WO2023082929A1 - 手术机器人的末端机构及其控制方法和相关设备 - Google Patents

手术机器人的末端机构及其控制方法和相关设备 Download PDF

Info

Publication number
WO2023082929A1
WO2023082929A1 PCT/CN2022/125100 CN2022125100W WO2023082929A1 WO 2023082929 A1 WO2023082929 A1 WO 2023082929A1 CN 2022125100 W CN2022125100 W CN 2022125100W WO 2023082929 A1 WO2023082929 A1 WO 2023082929A1
Authority
WO
WIPO (PCT)
Prior art keywords
instrument
signal
axis direction
surgical
axis
Prior art date
Application number
PCT/CN2022/125100
Other languages
English (en)
French (fr)
Inventor
陈燚
Original Assignee
艺柏湾医疗科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艺柏湾医疗科技(上海)有限公司 filed Critical 艺柏湾医疗科技(上海)有限公司
Publication of WO2023082929A1 publication Critical patent/WO2023082929A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms

Definitions

  • the present invention relates to the technical field of medical devices, in particular to a terminal mechanism of a surgical robot, a control method thereof and related equipment.
  • the present invention provides a terminal mechanism of a surgical robot, its control method and related equipment, which can be applied to minimally invasive surgery with few holes or single hole, and can avoid the interference of the terminal parts, improve the control accuracy, and ensure the stability of the surgical robot available.
  • One aspect of the present invention provides a terminal mechanism of a surgical robot, including: an instrument base connected to the end of a mechanical arm of the surgical robot, and the mechanical arm can drive the instrument base relative to a The defined apocentric point performs posture adjustment movement; the positioning link that can expand and contract along the Z axis is connected to the instrument base, and the end of the positioning link can clamp the channel piece, and the channel piece is provided with multiple channels, each of which extends along the Z-axis direction, and the center of the distal end of the channel part faces the far-center point along the Z-axis direction; an instrument capable of assembling and driving a plurality of surgical instruments
  • the driving mechanism is connected to the instrument base, and the multiple instrument loading and unloading and driving paths of the instrument driving mechanism do not interfere with each other.
  • the instrument driving mechanism is equipped with multiple surgical instruments, the instruments of the multiple surgical instruments axes respectively extend along the Z-axis direction and align with a plurality of the channels.
  • the channel member includes: a hollow shell clamped at the end of the positioning link through a buckle; a proximal plate and a distal plate respectively arranged on the hollow shell facing The proximal end of the positioning link and the distal end away from the positioning link, the proximal plate and the distal plate are respectively provided with an array of through holes forming a plurality of channels, each group of through holes The arrays are distributed in the same layer in the Y-axis direction to form a single row of hole arrays arranged in the X-axis direction, or each group of through-hole arrays is distributed in staggered layers in the Y-axis direction to form a multi-row hole array, and each row of the holes The arrays are arranged along the X-axis direction.
  • the surgical instrument includes: an instrument shaft, connected to the instrument driving mechanism through a transmission device; an actuator base, arranged at the end of the instrument shaft and connected with an end effector, and the end effector
  • the device is connected to the actuator base through a drive shaft, and the drive shaft is a pitch axis extending along the X-axis direction or a deflection axis extending along the Y-axis direction;
  • the movable connection section is arranged between the instrument shaft and the actuator Between the device bases, they are respectively connected to the instrument shaft and the actuator base through movable joints, and the movable joints have degrees of freedom of movement along the X-axis direction, the Y-axis direction and the Z-axis direction; the initial state Next, the instrument shaft, the actuator base and the movable connection section are coaxial, and as the movable joint moves, the spatial position of the actuator base changes and the attitude remains unchanged.
  • the instrument driving mechanism includes a plurality of instrument driving modules respectively used to assemble and drive a plurality of surgical instruments, and the plurality of instrument driving modules are respectively connected to the instrument base through a plurality of moving mechanisms , the moving mechanism can drive the instrument driving module to move along the Y-axis direction and the Z-axis direction; the pose adjustment motion includes a pitch motion and a deflection motion around a vertical rotation axis passing through the apocentric point.
  • the control method includes: according to the distance between the telecentric point and a spatial target point position relationship, generating a pose adjustment signal for controlling the robotic arm, so that the robotic arm drives the instrument base to perform the pose adjustment movement until the telecentric point coincides with the space target point ; After the execution of the posture adjustment signal is completed, generate an extension signal for controlling the positioning link, so that the positioning link extends to the center of the distal end of the channel member to coincide with the distal point ; When the extension signal is completed, monitor whether there is an assembly completion signal between the instrument driving mechanism and a surgical instrument, and if so, generate an instrument movement signal to move the surgical instrument to a target position.
  • the instrument driving mechanism can move along the Z-axis direction, an actuator base is provided at the end of the instrument shaft, and an end effector is connected to the actuator base; the generating instrument motion
  • the signal includes: generating a first advance signal for controlling the instrument driving mechanism, so that the instrument driving mechanism drives the surgical instrument to advance along the Z-axis direction until the end effector passes through a corresponding channel.
  • the end effector is connected to the actuator base through a driving shaft
  • the driving shaft is a pitch axis extending along the X-axis direction or a yaw axis extending along the Y-axis direction
  • the first The advance signal is used to advance the surgical instrument until the drive shaft passes through the corresponding channel
  • the generating the instrument motion signal further includes: after the execution of the first advance signal is completed, generating a signal for controlling the end effector a folding signal, so that the end effector performs a folding movement around the driving shaft at a preset angle; wherein, when the driving shaft is the pitch axis, the folding motion is the first folding movement around the pitch axis A pitching motion, when the drive axis is the yaw axis, the folding motion is a first yaw motion about the yaw axis.
  • a movable connection section is connected between the instrument shaft and the actuator base, and in an initial state, the movable connection section is coaxial with the instrument shaft and the actuator base;
  • Generating an instrument movement signal further includes: after the execution of the folding signal is completed, generating a second forward signal for controlling the instrument driving mechanism, so that the instrument driving mechanism drives the surgical instrument forward along the Z-axis direction until the movable connection section passes through the corresponding channel.
  • movable joints are respectively provided between the movable connection section, the instrument shaft and the actuator base, and the movable joints have directions along the X-axis direction, the Y-axis direction and the The degree of freedom of movement in the Z-axis direction, the second advance signal is used to advance the surgical instrument until the movable joint passes through the corresponding channel;
  • the generating the instrument motion signal further includes: during the second advance After the execution of the signal is completed, a parallel deployment signal for controlling the movable connection section is generated, so that the movable connection section performs a deployment movement opposite to the preset angle direction, and during the deployment movement, the actuator base and The instrument axes remain parallel; wherein, when the drive axis is the pitch axis, the parallel deployment motion is a second pitch motion around the X-axis direction, and when the drive axis is the yaw axis , the parallel unfolding movement is a second deflection movement around the Y-axis direction.
  • the generating the instrument movement signal further includes: after the execution of the parallel deployment signal is completed, generating a deployment signal for controlling the end effector so that the end effector rotates around the drive shaft performing an unfolding movement opposite to the preset angle direction and equal to the angle value to reach the target position; when the drive shaft is the pitch axis, the unfolding movement is a third pitching movement around the pitch axis , when the drive shaft is the deflection axis, the unfolding motion is a third deflection motion around the deflection axis.
  • the generating the instrument motion signal further includes: after the deployment signal of each of the surgical instruments is completed, generating a signal for controlling each of the surgical instruments The articulation section of the surgical instrument and the first attitude adjustment signal of the end effector make each of the surgical instruments move until the tips of the end effectors are spaced apart from each other.
  • the generating the instrument motion signal further includes: after the deployment signal of each of the surgical instruments is completed, generating a signal for controlling each of the surgical instruments
  • the second attitude adjustment signal of the movable connection section of the surgical instrument and the end effector makes each surgical instrument move until the tips of the end effector are opposite to each other and connected to form a spatial triangle.
  • the posture adjustment signal, the extension signal and the apparatus movement signal can all be interrupted, and when a control signal is interrupted, the execution of the corresponding control signal is suspended, and the execution signal is continued when the signal is detected Continue the execution of the corresponding control signal; during the execution of each control signal, monitor the execution state of the execution object, and when the execution state of the execution object is abnormal, return the execution completion state of the previous control signal of the current control signal, and waiting for a control instruction signal to be executed again; and, each time a control signal is executed, the corresponding execution object is locked, and a control instruction signal for continuing execution is waited for.
  • the instrument driving mechanism can move along the Y-axis direction and the Z-axis direction, an end effector is provided at the end of the instrument shaft, and the Y-axis direction and the Z-axis direction of the end effector are The spatial position of the direction is variable;
  • the generating the instrument motion signal includes: generating a first motion signal for controlling the surgical instrument so that the end effector moves along the Y-axis direction and/or the Z-axis direction movement to a predefined configuration with the instrument shaft; after the execution of the first motion signal is completed, a second motion signal for controlling the instrument drive mechanism is generated so that the instrument drive mechanism drives the instrument drive mechanism The surgical instrument moves along the Y-axis direction and/or the Z-axis direction until the end effector and the end of the instrument shaft pass through the corresponding channel and reach the target position.
  • control method further includes: when the surgical instrument moves to the target position, generating a retraction signal for controlling the positioning link, so that the positioning link is retracted to The center of the distal end of the channel member is facing the apocentric point.
  • control device for a terminal mechanism of a surgical robot, used to implement the control method described in any of the above embodiments, the control device includes: a robotic arm control module configured to point and a spatial target point, generate a pose adjustment signal for controlling the robot arm, so that the robot arm drives the instrument base to perform the pose adjustment movement to the telecenter The point coincides with the space target point; the positioning link control module is configured to generate an extension signal for controlling the positioning link after the execution of the pose adjustment signal is completed, so that the positioning link is extended until the distal center of the channel member coincides with the distal point; the surgical instrument control module is configured to monitor whether there is an assembly completion signal between the instrument driving mechanism and a surgical instrument when the extension signal is executed, If so, an instrument movement signal is generated to move the surgical instrument to a target position.
  • a robotic arm control module configured to point and a spatial target point, generate a pose adjustment signal for controlling the robot arm, so that the robot arm drives the instrument base to perform the pose adjustment movement to the telecenter The point coincides with the space target
  • Another aspect of the present invention provides an electronic device, including: a processor; a memory, where executable instructions are stored; wherein, when the executable instructions are executed by the processor, any of the above-mentioned The control method of the terminal mechanism of the surgical robot described in the embodiment.
  • Another aspect of the present invention provides a computer-readable storage medium for storing a program, and when the program is executed by a processor, the method for controlling the terminal mechanism of the surgical robot as described in any of the above embodiments is implemented.
  • the surgical robot of the present invention can be applied to few-hole or single-hole surgery, and through the control of the terminal mechanism of the surgical robot, it can avoid the interference of the terminal parts, improve the control accuracy, ensure the stability and usability of the surgical robot, and will not cause damage to the surgical robot , It can also ensure the safety of the surgical robot during use and improve the convenience of use.
  • Fig. 1 shows the schematic diagram of the terminal mechanism of surgical robot in the embodiment of the present invention
  • Fig. 2 shows a schematic diagram of the terminal mechanism clamping the channel member in the embodiment of the present invention
  • Fig. 3 and Fig. 4 show the schematic diagram of channel member in the embodiment of the present invention.
  • Fig. 5 and Fig. 6 show the schematic diagram of multiple instrument loading and unloading and driving paths of the instrument driving mechanism in the embodiment of the present invention
  • Fig. 7 shows a schematic view of the instrument drive mechanism equipped with three surgical instruments in an embodiment of the present invention
  • Fig. 8 shows the schematic diagram of surgical instrument in the embodiment of the present invention.
  • Fig. 9 shows a flow chart of the control method of the terminal mechanism of the surgical robot in the embodiment of the present invention.
  • Fig. 10 shows a schematic diagram of completion of pose adjustment signal execution in an embodiment of the present invention
  • Fig. 11 shows a schematic diagram of the execution completion of the extension signal in the embodiment of the present invention.
  • Fig. 12 shows a flow chart of generating an apparatus motion signal in an embodiment of the present invention
  • Fig. 13 shows a schematic diagram of the execution of the first forward signal in the embodiment of the present invention
  • Fig. 14 shows a partial perspective view of Fig. 13;
  • Fig. 15 shows a schematic diagram of the execution completion of the first forward signal in the embodiment of the present invention.
  • Fig. 16 shows a schematic diagram of the completion of folding signal execution in the embodiment of the present invention.
  • Fig. 17 shows a schematic diagram of the execution completion of the second forward signal in the embodiment of the present invention.
  • Fig. 18 shows a schematic diagram of the execution completion of the parallel expansion signal in the embodiment of the present invention.
  • Fig. 19 shows a schematic diagram of the execution completion of the unfolding signal in the embodiment of the present invention.
  • Fig. 20 shows a schematic diagram of completion of deployment signals of three surgical instruments in the embodiment of the present invention.
  • Fig. 21 to Fig. 23 show the schematic diagrams of the completion of the execution of the second attitude adjustment signal in the embodiment of the present invention
  • Fig. 24 shows a schematic diagram of the execution completion of the retraction signal in the embodiment of the present invention.
  • Fig. 25 and Fig. 26 show the schematic diagrams of the pitching of the surgical instrument driven by the robotic arm after the robotic arm is unlocked;
  • Fig. 27 and Fig. 28 show the schematic diagrams of the deflection of the surgical instrument driven by the robotic arm after the robotic arm is unlocked;
  • Fig. 29 shows a schematic diagram of the instrument driving mechanism driving the surgical instrument to move after the instrument driving mechanism is unlocked
  • Fig. 30 shows a block diagram of the control device of the terminal mechanism of the surgical robot in the embodiment of the present invention.
  • Fig. 31 shows a structural diagram of an electronic device in an embodiment of the present invention.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the example embodiments to those skilled in the art.
  • the terminal mechanism of the surgical robot includes: an instrument base 11 , is connected to the end of the mechanical arm (not specifically shown in the figure) of the surgical robot, and the mechanical arm can drive the instrument base 11 to perform posture adjustment movement relative to an apocentric point O defined by the mechanical arm; it can expand and contract along the Z-axis direction
  • the positioning link 12 is connected to the instrument base 11, the end of the positioning link 12 can clamp the channel part 2, the channel part 2 is provided with a plurality of channels, each channel extends along the Z-axis direction, and the channel part 2
  • the distal center 200 that is, the geometric center of the distal plate of the channel member 2) is facing the far-center point O along the Z-axis direction; the instrument drive mechanism 3 capable of assembling and driving multiple surgical instruments is connected to the instrument base 11, and the instrument Multiple instrument loading and unloading and driving paths of
  • the apocentric point O is specifically defined by the intersection of a vertical rotation axis R1 of the mechanical arm and a rotation axis R2 around which the instrument base 11 is driven to rotate.
  • the posture adjustment movement includes: driving the instrument base 11 to rotate around the X axis, that is, to perform a pitching motion; to rotate around the vertical rotation axis R1 , and the vertical rotation axis R1 does not pass through the instrument base 11, so the instrument base 11 rotates around the vertical rotation axis
  • the rotation of R1 is equivalent to deflection motion; and the rotation around the rotation axis R2 , the rotation axis R2 passes through the self-axis of the instrument base 11, so the rotation of the instrument base 11 around the rotation axis R2 is equivalent to a turning motion.
  • Fig. 3 and Fig. 4 show the structure of the channel member in an embodiment.
  • the channel member 2 includes: a hollow shell 21 clamped at the end of the positioning link 12 by a connecting buckle 22
  • the near-end plate 23 and the far-end plate 24 are respectively arranged on the near-end of the hollow housing 21 facing the positioning link 12 and the far-end away from the positioning link 12, and the near-end plate 23 and the far-end plate 24 are respectively provided with forming Through-hole arrays 25 of multiple channels 20, each group of through-hole arrays 25 are distributed in the same layer in the Y-axis direction to form a single row of hole arrays arranged in the X-axis direction, or each group of through-hole arrays 25 are staggered in the Y-axis direction The distribution forms multiple rows of hole arrays and each row of hole arrays is arranged along the X-axis direction.
  • the through-hole arrays 25 of the near-end plate 23 and the far-end plate 24 all form a single row of hole arrays arranged along the X-axis direction, that is, the through-holes in each group of through-hole arrays 25 are arranged in the Y-axis direction. above are distributed in the same layer.
  • the through-holes in each group of through-hole arrays can also be distributed in staggered layers in the Y-axis direction to form multiple rows of hole arrays and each row of hole arrays is arranged along the X-axis direction, and preferably the through-holes are arranged in the Y-axis direction.
  • the axes are not aligned, but staggered with each other, forming an arrangement structure whose overall configuration is an isosceles trapezoid or a parallelogram.
  • a row of hole arrays may be formed above the through hole array 25 shown in FIG. 4 , so that the through hole array as a whole forms an isosceles trapezoidal configuration.
  • the connecting buckle 22 can be a disposable sterile part.
  • the proximal plate 23 and the distal plate 24 can be made of biocompatible high-molecular high-elastic materials (including but not limited to silicone rubber), and two or three Or other numbers of parallel hole arrays 25 .
  • the parallel hole array 25 is used to provide access for surgical instruments and provide necessary rigid support at the distal end of the instrument.
  • the dual support of the proximal plate 23 and the distal plate 24 can ensure that the instrument axes of each surgical instrument are parallel to each other and avoid interference.
  • the hollow housing 21 can be made of biocompatible high-molecular high-rigidity material (including but not limited to polycarbonate PC), which is used to provide configuration support for the proximal plate 23 and the distal plate 24, so that both are parallel to each other in space.
  • the hollow shell 21 can also avoid interference between the surgical instrument and the spatial target point as the attitude adjustment reference point when the mechanical arm drives the instrument base 11 to drive the surgical instrument to perform pose adjustment movement.
  • the instrument driving mechanism 3 includes a plurality of instrument driving modules 31 for assembling and driving a plurality of surgical instruments respectively, and the plurality of instrument driving modules 31 are respectively connected to the instrument base 11 through a plurality of moving mechanisms 32,
  • the moving mechanism 32 can drive the instrument driving module 31 to move along the Z axis.
  • the moving mechanism 32 can also drive the instrument driving module 31 to move along the Y-axis direction perpendicular to the X-Z plane.
  • Figure 5 and Figure 6 show a plurality of instrument loading and unloading and driving paths of the instrument driving mechanism in one embodiment
  • Figure 7 shows the structure in which the instrument driving mechanism is equipped with three surgical instruments, in conjunction with Figures 5 to 7, when the instrument drives
  • the mechanism 3 includes three instrument drive modules 31, the three surgical instruments 4 can be loaded and unloaded from the +X axis direction, -X axis direction and Y axis direction shown in the figure respectively.
  • the instrument loading and unloading paths of the instrument driving module 31 do not interfere with each other.
  • the three moving mechanisms 32 also do not interfere with the driving paths of the three surgical instruments 4 , and can respectively drive the surgical instruments 4 along the Z-axis direction, or drive the surgical instruments 4 along the Y-axis direction.
  • the instrument shafts 41 of the three surgical instruments 4 respectively extend along the Z-axis direction and align with the channels 20 of the channel member 2 .
  • the surgical instrument 4 is in a disposable or reusable sterile state when loaded, and the instrument driving module 31 can be in a sterile state.
  • the instrument driving module 31 and the surgical instrument 4 are connected to each other through the driving interface 310 .
  • the illustrated arrangement of the instrument drive module 31 enables each surgical instrument 4 to be independently assembled, disassembled and replaced.
  • the surgical instrument 5 can be slid sideways in the direction of the arrow in FIG. After the installation of the three surgical instruments 4 is completed, the instrument shafts 41 are in the same plane and parallel to each other, and the instrument shafts 41 and the channel member 2 are at a certain distance.
  • the specific type and actual number of surgical instruments 4 can be selected according to needs, and the present invention is not limited thereto.
  • Fig. 8 shows the structure of surgical instrument in an embodiment, in conjunction with Fig. 7 and shown in Fig. 8, surgical instrument 4 comprises: instrument shaft 41, is connected to instrument drive mechanism 3 by transmission device (not specifically marked in the figure); Actuator The base 43 is located at the end of the instrument shaft 41 and is connected to the end effector 42. The end effector 42 is connected to the actuator base 43 through a drive shaft.
  • the drive shaft is the pitch axis 44 extending along the X-axis direction or along the Y-axis.
  • the deflection shaft extending in the direction; the movable connection section 45 is located between the instrument shaft 41 and the actuator base 43, and is respectively connected with the instrument shaft 41 and the actuator base 43 through the movable joint 46.
  • the movable joint 46 has a direction along the X-axis , the freedom of movement in the Y-axis direction and the Z-axis direction; in the initial state (as shown in Figure 7), the instrument shaft 41, the actuator base 43 and the movable connection section 45 are coaxial, and move with the movable joint 46 (as shown in Figure 8 As shown in the parallel unfolded state), the spatial position of the actuator base 43 changes and the attitude remains unchanged.
  • the movable link 45 is a parallel mechanism in essence, and its effect is to send its far end (the actuator base 43 is connected to its far end) to a certain position in the spherical space by driving, while maintaining the posture of its far end and its near end. end (with the instrument shaft 41 at its proximal end) unchanged.
  • proximal pose of the articulating link 45 is recorded as (x 1 , y 1 , z 1 ; phi 1 , theta 1 , psy 1 ), then its far-end pose is (x 2 , y 2 , f(x 2 , y 2 ); phi 1 , theta 1 , psy 1 ); among them, x, y and z are used to describe the position, and phi, theta and psy are used to describe the attitude.
  • the movable joint 46 includes a gear mechanism, and the pitching movement of the movable connection section 45 around the X-axis direction is realized through the meshing transmission of the gear mechanism, thereby driving the position change of the actuator base 43 in the Y-axis direction and the Z-axis direction
  • the movable joint 46 also includes a deflection mechanism, through the deflection movement of the deflection mechanism, the deflection of the movable connecting section 45 around the Y-axis direction is realized, thereby driving the position change of the actuator base 43 in the X-axis direction.
  • the gear mechanism and the deflection mechanism can adopt existing mechanisms, and the present invention is not limited to this.
  • the end effector 42 can perform a pitching motion around the pitching axis 44 in space, and the range of the pitching motion is about -90° ⁇ +90°.
  • the end effector 42 and the actuator base 43 may also be connected by a deflection axis extending along the Y-axis direction, that is, the pitch axis 44 is replaced by a deflection axis extending along the Y-axis direction, not shown in the figure Specifically shown.
  • the end effector 42 driven by the mechanical arm, can rotate around the vertical rotation axis R 1 (only the direction of the vertical rotation axis R 1 is marked in FIG. 8 , and the actual position of the vertical rotation axis R 1 is not located here).
  • the deflection movement is carried out in the center, and the deflection movement range is about -90° ⁇ +90°.
  • the articulation section 45 can provide the end effector 42 with freedom of movement in the X-axis direction, the Y-axis direction and the Z-axis direction.
  • the movable connection section 45 When the movable connection section 45 is deployed in parallel, the axis 410 of the instrument shaft 41 is always kept parallel to the axis 430 of the actuator base 43 in space, so that the attitude degree of freedom and the displacement degree of freedom of the end effector 42 are decoupled, reducing the difficulty of control , Improve motion accuracy.
  • the embodiment of the present invention also provides a method for controlling the terminal mechanism of the surgical robot, which is applied to the terminal mechanism of the surgical robot described in any of the above embodiments.
  • the characteristics and principles of the terminal mechanism of the surgical robot described in any of the above embodiments can be applied to the following embodiments of the control method. In the following embodiments of the control method, the features and principles of the terminal mechanism of the surgical robot that have been explained will not be repeated.
  • Fig. 9 shows the flow of the control method of the terminal mechanism of the surgical robot in an embodiment.
  • the control method of the terminal mechanism of the surgical robot includes: step S510, according to the distance between the telecentric point and a spatial target point Positional relationship, generating a pose adjustment signal for controlling the robotic arm, so that the robotic arm drives the instrument base to perform pose adjustment movement until the telecentric point coincides with the space target point; step S520, after the execution of the pose adjustment signal is completed, generate Used to control the extension signal of the positioning link, so that the positioning link extends to the center of the distal end of the channel member to coincide with the far center point; step S530, after the extension signal is executed, monitor whether there is an instrument drive mechanism and an operation An instrument assembly completion signal is generated, and if so, an instrument movement signal is generated to move the surgical instrument to a target position.
  • the surgical robot is equipped with a controller for generating control signals, and the surgical robot is equipped with an operable control panel, or the surgical robot can be communicatively connected with a computer device to receive the operator's input on the control panel or computer device. , through the controller to generate control signals to drive the movement of each component. Before generating the pose adjustment signal, the surgical robot can be moved to the vicinity of the spatial target point manually or by inputting a manipulation command.
  • the spatial target point can be determined as required, which is not limited in the present invention.
  • the X-Y-Z coordinate system shown in FIG. 1 may be the base coordinate system of the surgical robot. Through the X-Y-Z coordinate system, the controller of the surgical robot can obtain the position information of each component. Furthermore, according to the positional relationship between the apocentric point and the spatial target point, according to the positional relationship between the distal center of the channel member and the apocentric point, and according to the positional relationship between the surgical instrument and the target position, poses can be generated respectively Adjustment signal, extension signal and instrument movement signal.
  • Fig. 10 shows a schematic diagram of the completion of the execution of the pose adjustment signal in an embodiment.
  • the telecentric point O of the surgical robot coincides with the space target point O'.
  • the configuration of the positioning link 12 and other structural components remains unchanged, and the distal center 200 of the channel member 2 faces the distal point O along the Z-axis direction.
  • Fig. 11 shows a schematic diagram of the completion of the extension signal in one embodiment.
  • the second section 122 of the positioning link 12 when the extension signal is executed, the second section 122 of the positioning link 12 extends along the Z-axis direction relative to the first section 121 thereof. Out, the distal center 200 of the channel member 2 coincides with the distal point O.
  • the first segment 121 and the second segment 122 of the positioning link 12 can be connected by a moving guide rail, so that the second segment 122 can move relative to the first segment 121 along the Z-axis direction, and drive the channel member 2 to the far center. O move.
  • FIG. 12 shows the flow of generating the instrument motion signal in an embodiment. Referring to FIG. 12 , generating the instrument motion signal includes the following steps.
  • Step S530a generating a first advance signal for controlling the instrument driving mechanism, so that the instrument driving mechanism drives the surgical instrument to advance along the Z-axis until the end effector passes through the corresponding channel.
  • Fig. 13 shows a schematic view of the execution of the first forward signal in an embodiment
  • Fig. 14 shows a partial perspective view of Fig. 13, referring to Fig. 13 and Fig. 14, the moving mechanism 32 of the instrument driving mechanism can drive the instrument driving module 31 Move along the Z-axis direction, and then under the control of the first advance signal, drive the surgical instrument 4 to advance in parallel along the Z-axis direction, the end effector 42 connected to the end of the instrument shaft 41 passes through the proximal end plate 23 of the channel member 2, Access inside channel piece 2.
  • Fig. 15 shows a schematic diagram of the completion of the execution of the first forward signal.
  • the moving mechanism 32 continues to drive the instrument driving module 31 to move forward along the Z-axis direction, thereby driving the terminal actuator
  • the instrument 42 passes through the distal plate 24 of the channel member 2 until the pitch axis 44 passes through the distal plate 24, and the movement of the instrument driving mechanism in the Z-axis direction stops.
  • Step S530b after the execution of the first forward signal is completed, a folding signal for controlling the end effector is generated, so that the end effector performs a folding movement at a preset angle around the driving shaft.
  • FIG. 16 shows a schematic diagram of the completion of the folding signal in an embodiment.
  • the end effector 42 can perform a pitch motion around the pitch axis 44, and the folding motion is around the pitch axis. 44 for the first pitch movement.
  • the end effector 42 moves upward or downward around the pitch axis 44, and the pitch angle can be any angle between -90° and +90°, so as to reduce the operating time of the surgical instrument.
  • the projected length on its own axis to avoid interference with other components during movement. It is shown in Fig. 16 that the end effector 42 is pitched downward by 90° around the pitch axis 44, but it is not limited thereto.
  • the folding motion is the first deflection motion around the deflection axis
  • the deflection angle can be any angle between -90° and +90°.
  • the end effector 42 can Leftward deflection 90° around the deflection axis, but not limited thereto.
  • Step S530c after the execution of the folding signal is completed, a second forward signal for controlling the instrument driving mechanism is generated, so that the instrument driving mechanism drives the surgical instrument forward along the Z-axis until the movable connection section passes through the corresponding channel.
  • Fig. 17 shows a schematic diagram of the completion of the second advance signal in one embodiment.
  • the instrument shaft 41 of the surgical instrument and the actuator base 43 are connected with the instrument shaft 41 and the actuator base 43 in the initial state.
  • the base 43 is coaxial with the movable connection section 45 , and after the end effector 42 is folded, the movable connection section 45 continues to be pushed.
  • the instrument driving mechanism continues to drive the surgical instrument forward along the Z-axis until the movable joint 46 where the movable connection section 45 is connected with the instrument shaft 41 passes through the corresponding channel.
  • the movable connection section 45 remains coaxial with the instrument shaft 41, and the posture of the end effector 42 remains unchanged to avoid interference between components.
  • Step S530d after the execution of the second advance signal is completed, generate a parallel deployment signal for controlling the movable joint section, so that the movable joint section performs a deployment movement opposite to the preset angle direction, and the instrument shaft and the actuator base during the deployment process keep parallel.
  • Fig. 18 shows a schematic diagram of the completion of the execution of the parallel expansion signal in one embodiment.
  • the joints along the X-axis direction and the Y-axis direction between the movable connection section 45, the instrument shaft 41 and the actuator base 43. and a movable joint 46 with a degree of freedom of movement in the Z-axis direction.
  • the parallel deployment signal is the pitch deployment signal
  • the parallel deployment motion is the second pitch motion around the X-axis direction.
  • the movable connecting section 45 can move upward or downward.
  • the movable connection section 45 can be pitched and deployed in a 90° manner as shown in FIG. 18 , but it is not limited thereto.
  • the parallel expansion signal is a deflection expansion signal
  • the parallel expansion motion is a second deflection motion around the Y-axis direction.
  • the movable connection section can deflect left or right, and its deflection direction is opposite to the deflection direction of the end effector in step S530b, so as to reduce occupied space and avoid interference with other components.
  • the instrument shaft 41 is always kept parallel to the actuator base 43 , so that the attitude degree of freedom and the displacement degree of freedom of the end effector 42 are decoupled, reducing control difficulty and improving motion accuracy.
  • Step S530e after the execution of the parallel deployment signal is completed, a deployment signal for controlling the end effector is generated, so that the end effector performs a deployment movement around the drive shaft in the opposite direction and equal to the preset angle to reach the target position.
  • Figure 19 shows a schematic diagram of the completion of the unfolding signal in an embodiment.
  • the unfolding motion is the third pitching motion around the pitch axis, so that the end of the pitching and folding in step S530b is executed
  • the pitch angle of device 42 returns to zero and reaches the target position.
  • the unfolding motion is a third deflection motion around the deflection axis, so that the deflection angle of the folded end effector in step S530b is reset to zero and reaches the target position.
  • step S530a to step S530e the control of a surgical instrument is completed.
  • the controller of the surgical robot detects a plurality of assembly completion signals, the above steps S530a to S530e are repeated to realize the control of each surgical instrument.
  • the process of generating the instrument motion signal also includes: after the deployment signal of each surgical instrument is executed, generating the first adjustment for controlling the movable connection section and the end effector of each surgical instrument Attitude signals are used to make each surgical instrument move until the tip intervals of the end effectors face each other.
  • the process of generating the instrument movement signals also includes: referring to FIG. 12 , step S530f, after the execution of the deployment signals of each surgical instrument is completed, generating an activity signal for controlling each surgical instrument.
  • the second attitude adjustment signal of the connecting section and the end effector moves each surgical instrument until the tips of the end effectors are opposite to each other and connected to form a spatial triangle.
  • Fig. 20 shows a schematic diagram of completion of the deployment signals of three surgical instruments in one embodiment.
  • the movable connection section 45 of each surgical instrument is deployed and The end effector 42 is flattened.
  • Figure 20 shows that the movable connection sections 45 of the three surgical instruments are deployed in the -Y direction, the +Y direction and the -Y direction respectively, but it is not limited thereto; in other implementations, the movable connection sections 45 of the three surgical instruments They can also be deployed in the +Y direction, both in the -Y direction, or respectively in the +Y direction, the -Y direction and the +Y direction, without interfering with each other.
  • Figures 21 to 23 show a schematic diagram of the completion of the second attitude adjustment signal in an embodiment.
  • the movable joint 46 can not only provide the freedom of movement in the Z-axis direction and the Y-axis direction, but also Can provide freedom of movement in the X-axis direction.
  • the movable joint 46 of each surgical instrument Under the control of the second posture adjustment signal, the movable joint 46 of each surgical instrument can perform spatial position movement, and each surgical instrument can also perform attitude movement, so that the three surgical instruments move until the tip intervals of the end effectors 42 are opposite to each other. , and connect to form a space triangle 400.
  • Figure 22 shows that the tips of the end effectors of the three surgical instruments are located on the same plane parallel to the Y-axis direction, but it is not limited thereto, as long as the tips of the three surgical instruments are relatively connected to form a spatial triangle 400 .
  • Each of the above-mentioned control steps can be automatically completed step by step by the controller of the surgical robot.
  • the operator can monitor and judge the process and results of each step, and confirm whether to perform the next step.
  • the operator can interrupt the control operation at any time during the control process, that is, the above-mentioned posture adjustment signal, extension signal and equipment movement signal can all be interrupted.
  • the execution of the corresponding control signal is suspended, and the monitor
  • the execution of the corresponding control signal is continued; thus, the convenience of use of the surgical robot can be improved, the operator can adjust the execution progress at any time during the entire control process, and the stability and usability of the surgical robot can be ensured.
  • the surgical robot will continue to execute automatically according to the set control process without causing damage to the surgical robot.
  • each control signal monitors the execution status of the execution object. When an error or exception is detected in the execution status, return the execution completion status of the previous control signal of the current control signal, and wait for the re-executed control command signal. It is realized that when a failure or abnormality is detected in the subsequent steps, it can return to the previous steps and wait for further instruction signals.
  • each time a control signal is executed the corresponding execution object is locked. For example, after executing the pose adjustment signal, the robot arm is locked, and after the extension signal is executed, the positioning link is locked to achieve independent and precise control between components and avoid interference.
  • the articulation section and the end effector of the surgical instrument can be driven to move, so that the surgical instrument can be formed into a predetermined configuration, and then advance the surgical instrument through the moving mechanism of the instrument drive mechanism.
  • generating the instrument motion signal includes: generating a first motion signal for controlling the surgical instrument, so that the end effector moves along the Y-axis direction and/or the Z-axis direction to a predefined configuration with the instrument axis ; After the execution of the first motion signal is completed, generate a second motion signal for controlling the instrument driving mechanism, so that the instrument driving mechanism drives the surgical instrument to move along the Y-axis direction and/or the Z-axis direction to the end effector and the end of the instrument shaft Go through the corresponding passage and reach the target location.
  • the movement of the end effector can be driven by the movable joint section and the actuator base, and the instrument driving mechanism can drive the surgical instrument through its moving mechanism, which have been described in detail above and will not be repeated here.
  • control method further includes: when the surgical instrument moves to the target position, generating a retraction signal for controlling the positioning link, so that the positioning link is retracted until the center of the distal end of the channel member is directly opposite to the distal point.
  • Figure 24 shows a schematic diagram of the execution of the retraction signal in an embodiment. Referring to Figure 24, when the surgical instrument 4 reaches the target position, the positioning link 12 drives the channel member 2 to move and retract in parallel in the -Z direction, and the far Remember to keep a certain safe distance. When and only when it is necessary to replace a single, part or all of the surgical instruments 4, the positioning link 12 can move in parallel to the +Z direction again under the action of the control signal, driving the channel member 2 to move to the distal point O. Through this design, the interference disturbance of the channel member 2 to the point O at the far center can be minimized.
  • a control signal for unlocking the robotic arm and the instrument driving mechanism can be generated to allow the robotic arm to drive the instrument base to perform pose adjustment movement when triggered, and to allow the instrument driving mechanism to drive the surgical instrument when triggered Get some exercise.
  • Figures 25 and 26 show schematic diagrams of the mechanical arm driving the surgical instrument to pitch after the mechanical arm is unlocked.
  • the surgical instrument 4 after the surgical instrument 4 reaches the target position, if the surgical instrument 4 is required to perform pitching motion, it can be operated by the operator. or trigger the mechanical arm, for example, input pitch-related operation commands on the control panel of the surgical robot, then the mechanical arm can provide the degree of freedom in pitching for the surgical instrument 4: drive the surgical instrument 4 to pitch upward relative to the far-center point O as shown in Figure 25 Or pitch down relative to the apocentric point O as shown in Figure 26 .
  • the pitching angle should be within the range of -45° ⁇ +45°.
  • Figure 27 and Figure 28 show the schematic diagram of the deflection of the surgical instrument driven by the mechanical arm after the mechanical arm is unlocked. Or trigger the mechanical arm, for example, input deflection-related operation commands on the control panel of the surgical robot, then the mechanical arm can provide the deflection degree of freedom for the surgical instrument 4: drive the surgical instrument 4 to rotate around the vertical rotation axis where the far-center point O is located, so that the surgical The instrument 4 is deflected to the left as shown in FIG. 27 or to the right as shown in FIG. 28 .
  • the deflection angle should be in the range of -30° ⁇ +30°.
  • Fig. 29 shows a schematic diagram of the movement of the surgical instrument driven by the instrument drive mechanism after the instrument drive mechanism is unlocked.
  • the operator can Trigger the instrument drive mechanism, for example, enter the operation instructions related to advance and retreat on the control panel of the surgical robot, then the instrument drive mechanism can provide the degree of freedom for the surgical instrument 4 to advance and retreat. Driven along the Z axis to a deeper position.
  • the terminal mechanism of the surgical robot is controlled by the above control method to avoid the interference of the terminal parts, improve the control accuracy, ensure the stability and availability of the surgical robot, prevent damage to the surgical robot, and ensure the safety of the surgical robot during use. Improve ease of use.
  • An embodiment of the present invention also provides a control device for a terminal mechanism of a surgical robot, which can be used to implement the control method described in any of the above-mentioned embodiments.
  • the features and principles of the control method described in any of the above embodiments can be applied to the following embodiments of the control device.
  • the features and principles of the control process of the terminal mechanism of the surgical robot that have been explained will not be repeated.
  • Fig. 30 shows the modules of the control device of the terminal mechanism of the surgical robot in an embodiment.
  • the control device 800 of the terminal mechanism of the surgical robot includes: a mechanical arm control module 810 configured to be configured according to the telecentric point and a The positional relationship between the spatial target points generates a pose adjustment signal for controlling the mechanical arm, so that the mechanical arm drives the instrument base to perform pose adjustment movement until the telecentric point coincides with the spatial target point; the positioning link control module 820 , configured to generate an extension signal for controlling the positioning link when the execution of the posture adjustment signal is completed, so that the positioning link extends to the center of the distal end of the channel member to coincide with the distal point; the surgical instrument control module 830, configured In order to complete the execution of the extension signal, it is monitored whether there is an assembly completion signal of the instrument driving mechanism and a surgical instrument, and if so, an instrument movement signal is generated to move the surgical instrument to a target position.
  • control device 800 may further include modules for implementing other process steps of the above-mentioned control method embodiments.
  • the specific principles of each module may refer to the descriptions of the above-mentioned control method embodiments, which will not be repeated here.
  • the control device 800 may specifically be a controller of the surgical robot, or a part of the controller.
  • the control device 800 can control the terminal mechanism of the surgical robot, avoid the interference of the terminal parts, improve the control accuracy, ensure the stability and availability of the surgical robot, prevent damage to the surgical robot, and ensure the safety of the surgical robot during use, improving Ease of use.
  • An embodiment of the present invention also provides an electronic device, including a processor and a memory, wherein executable instructions are stored in the memory, and when the executable instructions are executed by the processor, the method for controlling the terminal mechanism of the surgical robot described in any of the above embodiments is implemented.
  • Fig. 31 shows the structure of an electronic device in an embodiment. It should be understood that Fig. 31 only schematically shows various modules, and these modules may be virtual software modules or actual hardware modules, and the merging and dismantling of these modules The increase of points and other modules are all within the protection scope of the present invention.
  • electronic device 600 takes the form of a general-purpose computing device.
  • Components of the electronic device 600 include but are not limited to: at least one processing unit 610, at least one storage unit 620, a bus 630 connecting different platform components (including the storage unit 620 and the processing unit 610), a display unit 640, and the like.
  • the storage unit 620 stores program codes, which can be executed by the processing unit 610 to make the processing unit 610 execute the steps of the method for controlling the end mechanism of the surgical robot described in any of the above embodiments.
  • the processing unit 610 may execute the steps shown in FIG. 9 and FIG. 12 .
  • the storage unit 620 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 6201 and/or a cache storage unit 6202 , and may further include a read-only storage unit (ROM) 6203 .
  • RAM random access storage unit
  • ROM read-only storage unit
  • Storage unit 620 may also include programs/utilities 6204 having one or more program modules 6205, such program modules 6205 including, but not limited to, an operating system, one or more application programs, other program modules, and program data, examples of which are Each or some combination of these may include implementations of network environments.
  • Bus 630 may represent one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, an accelerated graphics port, a processing unit, or a local area using any of a variety of bus structures. bus.
  • the electronic device 600 may also communicate with one or more external devices 700, and the external devices 700 may be one or more of a keyboard, a pointing device, a Bluetooth device, and other devices. These external devices 700 enable the user to communicate interactively with the electronic device 600.
  • Electronic device 600 is also capable of communicating with one or more other computing devices, including routers, modems, and other computing devices. Such communication may occur through input/output (I/O) interface 650 .
  • the electronic device 600 can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through the network adapter 660 .
  • the network adapter 660 can communicate with other modules of the electronic device 600 through the bus 630 .
  • other hardware and/or software modules may be used in conjunction with electronic device 600, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage platform, etc.
  • the electronic device 600 may be a controller of the surgical robot, or a part of the controller.
  • the electronic device 600 can control the terminal mechanism of the surgical robot, avoid the interference of the terminal parts, improve the control accuracy, ensure the stability and availability of the surgical robot, prevent damage to the surgical robot, and ensure the safety of the surgical robot during use, improving Ease of use.
  • An embodiment of the present invention also provides a computer-readable storage medium for storing a program.
  • the program When the program is executed, the method for controlling the terminal mechanism of the surgical robot described in any of the above embodiments is implemented.
  • various aspects of the present invention can also be implemented in the form of a program product, which includes program code.
  • the program product runs on the terminal device, the program code is used to make the terminal device perform any of the above implementations. The control method described in the example.
  • the program product may take the form of a portable compact disc read-only memory (CD-ROM) and include program code, and be run on a terminal device, such as a personal computer.
  • CD-ROM compact disc read-only memory
  • the program product of the present invention is not limited thereto, and it may be any tangible medium containing or storing a program that can be used by or in conjunction with an instruction execution system, apparatus or device.
  • a program product may take the form of any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples of readable storage media include, but are not limited to, electrical connections with one or more conductors, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable Read memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a readable storage medium may include a data signal carrying readable program code in baseband or as part of a carrier wave traveling as part of a data signal. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a readable storage medium may also be any readable medium other than a readable storage medium that can send, propagate or transport a program for use by or in conjunction with an instruction execution system, apparatus or device.
  • the program code contained on the readable storage medium may be transmitted by any suitable medium, including but not limited to wireless, cable, optical cable, RF, etc., or any suitable combination of the above.
  • Program codes for performing the operations of the present invention can be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., as well as conventional procedural programming Language - such as "C" or similar programming language.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device, such as using an Internet service provider business to connect via the Internet.
  • LAN local area network
  • WAN wide area network
  • the storage medium can be configured in the controller of the surgical robot, so that it can control the end mechanism of the surgical robot when it is executed, avoid the interference of the end parts, improve the control accuracy, ensure the stability and availability of the surgical robot, and prevent the surgical robot from being damaged. It can ensure the safety of the surgical robot during use and improve the convenience of use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及医疗器械技术领域,提供一种手术机器人的末端机构及其控制方法和相关设备。控制方法包括:根据远心点与一空间目标点之间的位置关系,生成用于控制机械臂的位姿调整信号,以使机械臂驱动器械基座进行位姿调整运动至远心点与空间目标点重合;于位姿调整信号执行完成,生成用于控制定位连杆的伸出信号,以使定位连杆伸出至通道件的远端中心与远心点重合;于伸出信号执行完成,监测是否有器械驱动机构与一手术器械的装配完成信号,若是则生成器械运动信号,以使手术器械运动至目标位置。本发明的手术机器人能够适用于少孔或单孔手术,通过对手术机器人的末端机构的控制,能够避免末端部件干涉,提高控制精度,确保手术机器人的稳定可用。

Description

手术机器人的末端机构及其控制方法和相关设备 技术领域
本发明涉及医疗器械技术领域,具体地说,涉及一种手术机器人的末端机构及其控制方法和相关设备。
背景技术
随着科技的进步,用于微创外科手术的手术机器人技术逐渐成熟,并被广泛应用。但目前的手术机器人多用于多孔手术,无法满足少孔或单孔手术的使用需求。另外,目前的手术机器人容易在末端部件之间发生干涉,影响其可用性,控制精度也达不到确保机器人系统稳定可用的要求。
需要说明的是,上述背景技术部分公开的信息仅用于加强对本发明的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
有鉴于此,本发明提供一种手术机器人的末端机构及其控制方法和相关设备,能够适用于少孔或单孔微创手术,并能避免末端部件干涉,提高控制精度,确保手术机器人的稳定可用。
本发明的一个方面提供一种手术机器人的末端机构,包括:器械基座,连接于所述手术机器人的机械臂的末端,所述机械臂能驱动所述器械基座相对一由所述机械臂定义的远心点进行位姿调整运动;能沿Z轴方向伸缩的定位连杆,连接于所述器械基座,所述定位连杆的末端能夹持通道件,所述通道件设有多个通道,每个所述通道均沿所述Z轴方向延伸,且所述通道件的远端中心沿所述Z轴方向正对所述远心点;能装配和驱动多把手术器械的器械驱动机构,连接于所述器械基座,所述器械驱动机构的多个器械装卸和驱动路径互不干涉,当所述器械驱动机构装配有多把手术器械时,多把所述手术器械的器械轴分别沿所述Z轴方向延伸并对准多个所述 通道。
在一些实施例中,所述通道件包括:中空壳体,通过连接卡扣夹持于所述定位连杆的末端;近端板和远端板,分别设于所述中空壳体面向所述定位连杆的近端和背离所述定位连杆的远端,所述近端板和所述远端板分别设有形成多个所述通道的通孔阵列,每组所述通孔阵列在Y轴方向上同层分布形成沿X轴方向排列的单排孔阵,或者每组所述通孔阵列在所述Y轴方向上错层分布形成多排孔阵且每排所述孔阵均沿所述X轴方向排列。
在一些实施例中,所述手术器械包括:器械轴,通过传动装置连接于所述器械驱动机构;执行器基座,设于所述器械轴的末端且连接有末端执行器,所述末端执行器通过驱动轴连接于所述执行器基座,所述驱动轴为沿X轴方向延伸的俯仰轴或沿Y轴方向延伸的偏转轴;活动连接段,设于所述器械轴与所述执行器基座之间,分别通过活动关节与所述器械轴和所述执行器基座连接,所述活动关节具有沿X轴方向、Y轴方向和所述Z轴方向的运动自由度;初始状态下,所述器械轴、所述执行器基座及所述活动连接段同轴,随所述活动关节运动,所述执行器基座的空间位置改变且姿态不变。
在一些实施例中,所述器械驱动机构包括分别用于装配和驱动多把所述手术器械的多个器械驱动模块,多个所述器械驱动模块分别通过多个移动机构连接所述器械基座,所述移动机构能驱动所述器械驱动模块沿Y轴方向和所述Z轴方向移动;所述位姿调整运动包括俯仰运动和绕一经过所述远心点的垂直旋转轴的偏转运动。
本发明的又一个方面提供一种手术机器人的末端机构的控制方法,应用于如上述任意实施例所述的末端机构,所述控制方法包括:根据所述远心点与一空间目标点之间的位置关系,生成用于控制所述机械臂的位姿调整信号,以使所述机械臂驱动所述器械基座进行所述位姿调整运动至所述远心点与所述空间目标点重合;于所述位姿调整信号执行完成,生成用于控制所述定位连杆的伸出信号,以使所述定位连杆伸出至所述通道件的远端中心与所述远心点重合;于所述伸出信号执行完成,监测是否有所述器械驱动机构与一手术器械的装配完成信号,若是则生成器械运动信号,以 使所述手术器械运动至目标位置。
在一些实施例中,所述器械驱动机构能沿所述Z轴方向移动,所述器械轴的末端设有执行器基座,所述执行器基座连接有末端执行器;所述生成器械运动信号,包括:生成用于控制所述器械驱动机构的第一前进信号,以使所述器械驱动机构驱动所述手术器械沿所述Z轴方向前进至所述末端执行器穿过对应的通道。
在一些实施例中,所述末端执行器与所述执行器基座通过驱动轴连接,所述驱动轴为沿X轴方向延伸的俯仰轴或沿Y轴方向延伸的偏转轴,所述第一前进信号用于使所述手术器械前进至所述驱动轴穿过对应的通道;所述生成器械运动信号,还包括:于所述第一前进信号执行完成,生成用于控制所述末端执行器的折叠信号,以使所述末端执行器绕所述驱动轴进行预设角度的折叠运动;其中,当所述驱动轴为所述俯仰轴时,所述折叠运动为绕所述俯仰轴的第一俯仰运动,当所述驱动轴为所述偏转轴时,所述折叠运动为绕所述偏转轴的第一偏转运动。
在一些实施例中,所述器械轴与所述执行器基座之间连接有活动连接段,初始状态下所述活动连接段与所述器械轴和所述执行器基座同轴;所述生成器械运动信号,还包括:于所述折叠信号执行完成,生成用于控制所述器械驱动机构的第二前进信号,以使所述器械驱动机构驱动所述手术器械沿所述Z轴方向前进至所述活动连接段穿过对应的通道。
在一些实施例中,所述活动连接段与所述器械轴和所述执行器基座之间分别设有活动关节,所述活动关节具有沿所述X轴方向、所述Y轴方向和所述Z轴方向的运动自由度,所述第二前进信号用于使所述手术器械前进至所述活动关节穿过对应的通道;所述生成器械运动信号,还包括:于所述第二前进信号执行完成,生成用于控制所述活动连接段的平行展开信号,以使所述活动连接段进行与所述预设角度方向相反的展开运动,且展开运动过程中所述执行器基座与所述器械轴保持平行;其中,当所述驱动轴为所述俯仰轴时,所述平行展开运动为绕所述X轴方向的第二俯仰运动,当所述驱动轴为所述偏转轴时,所述平行展开运动为绕所述Y轴方向的第二偏转运动。
在一些实施例中,所述生成器械运动信号,还包括:于所述平行展开 信号执行完成,生成用于控制所述末端执行器的展开信号,以使所述末端执行器绕所述驱动轴进行与所述预设角度方向相反且角度值相等的展开运动,到达所述目标位置;当所述驱动轴为所述俯仰轴时,所述展开运动为绕所述俯仰轴的第三俯仰运动,当所述驱动轴为所述偏转轴时,所述展开运动为绕所述偏转轴的第三偏转运动。
在一些实施例中,当所述器械驱动机构装配有两把所述手术器械时,所述生成器械运动信号,还包括:于各所述手术器械的展开信号执行完成,生成用于控制各所述手术器械的活动连接段和末端执行器的第一调姿信号,使各所述手术器械运动至其末端执行器的尖端间隔相对。
在一些实施例中,当所述器械驱动机构装配有三把所述手术器械时,所述生成器械运动信号,还包括:于各所述手术器械的展开信号执行完成,生成用于控制各所述手术器械的活动连接段和末端执行器的第二调姿信号,使各所述手术器械运动至其末端执行器的尖端间隔相对且连成空间三角形。
在一些实施例中,所述位姿调整信号、所述伸出信号和所述器械运动信号均可被中断,于一控制信号被中断时暂停对应控制信号的执行,并于监测到继续执行信号时继续对应控制信号的执行;在每个控制信号的执行过程中,监测执行对象的执行状态,于所述执行对象的执行状态异常时,退回当前控制信号的前序控制信号的执行完成状态,并等待重新执行的控制指令信号;以及,每执行完一控制信号,锁止对应的执行对象,并等待继续执行的控制指令信号。
在一些实施例中,所述器械驱动机构能沿Y轴方向和所述Z轴方向移动,所述器械轴的末端设有末端执行器,所述末端执行器的Y轴方向和所述Z轴方向的空间位置可变;所述生成器械运动信号,包括:生成用于控制所述手术器械的第一运动信号,以使所述末端执行器沿所述Y轴方向和/或所述Z轴方向运动至与所述器械轴之间呈预定义构型;于所述第一运动信号执行完成,生成用于控制所述器械驱动机构的第二运动信号,以使所述器械驱动机构驱动所述手术器械沿所述Y轴方向和/或所述Z轴方向运动至所述末端执行器及所述器械轴的末端穿过对应的通道并到达所述目标位置。
在一些实施例中,所述的控制方法还包括:当所述手术器械运动至所述目标位置,生成用于控制所述定位连杆的缩回信号,以使所述定位连杆缩回至所述通道件的远端中心正对所述远心点。
本发明的又一个方面提供一种手术机器人的末端机构的控制装置,用于实现如上述任意实施例所述的控制方法,所述控制装置包括:机械臂控制模块,配置为根据所述远心点与一空间目标点之间的位置关系,生成用于控制所述机械臂的位姿调整信号,以使所述机械臂驱动所述器械基座进行所述位姿调整运动至所述远心点与所述空间目标点重合;定位连杆控制模块,配置为于所述位姿调整信号执行完成,生成用于控制所述定位连杆的伸出信号,以使所述定位连杆伸出至所述通道件的远端中心与所述远心点重合;手术器械控制模块,配置为于所述伸出信号执行完成,监测是否有所述器械驱动机构与一手术器械的装配完成信号,若是则生成器械运动信号,以使所述手术器械运动至目标位置。
本发明的又一个方面提供一种电子设备,包括:一处理器;一存储器,所述存储器中存储有可执行指令;其中,所述可执行指令被所述处理器执行时,实现如上述任意实施例所述的手术机器人的末端机构的控制方法。
本发明的又一个方面提供一种计算机可读的存储介质,用于存储程序,所述程序被处理器执行时实现如上述任意实施例所述的手术机器人的末端机构的控制方法。
本发明与现有技术相比的有益效果至少包括:
本发明的手术机器人,能够适用于少孔或单孔手术,并通过对手术机器人的末端机构的控制,能够避免末端部件干涉,提高控制精度,确保手术机器人的稳定可用,不会造成手术机器人损坏,也能确保手术机器人在使用过程中的安全性,并提升使用便捷性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。显而易见地,下 面描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本发明实施例中手术机器人的末端机构的示意图;
图2示出本发明实施例中末端机构夹持有通道件的示意图;
图3和图4示出本发明实施例中通道件的示意图;
图5和图6示出本发明实施例中器械驱动机构的多个器械装卸和驱动路径的示意图;
图7示出本发明实施例中器械驱动机构装配有三把手术器械的示意图;
图8示出本发明实施例中手术器械的示意图;
图9示出本发明实施例中手术机器人的末端机构的控制方法的流程图;
图10示出本发明实施例中位姿调整信号执行完成的示意图;
图11示出本发明实施例中伸出信号执行完成的示意图;
图12示出本发明实施例中生成器械运动信号的流程图;
图13示出本发明实施例中第一前进信号执行中的示意图;
图14示出图13的局部透视示意图;
图15示出本发明实施例中第一前进信号执行完成的示意图;
图16示出本发明实施例中折叠信号执行完成的示意图;
图17示出本发明实施例中第二前进信号执行完成的示意图;
图18示出本发明实施例中平行展开信号执行完成的示意图;
图19示出本发明实施例中展开信号执行完成的示意图;
图20示出本发明实施例中三把手术器械的展开信号执行完成的示意图;
图21至图23示出本发明实施例中第二调姿信号执行完成的示意图;
图24示出本发明实施例中缩回信号执行完成的示意图;
图25和图26示出解锁机械臂后机械臂驱动手术器械俯仰的示意图;
图27和图28示出解锁机械臂后机械臂驱动手术器械偏转的示意图;
图29示出解锁器械驱动机构后器械驱动机构驱动手术器械运动的示意图;
图30示出本发明实施例中手术机器人的末端机构的控制装置的模块图;
图31示出本发明实施例中电子设备的结构图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。相反,提供这些实施方式使本发明全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
附图仅为本发明的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
此外,附图中所示的流程仅是示例性说明,不是必须包括所有的步骤。例如,有的步骤可以分解,有的步骤可以合并或部分合并,且实际执行的顺序有可能根据实际情况改变。具体描述时使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。需要说明的是,在不冲突的情况下,本发明的实施例及不同实施例中的特征可以相互组合。
图1示出一实施例中手术机器人的末端机构的结构,图2示出末端机构夹持有通道件的结构,参照图1和图2所示,手术机器人的末端机构包括:器械基座11,连接于手术机器人的机械臂(图中未具体示出)的末端,机械臂能驱动器械基座11相对一由机械臂定义的远心点O进行位姿调整运动;能沿Z轴方向伸缩的定位连杆12,连接于器械基座11,定位连杆12的末端能夹持通道件2,通道件2设有多个通道,每个通道均沿Z轴方向延伸,且通道件2的远端中心200(即通道件2的远端板的几何中心)沿Z轴方向正对远心点O;能装配和驱动多把手术器械的器械驱动机构3,连接于器械基座11,器械驱动机构3的多个器械装卸和驱动路径互 不干涉,当器械驱动机构3装配有多把手术器械时,多把手术器械的器械轴分别沿Z轴方向延伸并对准多个通道。
远心点O具体由机械臂的一垂直旋转轴R 1和驱动器械基座11绕其转动的旋转轴R 2相交而定义。位姿调整运动包括:驱动器械基座11绕X轴转动,即做俯仰运动;绕垂直旋转轴R 1转动,垂直旋转轴R 1不经过器械基座11,因此器械基座11绕垂直旋转轴R 1的转动相当于做偏转运动;以及绕旋转轴R 2转动,旋转轴R 2经过器械基座11的自身轴线,因此器械基座11绕旋转轴R 2的转动相当于做翻转运动。从而,实现器械基座11以远心点O为不动点的俯仰、偏转和翻转三个自由度的空间调姿运动。
图3和图4示出一实施例中通道件的结构,结合图2至图4所示,通道件2包括:中空壳体21,通过连接卡扣22夹持于定位连杆12的末端;近端板23和远端板24,分别设于中空壳体21面向定位连杆12的近端和背离定位连杆12的远端,近端板23和远端板24分别设有形成多个通道20的通孔阵列25,每组通孔阵列25在Y轴方向上同层分布形成沿X轴方向排列的单排孔阵,或者每组通孔阵列25在Y轴方向上错层分布形成多排孔阵且每排孔阵均沿X轴方向排列。
图3和图4中,近端板23和远端板24的通孔阵列25均形成沿X轴方向排列的单排孔阵,也即每组通孔阵列25中的通孔在Y轴方向上是同层分布的。在其他实施例中,每组通孔阵列中的通孔在Y轴方向上也可以错层分布,形成多排孔阵且每排孔阵均沿X轴方向排列,且优选地通孔在Y轴方向上并不对齐,而是相互错开,形成整体构型为等腰梯形或平行四边形的排布结构。例如,在图4所示的通孔阵列25的上方,可以再形成一排孔阵(以虚线绘示),使通孔阵列整体形成为等腰梯形的构型。
连接卡扣22可为一次性无菌零部件。近端板23和远端板24可由满足生物相容性的高分子高弹性材料(包括但不限于硅橡胶)制成,近端板23和远端板24上可分别设置两个、三个或其他数量的并列孔阵25。并列孔阵25用于为手术器械提供通路并在器械远端提供必要的刚性支撑,采用近端板23和远端板24的双重支撑能够保证各手术器械的器械轴相互平行,避免干涉。
中空壳体21可由满足生物相容性的高分子高刚性材料(包括但不限 于聚碳酸脂PC)制成,用于为近端板23和远端板24提供构型支撑,使其二者在空间中互相平行。中空壳体21还能实现当机械臂驱动器械基座11带动手术器械进行位姿调整运动时,避免手术器械与作为调姿基准点的空间目标点之间的干涉。
继续参照图1和图2,器械驱动机构3包括分别用于装配和驱动多把手术器械的多个器械驱动模块31,多个器械驱动模块31分别通过多个移动机构32连接器械基座11,移动机构32能驱动器械驱动模块31沿Z轴方向移动。另外,移动机构32还能驱动器械驱动模块31沿垂直于X-Z平面的Y轴方向移动。
图5和图6示出一实施例中器械驱动机构的多个器械装卸和驱动路径,图7示出器械驱动机构装配有三把手术器械的结构,结合图5至图7所示,当器械驱动机构3包括三个器械驱动模块31时,三把手术器械4可分别从图示+X轴方向、-X轴方向和Y轴方向进行装卸,装卸方向并不限于图示,只要能实现三个器械驱动模块31的器械装卸路径互不干涉。三个移动机构32对三把手术器械4的驱动路径也互不干涉,可分别沿Z轴方向驱动手术器械4,或者沿Y轴方向驱动手术器械4。当器械驱动机构3装配上三把手术器械4时,三把手术器械4的器械轴41分别沿Z轴方向延伸并对准通道件2的多个通道20。
手术器械4在装载时为一次性或可重复灭菌使用的无菌状态,器械驱动模块31可以是有菌状态,器械驱动模块31与手术器械4通过驱动交互界面310相互连接。器械驱动模块31的图示排列方式能够使每把手术器械4能够被独立地装拆和更换,手术器械5可按图6中箭头方向侧滑装入,拆卸时反向往外侧滑出即可。三把手术器械4安装完成后,其器械轴41处于同一平面且相互平行,且器械轴41与通道件2相距一定距离。手术器械4的具体类型、实际数量可根据需要选择,本发明对此不作限制。
图8示出一实施例中手术器械的结构,结合图7和图8所示,手术器械4包括:器械轴41,通过传动装置(图中未具体标示)连接于器械驱动机构3;执行器基座43,设于器械轴41的末端且连接有末端执行器42,末端执行器42通过驱动轴连接于执行器基座43,驱动轴为沿X轴方向延伸的俯仰轴44或沿Y轴方向延伸的偏转轴;活动连接段45,设于器械轴 41与执行器基座43之间,分别通过活动关节46与器械轴41和执行器基座43连接,活动关节46具有沿X轴方向、Y轴方向和Z轴方向的运动自由度;初始状态下(如图7所示),器械轴41、执行器基座43及活动连接段45同轴,随活动关节46运动(如图8所示的平行展开状态),执行器基座43的空间位置改变且姿态不变。
活动连接段45本质上是一个平行机构,作用是通过驱动将其远端(执行器基座43连接在其远端)送到球面空间中的某个位置,同时保持其远端的姿态与其近端(器械轴41位于其近端)不变。若将活动连接段45的近端位姿记为(x 1,y 1,z 1;phi 1,theta 1,psy 1),则其远端位姿为(x 2,y 2,f(x 2,y 2);phi 1,theta 1,psy 1);其中,x、y和z用于描述位置,phi、theta和psy用于描述姿态。
在一个具体示例中,活动关节46包括齿轮机构,通过齿轮机构的啮合传动实现活动连接段45绕X轴方向的俯仰运动,从而带动执行器基座43在Y轴方向和Z轴方向的位置改变;活动关节46还包括偏转机构,通过偏转机构的偏转运动实现活动连接段45绕Y轴方向的偏转,从而带动执行器基座43在X轴方向的位置改变。齿轮机构和偏转机构可以采用已有的机构,本发明对此不作限制。
本实施例中,末端执行器42可绕俯仰轴44在空间中进行俯仰运动,俯仰运动范围约-90°~+90°。在其他实施例中,末端执行器42与执行器基座43之间也可通过沿Y轴方向延伸的偏转轴连接,也即将俯仰轴44替换为沿Y轴方向延伸的偏转轴,图中未具体示出。另外,在机械臂的驱动下,末端执行器42可绕垂直旋转轴R 1(图8中仅标示出垂直旋转轴R 1的方向,垂直旋转轴R 1的实际位置并非位于此处)在空间中进行偏转运动,偏转运动范围约-90°~+90°。
活动连接段45可为末端执行器42提供X轴方向、Y轴方向和Z轴方向的移动自由度。在活动连接段45平行展开时,器械轴41的轴线410始终与执行器基座43的轴线430在空间中保持平行,使得末端执行器42的姿态自由度与位移自由度解耦,降低控制难度,提高运动精度。
本发明实施例还提供一种手术机器人的末端机构的控制方法,应用于 上述任意实施例描述的手术机器人的末端机构。上述任意实施例描述的手术机器人的末端机构的特征和原理均可应用至下面的控制方法实施例。在下面的控制方法实施例中,对已经阐明的关于手术机器人的末端机构的特征和原理不再重复说明。
图9示出一实施例中手术机器人的末端机构的控制方法的流程,参照图9所示,手术机器人的末端机构的控制方法包括:步骤S510,根据远心点与一空间目标点之间的位置关系,生成用于控制机械臂的位姿调整信号,以使机械臂驱动器械基座进行位姿调整运动至远心点与空间目标点重合;步骤S520,于位姿调整信号执行完成,生成用于控制定位连杆的伸出信号,以使定位连杆伸出至通道件的远端中心与远心点重合;步骤S530,于伸出信号执行完成,监测是否有器械驱动机构与一手术器械的装配完成信号,若是则生成器械运动信号,以使手术器械运动至目标位置。
手术机器人中配置有用于生成控制信号的控制器,手术机器人上配置有可操作的控制面板,或者手术机器人可与一计算机设备通信连接,以接收操作者在控制面板或计算机设备上输入的操控指令,通过控制器生成控制信号驱动各个部件运动。在生成位姿调整信号前,可以先手动地或者通过输入操控指令的方式使手术机器人运动至空间目标点附近。
空间目标点可根据需要确定,本发明对此不作限制。图1中所示的X-Y-Z坐标系可以是手术机器人的基坐标系,通过X-Y-Z坐标系,手术机器人的控制器能够获知每个部件的位置信息。进而,根据远心点与空间目标点之间的位置关系,根据通道件的远端中心与远心点之间的位置关系,根据手术器械与目标位置之间的位置关系,能够分别生成位姿调整信号、伸出信号和器械运动信号。
图10示出一实施例中位姿调整信号执行完成的示意,参照图10所示,当位姿调整信号执行完成,手术机器人的远心点O与空间目标点O’重合。在机械臂驱动器械基座11进行位姿调整运动的过程中,定位连杆12等结构部件保持构型不变,通道件2的远端中心200沿Z轴方向正对远心点O。
图11示出一实施例中伸出信号执行完成的示意,参照图11所示,当伸出信号执行完成,定位连杆12的第二段122相对于其第一段121沿Z轴方向伸出,通道件2的远端中心200与远心点O重合。定位连杆12的 第一段121与第二段122之间具体可通过移动导轨相连,以使第二段122能相对于第一段121沿Z轴方向移动,带动通道件2向远心点O移动。
定位连杆伸出至其远端中心与远心点重合后,需要装配手术器械,手术器械装配完成后手术机器人的控制器能够监测到装配完成信号。每装配好一手术器械,发出对应的器械运动信号,使手术器械运动至目标位置。器械运动信号包括分别用于控制器械驱动机构和手术器械的控制信号,图12示出一实施例中生成器械运动信号的流程,参照图12所示,生成器械运动信号包括如下步骤。
步骤S530a,生成用于控制器械驱动机构的第一前进信号,以使器械驱动机构驱动手术器械沿Z轴方向前进至末端执行器穿过对应的通道。
图13示出一实施例中第一前进信号执行中的示意,图14示出图13的局部透视示意,参照图13和图14所示,器械驱动机构的移动机构32能驱动器械驱动模块31沿Z轴方向移动,进而在第一前进信号的控制下,驱动手术器械4沿Z轴方向平行推进,连接于器械轴41的末端的末端执行器42穿过通道件2的近端板23,进入通道件2内部。
图15示出第一前进信号执行完成的示意,结合图13至图15所示,在第一前进信号的控制下,移动机构32继续驱动器械驱动模块31沿Z轴方向前进,从而带动末端执行器42穿过通道件2的远端板24,直至俯仰轴44穿过远端板24,器械驱动机构在Z轴方向的运动停止。
当末端执行器42通过偏转轴与执行器基座连接时,则在第一前进信号的控制下,直至末端执行器42和偏转轴穿过远端板24,器械驱动机构在Z轴方向的运动停止。
步骤S530b,于第一前进信号执行完成,生成用于控制末端执行器的折叠信号,以使末端执行器绕驱动轴进行预设角度的折叠运动。
图16示出一实施例中折叠信号执行完成的示意,参照图16所示,当驱动轴为俯仰轴44时,末端执行器42能绕俯仰轴44做俯仰运动,折叠运动即为绕俯仰轴44的第一俯仰运动。具体来说,在折叠信号的控制下,末端执行器42绕俯仰轴44向上或向下做俯仰运动,俯仰角度可采用位于-90°~+90°之间的任意角度,以减少手术器械在自身轴线上的投影长度,避免运动过程中与其他部件干涉。图16中示出末端执行器42绕俯仰轴 44向下俯仰90°,但不以此为限。
在其他实施例中,当驱动轴为偏转轴时,折叠运动为绕偏转轴的第一偏转运动,偏转角度可采用位于-90°~+90°之间的任意角度,例如末端执行器42可绕偏转轴向左偏转90°,但不以此为限。
步骤S530c,于折叠信号执行完成,生成用于控制器械驱动机构的第二前进信号,以使器械驱动机构驱动手术器械沿Z轴方向前进至活动连接段穿过对应的通道。
图17示出一实施例中第二前进信号执行完成的示意,参照图17所示,手术器械的器械轴41与执行器基座43之间连接有在初始状态下与器械轴41和执行器基座43同轴的活动连接段45,末端执行器42折叠后,继续推进活动连接段45。在第二前进信号的控制下,器械驱动机构继续驱动手术器械沿Z轴方向前进,直至活动连接段45与器械轴41相连的活动关节46穿过对应的通道。在推进活动连接段45的过程中,活动连接段45始终与器械轴41保持同轴,且末端执行器42的姿态保持不变,以避免部件之间干涉。
步骤S530d,于第二前进信号执行完成,生成用于控制活动连接段的平行展开信号,以使活动连接段进行与预设角度方向相反的展开运动,且展开过程中器械轴与执行器基座保持平行。
图18示出一实施例中平行展开信号执行完成的示意,参照图18所示,活动连接段45与器械轴41和执行器基座43之间分别设有具有沿X轴方向、Y轴方向和Z轴方向的运动自由度的活动关节46。当驱动轴为俯仰轴时,平行展开信号为俯仰展开信号,平行展开运动为绕X轴方向的第二俯仰运动,具体来说,在俯仰展开信号的控制下,活动连接段45能向上或向下俯仰,其俯仰方向与步骤S530b中末端执行器42的俯仰方向相反,以减小占用空间,避免与其他部件干涉。活动连接段45具体可如图18所示呈90°方式俯仰展开,但不以此为限。
在其他实施例中,当驱动轴为偏转轴时,平行展开信号为偏转展开信号,平行展开运动为绕Y轴方向的第二偏转运动。具体来说,在偏转展开信号的控制下,活动连接段能向左或向右偏转,其偏转方向与步骤S530b中末端执行器的偏转方向相反,以减小占用空间,避免与其他部件 干涉。
在活动连接段45平行展开运动过程中,器械轴41与执行器基座43始终保持平行,以使末端执行器42的姿态自由度与位移自由度解耦,降低控制难度,提高运动精度。
步骤S530e,于平行展开信号执行完成,生成用于控制末端执行器的展开信号,以使末端执行器绕驱动轴进行与预设角度方向相反且角度值相等的展开运动,到达目标位置。
图19示出一实施例中展开信号执行完成的示意,参照图19所示,当驱动轴为俯仰轴时,展开运动为绕俯仰轴的第三俯仰运动,使步骤S530b中俯仰折叠的末端执行器42的俯仰角归零,到达目标位置。在其他实施例中,当驱动轴为偏转轴时,展开运动为绕偏转轴的第三偏转运动,使步骤S530b中偏转折叠的末端执行器的偏转角归零,到达目标位置。
自步骤S530a至步骤S530e,完成了对一把手术器械的控制。当手术机器人的控制器监测到多个装配完成信号,则重复上述的步骤S530a至步骤S530e,实现对各把手术器械的控制。
当器械驱动机构装配有两把手术器械时,生成器械运动信号的过程还包括:于各手术器械的展开信号执行完成,生成用于控制各手术器械的活动连接段和末端执行器的第一调姿信号,使各手术器械运动至其末端执行器的尖端间隔相对。
进一步地,当器械驱动机构装配有三把手术器械,生成器械运动信号的过程还包括:参照图12所示,步骤S530f,于各手术器械的展开信号执行完成,生成用于控制各手术器械的活动连接段和末端执行器的第二调姿信号,使各手术器械运动至其末端执行器的尖端间隔相对且连成空间三角形。
图20示出一实施例中三把手术器械的展开信号执行完成的示意,参照图20所示,当三把手术器械的展开信号均执行完成时,每把手术器械的活动连接段45展开且末端执行器42展平。图20示出三把手术器械的活动连接段45分别呈-Y方向、+Y方向和-Y方向展开,但不以此为限;在其他实现方式中,三把手术器械的活动连接段45也可以均呈+Y方向展开,均呈-Y方向展开,或者分别呈+Y方向、-Y方向和+Y方向展开,均 不会相互产生干涉。
图21至图23示出一实施例中第二调姿信号执行完成的示意,参照图21至图23所示,活动关节46除能够提供Z轴方向和Y轴方向的移动自由度外,还能提供X轴方向的移动自由度。在第二调姿信号的控制下,每把手术器械的活动关节46可进行空间位置运动,每把手术器械也可进行姿态运动,使三把手术器械运动至其末端执行器42的尖端间隔相对,且连成空间三角形400。图22示出三把手术器械的末端执行器的尖端位于平行于Y轴方向的同一平面,但不以此为限,三把手术器械的末端执行器只要尖端间隔相对连成空间三角形400即可。
上述的每个控制步骤,除装配手术器械需要手动操作外,均可由手术机器人的控制器逐步自动完成,操作者可以对每一步的过程和结果进行监督与判断,并确认是否执行下一步操作。操作者可以在控制过程中随时中断控制操作,即上述的位姿调整信号、伸出信号和器械运动信号均可被中断,于一控制信号被中断时,暂停对应控制信号的执行,并于监测到继续执行信号时,继续对应控制信号的执行;从而,既能提升手术机器人的使用便捷性,使操作者在整个控制过程中能够根据需要随时调整执行进度,又能确保手术机器人的稳定可用,在操作者确认继续执行后则手术机器人继续按照设定的控制流程自动执行,不会造成手术机器人损坏。
在每个控制信号的执行过程中,监测执行对象的执行状态,当监测到执行状态错误或异常时,退回当前控制信号的前序控制信号的执行完成状态,并等待重新执行的控制指令信号,实现当后序步骤被检测到失败或异常时,可退回前序步骤并等待进一步指令信号。
进一步地,每执行完一控制信号,锁止对应的执行对象。例如,执行完位姿调整信号后,则将机器臂锁止,执行完伸出信号后,则将定位连杆锁止,以实现部件之间的独立精确控制,避免干涉。
在不同于图12所示过程的另一种实施方式中,在沿Z轴方向推进手术器械之前,可以先驱动手术器械的活动连接段和末端执行器运动,使手术器械形成为某一预定义的构型,然后再通过器械驱动机构的移动机构推进手术器械。
具体来说,生成器械运动信号,包括:生成用于控制手术器械的第一 运动信号,以使末端执行器沿Y轴方向和/或Z轴方向运动至与器械轴之间呈预定义构型;于第一运动信号执行完成,生成用于控制器械驱动机构的第二运动信号,以使器械驱动机构驱动手术器械沿Y轴方向和/或Z轴方向运动至末端执行器及器械轴的末端穿过对应的通道并到达目标位置。
末端执行器的运动可由活动连接段及执行器基座驱动实现,器械驱动机构可通过其移动机构驱动手术器械,在上文中均已详细说明,此处不再重复。
进一步地,控制方法还包括:当手术器械运动至目标位置,生成用于控制定位连杆的缩回信号,以使定位连杆缩回至通道件的远端中心正对远心点。图24示出一实施例中缩回信号执行完成的示意,参照图24所示,当手术器械4到达目标位置后,定位连杆12带动通道件2沿-Z方向平行移动缩回,与远心点O保持一定的安全距离。当且仅当需要更换单一、部分或全部手术器械4时,定位连杆12可以在控制信号的作用下再次向+Z方向平行移动,带动通道件2向远心点O运动。通过此设计,能够将通道件2对远心点O处的干涉扰动降至最低。
于缩回信号执行完成,可生成用于解锁机械臂和器械驱动机构的控制信号,以允许机械臂被触发时驱动器械基座进行位姿调整运动,并允许器械驱动机构被触发时驱动手术器械进行运动。
图25和图26示出解锁机械臂后机械臂驱动手术器械俯仰的示意,参照图25和图26所示,在手术器械4到达目标位置后,若还需手术器械4进行俯仰运动,可由操作者触发机械臂,例如在手术机器人的控制面板上输入俯仰相关的操作指令,则机械臂可以为手术器械4提供俯仰自由度:驱动手术器械4如图25所示相对于远心点O向上俯仰或如图26所示相对于远心点O向下俯仰。此时,为避免手术器械4的俯仰运动与目标位置处的部件发生干涉,俯仰角度应处于-45°~+45°的范围内。
图27和图28示出解锁机械臂后机械臂驱动手术器械偏转的示意,参照图27和图28所示,在手术器械4到达目标位置后,若还需手术器械4进行偏转运动,可由操作者触发机械臂,例如在手术机器人的控制面板上输入偏转相关的操作指令,则机械臂可以为手术器械4提供偏转自由度:驱动手术器械4绕远心点O所在的垂直旋转轴转动,使手术器械4如图 27所示向左偏转或如图28所示向右偏转。此时,为避免手术器械4的偏转运动与目标位置处的部件发生干涉,偏转角度应处于-30°~+30°的范围内。
图29示出解锁器械驱动机构后器械驱动机构驱动手术器械运动的示意,参照图29所示,在手术器械4到达目标位置后,若还需手术器械4沿器械轴41方向运动,可由操作者触发器械驱动机构,例如在手术机器人的控制面板上输入进退相关的操作指令,则器械驱动机构可以为手术器械4提供进退自由度,例如将图29与图26对比,手术器械4在器械驱动机构的驱动下沿Z轴方向推进至更深的的位置。
通过上述的控制方法对手术机器人的末端机构进行控制,避免末端部件干涉,提高控制精度,确保手术机器人的稳定可用,不会造成手术机器人损坏,并能确保手术机器人在使用过程中的安全性,提升使用便捷性。
本发明实施例还提供一种手术机器人的末端机构的控制装置,可用于实现上述任意实施例描述的控制方法。上述任意实施例描述的控制方法的特征和原理均可应用至下面的控制装置实施例。在下面的控制装置实施例中,对已经阐明的关于手术机器人的末端机构的控制过程的特征和原理不再重复说明。
图30示出一实施例中手术机器人的末端机构的控制装置的模块,参照图30所示,手术机器人的末端机构的控制装置800包括:机械臂控制模块810,配置为根据远心点与一空间目标点之间的位置关系,生成用于控制机械臂的位姿调整信号,以使机械臂驱动器械基座进行位姿调整运动至远心点与空间目标点重合;定位连杆控制模块820,配置为于位姿调整信号执行完成,生成用于控制定位连杆的伸出信号,以使定位连杆伸出至通道件的远端中心与远心点重合;手术器械控制模块830,配置为于伸出信号执行完成,监测是否有器械驱动机构与一手术器械的装配完成信号,若是则生成器械运动信号,以使手术器械运动至目标位置。
进一步地,控制装置800还可包括实现上述各控制方法实施例的其他流程步骤的模块,各个模块的具体原理可参照上述各控制方法实施例的描述,此处不再重复说明。
控制装置800具体可以是手术机器人的控制器,或者是控制器中的一部分。控制装置800能够对手术机器人的末端机构进行控制,避免末端部件干涉,提高控制精度,确保手术机器人的稳定可用,不会造成手术机器人损坏,并能确保手术机器人在使用过程中的安全性,提升使用便捷性。
本发明实施例还提供一种电子设备,包括处理器和存储器,存储器中存储有可执行指令,可执行指令被处理器执行时,实现上述任意实施例描述的手术机器人的末端机构的控制方法。
图31示出一实施例中电子设备的结构,应当理解的是,图31仅仅是示意性地示出各个模块,这些模块可以是虚拟的软件模块或实际的硬件模块,这些模块的合并、拆分及其余模块的增加都在本发明的保护范围之内。
如图31所示,电子设备600以通用计算设备的形式表现。电子设备600的组件包括但不限于:至少一个处理单元610、至少一个存储单元620、连接不同平台组件(包括存储单元620和处理单元610)的总线630、显示单元640等。
存储单元620存储有程序代码,程序代码可以被处理单元610执行,使处理单元610执行上述任意实施例描述的手术机器人的末端机构的控制方法的步骤。例如,处理单元610可以执行如图9和图12所示的步骤。
存储单元620可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)6201和/或高速缓存存储单元6202,还可以进一步包括只读存储单元(ROM)6203。
存储单元620还可以包括具有一个或多个程序模块6205的程序/实用工具6204,这样的程序模块6205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线630可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备600也可以与一个或多个外部设备700通信,外部设备700可以是键盘、指向设备、蓝牙设备等设备中的一种或多种。这些外部设备 700使得用户能与该电子设备600进行交互通信。电子设备600也能与一个或多个其它计算设备进行通信,所示计算机设备包括路由器、调制解调器。这种通信可以通过输入/输出(I/O)接口650进行。并且,电子设备600还可以通过网络适配器660与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器660可以通过总线630与电子设备600的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备600使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储平台等。
电子设备600具体可以是手术机器人的控制器,或者是控制器中的一部分。电子设备600能够对手术机器人的末端机构进行控制,避免末端部件干涉,提高控制精度,确保手术机器人的稳定可用,不会造成手术机器人损坏,并能确保手术机器人在使用过程中的安全性,提升使用便捷性。
本发明实施例还提供一种计算机可读的存储介质,用于存储程序,程序被执行时实现上述任意实施例描述的手术机器人的末端机构的控制方法。在一些可能的实施方式中,本发明的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在终端设备上运行时,程序代码用于使终端设备执行上述任意实施例描述的控制方法。
程序产品可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本发明的程序产品不限于此,其可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子包括但不限于:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的 组合。
可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读存储介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本发明操作的程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备,例如利用因特网服务提供商来通过因特网连接。
存储介质可以配置于手术机器人的控制器中,使其被执行时对手术机器人的末端机构进行控制,避免末端部件干涉,提高控制精度,确保手术机器人的稳定可用,不会造成手术机器人损坏,并能确保手术机器人在使用过程中的安全性,提升使用便捷性。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (18)

  1. 一种手术机器人的末端机构,其特征在于,包括:
    器械基座,连接于所述手术机器人的机械臂的末端,所述机械臂能驱动所述器械基座相对一由所述机械臂定义的远心点进行位姿调整运动;
    能沿Z轴方向伸缩的定位连杆,连接于所述器械基座,所述定位连杆的末端能夹持通道件,所述通道件设有多个通道,每个所述通道均沿所述Z轴方向延伸,且所述通道件的远端中心沿所述Z轴方向正对所述远心点;
    能装配和驱动多把手术器械的器械驱动机构,连接于所述器械基座,所述器械驱动机构的多个器械装卸和驱动路径互不干涉,当所述器械驱动机构装配有多把手术器械时,多把所述手术器械的器械轴分别沿所述Z轴方向延伸并对准多个所述通道。
  2. 如权利要求1所述的末端机构,其特征在于,所述通道件包括:
    中空壳体,通过连接卡扣夹持于所述定位连杆的末端;
    近端板和远端板,分别设于所述中空壳体面向所述定位连杆的近端和背离所述定位连杆的远端,所述近端板和所述远端板分别设有形成多个所述通道的通孔阵列,每组所述通孔阵列在Y轴方向上同层分布形成沿X轴方向排列的单排孔阵,或者每组所述通孔阵列在所述Y轴方向上错层分布形成多排孔阵且每排所述孔阵均沿所述X轴方向排列。
  3. 如权利要求1所述的末端机构,其特征在于,所述手术器械包括:
    器械轴,通过传动装置连接于所述器械驱动机构;
    执行器基座,设于所述器械轴的末端且连接有末端执行器,所述末端执行器通过驱动轴连接于所述执行器基座,所述驱动轴为沿X轴方向延伸的俯仰轴或沿Y轴方向延伸的偏转轴;
    活动连接段,设于所述器械轴与所述执行器基座之间,分别通过活动关节与所述器械轴和所述执行器基座连接,所述活动关节具有沿X轴方向、Y轴方向和所述Z轴方向的运动自由度;
    初始状态下,所述器械轴、所述执行器基座及所述活动连接段同轴,随所述活动关节运动,所述执行器基座的空间位置改变且姿态不变。
  4. 如权利要求1所述的末端机构,其特征在于,所述器械驱动机构 包括分别用于装配和驱动多把所述手术器械的多个器械驱动模块,多个所述器械驱动模块分别通过多个移动机构连接所述器械基座,所述移动机构能驱动所述器械驱动模块沿Y轴方向和所述Z轴方向移动;
    所述位姿调整运动包括俯仰运动和绕一经过所述远心点的垂直旋转轴的偏转运动。
  5. 一种手术机器人的末端机构的控制方法,其特征在于,应用于如权利要求1-4任一项所述的末端机构,所述控制方法包括:
    根据所述远心点与一空间目标点之间的位置关系,生成用于控制所述机械臂的位姿调整信号,以使所述机械臂驱动所述器械基座进行所述位姿调整运动至所述远心点与所述空间目标点重合;
    于所述位姿调整信号执行完成,生成用于控制所述定位连杆的伸出信号,以使所述定位连杆伸出至所述通道件的远端中心与所述远心点重合;
    于所述伸出信号执行完成,监测是否有所述器械驱动机构与一手术器械的装配完成信号,若是则生成器械运动信号,以使所述手术器械运动至目标位置。
  6. 如权利要求5所述的控制方法,其特征在于,所述器械驱动机构能沿所述Z轴方向移动,所述器械轴的末端设有执行器基座,所述执行器基座连接有末端执行器;
    所述生成器械运动信号,包括:
    生成用于控制所述器械驱动机构的第一前进信号,以使所述器械驱动机构驱动所述手术器械沿所述Z轴方向前进至所述末端执行器穿过对应的通道。
  7. 如权利要求6所述的控制方法,其特征在于,所述末端执行器与所述执行器基座通过驱动轴连接,所述驱动轴为沿X轴方向延伸的俯仰轴或沿Y轴方向延伸的偏转轴,所述第一前进信号用于使所述手术器械前进至所述驱动轴穿过对应的通道;
    所述生成器械运动信号,还包括:
    于所述第一前进信号执行完成,生成用于控制所述末端执行器的折叠信号,以使所述末端执行器绕所述驱动轴进行预设角度的折叠运动;
    其中,当所述驱动轴为所述俯仰轴时,所述折叠运动为绕所述俯仰轴 的第一俯仰运动,当所述驱动轴为所述偏转轴时,所述折叠运动为绕所述偏转轴的第一偏转运动。
  8. 如权利要求7所述的控制方法,其特征在于,所述器械轴与所述执行器基座之间连接有活动连接段,初始状态下所述活动连接段与所述器械轴和所述执行器基座同轴;
    所述生成器械运动信号,还包括:
    于所述折叠信号执行完成,生成用于控制所述器械驱动机构的第二前进信号,以使所述器械驱动机构驱动所述手术器械沿所述Z轴方向前进至所述活动连接段穿过对应的通道。
  9. 如权利要求8所述的控制方法,其特征在于,所述活动连接段与所述器械轴和所述执行器基座之间分别设有活动关节,所述活动关节具有沿所述X轴方向、所述Y轴方向和所述Z轴方向的运动自由度,所述第二前进信号用于使所述手术器械前进至所述活动关节穿过对应的通道;
    所述生成器械运动信号,还包括:
    于所述第二前进信号执行完成,生成用于控制所述活动连接段的平行展开信号,以使所述活动连接段进行与所述预设角度方向相反的展开运动,且展开运动过程中所述执行器基座与所述器械轴保持平行;
    其中,当所述驱动轴为所述俯仰轴时,所述平行展开运动为绕所述X轴方向的第二俯仰运动,当所述驱动轴为所述偏转轴时,所述平行展开运动为绕所述Y轴方向的第二偏转运动。
  10. 如权利要求9所述的控制方法,其特征在于,所述生成器械运动信号,还包括:
    于所述平行展开信号执行完成,生成用于控制所述末端执行器的展开信号,以使所述末端执行器绕所述驱动轴进行与所述预设角度方向相反且角度值相等的展开运动,到达所述目标位置;
    当所述驱动轴为所述俯仰轴时,所述展开运动为绕所述俯仰轴的第三俯仰运动,当所述驱动轴为所述偏转轴时,所述展开运动为绕所述偏转轴的第三偏转运动。
  11. 如权利要求10所述的控制方法,其特征在于,当所述器械驱动机构装配有两把所述手术器械时,所述生成器械运动信号,还包括:
    于各所述手术器械的展开信号执行完成,生成用于控制各所述手术器械的活动连接段和末端执行器的第一调姿信号,使各所述手术器械运动至其末端执行器的尖端间隔相对。
  12. 如权利要求10所述的控制方法,其特征在于,当所述器械驱动机构装配有三把所述手术器械时,所述生成器械运动信号,还包括:
    于各所述手术器械的展开信号执行完成,生成用于控制各所述手术器械的活动连接段和末端执行器的第二调姿信号,使各所述手术器械运动至其末端执行器的尖端间隔相对且连成空间三角形。
  13. 如权利要求5-12任一项所述的控制方法,其特征在于,所述位姿调整信号、所述伸出信号和所述器械运动信号均可被中断,于一控制信号被中断时暂停对应控制信号的执行,并于监测到继续执行信号时继续对应控制信号的执行;
    在每个控制信号的执行过程中,监测执行对象的执行状态,于所述执行对象的执行状态异常时,退回当前控制信号的前序控制信号的执行完成状态,并等待重新执行的控制指令信号;以及
    每执行完一控制信号,锁止对应的执行对象,并等待继续执行的控制指令信号。
  14. 如权利要求5所述的控制方法,其特征在于,所述器械驱动机构能沿Y轴方向和所述Z轴方向移动,所述器械轴的末端设有末端执行器,所述末端执行器的Y轴方向和所述Z轴方向的空间位置可变;
    所述生成器械运动信号,包括:
    生成用于控制所述手术器械的第一运动信号,以使所述末端执行器沿所述Y轴方向和/或所述Z轴方向运动至与所述器械轴之间呈预定义构型;
    于所述第一运动信号执行完成,生成用于控制所述器械驱动机构的第二运动信号,以使所述器械驱动机构驱动所述手术器械沿所述Y轴方向和/或所述Z轴方向运动至所述末端执行器及所述器械轴的末端穿过对应的通道并到达所述目标位置。
  15. 如权利要求5所述的控制方法,其特征在于,还包括:
    当所述手术器械运动至所述目标位置,生成用于控制所述定位连杆的缩回信号,以使所述定位连杆缩回至所述通道件的远端中心正对所述远心 点。
  16. 一种手术机器人的末端机构的控制装置,其特征在于,用于实现如权利要求5-15任一项所述的控制方法,所述控制装置包括:
    机械臂控制模块,配置为根据所述远心点与一空间目标点之间的位置关系,生成用于控制所述机械臂的位姿调整信号,以使所述机械臂驱动所述器械基座进行所述位姿调整运动至所述远心点与所述空间目标点重合;
    定位连杆控制模块,配置为于所述位姿调整信号执行完成,生成用于控制所述定位连杆的伸出信号,以使所述定位连杆伸出至所述通道件的远端中心与所述远心点重合;
    手术器械控制模块,配置为于所述伸出信号执行完成,监测是否有所述器械驱动机构与一手术器械的装配完成信号,若是则生成器械运动信号,以使所述手术器械运动至目标位置。
  17. 一种电子设备,其特征在于,包括:
    一处理器;
    一存储器,所述存储器中存储有可执行指令;
    其中,所述可执行指令被所述处理器执行时,实现如权利要求5-15任一项所述的手术机器人的末端机构的控制方法。
  18. 一种计算机可读的存储介质,用于存储程序,其特征在于,所述程序被处理器执行时实现如权利要求5-15任一项所述的手术机器人的末端机构的控制方法。
PCT/CN2022/125100 2021-11-12 2022-10-13 手术机器人的末端机构及其控制方法和相关设备 WO2023082929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111338460.1A CN114098977A (zh) 2021-11-12 2021-11-12 手术机器人的末端机构及其控制方法和相关设备
CN202111338460.1 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023082929A1 true WO2023082929A1 (zh) 2023-05-19

Family

ID=80379212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125100 WO2023082929A1 (zh) 2021-11-12 2022-10-13 手术机器人的末端机构及其控制方法和相关设备

Country Status (2)

Country Link
CN (1) CN114098977A (zh)
WO (1) WO2023082929A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117064559A (zh) * 2023-10-13 2023-11-17 上海嘉奥信息科技发展有限公司 双面多自由度手术机器人

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114098977A (zh) * 2021-11-12 2022-03-01 艺柏湾医疗科技(上海)有限公司 手术机器人的末端机构及其控制方法和相关设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130197541A1 (en) * 2006-06-13 2013-08-01 Intuitive Surgical Operations, Inc. Extendable suction surface for bracing medical devices during robotically assisted medical procedures
CN104958085A (zh) * 2010-05-14 2015-10-07 直观外科手术操作公司 手术系统器械安装
CN106974732A (zh) * 2017-03-03 2017-07-25 深圳市罗伯医疗机器人研究所 一种单孔腔镜手术机器人系统
CN107148250A (zh) * 2014-08-15 2017-09-08 直观外科手术操作公司 具有可变进入引导器配置的外科手术系统
CN109330700A (zh) * 2018-07-31 2019-02-15 深圳市精锋医疗科技有限公司 从操作设备组件及手术机器人
CN110811838A (zh) * 2019-11-01 2020-02-21 山东大学 一种可实现多孔单孔互换的双操作模式手术机器人
CN212281453U (zh) * 2020-08-28 2021-01-05 中国科学院沈阳自动化研究所 手术器械驱动模块
CN114098977A (zh) * 2021-11-12 2022-03-01 艺柏湾医疗科技(上海)有限公司 手术机器人的末端机构及其控制方法和相关设备
CN114098978A (zh) * 2021-11-12 2022-03-01 艺柏湾医疗科技(上海)有限公司 用于微创外科手术的机器人机械臂

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104758060B (zh) * 2015-04-07 2017-01-11 哈尔滨工业大学 用于单孔腹腔微创手术的多自由度柔性机器人
CN113729964A (zh) * 2015-04-27 2021-12-03 直观外科手术操作公司 手术器械外壳及相关的系统和方法
CN111345894B (zh) * 2018-12-21 2022-08-02 上海微创医疗机器人(集团)股份有限公司 机械臂及手术机器人
CN111481243B (zh) * 2019-01-29 2024-05-03 首都医科大学附属北京友谊医院 单孔腔镜手术机器人器械直线递送装置
CN112274249B (zh) * 2020-09-21 2022-08-02 吴晨凯 一种单孔手术机器人多自由度器械组件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130197541A1 (en) * 2006-06-13 2013-08-01 Intuitive Surgical Operations, Inc. Extendable suction surface for bracing medical devices during robotically assisted medical procedures
CN104958085A (zh) * 2010-05-14 2015-10-07 直观外科手术操作公司 手术系统器械安装
CN107148250A (zh) * 2014-08-15 2017-09-08 直观外科手术操作公司 具有可变进入引导器配置的外科手术系统
CN106974732A (zh) * 2017-03-03 2017-07-25 深圳市罗伯医疗机器人研究所 一种单孔腔镜手术机器人系统
CN109330700A (zh) * 2018-07-31 2019-02-15 深圳市精锋医疗科技有限公司 从操作设备组件及手术机器人
CN110811838A (zh) * 2019-11-01 2020-02-21 山东大学 一种可实现多孔单孔互换的双操作模式手术机器人
CN212281453U (zh) * 2020-08-28 2021-01-05 中国科学院沈阳自动化研究所 手术器械驱动模块
CN114098977A (zh) * 2021-11-12 2022-03-01 艺柏湾医疗科技(上海)有限公司 手术机器人的末端机构及其控制方法和相关设备
CN114098978A (zh) * 2021-11-12 2022-03-01 艺柏湾医疗科技(上海)有限公司 用于微创外科手术的机器人机械臂

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117064559A (zh) * 2023-10-13 2023-11-17 上海嘉奥信息科技发展有限公司 双面多自由度手术机器人
CN117064559B (zh) * 2023-10-13 2024-01-09 上海嘉奥信息科技发展有限公司 双面多自由度手术机器人

Also Published As

Publication number Publication date
CN114098977A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023082929A1 (zh) 手术机器人的末端机构及其控制方法和相关设备
US11129684B2 (en) System and method for maintaining a tool position and orientation
US10905500B2 (en) System and method for registering to a surgical table
US9731415B2 (en) Method for the alignment of a multiaxial manipulator with an input device
KR100507554B1 (ko) 병렬형 햅틱 조이스틱 시스템
CN108309453A (zh) 用于手术器械的近端控制的系统和方法
CN112828885B (zh) 混联主从映射方法、机械臂系统和计算机设备
WO2021112193A1 (ja) 外科手術システム及び外科手術マニピュレータアームの制御方法
US20200170732A1 (en) Configurable parallel medical robot having a coaxial end-effector
JP7345008B2 (ja) 外科手術システムに使用されるマニピュレータアーム、ロボットシステムおよび外科用器具の並進方法
Mo et al. Task autonomy of a flexible endoscopic system for laser-assisted surgery
WO2022141138A1 (zh) 混联主从映射方法、机械臂系统和计算机设备
CN114098978A (zh) 用于微创外科手术的机器人机械臂
CN114404043A (zh) 并联机器人系统
Coste-Manière et al. Optimized port placement for the totally endoscopic coronary artery bypass grafting using the da Vinci robotic system
US20230011725A1 (en) Projection of user interface pose command to reduced degree of freedom space for a surgical robot
Zhang et al. Design and Optimal Pose‐Constrained Visual Servoing of a Novel Active Flexible Endoscope Holder System for Solo Laparoscopic Surgery
US20230009907A1 (en) Projection operator for inverse kinematics of a surgical robot for low degree of freedom tools
RU2753118C2 (ru) Роботизированная система для удержания и перемещения хирургического инструмента при проведении лапароскопических операций
CN220898784U (zh) 机械臂及医疗设备
US11950966B2 (en) Surgical tool and assembly
JP7481941B2 (ja) ロボットおよびロボットシステム
WO2020082299A1 (zh) 具有单孔及多孔微创手术功能的手术机器人机构
Alsaka et al. Hierarchy Control of Dual-arm Concentric Tube Continuum Robots with Different Redundancy Resolution Techniques
Zheng et al. PID-Based Remote Operated Control System for Continuum Robots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891194

Country of ref document: EP

Kind code of ref document: A1