WO2023083355A1 - 功率分配设备以及充电系统 - Google Patents

功率分配设备以及充电系统 Download PDF

Info

Publication number
WO2023083355A1
WO2023083355A1 PCT/CN2022/131765 CN2022131765W WO2023083355A1 WO 2023083355 A1 WO2023083355 A1 WO 2023083355A1 CN 2022131765 W CN2022131765 W CN 2022131765W WO 2023083355 A1 WO2023083355 A1 WO 2023083355A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
power
charging
sub
power distribution
Prior art date
Application number
PCT/CN2022/131765
Other languages
English (en)
French (fr)
Inventor
邓子鸣
郭威
任展林
冉小可
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023083355A1 publication Critical patent/WO2023083355A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present disclosure mainly relates to the technical field of charging, and more particularly relates to a power distribution device and a charging system including the power distribution device.
  • a charging system such as a vehicle charging station
  • power from a utility grid is converted into required power by a power conversion device, and the power is output to a charging object such as an electric vehicle via a charging terminal.
  • a power distribution device may distribute the power of the power converter to a target charging terminal among multiple charging terminals by switching a switch, so as to charge vehicles connected to the target charging terminal.
  • the power distribution device usually needs to ensure that a single power converter will not be connected to multiple different vehicles or multiple charging terminals at the same time.
  • the power distribution equipment also needs to ensure that each power converter can switch to as many charging ports as possible to improve the utilization of the power converter and the reliability of the charging system. For this reason, the power distribution equipment is usually equipped with a large number of switches to realize the required power distribution, which makes the power distribution equipment expensive and inefficient.
  • embodiments of the present disclosure provide a power distribution device and a charging system including the power distribution device.
  • a power distribution device comprising: a first switch assembly including at least one intermediate output terminal, and the first switch assembly is configured to selectively pass through one of the at least one intermediate output terminal The intermediate output terminal outputs power, the first switch assembly includes at least one of an arc extinguishing switch or a solid-state switch; and a second switch assembly includes at least one sub-switch respectively corresponding to at least one intermediate output terminal, each sub-switch includes a plurality of power output terminals, and the second switch assembly is configured to selectively output power from an intermediate output terminal through a power output terminal of one of the at least one sub-switch.
  • Embodiments of the present disclosure adopt a two-stage distribution architecture, and the arc-extinguishing function is provided by the switch assembly of the first stage, thereby reducing the number of arc-extinguishing switches required in the power distribution device, which reduces the cost of the system.
  • a large number of switches can be saved in the power distribution device, thereby reducing the cost, improving the utilization ratio of the switches, and making the control simpler and more reliable.
  • At least one sub-switch comprises a non-arc-quenching multi-contact switch.
  • the first switch assembly includes a power input terminal, and at least one intermediate output terminal includes a plurality of intermediate output terminals, and the first switch assembly is further configured to connect the plurality of intermediate output terminals of the first switch assembly A switching operation is performed between the switches to electrically connect the power input terminal to one intermediate output terminal of the plurality of intermediate output terminals of the first switch assembly.
  • the first switch assembly can have multiple intermediate output terminals, and in addition to eliminating arcs, the first switch assembly can also implement channel selection for the first stage in the power distribution device, which is beneficial to reduce power Assign the required switches for the device.
  • the second switch assembly is configured to perform a switching operation between a plurality of power output terminals of each sub-switch to connect each intermediate output terminal of the first switch assembly to the corresponding sub-switch.
  • One power output terminal is electrically connected.
  • the second switch component can realize the channel selection of the second stage in the power distribution device, thus simply and reliably transmitting the power of the power converter to the target charging terminal.
  • At least one sub-switch is configured to perform switching operations in an associated manner.
  • the control of the second switch assembly can be simplified.
  • each of the at least one sub-switch includes the same number of power output terminals.
  • a charging system including: a power supply device; and the power distribution device according to the first aspect, powered by the power supply device.
  • the power supply device further includes: at least one power converter corresponding to the at least one power distribution device, and each power converter is coupled to the corresponding power distribution device.
  • the charging system further includes: a plurality of charging terminals respectively coupled to respective power output terminals of at least one sub-switch of each power distribution device.
  • the charging system of the second aspect includes the power distribution device according to the first aspect. Therefore, the explanations or illustrations about the first aspect are also applicable to the second aspect. In addition, for the beneficial effects achieved by the second aspect, reference may be made to the beneficial effects of the first aspect, which will not be repeated here.
  • FIG. 1 shows a schematic circuit diagram of a charging system according to an embodiment of the present disclosure.
  • Fig. 2 shows a schematic circuit diagram of a charging system according to another embodiment of the present disclosure.
  • Fig. 3 shows a schematic circuit diagram of a charging system according to yet another embodiment of the present disclosure.
  • Fig. 4 shows a schematic circuit diagram of a charging system according to yet another embodiment of the present disclosure.
  • power distribution equipment usually needs to meet some requirements when performing power distribution, such as avoiding each power converter outputting power to multiple charging terminals at the same time, and enabling each power converter to switch to as many charging terminals as possible. port.
  • a switch is usually set between each power converter and each charging terminal, so that each power converter can be connected to or disconnected from any charging terminal, thus, in An array of switches is formed in the power distribution device. It can be seen that in such a conventional switch array, the number of switches needs to be at least the product of the number of power converters and the number of charging terminals, and all switches need to have arc extinguishing capability in order to have the ability to completely cut off the connection between the power converter and the charging terminals.
  • the power distribution equipment needs to provide at least 64 switches with arc extinguishing capability.
  • the switch array or switch matrix has too many switches, the control is complicated and the cost is high, and the utilization rate of the switches in this switch array is very low.
  • An improved power allocation scheme is proposed in an embodiment of the present disclosure.
  • a two-stage power distribution architecture is adopted, the switching components of the first stage are used to connect the power converter to the charging channel associated with the target charging terminal or disconnect the two, and the switching components of the second stage It is used to select the target charging terminal among multiple charging terminals and switch the charging channel to the target charging terminal.
  • the switching components of the first stage are required to have the ability to eliminate arcs. Therefore, only one arc-extinguishing switch or solid-state switch needs to be arranged on the power output path of each power converter, and all switches do not need to have the ability to eliminate arcs, which greatly reduces the cost of the system.
  • a large number of switches can be saved by using a two-stage switch assembly, and the reduction in the number of switches not only reduces the cost but also makes the control of the power distribution equipment simpler and more reliable.
  • FIG. 1 shows a schematic circuit diagram of a charging system 1000 according to an embodiment of the present disclosure.
  • charging system 1000 may be a vehicle charging system for charging electric vehicles. However, it can be understood that the charging system 1000 can also be used as a charging system for other rechargeable devices.
  • the charging system 1000 includes a power distribution device 100 and a power supply device, wherein the power supply device can be coupled to the power distribution device 100 to supply power to the power distribution device 100 .
  • the power supply device may be coupled to a power source, such as a utility grid, to provide mains power to the power distribution device 100 of the charging system 1000 .
  • the power supply may include a power converter 200 .
  • the power converter 200 may include appropriate types of power converters such as rectifiers, DC-DC converters, AC-AC converters, or inverters, and may also include a combination of multiple types of power converters to achieve Power conversion, whereby the mains power is converted to the power required by the charging system.
  • the power converter 200 may provide the converted power to the power distribution device 100 for further power distribution.
  • the power supply equipment may also include other electrical equipment required for power supply, such as transformers, electrical switches, or other power distribution equipment. It should be noted that the power supply equipment may not include the power converter 200, for example, the power supply equipment may only include transformers and/or other power distribution equipment, so that the power supply equipment can directly provide the power that has not been processed by the power converter to Power distribution device 100 .
  • the power conversion equipment that realizes the function of the power converter 200 can be installed in other positions of the charging system 1000, for example, between the power distribution equipment 100 and the charging terminal described in detail later, or between the charging In the terminal, or even in the charging vehicle, this can also implement the invention.
  • the charging system 100 may also include a plurality of charging terminals 300-1...300-8.
  • the power distribution device 100 may be coupled to a plurality of charging terminals 300-1...300-8, and transmit power from the power converter 200 to a target charging terminal among the plurality of charging terminals 300-1...300-8. It can be understood that the number of charging terminals is not limited to the number of charging terminals shown in FIG. 1 , and other numbers of charging terminals can be set in the charging system 100 according to actual needs.
  • the charging terminals 300-1...300-8 in the figure are shown as charging guns, the charging terminals 300-1...300-8 may also include other types of charging terminals suitable for realizing the charging operation , such as a charging pile, or a combination of multiple types of charging terminals, for example, some of the charging terminals are charging piles and the other part of the charging terminals are charging guns.
  • any one of the charging terminals 300-1...300-8 may continue to be connected to a plurality of additional charging terminals to output power through the additional charging terminals.
  • a charging terminal as a charging pile can be Connect to multiple charging guns to output power to the charging vehicle via multiple charging guns in the subsequent stage.
  • the power distribution device 100 may include a first switch assembly 140, the first switch assembly 140 includes at least one intermediate output terminal 141-1...141-4, and the first switch assembly 140 is configured to selectively
  • the first switch assembly 140 includes at least one of an arc kill switch or a solid state switch.
  • the first switch assembly 140 can be used as a first-stage switch of the power distribution device 100 , and can eliminate arcs when performing a breaking operation, so as to avoid damage to the equipment caused by the arcs and failure of the breaking operation.
  • the first switch assembly 140 may be a multi-channel switch including an arc extinguishing device.
  • the first switch assembly 140 may also be configured by a contactor, a circuit breaker, or other electrical switches capable of performing an arc extinguishing operation.
  • the first switch assembly 140 may also be a solid-state switch, which can avoid the generation of arc when performing the breaking operation of the main circuit, thereby also realizing the function of eliminating the arc.
  • the solid-state switch includes but not limited to Insulated Gate Bipolar Translator (IGBT), Junction Field-Effect Transistor (JFET), Bipolar Junction Transistor (BJT), metal oxide Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET), Gate Turn Off Thyristor (Gate Turn Off thyristor, GTO), MOS Controlled Thyristor (MOS-Controlled Thyristor, MCT), Integrated Gate Commutated Thyristor (Integrated Gate-Commutated Thyristor, IGCT), silicon carbide (SiC) switching devices or gallium nitride (GaN) switching devices and other power switching devices.
  • IGBT Insulated Gate Bipolar Translator
  • JFET Junction Field-Effect Transistor
  • BJT Bipolar Junction Transistor
  • MOSFET metal oxide Metal-Oxide-Semiconductor Field Effect Transistor
  • GTO Gate Turn Off Thyristor
  • MOS-Controlled Thyristor MO
  • the first switch assembly 140 includes a power input terminal 142, and at least one intermediate output terminal 141-1...141-4 includes a plurality of intermediate output terminals, for example, 4 intermediate output terminals exemplarily shown in FIG. 1 Terminals 141-1, 141-2, 141-3 and 141-4, the first switch assembly 140 is also configured to perform switching between a plurality of intermediate output terminals 141-1 . . . 141-4 of the first switch assembly 140 Operates to electrically connect the power input terminal 142 with one of the plurality of intermediate output terminals 141 - 1 . . . 141 - 4 of the first switching assembly 140 .
  • the power input terminal 142 may be connected to the power converter 200 to receive power from the power converter 200, and the first switch assembly 140 may be controlled between the plurality of intermediate output terminals 141-1...141-4 Switching is performed such that the input terminal 142 is coupled to the corresponding intermediate output terminal as required for power transfer.
  • the number of intermediate output terminals may correspond to the number of charging channels required in the power distribution device 100, which depends on the number of charging terminals and the grouping situation. Therefore, the number of intermediate output terminals can be selected as desired, and can be any other number.
  • the first switch assembly 140 may implement switching operations in an electrically controlled manner, or may be operated in a manual manner.
  • the controller of the charging system 1000 can confirm that it is necessary to The charging channel associated with the charging terminal 300-3 is connected to the input port 142, and after determining that the intermediate output terminal 141-2 corresponds to the charging channel, the controller will control the first switch assembly 140 to switch the input port 142 to the Intermediate output terminal 141-2.
  • the operator can also manually switch and connect the input port 142 to the intermediate output terminal 141-2.
  • the implementation manner of the switching operation of the first switch assembly 140 is not limited thereto, but can be any other manner that can realize switch control, for example, it can also be realized by remote control, or multiple combined in a variety of ways.
  • the power distribution device 100 further includes a second switch assembly 150, and the second switch assembly 150 includes at least one sub-switch 150-1...141-4 respectively corresponding to at least one intermediate output terminal 141-1...141-4 ... 150-4, each sub-switch includes a plurality of power output terminals 151-1, 151-2, and the second switch assembly 150 is configured to selectively pass through at least one of the sub-switches 150-1 ... 150-4 A power output terminal of the sub-switch outputs power from an intermediate output terminal.
  • the second switch assembly 150 may serve as a second stage switch in the power distribution device 100 to transmit power to the target charging terminal.
  • the second switch assembly 150 is provided with sub-switches corresponding to the intermediate output terminals of the first switch assembly, and each sub-switch may include a plurality of power output terminals, and the power output terminals of each sub-switch will be respectively connected to corresponding charging terminals.
  • the number of intermediate output terminals of the first switch assembly 140 is 4, so the second switch assembly 150 is provided with 4 sub-switches, and the charging system 1000 has 8 charging terminals 300-1... ...300-8 is actually divided into 4 groups with 2 charging terminals as a group.
  • the first sub-switch 150-1 is provided with two power output terminals 151-1 and 151-2 to be respectively connected to the charging terminals 300-1 and 300-2 in the first group of charging terminals, and the first sub-switch 150- The input terminal of 1 is connected to the intermediate output terminal 141 - 1 of the first switch assembly 140 .
  • the second sub-switch 150-2, the third sub-switch 150-3, and the fourth sub-switch 150-4 are connected to the remaining charging terminals and the remaining intermediate output terminals of the first switch assembly 140, respectively, in a similar manner.
  • the second switch assembly 150 can realize the channel selection of the second stage, so as to switch an intermediate output terminal connected to the power input terminal 142 to further connect to the target charging terminal, so as to charge the charging vehicle.
  • the second switch assembly 150 can be provided with only one sub-switch correspondingly, and the sub-switch has a plurality of corresponding to all charging terminals respectively.
  • Power output terminals for example in the case of 8 charging terminals the subswitch can have 8 power output terminals.
  • the function of the first switch assembly 140 is to eliminate the arc during the breaking operation without having a charging channel selection function, and only the second switch assembly 140 selects the charging channel.
  • the second switch assembly 150 will be provided with corresponding multiple sub-switches, and in this case, in addition to eliminating the arc, the first switch assembly 140 can also provide Multiple charging channels are switched, that is, channel selection of the first stage is realized, and channel selection of the second stage is performed in the second switch component 150 .
  • the second switch assembly 150 is configured to perform a switching operation between the plurality of power output terminals 151-1, 151-2 of each sub-switch to connect each intermediate output terminal of the first switch assembly 140 to One power output terminal of the corresponding sub-switch is electrically connected.
  • the second switch assembly 150 may implement a switching operation in an electrically controlled manner, or may be operated in a manual manner. For example, when the charging port of the charging vehicle is connected to the charging terminal 300-3, based on the signal triggered by the connection or the instruction input by the charging operator, the controller of the charging system 1000 controls the first switch component 140 to switch the connection of the input port 142 to the charging terminal 300-3.
  • This power output terminal is a power output terminal connected to charging terminal 300-3.
  • the power of the power converter 200 is output to the charging terminal 300-3 via the power input terminal 142 and the intermediate output terminal 141-2 of the first switch assembly 140, and via the second sub-switch 150-2.
  • the operator can also manually control the switching operation of the second switch assembly 150 .
  • the implementation manner of the switching operation of the second switch assembly 150 is not limited thereto, but can be any other manner that can realize switch control, for example, it can also be achieved through remote control. way to achieve, or can combine a variety of ways.
  • At least one sub-switch 150-1 . . . 150-4 in the second switch assembly 150 comprises a non-arc-extinguishing multi-contact switch. Since the first switch assembly 140 undertakes the function of eliminating the arc during the breaking operation, at least one sub-switch 150-1...150-4 does not need to consider the arc problem. It can be seen that through the two-stage structure, only the first-stage switch components can perform the task of eliminating arcs, and other switches can use low-cost non-arc-extinguishing multi-contact switches because there is no arc problem. For example, in the power distribution device 100, the sub-switches 150-1...150-4 can all be selected as non-arc-extinguishing double-contact switches, which reduces the cost of the power distribution device.
  • At least one sub-switch 150-1 . . . 150-4 is configured to perform said switching operations in an associated manner with each other.
  • the sub-switches 150-1, 150-2, 150-3, and 150-4 may be coupled to each other by a linkage, and so that in a switching operation, whichever sub-switch is switched, the remaining sub-switches will work together from their respective ones.
  • the power output terminal is switched to another power output terminal.
  • each of the at least one sub-switch 150-1 . . . 150-4 includes the same number of power output terminals.
  • Having the same number of power output terminals for each sub-switch facilitates switching to all power output terminals of all sub-switches when all sub-switches are operated in association without the need to individually control a sub-switch, thereby further simplifying the second switch Control of component 150 .
  • the power distribution device 100 adopts a two-stage power distribution architecture of the first switch assembly 140 and the second switch assembly 150, and the first switch assembly 140 undertakes the task of eliminating arcs, while the second switch assembly is responsible for Switching of charging channels. That is to say, in the power distribution device 100, only the first switch assembly 140 is required to have the function of eliminating arcs. In contrast, in a conventional power distribution scheme where one power converter is coupled to 8 charging terminals, 8 arc extinguishing switches need to be provided. Obviously, the improved power distribution device 100 greatly reduces the number of arc-extinguishing switches, thereby reducing the cost of the power distribution device 100 .
  • the first switch component 140 can also be used as a first-level switch to switch and select multiple channels, and the second switch component 140 can be used as a second-level switch to switch the charging terminal corresponding to each channel.
  • the number of switches required can be reduced.
  • the power distribution device 100 only needs 1 multi-channel switch as the first switch assembly 140, and 4 dual-channel switches as the second switch assembly 150, that is, a total of 5 switches are needed, and in At least 8 switches are required in the traditional scheme.
  • the improved power distribution device 100 increases the utilization of each switch, which not only reduces the cost, but also helps maintain the performance and lifetime of the switches.
  • FIG. 2 shows a schematic circuit diagram of a charging system 1000 according to another embodiment of the present disclosure.
  • each sub-switch is provided with three power output terminals, that is, one power output terminal is added to each sub-switch in FIG. 1 .
  • the first sub-switch 150-1 includes power output terminals 151-1, 151-2, and 151-3, and is connected to charging terminals 300-1, 300-2, and 300-3, respectively, and the rest of the sub-switches are set in a similar manner .
  • the power distribution device 100 in FIG. 2 can provide 12 power output terminals, and thus can provide power output for 12 charging terminals 300-1...300-12.
  • the remaining parts of the power distribution device 100 in FIG. 2 are the same as those of the power distribution device 100 in FIG. 1 , so details are not repeated here.
  • FIG. 3 shows a schematic circuit diagram of a charging system 1000 according to yet another embodiment of the present disclosure.
  • the first switch assembly 140 is provided with 6 intermediate output terminals 141-1...141-6
  • the second switch assembly 150 is provided with 6 sub-switches 150-1...150-6, that is compared to 2 intermediate output terminals and 2 sub-switches are added to the power distribution device 100 in FIG. 1 .
  • two charging channels are added to the power distribution device 100, so 12 power output terminals can be set to provide power output to 12 charging terminals 300-1...300-12.
  • the remaining parts of the power distribution device 100 in FIG. 3 are the same as those of the power distribution device 100 in FIG. 1 , so details are not repeated here.
  • FIG. 4 shows a schematic circuit diagram of a charging system 1000 according to yet another embodiment of the present disclosure.
  • the charging system 1000 may include multiple power converters 200-1...200-8 and multiple power distribution devices 100-1...100-8, wherein each power distribution device and each power conversion The converters are respectively the same as the power distribution device 100 and the power converter 200 shown in FIG. 1 .
  • the power converter 200-1 is coupled to a plurality of charging terminals 300-1...300-8 through the power distribution device 100-1, and the remaining power converters 200-2...200-8 are also respectively passed through the corresponding power distribution device 100-2...100-8 are coupled to a plurality of charging terminals 300-1...300-8.
  • a plurality of power converters 200-1...200-8 can utilize the array of power distribution devices to provide charging power to a plurality of charging terminals 300-1...300-8.
  • only 8 multi-channel switching switches are needed between 8 power converters and 8 charging terminals as the first switch assembly and 32 dual-channel switching switches are used as sub-switches of the second switching assembly, that is, a total of 40 switches, and only 8 of these switches are required for multi-channel changeover switches to have the function of eliminating arcs (for example, constructed by arc extinguishing switches or solid-state switches), while in the traditional power distribution scheme, 8 power converters are compared with 8 At least 64 switches need to be arranged between the charging terminals, and each of the 64 switches needs to have the function of eliminating arcs.
  • the solution of the present disclosure reduces the number of switches required for power distribution between a plurality of power converters and a plurality of charging terminals, especially reduces the number of arc-extinguishing switches, thereby improving the utilization rate of the switches and reducing the system cost. cost. It can be understood that the numbers of power distribution devices, power converters and charging terminals shown in FIG. 4 are only exemplary, and other appropriate numbers of power distribution devices can be set in the charging system 1000 according to needs and similar principles , power converters and charging terminals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种功率分配设备,(100)包括:第一开关组件(140),包括至少一个中间输出端子(141-1……141-n),并且第一开关组件被配置为选择性地通过至少一个中间输出端子(141-1……141-n)中的一个中间输出端子输出功率,第一开关组件(140)包括灭弧开关或固态开关中的至少一种;以及第二开关组件(150),包括分别与至少一个中间输出端子(141-1……141-n)对应的至少一个子开关(150-1……150-n),每个子开关包括多个功率输出端子(151-1……151-n),并且第二开关组件(150)被配置为选择性地通过至少一个子开关(150-1……150-n)中的一个子开关的一个功率输出端子输出来自一个中间输出端的功率。一种充电系统(1000),包括:供电设备和由供电设备供电的功率分配设备(100)。可以降低充电系统及其功率分配设备的成本,并且具有简单可靠、易于扩展的优点。

Description

功率分配设备以及充电系统 技术领域
本公开主要涉及充电技术领域,更具体地涉及功率分配设备以及包括该功率分配设备的充电系统。
背景技术
在诸如车辆充电站之类的充电系统中,通过功率转换设备将公用电网的功率转换为所需功率,并且经由充电终端将功率输出给诸如电动车辆之类的充电对象。在设置多个充电终端和/或多个功率转换器的情况下,可以利用功率分配设备来进行功率分配。例如,在车辆充电站中,功率分配设备可以通过开关的切换而将功率转换器的功率分配给多个充电终端中的目标充电终端,以对连接到目标充电终端的车辆进行充电。
由于不同充电对象或不同充电车辆具有特定且不相同的充电需求,因此功率分配设备通常需要确保单个功率转换器不会同时连接到多个不同车辆或多个充电终端。此外,功率分配设备还需要确保每个功率转换器能够切换到尽可能多的充电端口,以提高功率转换器的利用率和充电系统的可靠性。为此,功率分配设备通常设置了大量的开关来实现所需的功率分配,这使得功率分配设备成本高昂且效率低下。
发明内容
为了解决上述问题,本公开的实施例提供了功率分配设备以及包括该功率分配设备的充电系统。
在本公开的第一方面,提供了一种功率分配设备,包括:第一开关组件,包括至少一个中间输出端子,并且第一开关组件被配置为选择性地通过至少一个中间输出端子中的一个中间输出端子输出功率,第一开关组件包括灭弧开关或固态开关中的至少一种;以及第二开关组件,包括分别与至少一个中间输出端子对应的至少一个子开关,每个子开关包括多个功率输出端子,并且第二开关组件被配置为选择性地通过至少一个子开关中的一个子开关的一个功率输出端子输出来自一个中间输出端的功率。
本公开的实施例采用了两级分配架构,并且由第一级的开关组件提供消除电弧的功能,因此减少了功率分配设备中所需的灭弧开关的数量,这降低了系统的成本。此外,在该功率分配设备中还可以节省大量的开关,从而降低成本、提高开关的利用率、并且使控制更加简单可靠。
在本公开的某些实施例中,至少一个子开关包括非灭弧式多触点开关。通过这种实现方式,可以在第二开关组件中采用成本低廉的切换开关,从而降低了系统成本。
在本公开的某些实施例中,第一开关组件包括功率输入端子,至少一个中间输出端子包括多个中间输出端子,第一开关组件还被配置为在第一开关组件的多个中间输出端子之间执行切换操作,以将功率输入端子与第一开关组件的多个中间输出端子中的一个中间输出端子电连接。在这种实现方式中,第一开关组件可以具有多个中间输出端子,并且除了消除电弧之外,第一开关组件还可以在功率分配设备中实现第一级的通道选择,这有利于减少功率分配设备所需的开关。
在本公开的某些实施例中,第二开关组件被配置为在每个子开关的多个功率输出端子之间执行切换操作以将第一开关组件的每个中间输出端子与对应的子开关的一个功率输出端子电连接。在这种实现方式中,第二开关组件可以在功率分配设备中实现第二级的通道选择,因此简单可靠地将功率转换器的功率传输到目标充电终端。
在本公开的某些实施例中,至少一个子开关被配置为以彼此关联的方式执行切换操作。通过这种实现方式,可以简化第二开关组件的控制。
在本公开的某些实施例中,至少一个子开关中的每个子开关包括相同数目的功率输出端子。通过这种实现方式,可以进一步简化第二开关组件的控制。
在本公开的第二方面,提供了一种充电系统,包括:供电设备;根据第一方面的功率分配设备,由供电设备供电。
在本公开的某些实施例中,供电设备还包括:至少一个功率转换器,分别与至少一个功率分配设备相对应,每个功率转换器耦合到对应的功率分配设备。
在本公开的某些实施例中,充电系统还包括:多个充电终端,分别耦合到每个功率分配设备的至少一个子开关的各个功率输出端子。
可以理解地,上述提供的第二方面的充电系统包括根据第一方面的功率分配设备。因此,关于第一方面的解释或者说明同样适用于第二方面。此外,第二方面所能达到的有益效果可参考关于第一方面的有益效果,此处不再赘述。
本发明的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标注表示相同或相似的元素,其中:
图1示出了根据本公开的实施例的充电系统的电路示意图。
图2示出了根据本公开的另一实施例的充电系统的示意电路图。
图3示出了根据本公开的又一实施例的充电系统的示意电路图。
图4示出了根据本公开的又一实施例的充电系统的示意电路图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
如前文所述,功率分配设备在进行功率分配时通常要满足一些要求,例如避免每个功率转换器同时向多个充电终端输出功率,以及使每个功率转换器能够切换到尽可能多的充电端口。为此,通常会在每个功率转换器与每个充电终端之间设置一个开关,以使每个功率转换器能够连接到任一个充电终端或与任一个充电终端断开连接,由此,在功率分配设备中形成 了开关阵列。可以看出,在这种常规开关阵列中,开关数目至少需要是功率转换器数目与充电终端数目的乘积,并且所有开关都需要具有灭弧能力,以便有能力完全切断功率转换器与充电终端之间的电连接,从而确保充电的安全性。例如,在充电系统包括8个功率转换器和8个充电终端的情况下,功率分配设备至少需要提供64个具有灭弧能力的开关。显然,这种开关阵列或开关矩阵的开关数目过多、控制复杂且成本高昂,而且这种开关阵列中的开关的利用率非常低下。
在本公开的实施例中提出了一种改进的功率分配方案。在改进方案中,采用了两级功率分配架构,第一级的开关组件用于将功率转换器连接到与目标充电终端关联的充电通道或将两者断开连接,而第二级的开关组件用于在多个充电终端中选择目标充电终端并将充电通道切换到目标充电终端。通过这种方式,仅需要第一级的开关组件具有消除电弧的能力。由此,仅需要在每个功率转换器的功率输出路径上设置一个灭弧开关或固态开关即可,而不需要所有开关都具有消除电弧的能力,这大大降低了系统的成本。此外,采用两级开关组件可以节省大量的开关,开关数目的减少既降低了成本也使功率分配设备的控制更加简单可靠。
图1示出了根据本公开的实施例的充电系统1000的电路示意图。作为示例,充电系统1000可以是车辆充电系统,以用于对电动车辆进行充电。然而,可以理解的是,充电系统1000也可以作为其他可充电设备的充电系统。如图1所示,充电系统1000包括功率分配设备100和供电设备,其中供电设备可以耦合到功率分配设备100以向功率分配设备100供电。作为示例,供电设备可以耦合到诸如公用电网之类的电源以将电源功率提供到充电系统1000的功率分配设备100。在一些实施例中,供电设备可以包括功率转换器200。根据需要,功率转换器200例如可以包括整流器、DC-DC转换器、AC-AC转换器或逆变器等适当类型的功率转换器,也可以包括多种类型的功率转换器的组合,以实现功率转换,从而将电源功率转换为充电系统所需的功率。功率转换器200可以将转换后的功率提供给功率分配设备100以供进一步的功率分配。可以理解的是,供电设备还可能包括供电所需的其他电气设备,例如变压器、电气开关、或其他配电设备。要注意的是,供电设备也可以不包括功率转换器200,例如,供电设备可以仅包括变压器和/或其他配电设备,由此供电设备可以将未经过功率转换器处理后的功率直接提供给功率分配设备100。在这种情况下,实现功率转换器200的功能的功率转换设备可以被设置在充电系统1000的其他位置,例如,设置在功率分配设备100与后面详述的充电终端之间、或设置在充电终端中、或甚至设置在充电车辆中,这同样可以实现本发明。
充电系统100还可以包括多个充电终端300-1……300-8。功率分配设备100可以耦合到多个充电终端300-1……300-8,并且将来自功率转换器200的功率传输到多个充电终端300-1……300-8中的目标充电终端。可以理解是,充电终端的数目并不受限于图1中所示出的充电终端数目,并且可以根据实际需求在充电系统100中设置其他数目的充电终端。要注意的是,虽然图中的充电终端300-1……300-8被示出为充电枪,但是充电终端300-1……300-8还可以包括适合实现充电操作的其他类型的充电终端,例如充电桩,或者包括多种类型的充电终端的组合,例如一部分充电终端是充电桩并且另一部分充电终端是充电枪。此外,充电终端300-1……300-8中的任一个充电终端还可能继续连接到附加的多个充电终端以经由附加的多个充电终端输出功率,例如,作为充电桩的一个充电终端可以连接到多个充电枪,以经由后级的多个充电枪来向充电车辆输出功率。
根据本公开的实施例,功率分配设备100可以包括第一开关组件140,第一开关组件140 包括至少一个中间输出端子141-1……141-4,并且第一开关组件140被配置为选择性地通过至少一个中间输出端子141-1……141-4中的一个中间输出端子输出功率,第一开关组件140包括灭弧开关或固态开关中的至少一种。作为示例,第一开关组件140可以作为功率分配设备100的第一级开关,并在执行分断操作时能够消除电弧,以避免电弧对设备造成损伤并且避免分断操作失败。例如,第一开关组件140可以是包括灭弧装置的多通道切换开关。然而,第一开关组件140也可以通过接触器、断路器、或其他能够执行熄灭电弧操作的电气开关来构造。此外,第一开关组件140还可以是固态开关,固态开关在执行主电路的分断操作时能够避免电弧的产生,从而同样实现了消除电弧的功能。该固态开关包括但不限于绝缘栅双极晶体管(Insulated Gate Bipolar Translator,IGBT)、结栅场效应晶体管(Junction Field-Effect Transistor,JFET)、双极结晶体管(Bipolar Junction Transistor,BJT)、金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field Effect Transistor,MOSFET)、栅关断晶闸管(Gate Turn Off thyristor,GTO)、MOS控制晶闸管(MOS-Controlled Thyristor,MCT)、集成栅换流晶闸管(Integrated Gate-Commutated Thyristor,IGCT)、碳化硅(SiC)开关器件或氮化镓(GaN)开关器件等功率开关器件。需要说明的是,虽然图1中以多通道切换开关的形式示出了第一开关组件140,但是也可以采用其他适当结构,例如在采用诸如固态开关的两端子开关时,可以针对每个中间输出端子的连接设置一个开关,以实现相同的功能。
在一些实施例中,第一开关组件140包括功率输入端子142,至少一个中间输出端子141-1……141-4包括多个中间输出端子,例如图1中示例性示出的4个中间输出端子141-1、141-2、141-3和141-4,第一开关组件140还被配置为在第一开关组件140的多个中间输出端子141-1……141-4之间执行切换操作,以将功率输入端子142与第一开关组件140的多个中间输出端子141-1……141-4中的一个中间输出端子电连接。作为示例,功率输入端子142可以连接到功率转换器200以接收来自功率转换器200的功率,并且第一开关组件140可以被控制为在多个中间输出端子141-1……141-4之间进行切换,从而将输入端子142耦合到需要对应的中间输出端子以进行功率传输。中间输出端子的数目可以对应于功率分配设备100中所需要的充电通道的数目,其取决于充电终端的数目以及分组情况。因此,中间输出端子的数目可以根据需要进行选择,并且可以是任何其他数目。第一开关组件140可以以电控制的方式来实现切换操作,或者可以以手动方式来进行操作。例如,当车辆充电口连接到充电终端300-3时,基于充电终端300-3与车辆充电口的连接所触发的信号或者充电操作人员所输入的指令,充电系统1000的控制器可以确认需要将与充电终端300-3相关联的充电通道与输入端口142相连接,并且在确定中间输出端子141-2对应于该充电通道之后,控制器将控制第一开关组件140将输入端口142切换连接到中间输出端子141-2。此外,操作人员也可以以手动的方式将输入端口142切换连接到中间输出端子141-2。可以理解的是,第一开关组件140的切换操作的实现方式并不受限于此,而可以是能够实现开关控制的任何其他方式,例如还可以通过远程控制的方式来实现,或者可以将多种方式进行组合。
根据本公开的实施例,功率分配设备100还包括第二开关组件150,第二开关组件150包括分别与至少一个中间输出端子141-1……141-4对应的至少一个子开关150-1……150-4,每个子开关包括多个功率输出端子151-1、151-2,并且第二开关组件150被配置为选择性地通过至少一个子开关150-1……150-4中的一个子开关的一个功率输出端子输出来自一个中间输出端的功率。作为示例,第二开关组件150可以作为功率分配设备100中的第二级开关,以将功率传输到目标充电终端。第二开关组件150设置与第一开关组件的中间输出端子相对 应的子开关,并且每个子开关可以包括多个功率输出端子,每个子开关的功率输出端子将分别被连接到对应的充电终端。例如,如图1中所示出的,第一开关组件140的中间输出端子的数目为4,因此第二开关组件150设置有4个子开关,并且充电系统1000的8个充电终端300-1……300-8实际上以2个充电终端一组而被分为4组。第一子开关150-1共设置两个功率输出端子151-1和151-2,以分别连接到第一组充电终端中的充电终端300-1和300-2,并且第一子开关150-1的输入端子连接第一开关组件140的中间输出端子141-1。第二子开关150-2、第三子开关150-3和第四子开关150-4以类似的方式分别连接到其余充电终端和第一开关组件140的其余中间输出端子。通过这种方式,第二开关组件150可以实现第二级的通道选择,以将切换连接到功率输入端子142的一个中间输出端子进一步连接到目标充电终端,从而对充电车辆进行充电。
在一些实施例中,在第一开关组件140仅有一个中间输出端子的情况下,第二开关组件150可以对应地仅设置一个子开关,并且该子开关具有与所有充电终端分别对应的多个功率输出端子,例如在8个充电终端的情况下该子开关可以具有8个功率输出端子。在这种情况下,第一开关组件140的功能是在分断操作时消除电弧而不具有充电通道选择功能,并且仅由第二开关组件140来选择充电通道。在第一开关组件140具有多个中间输出端子的情况下,第二开关组件150将设置对应的多个子开关,而在这种情况下,除了消除电弧之外,第一开关组件140还可以对多个充电通道进行切换,即实现第一级的通道选择,并且在第二开关组件150中进行第二级的通道选择。
在一些实施例中,第二开关组件150被配置为在每个子开关的多个功率输出端子151-1、151-2之间执行切换操作以将第一开关组件140的每个中间输出端子与对应的子开关的一个功率输出端子电连接。作为示例,第二开关组件150可以以电控制的方式来实现切换操作,或者可以以手动方式来进行操作。例如,当充电车辆的充电端口连接到充电终端300-3时,基于连接所触发的信号或者充电操作人员所输入的指令,充电系统1000的控制器控制第一开关组件140将输入端口142切换连接到中间输出端子141-2,并且进一步控制第二开关组件150以切换与中间输出端子141-2相对应的子开关150-2,从而将中间输出端子141-2连接到期望的功率输出端子,该功率输出端子是与充电终端300-3连接的功率输出端子。通过以上操作,功率转换器200的功率经由第一开关组件140的功率输入端子142和中间输出端子141-2、并且经由第二子开关150-2而被输出给在充电终端300-3处充电的车辆。此外,操作人员也可以以手动的方式对第二开关组件150的切换操作进行操控。可以理解的是,类似于第一开关组件140,第二开关组件150的切换操作的实现方式并不受限于此,而可以是能够实现开关控制的任何其他方式,例如还可以通过远程控制的方式来实现,或者可以将多种方式进行组合。
在一些实施例中,第二开关组件150中的至少一个子开关150-1……150-4包括非灭弧式多触点开关。由于第一开关组件140承担了在分断操作时消除电弧的功能,因此至少一个子开关150-1……150-4无需考虑电弧问题。由此可见,通过两级架构,可以仅由第一级开关组件来执行消除电弧的任务,并且其他开关由于没有电弧问题而可以采用成本低廉的非灭弧式多触点开关。例如,在功率分配设备100中,子开关150-1……150-4都可以选择为非灭弧式双触点开关,这降低了功率分配设备的成本。
在一些实施例中,至少一个子开关150-1……150-4被配置为以彼此关联的方式执行所述切换操作。例如,子开关150-1、150-2、150-3和150-4可以通过联动装置彼此耦合,并因此 在切换操作中,无论是切换哪个子开关,其余的子开关会一起从各自的一个功率输出端子切换到另一功率输出端子。由于第一开关组件140仅会将功率输出端子142选择性地切换到一个中间输出端子(例如141-2),而其他中间输出端子(例如141-1、141-3和141-4)没有被连接到功率输入端子142,因此与目标充电终端无关的其他子开关的操作并不会对充电产生任何影响。显然,这种关联操作方式无需对每个子开关的切换进行单独控制,从而简化了第二开关组件150的控制。在一些实施例中,至少一个子开关150-1……150-4中的每个子开关包括相同数目的功率输出端子。每个子开关具有相同数目的功率输出端子有利于在关联地操作所有子开关的情况下确保能够切换到所有子开关的全部功率输出端子,而无需单独控制某个子开关,从而进一步简化了第二开关组件150的控制。
通过以上描述,可以看出,功率分配设备100采用了第一开关组件140和第二开关组件150的两级功率分配架构,并且第一开关组件140承担消除电弧的任务,而第二开关组件负责充电通道的切换。也就是说,在功率分配设备100中仅需要第一开关组件140具有消除电弧的功能。与此相比,在将一个功率转换器耦合到8个充电终端的传统功率分配方案中需要提供8个灭弧开关。显然,改进后的功率分配设备100大大减少了灭弧开关的数目,从而降低了功率分配设备100的成本。此外,第一开关组件140还可以作为第一级开关对多个通道进行切换和选择,并且第二开关组件140作为第二级开关对每个通道对应的充电终端进行切换。通过这种方式,可以减少所需开关的数目。例如,如图1所示,功率分配设备100仅需要1个多通道切换开关作为第一开关组件140、以及4个双通道切换开关作为第二开关组件150,即总共需要5个开关,而在传统方案中至少需要8个开关。随着开关数目的减少,改进功率分配设备100增加各个开关的利用率,这不仅减低了成本,还有利于维持开关性能和寿命。
图2示出了根据本公开的另一实施例的充电系统1000的示意电路图。如图2所示,在第二开关组件150中,每个子开关设置了3个功率输出端子,即相比于图1中的每个子开关增加了1个功率输出端子。例如,第一子开关150-1包括功率输出端子151-1、151-2和151-3,并且分别连接到充电终端300-1、300-2和300-3,其余子开关以类似方式设置。由此,图2中的功率分配设备100可以提供12个功率输出端子,因此可以为12个充电终端300-1……300-12提供功率输出。图2中的功率分配设备100的其余部分与图1中的功率分配设备100相同,因此不再赘述。
图3示出了根据本公开的又一实施例的充电系统1000的示意电路图。如图3所示,第一开关组件140设置了6个中间输出端子141-1……141-6,并且第二开关组件150设置了6个子开关150-1……150-6,即相比于图1中的功率分配设备100增加了2个中间输出端子和2个子开关。换言之,功率分配设备100中增加了两个充电通道,因此可以设置12个功率输出端子以向12个充电终端300-1……300-12提供功率输出。图3中的功率分配设备100的其余部分与图1中的功率分配设备100相同,因此不再赘述。
通过图2和图3的两个实施例可以看出,只需要增加充电通道或者增加子开关的功率输出端子,就可以在充电系统中设置更多的充电终端,因此本公开的方案具有很大的灵活性和可扩展性。
图4示出了根据本公开的又一实施例的充电系统1000的示意电路图。如图4所示,充电系统1000可以包括多个功率转换器200-1……200-8和多个功率分配设备100-1……100-8,其中每个功率分配设备和每个功率转化器分别与图1中所示出的功率分配设备100和功率转换 器200相同。功率转换器200-1通过功率分配设备100-1耦合到多个充电终端300-1……300-8,并且其余的功率转换器200-2……200-8也分别通过对应的功率分配设备100-2……100-8耦合到多个充电终端300-1……300-8。通过这种方式,多个功率转换器200-1……200-8可以利用功率分配设备阵列来向多个充电终端300-1……300-8提供充电功率。在图4中,8个功率转换器与8个充电终端之间仅需要8个多通道切换开关作为第一开关组件以及32个双通道切换开关作为第二开关组件的子开关,即总共需要40个开关,并且这些开关中仅需要8个多通道切换开关具有消除电弧的功能(例如通过灭弧开关或固态开关来构造),而在传统的功率分配方案中,8个功率转换器与8个充电终端之间至少需要设置64个开关,并且64个开关中的每个开关都需要具有消除电弧的功能。因此,本公开的方案减少了多个功率转换器与多个充电终端之间的功率分配所需开关的数目,特别是减少了灭弧开关的数目,因此提高了开关的利用率并降低了系统成本。可以理解的是,图4中所示出的功率分配设备、功率转换器和充电终端的数目仅仅是示例性,并且可以根据需要和类似的原理在充电系统1000中设置其他适当数目的功率分配设备、功率转换器和充电终端。
通过以上描述和相关附图中所给出的教导,这里所给出的本公开的许多修改形式和其它实施方式将被本公开相关领域的技术人员所意识到。因此,所要理解的是,本公开的实施方式并不局限于所公开的具体实施方式,并且修改形式和其它实施方式意在包括在本公开的范围之内。此外,虽然以上描述和相关附图在部件和/或功能的某些示例组合形式的背景下对示例实施方式进行了描述,但是应当意识到的是,可以由备选实施方式提供部件和/或功能的不同组合形式而并不背离本公开的范围。就这点而言,例如,与以上明确描述的有所不同的部件和/或功能的其它组合形式也被预期处于本公开的范围之内。虽然这里采用了具体术语,但是它们仅以一般且描述性的含义所使用而并非意在进行限制。

Claims (9)

  1. 一种功率分配设备(100),包括:
    第一开关组件(140),包括至少一个中间输出端子(141-1……141-n),并且所述第一开关组件被配置为选择性地通过所述至少一个中间输出端子(141-1……141-n)中的一个中间输出端子输出功率,所述第一开关组件(140)包括灭弧开关或固态开关中的至少一种;以及
    第二开关组件(150),包括分别与所述至少一个中间输出端子(141-1……141-n)对应的至少一个子开关(150-1……150-n),每个子开关包括多个功率输出端子(151-1……151-n),并且所述第二开关组件(150)被配置为选择性地通过所述至少一个子开关(150-1……150-n)中的一个子开关的一个功率输出端子输出来自所述一个中间输出端的所述功率。
  2. 根据权利要求1所述的功率分配设备(100),其中所述至少一个子开关(150-1……150-n)包括非灭弧式多触点开关。
  3. 根据权利要求1所述的功率分配设备(100),其中所述第一开关组件(140)包括功率输入端子(142),所述至少一个中间输出端子(141-1……141-n)包括多个中间输出端子,所述第一开关组件(140)还被配置为在所述第一开关组件(140)的所述多个中间输出端子之间执行切换操作,以将所述功率输入端子(142)与所述第一开关组件(140)的所述多个中间输出端子中的一个中间输出端子电连接。
  4. 根据权利要求1所述的功率分配设备(100),其中所述第二开关组件(150)被配置为在每个子开关的多个功率输出端子(151-1……151-n)之间执行切换操作以将所述第一开关组件(140)的每个中间输出端子与对应的子开关的一个功率输出端子电连接。
  5. 根据权利要求4所述的功率分配设备(100),其中所述至少一个子开关(150-1……150-n)被配置为以彼此关联的方式执行所述切换操作。
  6. 根据权利要求5所述的功率分配设备(100),其中所述至少一个子开关(150-1……150-n)中的每个子开关包括相同数目的功率输出端子。
  7. 一种充电系统(1000),包括:
    供电设备;
    根据权利要求1至6中任一项所述的功率分配设备(100),由所述供电设备供电。
  8. 根据权利要求7所述的充电系统(1000),其中所述供电设备还包括:
    至少一个功率转换器(200-1……200-n),分别与至少一个功率分配设备(100-1……100-n)相对应,每个功率转换器耦合到对应的功率分配设备。
  9. 根据权利要求7或8所述的充电系统(1000),还包括:
    多个充电终端(300-1……300-n),耦合到每个功率分配设备的所述至少一个子开关(150-1……150-n)的各个功率输出端子。
PCT/CN2022/131765 2021-11-15 2022-11-14 功率分配设备以及充电系统 WO2023083355A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111350580.3 2021-11-15
CN202111350580.3A CN113895275B (zh) 2021-11-15 2021-11-15 功率分配设备以及充电系统

Publications (1)

Publication Number Publication Date
WO2023083355A1 true WO2023083355A1 (zh) 2023-05-19

Family

ID=79194424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131765 WO2023083355A1 (zh) 2021-11-15 2022-11-14 功率分配设备以及充电系统

Country Status (2)

Country Link
CN (1) CN113895275B (zh)
WO (1) WO2023083355A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113895275B (zh) * 2021-11-15 2023-07-18 华为数字能源技术有限公司 功率分配设备以及充电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696748A (zh) * 2017-01-25 2017-05-24 华为技术有限公司 一种充电桩系统
CN207010325U (zh) * 2017-03-27 2018-02-13 深圳市前海中电新能源科技有限公司 一种充电机功率分配装置
CN110061573A (zh) * 2019-04-22 2019-07-26 哈尔滨工业大学 一种基于开关网络的电源与发射阵列线圈的连接拓扑
CN212323751U (zh) * 2020-03-13 2021-01-08 南方电网电动汽车服务有限公司 功率分配装置和充电系统
KR20210010223A (ko) * 2019-07-19 2021-01-27 엘지전자 주식회사 전기차 충전파일 출력 파워 제어 시스템 및 방법
CN113895275A (zh) * 2021-11-15 2022-01-07 华为数字能源技术有限公司 功率分配设备以及充电系统
CN114520505A (zh) * 2020-11-18 2022-05-20 通用电气航空系统有限公司 用于操作配电系统的系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8643330B2 (en) * 2011-09-02 2014-02-04 Tesla Motors, Inc. Method of operating a multiport vehicle charging system
US11173803B2 (en) * 2018-10-22 2021-11-16 Ford Global Technologies, Llc Reconfigurable micro-grid
CN111376775A (zh) * 2018-12-27 2020-07-07 江苏万帮德和新能源科技股份有限公司 电动汽车充电功率分配系统
CN112959914A (zh) * 2021-04-15 2021-06-15 上海Abb联桩新能源技术有限公司 一种功率分配及控制系统、及其应用的充电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696748A (zh) * 2017-01-25 2017-05-24 华为技术有限公司 一种充电桩系统
CN207010325U (zh) * 2017-03-27 2018-02-13 深圳市前海中电新能源科技有限公司 一种充电机功率分配装置
CN110061573A (zh) * 2019-04-22 2019-07-26 哈尔滨工业大学 一种基于开关网络的电源与发射阵列线圈的连接拓扑
KR20210010223A (ko) * 2019-07-19 2021-01-27 엘지전자 주식회사 전기차 충전파일 출력 파워 제어 시스템 및 방법
CN212323751U (zh) * 2020-03-13 2021-01-08 南方电网电动汽车服务有限公司 功率分配装置和充电系统
CN114520505A (zh) * 2020-11-18 2022-05-20 通用电气航空系统有限公司 用于操作配电系统的系统和方法
CN113895275A (zh) * 2021-11-15 2022-01-07 华为数字能源技术有限公司 功率分配设备以及充电系统

Also Published As

Publication number Publication date
CN113895275A (zh) 2022-01-07
CN113895275B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2023083355A1 (zh) 功率分配设备以及充电系统
US8941264B2 (en) Apparatus for bi-directional power switching in low voltage vehicle power distribution systems
US10134551B2 (en) Galvanically isolated hybrid contactor
CN108183472B (zh) 包括换向装置的配电系统
CN111937110B (zh) 开关设备
CN105474546B (zh) 半导体开关电路
EP3672005B1 (en) Direct current interruption device
US8644044B2 (en) Power electronics and integration system for providing a common high current inverter for use with a traction inverter and an auxiliary inverter
US11177099B2 (en) Switching apparatus
CN107210604B (zh) 用于互连直流电力网络的可缩放开关站
US9570252B2 (en) System and method for operating an on-load tap changer
US20210012981A1 (en) Disconnecting device for interrupting a direct current of a current path, and on-board electrical system of a motor vehicle
CN113555948A (zh) 供电控制系统、供电控制方法以及通信设备
WO2023185382A1 (zh) 一种固态变压器和供电设备
KR20220109197A (ko) 전기차 충전 장치
CN103346761B (zh) 机械同步混合继电器及混合开关运行方法
CN108702080B (zh) 用于高压电力系统的开关设备和包括这种开关设备的装置
JP2019145456A (ja) 電力用開閉装置、送配電システム、発電システム、負荷システム、機械式スイッチ、及び電力用開閉装置の制御方法
KR101319789B1 (ko) 스위칭 장치 및 스위칭 장치의 오작동 방지방법
EP3985874A3 (en) Solid-state power switch
Matsuda et al. Design and implementation of a power packet network protocol for flexible power routing
EP3981063A1 (en) Modified half-bridge submodule for multi-level voltage sourced converter with dc fault suppression capability and related method
WO2011106982A1 (zh) 移动通信基站射频信号扇区切换系统
WO2023108339A1 (zh) 一种固态变压器、供电设备和数据中心
JP7226551B2 (ja) 直流電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022892148

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022892148

Country of ref document: EP

Effective date: 20240320