WO2023083809A1 - Polymer powder for manufacturing high-definition components of low roughness - Google Patents

Polymer powder for manufacturing high-definition components of low roughness Download PDF

Info

Publication number
WO2023083809A1
WO2023083809A1 PCT/EP2022/081129 EP2022081129W WO2023083809A1 WO 2023083809 A1 WO2023083809 A1 WO 2023083809A1 EP 2022081129 W EP2022081129 W EP 2022081129W WO 2023083809 A1 WO2023083809 A1 WO 2023083809A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
polymer powder
thermoplastic polymer
composition according
sintering
Prior art date
Application number
PCT/EP2022/081129
Other languages
French (fr)
Inventor
Geoffroy CAMMAGE
Hervé Ster
Arnaud Lemaitre
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2023083809A1 publication Critical patent/WO2023083809A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • thermoplastic polymer powder for the additive manufacturing of high definition and low roughness parts.
  • thermoplastic polymer powders SLS, MJF, HSS, etc.
  • European patent EP1742986 B1 teaches that a polyamide powder having a melting enthalpy and a melting temperature far from the crystallization temperature makes it possible to improve the definition of parts built by selective melting.
  • Patent EP 1 413 595 B1 describes a process for increasing at least one of the following two parameters of a polyamide: (i) its melting temperature and (ii) its enthalpy of fusion AHf in which this polyamide is brought into contact in the solid state with water or water vapor at a temperature close to its crystallization temperature Te for a time sufficient to effect this increase, then the water (or water vapor) is separated polyamide and the polyamide is dried.
  • patents EP 2 115 043 B1 and EP 2 627 687 B1 teach that the heat treatment of PAEK powders makes it possible to improve the definition of constructed parts.
  • the object of the invention is therefore to propose a polymer powder making it possible to improve the definition and the surface appearance of parts produced by selective melting.
  • the present invention is based on the observation that a powder of suitable morphology and having an appropriate particle size makes it possible to improve the definition of the parts and reduces the surface roughness of items produced by selective fusion 3D printing methods.
  • a powder with a narrow particle size distribution with few fine particles makes it possible to optimize the fusion of the targeted grains, in that it reduces the risk of fusion of neighboring grains, and therefore improves the definition built parts.
  • the low concentration of large particles limits the texturing of the surface and therefore the loss of definition and the roughness of the surface which could result therefrom.
  • the subject of the invention is a thermoplastic polymer powder composition suitable for additive manufacturing by selective melting, in which the polymer powder has a particle size characterized by: o a volume-average diameter Dv ⁇ 55 pm, and o a span less than 1.2, and such that a ratio d is between 0.40 and 0.55, the ratio d being of the following formula:
  • dp d ⁇ ⁇ am in which dp is the apparent density of the powder measured according to standard ISO 787-11: 1981; and d m is the density of the material measured on the powder after fusion according to standard ISO 1183-1.
  • the thermoplastic polymer comprises or consists of a thermoplastic polymer chosen from the group consisting of polyesters, polyvinyl chloride, polyacetal, polyolefins such as polypropylene and polyethylene, polystyrene, polycarbonate, poly-(N-methylmethactlumide, PMMI), polymethylmethacrylate (PMMA), ionomers, polyamides, thermoplastic elastomers such as polyetherblock amides, PAEKs, and mixtures thereof, and in particular it comprises or consists of PA 11 , PA 12, semi-aromatic polyamide such as PA 11/10T, a PEBA or a PAEK such as PEKK, PEEK, PEEK-PEDEK and PEEK-PEmEK.
  • a thermoplastic polymer chosen from the group consisting of polyesters, polyvinyl chloride, polyacetal, polyolefins such as polypropylene and polyethylene, polystyrene, polycarbonate, poly-(N-methylmeth
  • the composition further comprises a flow agent.
  • the polymer powder has a span of less than 1.00, and preferably less than 0.90.
  • the polymer powder has a ratio d of between 0.45 and 0.55, and in particular between 0.47 and 0.51.
  • the polymer powder also has an inherent viscosity of 0.65 to 1.50, preferably 0.85 to 1.40, and more preferably 1.00 to 1.30.
  • the invention relates to a process for manufacturing the composition of the powder described, comprising the steps of:
  • thermoplastic polymer monomer(s) (i) Prepolymerization of the thermoplastic polymer monomer(s) and subsequent granulation;
  • the invention relates to the use of the composition described or obtained according to the above process for the manufacture of articles by additive manufacturing by means of selective melting, in particular chosen from SLS, MJF and HSS.
  • the invention relates to an article capable of being obtained by additive manufacturing by means of selective melting of the composition described or obtained according to the process described.
  • Fig. 1 a 3D printing device by sintering of the SLS type (English acronym for “selective laser sintering”, selective laser sintering);
  • Fig. 2 the evolution of the thickness e of the powder deposited after melting by irradiation as a function of the number of layers n of 100 ⁇ m each in a construction by laser sintering, calculated for powders having a ratio d of 0.3 (•) , 0.5 ( ⁇ ) and 0.7 ( ⁇ ).
  • thermoplastic polymer is understood to denote a polymer having the property of softening when it is sufficiently heated, and which, on cooling, becomes hard again.
  • the polymer has a molar mass as measured by CES (steric exclusion chromatography) greater than 5000 g/mol.
  • average diameter by volume or “Dv” is also understood to mean the average diameter by volume of a pulverulent material, as measured according to standard ISO 13319-1:2021, for example on a Coulter Counter particle counter. -Multisizer 3 (Beckmann Coulter). There are different diameters. More specifically, the Dv50 denotes the median diameter by volume, and the Dv10 and Dv90 respectively denote the diameters below which 10 or 90% by volume of the particles are located.
  • width means a ratio describing the width of the particle size distribution of a powder, with the following formula:
  • Dv10 designates the diameter below which there are 10% by volume of the particles of the polymer powder
  • Dv50 designates the diameter below which 50% by volume of the particles of the polymer powder are found (by definition Dv50 is also the median diameter by volume), and
  • Dv90 designates the diameter below which 90% by volume of the particles of the polymer powder are found, these diameters being measured as indicated above.
  • 3D printing by sintering means processes in which a layer of polymer powder is irradiated by electromagnetic radiation (for example laser beam, infrared radiation, UV radiation), so as to selectively melt the powder particles. affected by radiation. The molten particles coalesce and solidify to lead to the formation of a solid mass. This process can produce 3D articles by repeatedly irradiating a succession of freshly applied powder layers.
  • electromagnetic radiation for example laser beam, infrared radiation, UV radiation
  • surface roughness is understood to denote the arithmetic mean deviation R a of the surface profile of a sample according to the ISO4287:1997 standard, for example using a PERTHOMETER S8P device.
  • the build orientation can impact roughness, so it can be useful to distinguish between the bottom and top of an item, where the bottom is the first build layer and the top is the last build layer.
  • viscosity is understood to denote the inherent viscosity as measured in a viscometer of the Ubbelohde type according to standard ISO 307:2019, except when using m-cresol as solvent and at a temperature of 20° C.
  • the dimension of the inherent viscosity is the reciprocal of a concentration and is equal to the natural logarithm of the relative viscosity, all divided by the concentration of polymer dissolved in the solvent.
  • PA X represents the number of carbon atoms of the polyamide units resulting from the condensation of an amino acid or lactam.
  • PA XY designating a polyamide resulting from the condensation of a diamine with a dicarboxylic acid or an acid derivative possessing di-functionality
  • X represents the number of carbon atoms of the diamine
  • Y represents the number of carbon atoms of the dicarboxylic acid or acid derivative.
  • PA X/Y, PA X/Y/Z, etc. refers to copolyamides in which X, Y, Z, etc. represent homopolyamide units as described above.
  • the present invention provides a composition of thermoplastic polymer powder suitable for additive manufacturing by selective melting, in which the polymer powder has a particle size characterized by an average diameter Dv ⁇ 55 ⁇ m, a specific particle size distribution, characterized by a span of less than 1.2, and finally a ratio d between the density of the powder and that of the material between 0.40 and 0.55.
  • the use of powders with a low d ratio most often compromises the properties of the manufactured articles, particularly in terms of mechanical strength.
  • such a powder is difficult to convert due to the powdery behavior of the particles.
  • a bed of such powder is not able to support the weight of the item being built. The article then collapses during printing, and cannot be completed.
  • thermoplastic polymer powder compositions according to the invention make it possible to obtain parts having low roughness, and moreover make it possible to avoid construction defects on parts, in particular round or bent parts, while maintaining good productivity.
  • thermoplastic polymer powder A. Composition of thermoplastic polymer powder
  • thermoplastic polymer powder composition proposed according to the invention comprises a polymer powder which has: a particle size characterized by: o a volume-average diameter Dv ⁇ 55 ⁇ m, and o a span of less than 1.20, and such that a ratio d is between 0.40 and 0.55, the ratio d being of the following formula:
  • dp is the apparent density of the powder measured according to standard ISO 787-11: 1981
  • d m is the density of the material measured on the powder after melting by vertical thrust in water (21° C.) according to standard ISO 1183-1.
  • the thermoplastic polymer powder has a specific particle size. Indeed, the thermoplastic polymer powder of the invention has a volume-average diameter Dv of less than 55 ⁇ m. According to certain embodiments, the thermoplastic polymer powder has a volume-average diameter Dv of between 30 and 55 ⁇ m, in particular between 35 and 50 ⁇ m and very particularly between 40 and 45 ⁇ m.
  • the particle size distribution of the thermoplastic polymer powder can also have a significant impact on the performance in 3D printing by sintering.
  • the thermoplastic polymer powder has a span, as defined above, of less than 1.2, and in particular less than 1, and very particularly less than 0.9.
  • the span of the thermoplastic polymer powder is between 0.20 and 1.20, or between 0.30 and 1.10, or between 0.35 and 1.00, or between 0.40 and 0.90.
  • the volume diameter Dv10 of the powder is preferably greater than 15 ⁇ m.
  • the thermoplastic polymer powder has a volume diameter Dv10 of between 15 and 50 ⁇ m, or between 25 and 45 ⁇ m or between 30 and 40 ⁇ m.
  • the volume diameter Dv50 of the powder is preferably between 30 and 60 ⁇ m. According to certain embodiments, the thermoplastic polymer powder has a volume diameter Dv50 of between 35 and 55 ⁇ m, or between 40 and 50 ⁇ m.
  • the thermoplastic polymer powder has a volume diameter Dv90 of less than 120 ⁇ m, in particular less than 100 ⁇ m, and very particularly less than 90 ⁇ m. According to certain embodiments, the thermoplastic polymer powder has a volume diameter Dv90 of between 40 and 120 ⁇ m, or between 45 and 100 ⁇ m, or between 50 and 80 ⁇ m.
  • thermoplastic polymer powder in the composition according to the invention is moreover characterized by a specific ratio d, which is between 0.40 and 0.55.
  • the ratio d is of the following formula:
  • the ratio d as specified expresses the compromise proposed according to the invention between the search for a maximum density of the powder and therefore a high ratio d on the one hand, and the fact that such powders generate articles with high roughness and require a greater number of layers to absorb the difference in thickness resulting from the difference in density at the start of construction (8 to 10 layers or almost 1 mm on the article being constructed, see Fig. 2).
  • a ratio d between 0.40 and 0.55 allowed to best reconcile the advantage of having a dense powder with a view to good mechanical properties of the printed articles and that of having a powder that is not too dense with a view to limiting constraints and defects at the start of construction.
  • the apparent density d p of the thermoplastic polymer powder depends, in addition to its particle size, in particular on the shape of the particles, their porosity and their crystalline structure.
  • the thermoplastic polymer powder preferably has a bulk density d p of 0.200 to 0.600, preferably of 0.300 to 0.550, and extremely preferably of 0.400 to 0.500.
  • the density d m of the thermoplastic polymer depends on the polymer considered and generally ranges from 0.850 to 1.850, preferably from 0.900 to 1.450, and extremely preferably from 0.950 to 1.150.
  • thermoplastic polymers capable of being used in the context of the present invention can in particular be chosen from polyesters, polyvinyl chloride, polyacetal, polyolefins such as polypropylene and polyethylene, polystyrene, polycarbonate, poly( N-methylmethacrylimide, PMMI), polymethylmethacrylate (PMMA), ionomers, polyamides, thermoplastic elastomers such as polyetherblock amides (PEBA), PAEKs, and their copolymers and mixtures.
  • polyesters polyvinyl chloride, polyacetal, polyolefins such as polypropylene and polyethylene, polystyrene, polycarbonate, poly( N-methylmethacrylimide, PMMI), polymethylmethacrylate (PMMA), ionomers, polyamides, thermoplastic elastomers such as polyetherblock amides (PEBA), PAEKs, and their copolymers and mixtures.
  • polystyrene resin examples include PA 6, PA 6.6, PA 11 and PA 12 and their copolymers, and semi-aromatic polyamides such as PA 11/10T for example.
  • PAEK polyetherketoneketone
  • PEEK polyetheretherketone
  • PEEK-PEDEK polyetheretherketone-polyetherdiphenyletherketone
  • PEEK-PEmEK polyetheretherketone-polyethermetaetherketone
  • the polymer comprises or consists of a polyamide, in particular PA 11, PA 12, a PEBA, or a semi-aromatic polyamide such as PA 11/10T or a PAEK such as PEKK , as well as mixtures or copolymers thereof.
  • the thermoplastic polymer powder generally comprises at least 50% by weight of thermoplastic polymer relative to the total weight of powder.
  • the powder comprises at least 50%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 92.5%, or at least 95 %, or at least 97.5%, or at least 98%, or at least 98.5%, or at least 99%, or at least 99.5% by weight of thermoplastic polymer relative to the total weight of the powder of thermoplastic polymer of the invention.
  • the thermoplastic polymer powder can comprise a single thermoplastic polymer, for example only a polyester, a polyolefin, a polyamide, a polyester, a PEBA or a PAEK.
  • the powder according to the invention comprises several different polymers by at least one of their properties. These properties can be in particular the molar mass, the crystallinity, but also the thermal properties or even the particle size.
  • the thermoplastic polymer powder has a viscosity of 0.65 to 1.50, preferably 0.85 to 1.40, and more preferably 1.00 to 1.30. These viscosity ranges are particularly advantageous and make it possible to obtain a good compromise to have both good coalescence properties during sintering (sufficiently low viscosity) and good mechanical properties of the sintered object (sufficiently high viscosity).
  • thermoplastic polymer powder may comprise, in addition to the thermoplastic polymer(s), one or more usual additives and fillers.
  • the additives generally represent less than 5% by weight relative to the total composition weight. Preferably, the additives represent less than 1% by weight of the total powder weight.
  • the additives mention may be made of flow agents, stabilizing agents (light, in particular UV, and heat), optical brighteners, dyes, pigments, energy-absorbing additives (including UV absorbers) .
  • the flow agent represents from 0.01 to 0.4% by weight relative to the total weight of composition.
  • the powder composition does not include a flow agent.
  • the thermoplastic polymer powder may also include one or more fillers.
  • the fillers generally represent less than 50% by weight, and preferably less than 40% by weight relative to the total weight of final powder.
  • reinforcing fillers in particular mineral fillers such as carbon black, talc, nanotubes, carbon or not, and fibers, in particular glass or carbon fibers, ground or not, or even glass in another form, for example in the form of flakes or balls, hollow or not.
  • thermoplastic polymer powder can in particular be obtained by grinding thermoplastic polymer in the form of extruded granules or scales, according to conventional techniques.
  • the grinding can be carried out on equipment known for this purpose, for example by means of a counter-rotating pin mill (pin mill), a hammer mill (hammer mill) or in a whirl mill.
  • pin mill counter-rotating pin mill
  • hammer mill hammer mill
  • whirl mill a whirl mill
  • the powder comprises several polymers and/or certain additives and/or certain reinforcing fillers, some or all of them may be incorporated by mixing in the molten state, for example by extrusion (compounding) and granulation followed by grinding of the granules.
  • the flow agent is added by dry mixing.
  • the process for manufacturing the composition of the powder comprises the steps of:
  • thermoplastic polymer monomer(s) (i) Prepolymerization of the thermoplastic polymer monomer(s) and subsequent granulation;
  • the additives and/or reinforcing fillers can then be added to the prepolymer, by melt mixing (compounding) or dry mixing, between step (i) and (ii), or subsequently, by dry mixing.
  • the polymer powder composition as described above is useful in particular for being implemented in a 3D printing process by sintering.
  • the composition of the invention is used in a selective laser sintering process (SLS, Selective Laser Sintering, in English), a sintering process of the MJF (Multi Jet Fusion) type or a sintering process of the HSS type. (High Speed Sintering).
  • a thin layer of powder is deposited on a horizontal plate held in an enclosure heated to a temperature called the construction temperature.
  • heating to the building temperature is carried out by means of IR radiation lamps, for example halogen lamps, which generally have an emission maximum at a wavelength between 750 nm and 1250 nm.
  • the build temperature refers to the temperature to which the powder bed, of a constituent layer of a three-dimensional article under construction, is heated during the layer-by-layer sintering process of the powder.
  • Electromagnetic radiation for example in the form of a laser, then provides the energy needed to sinter the powder particles at different points of the powder layer according to a geometry corresponding to an object, for example using a computer having in memory the shape of an object and restoring the latter in the form of slices. Then the horizontal plate is lowered by a height corresponding to the thickness of a layer of powder, and a new layer of powder is spread, heated and then sintered in the same way. The procedure is repeated until the object has been made.
  • the layer of powder deposited on a horizontal plate can have, before sintering, for example a thickness of 20 to 200 ⁇ m, and preferably of 50 to 150 ⁇ m. After sintering, the thickness of the layer of agglomerated material is a little lower, and may for example have a thickness of 10 to 150 ⁇ m, and preferably from 30 to 100 ⁇ m.
  • the entire layer of building material is exposed to radiation, but only a part covered with a melting agent is melted to become a layer of a 3D part.
  • the melting agent is a compound capable of absorbing radiation and converting it into thermal energy, for example black ink. It is applied selectively to the selected region of the building material. The melting agent is able to penetrate the layer of the building material and transmits the absorbed energy to the neighboring building material, thereby causing it to melt or be sintered. By melting, bonding and subsequent hardening of each layer of the building material, the object is formed.
  • a detailing agent is additionally added to the edges of the zone to be melted to allow the parts to have a better definition.
  • the use of the polymer powder composition of the invention in these processes does not require any particular modification.
  • it makes it possible to obtain parts with lower roughness and better definition.
  • the polymer powder composition according to the invention can be recycled and reused in several successive constructions. In this case, it can be reused alone or mixed with other powders, whether recycled or not.
  • thermoplastic polymer powder described in a method for constructing a three-dimensional object layer-by-layer by sintering caused by electromagnetic radiation in a device 1, such as the one schematized in Figure 1.
  • the electromagnetic radiation may for example be infrared radiation, ultraviolet radiation, or preferably laser radiation.
  • the electromagnetic radiation may comprise a combination of infrared radiation 100 and laser radiation 200.
  • the sintering process is a layer-to-layer manufacturing process to construct an 80 three-dimensional object.
  • the device 1 comprises a sintering chamber 10 in which are arranged a supply tray 40 containing the thermoplastic polymer powder and a movable horizontal plate 30.
  • the horizontal plate 30 can also act as a support for the object three-dimensional 80 under construction.
  • objects made from thermoplastic polymer powder generally do not need additional support and can generally be self-supported by unsintered powder from previous layers.
  • thermoplastic polymer powder is taken from the supply tray 40 and deposited on the horizontal plate 30, forming a thin layer 50 of powder constituting the three-dimensional object 80 under construction.
  • the layer of powder 50 is heated using infrared radiation 100 to reach a substantially uniform temperature equal to the predetermined minimum construction temperature Te.
  • the energy required to sinter the thermoplastic polymer powder particles at different points of the powder layer 50 is then supplied by laser radiation 200 from the laser 20 moving in the plane (xy), according to a geometry corresponding to that of the object.
  • the molten powder re-solidifies forming a sintered part 55 while the rest of the layer 50 remains in the form of unsintered powder 56.
  • a single passage of a single laser radiation 200 is generally sufficient to ensure the sintering of the powder. Nevertheless, in certain embodiments, it is also possible to envisage several passages at the same place and/or several electromagnetic radiations reaching the same place to ensure the sintering of the powder.
  • the horizontal plate 30 is lowered along the axis (z) by a distance corresponding to the thickness of a layer of powder, and a new layer is deposited.
  • the laser 20 provides the energy needed to sinter the powder particles according to a geometry corresponding to this new slice of the object and so on. The procedure is repeated until object 80 has been produced.
  • the temperature in the sintering chamber 10 of the layers lower than the layer being built can be lower than the construction temperature. However, this temperature generally remains above, or even well above, the glass transition temperature of the powder. It is particularly advantageous for the temperature of the bottom of the enclosure to be maintained at a temperature Tb, called “tank bottom temperature", such that Tb is less than Te by less than 40° C., preferably less than 25° C. C and more preferably less than 10°C.
  • the object 80 is removed from the horizontal plate 30 and the unsintered powder 56 can be sieved before being returned, at least in part, to the supply bin 40 to serve as recycled powder.
  • thermoplastic polymer powder allows the manufacture by 3D printing by sintering of parts which have properties, in particular mechanical properties, at least analogous to the parts obtained if not superior compared to conventional thermoplastic polymer powders.
  • a polyamide 11 powder composition was prepared according to the following method.
  • a polyamide 11 prepolymer was synthesized from 1.2 kg of amino-11-undecanoic acid in the presence of 0.5 kg of water, 5 g of hypophosphorous acid (titer 50%, expressed in% by weight in the aqueous solution) and 9.8 g of phosphoric acid (title 75%, expressed in% by weight in the aqueous solution).
  • the mixture was heated to a temperature of 190°C in 2 hours with stirring as soon as the temperature reached 160°C or the pressure exceeded 8.5 bars.
  • the prepolymer is extracted from the reactor under pressure through a die. It was then cooled using two steel rollers with circulation of cold water to be solidified, cooled and crushed into scales.
  • the prepolymer thus obtained was mixed in a suitable container with 3.3 g of carbon black. This mixture was introduced into a twin-screw extruder to be melted and intimately mixed and then extruded. The mixture was then cooled using two steel rollers with circulation of cold water to be solidified and cooled and then crushed into scales.
  • the additive prepolymer recovered in the form of flakes is then ground in a hammer mill equipped with an internal selector until a powder with a median diameter by volume Dv50 of 64 ⁇ m is obtained.
  • the powder thus obtained is then subjected to solid phase polycondensation in a dryer at 140-155°C under vacuum in order to increase the inherent viscosity of the polyamide up to 1.15.
  • the pigmented polyamide 11 powder obtained was then sieved using a RUSSEL type FINEX 22 ultrasonic swirling sieve, using an 80 ⁇ m square mesh.
  • the particle size of the powders was characterized by measuring the particle size distribution on a Coulter Counter-Multisizer 3 device (Beckmann Coulter) in application of the ISO 13319-1:2021 standard. From this, the mean diameter and the diameter corresponding to the 1st , 5th and 9th deciles of the distribution were determined, then the span was calculated according to the following formula:
  • the apparent density of the powder d p was measured in application of the ISO 787-11:1981 standard using a 250 mL precision glass test tube graduated from 2 to 2 mL and comprising a non-graduated upper part of at least 50 mL.
  • the powder is introduced slowly into the test tube inclined at 45°, a volume of powder comprised between 220 and 250 ml. This volume of powder is then weighed in order to calculate the apparent density and then divided by the density of the water to deduce its density.
  • the density of the material d m was measured after melting the powder under a heating press (T > T f + 40° C. and pressure of 2 tonnes).
  • the density of the film obtained is measured by vertical thrust in water (21°C) according to the ISO 1183-1 standard using a Sartorius AC 210P hydrostatic balance with kit of density YDK 01.
  • the ratio d between the apparent density d p of the powder and the density of the material d m measured on the powder after melting was calculated according to the following formula:
  • the polymer powder obtained was then used to manufacture by 3D printing by sintering, more specifically by SLS, a 1 BA XY specimen (1 BA specimen according to the ISO 527-1 BA standard, called "XY" because printed in the horizontal plane of the printer) by laser sintering on a P100 machine (marketed by the company EOS) by adjusting the thickness of the powder layer to 100 ⁇ m and using the following set of parameters: [T able 3]
  • the specimens are also characterized by their upper and lower surface roughness by means of the arithmetic mean deviation Ra of the surface profile of a sample according to the ISO4287:1997 standard, using a PERTHOMETER S8P device (the result corresponds to the average of three values taken on three different base lengths).
  • the PA11 powder prepared in example C2 is sieved using a RUSSEL type FINEX 22 ultrasonic swirl sieve, using an 80 ⁇ m square mesh.
  • the particle size characteristics of the polyamide 11 powder obtained were determined as indicated in Example 1. The results are collated in Table 1 above. Furthermore, the density of the material was measured as explained in Example 1 (see Table 2 above).
  • test pieces as indicated in example 1. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
  • the prepolymer recovered in the form of flakes is then ground in a hammer mill equipped with an internal selector while using a second dynamic selector at the outlet in order to eliminate the finest particles until a powder with a median diameter in Dv50 volume of 82pm.
  • the powder thus obtained is then subjected to solid phase polycondensation in a dryer at 140-155°C under vacuum in order to increase the inherent viscosity of the polyamide up to 1.10.
  • the powder thus obtained is sieved using a RUSSEL ultrasonic unclogging sifter with ultrasonic declogging type FINEX 22, using a square mesh of 80 ⁇ m.
  • the particle size characteristics of the polyamide 12 powder obtained were determined as indicated in Example 1. The results are collated in Table 1 above. Furthermore, the density of the material was measured as explained in Example 1 (see Table 2 above).
  • the powder obtained is used to manufacture test specimens as indicated in example 1, using the following set of parameters:
  • a polyamide 11 powder composition was prepared according to the following method.
  • the prepolymer recovered in the form of flakes is then ground in a hammer mill fitted with an internal selector until a powder with a median diameter by volume Dv50 of 74 ⁇ m is obtained.
  • the powder thus obtained is then subjected to polycondensation in the solid phase in a dryer at 140-155°C under vacuum in order to increase the viscosity of the polyamide up to 1.18.
  • test pieces as indicated in example 1. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
  • the PA11 prepolymer recovered in the form of scales from example C1 is ground with the same grinding parameters as C1 while using a second dynamic selector at the outlet in order to eliminate the finest particles until a powder having a volume median diameter Dv50 of 91 ⁇ m.
  • the powder thus obtained is then subjected to polycondensation in the solid phase in a dryer at 140-155°C under vacuum in order to increase the viscosity of the polyamide up to 1.16.
  • a PA11 powder having the particle size characteristics indicated in Table 1 above is obtained.
  • test pieces as indicated in example 1. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
  • the PA11 powder prepared according to Example C1 is sieved using a RUSSEL type FINEX 22 ultrasonic unclogging nutating sieve, using an 80 ⁇ m square mesh. A PA11 powder having the particle size characteristics indicated in Table 1 above is obtained.
  • Example C4 The powder obtained is used to manufacture test pieces as indicated in example 1. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
  • Example C4 The powder obtained is used to manufacture test pieces as indicated in example 1. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
  • Polyamide 12 granules (Rilsamid® AECNO TL marketed by Arkema) are extruded using a die to obtain fibers with a diameter of 60 ⁇ m which are cooled so that they can be micro-granulated over a length of 70 ⁇ m.
  • the polyamide powder thus obtained has an inherent viscosity of 1.09.
  • the particle size characteristics of the polyamide 12 powder obtained were determined as indicated in Example 1. The results are collated in Table 1 above. Furthermore, the density of the material was measured as explained in Example 1 (see Table 2 above).
  • test pieces as indicated in example 3. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
  • a polyamide 12.12 powder was obtained according to example 1 of patent CN104356643B.
  • the particle size characteristics of the polyamide 12.12 powder obtained were determined as indicated in Example 1. The results are collated in Table 1 above. Furthermore, the density of the material was measured as explained in Example 1 (see Table 2 above).
  • test pieces as indicated in example 3. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
  • Example 1212 powder prepared according to Example C5 (Example 1 of patent CN104356643B) is sieved using a RUSSEL type FINEX 22 ultrasonic swirling sieve, using an 80 ⁇ m square mesh and then subjected to defining.
  • the particle size characteristics of the polyamide 12.12 powder obtained were determined as indicated in Example 1. The results are collated in Table 1 above. Furthermore, the density of the material was measured as explained in Example 1 (see Table 2 above).
  • test pieces as indicated in example 3. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.

Abstract

The invention is directed primarily to a thermoplastic polymer powder composition suitable for additive manufacture by selective melting, wherein the polymer powder has - a particle size characterized by: o a mean volume diameter Dv < 55 µm, and o a span of less than 1.20, and - such that a ratio d is between 0.40 and 0.55, the formula of ratio d being as follows: [Math 10] (formula (I)) in which dp is the apparent density of the powder as measured according to standard ISO 787-11:1981; and dm is the density of the material as measured on the powder after melting according to standard ISO 1183-1.

Description

Description Titre : Poudre polymère pour la fabrication de pièces de haute définition et de faible rugosité Description Title: Polymer powder for the manufacture of high definition and low roughness parts
[Domaine technique] [Technical area]
La présente demande de brevet concerne une poudre de polymère thermoplastique pour la fabrication additive de pièces de haute définition et de faible rugosité. This patent application relates to a thermoplastic polymer powder for the additive manufacturing of high definition and low roughness parts.
[Technique antérieure] [prior technique]
L’impression 3D par fusion sélective de poudres de polymères thermoplastiques (SLS, MJF, HSS...) permet de construire des pièces de géométrie complexe. Néanmoins, la définition des pièces ainsi imprimées ainsi que leur rugosité de surface ne sont pas encore complètement satisfaisantes. 3D printing by selective melting of thermoplastic polymer powders (SLS, MJF, HSS, etc.) makes it possible to build parts with complex geometries. Nevertheless, the definition of the parts thus printed as well as their surface roughness are not yet completely satisfactory.
Il est connu d’améliorer l’état de surface de pièces construites par fusion sélective par un traitement physique et/ou chimique. Cependant, ces traitements augmentent de manière substantielle le temps de production et donc le coût de fabrication des pièces. It is known to improve the surface condition of parts built by selective melting by a physical and/or chemical treatment. However, these treatments substantially increase the production time and therefore the manufacturing cost of the parts.
Certains procédés ont également été décrits dans lesquels on traite la poudre de polymère à utiliser dans l’impression 3D. Ainsi, le brevet européen EP1742986 B1 enseigne qu’une poudre de polyamide présentant une enthalpie de fusion et une température de fusion éloignée de la température de cristallisation permet d’améliorer la définition des pièces construites par fusion sélective. Some processes have also been described in which the polymer powder to be used in 3D printing is processed. Thus, European patent EP1742986 B1 teaches that a polyamide powder having a melting enthalpy and a melting temperature far from the crystallization temperature makes it possible to improve the definition of parts built by selective melting.
Le brevet EP 1 413 595 B1 décrit un procédé pour augmenter au moins l'un des deux paramètres suivants d'un polyamide : (i) sa température de fusion et (ii) son enthalpie de fusion AHf dans lequel on met en contact ce polyamide à l'état solide avec de l'eau ou de la vapeur d'eau à une température proche de sa température de cristallisation Te pendant une durée suffisante pour effectuer cette augmentation, puis on sépare l'eau (ou la vapeur d'eau) du polyamide et on sèche le polyamide. Patent EP 1 413 595 B1 describes a process for increasing at least one of the following two parameters of a polyamide: (i) its melting temperature and (ii) its enthalpy of fusion AHf in which this polyamide is brought into contact in the solid state with water or water vapor at a temperature close to its crystallization temperature Te for a time sufficient to effect this increase, then the water (or water vapor) is separated polyamide and the polyamide is dried.
Par ailleurs, les brevets EP 2 115 043 B1 et EP 2 627 687 B1 enseignent que le traitement thermique de poudres de PAEK permet d’améliorer la définition des pièces construites. Furthermore, patents EP 2 115 043 B1 and EP 2 627 687 B1 teach that the heat treatment of PAEK powders makes it possible to improve the definition of constructed parts.
Néanmoins, ces méthodes sont spécifiques à certains polymères et n’apportent par ailleurs pas toujours une entière satisfaction. However, these methods are specific to certain polymers and do not always provide complete satisfaction.
[Résumé de l’invention] [Summary of Invention]
L’invention a donc pour but de proposer une poudre de polymère permettant d’améliorer la définition et l’aspect de surface des pièces produites par fusion sélective. The object of the invention is therefore to propose a polymer powder making it possible to improve the definition and the surface appearance of parts produced by selective melting.
En effet, la présente invention repose sur la constatation qu’une poudre de morphologie adaptée et présentant une granulométrie appropriée permet d’améliorer la définition des pièces et réduit la rugosité de surface des articles produits par des méthodes d’impression 3D par fusion sélective. Indeed, the present invention is based on the observation that a powder of suitable morphology and having an appropriate particle size makes it possible to improve the definition of the parts and reduces the surface roughness of items produced by selective fusion 3D printing methods.
Plus spécifiquement, il a été constaté qu’une poudre à distribution granulométrique resserrée avec peu de particules fines permet d’optimiser la fusion des grains visés, en ce qu’elle réduit le risque de fusion de grains voisins, et améliore dès lors la définition des pièces construites. Par ailleurs, la faible concentration en grosses particules limite la texturation de la surface et de ce fait la perte de définition et la rugosité de la surface qui pourraient en découler. More specifically, it has been observed that a powder with a narrow particle size distribution with few fine particles makes it possible to optimize the fusion of the targeted grains, in that it reduces the risk of fusion of neighboring grains, and therefore improves the definition built parts. Moreover, the low concentration of large particles limits the texturing of the surface and therefore the loss of definition and the roughness of the surface which could result therefrom.
Enfin, il a été constaté que l’utilisation d’une poudre dont la densité apparente est telle que le rapport avec celle du matériau vaut entre 0,40 à 0,55 permet d’optimiser la définition des pièces. La densité apparente de la poudre varie notamment en fonction de la morphologie de la poudre mais aussi selon sa cristallinité. Une telle poudre permet par ailleurs d’éviter les défauts de construction sur les pièces notamment rondes ou penchées tout en conservant une bonne productivité. Finally, it has been observed that the use of a powder whose apparent density is such that the ratio with that of the material is between 0.40 and 0.55 makes it possible to optimize the definition of the parts. The apparent density of the powder varies in particular according to the morphology of the powder but also according to its crystallinity. Such a powder also makes it possible to avoid construction defects on parts, in particular round or bent, while maintaining good productivity.
Aussi, selon un premier aspect, l’invention a pour objet une composition de poudre de polymère thermoplastique adaptée pour la fabrication additive par fusion sélective, dans laquelle la poudre de polymère présente une granulométrie caractérisée par : o un diamètre moyen en volume Dv < 55 pm, et o un span inférieur à 1 ,2, et telle qu’un ratio d est compris entre 0,40 et 0,55, le ratio d étant de formule suivante : Also, according to a first aspect, the subject of the invention is a thermoplastic polymer powder composition suitable for additive manufacturing by selective melting, in which the polymer powder has a particle size characterized by: o a volume-average diameter Dv <55 pm, and o a span less than 1.2, and such that a ratio d is between 0.40 and 0.55, the ratio d being of the following formula:
[Math 1] [Math 1]
, dp d = ~ ~ am dans laquelle dp est la densité apparente de la poudre mesurée selon la norme ISO 787-11 : 1981 ; et dm est la densité du matériau mesurée sur la poudre après fusion selon la norme ISO 1183-1. , dp d = ~ ~ am in which dp is the apparent density of the powder measured according to standard ISO 787-11: 1981; and d m is the density of the material measured on the powder after fusion according to standard ISO 1183-1.
Selon un mode de réalisation, le polymère thermoplastique comprend ou est constitué d’un polymère thermoplastique choisi dans le groupe consistant en les polyesters, le chlorure de polyvinyle, le polyacétal, les polyoléfines comme le polypropylène et le polyéthylène, le polystyrène, le polycarbonate, le poly-(N-méthylméthactlumide, PMMI), le polyméthylméthacrylate (PMMA), les ionomères, les polyamides, les élastomères thermoplastiques tels que les polyétherblock amides, les PAEK, et leurs mélanges, et en particulier il comprend ou est constitué de PA 11 , PA 12, polyamide semi-aromatique tel que le PA 11/10T, un PEBA ou un PAEK tel que le PEKK, le PEEK, le PEEK-PEDEK et le PEEK- PEmEK. According to one embodiment, the thermoplastic polymer comprises or consists of a thermoplastic polymer chosen from the group consisting of polyesters, polyvinyl chloride, polyacetal, polyolefins such as polypropylene and polyethylene, polystyrene, polycarbonate, poly-(N-methylmethactlumide, PMMI), polymethylmethacrylate (PMMA), ionomers, polyamides, thermoplastic elastomers such as polyetherblock amides, PAEKs, and mixtures thereof, and in particular it comprises or consists of PA 11 , PA 12, semi-aromatic polyamide such as PA 11/10T, a PEBA or a PAEK such as PEKK, PEEK, PEEK-PEDEK and PEEK-PEmEK.
Selon un mode de réalisation, la composition comprend en outre un agent d’écoulement. Avantageusement, la poudre de polymère présente un span inférieur à 1 ,00, et de préférence inférieur à 0,90. According to one embodiment, the composition further comprises a flow agent. Advantageously, the polymer powder has a span of less than 1.00, and preferably less than 0.90.
De préférence, la poudre de polymère présente un ratio d compris entre 0,45 et 0,55, et notamment compris entre 0,47 et 0,51. Preferably, the polymer powder has a ratio d of between 0.45 and 0.55, and in particular between 0.47 and 0.51.
Avantageusement, la poudre de polymère présente par ailleurs une viscosité inhérente de 0,65 à 1 ,50, préférentiellement de 0,85 à 1 ,40, et de manière davantage préférée de 1 ,00 à 1 ,30. Advantageously, the polymer powder also has an inherent viscosity of 0.65 to 1.50, preferably 0.85 to 1.40, and more preferably 1.00 to 1.30.
Selon un deuxième aspect, l’invention vise un procédé de fabrication de la composition de la poudre décrite, comprenant les étapes de : According to a second aspect, the invention relates to a process for manufacturing the composition of the powder described, comprising the steps of:
(i) Prépolymérisation du ou des monomères du polymère thermoplastique et granulation subséquente ; (i) Prepolymerization of the thermoplastic polymer monomer(s) and subsequent granulation;
(ii) Broyage en une poudre ; (ii) Grinding into a powder;
(iii) Tamisage subséquent éventuel de la poudre de prépolymère obtenue ; et (iii) Possible subsequent sieving of the prepolymer powder obtained; And
(iv) Soumission de la poudre de prépolymère obtenue à une polycondensation en phase solide pour obtenir une poudre de polymère.(iv) Subjecting the obtained prepolymer powder to solid phase polycondensation to obtain a polymer powder.
Selon un troisième aspect, l’invention vise l’utilisation de la composition décrite ou obtenue selon le procédé ci-dessus pour la fabrication d’articles par fabrication additive au moyen de fusion sélective, notamment choisie parmi le SLS, MJF et le HSS. According to a third aspect, the invention relates to the use of the composition described or obtained according to the above process for the manufacture of articles by additive manufacturing by means of selective melting, in particular chosen from SLS, MJF and HSS.
Selon un quatrième aspect enfin, l’invention vise un article susceptible d’être obtenu par fabrication additive au moyen de fusion sélective de la composition décrite ou obtenue selon le procédé décrit. Finally, according to a fourth aspect, the invention relates to an article capable of being obtained by additive manufacturing by means of selective melting of the composition described or obtained according to the process described.
[Brève description des figures] [Brief description of figures]
L’invention sera mieux comprise au regard de la description qui suit et des figures, lesquelles montrent : The invention will be better understood with regard to the following description and the figures, which show:
Fig. 1 un dispositif d’impression 3D par frittage de type SLS (acronyme anglais pour « selective laser sintering », frittage sélectif par laser) ; Fig. 1 a 3D printing device by sintering of the SLS type (English acronym for "selective laser sintering", selective laser sintering);
Fig. 2 l’évolution de l’épaisseur e de la poudre déposée après fusion par irradiation en fonction du nombre de couches n de 100 pm chacune dans une construction par frittage laser, calculée pour des poudres présentant un ratio d de 0,3 (•), de 0,5 (■) et de 0,7 (♦). [Description des modes de réalisation] Fig. 2 the evolution of the thickness e of the powder deposited after melting by irradiation as a function of the number of layers n of 100 μm each in a construction by laser sintering, calculated for powders having a ratio d of 0.3 (•) , 0.5 (■) and 0.7 (♦). [Description of Embodiments]
Définition des termes Definition of terms
On entend par le terme « polymère thermoplastique » désigner un polymère ayant la propriété de se ramollir lorsqu'il est chauffé suffisamment, et qui, se refroidissant, redevient dur. Le polymère a une masse molaire telle que mesurée par CES (chromatographie par exclusion stérique) supérieure à 5000 g/mol. The term “thermoplastic polymer” is understood to denote a polymer having the property of softening when it is sufficiently heated, and which, on cooling, becomes hard again. The polymer has a molar mass as measured by CES (steric exclusion chromatography) greater than 5000 g/mol.
On entend par ailleurs par le terme « diamètre moyen en volume » ou « Dv » le diamètre moyen en volume d’une matière pulvérulente, tel que mesuré selon la norme ISO 13319- 1:2021 , par exemple sur un compteur de particules Coulter Counter-Multisizer 3 (Beckmann Coulter). On distingue différents diamètres. Plus spécifiquement, le Dv50 désigne le diamètre médian en volume, et le Dv10 et Dv90 désignent respectivement les diamètres en-dessous desquels se situent 10 ou 90% en volume des particules. The term “average diameter by volume” or “Dv” is also understood to mean the average diameter by volume of a pulverulent material, as measured according to standard ISO 13319-1:2021, for example on a Coulter Counter particle counter. -Multisizer 3 (Beckmann Coulter). There are different diameters. More specifically, the Dv50 denotes the median diameter by volume, and the Dv10 and Dv90 respectively denote the diameters below which 10 or 90% by volume of the particles are located.
On entend par le terme « span » désigner un ratio décrivant la largeur de la distribution granulométrique d’une poudre, de formule suivante : The term "span" means a ratio describing the width of the particle size distribution of a powder, with the following formula:
[Math 2]
Figure imgf000005_0001
dans laquelle :
[Math 2]
Figure imgf000005_0001
in which :
Dv10 désigne le diamètre en-dessous duquel se trouvent 10% en volume des particules de la poudre de polymère ; Dv10 designates the diameter below which there are 10% by volume of the particles of the polymer powder;
Dv50 désigne le diamètre en-dessous duquel se trouvent 50% en volume des particules de la poudre de polymère (par définition Dv50 est aussi le diamètre médian en volume), et Dv50 designates the diameter below which 50% by volume of the particles of the polymer powder are found (by definition Dv50 is also the median diameter by volume), and
Dv90 désigne le diamètre en-dessous duquel se trouvent 90% en volume des particules de la poudre de polymère, ces diamètres étant mesurés comme indiqué ci-dessus. Dv90 designates the diameter below which 90% by volume of the particles of the polymer powder are found, these diameters being measured as indicated above.
On entend enfin par le terme « impression 3D par frittage » désigner des procédés dans lesquels une couche de poudre de polymère est irradiée par rayonnement électromagnétique (par exemple faisceau laser, rayonnement infrarouge, rayonnement UV), de sorte à fondre sélectivement les particules de poudre impactées par le rayonnement. Les particules fondues coalescent et se solidifient pour conduire à la formation d’une masse solide. Ce procédé peut produire des articles 3D par l'irradiation répétée d'une succession de couches de poudre fraîchement appliquées. Finally, the term “3D printing by sintering” means processes in which a layer of polymer powder is irradiated by electromagnetic radiation (for example laser beam, infrared radiation, UV radiation), so as to selectively melt the powder particles. affected by radiation. The molten particles coalesce and solidify to lead to the formation of a solid mass. This process can produce 3D articles by repeatedly irradiating a succession of freshly applied powder layers.
On entend par le terme « rugosité de surface » désigner l’écart moyen arithmétique Ra du profil de surface d’un échantillon selon la norme ISO4287:1997, par exemple à l’aide d’un appareil PERTHOMETER S8P. Dans le cas de l’impression 3D, l’orientation de construction peut avoir un impact sur la rugosité, et il peut donc être utile de distinguer le dessous et le dessus d’un article, le dessous correspondant à la première couche de construction et le dessus à la dernière couche de construction. The term “surface roughness” is understood to denote the arithmetic mean deviation R a of the surface profile of a sample according to the ISO4287:1997 standard, for example using a PERTHOMETER S8P device. In the case of 3D printing, the build orientation can impact roughness, so it can be useful to distinguish between the bottom and top of an item, where the bottom is the first build layer and the top is the last build layer.
On entend par le terme « viscosité » désigner la viscosité inhérente telle que mesurée dans un viscosimètre de type Ubbelohde selon la norme ISO 307 :2019, sauf à utiliser comme solvant le m-crésol et une température de 20°C. La dimension de la viscosité inhérente est l’inverse d’une concentration et est égale au logarithme népérien de la viscosité relative, le tout divisé par la concentration de polymère dissous dans le solvant. The term “viscosity” is understood to denote the inherent viscosity as measured in a viscometer of the Ubbelohde type according to standard ISO 307:2019, except when using m-cresol as solvent and at a temperature of 20° C. The dimension of the inherent viscosity is the reciprocal of a concentration and is equal to the natural logarithm of the relative viscosity, all divided by the concentration of polymer dissolved in the solvent.
La nomenclature utilisée pour désigner les polyamides suit la norme ISO 1874-1. En particulier, dans la notation PA X, X représente le nombre d’atomes de carbone des motifs polyamide issus de la condensation d’un aminoacide ou lactame. Dans la notation PA XY désignant un polyamide issu de la condensation d’une diamine avec un acide dicarboxylique ou un dérivé d’acide possédant di-fonctionnel, X représente le nombre d’atomes de carbone de la diamine et Y représente le nombre d’atomes de carbone de l’acide dicarboxylique ou du dérivé d’acide. La notation PA X/Y, PA X/Y/Z, etc. se rapporte à des copolyamides dans lesquels X, Y, Z, etc. représentent des unités homopolyamide telles que décrites ci-dessus. Au sens large, la présente invention propose une composition de poudre de polymère thermoplastique adaptée pour la fabrication additive par fusion sélective, dans laquelle la poudre de polymère présente une granulométrie caractérisée par un diamètre moyen Dv < 55 pm, une distribution granulométrique spécifique, caractérisée par un span inférieur à 1 ,2, et enfin un ratio d entre la densité de la poudre et celle du matériau compris entre 0,40 et 0,55. L’utilisation de poudres présentant un faible ratio d compromet le plus souvent les propriétés des articles construits, notamment en termes de tenue mécanique. Par ailleurs, une telle poudre est difficile à transformer en raison du comportement pulvérulent des particules. Enfin, un lit d’une telle poudre n’est pas en mesure de supporter le poids de l’article en cours de construction. L’article s’effondre alors en cours de l’impression, et ne peut être achevé. L’utilisation de poudres présentant un ratio d élevé permet d’atteindre de meilleures propriétés mécaniques. Cependant, de telles poudres comprennent des grosses particules, et les articles construits présentent alors souvent une rugosité élevée. Aussi, il a été constaté qu’un ratio d tel que défini ci-dessus constituait un bon compromis entre les deux exigences rugosité et propriétés mécaniques. The nomenclature used to designate polyamides follows the ISO 1874-1 standard. In particular, in the PA X notation, X represents the number of carbon atoms of the polyamide units resulting from the condensation of an amino acid or lactam. In the notation PA XY designating a polyamide resulting from the condensation of a diamine with a dicarboxylic acid or an acid derivative possessing di-functionality, X represents the number of carbon atoms of the diamine and Y represents the number of carbon atoms of the dicarboxylic acid or acid derivative. The notation PA X/Y, PA X/Y/Z, etc. refers to copolyamides in which X, Y, Z, etc. represent homopolyamide units as described above. In a broad sense, the present invention provides a composition of thermoplastic polymer powder suitable for additive manufacturing by selective melting, in which the polymer powder has a particle size characterized by an average diameter Dv <55 μm, a specific particle size distribution, characterized by a span of less than 1.2, and finally a ratio d between the density of the powder and that of the material between 0.40 and 0.55. The use of powders with a low d ratio most often compromises the properties of the manufactured articles, particularly in terms of mechanical strength. Moreover, such a powder is difficult to convert due to the powdery behavior of the particles. Finally, a bed of such powder is not able to support the weight of the item being built. The article then collapses during printing, and cannot be completed. The use of powders with a high d ratio makes it possible to achieve better mechanical properties. However, such powders include large particles, and the constructed articles then often exhibit high roughness. Also, it was found that a ratio d as defined above constituted a good compromise between the two requirements of roughness and mechanical properties.
Il a été constaté par ailleurs qu’une poudre avec un tel ratio d permet de résorber plus rapidement les écarts d’épaisseur de la couche de poudre en début de construction, liés à la contraction de la poudre aux endroits frittés. Ces écarts d’épaisseur peuvent créer des contraintes dans la pièce et affecter par ailleurs sa qualité dans la mesure où la puissance du laser peut ne pas être suffisante pour fondre le polymère de sorte à assurer sa parfaite coalescence. De tels défauts peuvent engendrer une porosité qui risque de détériorer les propriétés mécaniques. It has also been observed that a powder with such a ratio d makes it possible to absorb more quickly the differences in thickness of the layer of powder at the start of construction, linked to the contraction of the powder at the sintered places. These variations in thickness can create stresses in the part and also affect its quality insofar as the laser power may not be sufficient to melt the polymer so as to ensure its perfect coalescence. Such defects can cause porosity which risks deteriorating the mechanical properties.
Enfin, il a été constaté que la rugosité de surface Ra d’un article construit par construction 3D, si elle est directement liée aux caractéristiques granulométriques de la poudre utilisée, notamment au diamètre moyen Dv, dépend également du span, de l’épaisseur ep de la couche de constructions, et du rapport d entre la densité de la poudre et celle du matériau. Pour plusieurs polyamides, il a été trouvé une corrélation sous la forme suivante : Finally, it was found that the surface roughness Ra of an article built by 3D construction, if it is directly linked to the particle size characteristics of the powder used, in particular to the average diameter Dv, also depends on the span, the thickness ep the layer of constructions, and the ratio d between the density of the powder and that of the material. For several polyamides, a correlation was found in the following form:
[
Figure imgf000007_0001
[
Figure imgf000007_0001
L’effet du ratio d sur la rugosité est particulièrement inattendu. The effect of the ratio d on the roughness is particularly unexpected.
Globalement, les compositions de poudre de polymère thermoplastique selon l’invention permettent l’obtention de pièces ayant une faible rugosité, et permettent par ailleurs d’éviter les défauts de construction sur les pièces notamment rondes ou penchées tout en conservant une bonne productivité. Overall, the thermoplastic polymer powder compositions according to the invention make it possible to obtain parts having low roughness, and moreover make it possible to avoid construction defects on parts, in particular round or bent parts, while maintaining good productivity.
A. Composition de poudre de polymère thermoplastique A. Composition of thermoplastic polymer powder
La composition de poudre de polymère thermoplastique proposée selon l’invention comprend une poudre de polymère qui présente : une granulométrie caractérisée par : o un diamètre moyen en volume Dv < 55 pm, et o un span inférieur à 1 ,20, et telle qu’un ratio d est compris entre 0,40 et 0,55, le ratio d étant de formule suivante : The thermoplastic polymer powder composition proposed according to the invention comprises a polymer powder which has: a particle size characterized by: o a volume-average diameter Dv <55 μm, and o a span of less than 1.20, and such that a ratio d is between 0.40 and 0.55, the ratio d being of the following formula:
[Math 4]
Figure imgf000007_0002
dans laquelle dp est la densité apparente de la poudre mesurée selon la norme ISO 787-11 : 1981 ; et dm est la densité du matériau mesurée sur la poudre après fusion par poussée verticale dans l’eau (21°C) selon la norme ISO 1183-1.
[Math 4]
Figure imgf000007_0002
in which dp is the apparent density of the powder measured according to standard ISO 787-11: 1981; and d m is the density of the material measured on the powder after melting by vertical thrust in water (21° C.) according to standard ISO 1183-1.
Selon l’invention, la poudre de polymère thermoplastique présente une granulométrie spécifique. En effet, la poudre de polymère thermoplastique de l’invention présente un diamètre moyen en volume Dv inférieur à 55 pm. Selon certains modes de réalisation, la poudre de polymère thermoplastique présente un diamètre moyen en volume Dv compris entre 30 à 55 pm, en particulier entre 35 et 50 pm et tout particulièrement entre 40 et 45 pm. According to the invention, the thermoplastic polymer powder has a specific particle size. Indeed, the thermoplastic polymer powder of the invention has a volume-average diameter Dv of less than 55 μm. According to certain embodiments, the thermoplastic polymer powder has a volume-average diameter Dv of between 30 and 55 μm, in particular between 35 and 50 μm and very particularly between 40 and 45 μm.
Outre le diamètre moyen seul, la distribution granulométrique de la poudre de polymère thermoplastique peut avoir également un impact sensible sur les performances en impression 3D par frittage. In addition to the average diameter alone, the particle size distribution of the thermoplastic polymer powder can also have a significant impact on the performance in 3D printing by sintering.
Ainsi, selon l’invention, la poudre de polymère thermoplastique présente un span, tel que défini ci-dessus, inférieur à 1 ,2, et notamment inférieur à 1 , et tout particulièrement inférieur à 0,9. Selon un mode de réalisation, le span de la poudre de polymère thermoplastique est compris entre 0,20 et 1 ,20, ou entre 0,30 et 1 ,10, ou entre 0,35 et 1 ,00, ou entre 0,40 et 0,90. Thus, according to the invention, the thermoplastic polymer powder has a span, as defined above, of less than 1.2, and in particular less than 1, and very particularly less than 0.9. According to one embodiment, the span of the thermoplastic polymer powder is between 0.20 and 1.20, or between 0.30 and 1.10, or between 0.35 and 1.00, or between 0.40 and 0.90.
Selon un mode de réalisation, le diamètre en volume Dv10 de la poudre est de préférence supérieur à 15 pm. Selon certains modes de réalisation, la poudre de polymère thermoplastique présente un diamètre en volume Dv10 compris entre 15 à 50 pm, ou entre 25 et 45 pm ou entre 30 et 40 pm. According to one embodiment, the volume diameter Dv10 of the powder is preferably greater than 15 μm. According to certain embodiments, the thermoplastic polymer powder has a volume diameter Dv10 of between 15 and 50 μm, or between 25 and 45 μm or between 30 and 40 μm.
Selon un mode de réalisation, le diamètre en volume Dv50 de la poudre est de préférence compris entre 30 et 60 pm. Selon certains modes de réalisation, la poudre de polymère thermoplastique présente un diamètre en volume Dv50 compris entre 35 à 55 pm, ou entre 40 et 50 pm. According to one embodiment, the volume diameter Dv50 of the powder is preferably between 30 and 60 μm. According to certain embodiments, the thermoplastic polymer powder has a volume diameter Dv50 of between 35 and 55 μm, or between 40 and 50 μm.
Selon un mode de réalisation, la poudre de polymère thermoplastique présente un diamètre en volume Dv90 inférieur à 120 pm, en particulier inférieur à 100 pm, et tout particulièrement inférieur à 90 pm. Selon certains modes de réalisation, la poudre de polymère thermoplastique présente un diamètre en volume Dv90 compris entre 40 à 120 pm, ou entre 45 et 100 pm, ou entre 50 et 80 pm. According to one embodiment, the thermoplastic polymer powder has a volume diameter Dv90 of less than 120 μm, in particular less than 100 μm, and very particularly less than 90 μm. According to certain embodiments, the thermoplastic polymer powder has a volume diameter Dv90 of between 40 and 120 μm, or between 45 and 100 μm, or between 50 and 80 μm.
La poudre de polymère thermoplastique dans la composition selon l’invention est par ailleurs caractérisée par un ratio d spécifique, qui est compris entre 0,40 et 0,55. Le ratio d est de formule suivante : The thermoplastic polymer powder in the composition according to the invention is moreover characterized by a specific ratio d, which is between 0.40 and 0.55. The ratio d is of the following formula:
[M
Figure imgf000008_0001
[M
Figure imgf000008_0001
Comme exposé ci-dessus, le ratio d tel que spécifié exprime le compromis proposé selon l’invention entre la recherche d’une densité maximale de la poudre et donc un ratio d élevé d’une part, et le fait que de telles poudres engendrent des articles avec une rugosité élevée et requièrent un plus grand nombre de couches pour résorber l’écart d’épaisseur résultant de la différence de densité en début de construction (8 à 10 couches soit presque 1 mm sur l’article construit, voir Fig. 2). Ainsi, il a été trouvé qu’un ratio d compris entre 0,40 et 0,55 permettait de concilier au mieux l’intérêt d’avoir une poudre dense en vue de bonnes propriétés mécaniques des articles imprimés et celui d’avoir une poudre pas trop dense en vue de limiter les contraintes et défauts en début de construction. As explained above, the ratio d as specified expresses the compromise proposed according to the invention between the search for a maximum density of the powder and therefore a high ratio d on the one hand, and the fact that such powders generate articles with high roughness and require a greater number of layers to absorb the difference in thickness resulting from the difference in density at the start of construction (8 to 10 layers or almost 1 mm on the article being constructed, see Fig. 2). Thus, it was found that a ratio d between 0.40 and 0.55 allowed to best reconcile the advantage of having a dense powder with a view to good mechanical properties of the printed articles and that of having a powder that is not too dense with a view to limiting constraints and defects at the start of construction.
La densité apparente dp de la poudre de polymère thermoplastique dépend, outre de sa granulométrie, notamment de la forme des particules, de leur porosité et de leur structure cristalline. La poudre de polymère thermoplastique a de préférence une densité apparente dp de 0,200 à 0,600, préférentiellement de 0,300 à 0,550, et de manière extrêmement préférée de 0,400 à 0,500. The apparent density d p of the thermoplastic polymer powder depends, in addition to its particle size, in particular on the shape of the particles, their porosity and their crystalline structure. The thermoplastic polymer powder preferably has a bulk density d p of 0.200 to 0.600, preferably of 0.300 to 0.550, and extremely preferably of 0.400 to 0.500.
La densité dm du polymère thermoplastique dépend du polymère considéré et est généralement comprise de 0,850 à 1 ,850, préférentiellement de 0,900 à 1 ,450, et de manière extrêmement préférée de 0,950 à 1 ,150. The density d m of the thermoplastic polymer depends on the polymer considered and generally ranges from 0.850 to 1.850, preferably from 0.900 to 1.450, and extremely preferably from 0.950 to 1.150.
Les polymères thermoplastiques susceptibles d’être utilisés dans le cadre de la présente invention peuvent notamment être choisis parmi les polyesters, le chlorure de polyvinyle, le polyacétal, les polyoléfines comme le polypropylène et le polyéthylène, le polystyrène, le polycarbonate, le poly-(N-méthylméthacrylimide, PMMI), le polyméthylméthacrylate (PMMA), les ionomères, les polyamides, les élastomères thermoplastiques tels que les polyétherblock amides (PEBA), les PAEK, et leurs copolymères et mélanges. The thermoplastic polymers capable of being used in the context of the present invention can in particular be chosen from polyesters, polyvinyl chloride, polyacetal, polyolefins such as polypropylene and polyethylene, polystyrene, polycarbonate, poly( N-methylmethacrylimide, PMMI), polymethylmethacrylate (PMMA), ionomers, polyamides, thermoplastic elastomers such as polyetherblock amides (PEBA), PAEKs, and their copolymers and mixtures.
Parmi les polyamides, on peut mentionner notamment les polyamides aliphatiques tels que le PA 6, le PA 6.6, le PA 11 et le PA 12 et leurs copolymères, et les polyamides semi-aromatiques tels que le PA 11/10T par exemple. Among the polyamides, mention may in particular be made of aliphatic polyamides such as PA 6, PA 6.6, PA 11 and PA 12 and their copolymers, and semi-aromatic polyamides such as PA 11/10T for example.
Parmi les polymères PAEK, on peut mentionner en particulier le polyétherketoneketone (PEKK), le polyétherétherketone (PEEK) et leurs copolymères tels que le polyétherétherketone-polyétherdiphénylétherketone (PEEK-PEDEK) et le polyétherétherketone-polyéthermetaétherketone (PEEK-PEmEK). Among the PAEK polymers, mention may be made in particular of polyetherketoneketone (PEKK), polyetheretherketone (PEEK) and their copolymers such as polyetheretherketone-polyetherdiphenyletherketone (PEEK-PEDEK) and polyetheretherketone-polyethermetaetherketone (PEEK-PEmEK).
Selon un mode de réalisation, le polymère comprend ou est constitué d’un polyamide, notamment le PA 11 , PA 12, un PEBA, ou un polyamide semi-aromatique tel que le PA 11/10T ou d’un PAEK tel que le PEKK, ainsi que leurs mélanges ou copolymères. According to one embodiment, the polymer comprises or consists of a polyamide, in particular PA 11, PA 12, a PEBA, or a semi-aromatic polyamide such as PA 11/10T or a PAEK such as PEKK , as well as mixtures or copolymers thereof.
La poudre de polymère thermoplastique comprend généralement au moins 50% en poids de polymère thermoplastique par rapport au poids total de poudre. The thermoplastic polymer powder generally comprises at least 50% by weight of thermoplastic polymer relative to the total weight of powder.
Selon certains modes de réalisation, la poudre comprend au moins 50%, ou au moins 75%, ou au moins 80%, ou au moins 85%, ou au moins 90%, ou au moins 92,5%, ou au moins 95%, ou au moins 97,5%, ou au moins 98%, ou au moins 98,5%, ou au moins 99%, ou au moins 99,5% en poids de polymère thermoplastique par rapport au poids total de la poudre de polymère thermoplastique de l’invention. According to certain embodiments, the powder comprises at least 50%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 92.5%, or at least 95 %, or at least 97.5%, or at least 98%, or at least 98.5%, or at least 99%, or at least 99.5% by weight of thermoplastic polymer relative to the total weight of the powder of thermoplastic polymer of the invention.
Selon certains modes de réalisation, la poudre de polymère thermoplastique peut comprendre un unique polymère thermoplastique, par exemple uniquement un polyester, une polyoléfine, un polyamide, un polyester, un PEBA ou un PAEK. Selon certains modes de réalisation, la poudre selon l’invention comporte plusieurs polymères différents par au moins l’une de leurs propriétés. Ces propriétés peuvent être notamment la masse molaire, la cristallinité, mais aussi les propriétés thermiques ou encore la granulométrie. According to certain embodiments, the thermoplastic polymer powder can comprise a single thermoplastic polymer, for example only a polyester, a polyolefin, a polyamide, a polyester, a PEBA or a PAEK. According to some embodiments, the powder according to the invention comprises several different polymers by at least one of their properties. These properties can be in particular the molar mass, the crystallinity, but also the thermal properties or even the particle size.
Selon certains modes de réalisation, la poudre de polymère thermoplastique a une viscosité, de 0,65 à 1 ,50, préférentiellement de 0,85 à 1 ,40, et de manière davantage préférée de 1 ,00 à 1 ,30. Ces gammes de viscosité sont particulièrement avantageuses et permettent d’obtenir un bon compromis pour avoir à la fois de bonnes propriétés de coalescence lors du frittage (viscosité suffisamment faible) et de bonnes propriétés mécaniques de l’objet fritté (viscosité suffisamment élevée). According to some embodiments, the thermoplastic polymer powder has a viscosity of 0.65 to 1.50, preferably 0.85 to 1.40, and more preferably 1.00 to 1.30. These viscosity ranges are particularly advantageous and make it possible to obtain a good compromise to have both good coalescence properties during sintering (sufficiently low viscosity) and good mechanical properties of the sintered object (sufficiently high viscosity).
La poudre de polymère thermoplastique peut comprendre outre le ou les polymères thermoplastiques un ou plusieurs additifs et charges habituels. The thermoplastic polymer powder may comprise, in addition to the thermoplastic polymer(s), one or more usual additives and fillers.
Les additifs représentent généralement moins de 5% en poids par rapport au poids total de composition. De préférence, les additifs représentent moins de 1% en poids du poids total de poudre. Parmi les additifs, on peut citer les agents d’écoulement, les agents stabilisants (lumière, en particulier UV, et chaleur), les azurants optiques, les colorants, les pigments, les additifs absorbeurs d’énergie (dont absorbeurs d’UV). The additives generally represent less than 5% by weight relative to the total composition weight. Preferably, the additives represent less than 1% by weight of the total powder weight. Among the additives, mention may be made of flow agents, stabilizing agents (light, in particular UV, and heat), optical brighteners, dyes, pigments, energy-absorbing additives (including UV absorbers) .
Parmi les agents d’écoulement, on peut citer par exemple une silice hydrophile ou hydrophobe. Avantageusement, l’agent d’écoulement représente de 0.01 à 0.4 % en poids par rapport au poids total de composition. Dans d’autres modes de réalisation, la composition pulvérulente ne comprend pas d’agent d’écoulement. Among the flow agents, mention may be made, for example, of a hydrophilic or hydrophobic silica. Advantageously, the flow agent represents from 0.01 to 0.4% by weight relative to the total weight of composition. In other embodiments, the powder composition does not include a flow agent.
La poudre de polymère thermoplastique peut également comprendre une ou plusieurs charges. Les charges représentent généralement moins de 50 % en poids, et de préférence moins de 40 % en poids par rapport au poids total de poudre finale. Parmi les charges, citons les charges renforçantes, notamment des charges minérales telles que le noir de carbone, le talc, des nanotubes, de carbone ou non, et les fibres, notamment les fibres de verre ou de carbone, broyées ou non, ou encore du verre sous une autre forme, par exemple sous forme de flocons ou de billes, creuses ou non. The thermoplastic polymer powder may also include one or more fillers. The fillers generally represent less than 50% by weight, and preferably less than 40% by weight relative to the total weight of final powder. Among the fillers, let us mention reinforcing fillers, in particular mineral fillers such as carbon black, talc, nanotubes, carbon or not, and fibers, in particular glass or carbon fibers, ground or not, or even glass in another form, for example in the form of flakes or balls, hollow or not.
B. Procédé de fabrication de la poudre de polymère thermoplastique B. Manufacturing process of thermoplastic polymer powder
La poudre de polymère thermoplastique peut notamment être obtenue par broyage de polymère thermoplastique sous forme de granulés extrudés ou d’écailles, selon des techniques conventionnelles. The thermoplastic polymer powder can in particular be obtained by grinding thermoplastic polymer in the form of extruded granules or scales, according to conventional techniques.
Le broyage peut être réalisé sur des équipements connus à cet effet, par exemple au moyen d’un broyeur à broches contrarotatives (pin mill), un broyeur à marteaux (hammer mill) ou dans un broyeur tourbillonnant (whirl mill). The grinding can be carried out on equipment known for this purpose, for example by means of a counter-rotating pin mill (pin mill), a hammer mill (hammer mill) or in a whirl mill.
Lorsque la poudre comporte plusieurs polymères et/ou certains additifs et/ou certaines charges renforçantes, certains ou tous peuvent être incorporées par mélange à l’état fondu, par exemple par extrusion (compoundage) et granulation suivie d’un broyage des granulés. En alternative, il est également possible d’ajouter d’autres polymères et/ou certains additifs et/ou certaines charges renforçantes par mélange à sec (« dry blend »). De préférence, l’agent d’écoulement est ajouté par mélange à sec. When the powder comprises several polymers and/or certain additives and/or certain reinforcing fillers, some or all of them may be incorporated by mixing in the molten state, for example by extrusion (compounding) and granulation followed by grinding of the granules. Alternatively, it is also possible to add other polymers and/or certain additives and/or certain reinforcing fillers by dry blending. Preferably, the flow agent is added by dry mixing.
Selon un mode de réalisation, et notamment pour les polyamides, le procédé de fabrication de la composition de la poudre comprend les étapes de : According to one embodiment, and in particular for polyamides, the process for manufacturing the composition of the powder comprises the steps of:
(i) Prépolymérisation du ou des monomères du polymère thermoplastique et granulation subséquente ; (i) Prepolymerization of the thermoplastic polymer monomer(s) and subsequent granulation;
(ii) Broyage en une poudre ; (ii) Grinding into a powder;
(iii) Tamisage subséquent éventuel de la poudre de prépolymère obtenue ; (iii) Possible subsequent sieving of the prepolymer powder obtained;
(iv) Soumission de la poudre de prépolymère obtenue à une polycondensation en phase solide pour obtenir une poudre de polymère. (iv) Subjecting the obtained prepolymer powder to solid phase polycondensation to obtain a polymer powder.
Les additifs et/ou charges renforçantes peuvent alors être ajoutées au prépolymère, par mélange en fusion (compoundage) ou mélange à sec, entre l’étape (i) et (ii), ou ultérieurement, par mélange à sec. The additives and/or reinforcing fillers can then be added to the prepolymer, by melt mixing (compounding) or dry mixing, between step (i) and (ii), or subsequently, by dry mixing.
C. Utilisation de la poudre C. Use of powder
La composition de poudre de polymère telle que décrite ci-dessus est utile notamment pour être mise en œuvre dans un procédé d’impression 3D par frittage. De préférence, la composition de l’invention est utilisée dans un procédé de frittage sélectif par laser (SLS, Selective Laser Sintering, en anglais), un procédé de frittage du type MJF (Multi Jet Fusion) ou un procédé de frittage du type HSS (High Speed Sintering). The polymer powder composition as described above is useful in particular for being implemented in a 3D printing process by sintering. Preferably, the composition of the invention is used in a selective laser sintering process (SLS, Selective Laser Sintering, in English), a sintering process of the MJF (Multi Jet Fusion) type or a sintering process of the HSS type. (High Speed Sintering).
Le procédé SLS est largement connu. Dans ce contexte, il peut être notamment renvoyé aux documents US 6,136,948 et WO 96/06881. The SLS process is widely known. In this context, particular reference may be made to documents US 6,136,948 and WO 96/06881.
Dans ce type de procédé, une fine couche de poudre est déposée sur une plaque horizontale maintenue dans une enceinte chauffée à une température appelée température de construction. Le plus souvent, le chauffage à la température de construction est réalisée au moyen de lampes à rayonnement IR, par exemple des lampes halogènes, lesquelles ont généralement un maximum d’émission à une longueur d’onde comprise entre 750 nm et 1250 nm. La température de construction désigne la température à laquelle le lit de poudre, d’une couche constitutive d’un article tridimensionnel en construction, est chauffé pendant le procédé de frittage couche-par-couche de la poudre. Un rayonnement électromagnétique, par exemple sous forme de laser, apporte par la suite l’énergie nécessaire à fritter les particules de poudre en différents points de la couche de poudre selon une géométrie correspondant à un objet, par exemple à l’aide d’un ordinateur ayant en mémoire la forme d’un objet et restituant cette dernière sous forme de tranches. Ensuite, la plaque horizontale est abaissée d’une hauteur correspondant à l’épaisseur d’une couche de poudre, et une nouvelle couche de poudre est étalée, chauffée puis fritter de la même manière. La procédure est répétée jusqu’à ce que l’on ait fabriqué l’objet. In this type of process, a thin layer of powder is deposited on a horizontal plate held in an enclosure heated to a temperature called the construction temperature. Most often, heating to the building temperature is carried out by means of IR radiation lamps, for example halogen lamps, which generally have an emission maximum at a wavelength between 750 nm and 1250 nm. The build temperature refers to the temperature to which the powder bed, of a constituent layer of a three-dimensional article under construction, is heated during the layer-by-layer sintering process of the powder. Electromagnetic radiation, for example in the form of a laser, then provides the energy needed to sinter the powder particles at different points of the powder layer according to a geometry corresponding to an object, for example using a computer having in memory the shape of an object and restoring the latter in the form of slices. Then the horizontal plate is lowered by a height corresponding to the thickness of a layer of powder, and a new layer of powder is spread, heated and then sintered in the same way. The procedure is repeated until the object has been made.
La couche de poudre déposée sur une plaque horizontale peut avoir, avant frittage, par exemple une épaisseur de 20 à 200 pm, et de préférence de 50 à 150 pm. Après frittage, l’épaisseur de la couche de matériau aggloméré est un peu plus faible, et peut avoir par exemple une épaisseur de 10 à 150 pm, et de préférence de 30 à 100 pm. The layer of powder deposited on a horizontal plate can have, before sintering, for example a thickness of 20 to 200 μm, and preferably of 50 to 150 μm. After sintering, the thickness of the layer of agglomerated material is a little lower, and may for example have a thickness of 10 to 150 μm, and preferably from 30 to 100 μm.
Pour le procédé MJ F et HSS, la couche entière du matériau de construction est exposée au rayonnement, mais seule une partie recouverte d’un agent de fusion est fondue pour devenir une couche d'une pièce 3D. L’agent de fusion est un composé capable d'absorber le rayonnement et de le convertir en énergie thermique, par exemple une encre noire. Il est appliqué sélectivement dans la région sélectionnée du matériau de construction. L’agent de fusion est capable de pénétrer dans la couche du matériau de construction et transmet l’énergie absorbée au matériau de construction voisin, amenant ainsi celui-ci à fondre ou à être fritté. Par la fusion, la liaison et le durcissement subséquent de chaque couche du matériau de construction, on forme l’objet. For the MJ F and HSS process, the entire layer of building material is exposed to radiation, but only a part covered with a melting agent is melted to become a layer of a 3D part. The melting agent is a compound capable of absorbing radiation and converting it into thermal energy, for example black ink. It is applied selectively to the selected region of the building material. The melting agent is able to penetrate the layer of the building material and transmits the absorbed energy to the neighboring building material, thereby causing it to melt or be sintered. By melting, bonding and subsequent hardening of each layer of the building material, the object is formed.
Dans le cas particulier du MJF, un agent détaillant est en outre ajouté sur les bords de la zone à fondre pour permettre aux pièces d’avoir une meilleure définition. In the particular case of the MJF, a detailing agent is additionally added to the edges of the zone to be melted to allow the parts to have a better definition.
Avantageusement, l’utilisation de la composition de poudre de polymère de l’invention dans ces procédés ne requiert pas de modification particulière. Comme évoqué ci-dessus, elle permet en revanche d’obtenir des pièces présentant une plus faible rugosité et une meilleure définition. Advantageously, the use of the polymer powder composition of the invention in these processes does not require any particular modification. As mentioned above, on the other hand, it makes it possible to obtain parts with lower roughness and better definition.
La composition de poudre de polymère selon l’invention peut être recyclée et réutilisée dans plusieurs constructions successives. Dans cette hypothèse, elle peut être réutilisée seule ou en mélange avec d’autres poudres recyclées ou non. The polymer powder composition according to the invention can be recycled and reused in several successive constructions. In this case, it can be reused alone or mixed with other powders, whether recycled or not.
A titre d’exemple est décrit ci-après l’utilisation de la composition de poudre de polymère thermoplastique décrite dans un procédé de construction d’objet tridimensionnel couche-par- couche par frittage provoqué par un rayonnement électromagnétique dans un dispositif 1 , tel que celui schématisé en Figure 1. By way of example is described below the use of the composition of thermoplastic polymer powder described in a method for constructing a three-dimensional object layer-by-layer by sintering caused by electromagnetic radiation in a device 1, such as the one schematized in Figure 1.
Le rayonnement électromagnétique peut être par exemple être un rayonnement infrarouge, un rayonnement ultraviolet, ou de préférence un rayonnement laser. En particulier, dans un dispositif 1 tel que celui schématisé en Figure 1 , le rayonnement électromagnétique peut comprendre une combinaison de rayonnement infrarouge 100 et un rayonnement laser 200.The electromagnetic radiation may for example be infrared radiation, ultraviolet radiation, or preferably laser radiation. In particular, in a device 1 such as that shown schematically in Figure 1, the electromagnetic radiation may comprise a combination of infrared radiation 100 and laser radiation 200.
Le procédé de frittage est un procédé de fabrication couche-à-couche pour construire un objet tridimensionnel 80. The sintering process is a layer-to-layer manufacturing process to construct an 80 three-dimensional object.
Le dispositif 1 comprend une enceinte de frittage 10 dans laquelle sont disposés un bac d’alimentation 40 contenant la poudre de polymère thermoplastique et une plaque horizontale 30 mobile. La plaque horizontale 30 peut également jouer le rôle de support de l’objet tridimensionnel 80 en construction. Néanmoins, les objets fabriqués à partir de la poudre de polymère thermoplastique n’ont généralement pas besoin de support additionnel et peuvent généralement être auto-supportés par la poudre non-frittée de couches précédentes. The device 1 comprises a sintering chamber 10 in which are arranged a supply tray 40 containing the thermoplastic polymer powder and a movable horizontal plate 30. The horizontal plate 30 can also act as a support for the object three-dimensional 80 under construction. However, objects made from thermoplastic polymer powder generally do not need additional support and can generally be self-supported by unsintered powder from previous layers.
Selon le procédé, de la poudre de polymère thermoplastique est prélevée du bac d’alimentation 40 et déposée sur la plaque horizontale 30, formant une fine couche 50 de poudre constitutive de l’objet tridimensionnel 80 en construction. La couche de poudre 50 est chauffée grâce à un rayonnement infra-rouge 100 pour atteindre une température sensiblement uniforme égale à la température de construction minimum Te prédéterminée.According to the method, thermoplastic polymer powder is taken from the supply tray 40 and deposited on the horizontal plate 30, forming a thin layer 50 of powder constituting the three-dimensional object 80 under construction. The layer of powder 50 is heated using infrared radiation 100 to reach a substantially uniform temperature equal to the predetermined minimum construction temperature Te.
L’énergie nécessaire à fritter les particules de poudre de polymère thermoplastique en différents points de la couche de poudre 50 est ensuite apportée par un rayonnement laser 200 du laser 20 mobile dans le plan (xy), selon une géométrie correspondant à celle de l’objet. La poudre fondue se re-solidifie formant une partie frittée 55 alors que le reste de la couche 50 reste sous forme de poudre non frittée 56. Un seul passage d’un seul rayonnement laser 200 est généralement suffisant pour assurer le frittage de la poudre. Néanmoins, dans certains modes de réalisation, il peut également être envisagé plusieurs passages au même endroit et/ou plusieurs rayonnements électromagnétiques atteignant le même endroit pour assurer le frittage de la poudre. The energy required to sinter the thermoplastic polymer powder particles at different points of the powder layer 50 is then supplied by laser radiation 200 from the laser 20 moving in the plane (xy), according to a geometry corresponding to that of the object. The molten powder re-solidifies forming a sintered part 55 while the rest of the layer 50 remains in the form of unsintered powder 56. A single passage of a single laser radiation 200 is generally sufficient to ensure the sintering of the powder. Nevertheless, in certain embodiments, it is also possible to envisage several passages at the same place and/or several electromagnetic radiations reaching the same place to ensure the sintering of the powder.
Ensuite, la plaque horizontale 30 est abaissée selon l’axe (z) d’une distance correspondant à l’épaisseur d’une couche de poudre, et une nouvelle couche est déposée. Le laser 20 apporte l’énergie nécessaire pour fritter les particules de poudre selon une géométrie correspondant à cette nouvelle tranche de l’objet et ainsi de suite. La procédure est répétée jusqu’à ce que l’on ait fabriqué l’objet 80. Then, the horizontal plate 30 is lowered along the axis (z) by a distance corresponding to the thickness of a layer of powder, and a new layer is deposited. The laser 20 provides the energy needed to sinter the powder particles according to a geometry corresponding to this new slice of the object and so on. The procedure is repeated until object 80 has been produced.
La température dans l’enceinte de frittage 10 des couches inférieures à la couche en cours de construction peut être inférieure à la température de construction. Cette température reste cependant généralement au-dessus, voire bien au-dessus, de la température de transition vitreuse de la poudre. Il est notamment avantageux que la température du fond de l’enceinte soit maintenue à une température Tb, dite « température de fond de bac », tel que Tb soit inférieure à Te de moins de 40°C, de préférence de moins de 25°C et encore de préférence de moins de 10°C. The temperature in the sintering chamber 10 of the layers lower than the layer being built can be lower than the construction temperature. However, this temperature generally remains above, or even well above, the glass transition temperature of the powder. It is particularly advantageous for the temperature of the bottom of the enclosure to be maintained at a temperature Tb, called "tank bottom temperature", such that Tb is less than Te by less than 40° C., preferably less than 25° C. C and more preferably less than 10°C.
Une fois l'objet 80 terminé, il est retiré de la plaque horizontale 30 et la poudre non frittée 56 peut être tamisée avant d'être renvoyée, au moins en partie, dans le bac d’alimentation 40 pour servir de poudre recyclée. Once the object 80 is completed, it is removed from the horizontal plate 30 and the unsintered powder 56 can be sieved before being returned, at least in part, to the supply bin 40 to serve as recycled powder.
D. Pièce susceptible d’être fabriquée D. Part likely to be manufactured
L’utilisation d’une composition selon l’invention permet ainsi de fabriquer des articles tridimensionnels de bonne qualité, ayant un aspect surface très satisfaisant, notamment une faible rugosité et des dimensions et des contours précis et bien définis. La composition de poudre de polymère thermoplastique permet la fabrication par impression 3D par frittage de pièces qui présentent des propriétés, notamment mécaniques, au moins analogues aux pièces obtenues sinon supérieures comparé aux poudres de polymère thermoplastique conventionnelles. The use of a composition according to the invention thus makes it possible to manufacture three-dimensional articles of good quality, having a very satisfactory surface appearance, in particular low roughness and precise and well-defined dimensions and contours. The composition of thermoplastic polymer powder allows the manufacture by 3D printing by sintering of parts which have properties, in particular mechanical properties, at least analogous to the parts obtained if not superior compared to conventional thermoplastic polymer powders.
L’invention sera expliquée plus en détail dans les exemples qui suivent. The invention will be explained in more detail in the following examples.
[Exemples] [Examples]
Exemple 1 Example 1
On a préparé une composition de poudre de polyamide 11 selon le procédé suivant. A polyamide 11 powder composition was prepared according to the following method.
T out d’abord, on a synthétisé un prépolymère de polyamide 11 à partir de 1 ,2kg d’acide amino- 11-undécanoïque en présence de 0,5kg d’eau, de 5g d’acide hypophosphoreux (titre 50%, exprimé en % en poids dans la solution aqueuse) et de 9,8g d’acide phosphorique (titre 75%, exprimé en % en poids dans la solution aqueuse). Le mélange a été chauffé jusqu’à une température de 190°C en 2h sous agitation dès que la température a atteint 160 °C ou la pression a excédé 8,5 bars. Lors de la synthèse, l’eau initialement chargée avec d’acide amino-11-undécanoïque a été éliminée par évaporation à pression constante (P=10 bars). Après avoir soutiré une quantité d’eau de 430 g, le prépolymère est extrait du réacteur sous pression à travers une filière. Il a été ensuite refroidi à l'aide de deux rouleaux en acier avec circulation d'eau froide pour être solidifié, refroidi et concassé en écailles. First of all, a polyamide 11 prepolymer was synthesized from 1.2 kg of amino-11-undecanoic acid in the presence of 0.5 kg of water, 5 g of hypophosphorous acid (titer 50%, expressed in% by weight in the aqueous solution) and 9.8 g of phosphoric acid (title 75%, expressed in% by weight in the aqueous solution). The mixture was heated to a temperature of 190°C in 2 hours with stirring as soon as the temperature reached 160°C or the pressure exceeded 8.5 bars. During the synthesis, the water initially charged with amino-11-undecanoic acid was eliminated by evaporation at constant pressure (P=10 bars). After having drawn off a quantity of water of 430 g, the prepolymer is extracted from the reactor under pressure through a die. It was then cooled using two steel rollers with circulation of cold water to be solidified, cooled and crushed into scales.
Le prépolymère ainsi obtenu a été mélangé dans un récipient adapté avec 3,3g de noir de carbone. Ce mélange a été introduit dans une extrudeuse bi-vis pour être fondu et mélangé intimement puis extrudé. Le mélange a été ensuite refroidi à l'aide de deux rouleaux en acier avec circulation d'eau froide pour être solidifié et refroidi puis concassé en écailles. The prepolymer thus obtained was mixed in a suitable container with 3.3 g of carbon black. This mixture was introduced into a twin-screw extruder to be melted and intimately mixed and then extruded. The mixture was then cooled using two steel rollers with circulation of cold water to be solidified and cooled and then crushed into scales.
Le prépolymère additivé récupéré sous forme d’écailles est ensuite broyé dans un broyeur à marteaux muni d’un sélecteur interne jusqu’à obtenir une poudre ayant un diamètre médian en volume Dv50 de 64pm. La poudre ainsi obtenue est ensuite soumise à une polycondensation en phase solide dans un sécheur à 140-155°C sous vide afin d’augmenter la viscosité inhérente du polyamide jusqu’à 1 ,15. The additive prepolymer recovered in the form of flakes is then ground in a hammer mill equipped with an internal selector until a powder with a median diameter by volume Dv50 of 64 μm is obtained. The powder thus obtained is then subjected to solid phase polycondensation in a dryer at 140-155°C under vacuum in order to increase the inherent viscosity of the polyamide up to 1.15.
La poudre de polyamide 11 pigmentée obtenue a ensuite été tamisée grâce à un tamiseur à nutation avec décolmatage à ultrasons RUSSEL type FINEX 22, en utilisant une maille carrée de 80 pm. The pigmented polyamide 11 powder obtained was then sieved using a RUSSEL type FINEX 22 ultrasonic swirling sieve, using an 80 μm square mesh.
La composition de poudre obtenue a ensuite été caractérisée en matière de granulométrie et de densité comme indiqué ci-dessous. Les résultats sont rassemblés dans les tableau 1 et 2 ci-dessous. Caractérisation des poudres The powder composition obtained was then characterized in terms of particle size and density as indicated below. The results are collated in Tables 1 and 2 below. Characterization of powders
Granulométrie Granulometry
La granulométrie des poudres a été caractérisée au moyen de la mesure de la distribution granulométrique sur un dispositif Coulter Counter-Multisizer 3 (Beckmann Coulter) en application de la norme ISO 13319-1 :2021. A partir de celle-ci, le diamètre moyen et le diamètre correspondant aux 1er, 5e et 9e déciles de la distribution ont été déterminés, puis le span a été calculé selon la formule suivante : The particle size of the powders was characterized by measuring the particle size distribution on a Coulter Counter-Multisizer 3 device (Beckmann Coulter) in application of the ISO 13319-1:2021 standard. From this, the mean diameter and the diameter corresponding to the 1st , 5th and 9th deciles of the distribution were determined, then the span was calculated according to the following formula:
[
Figure imgf000015_0001
[
Figure imgf000015_0001
Rapport d Report d
La densité apparente de la poudre dp a été mesurée en application de la norme ISO 787- 11 :1981 au moyen d’une éprouvette de précision en verre de 250 mL graduée de 2 en 2 mL et comportant une partie supérieure non graduée d'au moins 50 mL. La poudre est introduite lentement dans l'éprouvette inclinée à 45°, un volume de poudre compris entre 220 et 250 ml. Ce volume de poudre est ensuite pesé afin de calculer la masse volumique apparente puis divisé par la masse volumique de l’eau pour en déduire sa densité. The apparent density of the powder d p was measured in application of the ISO 787-11:1981 standard using a 250 mL precision glass test tube graduated from 2 to 2 mL and comprising a non-graduated upper part of at least 50 mL. The powder is introduced slowly into the test tube inclined at 45°, a volume of powder comprised between 220 and 250 ml. This volume of powder is then weighed in order to calculate the apparent density and then divided by the density of the water to deduce its density.
La densité du matériau dm a été mesurée après fusion de la poudre sous une presse chauffante (T > Tf + 40°C et pression de 2 tonnes). La densité du film obtenu, c’est-à-dire celle du matériau, est mesurée par poussée verticale dans l’eau (21°C) selon la norme ISO 1183-1 au moyen d’une balance Sartorius AC 210P hydrostatique avec kit de densité YDK 01. The density of the material d m was measured after melting the powder under a heating press (T > T f + 40° C. and pressure of 2 tonnes). The density of the film obtained, that is to say that of the material, is measured by vertical thrust in water (21°C) according to the ISO 1183-1 standard using a Sartorius AC 210P hydrostatic balance with kit of density YDK 01.
Le rapport d entre la densité apparente dp de la poudre et la densité du matériau dm mesurée sur la poudre après fusion a été calculé selon la formule suivante : The ratio d between the apparent density d p of the powder and the density of the material d m measured on the powder after melting was calculated according to the following formula:
[Math 7]
Figure imgf000015_0002
[Math 7]
Figure imgf000015_0002
[Tableau 1] [Table 1]
Propriétés des poudres de polymère thermoplastiques
Figure imgf000015_0003
Figure imgf000016_0001
Properties of thermoplastic polymer powders
Figure imgf000015_0003
Figure imgf000016_0001
[Tableau 2] [Table 2]
Propriétés des articles imprimés
Figure imgf000016_0002
Properties of printed articles
Figure imgf000016_0002
La poudre de polymère obtenue a été ensuite utilisée pour fabriquer par impression 3D par frittage, plus spécifiquement par SLS, une éprouvette 1 BA XY (éprouvette 1 BA selon la norme ISO 527-1 BA, appelée « XY » car imprimée dans le plan horizontal de l’imprimante) par frittage laser sur une machine P100 (commercialise par la société EOS) en réglant l’épaisseur de la couche de poudre à 100 pm et en utilisant le jeu de paramètres suivant : [T ableau 3]
Figure imgf000016_0003
Figure imgf000017_0001
The polymer powder obtained was then used to manufacture by 3D printing by sintering, more specifically by SLS, a 1 BA XY specimen (1 BA specimen according to the ISO 527-1 BA standard, called "XY" because printed in the horizontal plane of the printer) by laser sintering on a P100 machine (marketed by the company EOS) by adjusting the thickness of the powder layer to 100 μm and using the following set of parameters: [T able 3]
Figure imgf000016_0003
Figure imgf000017_0001
Les éprouvettes sont évaluées visuellement au niveau de la définition de l’impression. Les résultats sont rassemblés dans le tableau 2 ci-dessus. Specimens are visually assessed for print definition. The results are collated in Table 2 above.
Les éprouvettes sont par ailleurs caractérisées par leur rugosité de surface supérieure et inférieure au moyen de l’écart moyen arithmétique Ra du profil de surface d’un échantillon selon la norme ISO4287:1997, à l’aide d’un appareil PERTHOMETER S8P (le résultat correspond à la moyenne de trois valeurs prises sur trois longueurs de base différentes).The specimens are also characterized by their upper and lower surface roughness by means of the arithmetic mean deviation Ra of the surface profile of a sample according to the ISO4287:1997 standard, using a PERTHOMETER S8P device (the result corresponds to the average of three values taken on three different base lengths).
Les éprouvettes sont ensuite polies mécaniquement au moyen d’une ponceuse équipée d’une toile emeri de grains 320, puis la mesure de rugosité de surface de ces éprouvettes est répétée dans les mêmes conditions que celles décrites ci-dessus. Les résultats sont rassemblés dans le tableau 2 ci-dessous. The specimens are then mechanically polished using a sander equipped with a 320 grit emery cloth, then the surface roughness measurement of these specimens is repeated under the same conditions as those described above. The results are collated in Table 2 below.
Exemple 2 Example 2
La poudre de PA11 préparée à l’exemple C2 est tamisée grâce à un tamiseur à nutation avec décolmatage à ultrasons RUSSEL type FINEX 22, en utilisant une maille carrée de 80 pm.The PA11 powder prepared in example C2 is sieved using a RUSSEL type FINEX 22 ultrasonic swirl sieve, using an 80 μm square mesh.
Les caractéristiques granulométriques de la poudre de polyamide 11 obtenue ont été déterminées comme indiqué à l’exemple 1. Les résultats sont rassemblés dans le tableau 1 ci-dessus. Par ailleurs, la densité du matériau a été mesurée comme expliqué à l’exemple 1 (voir tableau 2 ci-dessus). The particle size characteristics of the polyamide 11 powder obtained were determined as indicated in Example 1. The results are collated in Table 1 above. Furthermore, the density of the material was measured as explained in Example 1 (see Table 2 above).
La poudre obtenue est utilisée pour fabriquer des éprouvettes comme indiqué à l’exemple 1. Ces éprouvettes sont ensuite caractérisées par leur rugosité de surface sur le dessus et sur le dessous. Les résultats sont rassemblés dans le tableau 2 ci-dessus. The powder obtained is used to manufacture test pieces as indicated in example 1. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
Exemple 3 Example 3
Tout d’abord, on a synthétisé un prépolymère de polyamide 12 à partir de 1kg de lauryllactame en présence de 0,1kg d’eau. Le mélange a été chauffé jusqu’à une température de 260°C en 4h sous agitation dès que la température a atteint 160 °C ou que la pression a excédé 8,5 bars. Lors de la synthèse, l’eau initialement chargée avec le lauryllactame a été éliminée par évaporation à pression constante (P=20 bars). Après avoir soutiré une quantité d’eau de 30 g, le prépolymère est extrait du réacteur sous pression à travers une filière. Il a été ensuite refroidi à l'aide de deux rouleaux en acier avec circulation d'eau froide pour être solidifié, refroidi et concassé en écailles. First of all, a polyamide 12 prepolymer was synthesized from 1 kg of lauryllactam in the presence of 0.1 kg of water. The mixture was heated to a temperature of 260° C. in 4 hours with stirring as soon as the temperature reached 160° C. or the pressure exceeded 8.5 bars. During the synthesis, the water initially charged with the lauryllactam was eliminated by evaporation at constant pressure (P=20 bars). After having drawn off a quantity of water of 30 g, the prepolymer is extracted from the reactor under pressure through a die. It was then cooled using two steel rollers with circulating cold water to be solidified, cooled and crushed into scales.
Le prépolymère récupéré sous forme d’écailles est ensuite broyé dans un broyeur à marteaux muni d’un sélecteur interne tout en utilisant un second sélecteur dynamique en sortie afin d’éliminer les plus fines particules jusqu’à obtenir une poudre ayant un diamètre médian en volume Dv50 de 82pm. La poudre ainsi obtenue est ensuite soumise à une polycondensation en phase solide dans un sécheur à 140-155°C sous vide afin d’augmenter la viscosité inhérente du polyamide jusqu’à 1 ,10. The prepolymer recovered in the form of flakes is then ground in a hammer mill equipped with an internal selector while using a second dynamic selector at the outlet in order to eliminate the finest particles until a powder with a median diameter in Dv50 volume of 82pm. The powder thus obtained is then subjected to solid phase polycondensation in a dryer at 140-155°C under vacuum in order to increase the inherent viscosity of the polyamide up to 1.10.
La poudre ainsi obtenue est tamisée grâce à un tamiseur à nutation avec décolmatage à ultrasons RUSSEL type FINEX 22, en utilisant sur une maille carré de 80 pm. The powder thus obtained is sieved using a RUSSEL ultrasonic unclogging sifter with ultrasonic declogging type FINEX 22, using a square mesh of 80 μm.
Les caractéristiques granulométriques de la poudre de polyamide 12 obtenue ont été déterminées comme indiqué à l’exemple 1. Les résultats sont rassemblés dans le tableau 1 ci-dessus. Par ailleurs, la densité du matériau a été mesurée comme expliqué à l’exemple 1 (voir tableau 2 ci-dessus). The particle size characteristics of the polyamide 12 powder obtained were determined as indicated in Example 1. The results are collated in Table 1 above. Furthermore, the density of the material was measured as explained in Example 1 (see Table 2 above).
La poudre obtenue est utilisée pour fabriquer des éprouvettes comme indiqué à l’exemple 1 , en utilisant le jeu de paramètres suivant : The powder obtained is used to manufacture test specimens as indicated in example 1, using the following set of parameters:
[Tableau 4]
Figure imgf000018_0001
[Table 4]
Figure imgf000018_0001
Ces éprouvettes sont ensuite caractérisées par leur rugosité de surface sur le dessus et sur le dessous. Les résultats sont rassemblés dans le tableau 2 ci-dessus. These specimens are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
Exemple C1 Example C1
On a préparé une composition de poudre de polyamide 11 selon le procédé suivant. A polyamide 11 powder composition was prepared according to the following method.
Tout d’abord, on a synthétisé un polyamide 11 de faible viscosité, appelé dans ce qui suit « prépolymère », à partir de 1 ,2kg d’acide amino-11-undécanoïque en présence de 0,5kg d’eau, de 5g d’acide hypophosphoreux (titre 50%) et de 9,8g d’acide phosphorique (titre 75%). Le mélange est chauffé jusqu’à une température de 190°C en 2h sous agitation dès que la température atteint 160 °C ou la pression excède 8,5 bars. Lors de la synthèse, l’eau initialement chargée avec d’acide amino-11-undécanoïque est éliminée par évaporation à pression constante (P=10 bars). Après avoir soutiré une quantité d’eau de 430 g, le prépolymère est extrait du réacteur sous pression à travers une filière. Il est ensuite refroidi à l'aide de deux rouleaux en acier avec circulation d'eau froide pour être solidifié, refroidi et concassé en écailles. First of all, a low viscosity polyamide 11, called in the following “prepolymer”, was synthesized from 1.2 kg of amino-11-undecanoic acid in the presence of 0.5 kg of water, 5 g of hypophosphorous acid (50% titer) and 9.8 g of phosphoric acid (75% titer). The mixture is heated to a temperature of 190° C. in 2 hours with stirring as soon as the temperature reaches 160° C. or the pressure exceeds 8.5 bars. During the synthesis, the water initially loaded with 11-amino-undecanoic acid is eliminated by evaporation at constant pressure (P=10 bars). After having drawn off a quantity of water of 430 g, the prepolymer is extracted from the reactor under pressure through a die. It is then cooled using two steel rollers with circulation of cold water to be solidified, cooled and crushed into scales.
Le prépolymère récupéré sous forme d’écailles est ensuite broyé dans un broyeur à marteaux muni d’un sélecteur interne jusqu’à obtenir une poudre ayant un diamètre médian en volume Dv50 de 74pm. La poudre ainsi obtenue est ensuite soumise à une polycondensation en phase solide dans un sécheur à 140-155°C sous vide afin d’augmenter la viscosité du polyamide jusqu’à 1 ,18. The prepolymer recovered in the form of flakes is then ground in a hammer mill fitted with an internal selector until a powder with a median diameter by volume Dv50 of 74 μm is obtained. The powder thus obtained is then subjected to polycondensation in the solid phase in a dryer at 140-155°C under vacuum in order to increase the viscosity of the polyamide up to 1.18.
La poudre obtenue est utilisée pour fabriquer des éprouvettes comme indiqué à l’exemple 1. Ces éprouvettes sont ensuite caractérisées par leur rugosité de surface sur le dessus et sur le dessous. Les résultats sont rassemblés dans le tableau 2 ci-dessus. The powder obtained is used to manufacture test pieces as indicated in example 1. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
Exemple C2 Example C2
Le prépolymère de PA11 récupéré sous forme d’écailles de l’exemple C1 est broyé avec les mêmes paramètres de broyage que C1 tout en utilisant un second sélecteur dynamique en sortie afin d’éliminer les plus fines particules jusqu’à obtenir une poudre ayant un diamètre médian en volume Dv50 de 91 pm. La poudre ainsi obtenue est ensuite soumise à une polycondensation en phase solide dans un sécheur à 140-155°C sous vide afin d’augmenter la viscosité du polyamide jusqu’à 1 ,16. On obtient une poudre PA11 présentant les caractéristiques granulométriques indiquées dans le tableau 1 ci-dessus. The PA11 prepolymer recovered in the form of scales from example C1 is ground with the same grinding parameters as C1 while using a second dynamic selector at the outlet in order to eliminate the finest particles until a powder having a volume median diameter Dv50 of 91 µm. The powder thus obtained is then subjected to polycondensation in the solid phase in a dryer at 140-155°C under vacuum in order to increase the viscosity of the polyamide up to 1.16. A PA11 powder having the particle size characteristics indicated in Table 1 above is obtained.
La poudre obtenue est utilisée pour fabriquer des éprouvettes comme indiqué à l’exemple 1. Ces éprouvettes sont ensuite caractérisées par leur rugosité de surface sur le dessus et sur le dessous. Les résultats sont rassemblés dans le tableau 2 ci-dessus. The powder obtained is used to manufacture test pieces as indicated in example 1. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
Exemple C3 Example C3
La poudre de PA11 préparée selon l’exemple C1 est tamisée grâce à un tamiseur à nutation avec décolmatage à ultrasons RUSSEL type FINEX 22, en utilisant une maille carrée de 80 pm. On obtient une poudre PA11 présentant les caractéristiques granulométriques indiquées dans le tableau 1 ci-dessus. The PA11 powder prepared according to Example C1 is sieved using a RUSSEL type FINEX 22 ultrasonic unclogging nutating sieve, using an 80 μm square mesh. A PA11 powder having the particle size characteristics indicated in Table 1 above is obtained.
La poudre obtenue est utilisée pour fabriquer des éprouvettes comme indiqué à l’exemple 1. Ces éprouvettes sont ensuite caractérisées par leur rugosité de surface sur le dessus et sur le dessous. Les résultats sont rassemblés dans le tableau 2 ci-dessus. Exemple C4 The powder obtained is used to manufacture test pieces as indicated in example 1. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above. Example C4
Des granulés de polyamide 12 (Rilsamid® AECNO TL commercialisée par Arkema) sont extrudés en utilisant une filière permettant d’obtenir des fibres de diamètre 60 pm qui sont refroidis afin de pouvoir être micro-granuler sur une longueur de 70 pm. La poudre de polyamide ainsi obtenue présente une viscosité inhérente de 1 ,09. Polyamide 12 granules (Rilsamid® AECNO TL marketed by Arkema) are extruded using a die to obtain fibers with a diameter of 60 μm which are cooled so that they can be micro-granulated over a length of 70 μm. The polyamide powder thus obtained has an inherent viscosity of 1.09.
Les caractéristiques granulométriques de la poudre de polyamide 12 obtenue ont été déterminées comme indiqué à l’exemple 1. Les résultats sont rassemblés dans le tableau 1 ci-dessus. Par ailleurs, la densité du matériau a été mesurée comme expliqué à l’exemple 1 (voir tableau 2 ci-dessus). The particle size characteristics of the polyamide 12 powder obtained were determined as indicated in Example 1. The results are collated in Table 1 above. Furthermore, the density of the material was measured as explained in Example 1 (see Table 2 above).
La poudre obtenue est utilisée pour fabriquer des éprouvettes comme indiqué à l’exemple 3. Ces éprouvettes sont ensuite caractérisées par leur rugosité de surface sur le dessus et sur le dessous. Les résultats sont rassemblés dans le tableau 2 ci-dessus. The powder obtained is used to manufacture test pieces as indicated in example 3. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
Exemple C5 Example C5
Une poudre de polyamide 12.12 a été obtenue selon l’exemple 1 du brevet CN104356643B. Tout d’abord, de l’acide dodécanedioïque est solubilisé dans de l’éthanol à 60°C, une solution de dodécanediamine dans l’éthanol est introduite progressivement avec un suivi du pH. Lorsque pH = 7, la solution contient alors un sel de nylon 12.12 stoechiométrique qui précipite. Ce sel est récupéré après filtration et séchage pour être engagé dans un autoclave afin de polymériser à une température de 250°C pour obtenir du PA12.12 de viscosité inhérente 1 ,15, qui est ensuite extrait du réacteur à travers une filière et refroidi pour être granulé. Ces granulés sont ensuite dissous dans l’éthanol à une température de 140°C et une pression de 8 bar puis précipités directement sous forme de poudre par refroidissement. Cette poudre est récupérée après essorage et séchage. La poudre de polyamide ainsi obtenue présente une viscosité inhérente de 1 ,12. A polyamide 12.12 powder was obtained according to example 1 of patent CN104356643B. First, dodecanedioic acid is dissolved in ethanol at 60°C, a solution of dodecanediamine in ethanol is gradually introduced with pH monitoring. When pH=7, the solution then contains a stoichiometric nylon 12.12 salt which precipitates. This salt is recovered after filtration and drying to be placed in an autoclave in order to polymerize at a temperature of 250°C to obtain PA12.12 with an inherent viscosity of 1.15, which is then extracted from the reactor through a die and cooled to be granulated. These granules are then dissolved in ethanol at a temperature of 140°C and a pressure of 8 bar and then precipitated directly in powder form by cooling. This powder is recovered after draining and drying. The polyamide powder thus obtained has an inherent viscosity of 1.12.
Les caractéristiques granulométriques de la poudre de polyamide 12.12 obtenue ont été déterminées comme indiqué à l’exemple 1. Les résultats sont rassemblés dans le tableau 1 ci-dessus. Par ailleurs, la densité du matériau a été mesurée comme expliqué à l’exemple 1 (voir tableau 2 ci-dessus). The particle size characteristics of the polyamide 12.12 powder obtained were determined as indicated in Example 1. The results are collated in Table 1 above. Furthermore, the density of the material was measured as explained in Example 1 (see Table 2 above).
La poudre obtenue est utilisée pour fabriquer des éprouvettes comme indiqué à l’exemple 3. Ces éprouvettes sont ensuite caractérisées par leur rugosité de surface sur le dessus et sur le dessous. Les résultats sont rassemblés dans le tableau 2 ci-dessus. The powder obtained is used to manufacture test pieces as indicated in example 3. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
Exemple 4 Example 4
La poudre de PA 12.12 préparée selon l’exemple C5 (exemple 1 du brevet CN104356643B) est tamisée grâce à un tamiseur à nutation avec décolmatage à ultrasons RUSSEL type FINEX 22, en utilisant une maille carrée de 80 pm puis soumis à un définage. Les caractéristiques granulométriques de la poudre de polyamide 12.12 obtenue ont été déterminées comme indiqué à l’exemple 1. Les résultats sont rassemblés dans le tableau 1 ci-dessus. Par ailleurs, la densité du matériau a été mesurée comme expliqué à l’exemple 1 (voir tableau 2 ci-dessus). The PA 12.12 powder prepared according to Example C5 (Example 1 of patent CN104356643B) is sieved using a RUSSEL type FINEX 22 ultrasonic swirling sieve, using an 80 μm square mesh and then subjected to defining. The particle size characteristics of the polyamide 12.12 powder obtained were determined as indicated in Example 1. The results are collated in Table 1 above. Furthermore, the density of the material was measured as explained in Example 1 (see Table 2 above).
La poudre obtenue est utilisée pour fabriquer des éprouvettes comme indiqué à l’exemple 3. Ces éprouvettes sont ensuite caractérisées par leur rugosité de surface sur le dessus et sur le dessous. Les résultats sont rassemblés dans le tableau 2 ci-dessus. The powder obtained is used to manufacture test pieces as indicated in example 3. These test pieces are then characterized by their surface roughness on the top and on the bottom. The results are collated in Table 2 above.
L’ensemble des résultats met en évidence qu’une poudre présentant la granulométrie telle que revendiquée permet d’améliorer très nettement la rugosité des pièces obtenues par impression 3D à partir de celle-ci. Dans ce contexte ne comptent pas seulement le diamètre moyen mais aussi le span qui illustre la largeur de la distribution granulométrique. Ainsi, la rugosité obtenue avec la poudre des exemples 1 à 3 est notablement plus faible que celle obtenue avec la poudre de l’exemple C3, présentant un diamètre moyen Dv10, Dv50 et Dv90 proche, mais un span plus élevé. All the results show that a powder with the particle size as claimed makes it possible to very significantly improve the roughness of the parts obtained by 3D printing from it. In this context not only the average diameter counts but also the span which illustrates the width of the particle size distribution. Thus, the roughness obtained with the powder of examples 1 to 3 is notably lower than that obtained with the powder of example C3, having an average diameter Dv10, Dv50 and Dv90 close, but a higher span.
L’étude révèle par ailleurs un effet favorable de la valeur du diamètre moyen, puisque l’on constate une rugosité élevée pour les pièces obtenues à partir des poudres des exemples C2 et C5 alors que ces poudres ont une valeur du span très faible. The study also reveals a favorable effect of the value of the average diameter, since a high roughness is observed for the parts obtained from the powders of examples C2 and C5, whereas these powders have a very low span value.
Par ailleurs, les exemples mettent en évidence que la rugosité est corrélée avec les paramètres étudiés selon l’équation suivante : Furthermore, the examples show that the roughness is correlated with the parameters studied according to the following equation:
[Math 8]
Figure imgf000021_0001
le meilleur compris étant obtenu pour des compositions de poudre selon l’invention.
[Math 8]
Figure imgf000021_0001
the best understanding being obtained for powder compositions according to the invention.
[Liste des documents cités][List of cited documents]
EP1742986 B1 EP1742986 B1
EP 1 413 595 B1 EP 1 413 595 B1
EP 2 115 043 B1 EP 2 627 687 B1 EP 2 115 043 B1 EP 2 627 687 B1
US 6,136,948 US 6,136,948
WO 96/06881 WO 96/06881
CN104356643B CN104356643B

Claims

22 22
REVENDICATIONS Composition de poudre de polymère thermoplastique adaptée pour la fabrication additive par fusion sélective, dans laquelle la poudre de polymère présente une granulométrie caractérisée par : o un diamètre moyen en volume Dv < 55 pm, tel que mesuré selon la norme ISO 13319-1 :2021 , par exemple sur un compteur de particules Coulter Counter-Multisizer 3 (Beckmann Coulter),, et o un span inférieur à 1 ,20, les diamètres moyens en volumes utilisés pour calculer le span étant également mesurés selon la norme ISO 13319- 1 :2021 , par exemple sur un compteur de particules Coulter Counter- Multisizer 3 (Beckmann Coulter), et CLAIMS Composition of thermoplastic polymer powder suitable for additive manufacturing by selective melting, in which the polymer powder has a particle size characterized by: o a volume-average diameter Dv <55 μm, as measured according to standard ISO 13319-1: 2021, for example on a Coulter Counter-Multisizer 3 particle counter (Beckmann Coulter), and o a span of less than 1.20, the average diameters in volumes used to calculate the span also being measured according to the ISO 13319-1 standard :2021, for example on a Coulter Counter-Multisizer 3 particle counter (Beckmann Coulter), and
- telle qu’un ratio d est compris entre 0,40 et 0,55, le ratio d étant de formule suivante : - such that a ratio d is between 0.40 and 0.55, the ratio d being of the following formula:
[Math 9] dp d = — [Math 9] dp d = —
Ü dm dans laquelle dp est la densité apparente de la poudre mesurée selon la norme ISO 787-11 : 1981 ; et dm est la densité du matériau mesurée sur la poudre après fusion selon la norme ISO 1183-1. Composition selon la revendication 1 , dans laquelle le polymère thermoplastique comprend ou est constitué d’un polymère thermoplastique choisi dans le groupe consistant en les polyesters, le chlorure de polyvinyle, le polyacétal, les polyoléfines comme le polypropylène et le polyéthylène, le polystyrène, le polycarbonate, le poly- (N-méthylméthactlumide, PMMI), le polyméthylméthacrylate (PMMA), les ionomères, les polyamides, les élastomères thermoplastiques tels que les polyétherblock amides, les PAEK, et leurs mélanges. Composition selon la revendication 2, dans laquelle le polymère thermoplastique comprend ou est constitué de PA 11 , PA 12, polyamide semi-aromatique tel que le PA 11/10T, un PEBA ou un PAEK tel que le PEKK, le PEEK, le PEEK-PEDEK et le PEEK- PEmEK. Ü dm in which dp is the apparent density of the powder measured according to standard ISO 787-11: 1981; and d m is the density of the material measured on the powder after fusion according to standard ISO 1183-1. Composition according to Claim 1, in which the thermoplastic polymer comprises or consists of a thermoplastic polymer chosen from the group consisting of polyesters, polyvinyl chloride, polyacetal, polyolefins such as polypropylene and polyethylene, polystyrene, polycarbonate, poly(N-methylmethactlumide, PMMI), polymethylmethacrylate (PMMA), ionomers, polyamides, thermoplastic elastomers such as polyetherblock amides, PAEKs, and mixtures thereof. Composition according to Claim 2, in which the thermoplastic polymer comprises or consists of PA 11 , PA 12, semi-aromatic polyamide such as PA 11/10T, a PEBA or a PAEK such as PEKK, PEEK, PEEK- PEDEK and PEEK-PEmEK.
4. Composition selon l’une des revendications 1 à 3, comprenant en outre un agent d’écoulement. 4. Composition according to one of claims 1 to 3, further comprising a flow agent.
5. Composition selon l’une des revendications 1 à 4, dans laquelle la poudre de polymère présente un span inférieur à 1 ,00. 5. Composition according to one of claims 1 to 4, in which the polymer powder has a span of less than 1.00.
6. Composition selon la revendication 5, dans laquelle la poudre de polymère présente un span inférieur à 0,90. 6. Composition according to claim 5, in which the polymer powder has a span of less than 0.90.
7. Composition selon l’une des revendications 1 à 6, dans laquelle la poudre de polymère présente un ratio d compris entre 0.45 et 0.55. 7. Composition according to one of claims 1 to 6, in which the polymer powder has a ratio d of between 0.45 and 0.55.
8. Composition selon la revendication 7, dans laquelle la poudre de polymère présente un ratio d compris entre 0.47 et 0.51 . 8. Composition according to claim 7, in which the polymer powder has a ratio d of between 0.47 and 0.51.
9. Composition selon l’une des revendications 1 à 8, dans laquelle la poudre de polymère présente une viscosité inhérente de 0,65 à 1 ,50, préférentiellement de 0,85 à 1 ,40, et de manière davantage préférée de 1 ,00 à 1 ,30, telle que mesurée dans un viscosimètre de type Ubbelohde selon la norme ISO 307 :2019, sauf à utiliser comme solvant le m- crésol et une température de 20°C. 9. Composition according to one of claims 1 to 8, in which the polymer powder has an inherent viscosity of 0.65 to 1.50, preferentially from 0.85 to 1.40, and more preferably from 1, 00 to 1.30, as measured in an Ubbelohde type viscometer according to standard ISO 307:2019, except when using m-cresol as solvent and at a temperature of 20°C.
10. Procédé de fabrication de la composition de la poudre selon l’une des revendications 1 à 10, comprenant les étapes de : 10. Process for manufacturing the composition of the powder according to one of claims 1 to 10, comprising the steps of:
(i) Prépolymérisation du ou des monomères du polymère thermoplastique et granulation subséquente ; (i) Prepolymerization of the thermoplastic polymer monomer(s) and subsequent granulation;
(ii) Broyage en une poudre ; (ii) Grinding into a powder;
(iii) Tamisage subséquent éventuel de la poudre de prépolymère obtenue ; et(iii) Possible subsequent sieving of the prepolymer powder obtained; And
(iv) Soumission de la poudre de prépolymère obtenue à une polycondensation en phase solide pour obtenir une poudre de polymère. (iv) Subjecting the obtained prepolymer powder to solid phase polycondensation to obtain a polymer powder.
11. Utilisation de la composition selon l’une des revendications 1 à 9 ou obtenue avec le procédé selon la revendication 10 pour la fabrication d’articles par fabrication additive au moyen de fusion sélective. 11. Use of the composition according to one of claims 1 to 9 or obtained with the method according to claim 10 for the manufacture of articles by additive manufacturing by means of selective melting.
12. Utilisation selon la revendication 11 , dans laquelle la fabrication additive est choisie parmi le frittage sélectif par laser (Selective Laser Sintering ou SLS), frittage du type Multi Jet Fusion (MJF) et le frittage du type High Speed Sintering (HSS). Article susceptible d’être obtenu par fabrication additive au moyen de fusion sélective de la composition selon l’une des revendications 1 à 9 ou susceptible d’être fabriqué par le procédé selon la revendication 10. 12. Use according to claim 11, in which the additive manufacturing is chosen from selective laser sintering (Selective Laser Sintering or SLS), sintering of the Multi Jet Fusion (MJF) type and sintering of the High Speed Sintering (HSS) type. Article capable of being obtained by additive manufacturing by means of selective melting of the composition according to one of Claims 1 to 9 or capable of being manufactured by the process according to Claim 10.
PCT/EP2022/081129 2021-11-09 2022-11-08 Polymer powder for manufacturing high-definition components of low roughness WO2023083809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2111866 2021-11-09
FR2111866A FR3128959A1 (en) 2021-11-09 2021-11-09 Polymer powder for the manufacture of high definition and low roughness parts

Publications (1)

Publication Number Publication Date
WO2023083809A1 true WO2023083809A1 (en) 2023-05-19

Family

ID=80447731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/081129 WO2023083809A1 (en) 2021-11-09 2022-11-08 Polymer powder for manufacturing high-definition components of low roughness

Country Status (2)

Country Link
FR (1) FR3128959A1 (en)
WO (1) WO2023083809A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006881A2 (en) 1994-08-30 1996-03-07 Dtm Corporation Sinterable semi-crystalline powder and article formed therewith
US6136948A (en) 1992-11-23 2000-10-24 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US20050027047A1 (en) * 2003-07-29 2005-02-03 Degussa Ag Polymer powder with phosphonate-based flame retardant, process for its production, and moldings produced from this polymer power
EP1413595B1 (en) 2002-10-23 2006-01-18 Arkema Process for increasing the melting point and the melting enthalpy of polyamides by water treatment
EP1742986B1 (en) 2004-04-27 2009-04-29 Evonik Degussa GmbH Polymer powder comprising polyamide use thereof in a moulding method and moulded body made from said polymer powder
US20090236775A1 (en) * 2008-03-19 2009-09-24 Evonik Degussa Gmbh Copolyamide powder and its preparation, use of copolyamide powder in a shaping process and mouldings produced from this copolyamide powder
US20110293918A1 (en) * 2008-12-01 2011-12-01 Rhodia Operations Producing an item by the selective fusion of polymer powder layers
CN104356643A (en) 2014-11-11 2015-02-18 湖南华曙高科技有限责任公司 Preparation method of nylon1212 powder for laser sintering
EP2115043B1 (en) 2007-04-05 2017-05-31 EOS GmbH Electro Optical Systems Paek powder, particularly for use in a method for the production of a three-dimensional object in layers, and method for the production thereof
US20180036938A1 (en) * 2010-04-09 2018-02-08 Evonik Degussa Gmbh Polyamide-based polymer powder, use thereof in a molding method, and molded articles made from said polymer powder
EP2627687B1 (en) 2010-09-27 2021-09-22 Arkema, Inc. Heat treated polymer powders

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136948A (en) 1992-11-23 2000-10-24 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
WO1996006881A2 (en) 1994-08-30 1996-03-07 Dtm Corporation Sinterable semi-crystalline powder and article formed therewith
EP1413595B1 (en) 2002-10-23 2006-01-18 Arkema Process for increasing the melting point and the melting enthalpy of polyamides by water treatment
US20050027047A1 (en) * 2003-07-29 2005-02-03 Degussa Ag Polymer powder with phosphonate-based flame retardant, process for its production, and moldings produced from this polymer power
EP1742986B1 (en) 2004-04-27 2009-04-29 Evonik Degussa GmbH Polymer powder comprising polyamide use thereof in a moulding method and moulded body made from said polymer powder
EP2115043B1 (en) 2007-04-05 2017-05-31 EOS GmbH Electro Optical Systems Paek powder, particularly for use in a method for the production of a three-dimensional object in layers, and method for the production thereof
US20090236775A1 (en) * 2008-03-19 2009-09-24 Evonik Degussa Gmbh Copolyamide powder and its preparation, use of copolyamide powder in a shaping process and mouldings produced from this copolyamide powder
US20110293918A1 (en) * 2008-12-01 2011-12-01 Rhodia Operations Producing an item by the selective fusion of polymer powder layers
US20180036938A1 (en) * 2010-04-09 2018-02-08 Evonik Degussa Gmbh Polyamide-based polymer powder, use thereof in a molding method, and molded articles made from said polymer powder
EP2627687B1 (en) 2010-09-27 2021-09-22 Arkema, Inc. Heat treated polymer powders
CN104356643A (en) 2014-11-11 2015-02-18 湖南华曙高科技有限责任公司 Preparation method of nylon1212 powder for laser sintering

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Powder Bed Fusion | Arkema Extreme Materials", 17 May 2022 (2022-05-17), XP093021648, Retrieved from the Internet <URL:https://hpp.arkema.com/en/markets-and-applications/3d-printing/powder-bed-fusion/> [retrieved on 20230207] *
DUMOULIN E.: "Fabrication additives de pieces en polymers thermoplastiques hautes performances et en polyamide 12 par le procede de frittage selectif par laser", THESIS, 23 January 2013 (2013-01-23), pages 1 - 263, XP055895104, Retrieved from the Internet <URL:https://pastel.archives-ouvertes.fr/pastel-01021861/document> [retrieved on 20220224] *
SIVADAS B.O. ET AL: "Laser sintering of polymer nanocomposites", vol. 4, no. 4, 4 July 2021 (2021-07-04), pages 277 - 300, XP055877436, ISSN: 2542-5048, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S2542504821000476/pdfft?md5=c1332d2cf1ca8225035d51ae221a1513&pid=1-s2.0-S2542504821000476-main.pdf> DOI: 10.1016/j.aiepr.2021.07.003 *
VAN DEN EYNDE MICHAEL ET AL: "Assessing polymer powder flow for the application of laser sintering", POWDER TECHNOLOGY, vol. 286, 8 August 2015 (2015-08-08), Basel (CH), pages 151 - 155, XP055906953, ISSN: 0032-5910, DOI: 10.1016/j.powtec.2015.08.004 *
VERBELEN LEANDER ET AL: "Characterization of polyamide powders for determination of laser sintering processability", EUROPEAN POLYMER JOURNAL, PERGAMON PRESS LTD OXFORD, GB, vol. 75, 21 December 2015 (2015-12-21), pages 163 - 174, XP029398871, ISSN: 0014-3057, DOI: 10.1016/J.EURPOLYMJ.2015.12.014 *

Also Published As

Publication number Publication date
FR3128959A1 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
EP2352636B1 (en) Producing an item by the selective fusion of polymer powder layers
EP2543701B1 (en) Powder containing inorganic particles coated with polymer
EP2649112B1 (en) Production of an article by selective fusion of polymer powder layers
EP2488572B1 (en) Method for preparing a recyclable polyamide powder
EP2858809B1 (en) Method for heat-treating powders
DE102012205908A1 (en) Polymer powder with adapted melting behavior
WO2009124989A1 (en) Extruded plastic film filled with metal particles, method of obtaining same and uses of said film
EP3969501A1 (en) Copolymer powder with polyamide blocks and polyether blocks
EP0877044A1 (en) Polymer filled with solid particles
WO2014191675A1 (en) Method for the thermal treatment of poly-arylene ether ketone ketone powders suitable for laser sintering
FR2591146A1 (en) PROCESS FOR MANUFACTURING HARD PLATES OF PLASTIC MATERIAL WITH ELECTRICAL CONDUCTIVITY AND PLATES OBTAINED THEREBY
WO2023083809A1 (en) Polymer powder for manufacturing high-definition components of low roughness
CA3031882A1 (en) Thermoplastic polyester for producing 3d-printed objects
EP4041516A1 (en) Filled polyaryletherketone powder, manufacturing method therefor and use thereof
FR3101635A1 (en) Thermoplastic polymer composition for construction of 3D articles
EP3494158B1 (en) Semi-crystalline thermoplastic polyester for producing bioriented films
WO2023067284A1 (en) Thermoplastic polymer powder for 3d printing by sintering
WO2018024987A1 (en) Semi-crystalline thermoplastic polyester for producing an aerosol container
EP0347265A1 (en) Powder for thermographic relief printing
WO2023281227A1 (en) Thermoplastic polymer powder for constructing 3d items
WO2023281226A1 (en) Thermoplastic polymer powder for constructing 3d items
EP4178785A1 (en) Thermoplastic polyester for producing 3d-printed objects
FR3118775A1 (en) POWDER POLYMER for 3D printing
EP4178784A1 (en) Thermoplastic polyester for producing 3d-printed objects
WO2021136904A1 (en) Method for manufacturing a product made from polyaryletherketone and corresponding product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814354

Country of ref document: EP

Kind code of ref document: A1