WO2023084589A1 - Optical laminate and optical device - Google Patents

Optical laminate and optical device Download PDF

Info

Publication number
WO2023084589A1
WO2023084589A1 PCT/JP2021/041161 JP2021041161W WO2023084589A1 WO 2023084589 A1 WO2023084589 A1 WO 2023084589A1 JP 2021041161 W JP2021041161 W JP 2021041161W WO 2023084589 A1 WO2023084589 A1 WO 2023084589A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
light beam
incident
diffraction grating
compensation layer
Prior art date
Application number
PCT/JP2021/041161
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 平井
謙一 薬師寺
Original Assignee
カラーリンク・ジャパン 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カラーリンク・ジャパン 株式会社 filed Critical カラーリンク・ジャパン 株式会社
Priority to JP2023543407A priority Critical patent/JP7445094B2/en
Priority to PCT/JP2021/041161 priority patent/WO2023084589A1/en
Publication of WO2023084589A1 publication Critical patent/WO2023084589A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

An optical laminate 10 comprises a polarization grating 11 that diffracts a light beam γ, and a compensation layer 12 that is disposed on the input side of the polarization grating 11 and modulates the polarization orientation angle of the incident light beam γ. When unnecessary light other than plus and minus first-order light is produced even if circularly polarized light is obliquely incident on the polarization grating 11, the generation of the unnecessary light is suppressed by modulating the polarization orientation angle of the incident light beam γ via the compensation layer 12 and letting the incident light beam into the polarization grating 11.

Description

光学積層体及び光学装置Optical laminate and optical device
 本発明は、回折効率を高める光学積層体及び光学積層体を備える光学装置に関する。 The present invention relates to an optical layered body that enhances diffraction efficiency and an optical device provided with the optical layered body.
 偏光回折格子(PG)は、入射光を、その偏光状態に応じて選択的に回折する。特許文献1に記載のPGは、偏光ホログラムを用いてその偏光パターンを光配向フィルム内に記録し、その光配向フィルム上で複屈折を有する重合性メソゲンのような液晶組成物を配向させることで作成される。液晶組成物は、光配向フィルムのパターンに沿って、配向面上で一軸方向に周期的に配向回転して配列される。それにより、円偏光を有する光ビーム(円偏光光とも呼ぶ)がPGに入射すると、PGの周期配向構造に対する入射光の偏光状態によって、偏光回転方向を逆にした円偏光光が高効率(すなわち、他の成分がほぼゼロ)で+1次又は-1次の回折方向に出力される。特許文献2に記載の幾何学的位相ホログラム素子(GPH素子)は、液晶組成物の配向パターンをレンズプロファイルとしてレンズ作用を提供するものである。
 特許文献1 特表2008-532085号公報
 特許文献2 特表2016-519327号公報
A polarization grating (PG) selectively diffracts incident light according to its polarization state. The PG described in Patent Document 1 uses a polarization hologram to record its polarization pattern in a photo-alignment film, and orients a liquid crystal composition such as a polymerizable mesogen having birefringence on the photo-alignment film. created. The liquid crystal composition is aligned in a uniaxially cyclically rotated orientation on the alignment plane along the pattern of the photo-alignment film. As a result, when a light beam having circular polarization (also called circularly polarized light) is incident on the PG, depending on the polarization state of the incident light with respect to the periodically oriented structure of the PG, circularly polarized light with the direction of polarization rotation reversed is emitted with high efficiency (i.e. , other components are almost zero), and output in the +1st or −1st order diffraction direction. A geometrical phase hologram element (GPH element) described in Patent Document 2 provides a lens action using an orientation pattern of a liquid crystal composition as a lens profile.
Patent Document 1: Japanese Patent Publication No. 2008-532085 Patent Document 2: Japanese Patent Publication No. 2016-519327
解決しようとする課題Problem to be solved
 PGに円偏光光を斜め入射すると、楕円偏光を有する+1次又は-1次の回折光が出力されるとともに、+1次又は-1次以外の回折光が漏れ光として出力され、効率の低下を招く。種々の光学系において内部の光学部品に対して斜め方向の光が入射することは一般的なことであり、特にレンズを使用した光学系においては、レンズの作用が光の集束や拡散であることから斜め方向の光が生じやすい。上述のようなPGの斜め入射光に対する効率低下はPGを使用した光学系の効率低下を招き、また漏れ光が生じることで例えば映像を表示する光学系に使用すると、コントラストの低下やゴースト像の発生を招く問題がある。 When circularly polarized light is obliquely incident on the PG, +1st or -1st order diffracted light having elliptically polarized light is output, and diffracted light other than +1st or -1st order is output as leakage light, resulting in a decrease in efficiency. Invite. In various optical systems, it is common for light to enter an internal optical component in an oblique direction. Especially in an optical system using a lens, the function of the lens is to focus and diffuse the light. Light in an oblique direction tends to be generated from the The decrease in the efficiency of the PG with respect to obliquely incident light as described above leads to a decrease in the efficiency of the optical system using the PG, and the leakage of light causes a decrease in contrast and appearance of a ghost image when used in an optical system for displaying an image, for example. There are issues that arise.
一般的開示General disclosure
 (項目1)
 光学積層体は、入射する光ビームの偏光方位角を変調する補償層を備えてよい。
 光学積層体は、補償層の出力側に配されて、光ビームを回折する偏光回折格子を備えてよい。
 (項目2)
 補償層は、補償層から出力されて偏光回折格子に入射する光ビームの偏光方位角の向きが、偏光回折格子に円偏光を有する光ビームを斜めに入射した際に偏光回折格子から出力される光ビームが有する楕円偏光の偏光方位角の向きに等しくなるように構成されてよい。
 (項目3)
 補償層は、さらに、補償層から出力されて偏光回折格子に入射する前記光ビームの偏光方位角の値が、偏光回折格子に円偏光を有する光ビームを斜めに入射した際に偏光回折格子から出力される光ビームが有する楕円偏光の偏光方位角の値に等しくなるように構成されてよい。
 (項目4)
 補償層は、さらに、光ビームの偏光楕円率を変調してよい。
 (項目5)
 補償層は、補償層から出力されて偏光回折格子に斜めに入射する光ビームの偏光楕円率が、偏光回折格子に円偏光を有する光ビームを斜めに入射した際に偏光回折格子から出力される光ビームが有する楕円偏光の楕円率に略等しくなるように構成されてよい。
 (項目6)
 偏光回折格子は、光ビームを、光ビームの光軸を基準とする動径方向の内向き又は外向きに回折してよい。
 (項目7)
 補償層は、光軸を中心とする円環状に配された複数の第1変調領域を含んでよい。
 複数の第1変調領域のそれぞれが、各領域内の代表位置における前記光ビームの入射角及び入射方位角に応じて前記光ビームの偏光方位角を変調してよい。
 (項目8)
 補償層は、さらに、光ビームの偏光楕円率を変調してよい。
 (項目9)
 補償層は、複数の第1変調領域ごとに異なる方向を向く遅相軸を有してよい。
 (項目10)
 補償層は、複数の第1変調領域の内側又は外側に、光軸を中心とする円環状に配された複数の第2変調領域をさらに含んでよい。
 複数の第2変調領域のそれぞれが、各領域内の代表位置における光ビームの入射角及び入射方位角に応じて光ビームの偏光方位角を変調してよい。
(Item 1)
The optical stack may comprise compensation layers that modulate the polarization azimuth of an incident light beam.
The optical stack may comprise a polarization grating arranged on the output side of the compensation layer to diffract the light beam.
(Item 2)
In the compensation layer, the direction of the polarization azimuth of the light beam that is output from the compensation layer and is incident on the polarization diffraction grating is such that when the light beam having circular polarization is obliquely incident on the polarization diffraction grating, it is output from the polarization diffraction grating. It may be configured to be equal to the direction of the polarization azimuth angle of the elliptically polarized light possessed by the light beam.
(Item 3)
In the compensation layer, the value of the polarization azimuth of the light beam that is output from the compensation layer and is incident on the polarization diffraction grating is such that the value of the polarization azimuth angle of the light beam is equal to that from the polarization diffraction grating when the light beam having circular polarization is obliquely incident on the polarization diffraction grating. It may be configured to be equal to the value of the polarization azimuth angle of the elliptical polarization of the output light beam.
(Item 4)
The compensation layer may further modulate the polarization ellipticity of the light beam.
(Item 5)
In the compensation layer, the polarization ellipticity of the light beam that is output from the compensation layer and is obliquely incident on the polarization diffraction grating is output from the polarization diffraction grating when the light beam having circular polarization is obliquely incident on the polarization diffraction grating. It may be configured to be approximately equal to the ellipticity of the elliptically polarized light possessed by the light beam.
(Item 6)
The polarization grating may diffract the light beam radially inward or outward relative to the optical axis of the light beam.
(Item 7)
The compensation layer may include a plurality of first modulation regions arranged in an annular shape centered on the optical axis.
Each of the plurality of first modulation regions may modulate the polarization azimuth angle of the light beam according to the incident angle and incident azimuth angle of the light beam at a representative position within each region.
(Item 8)
The compensation layer may further modulate the polarization ellipticity of the light beam.
(Item 9)
The compensation layer may have slow axes facing different directions for each of the plurality of first modulation regions.
(Item 10)
The compensation layer may further include a plurality of second modulation regions arranged in an annular shape around the optical axis inside or outside the plurality of first modulation regions.
Each of the plurality of second modulation regions may modulate the polarization azimuth angle of the light beam according to the incident angle and incident azimuth angle of the light beam at the representative position within each region.
 (項目11)
 光学装置は、項目6から10のいずれか一項に記載の光学積層体を備えてよい。
 光学装置は、偏光回折格子の入力側又は出力側に配されて、光ビームを屈折するレンズ素子を備えてよい。
 (項目12)
 光学装置は、補償層の入力側又は補償層と偏光回折格子との間に配されて、光ビームをその偏光回転方向を反転又は非反転して出力する液晶パネルをさらに備えてよい。
(Item 11)
An optical device may comprise the optical laminate according to any one of items 6 to 10.
The optical device may comprise a lens element arranged at the input side or the output side of the polarization grating for refracting the light beam.
(Item 12)
The optical device may further comprise a liquid crystal panel disposed on the input side of the compensation layer or between the compensation layer and the polarization grating for outputting the light beam with its polarization rotation direction inverted or non-inverted.
 (項目13)
 光学装置は、項目1から10のいずれか一項に記載の光学積層体を備えてよい。
 光学装置は、補償層の入力側又は補償層と偏光回折格子との間に配されて、光ビームをその偏光回転方向を反転又は非反転して出力する液晶パネルを備えてよい。
(Item 13)
An optical device may comprise the optical laminate according to any one of items 1 to 10.
The optical device may comprise a liquid crystal panel disposed on the input side of the compensation layer or between the compensation layer and the polarization grating for outputting the light beam with or without reversing its polarization rotation direction.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 It should be noted that the above outline of the invention does not list all the features of the present invention. Subcombinations of these feature groups can also be inventions.
第1の実施形態に係る光学積層体の全体構成を示す。1 shows the overall configuration of an optical layered body according to a first embodiment; 第1の実施形態に係る光学積層体の分解構成を示す。1 shows an exploded configuration of an optical layered body according to a first embodiment; 偏光回折格子の左回り円偏光光の垂直入射時における光回折機能を示す。2 shows the optical diffraction function of a polarization diffraction grating when left-handed circularly polarized light is perpendicularly incident. 偏光回折格子の左回り円偏光光の斜め入射時における光回折機能を示す。2 shows the optical diffraction function of a polarization diffraction grating when left-handed circularly polarized light is obliquely incident. 偏光回折格子に左回り円偏光を有する光ビームを入射した場合の出力ビームの偏光特性の測定結果を示す。FIG. 4 shows measurement results of polarization characteristics of an output beam when a light beam having left-handed circularly polarized light is incident on a polarization diffraction grating. 偏光回折格子の左回り楕円偏光の斜め入射時における光回折機能を示す。The optical diffraction function of the polarization diffraction grating when left-handed elliptically polarized light is obliquely incident is shown. 偏光回折格子に左回り楕円偏光を有する光ビームを斜め入射した場合の出力ビームの偏光特性の測定結果を示す。4 shows the measurement results of the polarization characteristics of the output beam when a light beam having left-handed elliptically polarized light is obliquely incident on the polarization diffraction grating. 偏光回折格子に左回り円偏光を有する光ビームを入射した場合の効率(図2C参照)と偏光回折格子に左回り楕円偏光を有する光ビーム(効率最適化光ビーム)を入射した場合の効率(図3B参照)との比較を示す。The efficiency when a left-handed circularly polarized light beam is incident on the polarization diffraction grating (see FIG. 2C) and the efficiency when a left-handed elliptically polarized light beam (efficiency optimized light beam) is incident on the polarization diffraction grating ( Fig. 3B). 偏光回折格子の右回り円偏光光の垂直入射時における光回折機能を示す。2 shows the optical diffraction function of a polarization diffraction grating when right-handed circularly polarized light is perpendicularly incident. 偏光回折格子の右回り円偏光光の斜め入射時における光回折機能を示す。2 shows the optical diffraction function of a polarization diffraction grating when right-handed circularly polarized light is obliquely incident. 偏光回折格子に右回り円偏光を有する光ビームを入射した場合の出力ビームの偏光特性の測定結果を示す。4 shows the measurement results of the polarization characteristics of an output beam when a right-handed circularly polarized light beam is incident on the polarization diffraction grating. 偏光回折格子の右回り楕円偏光の斜め入射時における光回折機能を示す。The optical diffraction function of the polarization diffraction grating when right-handed elliptically polarized light is obliquely incident is shown. 偏光回折格子に右回り楕円偏光を有する光ビームを斜め入射した場合の出力ビームの偏光特性の測定結果を示す。4 shows the measurement results of the polarization characteristics of the output beam when a light beam having right-handed elliptically polarized light is obliquely incident on the polarization diffraction grating. 偏光回折格子に右回り円偏光を有する光ビームを入射した場合の効率(図5C参照)と偏光回折格子に右回り楕円偏光を有する光ビーム(効率最適化光ビーム)を入射した場合の効率(図6B参照)との比較を示す。The efficiency when a right-handed circularly polarized light beam is incident on the polarization diffraction grating (see FIG. 5C) and the efficiency when a right-handed elliptically polarized light beam (efficiency optimized light beam) is incident on the polarization diffraction grating ( Fig. 6B). 偏光回折格子に入力される入力ビームの偏光方位角に対する出力ビームの強度の測定結果を示す。4 shows the measured intensity of the output beam versus the polarization azimuth angle of the input beam input to the polarization grating. 偏光回折格子の光回折効率を示す。2 shows the optical diffraction efficiency of a polarization grating. 偏光回折格子の左回り円偏光光の斜め入射時における光回折機能を示す。2 shows the optical diffraction function of a polarization diffraction grating when left-handed circularly polarized light is obliquely incident. 偏光回折格子に左回り円偏光を有する光ビームを入射した場合の出力ビームの偏光特性の測定結果を示す。FIG. 4 shows measurement results of polarization characteristics of an output beam when a light beam having left-handed circularly polarized light is incident on a polarization diffraction grating. 偏光回折格子の左回り楕円偏光の斜め入射時における光回折機能を示す。The optical diffraction function of the polarization diffraction grating when left-handed elliptically polarized light is obliquely incident is shown. 偏光回折格子に左回り楕円偏光を有する光ビームを斜め入射した場合の出力ビームの偏光特性の測定結果を示す。4 shows the measurement results of the polarization characteristics of the output beam when a light beam having left-handed elliptically polarized light is obliquely incident on the polarization diffraction grating. 偏光回折格子に左回り円偏光を有する光ビームを入射した場合の効率(図10B参照)と偏光回折格子に左回り楕円偏光を有する光ビームを入射した場合の効率(図11B参照)との比較を示す。Comparison of the efficiency when a light beam having left-handed circularly polarized light is incident on the polarization diffraction grating (see FIG. 10B) and the efficiency when a light beam having left-handed circularly polarized light is incident on the polarization diffraction grating (see FIG. 11B) indicates 偏光回折格子の光回折効率を示す。2 shows the optical diffraction efficiency of a polarization grating. 第2の実施形態に係る光学積層体の全体構成を示す。1 shows the overall configuration of an optical layered body according to a second embodiment; 第2の実施形態に係る光学積層体の作用と補償層の機能を示す。3 shows the action of the optical layered body and the function of the compensation layer according to the second embodiment. 偏光回折格子の左回り円偏光光の斜め入射時における光回折機能を示す。2 shows the optical diffraction function of a polarization diffraction grating when left-handed circularly polarized light is obliquely incident. 偏光回折格子の左回り楕円偏光の斜め入射時における光回折機能を示す。The optical diffraction function of the polarization diffraction grating when left-handed elliptically polarized light is obliquely incident is shown. 偏光回折格子の光回折効率を示す。2 shows the optical diffraction efficiency of a polarization grating. 補償層の変調機能を示す。Figure 3 shows the modulation function of the compensation layer; 補償層の変調機能を示す。Figure 3 shows the modulation function of the compensation layer; 第2の実施形態に係る光学積層体におけるビーム回折原理を示す。4 shows the principle of beam diffraction in the optical layered body according to the second embodiment. 変形例に係る補償層の構成を示す。4 shows a configuration of a compensation layer according to a modified example; 変形例に係る補償層の変調領域の構成を示す。FIG. 11 shows a configuration of a modulation region of a compensation layer according to a modified example; FIG. 第2の実施形態に係る光学積層体を備える光学装置の一例を示す。An example of an optical device including an optical layered body according to a second embodiment is shown. 第1および第2の実施形態に係る光学積層体を備える光学装置の一例を示す。1 shows an example of an optical device provided with the optical laminates according to the first and second embodiments.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 The present invention will be described below through embodiments of the invention, but the following embodiments do not limit the invention according to the scope of claims. Also, not all combinations of features described in the embodiments are essential for the solution of the invention.
 《第1の実施形態》
 図1A及び図1Bは、それぞれ、第1の実施形態に係る光学積層体10の全体構成及び分解構成を示す。光学積層体10は、光ビームγを回折するための複数の光学素子の集合体である。ここで、光軸LをZ軸方向とし、光ビームγの進行方向を+Z方向とし、これに直交する2軸方向をX軸方向(左右方向ともいう)及びY軸方向(上下方向ともいう)とし、-Z側を前側(入力側ともいう)及び+Z側を後側(出力側ともいう)とし、YZ面内で+Y方向を基準に+Z方向に向かう角度を極角θとする。また、XZ面内で+X方向を基準に+Z方向に向かう角度を極角λとする。さらに、Y軸を基準に、XY面上で+X方向に向かう角度を方位角ψとし、これにより光ビームγの楕円偏光の楕円方位角を定義する(図2B等参照)。
<<1st Embodiment>>
1A and 1B respectively show the overall configuration and exploded configuration of an optical laminate 10 according to the first embodiment. The optical laminate 10 is an assembly of a plurality of optical elements for diffracting the light beam γ. Here, the optical axis L is defined as the Z-axis direction, the traveling direction of the light beam γ is defined as the +Z direction, and the two axial directions orthogonal to this are the X-axis direction (also referred to as the horizontal direction) and the Y-axis direction (also referred to as the vertical direction). , the −Z side is the front side (also called the input side) and the +Z side is the rear side (also called the output side), and the angle toward the +Z direction with respect to the +Y direction in the YZ plane is the polar angle θ. Also, the angle toward the +Z direction with respect to the +X direction in the XZ plane is defined as a polar angle λ. Furthermore, with the Y axis as a reference, the angle toward the +X direction on the XY plane is defined as an azimuth angle ψ, which defines the elliptical azimuth angle of the elliptical polarization of the light beam γ (see FIG. 2B, etc.).
 光学積層体10は、光ビームγを回折するための光学素子の積層体であり、光ビームγの回折角度に応じて複数段(本実施形態では1段とする)の積層体10を含んでよい。 The optical layered body 10 is a layered body of optical elements for diffracting the light beam γ, and includes a plurality of layers (one layer in this embodiment) of layers 10 corresponding to the diffraction angle of the light beam γ. good.
 補償層12は、-Z側から入力する円偏光を有する光ビームγを変調して、適当な偏光楕円率(単に楕円率ともいう)及び偏光方位角ψの楕円偏光を有する光ビームを出力するよう形成されたシート状又は膜状の光学素子である。 The compensation layer 12 modulates a circularly polarized light beam γ input from the −Z side, and outputs an elliptically polarized light beam having an appropriate polarization ellipticity (also simply called ellipticity) and polarization azimuth angle ψ. It is a sheet-like or film-like optical element formed as follows.
 後述するように円偏光を有する光ビームが偏光回折格子11に対して斜めに入射しても±1次光以外の漏れ光(すなわち、不要光)が発生するところ、入射する光ビームを、補償層12を介してその楕円偏光の楕円率及び/又は偏光方位角を変調して偏光回折格子11に入れることで、漏れ光の発生を抑えることができる。 As will be described later, even if a light beam having circular polarization is obliquely incident on the polarization diffraction grating 11, leakage light (that is, unnecessary light) other than ±first-order light is generated. By modulating the ellipticity and/or polarization azimuth of the elliptically polarized light through the layer 12 and entering the polarizing diffraction grating 11, the occurrence of leakage light can be suppressed.
 なお、補償層12は必ずしも光学積層体10に含まれなくてよい。偏光回折格子11の入射側に別に配置されてもよい。補償層12の構成及び特性については後述する。 Note that the compensation layer 12 does not necessarily have to be included in the optical laminate 10 . It may be arranged separately on the incident side of the polarization diffraction grating 11 . The configuration and characteristics of the compensation layer 12 will be described later.
 偏光回折格子11は、-Z側から入力する光ビームγをその偏光状態に応じて選択的に回折する光学素子である。偏光回折格子11は、例えば、偏光ホログラムを用いて偏光パターンを記録した光配向フィルム上で、複屈折を有する重合性メソゲンのような液晶組成物を配向させることで形成される(特許文献1参照)。ここで、偏光回折格子11の液晶組成物は、光ビームの出力側から入力側を見て、+X方向に一定周期で時計回りに配向回転(すなわち、複屈折軸を回転)して配列されているとする。それにより、偏光回折格子11の回折方向はX軸方向となる。ここで、+X側への回折次数を正、-X側への回折次数を負と定義する。 The polarization diffraction grating 11 is an optical element that selectively diffracts the light beam γ input from the -Z side according to its polarization state. The polarization diffraction grating 11 is formed, for example, by orienting a liquid crystal composition such as a polymerizable mesogen having birefringence on a photo-alignment film in which a polarization pattern is recorded using a polarization hologram (see Patent Document 1). ). Here, the liquid crystal composition of the polarizing diffraction grating 11 is aligned clockwise (that is, rotating the birefringence axis) at a constant period in the +X direction when viewed from the output side of the light beam to the input side. Suppose there is Thereby, the diffraction direction of the polarization diffraction grating 11 becomes the X-axis direction. Here, the diffraction order to the +X side is defined as positive, and the diffraction order to the -X side is defined as negative.
 偏光回折格子11の光回折機能については後で詳述する。 The optical diffraction function of the polarization diffraction grating 11 will be detailed later.
 光学積層体10において、補償層12、偏光回折格子11、は接着層(不図示)を介して又は補償層12を、後述する補償層12の製造方法によって偏光回折格子11の前面に直接形成して、一体的に積層される。 In the optical layered body 10, the compensation layer 12 and the polarization diffraction grating 11 are formed directly in front of the polarization diffraction grating 11 via an adhesive layer (not shown) or by a method for manufacturing the compensation layer 12 described later. are integrally laminated.
 図2Aに、偏光回折格子11の左回り円偏光光の垂直入射時における光回折機能を示す。左回り円偏光を有する光ビームが偏光回折格子11に紙面裏側から垂直入射すると、偏光回転方向を反転した右回り円偏光を有する光ビームが高効率(すなわち、他の回折成分がほぼゼロ)で-1次の回折方向に出力される。 FIG. 2A shows the optical diffraction function of the polarization diffraction grating 11 when left-handed circularly polarized light is vertically incident. When a left-handed circularly polarized light beam is vertically incident on the polarization diffraction grating 11 from the back side of the drawing, a right-handed circularly polarized light beam whose polarization rotation direction is reversed is highly efficient (that is, other diffraction components are almost zero). It is output in the -1st order diffraction direction.
 図2Bの左に、偏光回折格子11の左回り円偏光光の斜め入射時における光回折機能を示す。光ビームは、偏光回折格子11の法線方向に対して角度θで入射する。左回り円偏光を有する光ビームが偏光回折格子11に紙面裏側から角度θで入射すると、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力されるとともに、それ以外の回折方向に漏れ光が出力される。ここで、偏光計を用いて、検光子を回転して出力ビームの偏光を選択しつつパワーメータで出力ビームの強度を測定したところ、図中右に示した測定結果のとおり、出力ビームは負の楕円方位角(-ψθ)の楕円偏光を有することがわかる。 The left side of FIG. 2B shows the optical diffraction function of the polarization diffraction grating 11 when left-handed circularly polarized light is obliquely incident. The light beam is incident at an angle θ with respect to the normal direction of the polarization diffraction grating 11 . When a left-handed circularly polarized light beam is incident on the polarizing diffraction grating 11 from the back side of the paper at an angle θ, a right-handed elliptical polarized light beam with a negative elliptical azimuth angle (−ψ θ ) whose polarization rotation direction is reversed is − The light is output in the first-order diffraction direction, and the leaked light is output in the other diffraction directions. Using a polarimeter, we rotated the analyzer to select the polarization of the output beam and measured the intensity of the output beam with a power meter. , the elliptically polarized light has an elliptical azimuth angle (−ψ θ ) of .
 図2Cに、偏光回折格子11に左回り円偏光を有する光ビームを入射した場合の出力ビームの偏光特性の測定結果を示す。出力ビームの偏光特性は先と同様に偏光計を用いて測定した。垂直入射(極角ゼロ)の場合、右回り円偏光を有する光ビームが-1次の回折方向に出力される。その強度は、-1次回折光とそれ以外の漏れ光(+1次回折光、±2次回折光及び、回折せずに入射光がそのまま直進して出力する0次光)の和の強度に対する比として0.992であり、測定誤差(±0.002)の範囲内で出力した光ビームのすべてが入射した光ビームの偏光回転方向を反転して出力される-1次回折光であることがわかる。斜め入射(入射角は極角に等しい)の場合、右回り楕円偏光を有する光ビームが-1次の回折方向に出力される。ここで、効率を目的次数の回折方向に出力される出力ビームの強度/漏れ光を含む出力ビーム(±1次回折光、±2次回折光及び、回折せずに入射光がそのまま直進して出力する0次光)の和の強度と定義し、楕円偏光の楕円率を短軸の長さ/長軸の長さと定義すると、入射角(極角)の増大とともに楕円率は小さくなり、楕円方位角は負の方向からゼロに向かって小さくなり、効率は低下することがわかる。 FIG. 2C shows the measurement results of the polarization characteristics of the output beam when a light beam having left-handed circularly polarized light is incident on the polarization diffraction grating 11 . The polarization properties of the output beam were measured using a polarimeter as before. For normal incidence (zero polar angle), a light beam with right-handed circular polarization is output in the −1 order diffraction direction. The intensity is 0 as a ratio to the sum of the intensity of the -1st order diffracted light and other leaked light (+1st order diffracted light, ±2nd order diffracted light, and 0th order light that is output as the incident light goes straight without diffraction). 0.992, and it can be seen that all of the output light beams within the range of the measurement error (±0.002) are −1st order diffracted light output with the direction of polarization rotation of the incident light beam reversed. For oblique incidence (angle of incidence equal to polar angle), a light beam with right-handed elliptical polarization is output in the −1 order diffraction direction. Here, the efficiency is defined as the intensity of the output beam output in the diffraction direction of the target order/the output beam including the leaked light (±1st-order diffracted light, ±2nd-order diffracted light, and incident light that goes straight without diffraction and is output as it is. If the ellipticity of elliptically polarized light is defined as the length of the minor axis/the length of the major axis, the ellipticity decreases as the incident angle (polar angle) increases, and the elliptical azimuth angle decreases from negative to zero and the efficiency decreases.
 図3Aに、偏光回折格子11の左回り楕円偏光の斜め入射時における光回折機能を示す。負の楕円方位角(-ψθ)の左回り楕円偏光を有する光ビームが偏光回折格子11に紙面裏側から角度θで入射すると、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力される。しかし、図2Bの例と異なり、それ以外の回折方向に出力される漏れ光は少なくなる。 FIG. 3A shows the optical diffraction function of the polarization diffraction grating 11 when left-handed elliptically polarized light is obliquely incident. When a light beam having a left-handed elliptical polarized light with a negative elliptical azimuth angle (−ψ θ ) is incident on the polarization diffraction grating 11 from the back side of the paper at an angle θ, the right-handed elliptical polarized light whose polarization rotation direction is reversed has a negative elliptical azimuth angle. A light beam with (−ψ θ ) is output in the −1 order diffraction direction. However, unlike the example of FIG. 2B, less leakage light is output in other diffraction directions.
 図3Bに、偏光回折格子11に左回り楕円偏光を有する光ビームを斜め入射した場合の出力ビームの偏光特性の測定結果を示す。出力ビームの偏光特性は先と同様に偏光計を用いて測定した。ここでは、光ビームの入射角(極角θ)に対して、効率(-1次の回折方向に出力される出力ビームの強度/出力ビームの和の強度)が最大となる、入力ビームの楕円偏光の楕円率及び偏光方位角を決定した。極角θが大きくなるにつれて、楕円率は小さく、楕円方位角は負の小さい角度の楕円偏光を有する光ビームを入力することで、高い効率を維持できることがわかる。これらの楕円率及び偏光方位角の楕円偏光を有する光ビームを、効率最適化光ビームと呼ぶ。 FIG. 3B shows measurement results of polarization characteristics of an output beam when a light beam having left-handed elliptically polarized light is obliquely incident on the polarization diffraction grating 11 . The polarization properties of the output beam were measured using a polarimeter as before. Here, the input beam ellipse that maximizes the efficiency (the intensity of the output beam output in the -1st order diffraction direction/the intensity of the sum of the output beams) with respect to the incident angle (polar angle θ) of the light beam Polarization ellipticity and polarization azimuth were determined. As the polar angle θ increases, the ellipticity decreases and the elliptical azimuth angle of the elliptical azimuth is shown to be input with an elliptically polarized light having a small negative angle, whereby high efficiency can be maintained. A light beam having elliptical polarization with these ellipticities and polarization azimuths is called an efficiency optimized light beam.
 図4に、偏光回折格子11に左回り円偏光を有する光ビームを入射した場合の効率(図2C参照)と偏光回折格子11に左回り楕円偏光を有する光ビーム(効率最適化光ビーム)を入射した場合の効率(図3B参照)との比較を示す。光ビームの入射角(極角θ)が大きくなるにつれて、効率は低下する、すなわち-1次の回折光以外の漏れ光が増加するが、円偏光光を入力するよりも、適当な楕円率及び負の楕円方位角を有する楕円偏光光を入力するほうが効率は高く、-1次の回折光以外の漏れ光を低減できることがわかる。 FIG. 4 shows the efficiency when a left-handed circularly polarized light beam is incident on the polarization diffraction grating 11 (see FIG. 2C) and the left-handed elliptically polarized light beam on the polarization diffraction grating 11 (efficiency optimized light beam). A comparison with the efficiency (see FIG. 3B) in the incident case is shown. As the incident angle (polar angle θ) of the light beam increases, the efficiency decreases, that is, the leakage light other than the −1st order diffracted light increases. It can be seen that input of elliptically polarized light having a negative elliptical azimuth angle is more efficient and can reduce leakage light other than the -1st order diffracted light.
 さらに、図2Cと図3Bにそれぞれ示した測定結果を比較すると、偏光回折格子11に左回り円偏光を有する光ビームを斜め入射した場合の出力ビームの楕円率及び楕円方位角(図2C参照)は、効率最適化入力ビームの左回り楕円偏光の楕円率及び楕円方位角(図3B参照)と測定誤差(楕円率について±0.03、偏光方位角について±3度)の範囲内でおおよそ一致していることがわかる。従って、偏光回折格子11に光ビームを斜め入射する場合、円偏光を有する光ビームを入射することに代えて、円偏光を有する光ビームを入射した場合に出力される出力ビームの楕円偏光の楕円率及び楕円方位角に等しい又はほぼ等しい楕円率及び楕円方位角の楕円偏光を有する光ビームを入力することで、漏れ光の発生を抑制して効率を上げることができる。 Furthermore, comparing the measurement results shown in FIGS. 2C and 3B, the ellipticity and elliptical azimuth angle of the output beam when a light beam having left-handed circularly polarized light is obliquely incident on the polarization diffraction grating 11 (see FIG. 2C) is roughly consistent within the ellipticity and elliptical azimuth of the left-handed elliptical polarization of the efficiency-optimized input beam (see FIG. 3B) and the measurement error (±0.03 for ellipticity and ±3 degrees for polarization azimuth). I know you are doing it. Therefore, when a light beam is obliquely incident on the polarizing diffraction grating 11, the elliptical polarization of the output beam output when a circularly polarized light beam is incident instead of a circularly polarized light beam is input. By inputting a light beam having an elliptically polarized light with an ellipticity and an elliptical azimuth angle that are equal to or substantially equal to the elliptic index and elliptical azimuth angle, it is possible to suppress the occurrence of leaked light and increase the efficiency.
 図5Aに、偏光回折格子11の右回り円偏光光の垂直入射時における光回折機能を示す。右回り円偏光を有する光ビームが偏光回折格子11に紙面裏側から垂直入射すると、偏光回転方向を反転した左回り円偏光を有する光ビームが高効率(すなわち、他の回折成分がほぼゼロ)で+1次の回折方向に出力される。 FIG. 5A shows the optical diffraction function of the polarization diffraction grating 11 when right-handed circularly polarized light is vertically incident. When a right-handed circularly polarized light beam is vertically incident on the polarization diffraction grating 11 from the back side of the drawing, a left-handed circularly polarized light beam whose polarization rotation direction is reversed is generated with high efficiency (that is, other diffraction components are almost zero). Output is in the +1st order diffraction direction.
 図5Bの左に、偏光回折格子11の右回り円偏光光の斜め入射時における光回折機能を示す。光ビームは、偏光回折格子11の法線方向に対して角度θで入射する。右回り円偏光を有する光ビームが偏光回折格子11に紙面裏側から角度θで入射すると、偏光回転方向を反転した左回り楕円偏光で正の楕円方位角(+ψθ)を有する光ビームが+1次の回折方向に出力されるとともに、それ以外の回折方向に漏れ光が出力される。先と同様に偏光計を用いて、検光子を回転して出力ビームの偏光を選択しつつパワーメータで出力ビームの強度を測定したところ、図中右に示した測定結果のとおり、出力ビームは正の楕円方位角(+ψθ)の楕円偏光を有することがわかる。 The left side of FIG. 5B shows the optical diffraction function of the polarization diffraction grating 11 when right-handed circularly polarized light is obliquely incident. The light beam is incident at an angle θ with respect to the normal direction of the polarization diffraction grating 11 . When a right-handed circularly polarized light beam is incident on the polarization diffraction grating 11 at an angle θ from the back side of the drawing, a left-handed elliptical polarized light beam with a positive elliptical azimuth angle (+ψ θ ) whose direction of polarization rotation is reversed is +1st order. , and leakage light is output in the other diffraction directions. Using the same polarimeter as before, we rotated the analyzer to select the polarization of the output beam and measured the intensity of the output beam with a power meter. It can be seen that it has an elliptically polarized light with a positive elliptical azimuth angle (+ψ θ ).
 図5Cに、偏光回折格子11に右回り円偏光を有する光ビームを入射した場合の出力ビームの偏光特性の測定結果を示す。出力ビームの偏光特性は先と同様に偏光計を用いて測定した。垂直入射(極角ゼロ)の場合、左回り円偏光を有する光ビームが+1次の回折方向に出力される。その強度は、+1次回折光とそれ以外の漏れ光(-1次回折光、±2次回折光及び、回折せずに入射光がそのまま直進して出力する0次光)の和の強度に対する比として0.992であり、測定誤差(±0.002)の範囲内で出力した光ビームのすべてが入射した光ビームの偏光回転方向を反転して出力される+1次回折光であることがわかる。斜め入射(入射角は極角に等しい)の場合、左回り楕円偏光を有する光ビームが+1次の回折方向に出力される。入射角(極角)の増大とともに楕円率は小さくなり、楕円方位角は正の方向からゼロに向かって小さくなり、効率は低下することがわかる。 FIG. 5C shows the measurement results of the polarization characteristics of the output beam when a right-handed circularly polarized light beam is incident on the polarization diffraction grating 11 . The polarization properties of the output beam were measured using a polarimeter as before. For normal incidence (zero polar angle), a light beam with left-handed circular polarization is output in the +1 order diffraction direction. The intensity is 0 as a ratio to the sum of +1st-order diffracted light and other leaked light (-1st-order diffracted light, ±2nd-order diffracted light, and 0th-order light that is output as the incident light goes straight without diffraction). 0.992, and it can be seen that all of the output light beams within the range of the measurement error (±0.002) are +1st order diffracted light that is output after reversing the direction of polarization rotation of the incident light beam. For oblique incidence (angle of incidence equal to polar angle), a light beam with left-handed elliptical polarization is output in the +1 order diffraction direction. It can be seen that as the angle of incidence (polar angle) increases, the ellipticity decreases, the ellipse azimuth angle decreases from the positive direction toward zero, and the efficiency decreases.
 図6Aに、偏光回折格子11の右回り楕円偏光の斜め入射時における光回折機能を示す。正の楕円方位角(+ψθ)の右回り楕円偏光を有する光ビームが偏光回折格子11に紙面裏側から角度θで入射すると、偏光回転方向を反転した左回り楕円偏光で正の楕円方位角(+ψθ)を有する光ビームが+1次の回折方向に出力される。しかし、図5Bの例と異なり、それ以外の回折方向に出力される漏れ光は少なくなる。 FIG. 6A shows the optical diffraction function of the polarization diffraction grating 11 when right-handed elliptically polarized light is obliquely incident. When a right-handed elliptical polarized light beam with a positive elliptical azimuth angle (+ψ θ ) is incident on the polarization diffraction grating 11 from the back side of the paper at an angle θ, the left-handed elliptical polarized light beam with the reversed polarization rotation direction has a positive elliptical azimuth angle ( +ψ θ ) is output in the +1 order diffraction direction. However, unlike the example of FIG. 5B, less leakage light is output in other diffraction directions.
 図6Bに、偏光回折格子11に右回り楕円偏光を有する光ビームを斜め入射した場合の出力ビームの偏光特性の測定結果を示す。出力ビームの偏光特性は先と同様に偏光計を用いて測定した。ここでは、光ビームの入射角(極角θ)に対して、効率(+1次の回折方向に出力される出力ビームの強度/出力ビームの和の強度)が最大となる、入力ビームの楕円偏光の楕円率及び偏光方位角を決定した。極角θが大きくなるにつれて、楕円率は小さく、楕円方位角は正の小さい角度の楕円偏光を有する光ビームを入力することで、高い効率を維持できることがわかる。これらの楕円率及び偏光方位角の楕円偏光を有する光ビームを、効率最適化光ビームと呼ぶ。 FIG. 6B shows the measurement results of the polarization characteristics of the output beam when a light beam having right-handed elliptically polarized light is obliquely incident on the polarization diffraction grating 11 . The polarization properties of the output beam were measured using a polarimeter as before. Here, the elliptical polarization of the input beam that maximizes the efficiency (the intensity of the output beam output in the +1st order diffraction direction/the intensity of the sum of the output beams) with respect to the incident angle (polar angle θ) of the light beam We determined the ellipticity and polarization azimuth of . It can be seen that high efficiency can be maintained by inputting an elliptically polarized light beam having a smaller ellipticity and a smaller positive elliptical azimuth angle as the polar angle θ increases. A light beam having elliptical polarization with these ellipticities and polarization azimuths is called an efficiency optimized light beam.
 図7に、偏光回折格子11に右回り円偏光を有する光ビームを入射した場合の効率(図5C参照)と偏光回折格子11に右回り楕円偏光を有する光ビーム(効率最適化光ビーム)を入射した場合の効率(図6B参照)との比較を示す。光ビームの入射角(極角θ)が大きくなるにつれて、効率は低下する、すなわち+1次の回折光以外の漏れ光が増加するが、円偏光光を入力するよりも、適当な楕円率及び正の楕円方位角を有する楕円偏光光を入力するほうが効率は高く、+1次の回折光以外の漏れ光を低減できることがわかる。 FIG. 7 shows the efficiency when a right-handed circularly polarized light beam is incident on the polarization diffraction grating 11 (see FIG. 5C) and a right-handed elliptically polarized light beam on the polarization diffraction grating 11 (efficiency optimized light beam). A comparison with the efficiency when incident (see FIG. 6B) is shown. As the incident angle (polar angle θ) of the light beam increases, the efficiency decreases, that is, the leakage light other than the +1st order diffracted light increases. It can be seen that the input of elliptically polarized light having an elliptical azimuth angle of is higher in efficiency and can reduce leakage light other than the +1st order diffracted light.
 さらに、図5Cと図6Bにそれぞれ示した測定結果を比較すると、偏光回折格子11に右回り円偏光有する光ビームを斜め入射した場合の出力ビームの楕円率及び楕円方位角(図5C参照)は、効率最適化入力ビームの右回り楕円偏光の楕円率及び楕円方位角(図6B参照)と測定誤差(楕円率について±0.03、偏光方位角について±3度)の範囲内でおおよそ一致していることがわかる。従って、偏光回折格子11に光ビームを斜め入射する場合、円偏光を有する光ビームを入射することに代えて、円偏光を有する光ビームを入射した場合に出力される出力ビームの楕円偏光の楕円率及び楕円方位角に等しい又はほぼ等しい楕円率及び楕円方位角の楕円偏光を有する光ビームを入力することで、漏れ光の発生を抑制して効率を上げることができる。 Furthermore, comparing the measurement results shown in FIGS. 5C and 6B, the ellipticity and the elliptical azimuth of the output beam when the right-handed circularly polarized light beam is obliquely incident on the polarization diffraction grating 11 (see FIG. 5C) is , the ellipticity and elliptical azimuth of the right-handed elliptical polarization of the efficiency-optimized input beam (see FIG. 6B) roughly match within the measurement error (±0.03 for ellipticity and ±3 degrees for polarization azimuth). It can be seen that Therefore, when a light beam is obliquely incident on the polarizing diffraction grating 11, the elliptical polarization of the output beam output when a circularly polarized light beam is incident instead of a circularly polarized light beam is input. By inputting a light beam having an elliptically polarized light with an ellipticity and an elliptical azimuth angle that are equal to or substantially equal to the elliptic index and elliptical azimuth angle, it is possible to suppress the occurrence of leaked light and increase the efficiency.
 図8に、偏光回折格子11に入力される入力ビームの偏光方位角に対する出力ビームの強度の測定結果を示す。ここで、右回り円偏光を有する光ビームを4分の1波長板を介して入射角30度で偏光回折格子11に入力し、4分の1波長板を回転させて入力ビームの偏光楕円率及び偏光方位角を変調しつつパワーメータで出力ビームの強度を測定した。出力ビームの強度は、効率(+1次の回折方向に出力される出力ビームの強度/出力ビームの和の強度)により表す。負の偏光方位角を有する右回り楕円偏光を入射するのに対して、また右回り円偏光(偏光方位角はゼロ)を入射するのに対して、正の偏光方位角を有する右回り楕円偏光を入射する場合に効率が良いことがわかる。つまり、図7において、正の楕円方位角を有する最適化楕円偏光入射は、円偏光入射だけでなく負の楕円方位角を有する楕円偏光入射よりも効率が良いことがわかる。 FIG. 8 shows the measurement result of the intensity of the output beam with respect to the polarization azimuth angle of the input beam input to the polarization diffraction grating 11 . Here, a light beam having right-handed circularly polarized light is input to the polarization diffraction grating 11 through a quarter-wave plate at an incident angle of 30 degrees, and the quarter-wave plate is rotated to obtain the polarization ellipticity of the input beam. And the intensity of the output beam was measured with a power meter while modulating the polarization azimuth. The intensity of the output beam is represented by the efficiency (the intensity of the output beam output in the +1st order diffraction direction/the intensity of the sum of the output beams). Right-handed elliptically polarized light with positive polarization azimuth versus incident right-handed circularly polarized light with negative polarization azimuth and right-handed circularly polarized light with positive polarization azimuth It can be seen that the efficiency is good when . Thus, it can be seen in FIG. 7 that optimized elliptically polarized incidence with positive elliptical azimuth is more efficient than circularly polarized incidence as well as elliptical incidence with negative elliptical azimuth.
 上述の結果の類推より、正の偏光方位角を有する左回り楕円偏光を入射するのに対して、また左回り円偏光を入射するのに対して、負の偏光方位角を有する左回り楕円偏光を入射する場合に効率が良いことも予想される。つまり、図4において、負の楕円方位角を有する最適化楕円偏光入射は、円偏光入射だけでなく正の楕円方位角を有する楕円偏光入射よりも効率が良いことが予想される。 By analogy with the above results, for incident left-handed elliptically polarized light with positive polarization azimuth, and for incident left-handed circularly polarized light, left-handed elliptically polarized light with negative polarization azimuth It is also expected that efficiency is good when incident Thus, in FIG. 4, optimized elliptically polarized incidence with negative elliptical azimuth is expected to be more efficient than circularly polarized incidence as well as elliptical incidence with positive elliptical azimuth.
 図9に、偏光回折格子11の光回折効率を示す。偏光回折格子11の液晶組成物は、光ビームの出力側から入力側を見て、図面右方に一定周期で時計回りに配向回転(すなわち、複屈折軸を回転)して配列されている。光ビームは光軸Lに対して紙面表側から紙面裏側方向に角度θだけ傾いて偏光回折格子11に入射する。先に図2Bを用いて説明したように左回り円偏光光が斜め入射した場合(1)、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力されるとともに、それ以外の回折方向に漏れ光が出力され、また先に図8の結果から類推したように正の楕円方位角(+ψ)を有する楕円偏光光が斜め入射した場合(2)、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力されるとともに、それ以外の回折方向に漏れ光が出力されるため、効率が低い。これに対して、先に図3Aを用いて説明したように負の楕円方位角(-ψ)を有する楕円偏光光が斜め入射した場合(3)、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力され、それ以外の回折方向への漏れ光が減少するため、効率が高い。 FIG. 9 shows the optical diffraction efficiency of the polarization diffraction grating 11. As shown in FIG. The liquid crystal composition of the polarizing diffraction grating 11 is arranged with rotation of the orientation clockwise (that is, rotation of the birefringence axis) at a constant period on the right side of the drawing when viewed from the output side of the light beam to the input side. The light beam is incident on the polarization diffraction grating 11 at an angle θ from the front side of the paper to the back side of the paper with respect to the optical axis L. As shown in FIG. When left-handed circularly polarized light is obliquely incident (1) as described above with reference to FIG. 2B, the light beam is right-handed elliptical polarized light whose direction of polarization rotation is reversed and has a negative elliptical azimuth angle (−ψ θ ). is output in the −1st order diffraction direction, leakage light is output in the other diffraction directions, and, as previously inferred from the results of FIG. is obliquely incident (2), a right-handed elliptical polarized light beam with a reversed polarization rotation direction and a negative elliptical azimuth angle (−ψ θ ) is output in the −1st order diffraction direction, and other Efficiency is low because leakage light is output in the diffraction direction. On the other hand, when elliptically polarized light having a negative elliptical azimuth angle (−ψ) is obliquely incident (3) as described above with reference to FIG. A light beam having a negative elliptical azimuth angle (−ψ θ ) is output in the −1st order diffraction direction, and leakage light in other diffraction directions is reduced, resulting in high efficiency.
 また、先に図5Bを用いて説明したように右回り円偏光光が斜め入射した場合(6)、偏光回転方向を反転した左回り楕円偏光で正の楕円方位角(+ψθ)を有する光ビームが+1次の回折方向に出力されるとともに、それ以外の回折方向に漏れ光が出力され、また先に図8を用いて説明したように負の楕円方位角(-ψ)を有する楕円偏光光が斜め入射した場合(5)、偏光回転方向を反転した左回り楕円偏光で正の楕円方位角(+ψθ)を有する光ビームが+1次の回折方向に出力されるとともに、それ以外の回折方向に漏れ光が出力されるため、効率が低い。これに対して、先に図6Aを用いて説明したように正の楕円方位角(+ψ)を有する楕円偏光光が斜め入射した場合(4)、偏光回転方向を反転した左回り楕円偏光で正の楕円方位角(+ψθ)を有する光ビームが+1次の回折方向に出力され、それ以外の回折方向への漏れ光が減少するため、効率が高い。 In addition, when right-handed circularly polarized light is obliquely incident ( 6 ) as described above using FIG. A beam is output in the +1st order diffraction direction, leakage light is output in the other diffraction directions, and elliptically polarized light having a negative elliptical azimuth angle (-ψ) as described above with reference to FIG. When light is obliquely incident (5), a left-handed elliptical polarized light beam with a positive elliptical azimuth angle (+ψ θ ) whose polarization rotation direction is reversed is output in the +1st order diffraction direction, and other diffraction Efficiency is low because leaked light is output in the direction. On the other hand, when elliptically polarized light having a positive elliptical azimuth angle (+ψ) is obliquely incident (4) as described above with reference to FIG. A light beam having an elliptical azimuth angle (+ψ θ ) of is output in the +1st-order diffraction direction, and leakage light in other diffraction directions is reduced, resulting in high efficiency.
 上述の考察に基づいて、偏光回折格子11に光軸Lに対して角度θの光ビームが入射する場合、補償層12は、入射する光ビームが図4及び図7に示した最適化楕円偏光を有する光ビームに変調されるよう形成する。つまり、補償層12は、これらにより出力される光ビームγの偏光方位角の向き(すなわち、光ビームγと偏光回折格子11の液晶組成物の配向回転方向(+X方向)、すなわち偏光回折格子11の回折方向(X軸方向)とに直交するY軸を基準として正の向き(+ψ)又は負の向き(-ψ))が、好ましくはさらにその値(|ψ|)が、偏光回折格子11に円偏光を有する光ビームγを入射した際に偏光回折格子11から出力される光ビームγが有する楕円偏光の偏光方位角のそれらに等しくなる又は略等しくなるように構成するとよい。さらに、補償層12は、これらにより出力される光ビームγの偏光楕円率が、偏光回折格子11に円偏光を有する光ビームγを入射した際に偏光回折格子11から出力される光ビームγが有する楕円偏光の楕円率に等しくなる又は略等しくなるように構成するとよい。 Based on the above considerations, when a light beam is incident on the polarizing diffraction grating 11 at an angle θ with respect to the optical axis L, the compensation layer 12 is such that the incident light beam is the optimized elliptically polarized light shown in FIGS. to be modulated into a light beam having a In other words, the compensation layer 12 is arranged so that the direction of the polarization azimuth angle of the light beam γ output by them (that is, the orientation rotation direction (+X direction) of the light beam γ and the liquid crystal composition of the polarization diffraction grating 11, that is, the polarization diffraction grating 11 The positive direction (+ψ) or negative direction (−ψ) with respect to the Y-axis orthogonal to the diffraction direction (X-axis direction) of the polarization diffraction grating 11, preferably its value (|ψ|) When a circularly polarized light beam .gamma. Furthermore, the compensation layer 12 is such that the polarization ellipticity of the light beam γ output by these is such that the light beam γ output from the polarization diffraction grating 11 when the light beam γ having circular polarization is incident on the polarization diffraction grating 11 is It is preferable that the ellipticity of the elliptically polarized light is equal or substantially equal to the ellipticity of the elliptically polarized light.
 図10Aに、偏光回折格子11の左回り円偏光光の斜め入射時における光回折機能を示す。光ビームは、偏光回折格子11の法線方向に対して角度λで入射する。左回り円偏光を有する光ビームが偏光回折格子11に紙面裏側から角度λで入射すると、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力されるとともに、それ以外の回折方向に漏れ光が出力される。 FIG. 10A shows the optical diffraction function of the polarization diffraction grating 11 when left-handed circularly polarized light is obliquely incident. The light beam is incident at an angle λ with respect to the normal to the polarization grating 11 . When a left-handed circularly polarized light beam is incident on the polarization diffraction grating 11 from the back side of the paper at an angle λ, a right-handed elliptical polarized light beam with a negative elliptical azimuth angle (−ψ θ ) whose polarization rotation direction is reversed is − The light is output in the first-order diffraction direction, and the leaked light is output in the other diffraction directions.
 図10Bに、偏光回折格子11に左回り円偏光を有する光ビームを入射した場合の出力ビームの偏光特性の測定結果を示す。出力ビームの偏光特性は先と同様に偏光計を用いて測定した。垂直入射(極角ゼロ)の場合、右回り円偏光を有する光ビームが-1次の回折方向に出力される。その強度は、-1次回折光とそれ以外の漏れ光(+1次回折光、±2次回折光及び、回折せずに入射光がそのまま直進して出力する0次光)の和の強度に対する比として0.989であり、およそ測定誤差の範囲内で出力した光ビームのすべてが入射した光ビームの偏光回転方向を反転して出力される-1次回折光であることがわかる。斜め入射(入射角は極角に等しい)の場合、右回り楕円偏光を有する光ビームが-1次の回折方向に出力される。ここで、入射角(極角)の増大とともに楕円率は小さくなり、楕円方位角は負の方位角を示し、効率は低下することがわかる。 FIG. 10B shows the measurement result of the polarization characteristics of the output beam when a light beam having left-handed circularly polarized light is incident on the polarization diffraction grating 11. FIG. The polarization properties of the output beam were measured using a polarimeter as before. For normal incidence (zero polar angle), a light beam with right-handed circular polarization is output in the −1 order diffraction direction. The intensity is 0 as a ratio to the sum of the intensity of the -1st order diffracted light and other leaked light (+1st order diffracted light, ±2nd order diffracted light, and 0th order light that is output as the incident light goes straight without diffraction). 0.989, and it can be seen that all of the output light beams within the range of the measurement error are −1st-order diffracted light that is output after reversing the direction of polarization rotation of the incident light beam. For oblique incidence (angle of incidence equal to polar angle), a light beam with right-handed elliptical polarization is output in the −1 order diffraction direction. Here, it can be seen that as the incident angle (polar angle) increases, the ellipticity decreases, the elliptical azimuth angle shows a negative azimuth angle, and the efficiency decreases.
 図11Aに、偏光回折格子11の左回り楕円偏光の斜め入射時における光回折機能を示す。負の楕円方位角(-ψθ)の左回り楕円偏光を有する光ビームが偏光回折格子11に紙面裏側から角度λで入射すると、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力される。しかし、図10Aの例と異なり、それ以外の回折方向に出力される漏れ光は少なくなる。 FIG. 11A shows the optical diffraction function of the polarization diffraction grating 11 when left-handed elliptically polarized light is obliquely incident. When a light beam having a left-handed elliptical polarized light with a negative elliptical azimuth angle (−ψ θ ) is incident on the polarization diffraction grating 11 from the back side of the paper at an angle λ, the right-handed elliptical polarized light with the reversed polarization rotation direction has a negative elliptical azimuth angle. A light beam with (−ψ θ ) is output in the −1 order diffraction direction. However, unlike the example of FIG. 10A, less leakage light is output in other diffraction directions.
 図11Bに、偏光回折格子11に左回り楕円偏光を有する光ビームを斜め入射した場合の出力ビームの偏光特性の測定結果を示す。出力ビームの偏光特性は先と同様に偏光計を用いて測定した。ここでは、光ビームの入射角(極角λ)に対して、効率が最大となる、入力ビームの楕円偏光の楕円率及び偏光方位角を決定した。極角λが大きくなるにつれて、楕円率は小さく、楕円方位角は負の小さい角度の楕円偏光を有する光ビームを入力することで、高い効率を維持できることがわかる。これらの楕円率及び偏光方位角の楕円偏光を有する光ビームを、効率最適化光ビームと呼ぶ。 FIG. 11B shows measurement results of polarization characteristics of an output beam when a light beam having left-handed elliptically polarized light is obliquely incident on the polarization diffraction grating 11 . The polarization properties of the output beam were measured using a polarimeter as before. Here, the ellipticity and polarization azimuth angle of the elliptical polarization of the input beam, which maximizes the efficiency, were determined with respect to the incident angle (polar angle λ) of the light beam. It can be seen that high efficiency can be maintained by inputting an elliptically polarized light beam having a smaller ellipticity and a smaller negative elliptical azimuth angle as the polar angle λ increases. A light beam having elliptical polarization with these ellipticities and polarization azimuths is called an efficiency optimized light beam.
 図12に、偏光回折格子11に左回り円偏光を有する光ビームを入射した場合の効率(図10B参照)と偏光回折格子11に左回り楕円偏光を有する光ビーム(効率最適化光ビーム)を入射した場合の効率(図11B参照)との比較を示す。光ビームの入射角(極角λ)が大きくなるにつれて、効率は低下する、すなわち-1次の回折光以外の漏れ光が増加するが、円偏光光を入力するよりも、適当な楕円率及び負の楕円方位角を有する楕円偏光光を入力するほうが効率は高く、-1次の回折光以外の漏れ光を低減できることがわかる。 FIG. 12 shows the efficiency when a left-handed circularly polarized light beam is incident on the polarization diffraction grating 11 (see FIG. 10B) and the left-handed elliptically polarized light beam on the polarization diffraction grating 11 (efficiency optimized light beam). A comparison with the efficiency (see FIG. 11B) in the case of incidence is shown. As the incident angle (polar angle λ) of the light beam increases, the efficiency decreases, that is, the leakage light other than the −1st order diffracted light increases. It can be seen that input of elliptically polarized light having a negative elliptical azimuth angle is more efficient and can reduce leakage light other than the -1st order diffracted light.
 図13に、偏光回折格子11の光回折効率を示す。偏光回折格子11の液晶組成物は、光ビームの出力側から入力側を見て、図面右方に一定周期で時計回りに配向回転(すなわち、複屈折軸を回転)して配列されている。光ビームは光軸Lに対して角度λだけ傾いて偏光回折格子11に入射する。先に図10Aを用いて説明したように左回り円偏光光が斜め入射した場合(1)、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力されるとともに、それ以外の回折方向に漏れ光が出力されるため、効率が低い。これに対して、先に図11Aを用いて説明したように負の楕円方位角(-ψ)を有する楕円偏光光が斜め入射した場合(2)、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力され、それ以外の回折方向への漏れ光が減少するため、効率が高い。 FIG. 13 shows the optical diffraction efficiency of the polarization diffraction grating 11. As shown in FIG. The liquid crystal composition of the polarizing diffraction grating 11 is arranged with rotation of the orientation clockwise (that is, rotation of the birefringence axis) at a constant period on the right side of the drawing when viewed from the output side of the light beam to the input side. The light beam is incident on the polarization diffraction grating 11 at an angle λ with respect to the optical axis L. As shown in FIG. When left-handed circularly polarized light is obliquely incident (1) as described above with reference to FIG. 10A, a right-handed elliptical polarized light beam with a reversed polarization rotation direction and a negative elliptical azimuth angle (−ψ θ ) is obtained. is output in the −1st order diffraction direction, and leakage light is output in the other diffraction directions, resulting in low efficiency. On the other hand, when elliptically polarized light having a negative elliptical azimuth angle (-ψ) is obliquely incident (2) as described above with reference to FIG. A light beam having a negative elliptical azimuth angle (−ψ θ ) is output in the −1st order diffraction direction, and leakage light in other diffraction directions is reduced, resulting in high efficiency.
 上述の考察に基づいて、偏光回折格子11に光軸Lに対して角度λの光ビームが入射する場合、補償層12は、入射する光ビームが図12に示した最適化楕円偏光(入射角の増大に対してより小さい楕円率及び負のより小さい楕円方位角)を有する光ビームに変調されるよう形成される。 Based on the above considerations, when a light beam is incident on the polarization diffraction grating 11 at an angle λ with respect to the optical axis L, the compensation layer 12 is such that the incident light beam is the optimized elliptically polarized light (incident angle is shaped to be modulated into a light beam having a smaller ellipticity and a smaller negative elliptical azimuth with increasing .
 補償層12は、次のように製造することができる。まず、ガラス、フィルム等の支持基板(本実施形態の場合、偏光回折格子11の前面でもよい)上に配向剤を塗布し、これを乾燥して配向膜を形成する。配向剤として、例えば、DIC社製アゾベンゼン含有高分子材料、日産化学社製シンナモイル基及びカルコン基等の光二量化部位を有する高分子材料を用いる。次いで、配向膜を、直線偏光を有する光ビーム(特に紫外線ビーム)を用いて露光することにより、その偏光方向と平行又は直交する方向を液晶分子の配向方向として記録する。第1の実施形態では、配向方向を一軸方向(Y軸方向)に定めた。なお、この方向が遅相軸を定める。最後に、配向膜の上に光重合性液晶組成物を塗布して液晶膜を製膜する。組成物に含まれる液晶分子は、配向膜に記録された配向方向を向いて配列されることとなる。さらに、液晶膜上にフィルムを貼り付けてもよい。 The compensation layer 12 can be manufactured as follows. First, an alignment agent is applied onto a supporting substrate such as glass or film (in the case of the present embodiment, it may be the front surface of the polarization diffraction grating 11), and dried to form an alignment film. As the alignment agent, for example, an azobenzene-containing polymer material manufactured by DIC Corporation, a polymer material having a photodimerization site such as a cinnamoyl group and a chalcone group manufactured by Nissan Chemical Industries, Ltd. is used. Next, by exposing the alignment film with a light beam having linear polarization (in particular, an ultraviolet beam), the direction parallel or orthogonal to the polarization direction is recorded as the alignment direction of the liquid crystal molecules. In the first embodiment, the orientation direction is set to be uniaxial (Y-axis direction). This direction defines the slow axis. Finally, the alignment film is coated with a photopolymerizable liquid crystal composition to form a liquid crystal film. The liquid crystal molecules contained in the composition are aligned in the alignment direction recorded on the alignment film. Furthermore, you may stick a film on a liquid crystal film.
 上述のとおり製造される補償層において、液晶組成物の配向方向、種類及び屈折率、液晶膜の膜厚等の設計パラメータを定めることで、所望の光変調特性を発現させる。補償層12は、液晶組成物の種類より定まるその複屈折率に応じて、補償層12を通る光ビームが、図3Bに示した左周り円偏光を有する光ビームの入射角(極角)に対応する楕円率及び楕円方位角に変調されるように、特に液晶組成物の配向方向及び液晶膜の膜厚を定める。これらの設計パラメータは、LCD Master(シンテック株式会社)のようなシミュレーションソフトを用いて決定することができる。その結果、補償層12は、入射する左回り円偏光を有する光ビームを、最適化された楕円率及び負の楕円方位角(-ψ)を有する左回り楕円偏光を有する光ビームに変調する。 In the compensation layer manufactured as described above, desired light modulation characteristics are expressed by determining design parameters such as the alignment direction, type and refractive index of the liquid crystal composition, and the film thickness of the liquid crystal film. In the compensation layer 12, the light beam passing through the compensation layer 12 is at the incident angle (polar angle) of the light beam having left-handed circularly polarized light shown in FIG. In particular, the alignment direction of the liquid crystal composition and the thickness of the liquid crystal film are determined so that the corresponding ellipticity and elliptical azimuth angle are modulated. These design parameters can be determined using simulation software such as LCD Master (Shintech Co., Ltd.). As a result, the compensation layer 12 modulates an incident light beam with left-handed circularly polarized light into a light beam with left-handed circularly polarized light with optimized ellipticity and negative elliptical azimuth angle (−ψ).
 なお、補償層12として、上述の偏光特性を備えることができれば、ポリカーボネート、環状オレフィンコポリマ(COC)、ポリエステル(PET)等の複屈折を有するフィルムを使用してもよい。 As the compensation layer 12, a film having birefringence such as polycarbonate, cyclic olefin copolymer (COC), polyester (PET), etc. may be used as long as it can have the above-described polarizing properties.
 なお、第1の実施形態に係る光学積層体10では、補償層12は、入力する円偏光を有する光ビームγを変調して楕円偏光を有する光ビームを出力するよう形成されるとしたが、直線偏光または楕円偏光を有する光ビームγを変調して効率最適化光ビームとなる楕円偏光を有する光ビームを出力するよう形成してもよい。また、適当な楕円偏光を有する光ビームγが入力される場合にはその楕円方位角ψのみを変調するよう形成されることとしてもよい。 In the optical laminate 10 according to the first embodiment, the compensation layer 12 is formed so as to modulate the input light beam γ having circular polarization and output the light beam having elliptically polarized light. A light beam γ having linear or elliptical polarization may be modulated to output a light beam having elliptical polarization resulting in an efficiency optimized light beam. Also, when a light beam γ having an appropriate elliptical polarization is input, it may be configured to modulate only the elliptical azimuth angle ψ.
 なお、第1の実施形態の光学積層体10へ斜めに入射する光ビームλが、光軸Lに対して極角θ又は極角λだけ傾く場合について記載したが、逆に極角-θ又は極角-λだけ斜めに入射する場合も同様である。斯かる場合、先述の説明において、偏光回折格子11の出力ビームの回折方向は変わらず(+1次か-1次のどちらに回折するかは入射する光ビームγの偏光回転方向で決まる)、また出力ビームの楕円偏光の偏光方位角ψも変わらないことが予想される(偏光回折格子の周期的に配向された液晶組成物を光ビームλから見たときに極角θで入射する場合と-θで入射する場合とで、また極角λで入射する場合と-λで入射する場合とで液晶組成物の傾きが同じになるため)。従って、補償層12の機能は同じになることが予想されるため、光軸Lに対して極角-θ又は極角-λだけ斜めに入射する場合の光学積層体10の機能については詳述しない。仮に光ビームγが偏光回折格子11に極角-θ又は極角-λで入射した場合の出力ビームの偏光方位角(及び/又は楕円率)が極角θ又はλで入射した場合と異なるとしても、補償層の設計は、先述した測定および計算を別に行うことで可能である。 The case where the light beam λ obliquely incident on the optical layered body 10 of the first embodiment is inclined by the polar angle θ or the polar angle λ with respect to the optical axis L has been described. The same applies when the light is obliquely incident at a polar angle of -λ. In such a case, in the above description, the diffraction direction of the output beam of the polarization diffraction grating 11 does not change (whether it is diffracted to +1st order or -1st order is determined by the polarization rotation direction of the incident light beam γ), and The polarization azimuth angle ψ of the elliptical polarization of the output beam is also expected to remain unchanged (when the periodically oriented liquid crystal composition of the polarization grating is incident at a polar angle θ when viewed from the light beam λ and − This is because the inclination of the liquid crystal composition is the same for the case of incidence at θ, and for the case of incidence at the polar angle λ and -λ). Therefore, since the function of the compensation layer 12 is expected to be the same, the function of the optical laminate 10 in the case of oblique incidence with respect to the optical axis L by a polar angle of -θ or -λ will be described in detail. do not. Assuming that the polarization azimuth (and/or ellipticity) of the output beam when the light beam γ is incident on the polarization diffraction grating 11 at a polar angle of −θ or −λ is different from that when the light beam is incident at a polar angle of θ or λ. However, the design of the compensating layer is possible by separately performing the measurements and calculations previously described.
 なお、先述した全ての測定は、偏光回折格子11の液晶組成物の配列パターン間のピッチが11μmの物を使用して行ったものである。異なるピッチの偏光回折格子を使用する場合は、当該ピッチごとに測定を実施して効率最適化光ビームの条件を調整したうえで補償層を設計してもよい。 All the measurements described above were performed using the polarization diffraction grating 11 with a pitch of 11 μm between the arrangement patterns of the liquid crystal composition. When using polarization gratings with different pitches, measurements may be performed for each pitch to adjust the conditions of the efficiency-optimized light beam before designing the compensation layer.
 《第2の実施形態》
 図14に、第2の実施形態に係る光学積層体20の構成を示す。光学積層体20は、光ビームγを集束又は拡散するための複数の光学素子の集合体であって、偏光回折格子21及び補償層22を備える。
<<Second embodiment>>
FIG. 14 shows the configuration of an optical layered body 20 according to the second embodiment. The optical layered body 20 is an assembly of a plurality of optical elements for converging or diffusing the light beam γ, and includes a polarizing diffraction grating 21 and a compensation layer 22 .
 図15に、第2の実施形態に係る光学積層体の作用と補償層の機能を示す。ここで、光ビームγの光軸Lに対する平行方向(光ビームγの進行方向)をZ軸方向(+Z方向)とし、これに直交する面(RC面とする)内で光軸Lを基準とする動径方向(この外向き方向)をR方向(+R方向)とし、Z軸方向及びR方向にそれぞれ直交する方向をC方向とし、-Z側を前側(入力側ともいう)及び+Z側を後側(出力側ともいう)とし、RZ面内で+Z方向を基準に-R方向に向かう角度を極角λとする。また、C軸を基準に、RC面上で+R方向に向かう角度を方位角ψとし、これにより光ビームγの楕円偏光の楕円方位角を定義する(図16等参照)。 FIG. 15 shows the action of the optical layered body and the function of the compensation layer according to the second embodiment. Here, the direction parallel to the optical axis L of the light beam γ (the traveling direction of the light beam γ) is defined as the Z-axis direction (+Z direction), and the optical axis L is used as a reference in a plane (RC plane) perpendicular to the Z-axis direction (+Z direction). The radial direction (this outward direction) is defined as the R direction (+R direction), the direction orthogonal to the Z axis direction and the R direction is defined as the C direction, and the -Z side is the front side (also called the input side) and the +Z side is the The rear side (also referred to as the output side) is defined as the polar angle λ, which is the angle toward the −R direction with respect to the +Z direction in the RZ plane. Also, with the C axis as a reference, the angle toward the +R direction on the RC plane is defined as the azimuth angle ψ, which defines the elliptical azimuth angle of the elliptical polarization of the light beam γ (see FIG. 16, etc.).
 偏光回折格子21は、-Z側から入力する光ビームγをその偏光状態に応じて選択的に光軸Lに対して集束及び拡散する光学素子である。偏光回折格子21は、例えば、偏光ホログラムを用いて偏光パターンを記録した光配向フィルム上で、複屈折を有する重合性メソゲンのような液晶組成物を配向させることで形成される幾何学的位相ホログラム素子(GPH素子)である(特許文献2参照)。ここで、偏光回折格子21の液晶組成物は、光ビームの出力側から入力側を見て、光軸中心からすべての動径方向(+R方向)に一定周期で時計回りに配向回転(すなわち、複屈折軸を回転)して配列されている。それにより、偏光回折格子21の回折方向はR方向となり、入射光をその偏光方向を変えつつ光軸Lを基準とするR方向の内向き(-R方向)又は外向き(+R方向)に回折することでレンズ作用(集束又は拡散作用)を及ぼして±1次回折光を出力する。ここで、+R側への回折次数を正、-R側への回折次数を負と定義する。 The polarization diffraction grating 21 is an optical element that selectively focuses and diffuses the light beam γ input from the -Z side with respect to the optical axis L according to its polarization state. The polarization diffraction grating 21 is, for example, a geometric phase hologram formed by orienting a liquid crystal composition such as a polymerizable mesogen having birefringence on a photo-alignment film in which a polarization pattern is recorded using a polarization hologram. It is an element (GPH element) (see Patent Document 2). Here, the liquid crystal composition of the polarizing diffraction grating 21 rotates its orientation clockwise (that is, are arranged by rotating the birefringence axis). As a result, the diffraction direction of the polarization diffraction grating 21 becomes the R direction, and the incident light is diffracted inward (-R direction) or outward (+R direction) in the R direction with the optical axis L as the reference while changing the polarization direction. By doing so, a lens action (focusing or diffusing action) is exerted to output ±1st-order diffracted light. Here, the diffraction order to the +R side is defined as positive, and the diffraction order to the -R side is defined as negative.
 なお、GPH素子は、無偏光の光が入射した場合、左回り円偏光の光束を拡散して出力するとともに右回り円偏光の光束を集束して出力し、右回り円偏光の光が入射した場合、偏光方向を左回り円偏光に反転しつつ光束を拡散して出力し、左回り円偏光の光が入射した場合、右回り円偏光に反転しつつ光束を集束して出力する。GPH素子は、光ビームγに対する屈折角の波長分散及びこれに伴う色収差を補償するのに利用される。 When non-polarized light is incident on the GPH element, the left-handed circularly polarized light beam is diffused and output, and the right-handed circularly polarized light beam is converged and output. In this case, the luminous flux is diffused and output while the polarization direction is inverted to left-handed circularly polarized light, and when left-handed circularly polarized light is incident, the luminous flux is focused and output while being inverted to right-handed circularly polarized light. A GPH element is used to compensate for the wavelength dispersion of the refraction angle for the light beam γ and the associated chromatic aberration.
 偏光回折格子21は、光軸Lに対して直交するように配置される。光ビームγは光軸L上の1点に集束する方向で前側から偏光回折格子21に入る。従って、光ビームγは、光軸L上では偏光回折格子21に垂直に入るが、光軸Lから動径方向に離間した位置には有限の角度(極角λ)で入ることとなる。偏光回折格子21の光回折機能については後で詳述する。 The polarization diffraction grating 21 is arranged so as to be orthogonal to the optical axis L. The light beam γ enters the polarization diffraction grating 21 from the front side in a direction converging on one point on the optical axis L. Therefore, the light beam γ enters the polarizing diffraction grating 21 perpendicularly on the optical axis L, but enters a position away from the optical axis L in the radial direction at a finite angle (polar angle λ). The optical diffraction function of the polarization diffraction grating 21 will be detailed later.
 補償層22は、偏光回折格子21の入力側に配されて、-Z側から入力する円偏光を有する光ビームγを変調して、適当な楕円率及び偏光方位角ψの楕円偏光を有する光ビームを出力するように形成されたシート状又は膜状の光学素子である。補償層22は、偏光回折格子21の前面に積層されることで、光軸Lに対して直交するように配置される。ただし、補償層22は、偏光回折格子21の前面側に配置されればよく、偏光回折格子21から離間して配置されてもよく、またそれらに間に別の素子を挟んで配置されてもよい。 The compensation layer 22 is disposed on the input side of the polarization diffraction grating 21 and modulates the circularly polarized light beam γ input from the −Z side to produce an elliptically polarized light beam with appropriate ellipticity and polarization azimuth angle ψ. It is a sheet-like or film-like optical element configured to output a beam. The compensation layer 22 is arranged perpendicular to the optical axis L by being laminated on the front surface of the polarization diffraction grating 21 . However, the compensation layer 22 may be arranged on the front side of the polarization diffraction grating 21, may be arranged apart from the polarization diffraction grating 21, or may be arranged with another element sandwiched therebetween. good.
 後述するように円偏光を有する光ビームγが光軸Lに対して集束し、有限の角度λで偏光回折格子21に入るために±1次光以外の漏れ光(すなわち、不要光、ゴースト光とも呼ぶ)が発生するところ、入射する光ビームを、補償層22を介してその楕円偏光の楕円率及び/又は偏光方位角を変調して偏光回折格子21に入れることで、漏れ光の発生を抑えることができる。補償層22の構成及び特性については後述する。 As will be described later, the light beam γ having circular polarization converges on the optical axis L and enters the polarization diffraction grating 21 at a finite angle λ. ) is generated, the incident light beam is modulated in the ellipticity and/or the polarization azimuth angle of the elliptical polarized light through the compensation layer 22 and enters the polarization diffraction grating 21, thereby suppressing the occurrence of leakage light. can be suppressed. The configuration and characteristics of the compensation layer 22 will be described later.
 図16に、偏光回折格子21の左回り円偏光光の斜め入射時における光回折機能を示す。先述の通り、光ビームγは光軸L上の1点に集束する方向で補償層22を介して偏光回折格子21に入る。そこで、光ビームγの一部が入る偏光回折格子21の局所領域においては、偏光回折格子21の液晶組成物21aは一軸方向(本例では図面右方向)に一定周期で時計回りに配向回転して配列され、その局所領域の中心(又は代表位置)に光ビームγの一部が方位角ψ(液晶組成物の配向回転の方向21bに等しく、本例では90度)及び極角λをなして入射する。このように左回り円偏光を有する光ビームγが偏光回折格子21に紙面裏側から角度λで入射すると、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向(-R方向)に出力されるとともに、それ以外の回折方向に漏れ光が出力される。 FIG. 16 shows the optical diffraction function of the polarization diffraction grating 21 when left-handed circularly polarized light is obliquely incident. The light beam γ enters the polarizing diffraction grating 21 through the compensation layer 22 in a direction converging at one point on the optical axis L, as described above. Therefore, in the localized region of the polarization diffraction grating 21 where part of the light beam γ enters, the liquid crystal composition 21a of the polarization diffraction grating 21 rotates clockwise in a uniaxial direction (in this example, the right direction in the drawing) at a constant cycle. and a part of the light beam γ forms an azimuth angle ψ (equal to the orientation rotation direction 21b of the liquid crystal composition, which is 90 degrees in this example) and a polar angle λ at the center (or representative position) of the local region. incident on the In this way, when the light beam γ having left-handed circularly polarized light is incident on the polarization diffraction grating 21 from the back side of the drawing at an angle λ, it is right-handed elliptical polarized light whose direction of polarization rotation is reversed and has a negative elliptical azimuth angle (−ψ θ ). A light beam is output in the −1st-order diffraction direction (−R direction), and leakage light is output in the other diffraction directions.
 なお、図16の構成は図10Aと同じであり、軸の定義が、図10Aの+Y方向が図16では+C方向に、図10Aの+X方向が図16では+R方向に変わっただけである。従って、偏光回折格子21に左回り円偏光を有する光ビームを入射した場合の出力ビームの偏光特性は図10Bのとおりになる。すなわち、垂直入射(極角ゼロ)の場合、右回り円偏光を有する光ビームが-1次の回折方向に出力される。その強度は、-1次回折光とそれ以外の漏れ光(+1次回折光、±2次回折光及び、回折せずに入射光がそのまま直進して出力する0次光)の和の強度に対する比として0.989であり、およそ測定誤差の範囲内で出力した光ビームのすべてが入射した光ビームの偏光回転方向を反転して出力される-1次回折光であることがわかる。斜め入射(入射角は極角に等しい)の場合、右回り楕円偏光を有する光ビームが-1次の回折方向に出力される。ここで、入射角(極角)の増大とともに楕円率は小さくなり、楕円方位角は負の方位角を示し、効率は低下することがわかる。 The configuration of FIG. 16 is the same as that of FIG. 10A, except that the +Y direction in FIG. 10A is changed to the +C direction in FIG. 16, and the +X direction in FIG. 10A is changed to the +R direction in FIG. Therefore, when a light beam having left-handed circularly polarized light is incident on the polarization diffraction grating 21, the polarization characteristics of the output beam are as shown in FIG. 10B. That is, in the case of normal incidence (zero polar angle), a light beam having right-handed circularly polarized light is output in the −1st order diffraction direction. The intensity is 0 as a ratio to the sum of the intensity of the -1st order diffracted light and other leaked light (+1st order diffracted light, ±2nd order diffracted light, and 0th order light that is output as the incident light goes straight without diffraction). 0.989, and it can be seen that all of the output light beams within the range of the measurement error are −1st-order diffracted light that is output after reversing the direction of polarization rotation of the incident light beam. For oblique incidence (angle of incidence equal to polar angle), a light beam with right-handed elliptical polarization is output in the −1 order diffraction direction. Here, it can be seen that as the incident angle (polar angle) increases, the ellipticity decreases, the elliptical azimuth angle shows a negative azimuth angle, and the efficiency decreases.
 図17に、偏光回折格子21の左回り楕円偏光の斜め入射時における光回折機能を示す。負の楕円方位角(-ψθ)の左回り楕円偏光を有する光ビームが偏光回折格子21に紙面裏側から方位角ψ(液晶組成物21aの配向回転の方向21bに等しく、本例では90度)及び角度λで入射すると、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力される。しかし、図16の例と異なり、それ以外の回折方向に出力される漏れ光は少なくなる。 FIG. 17 shows the optical diffraction function of the polarization diffraction grating 21 when left-handed elliptically polarized light is obliquely incident. A light beam having a left-handed elliptical polarized light with a negative elliptical azimuth angle (−ψ θ ) passes through the polarization diffraction grating 21 at an azimuth angle ψ (equal to the direction 21b of the orientation rotation of the liquid crystal composition 21a, which is 90 degrees in this example). ) and an angle λ, a right-handed elliptical polarized light beam with a reversed polarization rotation direction and a negative elliptical azimuth angle (−ψ θ ) is output in the −1st order diffraction direction. However, unlike the example of FIG. 16, less leakage light is output in other diffraction directions.
 なお、図17の構成は図11Aと同じであり、軸の定義が、図11Aの+Y方向が図17では+C方向に、図11Aの+X方向が図17では+R方向に変わっただけである。従って、偏光回折格子21に左回り楕円偏光を有する光ビームを斜め入射した場合の出力ビームの偏光特性は図11Bのとおりになる。すなわち、極角λが大きくなるにつれて、楕円率は小さく、楕円方位角は負の小さい角度の楕円偏光を有する光ビームを入力することで、高い効率を維持できることがわかる。これらの楕円率及び偏光方位角の楕円偏光を有する光ビームを、効率最適化光ビームと呼ぶ。 The configuration of FIG. 17 is the same as that of FIG. 11A, except that the +Y direction in FIG. 11A is changed to the +C direction in FIG. 17, and the +X direction in FIG. 11A is changed to the +R direction in FIG. Therefore, when a light beam having left-handed elliptically polarized light is obliquely incident on the polarization diffraction grating 21, the polarization characteristics of the output beam are as shown in FIG. 11B. That is, as the polar angle λ increases, the ellipticity decreases and the elliptical azimuth angle of the ellipse is input with elliptically polarized light having a small negative angle, whereby high efficiency can be maintained. A light beam having elliptical polarization with these ellipticities and polarization azimuths is called an efficiency optimized light beam.
 偏光回折格子21に左回り円偏光を有する光ビームを入射した場合の効率(図10B参照)と偏光回折格子21に左回り楕円偏光を有する光ビーム(効率最適化光ビーム)を入射した場合の効率(図11B参照)との比較は図12と同じである。光ビームの入射角(極角λ)が大きくなるにつれて、効率は低下する、すなわち-1次の回折光以外の漏れ光が増加するが、円偏光光を入力するよりも、適当な楕円率及び負の楕円方位角を有する楕円偏光光を入力するほうが効率は高く、-1次の回折光以外の漏れ光を低減できる。 The efficiency when a left-handed circularly polarized light beam is incident on the polarization diffraction grating 21 (see FIG. 10B) and the efficiency when a left-handed elliptically polarized light beam is incident on the polarization diffraction grating 21 (efficiency optimized light beam). Comparison with efficiency (see FIG. 11B) is the same as in FIG. As the incident angle (polar angle λ) of the light beam increases, the efficiency decreases, that is, the leakage light other than the −1st order diffracted light increases. Efficiency is higher when elliptically polarized light having a negative elliptical azimuth angle is input, and leakage light other than the -1st order diffracted light can be reduced.
 図18に、偏光回折格子21の光回折効率を示す。偏光回折格子21の液晶組成物21aは、光ビームの出力側から入力側を見て、+R方向(本例では図面右方)に一定周期で時計回りに配向回転(すなわち、複屈折軸を回転)して配列されている、つまり配向回転の方向21bは図面右方とする。その偏光回折格子21に対して光ビームが角度λだけ-R方向(本例では図面左方)に傾斜して入射する。先に図16を用いて説明したように左回り円偏光光が斜め入射した場合(1)、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力されるとともに、それ以外の回折方向に漏れ光が出力されるため、効率が低い。これに対して、先に図17を用いて説明したように負の楕円方位角(-ψ)を有する楕円偏光光が斜め入射した場合(2)、偏光回転方向を反転した右回り楕円偏光で負の楕円方位角(-ψθ)を有する光ビームが-1次の回折方向に出力され、それ以外の回折方向への漏れ光が減少するため、効率が高い。 FIG. 18 shows the optical diffraction efficiency of the polarization diffraction grating 21. As shown in FIG. The liquid crystal composition 21a of the polarizing diffraction grating 21 rotates its orientation clockwise (that is, rotates the birefringence axis) in the +R direction (to the right of the drawing in this example) at a constant cycle when viewed from the output side of the light beam to the input side. ), that is, the orientation rotation direction 21b is to the right in the drawing. A light beam is incident on the polarizing diffraction grating 21 with an angle λ in the −R direction (to the left in the drawing in this example). When left-handed circularly polarized light is obliquely incident (1) as described above using FIG. is output in the −1st order diffraction direction, and leakage light is output in the other diffraction directions, resulting in low efficiency. On the other hand, when elliptically polarized light having a negative elliptical azimuth angle (−ψ) is obliquely incident (2) as described above with reference to FIG. A light beam having a negative elliptical azimuth angle (−ψ θ ) is output in the −1st order diffraction direction, and leakage light in other diffraction directions is reduced, resulting in high efficiency.
 上述の考察に基づいて、補償層22は、入射する光ビームが図12に示した最適化楕円偏光(入射角の増大に対してより小さい楕円率及び負のより小さい楕円方位角)を有する光ビームに変調されるよう形成される。 Based on the above considerations, the compensation layer 22 is suitable for light with an incident light beam having the optimized elliptical polarization shown in FIG. formed to be modulated into a beam.
 図19Aに、補償層22の構成を示す。補償層22は、光軸Lを中心とする円環状に配された複数の変調領域、すなわち円環状の領域を周方向に複数等分(本実施形態では一例として8等分)して形成される8つの変調領域22a~22hを含む。変調領域22a~22hのそれぞれについて、各領域の中心又はその近傍等の代表位置における光ビームの入射角(極角)λ及び入射方位角ψ(変調領域22a~22hに対してそれぞれ90度、45度、0度、-45度、-90度、-135度、180度、及び135度)に応じて光ビームの楕円率及び偏光方位角を変調する。変調領域22a~22hは、入射する光ビームの方位角ψを基準にすれば、その方位角ψは各領域内の液晶組成物21aの配向回転の方向21bに対応するから、代表位置を各領域の中心等に統一することで光ビームの入射角(極角)λに対して統一的に設計することができる。そこで、変調領域22a~22hを代表して、変調領域22aの構成を説明する。 The configuration of the compensation layer 22 is shown in FIG. 19A. The compensation layer 22 is formed by dividing a plurality of modulation regions arranged in an annular shape around the optical axis L, that is, by dividing the annular region into a plurality of equal parts in the circumferential direction (eight equal parts as an example in this embodiment). It includes eight modulation regions 22a-22h. For each of the modulation regions 22a to 22h, the incident angle (polar angle) λ and incident azimuth angle ψ of the light beam at a representative position such as the center of each region or its vicinity (90 degrees and 45 degrees, 0 degrees, -45 degrees, -90 degrees, -135 degrees, 180 degrees, and 135 degrees). If the azimuth angle ψ of the incident light beam is used as a reference, the modulation areas 22a to 22h correspond to the orientation rotation direction 21b of the liquid crystal composition 21a in each area. can be uniformly designed for the incident angle (polar angle) λ of the light beam. Therefore, the configuration of the modulation area 22a will be described as a representative of the modulation areas 22a to 22h.
 図19Bに、変調領域22aにおける補償層22の変調機能を示す。補償層22は、左回り円偏光を有する光ビームが-R方向(図面左方)に傾斜して変調領域22aに入ると、その光ビームを、図11Bに示した大きな入射角(極角)に対してより小さい楕円率及び負のより小さい楕円方位角(-ψ)を有するように楕円率及び楕円方位角を変調し、そして入射角と同じ角度で出力するように構成される。 FIG. 19B shows the modulation function of the compensation layer 22 in the modulation region 22a. When a light beam having left-handed circularly polarized light is inclined in the −R direction (leftward in the drawing) and enters the modulation region 22a, the compensation layer 22 directs the light beam to the large incident angle (polar angle) shown in FIG. 11B. is configured to modulate the ellipticity and elliptical azimuth angle to have less ellipticity and less negative elliptical azimuth angle (−ψ) with respect to and output at the same angle as the incident angle.
 補償層22の各変調領域22a~22hは、先述の補償層12と同様に製造することができる。ここで、液晶組成物の配向方向、種類及び屈折率、液晶膜の膜厚等の設計パラメータを定めることで、所望の光変調特性を発現させる。例えば、変調領域22aは、C方向(光ビームγと偏光回折格子21の液晶組成物21aの回転配向方向21b、すなわち偏光回折格子21の回折方向とに直交する方向)を基準として、図11Bに示した光ビームの入射角(極角)に対応する最適化な楕円方位角(-ψ)に対応する方向に液晶組成物の配向方向を定める。残りの変調領域22b~22hも、同様に、それぞれの領域中心に対するC方向を基準として最適化な楕円方位角(-ψ)に対応する方向に液晶組成物の配向方向を定める。それにより、各領域内での遅相軸が定まり、各変調領域22a~22hは領域毎に異なる方向を向く遅相軸を有することとなる。その結果、補償層22は、入射する左回り円偏光を有する光ビームを、負の楕円方位角(-ψ)を有する左回り楕円偏光を有する光ビームに変調する。また、変調領域22a~22hを通る光ビームが、図11Bに示した光ビームの入射角(極角)に対応する最適な楕円率に変調されるように、液晶組成物の種類より定まるその複屈折率に応じて特に液晶膜の膜厚を定める。これらの設計パラメータは、LCD Master(シンテック株式会社)のようなシミュレーションソフトを用いて決定することができる。それにより、各領域内での光ビームが受ける位相差が定まり、各変調領域22a~22hは共通する位相差を有することとなる。 Each modulation region 22a-22h of the compensation layer 22 can be manufactured in the same manner as the compensation layer 12 described above. Desired light modulation characteristics are developed by determining design parameters such as the alignment direction, type and refractive index of the liquid crystal composition, and the film thickness of the liquid crystal film. For example, the modulation region 22a is shown in FIG. The alignment direction of the liquid crystal composition is determined in the direction corresponding to the optimized elliptical azimuth angle (−ψ) corresponding to the incident angle (polar angle) of the light beam shown. The remaining modulation regions 22b to 22h similarly define the orientation direction of the liquid crystal composition in the direction corresponding to the optimized elliptical azimuth angle (−ψ) with reference to the C direction with respect to the center of each region. As a result, the slow axis in each region is determined, and each modulation region 22a to 22h has a slow axis pointing in a different direction for each region. As a result, the compensation layer 22 modulates an incident light beam having left-handed circular polarization into a light beam having left-handed elliptical polarization with a negative elliptical azimuth angle (−ψ). Further, the light beams passing through the modulation regions 22a to 22h are modulated to the optimum ellipticity corresponding to the incident angle (polar angle) of the light beams shown in FIG. 11B. In particular, the film thickness of the liquid crystal film is determined according to the refractive index. These design parameters can be determined using simulation software such as LCD Master (Shintech Co., Ltd.). Thereby, the phase difference that the light beam receives in each region is determined, and each modulation region 22a to 22h has a common phase difference.
 図20に、第2の実施形態に係る光学積層体20におけるビーム回折原理を、比較例の偏光回折格子21におけるビーム回折原理とともに示す。 FIG. 20 shows the principle of beam diffraction in the optical layered body 20 according to the second embodiment together with the principle of beam diffraction in the polarization diffraction grating 21 of the comparative example.
 比較例において、左回り円偏光を有する光ビームが方位角ψ=90度(すなわち、図面右方)及び入射角λで偏光回折格子21(図15における変調領域22aに対応する領域)に補償層22を介さずに入ると、偏光回折格子21から負の楕円方位角(-ψθ)の右回り楕円偏光を有する光ビームが-1次の回折方向に出力される。ここで、偏光回折格子21による光ビームの回折は図18に示す状態(1)であり、目的次数の回折方向以外への漏れ光が発生するため効率は低い。 In the comparative example, a light beam with left-handed circularly polarized light hits the polarization grating 21 (the region corresponding to the modulation region 22a in FIG. 15) at an azimuth angle ψ=90 degrees (i.e., rightward in the drawing) and an incident angle λ. 22, a light beam having right-handed elliptically polarized light with a negative elliptical azimuth angle (−ψ θ ) is output from the polarizing diffraction grating 21 in the −1st order diffraction direction. Here, the diffraction of the light beam by the polarizing diffraction grating 21 is in the state (1) shown in FIG. 18, and the efficiency is low because leakage light occurs in directions other than the diffraction direction of the target order.
 実施例において、左回り円偏光を有する光ビームが方位角ψ=90度(すなわち、図面右方)及び入射角λで光学積層体20に入力すると、まずこれが補償層22に入り、負の楕円方位角(-ψθ)の左回り楕円偏光を有する光ビームが同じ角度λで出力されてこれが偏光回折格子21に入り、偏光回折格子21から負の楕円方位角(-ψθ)の右回り楕円偏光を有する光ビームが-1次の回折方向に出力される。ここで、偏光回折格子21による光ビームの回折は図18に示す状態(2)であり、目的次数の回折方向以外への漏れ光の発生が小さいため効率は高い。 In an embodiment, when a light beam with left-handed circular polarization enters the optical stack 20 at an azimuth angle ψ=90 degrees (i.e., to the right in the drawing) and an incident angle λ, it first enters the compensation layer 22 and forms a negative elliptical A light beam having a left-handed elliptical polarization of azimuth (−ψ θ ) is output at the same angle λ which enters the polarization grating 21 and from the polarization grating 21 a clockwise elliptical polarized light of negative elliptical azimuth (−ψ θ ). A light beam having elliptical polarization is output in the -1 order diffraction direction. Here, the diffraction of the light beam by the polarizing diffraction grating 21 is in the state (2) shown in FIG. 18, and the efficiency is high because the leakage light in directions other than the diffraction direction of the target order is small.
 残りの変調領域22b~22hを介した光学積層体20のビーム回折原理は、光ビームが光軸L上の一点に集束する方向である限り、各領域内の液晶組成物21aの回転配向方向21bに対する光ビームの方位角ψ及び入射角(極角)λは同じであるから、変調領域22aを介した光学積層体20のビーム回折原理が同様に成立する。従って、光学積層体20の全体において、目的次数の回折方向以外への漏れ光の発生が小さいため効率は高くなる。 The beam diffraction principle of the optical laminate 20 through the remaining modulation regions 22b to 22h is based on the rotational orientation direction 21b of the liquid crystal composition 21a in each region as long as the light beam is focused on one point on the optical axis L. Since the azimuth angle ψ and the incident angle (polar angle) λ of the light beam with respect to are the same, the principle of beam diffraction of the optical stack 20 via the modulation region 22a also holds true. Therefore, in the entire optical layered body 20, the efficiency is high because the generation of light leaking in directions other than the diffraction direction of the target order is small.
 なお、本実施形態に係る補償層22において、変調領域22a~22hの内側の領域については光ビームの入射角λが小さく、漏れ光の発生は小さいから、変調領域を設けなくてよい。しかし、これに代えて内側の領域にも変調領域を設けてもよい。また、変調領域22a~22hの外側の領域については光ビームの光量は小さいから、変調領域を設けなくてよい。しかし、これに代えて外側の領域にも変調領域を設けてもよい。つまり、R方向に関して複数の変調領域を設けてもよい。 In addition, in the compensation layer 22 according to the present embodiment, the incident angle λ of the light beam is small in the regions inside the modulation regions 22a to 22h, and the occurrence of light leakage is small, so the modulation regions need not be provided. However, instead of this, the modulation area may also be provided in the inner area. Further, since the light amount of the light beam is small in the regions outside the modulation regions 22a to 22h, no modulation regions need to be provided. However, instead of this, the modulation area may also be provided in the outer area. That is, a plurality of modulation regions may be provided in the R direction.
 図21に、変形例に係る補償層22'の構成を示す。補償層22'は、先述の複数の変調領域22a~22hの内側(又は外側でもよい)に、光軸Lを中心とする円環状に配された複数の変調領域、すなわち円環状の領域を周方向に複数等分(先と同様に8等分)して形成される8つの追加の変調領域をさらに含む。これら追加の変調領域のそれぞれが、各領域内の代表位置における光ビームの入射角及び入射方位角に応じて光ビームの楕円率及び偏光方位角を変調する。ここで、変調領域22a~22h及び追加の変調領域は角度範囲(すなわち入射する光ビームの方位角ψ)が一致していることから、代表して、変調領域22a(図中、22aと表記する)及びこの内側に位置する追加の変調領域22aについて説明する。その他の追加の変調領域については、変調領域22aと同様に設計することができる。 FIG. 21 shows the configuration of a compensation layer 22' according to a modification. The compensation layer 22′ has a plurality of modulation regions arranged in an annular shape centered on the optical axis L inside (or may be outside) the plurality of modulation regions 22a to 22h, that is, a ring-shaped region. It further includes eight additional modulation regions formed by dividing into multiple equal parts in the direction (eight equal parts as before). Each of these additional modulation regions modulates the ellipticity and polarization azimuth of the light beam in accordance with the angle of incidence and azimuth of incidence of the light beam at a representative location within each region. Here, the modulation regions 22a to 22h and the additional modulation regions have the same angular range (that is , the azimuth angle ψ of the incident light beam). ) and the additional modulation region 22a2 located inside it will be described. Other additional modulation regions can be designed similarly to modulation region 22a2 .
 図22に、変形例に係る補償層22'の変調領域22a,22aの構成を示す。変調領域22a,22aのそれぞれが、各領域の中心又はその近傍等の代表位置における光ビームの入射角(極角)λ,λに応じて光ビームの楕円率及び偏光方位角を変調する。ここで、一例として、変調領域22aへの光ビームの入射角(極角)λ=40度とする。これに対する効率最適化光ビームの楕円率0.865、偏光方位角-54.9度であり、これらを実現するのに要する補償層の設計条件として遅相軸の向き83.4度及び位相差1.61度を必要とする。従って、変調領域22aでは、C方向を基準として、目的の向きの遅相軸が得られるよう液晶組成物の配向方向を定め、目的の位相差が得られるよう液晶膜の膜厚等を定める。また、変調領域22aへの光ビームの入射角(極角)λ=30度とする。これに対する効率最適化光ビームの楕円率0.910、偏光方位角-60.1度であり、これらを実現するのに要する補償層の設計条件として遅相軸の向き91.3度及び位相差0.90度が求められる。従って、変調領域22aでは、C方向を基準として、目的の向きの遅相軸が得られるよう液晶組成物の配向方向を定め、目的の位相差が得られるよう液晶膜の膜厚等を定める。なお、これらの設計パラメータは、LCD Master(シンテック株式会社)のようなシミュレーションソフトを用いて決定することができる。その結果、補償層22の変調領域22a及び追加の変調領域22aは、入射する左回り円偏光を有する光ビームを、それぞれの入射角に対して最適な楕円率及び負の楕円方位角(-ψ)を有する左回り楕円偏光を有する光ビームに変調する。他の変調領域及び他の追加の変調領域についても同様である。 FIG. 22 shows the configuration of modulation regions 22a 1 and 22a 2 of a compensation layer 22' according to a modification. Each of the modulation regions 22a 1 and 22a 2 modulates the ellipticity and polarization azimuth angle of the light beam according to the incident angles (polar angles) λ 1 and λ 2 of the light beam at representative positions such as the center of each region or the vicinity thereof. modulate. Here, as an example, it is assumed that the incident angle (polar angle) λ 1 of the light beam to the modulation region 22a 1 is 40 degrees. For this, the ellipticity of the efficiency-optimized light beam is 0.865, and the polarization azimuth angle is -54.9 degrees. Requires 1.61 degrees. Therefore, in the modulation region 22a, the alignment direction of the liquid crystal composition is determined with reference to the C direction so as to obtain the desired slow axis direction, and the thickness of the liquid crystal film and the like are determined so as to obtain the desired phase difference. It is also assumed that the incident angle (polar angle) λ 2 of the light beam to the modulation region 22a 2 is 30 degrees. For this, the ellipticity of the efficiency-optimized light beam is 0.910, and the polarization azimuth angle is -60.1 degrees. 0.90 degrees is required. Therefore, in the modulation region 22a2 , the alignment direction of the liquid crystal composition is determined so as to obtain the slow axis in the desired direction with reference to the C direction, and the thickness of the liquid crystal film and the like are determined so as to obtain the desired phase difference. . These design parameters can be determined using simulation software such as LCD Master (Shintech Co., Ltd.). As a result, the modulating region 22a 1 and the additional modulating region 22a 2 of the compensation layer 22 direct an incident light beam with left-handed circular polarization to the optimum ellipticity and negative elliptical azimuth angle ( −φ) into a light beam with left-handed elliptical polarization. The same is true for other modulation regions and other additional modulation regions.
 なお、本実施形態では極角λ,λで偏光回折格子へ入射するときの効率最適化光ビームの条件として図11Bの測定結果を使用したが、偏光回折格子の液晶組成物の配列パターン間のピッチ(本実施例では11μm)が異なる場合は、図11B(偏光回折格子の液晶組成物の配列パターン間のピッチが11μmでの測定値)に対応する測定を当該ピッチごとに実施して効率最適化光ビームの条件を調整したうえで補償層を設計してもよい。また、λよりも角度が大きい入射光やλよりも角度が小さい入射光に対応するために、変調領域22aの外側(22'の外周側)や変調領域22aの内側(22'の中心側)にさらに複数の変調領域があってもよい。 In this embodiment, the measurement results of FIG. 11B were used as the conditions for the efficiency-optimized light beams incident on the polarization diffraction grating at the polar angles λ 1 and λ 2 . When the pitch (11 μm in this example) is different, the measurement corresponding to FIG. The compensation layer may be designed after adjusting the conditions of the efficiency-optimized light beam. Also, in order to deal with incident light with an angle larger than λ 1 and incident light with an angle smaller than λ 2 , the outside of the modulation region 22a 1 (peripheral side of 22') and the inside of the modulation region 22a 2 (22' center side) may have a plurality of modulation regions.
 なお、本実施形態では光ビームγが光軸Lに対して集束する方向(極角λ)の例を示したが、逆に光ビームγが光軸Lに対して拡散する方向(極角-λ)で偏光回折格子21に入射する場合もある。第1の実施形態で説明した通り、偏光回折格子11へ斜めに入射する光ビームγが、光軸Lに対して極角λの場合と-λの場合とで補償層12の機能は同じになることが予想される。従って、本実施形態の補償層22についても同じことが予想されるため光軸Lに対して拡散する方向(極角-λ)で入射する場合の光学積層体20の機能については詳述しない。仮に光ビームγが偏光回折格子21に極角-λで入射した場合の出力ビームの偏光方位角(及び/又は楕円率)が極角λで入射した場合と異なるとしても、補償層の設計は、先述した測定および計算を別に行うことで可能である。 In this embodiment, an example of the direction (polar angle λ) in which the light beam γ converges with respect to the optical axis L is shown, but conversely, the direction in which the light beam γ diverges with respect to the optical axis L (polar angle − λ) may be incident on the polarization diffraction grating 21 . As described in the first embodiment, the function of the compensation layer 12 is the same whether the light beam γ obliquely incident on the polarization diffraction grating 11 is at a polar angle λ or −λ with respect to the optical axis L. expected to become Therefore, since the same is expected for the compensation layer 22 of the present embodiment, the function of the optical layered body 20 when incident in the direction of divergence (polar angle -λ) with respect to the optical axis L will not be described in detail. Even if the polarization azimuth (and/or ellipticity) of the output beam when the light beam γ is incident on the polarization grating 21 at the polar angle −λ is different from when it is incident at the polar angle λ, the design of the compensation layer is , by separately performing the measurements and calculations previously described.
 図23に、第2の実施形態に係る光学積層体20を備える光学装置30の一例を示す。光学装置30は、ユーザの視度に応じて拡大虚像の位置を調節することができるトリプルパス光学モジュールを備える装置であり、画像を表示する表示器31、表示器31の光軸L上で順にアイボックス39側(図面左方)に配置される回折光学素子32、表示器側のハーフミラー面を有するレンズ33、及び反射型偏光板を含むフィルタ34を含み、少なくともレンズ33(ハーフミラー面)により画像を拡大する光学系を備える。光学装置30は、移動装置(不図示)により、フィルタ34に対してレンズ33を光軸Lに沿って駆動することで、光学系が有するフィルタ34及びレンズ33の間で2回光路を折り返すとともに、レンズ33(ハーフミラー面)により画像を拡大することで、ユーザの視度に応じて拡大虚像の位置を調節することが可能となる。斯かる構成の光学装置30において、回折光学素子32に、第2の実施形態に係る光学積層体20(偏光回折格子21を構成するGPH素子)を含めることで、表示器31が出力する画像光31aに対する屈折角の波長分散及びこれに伴う色収差を補償するとともに、目的次数の回折方向以外への漏れ光31b、すなわちゴースト光の発生を抑制することが可能となる。 FIG. 23 shows an example of an optical device 30 including the optical layered body 20 according to the second embodiment. The optical device 30 is a device equipped with a triple-pass optical module capable of adjusting the position of the enlarged virtual image according to the diopter of the user. It includes a diffractive optical element 32 arranged on the eyebox 39 side (left side of the drawing), a lens 33 having a half-mirror surface on the display side, and a filter 34 including a reflective polarizing plate, and at least the lens 33 (half-mirror surface). It has an optical system that magnifies the image by The optical device 30 uses a moving device (not shown) to drive the lens 33 with respect to the filter 34 along the optical axis L, thereby folding back the optical path twice between the filter 34 and the lens 33 included in the optical system. By enlarging the image with the lens 33 (half-mirror surface), it is possible to adjust the position of the enlarged virtual image according to the diopter of the user. In the optical device 30 having such a configuration, the diffraction optical element 32 includes the optical layered body 20 (GPH element constituting the polarization diffraction grating 21) according to the second embodiment, so that the image light output from the display 31 is It is possible to compensate for the wavelength dispersion of the refraction angle with respect to 31a and the accompanying chromatic aberration, and to suppress the occurrence of leaked light 31b in directions other than the diffraction direction of the target order, that is, ghost light.
 なお、第2の実施形態に係る光学積層体20(偏光回折格子21を構成するGPH素子)をさらにフィルタ34内、レンズ33とフィルタ34との間、又はフィルタ34とアイボックス39との間に含めて、色収差補正することとしてもよい。斯かる場合、レンズ33は、その偏光回折格子21の入力側に配されることとなる。 The optical layered body 20 (GPH element constituting the polarization diffraction grating 21) according to the second embodiment is further placed in the filter 34, between the lens 33 and the filter 34, or between the filter 34 and the eyebox 39. It may also include chromatic aberration correction. In such a case, the lens 33 would be arranged on the input side of the polarization grating 21 thereof.
 第2の実施形態に係る光学積層体20は、入射する光ビームの偏光楕円率及び偏光方位角を変調する補償層22と、補償層22の出力側に配されて、光ビームを回折する偏光回折格子21とを備える。ここで、偏光回折格子21は、光ビームを、光軸Lを基準とする動径方向の内向き又は外向きに回折する。これによれば、補償層22が光ビームの偏光楕円率及び偏光方位角を変調することで、目的次数の回折方向、例えば内向きの1次以外への漏れ光の発生の小さい、つまりゴースト光の発生の小さい光学積層体20を提供することができる。 The optical layered body 20 according to the second embodiment includes a compensation layer 22 that modulates the polarization ellipticity and polarization azimuth of an incident light beam, and a polarization layer that is disposed on the output side of the compensation layer 22 and diffracts the light beam. and a diffraction grating 21 . Here, the polarization diffraction grating 21 diffracts the light beam inwardly or outwardly in the radial direction with the optical axis L as a reference. According to this, the compensation layer 22 modulates the polarization ellipticity and the polarization azimuth angle of the light beam, so that the leakage light in the diffraction direction of the target order, for example, the inward direction other than the first order, is small, that is, ghost light. It is possible to provide the optical layered body 20 with less occurrence of .
 なお、第2の実施形態に係る光学積層体20では、左回り円偏光を有する光ビームを入射するよう構成したが、これに代えて、右回り円偏光を有する光ビームを入射するように構成してもよい。斯かる場合、偏光回折格子21を構成する液晶組成物の配向回転の方向に対する偏光方向が逆になることで回折方向等が変わるが、先述と同じアナロジーで光学積層体20を構成することができることは自明である。 Although the optical layered body 20 according to the second embodiment is configured to receive a left-handed circularly polarized light beam, it is configured to receive a right-handed circularly polarized light beam instead. You may In such a case, the direction of polarization is reversed with respect to the direction of orientation rotation of the liquid crystal composition constituting the polarization diffraction grating 21, and thus the direction of diffraction changes. is self-explanatory.
 図24に、第1及び第2の実施形態に係わる光学積層体10又は光学積層体20を備える光学装置40の一例を示す。光学装置40は、偏光回折格子11、補償層12(又は偏光回折格子21、補償層22)、液晶パネル41を備える。液晶パネル41は、入射する光線の偏光回転方向を反転又は非反転して補償層12(又は補償層22)と偏光回折格子11(又は偏光回折格子21)に向けて出力する。偏光回折格子11(又は偏光回折格子21)は入射する円偏光の回転方向によって回折方向が変わるため、液晶パネル41が偏光回転方向を反転又は非反転することで回折方向を切り替えるアクティブ回折格子として機能する。なお、光学装置40は、偏光回折格子11の入力側又は出力側に配されて、光ビームを屈折するレンズ素子をさらに備えてよい。 FIG. 24 shows an example of an optical device 40 including the optical layered body 10 or the optical layered body 20 according to the first and second embodiments. The optical device 40 includes a polarization diffraction grating 11 , a compensation layer 12 (or a polarization diffraction grating 21 or compensation layer 22 ), and a liquid crystal panel 41 . The liquid crystal panel 41 inverts or non-inverts the polarization rotation direction of the incident light and outputs the light toward the compensation layer 12 (or the compensation layer 22) and the polarization diffraction grating 11 (or the polarization diffraction grating 21). Since the polarization diffraction grating 11 (or the polarization diffraction grating 21) changes its diffraction direction depending on the rotation direction of the incident circularly polarized light, the liquid crystal panel 41 functions as an active diffraction grating that switches the diffraction direction by inverting or not inverting the polarization rotation direction. do. The optical device 40 may further include a lens element arranged on the input side or the output side of the polarization diffraction grating 11 to refract the light beam.
 なお、光学装置40では、補償層12(又は補償層22)の入射側に液晶パネル41を配置する構成にしたが、これに代えて液晶パネル41を偏光回折格子11(又は偏光回折格子21)と補償層12(又は補償層22)の間に配置する構成としてもよい。 In the optical device 40, the liquid crystal panel 41 is arranged on the incident side of the compensation layer 12 (or the compensation layer 22). and the compensation layer 12 (or the compensation layer 22).
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It is obvious to those skilled in the art that various modifications and improvements can be made to the above embodiments. It is clear from the description of the scope of the claims that forms with such modifications or improvements can also be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as actions, procedures, steps, and stages in devices, systems, programs, and methods shown in claims, specifications, and drawings is etc., and it should be noted that they can be implemented in any order unless the output of a previous process is used in a later process. Regarding the operation flow in the claims, specification, and drawings, even if explanations are made using "first," "next," etc. for the sake of convenience, it means that it is essential to carry out in this order. isn't it.
 10…光学積層体、11…偏光回折格子、12…補償層、20…光学積層体、21…偏光回折格子、21a…液晶組成物、21b…回転配向方向、22、22'…補償層、22a~22h…変調領域、22a、22a…変調領域、30…光学装置、31…表示器、32…回折光学素子、33…レンズ、34…フィルタ、39…アイボックス、40…光学装置、41…液晶パネル、L…光軸、γ…光ビーム。 DESCRIPTION OF SYMBOLS 10... Optical laminated body 11... Polarization diffraction grating 12... Compensation layer 20... Optical laminate 21... Polarization diffraction grating 21a... Liquid crystal composition 21b... Rotational orientation direction 22, 22'... Compensation layer, 22a 22h...modulation area, 22a1 , 22a2 ...modulation area, 30...optical device, 31...display, 32...diffractive optical element, 33...lens, 34...filter, 39...eye box, 40...optical device, 41 : liquid crystal panel, L: optical axis, γ: light beam.

Claims (13)

  1.  入射する光ビームの偏光方位角を変調する補償層と、
     前記補償層の出力側に配されて、前記光ビームを回折する偏光回折格子と、
    を備える光学積層体。
    a compensation layer that modulates the azimuthal polarization of an incident light beam;
    a polarization grating disposed on the output side of the compensation layer for diffracting the light beam;
    An optical stack comprising:
  2.  前記補償層は、前記補償層から出力されて前記偏光回折格子に入射する前記光ビームの偏光方位角の向きが、前記偏光回折格子に円偏光を有する光ビームを斜めに入射した際に前記偏光回折格子から出力される光ビームが有する楕円偏光の偏光方位角の向きに等しくなるように構成される、請求項1に記載の光学積層体。 In the compensation layer, the direction of the polarization azimuth of the light beam that is output from the compensation layer and is incident on the polarization diffraction grating is such that the direction of the polarization azimuth angle of the light beam is the same as the polarized light beam when the light beam having circular polarization is obliquely incident on the polarization diffraction grating. 2. The optical layered product according to claim 1, which is configured to be equal to the polarization azimuth angle of the elliptically polarized light beam output from the diffraction grating.
  3.  前記補償層は、さらに、前記補償層から出力されて前記偏光回折格子に入射する前記光ビームの偏光方位角の値が、前記偏光回折格子に円偏光を有する光ビームを斜めに入射した際に前記偏光回折格子から出力される光ビームが有する楕円偏光の偏光方位角の値に等しくなるように構成される、請求項2に記載の光学積層体。 In the compensation layer, the value of the polarization azimuth of the light beam that is output from the compensation layer and is incident on the polarization diffraction grating is such that when the light beam having circular polarization is obliquely incident on the polarization diffraction grating, 3. The optical stack according to claim 2, configured to be equal to the value of the polarization azimuth angle of the elliptically polarized light beam output from the polarization diffraction grating.
  4.  前記補償層は、さらに、前記光ビームの偏光楕円率を変調する、請求項1から3のいずれか一項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein the compensation layer further modulates the polarization ellipticity of the light beam.
  5.  前記補償層は、前記補償層から出力されて前記偏光回折格子に斜めに入射する前記光ビームの偏光楕円率が、前記偏光回折格子に円偏光を有する光ビームを斜めに入射した際に前記偏光回折格子から出力される光ビームが有する楕円偏光の楕円率に略等しくなるように構成される、請求項4に記載の光学積層体。 In the compensation layer, the polarization ellipticity of the light beam that is output from the compensation layer and is obliquely incident on the polarization diffraction grating is such that the polarization ellipticity of the light beam obliquely enters the polarization diffraction grating. 5. The optical layered product according to claim 4, which is configured to be approximately equal to the ellipticity of the elliptically polarized light of the light beam output from the diffraction grating.
  6.  前記偏光回折格子は、前記光ビームを、前記光ビームの光軸を基準とする動径方向の内向き又は外向きに回折する、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the polarization diffraction grating diffracts the light beam inwardly or outwardly in a radial direction with respect to the optical axis of the light beam.
  7.  前記補償層は、前記光軸を中心とする円環状に配された複数の第1変調領域を含み、
     前記複数の第1変調領域のそれぞれが、各領域内の代表位置における前記光ビームの入射角及び入射方位角に応じて前記光ビームの偏光方位角を変調する、請求項6に記載の光学積層体。
    The compensation layer includes a plurality of first modulation regions annularly arranged around the optical axis,
    7. The optical stack of claim 6, wherein each of the plurality of first modulation regions modulates the polarization azimuth of the light beam according to the incident angle and incident azimuth of the light beam at a representative position within each region. body.
  8.  前記補償層は、さらに、前記光ビームの偏光楕円率を変調する、請求項7に記載の光学積層体。 The optical laminate according to claim 7, wherein the compensation layer further modulates the polarization ellipticity of the light beam.
  9.  前記補償層は、前記複数の第1変調領域ごとに異なる方向を向く遅相軸を有する、請求項7又は8に記載の光学積層体。 The optical laminate according to claim 7 or 8, wherein the compensation layer has slow axes oriented in different directions for each of the plurality of first modulation regions.
  10.  前記補償層は、前記複数の第1変調領域の内側又は外側に、前記光軸を中心とする円環状に配された複数の第2変調領域をさらに含み、
     前記複数の第2変調領域のそれぞれが、各領域内の代表位置における前記光ビームの入射角及び入射方位角に応じて前記光ビームの偏光方位角を変調する、請求項7から9のいずれか一項に記載の光学積層体。
    The compensation layer further includes a plurality of second modulation regions arranged in an annular shape around the optical axis inside or outside the plurality of first modulation regions,
    10. Any one of claims 7 to 9, wherein each of the plurality of second modulation regions modulates the polarization azimuth angle of the light beam according to the incident angle and incident azimuth angle of the light beam at a representative position within each region. 1. The optical laminate according to item 1.
  11.  請求項6から10のいずれか一項に記載の光学積層体と、
     前記偏光回折格子の入力側又は出力側に配されて、前記光ビームを屈折するレンズ素子と、
    を備える光学装置。
    an optical laminate according to any one of claims 6 to 10;
    a lens element disposed on the input side or the output side of the polarization diffraction grating for refracting the light beam;
    An optical device comprising
  12.  前記補償層の入力側又は前記補償層と前記偏光回折格子との間に配されて、前記光ビームをその偏光回転方向を反転又は非反転して出力する液晶パネルをさらに備える、請求項11に記載の光学装置。 12. The liquid crystal panel according to claim 11, further comprising a liquid crystal panel disposed on the input side of the compensation layer or between the compensation layer and the polarization diffraction grating for outputting the light beam with its polarization rotation direction inverted or non-inverted. Optical device as described.
  13.  請求項1から10のいずれか一項に記載の光学積層体と、
     前記補償層の入力側又は前記補償層と前記偏光回折格子との間に配されて、前記光ビームをその偏光回転方向を反転又は非反転して出力する液晶パネルと、
     を備える光学装置。
    an optical laminate according to any one of claims 1 to 10;
    a liquid crystal panel disposed on the input side of the compensation layer or between the compensation layer and the polarization diffraction grating for outputting the light beam with its polarization rotation direction inverted or non-inverted;
    An optical device comprising
PCT/JP2021/041161 2021-11-09 2021-11-09 Optical laminate and optical device WO2023084589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023543407A JP7445094B2 (en) 2021-11-09 2021-11-09 Optical laminates and optical devices
PCT/JP2021/041161 WO2023084589A1 (en) 2021-11-09 2021-11-09 Optical laminate and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041161 WO2023084589A1 (en) 2021-11-09 2021-11-09 Optical laminate and optical device

Publications (1)

Publication Number Publication Date
WO2023084589A1 true WO2023084589A1 (en) 2023-05-19

Family

ID=86335284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041161 WO2023084589A1 (en) 2021-11-09 2021-11-09 Optical laminate and optical device

Country Status (2)

Country Link
JP (1) JP7445094B2 (en)
WO (1) WO2023084589A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238350A (en) * 2009-03-12 2010-10-21 Asahi Glass Co Ltd Optical head device
JP2012009096A (en) * 2010-06-23 2012-01-12 Asahi Glass Co Ltd Wavelength selection wavelength plate, wavelength selection diffraction element and optical head device
WO2020066429A1 (en) * 2018-09-28 2020-04-02 富士フイルム株式会社 Optical element and light polarizing device
WO2021038225A1 (en) * 2019-08-28 2021-03-04 University Of Southampton Method of forming birefringent structures in an optical element
JP2021176005A (en) * 2020-04-24 2021-11-04 国立大学法人長岡技術科学大学 Beam steering device, beam steering method, and beam detection system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102226644B1 (en) 2014-01-30 2021-03-10 코우리츠다이가쿠호우징 효고켄리츠다이가쿠 Photoreactive liquid crystal composition, display element, optical element, method for manufacturing display element, and method for manufacturing optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238350A (en) * 2009-03-12 2010-10-21 Asahi Glass Co Ltd Optical head device
JP2012009096A (en) * 2010-06-23 2012-01-12 Asahi Glass Co Ltd Wavelength selection wavelength plate, wavelength selection diffraction element and optical head device
WO2020066429A1 (en) * 2018-09-28 2020-04-02 富士フイルム株式会社 Optical element and light polarizing device
WO2021038225A1 (en) * 2019-08-28 2021-03-04 University Of Southampton Method of forming birefringent structures in an optical element
JP2021176005A (en) * 2020-04-24 2021-11-04 国立大学法人長岡技術科学大学 Beam steering device, beam steering method, and beam detection system

Also Published As

Publication number Publication date
JP7445094B2 (en) 2024-03-06
JPWO2023084589A1 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
JP6726110B2 (en) Optical element and diffractive optical element
US6580674B1 (en) Phase shifter and optical head device mounted with the same
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
JPWO2005106571A1 (en) Liquid crystal lens element and optical head device
JP2007025143A (en) Liquid crystal optical element and device
JP2006048818A (en) Liquid crystal lens element, and optical head apparatus
WO2023084589A1 (en) Optical laminate and optical device
JP5024241B2 (en) Wave plate and optical pickup device using the same
JP2000122062A (en) Optical element, its production, optical device and its production
JP5417815B2 (en) Diffraction element, optical head device, and projection display device
JP5131244B2 (en) Laminated phase plate and optical head device
US8164716B2 (en) Polarization beam splitter and optical system
JP2005141033A (en) Diffraction element and optical head system
JP2012009096A (en) Wavelength selection wavelength plate, wavelength selection diffraction element and optical head device
JP4999485B2 (en) Beam splitting element and beam splitting method
JP2011233208A (en) Wavelength selective wave plate, wavelength selective diffraction element and optical head device
JPH1068820A (en) Polarization diffraction element and optical head device formed by using the same
JP4462384B2 (en) Optical head device
US20230185236A1 (en) System and method for fabricating holographic optical elements using polarization hologram master
US11860573B1 (en) System and method for fabricating polarization holograms
WO2024048276A1 (en) Sheet, and method for producing liquid crystal optical element
US20220365266A1 (en) Apochromatic liquid crystal polarization hologram device
WO2022085247A1 (en) Liquid crystal optical element
JP2010238350A (en) Optical head device
US20240085602A1 (en) System and method for fabricating polarization holograms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543407

Country of ref document: JP