WO2023082971A1 - 芯片转移方法、显示面板及显示装置 - Google Patents

芯片转移方法、显示面板及显示装置 Download PDF

Info

Publication number
WO2023082971A1
WO2023082971A1 PCT/CN2022/126741 CN2022126741W WO2023082971A1 WO 2023082971 A1 WO2023082971 A1 WO 2023082971A1 CN 2022126741 W CN2022126741 W CN 2022126741W WO 2023082971 A1 WO2023082971 A1 WO 2023082971A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
layer
chip
sacrificial layer
Prior art date
Application number
PCT/CN2022/126741
Other languages
English (en)
French (fr)
Inventor
戴广超
马非凡
赵世雄
王子川
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Publication of WO2023082971A1 publication Critical patent/WO2023082971A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present application relates to the field of mass transfer technology, in particular to a chip transfer method, a display panel and a display device.
  • Micro LED Micro LED for short
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the purpose of this application is to provide a chip transfer method, a display panel and a display device, aiming at solving the problems of high difficulty in chip transfer and low transfer yield in the prior art.
  • the application provides a chip transfer method, including:
  • each light-emitting chip on the first substrate On the top surface of each light-emitting chip on the first substrate, sacrificial layer units covering the top surface and electrodes arranged on the top surface are respectively formed; wherein, the bottom surface of the light-emitting chip is the same as the top surface the opposite side, and attached to the first substrate;
  • the picked-up light-emitting chip is transferred to the circuit backboard.
  • the present application also provides a display panel, which includes a circuit backplane and a plurality of light-emitting chips arranged on the circuit backplane; A chip transfer method is transferred to the circuit backplane.
  • the present application also provides a display device, which includes the above-mentioned display panel and a driving module; wherein, the driving module is connected to the display panel to drive and control the display panel.
  • the sacrificial layer unit and the support layer are sequentially formed on the first substrate to which the light-emitting chip is attached, and then the support layer is fixedly connected to the second substrate, and finally the first substrate, the sacrificial layer unit, and the support layer are removed. A part of it, thus obtaining a weakened structure consisting of cavities and side walls.
  • the fabrication process of the weakened structure is relatively simple, stable and reliable, and is not blocked by the front of the light-emitting chip. With the help of the weakened structure, the light-emitting chip can be stably supported.
  • the sidewall in the weakened structure can be torn off by applying a little external force to realize chip transfer.
  • the transfer of the light-emitting chip assisted by the weakened structure manufactured by the present application is easy to operate, reduces the transfer difficulty, and can improve the transfer yield.
  • the manufacturing of the display panel is also simpler and more convenient, which is conducive to shortening the manufacturing time of the display panel and reducing the manufacturing cost of the display panel.
  • the manufacture of the display device is also simpler and more convenient.
  • Fig. 1 is the schematic diagram of the process of the chip transfer method in the related art
  • FIG. 2 is a schematic flow diagram of a chip transfer method in an optional embodiment of the present application.
  • FIG. 3 is a schematic diagram of the process of the chip transfer method in an optional embodiment of the present application.
  • FIG. 4 is a schematic diagram of the process of forming a light-emitting chip on a first substrate in an alternative embodiment of the present application
  • FIG. 5 is a schematic diagram of the process of forming a sacrificial layer unit on a first substrate in an alternative embodiment of the present application
  • FIG. 6 is a schematic diagram of the process of forming a support layer on a first substrate in an alternative embodiment of the present application
  • Fig. 7 is a schematic diagram of the process of transferring the light-emitting chip from the first substrate to the second substrate in an alternative embodiment of the present application;
  • Fig. 8 is a schematic diagram of the process of forming a weakened structure in an optional embodiment of the present application.
  • FIG. 9 is a top view of the second substrate when part of the support layer is removed in an alternative embodiment of the present application.
  • FIG. 10 is a first structural schematic diagram of the second substrate after forming a weakened structure in an alternative embodiment of the present application.
  • FIG. 11 is a second structural schematic diagram of the second substrate after forming a weakened structure in an optional embodiment of the present application.
  • Fig. 12 is a schematic diagram of the process of picking up light-emitting chips by the transfer device in an alternative embodiment of the present application.
  • Fig. 13 is a schematic diagram of the process of placing the light-emitting chip by the transfer device in an optional embodiment of the present application;
  • Micro LED has become the next An important choice for a generation of mainstream display technology. Compared with LCD and OLED, although Micro LED has great advantages, there are still many technical bottlenecks to be broken through in the development of Micro LED at this stage. The size of LED chips is small, and mass transfer is an important technical barrier that limits its development.
  • the weakening process of Micro LED in the related art is: S101: providing a temporary substrate. S102: setting a one-bond adhesive layer on the temporary substrate. S103: Provide a growth substrate, wherein the growth substrate is adhered with a plurality of light-emitting chips; the side of the growth substrate with the light-emitting chips adhered to the side of the temporary substrate provided with a bonding glue layer.
  • S104 Etching the bonding adhesive layer by dry etching; due to the shielding effect on the front of the light-emitting chip, there will be a part of the bonding adhesive layer remaining, and the remaining part can be supported and distributed to the chip, so that the transfer head can grab it.
  • S105 Provide a circuit backplane, and transfer the light-emitting chips to the circuit backplane through the transfer device.
  • the disadvantage of this method is that when the bonding adhesive layer is etched by dry method, the adhesive width of the support layer is not easy to control, and the bonding adhesive layer is easily etched completely. The size of the bonding adhesive layer is also uncontrollable. If the adhesive force distribution range between the bonding adhesive layer and the light-emitting chip is large, the grasping ability of the transfer head is limited, and the transfer yield is low.
  • a chip transfer method provided in this embodiment at least includes the following steps:
  • each light-emitting chip 20 on the first substrate 101 respectively form a sacrificial layer unit 301 covering the top surface and electrodes arranged on the top surface; wherein, the bottom surface of the light-emitting chip 20 is opposite to the top surface One side, and attached to the first substrate 101.
  • the first substrate 101 in this embodiment is a growth substrate, and the material of the first substrate 101 can be selected from but not limited to sapphire, silicon carbide, silicon or gallium arsenide.
  • This light emitting chip 20 includes but not limited to light emitting diode chips, micron light emitting diode chips or submillimeter light emitting diodes (Mini LED, referred to as mini LED) chip.
  • the light emitting chip 20 also includes but is not limited to a red light emitting chip, a green light emitting chip or a blue light emitting chip.
  • a single first substrate is provided with the same type of light-emitting chips. Referring to FIG. 4 , the specific process of forming the light-emitting chip 20 on the first substrate 101 will be described in detail below:
  • N-GaN N-type gallium nitride 2
  • MQW multiple quantum wells 3
  • P-GaN P-type gallium nitride 4
  • the Mesa layer includes the surface of the N-GaN layer exposed through the etching hole.
  • S302 Lithographically etch an ISO (isolation) pattern on the aforementioned epitaxial layer, and use a dry etching machine to etch through N-GaN to the substrate 1, wherein the etching gas is boron trichloride (BCl3) and chlorine gas (Cl2), The etching depth is 4-8um, and the ISO pattern is obtained after the glue is removed.
  • the etching gas is boron trichloride (BCl3) and chlorine gas (Cl2)
  • DBR distributed Bragg Reflector
  • the thickness of DBR layer 6 is set to 1-4um
  • Lithograph the DBR pattern on the DBR layer 6, use a dry etching machine to dry etch the DBR layer 6, it should be noted that this step needs to etch through the DBR layer 6, and the etching gas is carbon tetrafluoride (CF4), oxygen (O2), argon (Ar), get the DBR pattern after degumming.
  • CF4 carbon tetrafluoride
  • oxygen oxygen
  • Ar argon
  • each light emitting chip 20 includes N-GaN, MQW, P-GaN, ITO, DBR and PAD other than the substrate 1 .
  • the first substrate 101 carrying a plurality of light-emitting chips 20 prepared by the above-mentioned S301-S305 can be provided, the bottom surface of the first substrate 101 is ground and polished, and the top of each light-emitting chip 20 on the first substrate 101 On the top surface, sacrificial layer units 301 covering the top surface and the electrodes on the top surface are respectively formed.
  • a plurality of sacrificial layer units 301 can also be formed on the first substrate 101 in various ways.
  • respectively forming the sacrificial layer unit 301 covering the top surface and the electrodes arranged on the top surface includes but not limited to the following methods:
  • a sacrificial layer 30 is first deposited on the top surface of each light emitting chip 20 and the surface of the first substrate 101 carrying the light emitting chip 20 , and then the sacrificial layer 30 is patterned to form a sacrificial layer.
  • Unit 301 a sacrificial layer 30 is first deposited on the top surface of each light emitting chip 20 and the surface of the first substrate 101 carrying the light emitting chip 20 , and then the sacrificial layer 30 is patterned to form a sacrificial layer.
  • the material of the sacrificial layer 30 may be photoresist or pyrolytic glue.
  • the photoresist can be a positive photoresist or a negative photoresist.
  • the positive photoresist is soluble in the developer solution after exposure and development, and when the positive photoresist is patterned, the pattern of the remaining adhesive layer is consistent with the pattern of the mask.
  • the negative photoresist is insoluble in the developer after exposure and development, and the remaining glue layer pattern is complementary to the mask pattern.
  • a photoresist material (such as photoresist) is coated on the pyrolytic glue that needs to be retained, and the pyrolytic glue that needs to be etched is dry-etched, and then the remaining heat is removed.
  • the photoresist material on the gel is dispelled, and the remaining pyrolytic gel can cover the electrodes on the light-emitting chip.
  • glue is dispensed on the top surface of each light emitting chip 20 to form the sacrificial layer unit 301 .
  • the material of the sacrificial layer unit 301 may be photoresist or pyrolytic glue.
  • Glue is dispensed on the top surface of each light-emitting chip 20 by using a glue dispenser, and the position where glue needs to be dispensed on each light-emitting chip 20 includes electrodes arranged on the top surface of the light-emitting chip.
  • S202 Form a supporting layer 40 covering the side surfaces of each light-emitting chip 20 and each sacrificial layer unit 301 on the first substrate 101 .
  • a thick support layer 40 is deposited on the top surface of the first substrate 101 , the top surfaces of each light-emitting chip 20 and the top surfaces of each sacrificial layer unit 301 , and the support layer 40
  • the thickness is set to 8-20um, optional thickness includes but not limited to 10um, 15um or 18um.
  • the supporting layer 40 is brittle, and its material includes but not limited to silicon oxide, silicon nitride, silicon oxynitride and the like.
  • the second substrate 102 in this embodiment is a temporary substrate, and the material of the second substrate 102 can be selected but not limited to glass, sapphire, quartz or silicon.
  • a bonding layer 50 can also be provided on the second substrate 102 for fixed connection with the supporting layer 40 on the first substrate 101; the material of the bonding layer 50 can be various, for example, it can be The metal layer, the metal layer can be copper or nickel; the bonding layer 50 can also be an adhesive layer.
  • the side on which the support layer 40 is provided on the first substrate 101 and the side on which the bonding layer 50 is provided on the second substrate 102 are face-to-face affixed; the support layer 40 is bonded to the second substrate 102 ; Removing the first substrate 101 .
  • the bonding layer 30 is a metal layer or an adhesive layer.
  • the bonding layer 50 is a metal layer; at the same time, when the first substrate 101 deposited with the support layer 40 is bonded to the second substrate 102 deposited with the metal layer, It is necessary to ensure that the bonding temperature does not exceed the pyrolysis temperature of the pyrolytic glue, so as to ensure that the pyrolytic glue will not pyrolyze. And the first substrate 101 is peeled off by laser lift off.
  • S204 At least partially remove the support layer 40 between adjacent light-emitting chips 20, and remove each sacrificial layer unit 301; wherein, the space occupied by each sacrificial layer unit 301 forms a cavity 302, and the space between adjacent light-emitting chips 20 The remaining support layer 40 forms the sidewalls of the cavity 302 to form a weakened structure.
  • the above S204 may specifically include the following steps: pattern the support layer 40 to expose part of the sides of each sacrificial layer unit 301 and form sidewalls; then remove each sacrificial layer unit 301 to form a void cavity 302 .
  • the part of the support layer 40 that needs to be etched can be removed by dry etching.
  • the cross-sectional shape of the light emitting chip 20 is a rectangle, which can also be understood as the light emitting chip 20 includes four sides.
  • the photoresist material 21 (such as photoresist) is coated on the support layer 40 that needs to be kept, and the photoresist material 21 is not coated on other parts.
  • the supporting layer 40 covered by the photoresist remains intact, while the supporting layer 40 not covered by the photoresist is at least partially removed. After obtaining the support layer pattern, the remaining photoresist on the support layer 40 is removed.
  • the support layer 40 on the two opposite sides of the light-emitting chip 20 it is necessary to etch the support layer 40 on the two opposite sides of the light-emitting chip 20. It can also be understood that the plurality of light-emitting chips 20 on the first substrate 101 are arranged in an array, vertically opposite to each other. The width of the removed support layer 40 between adjacent light emitting chips 20 is the width of the gap between vertically adjacent light emitting chips 20 .
  • the thickness of the support layer 40 to be removed greater than the thickness of the light-emitting chip 20 it can also be greater than or equal to the sum of the thickness of the light-emitting chip 20 and the thickness of the sacrificial layer unit 301, or even equal to the thickness of the support layer 40, so as to ensure this part of the longitudinal support
  • the layer 40 is etched, two opposite sides of the light-emitting chip 20 and the sacrificial layer unit 301 are exposed, so that the subsequent sacrificial layer unit 301 can be removed smoothly.
  • the plurality of light-emitting chips 20 on the first substrate 101 are arranged in an array. Yes, the removed width of the supporting layer 40 between the laterally adjacent light emitting chips 20 is smaller than the width of the gap between the laterally adjacent light emitting chips 20 , and the lateral sides of the laterally adjacent light emitting chips 20 are bonded to the supporting layer 40 .
  • the thickness of the support layer 40 to be removed greater than the thickness of the light-emitting chip 20, and can also be greater than or equal to the sum of the thickness of the light-emitting chip 20 and the sacrificial layer unit 301, or even equal to the thickness of the support layer 40, so as to ensure that this part of the support layer 40 in the lateral direction After being etched, the remaining support layer 40 between adjacent light-emitting chips 20 can form sidewalls to support the light-emitting chips 20 .
  • the remaining support layer 40 can be understood as including two parts, the support base 401 and the support wall 402, wherein the support base 401 is used for bonding with the bonding layer 50 (such as a metal layer) on the carrier substrate, wherein
  • the support wall 402 acts as a side wall of the cavity 302 .
  • the adjacent supporting bases 401 are separated from each other, and the side walls of the cavities 302 are also separated from each other.
  • the removed thickness of the support layer 40 can be set to be equal to the thickness of the support layer 40 .
  • adjacent supporting bases 401 are connected to each other, and the side walls of the cavities 302 are separated from each other.
  • the removed thickness of the support layer 40 when patterning the support layer 40 , can be set to be equal to the sum of the thickness of the light-emitting chip 20 and the thickness of the sacrificial layer unit 301 .
  • adjacent support bases 401 may also be connected to each other, and the side walls of the cavities 302 are partially connected to each other and partially separated from each other.
  • the removed thickness of the support layer 40 can be set to be greater than the thickness of the light emitting chip 20 and smaller than the sum of the thickness of the light emitting chip 20 and the thickness of the sacrificial layer unit 301 .
  • the part of the support layer 40 directly connected to the side of the light-emitting chip 20 remains at a relatively thin thickness after the support layer 40 is etched, so that This part of the supporting layer 40 is easily torn off during the subsequent chip transfer process.
  • the part of the support layer 40 that is not directly connected to the side of the light-emitting chip 20 it can be kept relatively thick to increase the supporting force for the light-emitting chip 20 .
  • the manner of removing each sacrificial layer unit 301 to form the cavity 302 may be selected according to the material type of the sacrificial layer unit 301 .
  • the specific way of removing the photoresist may be wet etching. Wet etching is to use liquid chemical reagents (such as acids, alkalis and solvents, etc.) to chemically react with the adhesive layer for etching.
  • the second substrate can be irradiated with a laser with a specific wavelength to heat the second substrate, and heated to the pyrolysis temperature of the pyrolytic glue (for example, 200° C., 230° C. , 260° C., 300° C.), so as to pyrolyze and gasify the pyrolytic glue to realize the formation of the cavity 302 .
  • a laser with a specific wavelength for example, 200° C., 230° C. , 260° C., 300° C.
  • S205 pick up the light-emitting chip 20 from the second substrate 102, and control the weakened structure on the second substrate 102 corresponding to the picked-up light-emitting chip 20 to break under force, so that the picked-up light-emitting chip 20 is detached from the second substrate 102 .
  • a transfer device 60 is provided, and a plurality of projections 61 arranged at intervals are provided on the transfer device 60.
  • the surface of each projection 61 has stickiness, and the viscosity of the surface of each projection 61 is determined by the laser. weakened by irradiation.
  • a small amount of support layer 40 may remain on the side of the light-emitting chip 20, and the remaining small amount of support layer 40 will not affect the actual performance of the light-emitting chip 20. It can be used as a part of the packaging material during the packaging process.
  • a circuit backplane 70 is provided, and the side of the circuit backplane 70 provided with electrode pads and the side of the transfer device 60 on which the light-emitting chip 20 is adhered are bonded in position;
  • the light-emitting chip 20 is bonded on the circuit backplane 70;
  • the transfer device 60 is irradiated with laser light to weaken the adhesion between the protrusion 61 in the transfer device 60 and the light-emitting chip 20, and an external force is applied to move the transfer device 60 upwards, thereby achieving
  • the transfer device 60 transfers the light-emitting chip 20 onto the circuit backplane 70 .
  • a sacrificial layer unit and a supporting layer are sequentially formed on the first substrate on which the light-emitting chip is attached, secondly, the supporting layer is fixedly connected to the second substrate, and finally the first substrate and the sacrificial layer are removed.
  • a part of the unit and the support layer so that a weakened structure consisting of cavities and side walls can be obtained.
  • the fabrication process of the weakened structure is relatively simple, stable and reliable, and is not blocked by the front surface of the light-emitting chip. With this weakened structure, the light-emitting chip can be stably supported.
  • the sidewall in the weakened structure can be torn off by applying a little external force to realize chip transfer.
  • the transfer of the light-emitting chip assisted by the weakened structure manufactured by the present application is easy to operate, reduces the transfer difficulty, and can improve the transfer yield.
  • This embodiment provides a display panel, which includes a circuit backplane and a plurality of light-emitting chips arranged on the circuit backplane; wherein, each light-emitting chip is transferred by any chip transfer method as provided in the preceding embodiments So far the circuit backboard.
  • This embodiment also provides a display device, which is an electronic device that can be displayed on a display panel manufactured by any chip transfer method provided in the foregoing embodiments, for example, it may include but not limited to various smart mobile terminals , PC, monitor, electronic billboard, etc.
  • the display device includes the above-mentioned display panel and a driving module; wherein, the driving module is connected with the display panel to drive and control the display panel.
  • the above-mentioned display panel and display device adopt a more convenient and efficient chip transfer method, which makes the production of the display panel and the display device simpler and more convenient, which is beneficial to shorten the production time of the display panel and the display device, and can reduce the cost of the display panel. and the production cost of the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

本申请涉及一种芯片转移方法、显示面板及显示装置,其中,芯片转移方法通过在粘附有发光芯片的第一基板上依次形成牺牲层单元和支撑层,其次将支撑层与第二基板固定连接,最后去除第一基板、牺牲层单元以及支撑层的其中一部分,从而可得到由空腔和侧壁构成的弱化结构。从第二基板上拾取发光芯片时,通过施加少许外力即可将此弱化结构中的侧壁扯断,实现芯片转移。

Description

芯片转移方法、显示面板及显示装置 技术领域
本申请涉及巨量转移技术领域,尤其涉及一种芯片转移方法、显示面板及显示装置。
背景技术
目前,微米发光二极管(Micro LED,简称微型LED)的开发已经提到发光二极管(Light-Emitting Diode,简称LED)行业上中下游的未来规划中,Micro LED由于其自发光、 高效率、低功耗、高集成、高稳定性、发光角度大等优良特性,已然成为下一代主流显示技术的重要选择。相比于液晶显示器(Liquid Crystal Display,简称LCD)和有机发光二极管(Organic Light-Emitting Diode,简称OLED),尽管Micro LED具有很大的优势,但是现阶段开发Micro LED 还有许多技术瓶颈有待突破,由于Micro LED芯片尺寸较小,巨量转移是限制其发展的重要技术关卡。
对于红蓝绿Micro LED芯片,由于芯片保留有衬底,芯片制程最大的挑战在于切割。采用激光划片机在晶圆(Wafer)内部隐形切割出裂纹,然后用裂片机将芯片劈开,从而得到一颗颗独立的 LED 芯片。随着芯片尺寸越来越小,裂片时良率也随之下降,Micro LED基本无法切割,也就无法实现芯片转移。
因此,如何实现LED芯片便捷、高效的转移是亟需解决的问题。
技术问题
鉴于上述相关技术的不足,本申请的目的在于提供一种芯片转移方法、显示面板及显示装置,旨在解决现有技术中,芯片转移难度大及转移良率低的问题。
技术解决方案
本申请提供一种芯片转移方法,包括:
在第一基板上的各发光芯片的顶面上,分别形成将所述顶面及所述顶面上设置的电极覆盖的牺牲层单元;其中,所述发光芯片的底面为与所述顶面相对的一面,且贴合在所述第一基板上;
在所述第一基板上形成将各所述发光芯片的侧面及各所述牺牲层单元覆盖的支撑层;
将各所述发光芯片、各所述牺牲层单元随所述支撑层转移至第二基板,将相邻所述发光芯片之间的所述支撑层进行至少部分去除,并去除各所述牺牲层单元;其中,各所述牺牲层单元所占用的空间形成空腔,相邻所述发光芯片之间所剩余的所述支撑层形成所述空腔的侧壁,以形成弱化结构;
从所述第二基板上拾取所述发光芯片,通过控制所述第二基板上与被拾取的所述发光芯片对应的所述弱化结构发生断裂,使得被拾取的所述发光芯片从所述第二基板上脱离;以及
将拾取的所述发光芯片转移至电路背板上。
基于同样的发明构思,本申请还提供一种显示面板,所述显示面板包括电路背板以及设置在所述电路背板上的多个发光芯片;其中,各所述发光芯片通过如上所述的芯片转移方法转移至所述电路背板上。
基于同样的发明构思,本申请还提供一种显示装置,所述显示装置包括如上所述的显示面板以及驱动模组;其中,所述驱动模组与所述显示面板连接,以驱动控制所述显示面板。
有益效果
上述芯片转移方法,通过在粘附有发光芯片的第一基板上依次形成牺牲层单元和支撑层,其次将支撑层与第二基板固定连接,最后去除第一基板、牺牲层单元以及支撑层的其中一部分,从而可得到由空腔和侧壁构成的弱化结构。此弱化结构的制作过程较简便且稳定可靠,不受发光芯片正面的遮挡,借助此弱化结构,可以稳定地支撑发光芯片。那么,从第二基板上拾取发光芯片时,通过施加少许外力即可将此弱化结构中的侧壁扯断,实现芯片转移。通过本申请制作的弱化结构辅助发光芯片的转移,操作简便,降低了转移难度,可提升转移良率。
上述显示面板,在制作过程中,由于采用了更为便捷、高效的芯片转移方法,使得显示面板的制作也更为简单方便,有利于缩短显示面板的制作时长,可降低显示面板的制作成本。
上述显示装置,由于包括上述显示面板,使得此显示装置的制作也更为简单方便。
附图说明
图1为相关技术中芯片转移方法的过程示意图;
图2为本申请一可选实施例中芯片转移方法的流程示意图;
图3为本申请一可选实施例中芯片转移方法的过程示意图;
图4为本申请一可选实施例中在第一基板上形成发光芯片的过程示意图;
图5为本申请一可选实施例中在第一基板上形成牺牲层单元的过程示意图;
图6为本申请一可选实施例中在第一基板上形成支撑层的过程示意图;
图7为本申请一可选实施例中将发光芯片从第一基板转移至第二基板的过程示意图;
图8为本申请一可选实施例中形成弱化结构的过程示意图;
图9为本申请一可选实施例中第二基板在去除支撑层的一部分时的俯视图;
图10为本申请一可选实施例中第二基板在形成弱化结构后的结构示意图一;
图11为本申请一可选实施例中第二基板在形成弱化结构后的结构示意图二;
图12为本申请一可选实施例中转移装置拾取发光芯片的过程示意图;
图13为本申请一可选实施例中转移装置放置发光芯片的过程示意图;
附图标记说明:
1-衬底;2-N-GaN;3-MQW;4-P-GaN;5-ITO层;6-DBR层;7-PAD;101-第一基板;20-发光芯片;21-光阻材料;30-牺牲层;301-牺牲层单元;302-空腔;40-支撑层;401-支撑底座;402-支撑壁;102-第二基板;50-键合层;60-转移装置;61-凸起;70-电路背板。
本发明的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
目前,Micro LED的开发已经提到LED行业上中下游的未来规划中,Micro LED由于其自发光、 高效率、低功耗、高集成、高稳定性、发光角度大等优良特性,已然成为下一代主流显示技术的重要选择。相比于LCD和OLED,尽管Micro LED具有很大的优势,但是现阶段开发Micro LED 还有许多技术瓶颈有待突破,由于Micro LED芯片尺寸较小,巨量转移是限制其发展的重要技术关卡。
对于红蓝绿Micro LED芯片,由于芯片保留有衬底,芯片制程最大的挑战在于切割。采用激光划片机在Wafer内部隐形切割出裂纹,然后用裂片机将芯片劈开,从而得到一颗颗独立的 LED 芯片。随着芯片尺寸越来越小,裂片时良率也随之下降,Micro LED基本无法切割,也就无法实现芯片转移。
为了实现Micro LED的巨量转移,弱化结构的Micro LED 技术被提出。请参见图1,相关技术中Micro LED的弱化流程为:S101:提供一临时基板。S102:在临时基板上设置一键合胶层。S103:提供一生长基板,其中,生长基板粘附有多个发光芯片;将生长基板上粘附有发光芯片的一面与临时基板上设有键合胶层的一面贴合设置。S104:采用干法蚀刻法将此键合胶层进行刻蚀;由于发光芯片正面有遮挡作用,键合胶层会有一部分剩余,剩余的部分可以支撑起发给芯片,以便转移头抓取。S105:提供一电路背板,通过转移装置将发光芯片转移至电路背板上。此方式的缺点在于干法刻蚀键合胶层时,支撑层的胶宽度不好控制,键合胶层易被刻蚀完。键合胶层的面积大小也不可控,若键合胶层与发光芯片的粘附力分布范围大,转移头的抓取能力有限,转移良率低。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
本申请一可选实施例:
请参见图2至图3,本实施例提供的一种芯片转移方法,至少包括以下步骤:
S201:在第一基板101上的各发光芯片20的顶面上,分别形成将顶面及顶面上设置的电极覆盖的牺牲层单元301;其中,发光芯片20的底面为与顶面相对的一面,且贴合在第一基板101上。
应当理解的是,本实施例中的第一基板101为生长基板,此第一基板101的材质可选用但不限于蓝宝石、碳化硅、硅或砷化镓。在实际应用中,在S201之前,还包括在第一基板101上形成多个发光芯片20的具体过程。此发光芯片20包括但不限于发光二极管芯片、微米发光二极管芯片或次毫米发光二极管(Mini LED,简称迷你LED)芯片。此外,此发光芯片20也包括但不限于红色发光芯片、绿色发光芯片或蓝色发光芯片。通常单个第一基板上设有同一类型的发光芯片。请参见图4,下面就以在第一基板上101形成发光芯片20的具体过程进行详细阐述:
S301:选用一外延层,此外延层包括从下往上依次设置在衬底1上的N型氮化镓2(N-GaN)、多量子阱3(MQW)、P型氮化镓4(P-GaN)。在此外延层上光刻Mesa(台面)图形,使用干法刻蚀上述外延层,其中刻蚀气体为三氯化硼(BCl3)、氯气(Cl2),去胶后即可得到Mesa层,此Mesa层包括N-GaN层通过刻蚀孔外露的表面。
S302:在前述外延层上光刻ISO(隔离)图形,使用干法刻蚀机台刻穿N-GaN至衬底1,其中刻蚀气体为三氯化硼(BCl3)、氯气(Cl2),刻蚀深度为4-8um,去胶后得到ISO图形。
S303:在前述外延层上溅射一ITO(氧化铟锡)层5,ITO层5的厚度设置为200A-2000A,在ITO层5上光刻ITO图形,湿法腐蚀ITO层5以去除一部分,去胶后得到特定形状的ITO层5。
S304:在前述ITO图形及外延层上蒸镀氧化硅与氮化硅的叠层,此叠层也称为DBR(分布式布拉格反射镜)层6,DBR层6的厚度设置为1-4um,在DBR层6上光刻DBR图形,使用干法刻蚀机台,干法蚀刻DBR层6,需注意此步需要刻穿DBR层6,其中刻蚀气体为四氟化碳(CF4 )、氧气(O2 )、氩气(Ar),去胶后得到DBR图形。
S305:在前述DBR图形上采用负胶光刻PAD(电极)图形,使用富林蒸镀机台蒸镀电极(PAD)7,电极的厚度设置为1-4um,蓝膜剥离去胶后得到PAD图形。
通过上述步骤,即可在第一基板101(即衬底1)上形成多个带有电极的发光芯片20。可以理解的是,各发光芯片20包含除衬底1之外的N-GaN、MQW、P-GaN、ITO、DBR以及PAD。
则在S201中,可提供采用上述S301-S305制得的承载有多个发光芯片20的第一基板101,研磨抛光第一基板101底面,并在第一基板101上的各发光芯片20的顶面上,分别形成将此顶面及顶面上的电极覆盖的牺牲层单元301。
在本实施例中,还可采用多种方式在第一基板101上形成多个牺牲层单元301。举例来说,在第一基板101上的各发光芯片20的顶面上,分别形成将顶面及顶面上设置的电极覆盖的牺牲层单元301包括但不限于以下方式:
在一示例中,请参见图5,先在各发光芯片20的顶面上及第一基板101的承载有发光芯片20的表面上沉积一牺牲层30,再图案化牺牲层30以形成牺牲层单元301。
在本示例中,牺牲层30的材质可以是光刻胶,也可以是热解胶。当牺牲层30采用光刻胶时,此光刻胶可为正性光刻胶或负性光刻胶。正性光刻胶曝光显影后可溶于显影液,在图案化正性光刻胶时,剩余的胶层图形与掩模板图形一致。而负性光刻胶曝光显影后不溶于显影液,剩余的胶层图形与掩模板图形互补。当牺牲层30采用热解胶时,在需要保留的热解胶上方涂覆光阻材料(例如光刻胶),将需要被刻蚀的热解胶进行干法蚀刻,再去除保留下来的热解胶上的光阻材料,最后保留下来的热解胶可以将发光芯片上的电极遮盖。
在另一示例中,在各发光芯片20的顶面上分别进行点胶,以形成牺牲层单元301。
在本示例中,牺牲层单元301的材质可以是光刻胶,也可以是热解胶。采用点胶机在各发光芯片20的顶面上分别进行点胶,各发光芯片20上需要点胶的位置包括设置在发光芯片顶面上的电极。
S202:在第一基板101上形成将各发光芯片20的侧面及各牺牲层单元301覆盖的支撑层40。
在本实施例中,请参见图6,在第一基板101的顶面及各发光芯片20的顶面及各牺牲层单元301的顶面上沉积一较厚的支撑层40,此支撑层40的厚度设置为8-20um,可选厚度包括但不限于10um、15um或18um。此支撑层40具有易脆性能,其材质包括但不限于氧化硅、氮化硅、氮氧化硅等。
S203:将各发光芯片20、各牺牲层单元301随支撑层40转移至第二基板102。
应当理解的是,请参见图7,本实施例中的第二基板102为临时基板,此第二基板102的材质可选用但不限于玻璃、蓝宝石、石英或硅。此外,还可在第二基板102上设置一键合层50,以用于与第一基板101上的支撑层40固定连接;此键合层50的材质可以是多种多样的,例如可以是金属层,此金属层可以选用铜或镍;此键合层50还可以是粘性胶层。作为一种示例,将第一基板101上设有支撑层40的一面与第二基板102上设有键合层50的一面对位贴合;将支撑层40键合于第二基板102上;去除第一基板101。在此过程中,当牺牲层单元301的材质为光刻胶时,此键合层30选用金属层或粘性胶层。而当牺牲层单元301的材质为热解胶时,此键合层50选用金属层;同时将沉积有支撑层40的第一基板101与蒸镀有金属层的第二基板102键合时,需保证键合温度不超过此热解胶的热解温度,以保证此热解胶不会热解。并通过激光剥离的方式将此第一基板101进行剥离。
S204:将相邻发光芯片20之间的支撑层40进行至少部分去除,并去除各牺牲层单元301;其中,各牺牲层单元301所占用的空间形成空腔302,相邻发光芯片20之间所剩余的支撑层40形成空腔302的侧壁,以形成弱化结构。
在本实施例中,请参见图8,上述S204具体可包括以下步骤:图案化支撑层40,以露出各牺牲层单元301的部分侧面以及形成侧壁;再去除各牺牲层单元301以形成空腔302。
应当理解的是,可以采用干法蚀刻的方式去除支撑层40中需要被刻蚀的部分。例如,请参见图9,发光芯片20的截面形状为矩形,也可以理解为发光芯片20包括四个侧面。根据待形成的支撑层图形在需要保留的支撑层40上涂覆光阻材料21(例如光刻胶),其他部分不涂覆光阻材料21。在蚀刻时,被光刻胶覆盖的支撑层40完整保留,而未被光刻胶覆盖的支撑层40会被至少部分去除。在得到支撑层图形后,去除保留下来的支撑层40上的光刻胶。在此过程中,需要将发光芯片20的相对设置的两个侧面上的支撑层40进行刻蚀,也可以理解为第一基板101上的多个发光芯片20是呈阵列排布的,纵向相邻发光芯片20之间的支撑层40被去除的宽度为纵向相邻发光芯片20之间的空隙宽度。并设定支撑层40被去除的厚度大于发光芯片20的厚度,还可以大于等于发光芯片20的厚度与牺牲层单元301的厚度之和,甚至等于支撑层40的厚度,以保证纵向这部分支撑层40被刻蚀后,发光芯片20和牺牲层单元301这二者相对设置的两个侧面暴露出来,以方便后续牺牲层单元301被顺利去除。与此同时,还需要将发光芯片20的另外相对设置的两个侧面之间的支撑层40进行选择性刻蚀,也可以理解为第一基板101上的多个发光芯片20是呈阵列排布的,横向相邻发光芯片20之间的支撑层40被去除的宽度小于横向相邻发光芯片20之间的空隙宽度,且横向发光芯片20的侧面与支撑层40贴合。并设定支撑层40被去除的厚度大于发光芯片20的厚度,还可以大于等于发光芯片20的厚度与牺牲层单元301之和,甚至等于支撑层40的厚度,以保证横向这部分支撑层40被刻蚀后,相邻发光芯片20之间所剩下的支撑层40可形成侧壁,以对发光芯片20起支撑作用。
可见,由于可灵活地设置支撑层40被去除的厚度,最终保留下来的支撑层40的结构形式也是多种多样的。下面结合附图作进一步阐述:
需要理解的是,保留下来的支撑层40可以理解为其包含支撑底座401和支撑壁402两部分,其中支撑底座401用于与承载基板上的键合层50(例如金属层)键合,其中支撑壁402作为空腔302的侧壁。如图10所示,相邻支撑底座401之间相互分离,各空腔302的侧壁之间也相互分离。在实际应用中,图案化支撑层40时,可设定支撑层40被去除的厚度等于支撑层40的厚度。如图11所示,相邻支撑底座401之间相互连接,而各空腔302的侧壁之间相互分离。在实际应用中,图案化支撑层40时,可设定支撑层40被去除的厚度等于发光芯片20的厚度与牺牲层单元301的厚度之和。在另一些示例中,还可以是相邻支撑底座401之间相互连接,各空腔302的侧壁之间部分相互连接,部分相互分离。在实际应用中,可设定支撑层40被去除的厚度大于发光芯片20的厚度且小于发光芯片20的厚度与牺牲层单元301的厚度之和。也就是说,设定支撑层40被去除的具体厚度时,保证支撑层40被刻蚀后,直接与发光芯片20的侧面连接的这部分支撑层40保持在一个较薄的厚度即可,以便于后续芯片转移过程中这部分支撑层40容易被扯断。至于支撑层40中未直接与发光芯片20的侧面连接的部分可保持在相对较厚的厚度,以加大对发光芯片20的支撑力。
在本实施例中,去除各牺牲层单元301以形成空腔302的方式可根据牺牲层单元301的材质类型选用对应的去除方式。当此牺牲层单元301的材质为光刻胶时,具体去除光刻胶的方式可以采用湿法腐蚀。湿法腐蚀是是利用液体化学试剂(如酸、碱和溶剂等)与胶层发生化学反应进行刻蚀。而当此牺牲层单元301的材质为热解胶时,可以利用特定波长的激光照射第二基板以对第二基板加热,并加热到此热解胶的热解温度(例如200℃、230℃、260℃、300℃),以使此热解胶热解气化,实现空腔302的形成。
S205:从第二基板102上拾取发光芯片20,通过控制第二基板上102与被拾取的发光芯片20对应的弱化结构受力断裂,使得被拾取的发光芯片20从第二基板102上脱离。
在本实施例中,请参见图12,提供一转移装置60,转移装置60上设有间隔设置的多个凸起61,各凸起61表面具备粘性,且各凸起61表面的粘性在激光照射下减弱。当利用此转移装置60拾取发光芯片20时,将此转移装置60上的凸起61与发光芯片20连接;给转移装置60施加外力以向上提起转移装置60,可使得与发光芯片20对应的弱化结构发生断裂,从而实现发光芯片20与第二基板102分离。在实际应用中,转移装置60拾取到发光芯片20后,此发光芯片20的侧面可能会有少量支撑层40残留,而残留的少量支撑层40不会对发光芯片20的实际性能造成影响,后续封装过程中将其作为封装材料的一部分即可。
S206:将拾取的发光芯片20转移至电路背板70上。
在本实施例中,请参见图13,提供一电路背板70,将电路背板70上设有电极垫的一面与转移装置60上粘附有发光芯片20的一面对位贴合;将发光芯片20键合于电路背板70上;通过激光照射转移装置60以弱化转移装置60中的凸起61与发光芯片20之间的粘性,并施加外力向上移开转移装置60,从而实现借助转移装置60将发光芯片20转移至电路背板70上。
本实施例所提供的芯片转移方法,通过在粘附有发光芯片的第一基板上依次形成牺牲层单元和支撑层,其次将支撑层与第二基板固定连接,最后去除第一基板、牺牲层单元以及支撑层的其中一部分,从而可得到由空腔和侧壁构成的弱化结构。此弱化结构的制作过程较简便且稳定可靠,不受发光芯片正面的遮挡。借助此弱化结构,可以稳定地支撑发光芯片。那么,从第二基板上拾取发光芯片时,通过施加少许外力即可将此弱化结构中的侧壁扯断,实现芯片转移。通过本申请制作的弱化结构辅助发光芯片的转移,操作简便,降低了转移难度,可提升转移良率。
本申请另一可选实施例:
本实施例提供一种显示面板,此显示面板包括电路背板以及设置在此电路背板上的多个发光芯片;其中,各发光芯片通过如前述实施例所提供的任意一种芯片转移方法转移至此电路背板上。
本实施例还提供一种显示装置,此显示装置为可采用如前述实施例所提供的任意一种芯片转移方法制作的显示面板进行显示的电子装置,例如可包括但不限于各种智能移动终端,PC、显示器、电子广告板等。此显示装置包括如上所述的显示面板以及驱动模组;其中,驱动模组与显示面板连接,以驱动控制显示面板。
上述显示面板及显示装置,由于采用了更为便捷、高效的芯片转移方法,使得显示面板及显示装置的制作也更为简单方便,有利于缩短显示面板及显示装置的制作时长,可降低显示面板及显示装置的制作成本。
应当理解的是,本申请的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (15)

  1. 一种芯片转移方法,包括:
    在第一基板上的各发光芯片的顶面上,分别形成将所述顶面及所述顶面上设置的电极覆盖的牺牲层单元;其中,所述发光芯片的底面为与所述顶面相对的一面,且贴合在所述第一基板上;
    在所述第一基板上形成将各所述发光芯片的侧面及各所述牺牲层单元覆盖的支撑层;
    将各所述发光芯片、各所述牺牲层单元随所述支撑层转移至第二基板;
    将相邻所述发光芯片之间的所述支撑层进行至少部分去除,并去除各所述牺牲层单元;其中,各所述牺牲层单元所占用的空间形成空腔,相邻所述发光芯片之间所剩余的所述支撑层形成所述空腔的侧壁,以形成弱化结构;
    从所述第二基板上拾取所述发光芯片,通过控制所述第二基板上与被拾取的所述发光芯片对应的所述弱化结构断裂,使得被拾取的所述发光芯片从所述第二基板上脱离;以及
    将拾取的所述发光芯片转移至电路背板上。
  2. 如权利要求1所述的芯片转移方法,其中,所述在第一基板上的各发光芯片的顶面上,分别形成将所述顶面及所述顶面上设置的电极覆盖的牺牲层单元,包括:
    先在各所述发光芯片的所述顶面上及所述第一基板承载有所述发光芯片的表面上沉积一牺牲层,再图案化所述牺牲层以形成所述牺牲层单元。
  3. 如权利要求1所述的芯片转移方法,其中,所述在第一基板上的各发光芯片的顶面上,分别形成将所述顶面及所述顶面上设置的电极覆盖的牺牲层单元,包括:
    在各所述发光芯片的所述顶面上分别进行点胶,以形成所述牺牲层单元。
  4. 如权利要求1所述的芯片转移方法,其中,所述将相邻所述发光芯片之间的所述支撑层进行至少部分去除,并去除各所述牺牲层单元,包括:
    图案化所述支撑层,以露出各所述牺牲层单元的部分侧面以及形成所述侧壁;再去除各所述牺牲层单元以形成所述空腔。
  5. 如权利要求4所述的芯片转移方法,其中,所述牺牲层单元的材质为热解胶;
    所述去除各所述牺牲层单元以形成所述空腔,包括:
    对所述第二基板加热,使得各所述牺牲层单元在受热后进行热解,以形成所述空腔。
  6. 如权利要求4所述的芯片转移方法,其中,所述图案化所述支撑层,以露出各所述牺牲层单元的部分侧面以及形成所述侧壁包括:
    设定所述支撑层被去除的厚度大于所述发光芯片的厚度与所述牺牲层单元的厚度之和。
  7. 如权利要求6所述的芯片转移方法,其中,设定所述支撑层被去除的厚度等于所述支撑层的厚度。
  8. 如权利要求1所述的芯片转移方法,其中,所述支撑层的材质为氧化硅。
  9. 如权利要求1所述的芯片转移方法,其中,所述支撑层的材质为氮化硅。
  10. 如权利要求1所述的芯片转移方法,其中,所述将各所述发光芯片、各所述牺牲层单元随所述支撑层转移至第二基板包括:
    将所述第一基板上设有所述支撑层的一面与所述第二基板上设有键合层的一面对位贴合;
    将所述支撑层键合于所述第二基板上;
    去除所述第一基板。
  11. 如权利要求10所述的芯片转移方法,其中,所述键合层为金属层。
  12. 如权利要求11所述的芯片转移方法,其中,所述键合层的材质为铜。
  13. 如权利要求11所述的芯片转移方法,其中,所述键合层的材质为镍。
  14. 一种显示面板,包括: 电路背板;以及
    设置在所述电路背板上的多个发光芯片;
    其中,各所述发光芯片通过如权利要求1所述的芯片转移方法转移至所述电路背板上。
  15. 一种显示装置,包括:
    如权利要求14所述的显示面板;以及
    驱动模组;
    其中,所述驱动模组与所述显示面板连接,以驱动控制所述显示面板。
PCT/CN2022/126741 2021-11-12 2022-10-21 芯片转移方法、显示面板及显示装置 WO2023082971A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111340702.0A CN114171545A (zh) 2021-11-12 2021-11-12 芯片转移方法、显示面板及显示装置
CN202111340702.0 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023082971A1 true WO2023082971A1 (zh) 2023-05-19

Family

ID=80478785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126741 WO2023082971A1 (zh) 2021-11-12 2022-10-21 芯片转移方法、显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN114171545A (zh)
WO (1) WO2023082971A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171545A (zh) * 2021-11-12 2022-03-11 重庆康佳光电技术研究院有限公司 芯片转移方法、显示面板及显示装置
CN115410996B (zh) * 2022-07-28 2024-04-19 惠科股份有限公司 显示面板及其制造方法
CN117174805A (zh) * 2023-07-26 2023-12-05 惠科股份有限公司 发光芯片及其转移方法、转移系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180374987A1 (en) * 2015-12-23 2018-12-27 Goertek Inc. Micro-led transfer method and manufacturing method
CN109192821A (zh) * 2018-08-31 2019-01-11 华灿光电(浙江)有限公司 发光二极管芯片的转移方法、转移基板及发光二极管阵列
US20190027642A1 (en) * 2016-01-20 2019-01-24 Goertek. Inc Micro-LED Transfer Method and Manufacturing Method
CN112968107A (zh) * 2020-08-26 2021-06-15 重庆康佳光电技术研究院有限公司 弱化结构的制作方法、微器件的转移方法
CN112967984A (zh) * 2020-09-24 2021-06-15 重庆康佳光电技术研究院有限公司 微芯片的巨量转移方法及显示背板
CN114171545A (zh) * 2021-11-12 2022-03-11 重庆康佳光电技术研究院有限公司 芯片转移方法、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180374987A1 (en) * 2015-12-23 2018-12-27 Goertek Inc. Micro-led transfer method and manufacturing method
US20190027642A1 (en) * 2016-01-20 2019-01-24 Goertek. Inc Micro-LED Transfer Method and Manufacturing Method
CN109192821A (zh) * 2018-08-31 2019-01-11 华灿光电(浙江)有限公司 发光二极管芯片的转移方法、转移基板及发光二极管阵列
CN112968107A (zh) * 2020-08-26 2021-06-15 重庆康佳光电技术研究院有限公司 弱化结构的制作方法、微器件的转移方法
CN112967984A (zh) * 2020-09-24 2021-06-15 重庆康佳光电技术研究院有限公司 微芯片的巨量转移方法及显示背板
CN114171545A (zh) * 2021-11-12 2022-03-11 重庆康佳光电技术研究院有限公司 芯片转移方法、显示面板及显示装置

Also Published As

Publication number Publication date
CN114171545A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2023082971A1 (zh) 芯片转移方法、显示面板及显示装置
CN110112172B (zh) 基于氮化镓纳米孔阵列/量子点混合结构的全色微米led显示芯片及其制备方法
CN110828364B (zh) 巨量转移方法、显示装置的制作方法和显示装置
TWI565382B (zh) 電子元件的轉移方法、電子模組及光電裝置
WO2021017498A1 (zh) 显示面板、显示装置和显示面板的制备方法
EP3926680B1 (en) Method for transferring light-emitting diodes for display, and display device
CN110349989A (zh) 发光二极管、显示基板和转移方法
CN112968107B (zh) 弱化结构的制作方法、微器件的转移方法
CN111883553A (zh) 无需巨量转移操作的Micro LED显示面板制备方法
US20240006575A1 (en) Light emitting device and method for manufacturing the same
CN112768370B (zh) 微元件的转移方法及转移装置
WO2023103756A1 (zh) 微发光二极管及其制备方法、微发光元件和显示器
US20230154903A1 (en) Light-emitting diode (led) chip assembly and prepraing method thereof, and preparing method of display panel
CN116613257A (zh) 一种led芯片制备方法
JP5324821B2 (ja) 半導体装置の製造方法
WO2023065639A1 (zh) 弱化结构及其制作方法,发光器件的转移方法
US11695091B2 (en) Transfer method, display device, and storage medium
WO2023087921A1 (zh) 芯片转移方法
WO2023070445A1 (zh) 弱化结构的制作方法、微发光二极管显示器的制作方法
CN113471339B (zh) 一种Micro-LED芯片的巨量转移方法
US20240234191A1 (en) Method for manufacturing support assembly and method for manufacturing micro led display
CN117080319A (zh) 用于micro-led的晶圆级芯片制备及键合方法
CN112968079B (zh) 发光单元、显示背板及其制作方法和芯片及其转移方法
US20230395749A1 (en) Micro light-emitting element, micro light-emitting array, transfer method, and display
US20230170337A1 (en) Transient-substrate assembly and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891768

Country of ref document: EP

Kind code of ref document: A1