit 104 generates the learning model 110 that reflects the results of the machine learning performed in step S305.
 次に、図7を参照して、暖房運転時の制御装置100の動作を説明する。 Next, the operation of the control device 100 during heating operation will be described with reference to FIG.
 図7では、先ず、ステップS401において、収集部101が運転データを収集する。
 収集部101は、運転データとして、外気温、各空気調和空間での設定温度、各空気調和空間での計測温度、各室内機300の凝縮温度、各室内機300の過冷却度、各室内機300の稼動状況値を取得する。
 なお、学習フェーズでは、室外機200は、凝縮温度をランダムに変化させる。また、各室内機300は、過冷却度を最小値(例えばSC=5K)に固定する。
 収集部101は、収集した運転データを推定部102に出力する。
In FIG. 7, first, in step S401, the collection unit 101 collects driving data.
The collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the condensation temperature of each indoor unit 300, the degree of supercooling of each indoor unit 300, each indoor unit 300 operating status values are obtained.
In the learning phase, the outdoor unit 200 randomly changes the condensation temperature. Also, each indoor unit 300 fixes the degree of supercooling to a minimum value (for example, SC=5K).
The collection unit 101 outputs the collected driving data to the estimation unit 102 .
 次に、ステップS402において、推定部102が各室内機300の要求暖房能力を推定する。
 推定部102は、前述の式(2)に従って、各室内機300の要求暖房能力L2を推定する。
 なお、前述したように、学習フェーズでは、室外機200が凝縮温度をランダムに変化させているので、推定部102は、凝縮温度ごとに、式(2)に従って、各室内機300の要求暖房能力L2を推定する。
 推定部102は、凝縮温度ごとの各室内機300の要求暖房能力L2を選択部103に通知する。
Next, in step S<b>402 , the estimation unit 102 estimates the required heating capacity of each indoor unit 300 .
The estimation unit 102 estimates the required heating capacity L2 of each indoor unit 300 according to the above equation (2).
As described above, in the learning phase, the outdoor unit 200 randomly changes the condensing temperature. Estimate L2.
The estimation unit 102 notifies the selection unit 103 of the required heating capacity L2 of each indoor unit 300 for each condensation temperature.
 次に、ステップS403において、選択部103が学習室内機を選択する。
 具体的には、選択部103は、推定部102から通知された要求暖房能力L2の中で最大の要求暖房能力L2の室内機300を学習室内機として選択する。
 選択部103は、選択した学習室内機を学習部104に通知する。
Next, in step S403, the selection unit 103 selects the learning indoor unit.
Specifically, the selecting unit 103 selects the indoor unit 300 with the maximum required heating capacity L2 among the required heating capacities L2 notified from the estimating unit 102 as the learning indoor unit.
The selection unit 103 notifies the learning unit 104 of the selected learning indoor unit.
 次に、ステップS404において、学習部104が固定値の過冷却度を設定する。
 具体的には、学習部104は、最小値(例えばSC=5K)の過冷却度を設定する。
Next, in step S404, the learning unit 104 sets a fixed degree of supercooling.
Specifically, the learning unit 104 sets the degree of supercooling to a minimum value (for example, SC=5K).
 次に、ステップS405において、学習部104が機械学習を行う。
 学習部104は、学習室内機の運転データ及びステップS404で設定された固定値の過冷却度を用いて、学習室内機で間欠運転が発生しない最も低い凝縮温度、すなわち、学習室内機の暖房能力を最大の要求暖房能力L2に一致させることができる凝縮温度の中で最も低い凝縮温度を学習する。「学習室内機の暖房能力を最大の要求暖房能力L2に一致させることができる」とは、学習室内機が最大の要求暖房能力L2で運転する場合に、学習室内機の空気調和空間での計測温度を学習室内機の空気調和空間での設定温度に一致させることを意味する。
 前述したように、学習部104は、機械学習として、学習室内機の運転データを用いて、入力(設定温度、計測温度、稼動状況値、凝縮温度、外気温度、過冷却度)と出力(学習室内機の暖房能力)との相関式を算出する。
 学習部104は、教師あり学習及び教師なし学習のいずれを行ってもよい。
Next, in step S405, the learning unit 104 performs machine learning.
The learning unit 104 uses the operating data of the learning indoor unit and the fixed value of supercooling degree set in step S404 to determine the lowest condensing temperature at which intermittent operation does not occur in the learning indoor unit, that is, the heating capacity of the learning indoor unit. is the lowest condensing temperature among the condensing temperatures that can match the maximum required heating capacity L2. "The heating capacity of the learning indoor unit can be matched to the maximum required heating capacity L2" means that when the learning indoor unit is operated at the maximum required heating capacity L2, the measurement in the air conditioning space of the learning indoor unit It means matching the temperature with the set temperature in the air-conditioned space of the learning indoor unit.
As described above, as machine learning, the learning unit 104 uses the operating data of the learning indoor unit to obtain input (set temperature, measured temperature, operation status value, condensing temperature, outside air temperature, degree of supercooling) and output (learning Calculate the correlation with the heating capacity of the indoor unit).
The learning unit 104 may perform either supervised learning or unsupervised learning.
 最後に、ステップS406において、学習部104は、ステップS405で行った機械学習の結果が反映される学習モデル110を生成する。 Finally, in step S406, the learning unit 104 generates the learning model 110 that reflects the results of the machine learning performed in step S405.
***実施の形態の効果の説明***
 以上のように、本実施の形態では、学習モデルを用いることで早期に適切な目標温度(蒸発温度又は凝縮温度)を設定する。また、本実施の形態では、設定した目標温度に基づいて、各室内機で間欠運転を発生させない適切な過熱度又は過冷却度を室内機ごとに算出する。
 このため、本実施の形態によれば、各室内機での間欠運転の発生を防止し、運転効率の低下を防止することができる。また、各室内機での間欠運転の発生が防止されるため、室温変動が抑制され、快適性が向上する。
***Description of the effect of the embodiment***
As described above, in the present embodiment, an appropriate target temperature (evaporating temperature or condensing temperature) is set early by using a learning model. Further, in the present embodiment, an appropriate degree of superheating or supercooling that does not cause intermittent operation in each indoor unit is calculated for each indoor unit based on the set target temperature.
Therefore, according to the present embodiment, it is possible to prevent the occurrence of intermittent operation in each indoor unit and prevent the deterioration of the operating efficiency. In addition, since intermittent operation of each indoor unit is prevented, fluctuations in room temperature are suppressed and comfort is improved.
 また、本実施の形態によれば、冷房能力不足を発生させない適正な蒸発温度で室内機を運転させることが可能である。
 同様に、本実施の形態によれば、暖房能力不足を発生させない適正な凝縮温度で室内機を運転させることが可能である。
 このため、本実施の形態によれば、快適性を維持しながら省エネルギー化を実現することができる。
Further, according to the present embodiment, it is possible to operate the indoor unit at an appropriate evaporation temperature that does not cause insufficient cooling capacity.
Similarly, according to the present embodiment, it is possible to operate the indoor unit at an appropriate condensation temperature that does not cause insufficient heating capacity.
Therefore, according to the present embodiment, it is possible to save energy while maintaining comfort.
 また、本実施の形態では、要求冷房能力又は要求暖房能力が最大の室内機である学習室内機のパラメータのみを用いて機械学習を行う。このため、本実施の形態によれば、機械学習を短時間で終えることができる。 Also, in the present embodiment, machine learning is performed using only the parameters of the learning indoor unit, which is the indoor unit with the maximum required cooling capacity or required heating capacity. Therefore, according to this embodiment, machine learning can be completed in a short time.
実施の形態2.
 実施の形態1では、設定部105が、固定値の過熱度(例えば、SH=2K)を学習モデル110に適用して目標蒸発温度を設定する。そして、算出部106は、固定値の過熱度を代表室内機の目標過熱度に設定する。また、実施の形態1では、設定部105が、固定値の過冷却度(例えば、SC=5K)を学習モデル110に適用して目標凝縮温度を設定する。そして、算出部106は、固定値の過冷却度を代表室内機の目標冷却度に設定する。
 本実施の形態では、設定部105が、学習モデル110を用いて、目標蒸発温度の導出とともに、代表室内機の目標過熱度として適切な過熱度を導出する例を説明する。また、本実施の形態では、設定部105が、学習モデル110を用いて、目標凝縮温度の導出とともに、代表室内機の目標過冷却度として適切な過冷却度を導出する例を説明する。
Embodiment 2.
In Embodiment 1, the setting unit 105 sets the target evaporation temperature by applying a fixed value of the degree of superheat (for example, SH=2K) to the learning model 110 . Then, the calculation unit 106 sets the degree of superheat of the fixed value as the target degree of superheat of the representative indoor unit. Further, in Embodiment 1, the setting unit 105 applies a fixed degree of supercooling (for example, SC=5K) to the learning model 110 to set the target condensing temperature. Then, the calculation unit 106 sets the fixed value of the subcooling degree as the target cooling degree of the representative indoor unit.
In the present embodiment, an example will be described in which setting unit 105 uses learning model 110 to derive a target evaporating temperature and an appropriate degree of superheat as the target degree of superheat of the representative indoor unit. Further, in the present embodiment, an example will be described in which the setting unit 105 uses the learning model 110 to derive the target condensing temperature and an appropriate supercooling degree as the target supercooling degree of the representative indoor unit.
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
In this embodiment, differences from the first embodiment will be mainly described.
Matters not described below are the same as those in the first embodiment.
***構成の説明***
 本実施の形態に係る空気調和システム500の構成例は、図1に示す通りである。
 また、本実施の形態に係る制御装置100の機能構成例は、図2に示す通りである。但し、以下に示すように、学習部104、設定部105及び算出部106の動作が実施の形態1とは異なる。
 本実施の形態に係る制御装置100のハードウェア構成例は、図3に示す通りである。
*** Configuration description ***
A configuration example of an air conditioning system 500 according to the present embodiment is as shown in FIG.
FIG. 2 shows an example of the functional configuration of the control device 100 according to this embodiment. However, as described below, the operations of the learning unit 104, the setting unit 105, and the calculation unit 106 are different from those in the first embodiment.
A hardware configuration example of the control device 100 according to the present embodiment is as shown in FIG.
***動作の説明***
 図8及び図9は、本実施の形態に係る制御装置100の運用フェーズにおける動作例を示す。
 図8は、空気調和機400が冷房運転を行っている場合の制御装置100の動作例を示す。図8は、実施の形態1で示した図4に対応する。
 図9は、空気調和機400が暖房運転を行っている場合の制御装置100の動作例を示す。図9は、実施の形態1で示した図5に対応する。
***Description of operation***
8 and 9 show an operation example in the operation phase of the control device 100 according to this embodiment.
FIG. 8 shows an operation example of the control device 100 when the air conditioner 400 is performing cooling operation. FIG. 8 corresponds to FIG. 4 shown in the first embodiment.
FIG. 9 shows an operation example of the control device 100 when the air conditioner 400 is performing heating operation. FIG. 9 corresponds to FIG. 5 shown in the first embodiment.
 最初に、図8を参照して、冷房運転時の制御装置100の動作を説明する。 First, referring to FIG. 8, the operation of the control device 100 during cooling operation will be described.
 図8において、ステップS101~S103は、図4に示したものと同じである。このため、説明を省略する。  Steps S101 to S103 in FIG. 8 are the same as those shown in FIG. Therefore, the description is omitted.
 ステップS115では、設定部105が目標蒸発温度と代表室内機の目標過熱度を設定する。
 設定部105は、運転データ記憶部108から、代表室内機の運転データを取得する。具体的には、学習部104は、運転データ記憶部108から、代表室内機の計測温度、設定温度、稼働状況値、外気温度及び蒸発温度を取得する。
 そして、設定部105は、運転データ記憶部108から取得した代表室内機の計測温度、設定温度、稼働状況値、外気温度及び蒸発温度と、代表室内機の要求冷房能力L1とを学習モデル110に適用して、目標蒸発温度と代表室内機の目標過熱度を設定する。
 ステップS115で設定される目標蒸発温度と目標過熱度は、既定時間の間代表室内機の冷房能力を要求冷房能力L1に一致させることができ、更に、代表室内機の消費電力を最小にできる蒸発温度と過熱度の中で最適な蒸発温度と過熱度との組み合わせである。つまり、ステップS115で設定される目標蒸発温度と目標過熱度は、このような条件を満たす、最も高い蒸発温度と最も高い過熱度との組み合わせである。
 設定部105は、設定した目標蒸発温度と代表室内機の目標過熱度を算出部106に通知する。
In step S115, the setting unit 105 sets the target evaporation temperature and the target degree of superheat of the representative indoor unit.
The setting unit 105 acquires the operating data of the representative indoor unit from the operating data storage unit 108 . Specifically, the learning unit 104 acquires the measured temperature, set temperature, operating status value, outside air temperature, and evaporating temperature of the representative indoor unit from the operating data storage unit 108 .
Then, the setting unit 105 stores the measured temperature, set temperature, operating status value, outside temperature, and evaporation temperature of the representative indoor unit acquired from the operation data storage unit 108, and the required cooling capacity L1 of the representative indoor unit in the learning model 110. Apply to set the target evaporating temperature and the target superheat of the representative indoor unit.
The target evaporating temperature and target degree of superheat set in step S115 allow the cooling capacity of the representative indoor unit to match the required cooling capacity L1 for a predetermined period of time, and further minimize the power consumption of the representative indoor unit. It is the combination of the optimum evaporation temperature and superheating temperature and superheating degree. That is, the target evaporating temperature and target degree of superheat set in step S115 are a combination of the highest evaporating temperature and the highest degree of superheat that satisfy these conditions.
The setting unit 105 notifies the calculation unit 106 of the set target evaporation temperature and the target superheat degree of the representative indoor unit.
 ステップS106~S108は、図4に示したものと同じである。このため、説明を省略する。 Steps S106 to S108 are the same as those shown in FIG. Therefore, the description is omitted.
 次に、図9を参照して、暖房運転時の制御装置100の動作を説明する。 Next, the operation of the control device 100 during heating operation will be described with reference to FIG.
 図9において、ステップS201~S203は、図5に示したものと同じである。このため、説明を省略する。  Steps S201 to S203 in FIG. 9 are the same as those shown in FIG. Therefore, the description is omitted.
 ステップS215では、設定部105が目標凝縮温度と代表室内機の目標過冷却度を設定する。
 設定部105は、運転データ記憶部108から、代表室内機の運転データを取得する。具体的には、学習部104は、運転データ記憶部108から、代表室内機の計測温度、設定温度、稼働状況値、外気温度及び凝縮温度を取得する。
 そして、設定部105は、運転データ記憶部108から取得した代表室内機の計測温度、設定温度、稼働状況値、外気温度及び凝縮温度と、代表室内機の要求暖房能力L2とを学習モデル110に適用して、目標凝縮温度と代表室内機の目標過冷却度を設定する。
 ステップS215で設定される目標凝縮温度と目標過冷却度は、既定時間の間代表室内機の暖房能力を要求暖房能力L2に一致させることができ、更に、代表室内機の消費電力を最小にできる凝縮温度と過冷却度の中で最適な凝縮温度と過冷却度との組み合わせである。つまり、ステップS215で設定される目標凝縮温度と目標過冷却度は、このような条件を満たす、最も高い凝縮温度と最も高い過冷却度との組み合わせである。
 設定部105は、設定した目標凝縮温度と代表室内機の目標過冷却度を算出部106に通知する。
In step S215, the setting unit 105 sets the target condensation temperature and the target supercooling degree of the representative indoor unit.
The setting unit 105 acquires the operating data of the representative indoor unit from the operating data storage unit 108 . Specifically, the learning unit 104 acquires the measured temperature, set temperature, operating status value, outside air temperature, and condensing temperature of the representative indoor unit from the operating data storage unit 108 .
Then, the setting unit 105 stores the measured temperature, the set temperature, the operating status value, the outside temperature, and the condensation temperature of the representative indoor unit acquired from the operation data storage unit 108, and the required heating capacity L2 of the representative indoor unit in the learning model 110. Apply to set the target condensing temperature and the target subcooling degree of the representative indoor unit.
The target condensing temperature and the target supercooling degree set in step S215 can match the heating capacity of the representative indoor unit with the required heating capacity L2 for a predetermined time, and furthermore, can minimize the power consumption of the representative indoor unit. It is the optimum combination of the condensation temperature and the degree of supercooling among the condensation temperature and the degree of supercooling. That is, the target condensing temperature and the target supercooling degree set in step S215 are a combination of the highest condensing temperature and the highest supercooling degree that satisfy these conditions.
The setting unit 105 notifies the calculation unit 106 of the set target condensation temperature and the target degree of subcooling of the representative indoor unit.
 ステップS206~S208は、図5に示したものと同じである。このため、説明を省略する。 Steps S206 to S208 are the same as those shown in FIG. Therefore, the description is omitted.
 次に、図10及び図11を参照して、本実施の形態に係る制御装置100の学習フェーズにおける動作例を説明する。
 本実施の形態でも、制御装置100は、例えば、1か月の期間を学習フェーズの期間とし、1ヶ月の間、図10又は図11のフローを繰り返す。
 図10は、空気調和機400が冷房運転を行っている場合の制御装置100の動作例を示す。
 図11は、空気調和機400が暖房運転を行っている場合の制御装置100の動作例を示す。
Next, an operation example in the learning phase of control device 100 according to the present embodiment will be described with reference to FIGS. 10 and 11. FIG.
In this embodiment as well, the control device 100 repeats the flow of FIG. 10 or 11 for one month, for example, with a period of one month as the period of the learning phase.
FIG. 10 shows an operation example of the control device 100 when the air conditioner 400 is performing cooling operation.
FIG. 11 shows an operation example of the control device 100 when the air conditioner 400 is performing heating operation.
 最初に、図10を参照して、冷房運転時の制御装置100の動作を説明する。 First, referring to FIG. 10, the operation of the control device 100 during cooling operation will be described.
 図10において、ステップS311では、収集部101が運転データを収集する。
 収集部101は、運転データとして、外気温、各空気調和空間での設定温度、各空気調和空間での計測温度、各室内機300の蒸発温度、各室内機300の過熱度、各室内機300の稼動状況値、各室内機300の消費電力値を取得する。
 図6のステップS301と異なり、ステップS311では、収集部101は、各室内機300の消費電力値も取得する。
 また、ステップS311では、室外機200は蒸発温度をランダムに変化させ、また、各室内機300は過熱度をランダムに変化させる。図6のステップS301では、各室内機300は過熱度を最小値(例えばSH=2K)に固定していたが、ステップS311では、各室内機300は過熱度をランダムに変化させる。
 収集部101は、収集した運転データを推定部102に出力する。
In FIG. 10, in step S311, the collection unit 101 collects driving data.
The collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the evaporation temperature of each indoor unit 300, the degree of superheat of each indoor unit 300, and the temperature of each indoor unit 300. and the power consumption value of each indoor unit 300 are acquired.
Unlike step S301 in FIG. 6, the collection unit 101 also acquires the power consumption value of each indoor unit 300 in step S311.
In step S311, the outdoor unit 200 randomly changes the evaporation temperature, and each indoor unit 300 randomly changes the degree of superheat. In step S301 of FIG. 6, each indoor unit 300 fixes the degree of superheat to the minimum value (for example, SH=2K), but in step S311, each indoor unit 300 randomly changes the degree of superheat.
The collection unit 101 outputs the collected driving data to the estimation unit 102 .
 次に、ステップS312において、推定部102が各室内機300の要求冷房能力を推定する。
 推定部102は、前述の式(1)に従って、各室内機300の要求冷房能力L1を推定する。
 なお、前述したように、学習フェーズでは、室外機200が蒸発温度をランダムに変化させ、各室内機300が過熱度をランダムに変化させているので、推定部102は、蒸発温度と過熱度の組み合わせごとに、各室内機300の要求冷房能力L1を推定する。
 推定部102は、蒸発温度と過熱度の組み合わせごとの各室内機300の要求冷房能力L1を選択部103に通知する。
Next, in step S<b>312 , the estimation unit 102 estimates the required cooling capacity of each indoor unit 300 .
The estimating unit 102 estimates the required cooling capacity L1 of each indoor unit 300 according to Equation (1) described above.
As described above, in the learning phase, the outdoor unit 200 randomly changes the evaporating temperature, and each indoor unit 300 randomly changes the degree of superheat. The required cooling capacity L1 of each indoor unit 300 is estimated for each combination.
The estimation unit 102 notifies the selection unit 103 of the required cooling capacity L1 of each indoor unit 300 for each combination of the evaporation temperature and the degree of superheat.
 ステップS303は、図6に示すものと同じである。このため、説明を省略する。  Step S303 is the same as that shown in FIG. Therefore, the description is omitted.
 次に、ステップS315において、学習部104が機械学習を行う。
 学習部104は、学習室内機の運転データを用いて、学習室内機の冷房能力を最大の要求冷房能力L1に一致させることができ、更に、学習室内機の消費電力を最小にできる蒸発温度と過熱度の中で最適な蒸発温度と過熱度の組み合わせを学習する。つまり、学習部104は、このような条件を満たす、最も高い蒸発温度と最も高い過熱度との組み合わせを学習する。
 学習部104は、教師あり学習及び教師なし学習のいずれを行ってもよい。
Next, in step S315, the learning unit 104 performs machine learning.
The learning unit 104 uses the operation data of the learned indoor unit to match the cooling capacity of the learned indoor unit with the maximum required cooling capacity L1, and furthermore, the evaporation temperature that can minimize the power consumption of the learned indoor unit. Learn the optimum combination of evaporation temperature and degree of superheat within the degree of superheat. That is, the learning unit 104 learns the combination of the highest evaporation temperature and the highest degree of superheat that satisfy such conditions.
The learning unit 104 may perform either supervised learning or unsupervised learning.
 ステップS306は、図6に示すものと同じである。このため、説明を省略する。  Step S306 is the same as that shown in FIG. Therefore, the description is omitted.
 次に、図11を参照して、暖房運転時の制御装置100の動作を説明する。 Next, the operation of the control device 100 during heating operation will be described with reference to FIG.
 図11において、ステップS411では、収集部101が運転データを収集する。
 収集部101は、運転データとして、外気温、各空気調和空間での設定温度、各空気調和空間での計測温度、各室内機300の凝縮温度、各室内機300の過冷却度、各室内機300の稼動状況値、各室内機300の消費電力値を取得する。
 図7のステップS401と異なり、ステップS411では、収集部101は、各室内機300の消費電力値も取得する。
 また、ステップS411では、室外機200は凝縮温度をランダムに変化させ、また、各室内機300は過冷却度をランダムに変化させる。図7のステップS401では、各室内機300は過冷却度を最小値(例えばSC=5K)に固定していたが、ステップS411では、各室内機300は過冷却度をランダムに変化させる。
 収集部101は、収集した運転データを推定部102に出力する。
In FIG. 11, in step S411, the collection unit 101 collects driving data.
The collection unit 101 collects, as operating data, the outside air temperature, the set temperature in each air-conditioned space, the measured temperature in each air-conditioned space, the condensation temperature of each indoor unit 300, the degree of supercooling of each indoor unit 300, each indoor unit 300 and the power consumption value of each indoor unit 300 are acquired.
Unlike step S401 in FIG. 7, the collection unit 101 also acquires the power consumption value of each indoor unit 300 in step S411.
In step S411, the outdoor unit 200 randomly changes the condensation temperature, and each indoor unit 300 randomly changes the supercooling degree. In step S401 of FIG. 7, each indoor unit 300 fixes the degree of supercooling to the minimum value (for example, SC=5K), but in step S411, each indoor unit 300 randomly changes the degree of supercooling.
The collection unit 101 outputs the collected driving data to the estimation unit 102 .
 次に、ステップS412において、推定部102が各室内機300の要求暖房能力を推定する。
 推定部102は、前述の式(2)に従って、各室内機300の要求暖房能力L2を推定する。
 なお、前述したように、学習フェーズでは、室外機200が凝縮温度をランダムに変化させ、各室内機300が過冷却度をランダムに変化させているので、推定部102は、凝縮温度と過冷却度の組み合わせごとに、各室内機300の要求暖房能力L2を推定する。
 推定部102は、凝縮温度と過冷却度の組み合わせごとの各室内機300の要求暖房能力L2を選択部103に通知する。
Next, in step S<b>412 , the estimation unit 102 estimates the required heating capacity of each indoor unit 300 .
The estimation unit 102 estimates the required heating capacity L2 of each indoor unit 300 according to the above equation (2).
As described above, in the learning phase, the outdoor unit 200 randomly changes the condensing temperature, and each indoor unit 300 randomly changes the degree of supercooling. The required heating capacity L2 of each indoor unit 300 is estimated for each combination of degrees.
The estimation unit 102 notifies the selection unit 103 of the required heating capacity L2 of each indoor unit 300 for each combination of the condensation temperature and the degree of supercooling.
 ステップS403は、図7に示すものと同じである。このため、説明を省略する。  Step S403 is the same as that shown in FIG. Therefore, the description is omitted.
 次に、ステップS415において、学習部104が機械学習を行う。
 学習部104は、学習室内機の運転データを用いて、学習室内機の暖房能力を最大の要求暖房能力L2に一致させることができ、更に、学習室内機の消費電力を最小にできる凝縮温度と過冷却度の中で最適な凝縮温度と過冷却度の組み合わせを学習する。つまり、学習部104は、このような条件を満たす、最も高い凝縮温度と最も高い過冷却度との組み合わせを学習する。
 学習部104は、教師あり学習及び教師なし学習のいずれを行ってもよい。
Next, in step S415, the learning unit 104 performs machine learning.
The learning unit 104 uses the operation data of the learning indoor unit to match the heating capacity of the learning indoor unit to the maximum required heating capacity L2, and furthermore, the condensing temperature that can minimize the power consumption of the learning indoor unit. Learn the optimum combination of condensing temperature and degree of supercooling among degrees of supercooling. That is, the learning unit 104 learns the combination of the highest condensing temperature and the highest degree of supercooling that satisfy such conditions.
The learning unit 104 may perform either supervised learning or unsupervised learning.
 ステップS406は、図7に示すものと同じである。このため、説明を省略する。  Step S406 is the same as that shown in FIG. Therefore, the description is omitted.
***実施の形態の効果の説明***
 本実施の形態によれば、代表室内機の目標過熱度を適切な過熱度に設定することができる。同様に、本実施の形態によれば、代表室内機の目標過冷却度を適切な過冷却度に設定することができる。
 また、本実施の形態によれば、各室内機の消費電力を抑制することができる。
***Description of the effect of the embodiment***
According to this embodiment, the target degree of superheat of the representative indoor unit can be set to an appropriate degree of superheat. Similarly, according to the present embodiment, the target degree of supercooling of the representative indoor unit can be set to an appropriate degree of supercooling.
Moreover, according to this embodiment, the power consumption of each indoor unit can be suppressed.
実施の形態3.
 実施の形態1及び実施の形態2では、式(1)に従って要求冷房能力L1が算出される例を説明した。また、実施の形態1及び実施の形態2では、式(2)に従って要求暖房能力L2が算出される例を説明した。
 しかし、式(1)の代わりに、他の式を用いて要求冷房能力L1を算出してもよい。また、式(2)の代わりに、他の式を用いて要求暖房能力L2を算出してもよい。
 本実施の形態では、式(1)及び式(2)以外の式を用いる例を説明する。
Embodiment 3.
In Embodiments 1 and 2, the example in which the required cooling capacity L1 is calculated according to the formula (1) has been described. Further, in Embodiments 1 and 2, the example in which the required heating capacity L2 is calculated according to the equation (2) has been described.
However, the required cooling capacity L1 may be calculated using another formula instead of the formula (1). Moreover, the required heating capacity L2 may be calculated using another formula instead of the formula (2).
In this embodiment, an example using formulas other than formulas (1) and (2) will be described.
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
In this embodiment, differences from the first embodiment will be mainly described.
Matters not described below are the same as those in the first embodiment.
***構成の説明***
 本実施の形態に係る空気調和システム500の構成例は、図1に示す通りである。
 また、本実施の形態に係る制御装置100の機能構成例は、図2に示す通りである。但し、以下に示すように、推定部102、学習部104及び算出部106の動作が実施の形態1とは異なる。
 本実施の形態に係る制御装置100のハードウェア構成例は、図3に示す通りである。
*** Configuration description ***
A configuration example of an air conditioning system 500 according to the present embodiment is as shown in FIG.
FIG. 2 shows an example of the functional configuration of the control device 100 according to this embodiment. However, as described below, the operations of the estimation unit 102, the learning unit 104, and the calculation unit 106 are different from those in the first embodiment.
A hardware configuration example of the control device 100 according to the present embodiment is as shown in FIG.
***動作の説明***
 本実施の形態においても、制御装置100は、運用フェーズの動作として、図4及び図5に示す動作を行う。
***Description of operation***
Also in this embodiment, the control device 100 performs the operations shown in FIGS. 4 and 5 as operations in the operation phase.
 最初に、図4を参照して、冷房運転時の制御装置100の動作を説明する。 First, referring to FIG. 4, the operation of the control device 100 during cooling operation will be described.
 ステップS101において、収集部101は、運転データを収集する。本実施の形態では、収集部101は、実施の形態1で収集する値に追加して後述する値を収集する。 In step S101, the collection unit 101 collects driving data. In the present embodiment, the collecting unit 101 collects values described later in addition to the values collected in the first embodiment.
 また、本実施の形態では、推定部102は、ステップS102において、以下の式(3)及び式(4)に従って、各室内機300の要求冷房能力L1[kW]を推定する。
 L1=(heo-hei)×Gr             式(3)
 Gr=7.59×10-4×Cv×((Ph-Ps)×ρl×1000)0.5
                             式(4)
Also, in the present embodiment, the estimation unit 102 estimates the required cooling capacity L1 [kW] of each indoor unit 300 in accordance with the following equations (3) and (4) in step S102.
L1 = (heo-hei) × Gr formula (3)
Gr = 7.59 × 10 -4 × Cv × ((Ph-Ps) × ρl × 1000) 0.5
Formula (4)
 ここで、式(3)のhei[kJ/kg]は、室内機300の蒸発器の入口のエンタルピである。また、式(3)のheo[kJ/kg]は、室内機300の蒸発器の出口のエンタルピである。heiは室外機200の凝縮器の出口温度から決定される。heoは室外機200の凝縮器の出口温度とPsから決定される。
 また、式(3)のGr[kg/s]は、室内機300を流れる冷媒の量である。Grは式(4)で算出することができる。
 式(4)において、Ph[MPa]は、高圧圧力値(圧縮機での冷媒の吐出圧力値)である。Ps[MPa]は、低圧圧力値(圧縮機での冷媒の吸入圧力値)である。Cvは、流体の流れ易さを表す指標である。Cvは、室内機膨張弁開度Li[Pulse]から求めることができる。LiとCvの関係は膨張弁によって決まっている。制御装置100は、LiとCvの関係を示すデータを予めデータベースとして保持しているものとする。
 式(4)のρlは、膨張弁入口の冷媒の密度である。ρlは、室外機200の凝縮器の出口温度から決定される。
 収集部101は、実施の形態1で示した値に加えて、Ph、Ps、Li及び凝縮器の出口温度を運転データとして収集する。
 推定部102は、運転データとして得られた凝縮器の出口温度から式(3)のheiを算出する。また、推定部102は、運転データとして得られた凝縮器の出口温度とPsからheoを算出する。また、推定部102は、運転データとして得られたLiとデータベースのデータとを用いて、式(4)のCvを求める。また、推定部102は、運転データとして得られた凝縮器の出口温度から式(4)のρlを算出する。
 そして、推定部102は、式(4)に従って、Grを算出する。更に、推定部102は、算出したGrとheiとheoとから、式(3)に従って、要求冷房能力L1を算出する。
Here, hei [kJ/kg] in equation (3) is the enthalpy at the inlet of the evaporator of the indoor unit 300 . In addition, heo [kJ/kg] in equation (3) is the enthalpy at the outlet of the evaporator of the indoor unit 300 . hei is determined from the outlet temperature of the condenser of the outdoor unit 200 . heo is determined from the outlet temperature of the condenser of the outdoor unit 200 and Ps.
Also, Gr [kg/s] in Equation (3) is the amount of refrigerant flowing through the indoor unit 300 . Gr can be calculated by Equation (4).
In Equation (4), Ph [MPa] is the high pressure value (the refrigerant discharge pressure value in the compressor). Ps [MPa] is the low pressure value (refrigerant suction pressure value in the compressor). Cv is an index representing the ease of fluid flow. Cv can be obtained from the indoor unit expansion valve opening Li [Pulse]. The relationship between Li and Cv is determined by the expansion valve. It is assumed that the control device 100 holds data indicating the relationship between Li and Cv in advance as a database.
ρl in equation (4) is the density of the refrigerant at the inlet of the expansion valve. ρl is determined from the outlet temperature of the condenser of the outdoor unit 200 .
The collection unit 101 collects Ph, Ps, Li, and the outlet temperature of the condenser as operating data in addition to the values shown in the first embodiment.
The estimating unit 102 calculates hei in Equation (3) from the outlet temperature of the condenser obtained as the operating data. The estimating unit 102 also calculates heo from the condenser outlet temperature and Ps obtained as the operating data. Also, the estimating unit 102 obtains Cv in Equation (4) using Li obtained as the operating data and data in the database. The estimating unit 102 also calculates ρl in Equation (4) from the outlet temperature of the condenser obtained as the operating data.
Estimating section 102 then calculates Gr according to equation (4). Further, estimation unit 102 calculates required cooling capacity L1 from calculated Gr, hei, and heo according to equation (3).
 図4のステップS103~ステップS105は、実施の形態1に示したものと同様である。このため、説明を省略する。 Steps S103 to S105 in FIG. 4 are the same as those shown in the first embodiment. Therefore, the description is omitted.
 ステップS106では、算出部106が、代表室内機以外の各室内機300の過熱度を、実施の形態1で示した式(1)に従って算出する。
 なお、本実施の形態では、式(1)のL1に設定する値は、ステップS102において式(3)に従って算出されたL1の値である。
 式(1)の他の値については、実施の形態1で示したものと同じである。
In step S106, the calculation unit 106 calculates the degree of superheat of each indoor unit 300 other than the representative indoor unit according to the formula (1) shown in the first embodiment.
In this embodiment, the value set for L1 in Equation (1) is the value of L1 calculated according to Equation (3) in step S102.
Other values of formula (1) are the same as those shown in the first embodiment.
 図4のステップS107及びステップS108は、実施の形態1に示したものと同様である。このため、説明を省略する。 Steps S107 and S108 in FIG. 4 are the same as those shown in the first embodiment. Therefore, the description is omitted.
 次に、図5を参照して、暖房運転時の制御装置100の動作を説明する。 Next, the operation of the control device 100 during heating operation will be described with reference to FIG.
 ステップS201において、収集部101は、運転データを収集する。本実施の形態では、収集部101は、実施の形態1で収集する値に追加して後述する値を収集する。 In step S201, the collection unit 101 collects driving data. In the present embodiment, the collecting unit 101 collects values described later in addition to the values collected in the first embodiment.
 また、本実施の形態では、推定部102は、ステップS202において、以下の式(5)及び式(6)に従って、各室内機300の要求暖房能力L2[kW]を推定する。
 L2=(hco-hci)×Gr             式(5)
 Gr=7.59×10-4×Cv×((Ph-Ps)×ρl×1000)0.5
                             式(6)
In the present embodiment, estimation unit 102 estimates required heating capacity L2 [kW] of each indoor unit 300 in step S202 according to the following equations (5) and (6).
L2 = (hco-hci) × Gr Formula (5)
Gr = 7.59 × 10 -4 × Cv × ((Ph-Ps) × ρl × 1000) 0.5
Formula (6)
 ここで、式(5)のhci[kJ/kg]は、室内機300の凝縮器の入口のエンタルピである。また、式(5)のhco[kJ/kg]は、室内機300の凝縮器の出口のエンタルピである。hciは室外機200の蒸発器の入口温度とPhから決定される。hcoは室外機200の蒸発器の入口温度から決定される。
 また、式(5)のGr[kg/s]は、室内機300を流れる冷媒の量である。Grは式(6)で算出することができる。式(6)のρlは、室外機200の蒸発器の入口温度から決定される。式(6)の他の値は式(4)のものと同じである。
 収集部101は、実施の形態1で示した値に加えて、Ph、Ps、Li及び蒸発器の入口温度を運転データとして収集する。
 推定部102は、運転データとして得られた蒸発器の入口温度とPhから式(5)のhciを算出する。また、推定部102は、運転データとして得られた蒸発器の入口温度からhcoを算出する。また、推定部102は、運転データとして得られたLiとデータベースのデータとを用いて、式(6)のCvを求める。また、推定部102は、運転データとして得られた蒸発器の入口温度から式(6)のρlを算出する。
 そして、推定部102は、式(6)に従って、Grを算出する。更に、推定部102は、算出したGrとhciとhcoとから、式(5)に従って、要求暖房能力L2を算出する。
Here, hci [kJ/kg] in equation (5) is the inlet enthalpy of the condenser of the indoor unit 300 . Also, hco [kJ/kg] in equation (5) is the enthalpy at the outlet of the condenser of the indoor unit 300 . hci is determined from the inlet temperature of the evaporator of the outdoor unit 200 and Ph. hco is determined from the inlet temperature of the evaporator of the outdoor unit 200 .
In addition, Gr [kg/s] in Equation (5) is the amount of refrigerant flowing through indoor unit 300 . Gr can be calculated by Equation (6). ρl in equation (6) is determined from the inlet temperature of the evaporator of the outdoor unit 200 . Other values in equation (6) are the same as in equation (4).
The collection unit 101 collects Ph, Ps, Li, and the inlet temperature of the evaporator as operation data in addition to the values shown in the first embodiment.
The estimation unit 102 calculates hci in Equation (5) from the evaporator inlet temperature and Ph obtained as the operating data. The estimating unit 102 also calculates hco from the inlet temperature of the evaporator obtained as the operating data. Also, the estimating unit 102 obtains Cv in Equation (6) using Li obtained as the operating data and data in the database. The estimating unit 102 also calculates ρl in Equation (6) from the evaporator inlet temperature obtained as the operating data.
Estimating section 102 then calculates Gr according to equation (6). Further, estimation unit 102 calculates requested heating capacity L2 from calculated Gr, hci, and hco according to equation (5).
 図5のステップS203~ステップS205は、実施の形態1に示したものと同様である。このため、説明を省略する。 Steps S203 to S205 in FIG. 5 are the same as those shown in the first embodiment. Therefore, the description is omitted.
 ステップS206では、算出部106が、代表室内機以外の各室内機300の過冷却度を、実施の形態1で示した式(2)に従って算出する。
 なお、本実施の形態では、式(2)のL2に設定する値は、ステップS202において式(5)に従って算出されたL2の値である。
 式(2)の他の値については、実施の形態1で示したものと同じである。
In step S206, the calculation unit 106 calculates the degree of supercooling of each indoor unit 300 other than the representative indoor unit according to the formula (2) shown in the first embodiment.
Note that in the present embodiment, the value set for L2 in Equation (2) is the value of L2 calculated according to Equation (5) in step S202.
Other values of formula (2) are the same as those shown in the first embodiment.
 図5のステップS207及びステップS208は、実施の形態1に示したものと同様である。このため、説明を省略する。 Steps S207 and S208 in FIG. 5 are the same as those shown in the first embodiment. Therefore, the description is omitted.
 本実施の形態においても、制御装置100は、学習フェーズの動作として、図6及び図7に示す動作を行う。 Also in this embodiment, the control device 100 performs the operations shown in FIGS. 6 and 7 as operations in the learning phase.
 最初に、図6を参照して、冷房運転時の制御装置100の動作を説明する。 First, referring to FIG. 6, the operation of the control device 100 during cooling operation will be described.
 ステップS301において、収集部101は、運転データを収集する。収集部101は、本実施の形態でのステップS101で収集するものと同じ運転データを収集する。 In step S301, the collection unit 101 collects driving data. The collection unit 101 collects the same driving data as that collected in step S101 in this embodiment.
 また、ステップS302において、推定部102は、蒸発温度ごとに、式(3)に従って、各室内機300の要求冷房能力L1を推定する。
 ステップS303以降の動作は、実施の形態1に示したもとの同じである。このため、説明を省略する。
Also, in step S302, the estimation unit 102 estimates the required cooling capacity L1 of each indoor unit 300 for each evaporating temperature according to Equation (3).
The operations after step S303 are the same as those shown in the first embodiment. Therefore, the description is omitted.
 次に、図7を参照して、暖房運転時の制御装置100の動作を説明する。 Next, the operation of the control device 100 during heating operation will be described with reference to FIG.
 ステップS401において、収集部101は、運転データを収集する。収集部101は、本実施の形態でのステップS201で収集するものと同じ運転データを収集する。 In step S401, the collection unit 101 collects driving data. The collection unit 101 collects the same driving data as that collected in step S201 in this embodiment.
 また、ステップS402において、推定部102は、凝縮温度ごとに、式(2)に従って、各室内機300の要求暖房能力L2を推定する。
 ステップS403以降の動作は、実施の形態1に示したもとの同じである。このため、説明を省略する。
Also, in step S402, the estimation unit 102 estimates the required heating capacity L2 of each indoor unit 300 according to the equation (2) for each condensing temperature.
The operations after step S403 are the same as those shown in the first embodiment. Therefore, the description is omitted.
***実施の形態の効果の説明***
 本実施の形態では、式(1)に代えて式(3)及び式(4)を用いて要求冷房能力L1を算出する。式(3)及び式(4)を用いることで、式(1)を用いる場合よりも正確に要求冷房能力L1を算出することができる。同様に、本実施の形態では、式(2)に代えて式(5)及び式(6)を用いて要求暖房能力L2を算出する。式(5)及び式(6)を用いることで、式(2)を用いる場合よりも正確に要求暖房能力L2を算出することができる。
 このため、本実施の形態によれば、実施の形態1に比べて、より緻密に各室内機300を制御することができる。
***Description of the effect of the embodiment***
In the present embodiment, required cooling capacity L1 is calculated using equations (3) and (4) instead of equation (1). By using equations (3) and (4), the required cooling capacity L1 can be calculated more accurately than when using equation (1). Similarly, in the present embodiment, required heating capacity L2 is calculated using equations (5) and (6) instead of equation (2). By using the equations (5) and (6), the required heating capacity L2 can be calculated more accurately than when using the equation (2).
Therefore, according to the present embodiment, each indoor unit 300 can be controlled more precisely than in the first embodiment.
 以上、実施の形態1~3を説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。
 あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。
 あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。
 また、これらの実施の形態に記載された構成及び手順を必要に応じて変更してもよい。
Although the first to third embodiments have been described above, two or more of these embodiments may be combined for implementation.
Alternatively, one of these embodiments may be partially implemented.
Alternatively, two or more of these embodiments may be partially combined for implementation.
Also, the configurations and procedures described in these embodiments may be changed as necessary.
***ハードウェア構成の補足説明***
 最後に、制御装置100のハードウェア構成の補足説明を行う。
 図3に示すプロセッサ901は、プロセッシングを行うIC(Integrated Circuit)である。
 プロセッサ901は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)等である。
 図3に示す主記憶装置902は、RAM(Random Access Memory)である。
 図3に示す補助記憶装置903は、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等である。
 図3に示す通信装置904は、データの通信処理を実行する電子回路である。
 通信装置904は、例えば、通信チップ又はNIC(Network Interface Card)である。
 入出力装置905は、キーボード、マウス、ディスプレイ等である。
*** Supplementary explanation of hardware configuration ***
Finally, a supplementary description of the hardware configuration of the control device 100 will be given.
A processor 901 shown in FIG. 3 is an IC (Integrated Circuit) that performs processing.
The processor 901 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
The main memory device 902 shown in FIG. 3 is a RAM (Random Access Memory).
The auxiliary storage device 903 shown in FIG. 3 is a ROM (Read Only Memory), flash memory, HDD (Hard Disk Drive), or the like.
The communication device 904 shown in FIG. 3 is an electronic circuit that performs data communication processing.
The communication device 904 is, for example, a communication chip or a NIC (Network Interface Card).
The input/output device 905 is a keyboard, mouse, display, and the like.
 また、補助記憶装置903には、OS(Operating System)も記憶されている。
 そして、OSの少なくとも一部がプロセッサ901により実行される。
 プロセッサ901はOSの少なくとも一部を実行しながら、収集部101、推定部102、選択部103、学習部104、設定部105、算出部106及び制御部107の機能を実現するプログラムを実行する。
 プロセッサ901がOSを実行することで、タスク管理、メモリ管理、ファイル管理、通信制御等が行われる。
 また、収集部101、推定部102、選択部103、学習部104、設定部105、算出部106及び制御部107の処理の結果を示す情報、データ、信号値及び変数値の少なくともいずれかが、主記憶装置902、補助記憶装置903、プロセッサ901内のレジスタ及びキャッシュメモリの少なくともいずれかに記憶される。
 また、収集部101、推定部102、選択部103、学習部104、設定部105、算出部106及び制御部107の機能を実現するプログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記録媒体に格納されていてもよい。そして、収集部101、推定部102、選択部103、学習部104、設定部105、算出部106及び制御部107の機能を実現するプログラムが格納された可搬記録媒体を流通させてもよい。
The auxiliary storage device 903 also stores an OS (Operating System).
At least part of the OS is executed by the processor 901 .
The processor 901 executes a program that implements the functions of the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107 while executing at least part of the OS.
Task management, memory management, file management, communication control, and the like are performed by the processor 901 executing the OS.
In addition, at least one of information, data, signal values, and variable values indicating the processing results of the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107, It is stored in at least one of a main memory device 902, an auxiliary memory device 903, a register in the processor 901, and a cache memory.
Also, a program that implements the functions of the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107 can be a magnetic disk, a flexible disk, an optical disk, a compact disk, a Blu-ray ( It may be stored in a portable recording medium such as a registered trademark) disk, DVD, or the like. A portable recording medium in which a program for realizing the functions of the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107 is stored may be distributed.
 また、収集部101、推定部102、選択部103、学習部104、設定部105、算出部106及び制御部107の「部」を、「回路」又は「工程」又は「手順」又は「処理」又は「サーキットリー」に読み替えてもよい。
 また、制御装置100は、処理回路により実現されてもよい。処理回路は、例えば、ロジックIC(Integrated Circuit)、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)である。
 この場合は、収集部101、推定部102、選択部103、学習部104、設定部105、算出部106及び制御部107は、それぞれ処理回路の一部として実現される。
 なお、本明細書では、プロセッサと処理回路との上位概念を、「プロセッシングサーキットリー」という。
 つまり、プロセッサと処理回路とは、それぞれ「プロセッシングサーキットリー」の具体例である。
In addition, the “units” of the collecting unit 101, the estimating unit 102, the selecting unit 103, the learning unit 104, the setting unit 105, the calculating unit 106, and the control unit 107 are replaced with “circuit”, “process”, “procedure”, or “processing”. Or you may read it as "circuitry".
Also, the control device 100 may be realized by a processing circuit. The processing circuits are, for example, logic ICs (Integrated Circuits), GAs (Gate Arrays), ASICs (Application Specific Integrated Circuits), and FPGAs (Field-Programmable Gate Arrays).
In this case, the collection unit 101, the estimation unit 102, the selection unit 103, the learning unit 104, the setting unit 105, the calculation unit 106, and the control unit 107 are each implemented as part of the processing circuit.
In this specification, the general concept of processors and processing circuits is referred to as "processing circuitry."
Thus, processors and processing circuitry are each examples of "processing circuitry."
 100 制御装置、101 収集部、102 推定部、103 選択部、104 学習部、105 設定部、106 算出部、107 制御部、108 運転データ記憶部、110 学習モデル、200 室外機、300 室内機、400 空気調和機、500 空気調和システム、901 プロセッサ、902 主記憶装置、903 補助記憶装置、904 通信装置、905 入出力装置。 100 control device, 101 collection unit, 102 estimation unit, 103 selection unit, 104 learning unit, 105 setting unit, 106 calculation unit, 107 control unit, 108 operation data storage unit, 110 learning model, 200 outdoor unit, 300 indoor unit, 400 air conditioner, 500 air conditioning system, 901 processor, 902 main storage device, 903 auxiliary storage device, 904 communication device, 905 input/output device.

Claims (11)

  1.  各々に空気調和の対象となる空気調和空間が割り当てられている複数の室内機の中から、各室内機に要求される空気調和能力である要求空気調和能力に基づき、前記複数の室内機を代表する室内機を代表室内機として選択する選択部と、
     機械学習により得られた学習モデルを用いて、前記代表室内機の空気調和能力を前記代表室内機の要求空気調和能力に一致させることができる蒸発温度及び凝縮温度のいずれかの目標温度を設定する設定部と、
     前記代表室内機を除く前記複数の室内機の室内機ごとに、各室内機での蒸発温度及び凝縮温度のいずれかを前記目標温度に一致させた場合に、各室内機の空気調和能力が当該室内機の要求空気調和能力と一致する過熱度及び過冷却度のいずれかを算出する算出部とを有する制御装置。
    A representative of the plurality of indoor units, each of which is assigned an air-conditioned space to be air-conditioned, based on the required air-conditioning capacity, which is the air-conditioning capacity required for each indoor unit. a selection unit that selects an indoor unit to be used as a representative indoor unit;
    A learning model obtained by machine learning is used to set a target temperature of either the evaporating temperature or the condensing temperature that allows the air conditioning capacity of the representative indoor unit to match the required air conditioning capacity of the representative indoor unit. a setting unit;
    For each indoor unit of the plurality of indoor units excluding the representative indoor unit, when either the evaporation temperature or the condensation temperature in each indoor unit is made to match the target temperature, the air conditioning capacity of each indoor unit is A control device having a calculation unit that calculates either the degree of superheating or the degree of supercooling that matches the required air conditioning capacity of the indoor unit.
  2.  前記制御装置は、更に、
     前記複数の室内機の各室内機の要求空気調和能力を推定する推定部を有し、
     前記選択部は、
     前記複数の室内機の中から最大の要求空気調和能力の室内機を前記代表室内機として選択する請求項1に記載の制御装置。
    The control device further
    an estimating unit for estimating a required air conditioning capacity of each indoor unit of the plurality of indoor units;
    The selection unit
    The control device according to claim 1, wherein an indoor unit having a maximum required air conditioning capacity is selected from among the plurality of indoor units as the representative indoor unit.
  3.  前記設定部は、
     学習フェーズにおいて複数の室内機の中で最大の要求空気調和能力の室内機である学習室内機の空気調和能力を前記学習室内機の要求空気調和能力に一致させることができる蒸発温度及び凝縮温度のいずれかを学習することにより得られた学習モデルを用いて、前記目標温度を設定する請求項2に記載の制御装置。
    The setting unit
    Evaporating temperature and condensing temperature that can match the air conditioning capacity of the learning indoor unit, which is the indoor unit with the largest required air conditioning capacity among the plurality of indoor units in the learning phase, to the required air conditioning capacity of the learning indoor unit. 3. The control device according to claim 2, wherein the target temperature is set using a learning model obtained by learning either one.
  4.  前記制御装置は、更に、
     各室内機の空気調和空間で計測された計測温度を収集する収集部と、
     各室内機の要求空気調和能力を推定する推定部とを有し、
     前記算出部は、
     前記代表室内機を除く前記複数の室内機の室内機ごとに、各室内機の要求空気調和能力と、各室内機の空気調和空間の計測温度と、前記目標温度とを用いて、各室内機の過熱度及び過冷却度のいずれかを算出する請求項1に記載の制御装置。
    The control device further
    a collection unit that collects the measured temperature measured in the air-conditioned space of each indoor unit;
    an estimating unit for estimating the required air conditioning capacity of each indoor unit;
    The calculation unit
    For each indoor unit of the plurality of indoor units excluding the representative indoor unit, using the required air conditioning capacity of each indoor unit, the measured temperature of the air-conditioned space of each indoor unit, and the target temperature, each indoor unit 2. The control device according to claim 1, which calculates either the degree of superheat or the degree of supercooling.
  5.  前記設定部は、
     前記代表室内機の空気調和空間での設定温度と、前記代表室内機の空気調和空間で計測された計測温度と、前記代表室内機の稼動状況を示す稼動状況値と、前記代表室内機で計測された蒸発温度及び凝縮温度のいずれかと、外気温度と、固定値の過熱度及び固定値の過冷却度のいずれかとを、前記学習モデルに適用して、前記目標温度を設定する請求項1に記載の制御装置。
    The setting unit
    A set temperature in the air-conditioned space of the representative indoor unit, a measured temperature measured in the air-conditioned space of the representative indoor unit, an operation status value indicating the operation status of the representative indoor unit, and the temperature measured by the representative indoor unit. 2. The target temperature is set by applying one of the obtained evaporation temperature and condensation temperature, the outside air temperature, and either the fixed degree of superheat or the fixed degree of subcooling to the learning model. Control device as described.
  6.  前記制御装置は、更に、
     前記代表室内機を、前記目標温度と、前記固定値の過熱度及び前記固定値の過冷却度のいずれかとを用いて制御し、前記代表室内機を除く前記複数の室内機の室内機ごとに、前記目標温度と、室内機ごとに算出された過熱度及び過冷却度のいずれかとを用いて各室内機を制御する制御部を有する請求項5に記載の制御装置。
    The control device further
    The representative indoor unit is controlled using the target temperature and either the fixed degree of superheating or the fixed degree of supercooling, and for each indoor unit of the plurality of indoor units excluding the representative indoor unit 6. The control device according to claim 5, further comprising a control unit that controls each indoor unit using the target temperature and one of the degree of superheating and the degree of supercooling calculated for each indoor unit.
  7.  前記設定部は、
     前記学習モデルを用いて、前記代表室内機の空気調和能力を前記代表室内機の要求空気調和能力に一致させることができ、前記代表室内機の消費電力を最小にすることができる蒸発温度及び凝縮温度のいずれかの目標温度を設定する請求項1に記載の制御装置。
    The setting unit
    Evaporation temperature and condensation that can match the air conditioning capacity of the representative indoor unit to the required air conditioning capacity of the representative indoor unit and minimize the power consumption of the representative indoor unit using the learning model 2. The control device according to claim 1, which sets a target temperature for any of the temperatures.
  8.  前記設定部は、
     学習フェーズにおいて複数の室内機の中で最大の要求空気調和能力の室内機である学習室内機の空気調和能力を前記学習室内機の要求空気調和能力に一致させることができ、前記学習室内機の消費電力を最小にできる蒸発温度と過熱度との組み合わせ及び凝縮温度と過冷却度との組み合わせのいずれかを学習することにより得られた学習モデルを用いて、前記代表室内機の空気調和能力を前記代表室内機の要求空気調和能力に一致させることができ、前記代表室内機の消費電力を最小にすることができる蒸発温度と過熱度との組み合わせ及び凝縮温度と過冷却度との組み合わせを導出し、導出した蒸発温度及び凝縮温度のいずれかを前記目標温度として設定する請求項7に記載の制御装置。
    The setting unit
    In the learning phase, the air conditioning capacity of the learning indoor unit, which is the indoor unit with the largest required air conditioning capacity among the plurality of indoor units, can be matched with the required air conditioning capacity of the learning indoor unit, and Using the learning model obtained by learning either the combination of the evaporation temperature and the degree of superheat and the combination of the condensation temperature and the degree of supercooling that can minimize the power consumption, the air conditioning capacity of the representative indoor unit is improved. Derive a combination of the evaporation temperature and the degree of superheat and the combination of the condensation temperature and the degree of supercooling that can match the required air conditioning capacity of the representative indoor unit and minimize the power consumption of the representative indoor unit. 8. The control device according to claim 7, wherein one of the derived evaporation temperature and condensation temperature is set as the target temperature.
  9.  前記制御装置は、更に、
     前記代表室内機を、前記目標温度と、前記学習モデルから導出された過熱度及び過冷却度のいずれかとを用いて制御し、前記代表室内機を除く前記複数の室内機の室内機ごとに、前記目標温度と、室内機ごとに算出された過熱度及び過冷却度のいずれかとを用いて各室内機を制御する制御部を有する請求項8に記載の制御装置。
    The control device further
    The representative indoor unit is controlled using the target temperature and either the degree of superheating or the degree of supercooling derived from the learning model, and for each indoor unit of the plurality of indoor units excluding the representative indoor unit, The control device according to claim 8, further comprising a control unit that controls each indoor unit using the target temperature and one of the degree of superheating and the degree of supercooling calculated for each indoor unit.
  10.  前記設定部は、
     前記複数の室内機が各々の空気調和空間の空気調和のために冷房運転を行う場合は、前記代表室内機の冷房能力を前記代表室内機に要求される冷房能力に一致させることができる蒸発温度の目標温度を設定し、
     前記複数の室内機が各々の空気調和空間の空気調和のために暖房運転を行う場合は、前記代表室内機の暖房能力を前記代表室内機に要求される暖房能力に一致させることができる凝縮温度の目標温度を設定し、
     前記算出部は、
     前記複数の室内機が各々の空気調和空間の空気調和のために冷房運転を行う場合は、前記代表室内機を除く前記複数の室内機の室内機ごとに、各室内機での蒸発温度を前記目標温度に一致させた場合に、各室内機の冷房能力が当該室内機に要求される冷房能力に一致する過熱度を算出し、
     前記複数の室内機が各々の空気調和空間の空気調和のために暖房運転を行う場合は、前記代表室内機を除く前記複数の室内機の室内機ごとに、各室内機での凝縮温度を前記目標温度に一致させた場合に、各室内機の暖房能力が当該室内機に要求される暖房能力に一致する過冷却度を算出する請求項1に記載の制御装置。
    The setting unit
    Evaporation temperature at which the cooling capacity of the representative indoor unit can be matched with the cooling capacity required for the representative indoor unit when the plurality of indoor units perform cooling operation for air conditioning of each air conditioning space. set the target temperature of
    When the plurality of indoor units perform heating operation for air conditioning of each air-conditioned space, the condensing temperature at which the heating capacity of the representative indoor unit can be matched with the heating capacity required of the representative indoor unit. set the target temperature of
    The calculation unit
    When the plurality of indoor units performs cooling operation for air conditioning of each air-conditioned space, for each indoor unit of the plurality of indoor units excluding the representative indoor unit, the evaporation temperature in each indoor unit is set to the above Calculate the degree of superheat at which the cooling capacity of each indoor unit matches the cooling capacity required for the indoor unit when the target temperature is matched,
    When the plurality of indoor units perform heating operation for air conditioning of each air-conditioned space, for each indoor unit of the plurality of indoor units excluding the representative indoor unit, the condensing temperature in each indoor unit is set to the above 2. The control device according to claim 1, wherein when the temperature is matched with the target temperature, the degree of supercooling is calculated such that the heating capacity of each indoor unit matches the heating capacity required of the indoor unit.
  11.  コンピュータが、各々に空気調和の対象となる空気調和空間が割り当てられている複数の室内機の中から、各室内機に要求される空気調和能力である要求空気調和能力に基づき、前記複数の室内機を代表する室内機を代表室内機として選択し、
     前記コンピュータが、機械学習により得られた学習モデルを用いて、前記代表室内機の空気調和能力を前記代表室内機の要求空気調和能力に一致させることができる蒸発温度及び凝縮温度のいずれかの目標温度を設定し、
     前記コンピュータが、前記代表室内機を除く前記複数の室内機の室内機ごとに、各室内機での蒸発温度及び凝縮温度のいずれかを前記目標温度に一致させた場合に、各室内機の空気調和能力が当該室内機の要求空気調和能力と一致する過熱度及び過冷却度のいずれかを算出する制御方法。
    A computer selects a plurality of indoor units, each of which is assigned an air-conditioned space to be air-conditioned, based on the required air-conditioning capacity, which is the air-conditioning capacity required for each indoor unit. Select the indoor unit that represents the machine as the representative indoor unit,
    A target of either an evaporating temperature or a condensing temperature that allows the computer to match the air conditioning capacity of the representative indoor unit with the required air conditioning capacity of the representative indoor unit using a learning model obtained by machine learning. set the temperature and
    When the computer matches one of the evaporation temperature and the condensation temperature in each indoor unit to the target temperature for each indoor unit of the plurality of indoor units excluding the representative indoor unit, the air in each indoor unit A control method for calculating either the degree of superheating or the degree of supercooling at which the air conditioning capacity matches the required air conditioning capacity of the indoor unit.
PCT/JP2021/041210 2021-11-09 2021-11-09 Control device and control method WO2023084608A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023559237A JPWO2023084608A1 (en) 2021-11-09 2021-11-09
PCT/JP2021/041210 WO2023084608A1 (en) 2021-11-09 2021-11-09 Control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041210 WO2023084608A1 (en) 2021-11-09 2021-11-09 Control device and control method

Publications (1)

Publication Number Publication Date
WO2023084608A1 true WO2023084608A1 (en) 2023-05-19

Family

ID=86335312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041210 WO2023084608A1 (en) 2021-11-09 2021-11-09 Control device and control method

Country Status (2)

Country Link
JP (1) JPWO2023084608A1 (en)
WO (1) WO2023084608A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327949A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Air conditioner
JP2002327950A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Air conditioner
JP2019163907A (en) * 2018-03-20 2019-09-26 三菱電機株式会社 Air conditioner and air conditioning system
WO2020022123A1 (en) * 2018-07-27 2020-01-30 日本電信電話株式会社 Action optimization device, method and program
WO2020203977A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Performance degradation diagnosis system for refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327949A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Air conditioner
JP2002327950A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Air conditioner
JP2019163907A (en) * 2018-03-20 2019-09-26 三菱電機株式会社 Air conditioner and air conditioning system
WO2020022123A1 (en) * 2018-07-27 2020-01-30 日本電信電話株式会社 Action optimization device, method and program
WO2020203977A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Performance degradation diagnosis system for refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2023084608A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
Sun et al. A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system’s refrigerant charge fault amount
Wan et al. A review of recent advancements of variable refrigerant flow air-conditioning systems
Hu et al. A machine learning bayesian network for refrigerant charge faults of variable refrigerant flow air conditioning system
CN109237709B (en) Multi-split control method
JP5404556B2 (en) Air conditioner control device and refrigeration device control device
EP2878899B1 (en) Air conditioner
US20240005212A1 (en) Correction apparatus, prediction apparatus, method, non-transitory computer-readable recording medium storing program, and correction model
CN111473496B (en) Air conditioning system, control method and device thereof and storage medium
EP3742068A1 (en) Method for controlling air conditioning apparatus, and air conditioning apparatus
WO2023084608A1 (en) Control device and control method
CN111486613B (en) Air conditioning system, control method and device thereof and storage medium
CN111503854B (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
CN113503620A (en) Air conditioning system control method and device, storage medium and air conditioning system
JPWO2020070793A1 (en) Refrigeration cycle equipment
Cortella et al. Simulations and field tests of a CO2 refrigerating plant for commercial refrigeration
JP7112037B2 (en) Air conditioners and air conditioning systems
JP3278712B2 (en) Multi-room air conditioner
US10823441B2 (en) Air conditioner control device and air conditioner control method
EP4151915A1 (en) Heating control device and heating control program
JP2016142419A (en) Air conditioner and air-conditioning method
JP4176679B2 (en) Control method for air conditioner, control apparatus therefor, and air conditioner
CN117677141A (en) Temperature adjusting method and device
WO2023144927A1 (en) Control device and control method
CN111023428B (en) Air conditioner control method and device and air conditioner
CN109668272B (en) Running control method for freezing pump of central air-conditioning system and freezing pump controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559237

Country of ref document: JP