WO2023082774A1 - 同路由检测方法和装置 - Google Patents

同路由检测方法和装置 Download PDF

Info

Publication number
WO2023082774A1
WO2023082774A1 PCT/CN2022/115172 CN2022115172W WO2023082774A1 WO 2023082774 A1 WO2023082774 A1 WO 2023082774A1 CN 2022115172 W CN2022115172 W CN 2022115172W WO 2023082774 A1 WO2023082774 A1 WO 2023082774A1
Authority
WO
WIPO (PCT)
Prior art keywords
disturbance
excitation source
source terminal
information
optical fiber
Prior art date
Application number
PCT/CN2022/115172
Other languages
English (en)
French (fr)
Inventor
汪大勇
秦海明
李川
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023082774A1 publication Critical patent/WO2023082774A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • the present application relates to the field of optical communication, and more specifically, to a method and device for co-routing detection.
  • optical fiber is widely concerned as an important transmission medium in optical communication systems.
  • external resources such as optical cables, pipes, and pole lines are the focus of optical network management.
  • optical cable routes of the two business paths exist in the same cable, in the same ditch (buried)/same ditch (overhead), and in the same optical box/splice box, it is called the same route.
  • the optical cable network is intricate, and the optical cable network is often changed (cutting, cutting, new laying, rerouting, etc.), it is very difficult to manage the optical cable network in real time and accurately.
  • GIS geographic information system
  • the two paths of the same route are relatively close in physical space, when one path fails, the other path usually fails at the same time (for example, two optical cables in the same ditch are cut by an excavator).
  • the active and standby paths After the active and standby paths have the same routing segment, there is a high risk of simultaneous interruption. When a risk occurs, the active and standby protection will be completely invalid, unable to play a protective role, affecting the reliability and availability of the business.
  • the embodiment of the present application provides a device for identifying and detecting the same route, which can adapt to dynamic network changes and accurately and quickly detect the same route of multiple optical paths.
  • a same-routing detection method is provided, which is applied to a same-routing detection system.
  • the same-routing detection system includes a plurality of optical fiber sensing modules, at least one excitation source terminal and a same-routing detection unit.
  • the multiple optical fiber sensing The module includes a first optical fiber sensing module and a second optical fiber sensing module, the at least one excitation source terminal includes a first excitation source terminal, and the method includes: receiving the first disturbance information from the first optical fiber sensing module with the routing detection unit , and receive the second disturbance information from the second optical fiber sensing module, the first disturbance information and the second disturbance information are acquired after the first excitation source terminal turns on the excitation source disturbance, the first disturbance information corresponds to the first optical path, The second disturbance information corresponds to the second optical path, and the first disturbance information and the second disturbance information respectively include disturbance echo signals; the same route detection unit determines the disturbance position of the first excitation source terminal according to the first disturbance information and the second disturbance information as The co-routing position of the first optical path and the second optical path.
  • the method can be executed by the same-routing detection unit, or can also be executed by a chip or circuit used for the same-routing detection unit, which is not limited in this application.
  • the implementation by the same-route detection unit is taken as an example below.
  • the first excitation source terminal turns on excitation source disturbance
  • the disturbance position is the same route position of the first optical path and the second optical path. Based on the active scrambled optical fiber sensing data identification method, whether the two optical paths have the same route can be quickly and accurately identified.
  • the present application is also applicable to identifying and detecting that multiple optical paths have the same routing segment. For example, there is another disturbed position, and the co-route detecting unit determines that the other disturbed position is also a co-routed position of the first optical path and the second optical path according to the above implementation manner. Therefore, it can be considered that the geographical section formed by the two disturbance positions is the same-routing section of the first optical path and the second optical path.
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed at the first network element and the second network element, that is, one network element corresponds to one optical fiber sensing module.
  • multiple optical fiber sensing modules may be deployed at one network element (for example, a first network element), and the network element may (For example, the optical fiber interface unit (fiber interface unit, FIU) port) identification determines the corresponding disturbance information detected by different optical fiber sensing modules, etc.
  • the technical solution of this application does not specifically limit the number of network elements and the number of optical fiber sensing modules .
  • the above is only an exemplary description, and should not constitute any limitation to the technical solution of the present application.
  • multiple optical paths detected by multiple optical fiber sensing modules deployed at the same network element may have the same route or different routes, which is not specifically limited in this application.
  • the acquisition of disturbance echo signals can be understood as: using the working principle of an optical time domain reflectometer (OTDR) to monitor and collect the phase information of light in the optical fiber due to Rayleigh scattering , so as to judge the transmission characteristics of the fiber in each. For example, by detecting the phase of the two optical fibers at the disturbance position of the excitation source terminal, it is further detected whether the two optical paths have the same route at the disturbance position.
  • OTDR optical time domain reflectometer
  • the first excitation source terminal controls the excitation source disturbance in a coding manner.
  • a coding method is used to control whether the excitation source terminal is activated. For example, when the codeword is 0, it is used to indicate that the disturbance of the source terminal is stopped. When the code word is 1, it is used to indicate that the disturbance of the source terminal is started to be excited.
  • the excitation source of the first excitation source terminal uses mechanical waves or sound waves.
  • the generation method of the disturbance code of the first excitation source terminal includes: a mechanical wave coding method based on single-frequency time-domain coding and/or an acoustic wave coding method based on multi-frequency combination coding Way.
  • the optical fiber sensing module will give a vibration detection result once in each detection period (for example, 0.5s) (the detected vibration can be marked as 1, and the non-detected vibration can be marked as 0). Due to the inertia of mechanical vibration start and stop, fast (within 0.5s) start and stop coding is not operable.
  • the same-route detection unit determines that the disturbance position of the first excitation source terminal is the same route of the first optical path and the second optical path according to the first disturbance information and the second disturbance information
  • the position includes: when the similarity between the disturbance echo signals of the first disturbance information and the second disturbance information is greater than a preset threshold, the same route detection unit determines that the disturbance position of the first excitation source terminal is the first optical path and the second The same routing position of the optical path.
  • the same-route detection unit receives third disturbance information from the first excitation source terminal, where the third disturbance information includes at least one of the following information: the first excitation source terminal Turn on the disturbance time of the excitation source disturbance, the location of the first excitation source terminal, and the disturbance coding of the first excitation source terminal; the same route detection unit determines the first excitation source according to the first disturbance information, the second disturbance information and the third disturbance information
  • the disturbed position of the terminal is the co-routing position of the first optical path and the second optical path.
  • the same route detection unit may determine whether the first optical path and the second optical path have the same route at the disturbance position of the excitation source terminal based on the first disturbance information, the second disturbance information and the third disturbance information.
  • the accuracy of this implementation can be further improved.
  • the third disturbance information reported by the excitation source terminal is ideally the same as the first disturbance information, the disturbance time, and the disturbance position in the second disturbance information.
  • the first disturbance information and the second disturbance information are monitored and reported by the first optical fiber sensing module and the second optical fiber sensing module respectively, and the third disturbance information is directly reported by the excitation source terminal.
  • the same route detection unit can determine the first disturbance code and the second disturbance code respectively corresponding to the first optical path and the second optical path according to the first disturbance information and/or the second disturbance information, and can directly obtain from the third disturbance information A third perturbation code.
  • the reporting objects of the first disturbance information, the second disturbance information and the third disturbance information are different, the sources are different, and the specific forms of reporting are also different.
  • the same-route detection unit determines, according to the first disturbance information, the second disturbance information, and the third disturbance information, that the disturbance position of the first excitation source terminal is the first optical path and the second disturbance position.
  • the co-routing position of the two optical paths includes: the co-routing detection unit determines the first disturbance code according to the first disturbance information, and/or determines the second disturbance code according to the second disturbance information; when the first disturbance code and the second disturbance code are When the similarity between at least one disturbance code and the disturbance code of the first excitation source terminal is greater than a preset threshold, the co-route detection unit determines that the disturbance position of the first excitation source terminal is the co-route position of the first optical path and the second optical path.
  • code-based detection can effectively resist environmental interference, and improve the efficiency and accuracy of same-route detection.
  • the above-mentioned method of judging whether multiple optical paths have the same route at the disturbance position of the excitation source terminal according to the disturbance code and/or disturbance echo can be used independently or in combination. limited.
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed on the first network element and the second network element, and the first excitation source terminal is deployed on the second network element.
  • the terminal of the first excitation source can be deployed in a tube well, an optical cross box, a fiber splice box, an overhead pole, and the like in the optical path.
  • the same-route detection unit sends request messages to the first optical fiber sensing module and the second optical fiber sensing module, and the request messages are respectively used to request acquisition of the first disturbance information and the second disturbance information.
  • At least one excitation source terminal includes a second excitation source terminal
  • the method further includes: receiving third disturbance information from the first optical fiber sensing module by the route detection unit , and receive fourth disturbance information from the second optical fiber sensing module, the third disturbance information and the fourth disturbance information are acquired after the second excitation source terminal turns on the excitation source disturbance, and the third disturbance information corresponds to the first optical path,
  • the fourth disturbance information corresponds to the second optical path
  • the third disturbance information and the fourth disturbance information include disturbance time and disturbance echo signals
  • the same route detection unit generates the first optical fiber geographic information system GIS according to the first disturbance information and the third disturbance information information, and generate the second optical fiber geographic information system GIS information according to the second disturbance information and the fourth disturbance information
  • the same route detection unit has similar points according to the first optical fiber GIS information and the second optical fiber GIS information matching space, and determines the first excitation source
  • the disturbed position of the terminal and/or the disturbed position of the terminal of the second excitation source are co-routing positions
  • the GIS information of the optical fiber geographic information system can be understood as the real geographical location of the optical fiber. For example, the latitude and longitude where the fiber is located.
  • the same-route detection unit receives at least one disturbance information from the first optical fiber sensing module, and the at least one disturbance information is related to at least one excitation source terminal within the first range
  • the first range is the range whose center is the terminal of the first excitation source closest to the target fiber break point, and the radius is R
  • the target fiber break point is the broken fiber detected by the first optical fiber sensing module in the first optical path Position
  • the same route detection unit determines at least one second excitation source terminal next hop from the first excitation source terminal according to at least one disturbance information in the first range, and at least one second excitation source terminal is the excitation source terminal on the first optical path .
  • the same-route detection unit receives at least one disturbance information from the first optical fiber sensing module, and the at least one disturbance information is related to at least one excitation source terminal within the i-th range
  • the i-th range is the range of the i-th excitation source terminal as the center of the circle, and the radius is R
  • the i-th excitation source terminal is the next-hop excitation source terminal of the i-1th excitation source terminal on the first optical path
  • i is an integer greater than or equal to 2
  • the same route detection unit determines at least one (i+1)th excitation source terminal for the next hop from the i-th excitation source terminal according to at least one disturbance information in the i-th range, and at least one (i+1)th excitation source terminal
  • the terminal is the excitation source terminal closest to the third network element on the first optical path, the third network element and the first network element are the starting and ending positions of the first optical path, and the first optical fiber sens
  • a same-routing detection method is provided, which is applied to a same-routing detection system.
  • the same-routing detection system includes a plurality of optical fiber sensing modules, at least one excitation source terminal and a same-routing detection unit, and the plurality of optical fiber sensing modules include The first optical fiber sensing module and the second optical fiber sensing module, at least one excitation source terminal includes the first excitation source terminal, the method includes: after the first excitation source terminal turns on the excitation source disturbance, the first optical fiber sensing module and the second excitation source terminal.
  • the two optical fiber sensing modules obtain first disturbance information and second disturbance information respectively, the first disturbance information corresponds to the first optical path, the second disturbance information corresponds to the second optical path, the first disturbance information and the second disturbance information respectively include the disturbance feedback wave signal, the first disturbance information and the second disturbance information are used to determine that the disturbance position of the first excitation source terminal is the co-routing position of the first optical path and the second optical path; the first optical fiber sensing module and the second optical fiber sensing
  • the method can be performed by an optical fiber sensing module (for example, a first optical fiber sensing module and a second optical fiber sensing module), or can also be performed by a chip or a circuit for an optical fiber sensing module. Applications are not limited to this. For ease of description, the implementation by the fiber optic sensing module is taken as an example below.
  • the excitation source disturbance is turned on at the first excitation source terminal, by receiving disturbance information from different optical paths, it is judged that the disturbance position is the same route position of the first optical path and the second optical path.
  • a method for identifying the same route of optical fiber sensing data based on active scrambling is provided, which can quickly and accurately identify whether two optical paths have the same route.
  • the present application is also applicable to identifying and detecting that multiple optical paths have the same routing segment.
  • the co-routing detection unit determines that the other disturbance position is also the co-routing position of the first optical path and the second optical path according to the above implementation manner. Therefore, it can be considered that the geographical section formed by the two disturbance positions is the same-routing section of the first optical path and the second optical path.
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed at the first network element and the second network element, that is, one network element corresponds to one optical fiber sensing module.
  • multiple optical fiber sensing modules may be deployed at one network element (for example, a first network element), and the network element may (For example, the optical fiber interface unit (fiber interface unit, FIU) port) identification determines the corresponding disturbance information detected by different optical fiber sensing modules, etc.
  • the technical solution of this application does not specifically limit the number of network elements and the number of optical fiber sensing modules .
  • the above is only an exemplary description, and should not constitute any limitation to the technical solution of the present application.
  • multiple optical paths detected by multiple optical fiber sensing modules deployed at the same network element may have the same route or different routes, which is not specifically limited in this application.
  • the acquisition of disturbance echo signals can be understood as: using the working principle of an optical time domain reflectometer (OTDR) to monitor and collect the phase information of light in the optical fiber due to Rayleigh scattering , so as to judge the transmission characteristics of the fiber in each. For example, by detecting the phase of the two optical fibers at the disturbance position of the excitation source terminal, it is further detected whether the two optical paths have the same route at the disturbance position.
  • OTDR optical time domain reflectometer
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed on the first network element and the second network element, and the first excitation source terminal is deployed on the second network element. Any position of the first optical path and/or the second optical path.
  • the terminal of the first excitation source can be deployed in a tube well, an optical cross box, a fiber splice box, an overhead pole, and the like in the optical path.
  • the first optical fiber sensing module and the second optical fiber sensing module receive request messages from the detection unit of the same route, and the request messages are respectively used to request to obtain the first disturbance information and the second disturbance information.
  • a same-route detection device including: a transceiver unit, configured to receive first disturbance information from a first optical fiber sensing module, and receive second disturbance information from a second optical fiber sensing module, the first The first disturbance information and the second disturbance information are acquired after the first excitation source terminal turns on the excitation source disturbance, the first disturbance information corresponds to the first optical path, the second disturbance information corresponds to the second optical path, the first disturbance information and the second The disturbance information respectively includes disturbance echo signals; the processing unit is configured to determine, according to the first disturbance information and the second disturbance information, that the disturbance position of the first excitation source terminal is the co-routing position of the first optical path and the second optical path.
  • the present application is also applicable to identifying and detecting that multiple optical paths have the same routing segment. For example, there is another disturbed position, and the co-route detecting unit determines that the other disturbed position is also a co-routed position of the first optical path and the second optical path according to the above implementation manner. Therefore, it can be considered that the geographical section formed by the two disturbance positions is the same-routing section of the first optical path and the second optical path.
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed at the first network element and the second network element, that is, one network element corresponds to one optical fiber sensing module.
  • multiple optical fiber sensing modules may be deployed at one network element (for example, a first network element), and the network element may (For example, the optical fiber interface unit (fiber interface unit, FIU) port) identification determines the corresponding disturbance information detected by different optical fiber sensing modules, etc.
  • the technical solution of this application does not specifically limit the number of network elements and the number of optical fiber sensing modules .
  • the above is only an exemplary description, and should not constitute any limitation to the technical solution of the present application.
  • multiple optical paths detected by multiple optical fiber sensing modules deployed at the same network element may be the same route or different routes, which is not specifically limited in this application.
  • the acquisition of disturbance echo signals can be understood as: using the working principle of an optical time domain reflectometer (OTDR) to monitor and collect the phase information of light in the optical fiber due to Rayleigh scattering , so as to judge the transmission characteristics of the fiber in each. For example, by detecting the phase of the two optical fibers at the disturbance position of the excitation source terminal, it is further detected whether the two optical paths have the same route at the disturbance position.
  • OTDR optical time domain reflectometer
  • the first excitation source terminal controls the excitation source disturbance in a coding manner.
  • a coding method is used to control whether the excitation source terminal is activated. For example, when the codeword is 0, it is used to indicate that the disturbance of the source terminal is stopped. When the code word is 1, it is used to indicate that the disturbance of the source terminal is started to be excited.
  • the excitation source of the first excitation source terminal uses mechanical waves or sound waves.
  • the generation method of the disturbance code of the first excitation source terminal includes: a mechanical wave coding method based on single-frequency time-domain coding and/or an acoustic wave coding method based on multi-frequency combination coding Way.
  • the optical fiber sensing module will give a vibration detection result once in each detection period (for example, 0.5s) (the detected vibration can be marked as 1, and the non-detected vibration can be marked as 0). Due to the inertia of mechanical vibration start and stop, fast (within 0.5s) start and stop coding is not operable.
  • the processing unit when the similarity between the disturbance echo signals of the first disturbance information and the second disturbance information is greater than a preset threshold, the processing unit is further configured to determine that the first disturbance information
  • the disturbance position of an excitation source terminal is the co-routing position of the first optical path and the second optical path.
  • the transceiver unit is further configured to receive third disturbance information from the first excitation source terminal, where the third disturbance information includes at least one of the following information: the first excitation The disturbance time for the source terminal to activate the excitation source disturbance, the location of the first excitation source terminal, and the disturbance code of the first excitation source terminal; the processing unit is also used to determine according to the first disturbance information, the second disturbance information and the third disturbance information The disturbance position of the terminal of the first excitation source is the co-routing position of the first optical path and the second optical path.
  • the same route detection unit may determine whether the first optical path and the second optical path have the same route at the disturbance position of the excitation source terminal based on the first disturbance information, the second disturbance information and the third disturbance information.
  • the accuracy of this implementation can be further improved.
  • the third disturbance information reported by the excitation source terminal is ideally the same as the first disturbance information, the disturbance time, and the disturbance position in the second disturbance information.
  • the first disturbance information and the second disturbance information are monitored and reported by the first optical fiber sensing module and the second optical fiber sensing module respectively, and the third disturbance information is directly reported by the excitation source terminal.
  • the same route detection unit can determine the first disturbance code and the second disturbance code respectively corresponding to the first optical path and the second optical path according to the first disturbance information and/or the second disturbance information, and can directly obtain from the third disturbance information A third perturbation code.
  • the reporting objects of the first disturbance information, the second disturbance information and the third disturbance information are different, the sources are different, and the specific forms of reporting are also different.
  • the processing unit is further configured to determine the first disturbance code according to the first disturbance information, and/or determine the second disturbance code according to the second disturbance information; when the first When the similarity between at least one of the disturbance code and the second disturbance code and the disturbance code of the first excitation source terminal is greater than a preset threshold, the processing unit is further configured to determine that the disturbance position of the first excitation source terminal is the second The co-routing position of the first optical path and the second optical path.
  • code-based detection can effectively resist environmental interference, and improve the efficiency and accuracy of same-route detection.
  • the above-mentioned method of judging whether multiple optical paths have the same route at the disturbance position of the excitation source terminal according to the disturbance code and/or disturbance echo can be used independently or in combination. limited.
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed on the first network element and the second network element, and the first excitation source terminal is deployed on the second network element.
  • the terminal of the first excitation source can be deployed in a tube well, an optical cross box, a fiber splice box, an overhead pole, and the like in the optical path.
  • the transceiver unit is further configured to send request messages to the first optical fiber sensing module and the second optical fiber sensing module, and the request messages are respectively used to request to obtain the first disturbance information and second disturbance information.
  • At least one excitation source terminal includes a second excitation source terminal, a transceiver unit, and is further configured to receive third disturbance information from the first optical fiber sensing module, and receive The fourth disturbance information from the second optical fiber sensing module, the third disturbance information and the fourth disturbance information are obtained after the excitation source disturbance is turned on at the second excitation source terminal, the third disturbance information corresponds to the first optical path, and the fourth disturbance information
  • the information corresponds to the second optical path, the third disturbance information and the fourth disturbance information include disturbance time and disturbance echo signals;
  • the processing unit is also used to generate the first optical fiber geographic information system GIS information according to the first disturbance information and the third disturbance information , and generate the second optical fiber geographic information system GIS information according to the second disturbance information and the fourth disturbance information;
  • the processing unit is also used to determine the first excitation according to the first optical fiber GIS information and the second optical fiber GIS information matching space have similar points
  • the GIS information of the optical fiber geographic information system can be understood as the real geographical location of the optical fiber. For example, the latitude and longitude where the fiber is located.
  • the transceiver unit is further configured to receive at least one disturbance information from the first optical fiber sensing module, the at least one disturbance information is related to at least one excitation within the first range One-to-one correspondence between source terminals, the first range is the range of the first excitation source terminal closest to the target fiber breakage point as the center, and the radius is R, and the target fiber breakage point is detected by the first optical fiber sensing module in the first optical path Broken fiber position; the processing unit is also used to determine at least one second excitation source terminal next hop from the first excitation source terminal according to at least one disturbance information in the first range, and at least one second excitation source terminal is on the first optical path the excitation source terminal.
  • the transceiver unit is further configured to receive at least one disturbance information from the first optical fiber sensing module, the at least one disturbance information is related to at least one excitation within the i-th range One-to-one correspondence between source terminals, the i-th range is the range of the i-th excitation source terminal as the center of the circle, and the radius is R, and the i-th excitation source terminal is the next-hop excitation source terminal of the i-1th excitation source terminal on the first optical path , i is an integer greater than or equal to 2; the processing unit is further configured to determine at least one (i+1)th excitation source terminal next hop from the i-th excitation source terminal according to at least one disturbance information in the i-th range, at least one i-th excitation source terminal +1 The excitation source terminal is the excitation source terminal closest to the third network element on the first optical path.
  • the third network element and the first network element are the starting and ending positions of the first optical path.
  • the first optical fiber sensing module is deployed in The first network element: a processing unit, further configured to update the same route of the first optical path based on the i+1 excitation source terminals.
  • a same-route detection device including: a processing unit, configured to obtain the first disturbance by the first optical fiber sensing module and the second optical fiber sensing module after the excitation source disturbance is turned on at the first excitation source terminal information and second disturbance information, the first disturbance information corresponds to the first optical path, the second disturbance information corresponds to the second optical path, the first disturbance information and the second disturbance information respectively include disturbance echo signals, the first disturbance information and the second The disturbance information is used to determine that the disturbance position of the first excitation source terminal is the co-routing position of the first optical path and the second optical path; Send the first disturbance information and the second disturbance information.
  • the present application is also applicable to identifying and detecting that multiple optical paths have the same routing segment. For example, there is another disturbed position, and the co-route detecting unit determines that the other disturbed position is also a co-routed position of the first optical path and the second optical path according to the above implementation manner. Therefore, it can be considered that the geographical section formed by the two disturbance positions is the same-routing section of the first optical path and the second optical path.
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed at the first network element and the second network element, that is, one network element corresponds to one optical fiber sensing module.
  • multiple optical fiber sensing modules may be deployed at one network element (for example, a first network element), and the network element may (For example, the optical fiber interface unit (fiber interface unit, FIU) port) identification determines the corresponding disturbance information detected by different optical fiber sensing modules, etc.
  • the technical solution of this application does not specifically limit the number of network elements and the number of optical fiber sensing modules .
  • the above is only an exemplary description, and should not constitute any limitation to the technical solution of the present application.
  • multiple optical paths detected by multiple optical fiber sensing modules deployed at the same network element may have the same route or different routes, which is not specifically limited in this application.
  • the acquisition of disturbance echo signals can be understood as: using the working principle of an optical time domain reflectometer (OTDR) to monitor and collect the phase information of light in the optical fiber due to Rayleigh scattering , so as to judge the transmission characteristics of the fiber in each. For example, by detecting the phase of the two optical fibers at the disturbance position of the excitation source terminal, it is further detected whether the two optical paths have the same route at the disturbance position.
  • OTDR optical time domain reflectometer
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed on the first network element and the second network element, and the first excitation source terminal is deployed on the second network element. Any position of the first optical path and/or the second optical path.
  • the terminal of the first excitation source can be deployed in a tube well, an optical cross box, a fiber splice box, an overhead pole, and the like in the optical path.
  • the transceiver unit is also used for the first optical fiber sensing module and the second optical fiber sensing module to receive request messages from the same route detection unit, and the request messages are respectively used In order to request to obtain the first disturbance information and the second disturbance information.
  • a same-route detection device including a processor, and optionally, a memory
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to read from the memory
  • the computer program is invoked and run in the computer program, so that the same route detection unit executes the method in the first aspect or any possible implementation manner of the first aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory can be integrated with the processor, or the memory can be set separately from the processor.
  • the device for detecting the same route further includes a transceiver, which may specifically be a transmitter (transmitter) and a receiver (receiver).
  • a transceiver which may specifically be a transmitter (transmitter) and a receiver (receiver).
  • a same-route detection device including a processor, and optionally, a memory
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to read from the memory
  • the computer program is invoked and run in the computer program, so that the optical fiber sensing module executes the method in the second aspect or any possible implementation manner of the second aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory can be integrated with the processor, or the memory can be set separately from the processor.
  • the device for detecting the same route further includes a transceiver, which may specifically be a transmitter (transmitter) and a receiver (receiver).
  • a transceiver which may specifically be a transmitter (transmitter) and a receiver (receiver).
  • a same-routing detection system including: a same-routing detection unit, configured to execute the method in the above-mentioned first aspect or any possible implementation of the first aspect; and a plurality of optical fiber sensing modules, used to In performing the second aspect or the method in any possible implementation manner of the second aspect.
  • a computer-readable storage medium stores computer programs or codes, and when the computer programs or codes run on a computer, the computer executes the above-mentioned first aspect or the first aspect The method in any possible implementation manner, or causing the computer to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • a chip including at least one processor, the at least one processor is coupled to a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the installed
  • the co-routing detection unit of the chip executes the method in the above-mentioned first aspect or any one of the possible implementations of the first aspect, or makes the optical fiber sensing module installed with the chip execute the above-mentioned second aspect or any one of the possibilities of the second aspect method in the implementation.
  • the chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • a computer program product includes computer program code.
  • the co-routing detection unit When the computer program code is run by the co-routing detection unit, the co-routing detection unit performs the first aspect or any of the first aspects. A method in a possible implementation manner; or, when the computer program code is run by the optical fiber sensing module, the optical fiber sensing module is made to execute the second aspect or the method in any possible implementation manner of the second aspect.
  • a method and device for same-route detection are provided. After the excitation source terminal turns on the excitation source disturbance, by receiving disturbance information from different optical paths, it can quickly and accurately identify whether the disturbance position is different. The same routing position of the optical path.
  • FIG. 1 is a schematic diagram of an example of a communication system to which this application is applied.
  • Fig. 2 is a schematic diagram showing an example of a cross-section of an optical cable to which the present application is applied.
  • Fig. 3 is a schematic diagram of an example of an optical fiber to which this application is applied.
  • FIG. 4 is a schematic diagram of an example of a protection scheme for active and standby paths applicable to the present application.
  • FIG. 5 is a schematic diagram of an example of active and standby paths and routes applicable to the present application.
  • Fig. 6 is a schematic diagram of an example of an optical fiber sharing cable section applicable to the present application.
  • Fig. 7 is a schematic diagram of an example of a same-route detection system device applicable to the present application.
  • FIG. 8 is a schematic diagram of an example of the same route detection method applicable to the present application.
  • FIG. 9 is a schematic diagram of an example of a mechanical wave-based single-point vibration co-routing detection system applicable to the present application.
  • FIG. 10 is a schematic diagram of an example of the same route detection method applicable to the present application.
  • Fig. 11 is a schematic diagram of an example of a vibration code of an excitation source terminal to which this application is applied.
  • Fig. 12 is a schematic diagram of another example of the vibration coding of the excitation source terminal applicable to the present application.
  • Fig. 13 is a schematic diagram of an example of a mechanical wave-based single-point vibration co-routing detection system applicable to the present application.
  • Fig. 14 is a schematic diagram of another example of the same route detection method applicable to the present application.
  • Fig. 15 is a schematic diagram of an example of a network-wide automatic same-route detection system applicable to the present application.
  • Fig. 16 is a schematic diagram of another example of the same route detection method applicable to the present application.
  • Fig. 17 is a schematic diagram of an example of fiber cut/cutover scenario and route detection applicable to the present application.
  • Fig. 18 is a schematic diagram of another example of the same route detection method applicable to the present application.
  • Fig. 19 is a schematic diagram of an example of a same-route detection device to which this application is applied.
  • Fig. 20 is a schematic diagram of another example of the same-route detection device applicable to the present application.
  • optical fiber As an important communication medium, optical fiber has been widely used in high-speed, large-capacity, low-latency communication systems.
  • the optical fiber itself is relatively thin and easy to break, so it cannot be directly used for connection between devices.
  • An optical cable is a cable core composed of a certain number of optical fibers in a certain way.
  • the basic structure of an optical cable includes a cable core, a reinforcing steel wire, a filler, and a protective sheath.
  • the optical cable has a strong protective effect on the optical fiber, making the optical fiber connection equipment have an engineering-realizable solution.
  • Optical fiber communication is a communication method that uses light waves as the carrier and optical fiber as the transmission medium. From the physical structure point of view, the optical fiber can be divided into two parts, namely the near-end fiber and the far-end fiber.
  • the structure between the multiplexing/demultiplexing unit and the optical distribution frame (ODF) is used as the site structure, and the optical fiber used to connect each optical device in the site is used as the near-end optical fiber.
  • the structure between the ODF and the transmission and receiving end is taken as an off-site structure, and the optical fiber used for signal transmission outside the site is used as the remote optical fiber.
  • the embodiments of the present application can be applied to an optical communication system, and are used to detect whether multiple optical fibers have the same route.
  • the optical communication network includes but not limited to: optical transport network (optical transport network, OTN), optical access network (optical access network, OAN), synchronous digital hierarchy (synchronous digital hierarchy, SDH), passive optical network (passive optical network, PON), Ethernet (Ethernet), or flexible Ethernet (flex Ethernet, FlexE), wavelength division multiplexing (wavelength division multiplexing, WDM) network, etc., any one or a combination of more.
  • the optical communication network may include multiple network elements and controllers.
  • the multiple network elements are a sending device A, a sending device B, a receiving device C, and a receiving device D as shown in FIG. 1 .
  • the four network elements here are only illustrative, and more or less devices may be included in an actual application scenario, which is not limited in this application.
  • the sending device A and the receiving device C are connected through an optical fiber, and the sending device B and the receiving device D are also connected through an optical fiber, and the optical fiber is used to transmit data between devices.
  • the controller is connected to the receiving device in the optical communication network, so as to obtain specific information of the optical signal received by the receiving device, such as frequency or phase information. For example, when receiving device C and receiving device D receive the optical signal sent by sending device A and sending device B, they detect the received optical signal to obtain information such as the frequency or phase of the optical signal, and compare the frequency of the optical signal Or phase and other information sent to the controller. The controller is used to determine that the same route exists between the two optical fibers according to the specific information of the optical signal collected by the receiving device.
  • the controller can also be connected with the sending equipment in the optical communication network.
  • the connection between the controller and the receiving device is taken as an example for illustration, and the connection between the controller and the sending device is not limited.
  • the network elements in the optical communication network may have the functions of sending optical signals and receiving optical signals at the same time. Therefore, the sending device in this embodiment of the present application refers to a network element that sends an optical signal, and the receiving device refers to a network element that receives an optical signal. In an actual application scenario, the sending device may also have the function of receiving optical signals, and the receiving device may also have the function of sending optical signals.
  • the same route detection method provided by the present application can be executed by a controller, such as a software defined network (software defined network, SDN) controller or a path computation element (path computation element, PCE), etc., or it can be executed by an optical communication network It is implemented by network elements, which can be adjusted according to actual application scenarios.
  • a controller such as a software defined network (software defined network, SDN) controller or a path computation element (path computation element, PCE), etc.
  • SDN software defined network
  • PCE path computation element
  • An optical fiber is a fiber made of glass or plastic that acts as a light-conducting means for transmitting data between devices.
  • Optical cable A communication cable that transmits optical signals through its internal fiber core to achieve high-capacity information communication. Usually, as the distance increases, the volume and weight of the optical cable also increase. Therefore, if a piece of optical cable cannot transmit data between devices with a long distance, multiple sections of optical cable need to be spliced together.
  • one or more optical fibers may be included in a section of the optical fiber cable, and the one or more optical fibers are wrapped with a protective sleeve or the like.
  • FIG. 2 is a schematic diagram of an example of a cross-section of an optical cable, wherein the optical cable includes a protective sleeve 21, and the protective sleeve 21 is wrapped with four optical fibers 22, namely, optical fiber 1, optical fiber 2, optical fiber 2 in FIG. 3 and fiber 4.
  • optical fibers 22 namely, optical fiber 1, optical fiber 2, optical fiber 2 in FIG. 3 and fiber 4.
  • other components are provided in the optical cable, such as fillers and power cords.
  • This application describes the structural relationship between the optical cable and the optical fiber, and does not limit other components included in the optical cable.
  • optical cable segment The part between the adjacent junction points or splicing points in the optical cable is the use unit of the optical cable.
  • OTS Optical transmission section trail
  • a series of fiber cores connected end to end are the physical route of the optical transmission section path OTS.
  • Fiber interface unit Refers to the optical interface unit on a wavelength division multiplexing (WDM) site.
  • Optical distribution frame ODF It is used for the termination and distribution of backbone optical cables at the central office in the optical fiber communication system, and can conveniently realize the connection, distribution and scheduling of optical fiber lines.
  • Light delivery box It can also be called the optical cable transfer box, which is a passive device used to divide the large logarithmic optical cable into several small logarithmic optical cables in different directions through the optical cable transfer box.
  • Joint box Also known as a splice cassette, it is used to connect multiple lengths of fiber optic cable together.
  • Fig. 3 is a schematic diagram of an example of an optical fiber to which this application is applied.
  • ODF 1, splice box, optical cross box and ODF 2 divide the optical fiber between the sending device and the receiving device into multiple segments, and each segment of optical fiber is located or wrapped in a different optical cable segment, such as ODF
  • the optical fiber between 1 and the splice box is located or wrapped in the optical cable section 1
  • the optical fiber between the splice box and the optical cross box is located or wrapped in the optical cable section 2
  • the optical fiber between the optical cross box and ODF 2 is located or wrapped in the optical cable section 3 .
  • An optical cable segment can be understood as a section of continuous optical cable between two connection points, and there is no fusion point or connection point in this continuous optical cable.
  • an excitation source terminal may be provided on the optical cable section where co-routing detection is required to generate vibration to drive the optical fiber to vibrate.
  • the excitation source terminal can be set at any position of the tube well without the splice box, the splice box, the optical transmission box, the machine room or the optical cable section, so that the excitation source terminal can vibrate, and the disturbance information can be judged by detecting the disturbance information. Whether different optical fibers have the same route at the disturbance location.
  • Optical fiber has become the main communication medium in recent years due to its characteristics of large capacity and low delay, and it is called "information superhighway".
  • countries, operators, and enterprises are investing a lot of money and manpower to build optical cable networks, making the coverage of optical cables show explosive growth.
  • the physical characteristics of the optical fiber itself such as easy to break, easy to break, afraid of fire, and afraid of stress, make fiber failure the biggest hidden danger in the network.
  • an active/standby path protection scheme is usually adopted, that is, there are multiple optical paths connecting two devices.
  • FIG. 4 is a schematic diagram of an example of a protection scheme for active and standby paths applicable to the present application.
  • there are two optical paths connecting device A and device B which are the primary path and the backup path respectively. That is, device A and device B can communicate on the primary path and the backup path respectively. Among them, when the main path fails, the service can be switched to the standby path.
  • This implementation manner can ensure the reliability of communication, and avoid interruption of data transmission between devices caused by fiber failure.
  • the optical cable routes of the two business paths exist in the same cable, in the same ditch (buried), in the same ditch (overhead), in the same optical box or junction box, it is called the same route.
  • the fiber optic cable network is intricate.
  • frequent changes such as digging, cutover, new laying, and rerouting of the optical cable network make it difficult to manage the optical cable network in real time and accurately.
  • GIS geographic information system
  • the connected optical cable needs to be spliced by multiple optical cable segments.
  • a section of optical cable may include multiple optical fibers, and different optical fibers may be transmitted to different devices. It can be understood that different optical fibers lead to different directions, and the optical fibers in the optical cable need to be split.
  • the optical fiber that connects the communication between two sites is called a communication path, and the two communication paths may share the same length of fiber optic cable.
  • communication path 1 is composed of optical cable section 1 and optical cable section 2
  • communication path 2 is composed of optical cable section 2 and optical cable section 3
  • optical cable section 2 is the common optical cable section of communication path 1 and communication path 2
  • the shared optical cable section Hereinafter it may be referred to as the co-cable section.
  • the same cable section of communication path 1 and communication path 2 fails, such as being cut off, bent, squeezed, etc., the communication quality of communication path 1 and communication path 2 will deteriorate or even be interrupted.
  • FIG. 5 is a schematic diagram of an example of active and standby paths and routes applicable to the present application. As shown in Figure 5, there are two optical paths between device A and device B, which are the primary path and the backup path respectively. Wherein, the optical cable 1 and the optical cable 2 corresponding to the two paths are in the same ditch (buried), so the main path and the backup path form the same route.
  • optical cable resources are one of the most important basic resources for operators.
  • optical cable resources include optical distribution frame ODF, optical cable, optical communication, pipeline, pole road, etc., which need to be collected, entered and checked manually.
  • FIG. 6 is a schematic diagram of an example of same-route detection applicable to this application.
  • at least two optical communication devices may be included in the application scenario, for example, sending device A, sending device B, receiving device C, and receiving device D may be included.
  • Device A and device C and device B and device D are connected through optical fibers.
  • Optical path A-C is formed between device A and device C
  • optical path B-D is formed between device B and device D.
  • two adjacent sections of optical cables are usually connected by means of mechanical connectors or fusion fibers.
  • the optical cable route passing by the optical path A-C and the optical path B-D has the same cable (for example, the optical cable section 3), the same optical cross box, and the same junction box.
  • optical fiber connected between the sending device A and the receiving device C can be located or wrapped in the optical cable segment 1, the optical cable segment 3 and the optical cable segment 4, and the optical fiber connected between the sending device B and the receiving device D can be located or wrapped in the optical cable segment 2 , Optical cable section 3 and Optical cable section 5. Therefore, the optical cable section 3 is an optical cable section shared by the optical fiber connected between the sending device A and the receiving device C and the optical fiber connected between the sending device B and the receiving device D.
  • the application scenario may include sending device A, receiving device C, and receiving device D, etc., and the optical fiber connected between sending device A and receiving device C may be located or wrapped in the optical cable section 3 and In the optical cable section 4, the optical fiber connected between the sending device A and the receiving device D may be located or wrapped in the optical cable section 3 and the optical cable section 5, therefore, the optical cable section 3 is the optical fiber and the sending device A connected between the sending device A and the receiving device C.
  • optical cable protects the optical fiber, once the optical cable fails (such as being cut off, bent or squeezed, etc.), all the optical paths passing through the optical cable will fail, resulting in poor communication quality or even interruption. wait. Therefore, in order to improve the reliability of communication, active-standby protection is usually adopted, that is, there are multiple optical fibers connecting two devices. When the main path fails, business data can be switched to the backup path for transmission.
  • path 1 and path 2 composed of optical fibers exist between the sending device and the receiving device.
  • path 1 and path 2 have the same cable section, if the same cable section fails, such as being cut off, bent or squeezed, etc., the transmission of path 1 and path 2 will be interrupted, so that the sending device and the receiving device The data transmission between is affected, even the data cannot be transmitted. Therefore, in order to avoid the risk of the active and standby paths being on the same cable, it is necessary to realize the identification of the same cable section quickly, accurately and adapt to the dynamic changes of the network.
  • an optical fiber may pass through one or more lengths of fiber optic cable. If two optical fibers pass through the same section or sections of optical cable, an optical time domain reflectometer (OTDR) can be used to detect whether the cable characteristics of the two optical fibers are similar, and then determine the co-cable probability of the two optical fibers.
  • ODR optical time domain reflectometer
  • this implementation method can only detect whether two optical fibers are on the same cable, but cannot detect scenarios such as the same ditch/same pole, and the same route, which has certain limitations.
  • a means of optical cable inspection is provided by combining manual inspection with auxiliary tools for inspection.
  • the line inspection analyzer is connected to the inspection cable optical fiber
  • the optical fiber distribution frame ODF is connected to the tube well 1, the tube well 2,..., the tube well n through the optical fiber
  • the mobile terminal is used to display the echo signal of the inspection cable analyzer.
  • the optical cable route is restored by manually tapping the optical cable along the road, and the optical cable route database is established. Since the optical fiber sensing is very sensitive to vibration, when a hammer strikes the manhole cover (for example, tube well 1, tube well 2, . . . , tube well n), the knocking signal can be seen in the echo signal of the optical fiber sensing.
  • the signal displayed by the mobile terminal is the tapping signal at the cable inspection point. If the mobile terminal confirms that a knock signal occurs at the cable inspection point, the marked optical cable passes through the cable inspection point. If there is no signal at the mobile terminal, it cannot be determined whether the optical cable passes through the cable inspection point.
  • the tapping method is easily disturbed and false detection occurs. Moreover, this tapping method requires the operator to have relatively rich discrimination experience, and the operation is difficult. Due to the need for manual presence, the cable inspection efficiency is low and labor costs are high. In addition, after the optical cable is changed, manual presence is still required, and there is a delay in updating, and it is prone to missing updates and slow data updates. In short, the overall scheme has low accuracy and low efficiency. Finally, manual tapping to detect the same route needs to be detected at two sites at the same time, and the same routing point is hit, so the current solution is almost unfeasible.
  • routing separation is a key dynamic factor affecting the reliability of optical communication and thus has been highly valued. Realizing route separation is the prerequisite for active and standby path protection to enhance reliability.
  • optical cable GIS information is mainly collected, entered, and checked manually, the efficiency is low and maintenance costs are high, and the update of optical cables (for example, new construction, cutover, and old demolition) cannot ensure real-time and dynamic adjustment of the business, which is prone to A large number of single-point failures on the same cable caused heavy losses.
  • this application provides an accurate, fast, and adaptable network dynamic change detection method for the same route.
  • a coded scrambling terminal is configured in the same route detection system, so that all optical fibers in the same route will perceive the disturbance Signal.
  • the optical fiber sensing signal is received through optical fiber sensing, and whether the optical fiber contains a specific disturbance signal is analyzed for co-routing detection.
  • "at least one” means one or more than one.
  • "And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character "/" generally indicates that the contextual objects are an "or" relationship.
  • "for indicating” may include both for direct indicating and for indirect indicating.
  • indication information for indicating A it may include that the indication information directly indicates A or indirectly indicates A, but it does not mean that A must be carried in the indication information.
  • specific indication manners may also be various existing indication manners, such as but not limited to, the above indication manners and various combinations thereof.
  • various indication manners reference may be made to the prior art, which will not be repeated herein. It can be known from the above that, for example, when multiple pieces of information of the same type need to be indicated, there may be a situation where different information is indicated in different ways.
  • the required indication method can be selected according to the specific needs.
  • the embodiment of the present application does not limit the selected indication method. In this way, the indication method involved in the embodiment of the present application should be understood as covering the There are various methods by which a party can obtain the information to be indicated.
  • Fig. 7 is a schematic diagram of an example of a same-route detection system device applicable to the present application.
  • the system device includes a fiber optic sensing module, a shared risk link group (SRLG) detection unit for the same route, and an excitation source terminal.
  • SRLG shared risk link group
  • a coded scrambling terminal is placed at the same routing point (for example, common optical box, splice box, same pole, etc.) or the same routing section (for example, the same ditch or the same overhead section)
  • the same routing All fibers will sense the disturbance signal.
  • a fiber optic sensor is deployed at the network element to receive the fiber sensing signal, and the same route detection is performed by analyzing whether the fiber contains a specific disturbance signal.
  • a same-routing SRLG detection unit is deployed on a certain node of the network (for example, a network element, a network cloud engine (NCE), a network management system, etc.) to implement the same-routing SRLG detection.
  • NCE network cloud engine
  • the optical fiber sensing module mainly includes a detection module and a data analysis module.
  • the detection module is used to obtain disturbance echo signals at various points of the optical fiber.
  • the data analysis module is used to determine where the disturbance exists by analyzing the acquired disturbance echo signals at each point of the optical fiber. If there is a disturbance, the disturbance echo signal is reported to the same-routing SRLG detection unit.
  • the distributed optical fiber sensor can realize the sensing technology of continuous distributed detection of vibration and sound field. It utilizes the characteristic that the coherent Rayleigh scattering excited by the narrow linewidth laser in the optical fiber is highly sensitive to strain changes, combined with the principle of the reflectometer, it senses the environmental vibration and sound field information interacting with the optical fiber over a long distance and with high temporal and spatial accuracy. .
  • the same-routing SRLG detection unit mainly includes a control or management module, a data management module, a SRLG detection module, a SRLG management module, and the like.
  • the control or management module is used to control or manage the optical fiber sensing and/or excitation source terminal, and is responsible for enabling, distributing configuration, collecting data of the optical fiber sensing and/or excitation source terminal, etc.
  • the data management module is responsible for collecting data and storing them.
  • the SRLG detection module is used to match whether there are two disturbance echo signals satisfying the similarity threshold according to the disturbance echo signal reported by the optical fiber sensor and the excitation disturbance information and time reported by the excitation source terminal.
  • the SRLG management module is used to manage SRLG addition, failure, change, etc.
  • the excitation source terminal has the basic function of coded perturbation, and can also support the reporting of position GIS information, time information, and remote coding control.
  • the excitation source may adopt mechanical waves and sound waves, and the characteristics of the two or the encoding methods include mechanical vibration waves and sound waves.
  • the frequency range of mechanical vibration waves is usually less than 150Hz, and single-frequency time-domain coding can be used.
  • the frequency range of sound waves is usually 20-20000Hz, and multi-frequency combination encoding can be used. For example, music etc., different music contains different sound spectra.
  • Fig. 8 is a schematic diagram of an example of a co-routing detection method 800 provided by an embodiment of the present application.
  • the method is applied to a co-routing detection system.
  • the detection unit, the multiple optical fiber sensing modules include a first optical fiber sensing module and a second optical fiber sensing module, the at least one excitation source terminal includes a first excitation source terminal, and the specific implementation steps include:
  • the first optical fiber sensing module and the second optical fiber sensing module acquire first disturbance information and second disturbance information.
  • the first disturbance information and the second disturbance information are obtained after the first excitation source terminal turns on the excitation source disturbance, the first disturbance information corresponds to the first optical path, the second disturbance information corresponds to the second optical path, and the first disturbance information and the second disturbance information respectively include disturbance echo signals.
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed at the first network element and the second network element, that is, one network element corresponds to one optical fiber sensing module.
  • multiple optical fiber sensing modules may be deployed at one network element (for example, a first network element), and the network element may (For example, the optical fiber interface unit (fiber interface unit, FIU) port) identification determines the corresponding disturbance information detected by different optical fiber sensing modules, etc.
  • the technical solution of this application does not specifically limit the number of network elements and the number of optical fiber sensing modules .
  • the above is only an exemplary description, and should not constitute any limitation to the technical solution of the present application.
  • multiple optical paths detected by multiple optical fiber sensing modules deployed at the same network element may have the same route or different routes, which is not specifically limited in this application.
  • the acquisition of disturbance echo signals can be understood as: using the working principle of an optical time domain reflectometer (OTDR) to monitor and collect the phase information of light in the optical fiber due to Rayleigh scattering , so as to judge the transmission characteristics of the fiber in each. For example, by detecting the phase of the two optical fibers at the disturbance position of the excitation source terminal, it is further detected whether the two optical paths have the same route at the disturbance position.
  • OTDR optical time domain reflectometer
  • phase OTDR system as a distributed optical fiber sensing system, usually uses a narrow linewidth pulsed laser as the sensing light source, which can respond to phase modulation.
  • a light pulse is injected from one end of the fiber, detected by a photodetector and then scattered to Rayleigh.
  • the light injected into the fiber is strongly coherent, so the output of this sensing system is the result of coherent interference of back Rayleigh scattered light.
  • Phase OTDR obtains the location of the disturbance by measuring the time delay between the injected pulse and the received signal.
  • Phase OTDR has the advantages of high sensitivity, high positioning accuracy, and simple data processing.
  • the first excitation source terminal controls the excitation source disturbance through coding.
  • a coding method is used to control whether the excitation source terminal is activated. For example, when the codeword is 0, it is used to indicate that the disturbance of the source terminal is stopped. When the code word is 1, it is used to indicate that the disturbance of the source terminal is started to be excited.
  • the excitation source of the first excitation source terminal adopts mechanical waves or sound waves.
  • the generation method of the disturbance code of the first excitation source terminal includes: a mechanical wave coding method based on single-frequency time-domain coding and/or an acoustic wave coding method based on multi-frequency combination coding.
  • the optical fiber sensing module will give a vibration detection result once in each detection period (for example, 0.5s) (the detected vibration can be marked as 1, and the non-detected vibration can be marked as 0). Due to the inertia of mechanical vibration start and stop, fast (within 0.5s) start and stop coding is not operable.
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed on the first network element and the second network element, and the first excitation source terminal is deployed on the first optical path and/or the second optical path any position.
  • the terminal of the first excitation source can be deployed in a tube well, an optical cross box, a fiber splice box, an overhead pole, and the like in the optical path.
  • the same-route detection unit sends request messages to the first optical fiber sensing module and the second optical fiber sensing module.
  • the first optical fiber sensing module and the second optical fiber sensing module receive request messages from the same routing detection unit
  • the request message is respectively used to request to acquire the first disturbance information and the second disturbance information.
  • the first optical fiber sensing module and the second optical fiber sensing module respectively send the first disturbance information and the second disturbance information to the same-route detection unit.
  • the same-route detection unit receives the first disturbance information and the second disturbance information from the first optical fiber sensing module and the second optical fiber sensing module respectively.
  • the co-route detection unit determines, according to the first disturbance information and the second disturbance information, that the disturbance position of the first excitation source terminal is the co-route position of the first optical path and the second optical path.
  • the same-route detection unit determines that the disturbance position of the first excitation source terminal is the first optical path and The co-routing location of the second optical path.
  • the same-route detection unit starts the same-route detection after collecting data for a period of time.
  • the specific same-route detection method includes: recording the disturbance echo collected by the first network element as data1, and the disturbance echo collected by the second network element as data2, and the echo similarity is represented by r, namely:
  • r(data1, data2) cov(data1, data2)/sqrt(var(data1)*var(data2))
  • r(a, b) represents the correlation coefficient between a and b
  • cov(a, b) represents the covariance of a and b
  • var(a) represents the variance of a
  • the disturbance position is considered to be the same route position of the first optical path and the second optical path.
  • the same-route detection unit receives third disturbance information from the first excitation source terminal, where the third disturbance information includes at least one of the following information: the disturbance time when the first excitation source terminal turns on the excitation source disturbance , the location of the first excitation source terminal, the disturbance code of the first excitation source terminal; the same route detection unit determines that the disturbance position of the first excitation source terminal is the first The co-routing position of the optical path and the second optical path.
  • the same route detection unit may determine whether the first optical path and the second optical path have the same route at the disturbance position of the excitation source terminal based on the first disturbance information, the second disturbance information and the third disturbance information.
  • the accuracy of this implementation can be further improved.
  • the third disturbance information reported by the excitation source terminal is ideally the same as the first disturbance information, the disturbance time, and the disturbance position in the second disturbance information.
  • the first disturbance information and the second disturbance information are monitored and reported by the first optical fiber sensing module and the second optical fiber sensing module respectively, and the third disturbance information is directly reported by the excitation source terminal.
  • the same route detection unit can determine the first disturbance code and the second disturbance code respectively corresponding to the first optical path and the second optical path according to the first disturbance information and/or the second disturbance information, and can directly obtain from the third disturbance information A third perturbation code.
  • the reporting objects of the first disturbance information, the second disturbance information and the third disturbance information are different, the sources are different, and the specific forms of reporting are also different.
  • the detection unit of the same route determines the first disturbance code according to the first disturbance information, and/or determines the second disturbance code according to the second disturbance information; when the first disturbance code and the second disturbance code When the similarity between at least one disturbance code and the disturbance code of the first excitation source terminal is greater than a preset threshold, the co-route detection unit determines that the disturbance position of the first excitation source terminal is the co-route position of the first optical path and the second optical path.
  • the same-route detection unit starts the same-route detection after collecting data for a period of time.
  • the specific same-route detection method includes: recording the disturbance code extracted by the first network element as code1, the disturbance code extracted by the second network element as code2, the disturbance code reported by the excitation source terminal as code0, and the code similarity is represented by the Levenshtein distance, that is, :
  • levab(code1, code2) 1-ch ⁇ code1, code2>/max(len_code1, len_code2)
  • levab(code1, code0) 1-ch ⁇ code1, code0>/max(len_code1, len_code0)
  • levab(code0, code2) 1-ch ⁇ code0, code2>/max(len_code0, len_code2)
  • levab(a, b) represents the Levenshtein distance between codes a and b
  • ch ⁇ a, b> represents the minimum number of operands from code a to b
  • len_a represents the length of code a
  • the disturbance position is considered to be the same route position of the first optical path and the second optical path.
  • the threshold it can be determined that the disturbance position of the terminal of the excitation source is the co-routing position of the first optical path and the second optical path.
  • code-based detection can effectively resist environmental interference, and improve the efficiency and accuracy of same-route detection.
  • the above-mentioned method of judging whether multiple optical paths have the same route at the disturbance position of the excitation source terminal according to the disturbance code and/or disturbance echo can be used independently or in combination. limited.
  • the technical solution of the present application is also applicable to identifying and detecting that multiple optical paths have the same routing segment. For example, there is another disturbed position, and the co-route detecting unit determines that the other disturbed position is also a co-routed position of the first optical path and the second optical path according to the above implementation manner. Therefore, it can be considered that the geographical section formed by the two disturbance positions is the same-routing section of the first optical path and the second optical path.
  • At least one excitation source terminal includes a second excitation source terminal.
  • the first optical fiber sensing module and the second optical fiber sensing module respectively send the third disturbance information and the fourth disturbance information to the detection unit of the same route.
  • the same route detection unit receives the third disturbance information and the fourth disturbance information from the first optical fiber sensing module and the second optical fiber sensing module respectively,
  • the third disturbance information and the fourth disturbance information are obtained after the second excitation source terminal turns on the excitation source disturbance, the third disturbance information corresponds to the first optical path, the fourth disturbance information corresponds to the second optical path, and the third disturbance information And the fourth disturbance information includes disturbance time and disturbance echo signal.
  • the same route detection unit generates the first optical fiber geographic information system GIS information according to the first disturbance information and the third disturbance information, and generates the second optical fiber geographic information system GIS information according to the second disturbance information and the fourth disturbance information;
  • the same route detection unit determines that the disturbance position of the first excitation source terminal and/or the disturbance position of the second excitation source terminal are the first optical path and the second optical path according to the similar points in the matching space of the first optical fiber GIS information and the second optical fiber GIS information. The same routing position of the two optical paths.
  • the GIS information of the optical fiber geographic information system can be understood as the real geographical location of the optical fiber. For example, the latitude and longitude where the fiber is located.
  • the same-route detection unit receives at least one disturbance information from the first optical fiber sensing module, and the at least one disturbance information is in one-to-one correspondence with at least one excitation source terminal within the first range, and the first range is Taking the terminal of the first excitation source closest to the target fiber breakage point as the center of the circle, the radius is R, and the target fiber breakage point is the fiber breakage position detected by the first optical fiber sensing module in the first optical path; the same route detection unit according to the first At least one piece of disturbance information within a range determines at least one second excitation source terminal next hop from the first excitation source terminal, and the at least one second excitation source terminal is an excitation source terminal on the first optical path.
  • the same route detection unit receives at least one disturbance information from the first optical fiber sensing module, the at least one disturbance information corresponds to at least one excitation source terminal in the i-th range, and the i-th range is the i-th excitation source
  • the terminal is the center of the circle, the radius is the range of R, the i-th excitation source terminal is the next-hop excitation source terminal of the i-1th excitation source terminal on the first optical path, and i is an integer greater than or equal to 2;
  • the same route detection unit according to At least one disturbance information within the i-th range determines at least one (i+1)th excitation source terminal next hop from the i-th excitation source terminal, and at least one (i+1)th excitation source terminal is the closest to the third network element on the first optical path
  • the excitation source terminal, the third network element and the first network element are the starting position and the end position of the first optical path, and the first optical fiber sensing module is deployed in the first network element; the same route detection unit is
  • the first optical path is formed between network element A and network element B.
  • the optical fiber sensing module at network element A can monitor and collect one or more disturbance information, and can determine one or more excitation sources corresponding to the one or more disturbance information
  • the source terminal is deployed on the first optical path. Then, start all the excitation source terminals within the range of the one or more excitation source terminals as the center and R as the radius.
  • the optical fiber sensing module at network element A continues to monitor and collect one or more disturbance information . The disturbance information is monitored and collected sequentially until the latest route of the first optical path between network element A and network element B is formed.
  • the embodiment of the present application provides a same-route identification detection and device. After the first excitation source terminal turns on the excitation source disturbance, by receiving disturbance information from different optical paths, it is judged that the disturbance position is the first optical path and The co-routing position of the second optical path.
  • the method can adapt to the dynamic change of the network, accurately and quickly detect the same route of multiple light paths.
  • FIG. 9 is a schematic diagram of an example of a mechanical wave-based single-point vibration co-routing SRLG detection system applicable to the present application.
  • the system device includes an optical fiber sensing module, a co-routing SRLG detection unit and a mechanical vibration excitation source terminal.
  • an optical path is formed between the network element A1 and the network element B1, and between the network element A2 and the network element B2, and the optical cable routes passed by the two optical paths have the same routing point or the same routing segment.
  • fiber optic sensors are deployed at network elements A1, A2, B1, and B2 to receive fiber sensing signals for analyzing whether the fiber contains a specific disturbance signal, and then perform co-routing detection.
  • a same-routing SRLG detection unit is deployed on a certain node of the network to implement same-routing SRLG detection.
  • the SRLG detection unit of the same route receives the first information reported from the terminal of the mechanical wave vibration excitation source, that is, the disturbance position GIS, disturbance characteristic information, disturbance code #0, disturbance time and other information, and the second information reported from the optical fiber sensing module.
  • Information that is, perceptual disturbance characteristic information such as disturbance code #1, disturbance time, disturbance distance, etc., is used to detect the same route of the two optical paths.
  • FIG. 10 is a schematic diagram of an example of the same route detection method 1000 applicable to the present application.
  • the excitation source uses mechanical waves, and the specific implementation steps include:
  • the excitation source terminal sends first information to the same-routing SRLG detection unit.
  • the same-routing SRLG detection unit receives the first information from the excitation source terminal.
  • the first information includes at least one of the following information: excitation source terminal disturbance position GIS, disturbance time, disturbance code #0 and other information.
  • the cable patrol personnel go to the planned detection point and start the disturbance of the terminal of the mechanical vibration excitation source. Then, the incentive source terminal reports the first information to the same-routing SRLG detection unit, and is used for judging the accuracy of the same-routing SRLG detection in the subsequent step S1050.
  • the same-routing SRLG detection unit includes a network manager, an NCE, and the like.
  • each detection period (for example, 0.5s) of the optical fiber sensing module will give a vibration detection result (for example, the detected vibration can be marked as 1, and the non-detected vibration can be marked as 0). Due to the inertia of mechanical vibration start and stop, fast (within 0.5s) start and stop coding is not operable. Therefore, in the embodiment of the present application, multiple continuous optical fiber sensing detection cycles are used as a disturbance code (for example, 1 for disturbance and 0 for non-disturbance).
  • the specific disturbance code #0 of the mechanical vibration excitation source terminal can be adopted in the following two ways:
  • Mode 1 The time of perturbation encoding (M detection periods)/non-disturbance encoding (N detection periods) is not fixed, and different encodings are generated by controlling the M/N ratio. Wherein, M and N are different positive integers.
  • Fig. 11 is a schematic diagram of an example of a vibration code of an excitation source terminal to which this application is applied.
  • the disturbance code #0 of the excitation source terminal is: 10.
  • 1 represents perturbation
  • 0 represents non-perturbation
  • the corresponding perturbation coding sequence is [11111,00000,11111,...]. That is, in this implementation manner, the duty cycle of perturbation encoding and non-disturbance encoding is 50%.
  • the disturbance code #0 of the excitation source terminal is: 10. Wherein, 1 represents perturbation, 0 represents non-perturbation, and the corresponding perturbation coding sequence is [11111111,00,1111111,...]. That is, in this implementation manner, the duty cycle of perturbation encoding and non-disturbance encoding is 70%.
  • Method 2 The time of perturbed coding (M detection periods)/non-disturbed coding (N detection periods) is fixed, and different codes are generated by using communication coding (for example, code division multiple access CDMA). Wherein, M and N are the same positive integer.
  • Fig. 12 is a schematic diagram of another example of the vibration coding of the excitation source terminal applicable to the present application.
  • the disturbance code #0 of the excitation source terminal is: 11001. Wherein, 1 represents perturbation, 0 represents non-perturbation, and the corresponding perturbation coding sequence is [11111, 11111, 00000, 00000, 11111].
  • the disturbance code #0 of the excitation source terminal is: 10110. Wherein, 1 represents perturbation, 0 represents non-perturbation, and the corresponding perturbation coding sequence is [11111,00000,1111,11111,00000].
  • the same-routing SRLG detection unit sends a request message to the optical fiber sensing module (for example, the first optical fiber sensing module and the second optical fiber sensing module).
  • the optical fiber sensing module for example, the first optical fiber sensing module and the second optical fiber sensing module.
  • the optical fiber sensing module receives the request message from the SRLG detection unit of the same route.
  • the request message is used to request to obtain the second information (ie, the first disturbance information and the second disturbance information).
  • the second message includes disturbance echo signal #0, disturbance time, and the like.
  • the first disturbance information is a disturbance echo signal generated by the first optical path when the excitation source is disturbed
  • the second disturbance information is the disturbance echo signal generated by the second optical path when the excitation source is disturbed.
  • the same-routing SRLG detection unit after receiving the excitation source terminal disturbance information, the same-routing SRLG detection unit sends a data collection request message to all optical fiber sensing modules within its management area.
  • the optical fiber sensing module collects the disturbance echo signal #0 according to the request message.
  • each optical fiber sensing module starts to collect data (for example, disturbance echo signals at each point of the optical fiber) after receiving a data collection request message.
  • the optical fiber sensing module sends the second information to the same-routing SRLG detection unit.
  • the same-routing SRLG detection unit receives the second information from the optical fiber sensing module.
  • the optical fiber sensing module reports the disturbance time, disturbance distance, disturbance echo signal #0 and other information of the disturbance location of the optical fiber to the SRLG detection unit of the same route.
  • the same-routing SRLG detection unit determines the disturbance location as the same-routing location of the first optical path and the second optical path according to the first information and the second information.
  • the same-routing SRLG detection unit starts the same-routing SRLG detection after collecting data (for example, second information) for a period of time.
  • the same route detection unit can determine the first disturbance code and/or the second disturbance code according to the first disturbance information and/or the second disturbance information, and then determine the first disturbance code and/or the second disturbance code Whether the similarity between the codes is greater than the preset threshold, 0 or, by judging whether the similarity between the first disturbance code and/or the second disturbance code and the disturbance code #0 reported by the excitation source terminal is greater than the preset threshold, so as to determine Whether the first optical path and the second optical path have the same route at the disturbance position, this implementation method can double guarantee the accuracy of the SRLG detection of the same route.
  • the code of the disturbance extracted by the recording network element A1 is code1
  • the code of the disturbance extracted by the network element A2 is code2
  • the disturbance code of the mechanical vibration excitation source terminal is code0.
  • the encoding similarity is represented by the levenshtein distance:
  • levab(code1, code2) 1-ch ⁇ code1, code2>/max(len_code1, len_code2)
  • levab(code1, code0) 1-ch ⁇ code1, code0>/max(len_code1, len_code0)
  • levab(code2, code0) 1-ch ⁇ code2, code0>/max(len_code2, len_code0)
  • levab(a, b) indicates the Levenshtein distance of encoding a, b, ch ⁇ a, b> indicates the minimum operand from encoding a to b, and len_a indicates the length of encoding a.
  • the preset threshold threshold for example, 0.8
  • the similarity between the first disturbance code and the second disturbance code is greater than 0.8
  • the similarity between the disturbance code #0 of the excitation source terminal is greater than 0.8
  • the co-routing SRLG detection method based on mechanical wave coding can automatically identify co-cable risks and ensure service reliability.
  • the introduction of coding can support multi-point simultaneous detection and improve detection efficiency. Encoding-based detection can effectively overcome environmental interference, and multiple detections can also improve the accuracy of detection results.
  • Fig. 13 is a schematic diagram of an example of a single-point vibration co-routing SRLG detection system based on acoustic waves applicable to the present application.
  • the system device includes an optical fiber sensing module, a co-routing SRLG detection unit and an acoustic vibration excitation source terminal.
  • an optical path is formed between the network element A1 and the network element B1, and between the network element A2 and the network element B2, and the optical cable routes passed by the two optical paths have the same routing point or the same routing segment.
  • fiber optic sensors are deployed at network elements A1, A2, B1, and B2 to receive fiber sensing signals for analyzing whether the fiber contains a specific disturbance signal, and then perform co-routing detection.
  • a same-routing SRLG detection unit is deployed on a certain node of the network to implement same-routing SRLG detection.
  • the same-routing SRLG detection unit receives the first information reported from the acoustic vibration excitation source terminal, namely the disturbance position GIS, disturbance time, disturbance code #1, etc., and the second information reported from the optical fiber sensing module, namely the disturbance time , disturbance echo signal and other information, and carry out the same route detection of multiple optical paths.
  • FIG. 14 is a schematic diagram of another example of the same route detection method 1400 applicable to the present application.
  • the excitation source in this implementation mode uses sound waves, and the specific implementation steps include:
  • the excitation source terminal sends the first information to the same-routing SRLG detection unit.
  • the same-routing SRLG detection unit receives the first information from the excitation source terminal.
  • the first information includes at least one of the following information: disturbance location GIS of the excitation source terminal, disturbance time information, disturbance code #1 and other information.
  • the cable patrol personnel go to the planned detection point and start the disturbance of the terminal of the mechanical vibration excitation source. Then, the incentive source terminal reports the first information to the same-routing SRLG detection unit, and is used for judging the accuracy of the same-routing SRLG detection in the subsequent step S1450.
  • the same-routing SRLG detection unit includes a network manager, an NCE, and the like.
  • the same-routing SRLG detection unit sends a request message to the optical fiber sensing module (for example, the first optical fiber sensing module and the second optical fiber sensing module).
  • the optical fiber sensing module for example, the first optical fiber sensing module and the second optical fiber sensing module.
  • the optical fiber sensing module receives the request message from the SRLG detection unit of the same route.
  • the request message is used to request to obtain the second information (ie, the first disturbance information and the second disturbance information).
  • the second message includes disturbance echo signal #1, disturbance time and so on.
  • the first disturbance information is a disturbance echo signal generated by the first optical path when the excitation source is disturbed
  • the second disturbance information is the disturbance echo signal generated by the second optical path when the excitation source is disturbed.
  • the same-routing SRLG detection unit after receiving the excitation source terminal disturbance information, the same-routing SRLG detection unit sends a data collection request message to all optical fiber sensing modules within its management area.
  • the optical fiber sensing module collects the disturbance echo signal #1 according to the request message.
  • each optical fiber sensing module starts to collect data (for example, disturbance echo signals at each point of the optical fiber) after receiving a data collection request message.
  • the optical fiber sensing module sends the second information to the same-routing SRLG detection unit.
  • the same-routing SRLG detection unit receives the second information from the optical fiber sensing module.
  • the optical fiber sensing module reports the disturbance echo signal #1, disturbance time, disturbance distance and other information of the disturbance location of the optical fiber to the SRLG detection unit of the same route.
  • the same-routing SRLG detection unit determines, according to the first information and the second information, that the disturbance location is the same-routing location of the first optical path and the second optical path.
  • the same-routing SRLG detection unit starts the same-routing SRLG detection after collecting data (for example, second information) for a period of time. Based on the acoustic wave similarity matching algorithm, by judging whether the similarity between multiple disturbance echo signals reported by the optical fiber sensing module is greater than a preset threshold, it is determined whether the first optical path and the second optical path have the same route at the disturbance position.
  • the similarity between the disturbance echo signal reported by the optical fiber sensing module of network element A1 and the disturbance echo signal reported by the optical fiber sensing module of network element A2 is greater than the preset threshold of 0.8, it is considered that the excitation source terminal
  • the location of the disturbance is the same routing location of the two optical fibers (for example, the optical path A1-B1 and the optical path A2-B2).
  • r(data1, data2) cov(data1, data2)/sqrt(var(data1)*var(data2))
  • r(a, b) represents the correlation coefficient of a and b
  • cov(a, b) represents the covariance of a and b
  • var(a) represents the variance of a
  • the similarity r is greater than the preset threshold (for example, 0.8), that is, when the similarity between the first disturbance echo signal and the second disturbance echo signal is greater than 0.8, it is considered that at the detection point (the disturbance position of the excitation source terminal ) exists with the same routing SRLG.
  • the preset threshold threshold for example, 0.8
  • the co-routing SRLG detection method based on acoustic wave coding can automatically identify co-cable risks and ensure service reliability.
  • Fig. 15 is a schematic diagram of an example of a network-wide automatic co-routing SRLG detection system applicable to the present application.
  • the system device includes an optical fiber sensing module, a co-routing SRLG detection unit and an intelligent excitation source terminal set.
  • optical fiber sensing modules A, B, C, and D are vibration sensing units, ODF #1, #3, #7, and #9, tube wells #2, #5, #8, and optical transmission boxes #4, #6
  • An intelligent incentive source terminal is deployed at each location.
  • an intelligent excitation source terminal is deployed at the key physical nodes ODF#1, #3, #7 and #9 of the optical fiber, tube wells #2, #5, #8, and optical cross boxes #4 and #6 , all fibers in the same route will perceive the disturbance signal at the end of the excitation source.
  • Information return/control delivery is carried out between the SRLG detection unit of the same route and the intelligent incentive source terminal.
  • a same-routing SRLG detection unit is deployed on a certain node of the network to implement same-routing SRLG detection.
  • FIG. 16 is a schematic diagram of another example of the same route detection method 1600 applicable to the present application. As shown in Figure 16, this implementation method adopts the automatic co-routing SRLG detection of the entire network and the automatic collection of GIS in the optical cable network.
  • the specific implementation steps include:
  • the same-routing SRLG detection unit delivers configuration information to the set group of intelligent incentive terminals.
  • the set of smart incentive terminals respectively receives the configuration information from the same-routing SRLG detection unit.
  • the configuration information is used to enable the intelligent disturbance excitation source terminal.
  • the set of intelligent excitation terminals is grouped according to three categories: ODF, tube well, and optical transmission box.
  • the SRLG detection unit of the same route sends configuration information to the ODF, the tube well, and the optical communication box respectively.
  • the intelligent incentive source terminal also supports functions such as reporting location GIS information, time information, and remote coding control.
  • the intelligent excitation source terminal configures a disturbance mode according to the configuration information, and starts excitation source disturbance.
  • the smart incentive source terminal sends a response message to the same-routing SRLG detection unit.
  • the same-routing SRLG detection unit receives the response message from the smart incentive source terminal.
  • the response message is used to reply the success or failure of enabling the terminal disturbance of the smart incentive source.
  • the response message may include the ID information (IVT_ID-GIS) sent back to the IVT-GIS, which is used to indicate the location where the smart stimulus source terminal successfully or failed to disturb.
  • IVT_ID-GIS the ID information sent back to the IVT-GIS, which is used to indicate the location where the smart stimulus source terminal successfully or failed to disturb.
  • the same-routing SRLG detection unit waits for a delay to obtain the response success list and failure list.
  • the successful response list may be [IVD_ID1-mod1, IVD_ID2-mod2,...], and the failure list may be associated maintenance orders and the like.
  • the response message may also be one or more of the following information: disturbance feature information, time information, disturbance echo signal, disturbance coding and other information.
  • the same-routing SRLG detection unit sends a request message to the optical fiber sensing modules A-D.
  • the optical fiber sensing modules A-D receive the request message from the SRLG detection unit of the same route.
  • the request message is used to request to collect data, including disturbance feature information, to enable the fiber optic sensor to start detection.
  • each point of the optical fiber disturbs the echo signal, disturbs the code, and so on.
  • the disturbance feature information includes at least one of the following information: disturbance echo signal, disturbance time, disturbance distance and the like.
  • the same-routing SRLG detection unit after receiving the excitation source terminal disturbance information, the same-routing SRLG detection unit sends a data collection request message to all optical fiber sensing modules within its management area.
  • the optical fiber sensing module sends disturbance characteristic information to the same-routing SRLG detection unit.
  • the same-routing SRLG detection unit receives disturbance characteristic information from the optical fiber sensing module.
  • the disturbance feature information includes at least one of the following information: disturbance echo signal, disturbance time, disturbance distance and the like.
  • the optical fiber sensing module collects data according to the request message, that is, the disturbance feature information, and then determines the location of the disturbance in the optical fiber.
  • the same-routing SRLG detection unit preprocesses the fiber routing node set to generate corresponding fiber GIS information.
  • the preprocessing may include denoising, upstream and downstream association, etc., which are not specifically limited in this application.
  • the same-routing SRLG detection unit generates a same-routing SRLG detection for the entire network according to whether there are similar points in the optical fiber GIS information matching space.
  • the present application provides an efficient and accurate automatic co-cable SRLG detection method, which reduces manual presence, realizes multi-point simultaneous detection, and greatly improves detection efficiency.
  • Fig. 17 is a schematic diagram of an example of fiber cut/cutover scenario and route detection applicable to the present application.
  • the device includes an optical fiber sensing module, a co-routing detection unit and a tube well/optical transmission box.
  • optical fiber sensing modules A, B, C and D are vibration sensing units, and an intelligent excitation source terminal is deployed at the tube well/optical transmission box.
  • an intelligent excitation source terminal is deployed at the tube well/optical box of the key physical node of the optical fiber, and all optical fibers in the same route will sense the disturbance signal of the excitation source terminal.
  • the dotted line part is the optical path path between the optical fiber sensing modules A and B before cutover
  • the solid line part is the optical path path after cutover.
  • Fig. 18 is a schematic diagram of another example of the same route detection method applicable to the present application. As shown in Figure 18, this implementation method performs same-routing detection for the fiber cut/cutover scenario, and the specific implementation steps include:
  • Network element A reports a service power loss (power loss) alarm, and starts optical fiber sensing/OTDR to detect the position of the broken fiber relative to the site (for example, site A).
  • site for example, site A
  • NCE sends configuration information (including code pattern generation) to the tube well/optical switch to start the disturbance excitation source terminal and collect a list of successful startups.
  • the optical fiber sensing at site A detects whether there is a matching code pattern in the tube well/optical intersection within the radius R with point a as the center. And confirm that point b is the next hop from point a, and close the intelligent disturbance excitation source terminal started in the above step S1830.
  • this application provides an efficient and accurate method for collecting optical fiber GIS information and automatic co-cable SRLG detection, which reduces manual presence, realizes multi-point simultaneous detection, and greatly improves detection efficiency.
  • detection and emergency repair can be quickly started to ensure the real-time performance of optical fiber GIS information.
  • the present application provides a co-routing SRLG detection method based on mechanical waves/acoustic waves, which can automatically identify co-cable risks and ensure service reliability. It also provides an efficient and accurate automatic co-cable SRLG detection method/method for collecting optical fiber GIS information, which can reduce manual presence and change from manual point-by-point exclusion to remote control operation.
  • multi-point simultaneous detection can be realized, and the efficiency is greatly improved; environmental interference can be effectively overcome, and multiple detections can improve the accuracy of the results.
  • the optical fiber route changes or the optical fiber fails it can quickly locate the location of the fault according to the optical fiber GIS, quickly start detection and accurate repair, and ensure the real-time performance of optical fiber GIS information.
  • real-time and accurate optical fiber GIS information/co-routing SRLG detection can ensure the beneficial effects of fiber resource management, co-routing detection, and service path planning.
  • FIG. 19 is a schematic diagram of an example of a device for detecting the same route provided by an embodiment of the present application.
  • the apparatus 1000 may include a processing unit 1100 and a transceiver unit 1200 .
  • the device 1000 may correspond to the same-routing detection unit in the method embodiments above, for example, it may be a same-routing detection unit, or a component configured in the same-routing detection unit (such as a circuit, a chip or a chip system, etc. ).
  • the transceiver unit 1200 is configured to receive the first disturbance information from the first optical fiber sensing module with the route detection unit, and receive the second disturbance information from the second optical fiber sensing module, the first disturbance information and the second disturbance information
  • the disturbance information is obtained after the first excitation source terminal turns on the excitation source disturbance, the first disturbance information corresponds to the first optical path, the second disturbance information corresponds to the second optical path, and the first disturbance information and the second disturbance information respectively include the disturbance return wave signal;
  • the processing unit 1100 is configured for the same-route detection unit to determine, according to the first disturbance information and the second disturbance information, that the disturbance position of the first excitation source terminal is the same-route position of the first optical path and the second optical path.
  • the first excitation source terminal controls the excitation source disturbance through coding.
  • the excitation source of the first excitation source terminal uses mechanical waves or sound waves.
  • the method for generating the disturbance code of the first excitation source terminal includes: a mechanical wave coding method based on single-frequency time-domain coding and/or an acoustic wave coding method based on multi-frequency combination coding.
  • the processing unit 1100 is further configured to, when the similarity between the disturbance echo signals of the first disturbance information and the second disturbance information is greater than a preset threshold, determine the disturbance position of the first excitation source terminal with the routing detection unit is the co-routing position of the first optical path and the second optical path.
  • the transceiver unit 1200 is also configured to receive third disturbance information from the first excitation source terminal with the route detection unit, where the third disturbance information includes at least one of the following information: the disturbance that the first excitation source terminal turns on the excitation source disturbance Time, the location of the first excitation source terminal, and the disturbance code of the first excitation source terminal;
  • the processing unit 1100 is further configured for the co-route detection unit to determine the disturbance position of the first excitation source terminal as the co-route position of the first optical path and the second optical path according to the first disturbance information, the second disturbance information and the third disturbance information.
  • the processing unit 1100 is further configured to determine the first disturbance code according to the first disturbance information with the routing detection unit, and/or determine the second disturbance code according to the second disturbance information;
  • the processing unit 1100 is further configured to, when the similarity between at least one of the first disturbance code and the second disturbance code and the disturbance code of the first excitation source terminal is greater than a preset threshold, determine the first The disturbance position of the excitation source terminal is the co-routing position of the first optical path and the second optical path.
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed in the first network element and the second network element, and the first excitation source terminal is deployed in any position of the first optical path and/or the second optical path.
  • the apparatus 1000 may correspond to the same-routing detection unit in the method according to the embodiment of the present application, and the apparatus 1000 may include a unit for performing the method performed by the same-routing detection unit in the method of the embodiment of the present application.
  • each unit in the device 1000 and other operations and/or functions described above are respectively intended to implement a corresponding flow of the method in the embodiment of the present application.
  • the transceiver unit 1200 in the device 1000 can be implemented by a transceiver, for example, it can correspond to the transceiver 2020 in the device 2000 shown in FIG.
  • the processing unit 1100 of can be implemented by at least one processor, for example, it can correspond to the processor 2010 in the device 2000 shown in FIG. 20 .
  • the transceiver unit 1200 in the device 1000 can be realized through an input/output interface, a circuit, etc., and the processing unit 1100 in the device 1000 can be It is realized by the processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • the device 1000 may correspond to the optical fiber sensing module in the method embodiment above, for example, it may be an optical fiber sensing module, or a component configured in the optical fiber sensing module (such as a circuit, a chip or a chip system, etc. ).
  • the processing unit 1100 is configured to acquire the first disturbance information and the second disturbance information respectively by the first optical fiber sensing module and the second optical fiber sensing module after the excitation source disturbance is turned on at the first excitation source terminal, and the first disturbance The information corresponds to the first optical path, the second disturbance information corresponds to the second optical path, the first disturbance information and the second disturbance information respectively include disturbance echo signals, and the first disturbance information and the second disturbance information are used to determine the terminal of the first excitation source
  • the disturbance position of is the same routing position of the first optical path and the second optical path;
  • the transceiver unit 1200 is used for the first optical fiber sensing module and the second optical fiber sensing module to respectively send the first disturbance information and the second disturbance information to the same-route detection unit.
  • the first optical fiber sensing module and the second optical fiber sensing module are respectively deployed in the first network element and the second network element, and the first excitation source terminal is deployed in any position of the first optical path and/or the second optical path.
  • the transceiver unit 1200 is also used for the first optical fiber sensing module and the second optical fiber sensing module to receive a request message from the detection unit of the same route, and the request message is used to request to obtain the first disturbance information and the second disturbance information respectively .
  • the device 1000 may correspond to the optical fiber sensing module in the method according to the embodiment of the present application, and the device 1000 may include a unit for performing the method performed by the optical fiber sensing module in the method of the embodiment of the present application.
  • each unit in the device 1000 and other operations and/or functions described above are respectively intended to implement a corresponding flow of the method in the embodiment of the present application.
  • the transceiver unit 1200 in the device 1000 can be realized by a transceiver, for example, it can correspond to the transceiver 2020 in the device 2000 shown in FIG.
  • the processing unit 1100 of can be implemented by at least one processor, for example, it can correspond to the processor 2010 in the device 2000 shown in FIG. 20 .
  • the transceiver unit 1200 in the device 1000 can be realized through an input/output interface, a circuit, etc., and the processing unit 1100 in the device 1000 can be It is realized by the processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • Fig. 20 is a schematic diagram of another example of the device for detecting the same route provided by the embodiment of the present application.
  • the device 2000 includes a processor 2010 , a transceiver 2020 and a memory 2030 .
  • the processor 2010, the transceiver 2020 and the memory 2030 communicate with each other through an internal connection path
  • the memory 2030 is used to store instructions
  • the processor 2010 is used to execute the instructions stored in the memory 2030 to control the transceiver 2020 to send signals and /or to receive a signal.
  • the device 2000 may correspond to the optical fiber sensing/co-routing SRLG detection unit/excitation source terminal in the above method embodiments, and may be used to implement the fiber optic sensing/co-routing SRLG detection unit/excitation source terminal in the above method embodiments Various steps and/or processes performed by the source terminal.
  • the memory 2030 may include read-only memory and random-access memory, and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 2030 may be an independent device, or may be integrated in the processor 2010 .
  • the processor 2010 can be used to execute the instructions stored in the memory 2030, and when the processor 2010 executes the instructions stored in the memory, the processor 2010 is used to execute the above-mentioned optical fiber sensing/co-routing SRLG detection unit/excitation source Various steps and/or processes of the method embodiments corresponding to the terminal.
  • the apparatus 2000 is the same-route detection unit in the foregoing embodiments.
  • the transceiver 2020 is configured to receive the first disturbance information from the first optical fiber sensing module, and receive the second disturbance information from the second optical fiber sensing module, the first disturbance information and the second
  • the disturbance information is obtained after the first excitation source terminal turns on the excitation source disturbance, the first disturbance information corresponds to the first optical path, the second disturbance information corresponds to the second optical path, and the first disturbance information and the second disturbance information respectively include the disturbance return wave signal;
  • the processor 2010 is configured for the co-route detection unit to determine, according to the first disturbance information and the second disturbance information, that the disturbance position of the first excitation source terminal is the co-route position of the first optical path and the second optical path.
  • the device 2000 is the optical fiber sensing module in the foregoing embodiments.
  • Processor 2010, configured to obtain first disturbance information and second disturbance information respectively after the excitation source disturbance is turned on at the first excitation source terminal, the first disturbance information and the first disturbance information
  • the optical path corresponds
  • the second disturbance information corresponds to the second optical path
  • the first disturbance information and the second disturbance information respectively include disturbance echo signals
  • the first disturbance information and the second disturbance information are used to determine the disturbance position of the first excitation source terminal as The co-routing position of the first light path and the second light path;
  • the transceiver 2020 is used for the first optical fiber sensing module and the second optical fiber sensing module to respectively send the first disturbance information and the second disturbance information to the detection unit of the same route.
  • the transceiver 2020 may include a transmitter and a receiver.
  • the processor 2010, the memory 2030 and the transceiver 2020 may be devices integrated on different chips.
  • the processor 2010 and the memory 2030 may be integrated in a baseband chip, and the transceiver 2020 may be integrated in a radio frequency chip.
  • the processor 2010, the memory 2030 and the transceiver 2020 may also be devices integrated on the same chip. This application is not limited to this.
  • the device 2000 is a component configured in an optical fiber sensing/co-routing SRLG detection unit/excitation source terminal, such as a circuit, a chip, a chip system, and the like.
  • the transceiver 2020 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 2020, the processor 2010 and the memory 2020 may be integrated into the same chip, such as a baseband chip.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Abstract

本申请实施例提供了一种同路由检测方法,应用于同路由检测系统,包括多个光纤传感模块、至少一个激励源终端和同路由检测单元,该方法包括:同路由检测单元接收来自第一光纤传感模块的第一扰动信息,以及接收来自第二光纤传感模块的第二扰动信息,第一扰动信息和第二扰动信息是在开启激励源扰动后获取的,第一扰动信息与第一光路对应,第二扰动信息与第二光路对应,第一扰动信息和第二扰动信息分别包括扰动回波信号;根据第一扰动信息和第二扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置(S830)。该方法能够自适应网络动态变化,准确、快速地检测多条光路是否同路由。

Description

同路由检测方法和装置
本申请要求于2021年11月11日提交中国国家知识产权局、申请号202111331122.5、申请名称为“同路由检测方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,并且更具体地,涉及一种同路由检测方法和装置。
背景技术
当前,光纤作为光通信系统中的重要传输媒介而广受关注。其中,光缆、管道、杆线等外线资源是光路网络管理的重点。当两条业务途径的光缆路由存在同缆、同沟(埋地)/同沟(架空)、同光交箱/接头盒的时候被称为同路由。
随着光缆数量倍增、光缆网错综复杂,并且光缆网经常变更(挖断、割接、新铺、改路等)等,使得光缆网实时、准确地管理非常困难。当管理面维护的地理信息系统(geographic information system,GIS)信息与真实物理GIS信息不一致的时候,就会造成规划的主备路径出现同路由。
由于同路由的两条路径在物理空间相距较近,一条路径出现故障时,通常伴随着另一条路径也同时出现故障(例如,同沟的两根光缆被挖掘机挖断)。主备路径具有同路由段后,具有很高的同时中断风险。当风险发生后,主备保护将彻底失效,无法起到保护作用,影响业务的可靠性、可用率。
因此,如何能够自适应网络动态变化、准确、快速地检测多条光路的同路由是亟待解决的问题。
发明内容
本申请实施例提供一种同路由识别检测和装置,能够自适应网络动态变化、准确、快速地检测多条光路的同路由。
第一方面,提供了一种同路由检测方法,应用于同路由检测系统,该同路由检测系统包括多个光纤传感模块、至少一个激励源终端和同路由检测单元,该多个光纤传感模块包括第一光纤传感模块和第二光纤传感模块,该至少一个激励源终端包括第一激励源终端,该方法包括:同路由检测单元接收来自第一光纤传感模块的第一扰动信息,以及接收来自第二光纤传感模块的第二扰动信息,第一扰动信息和第二扰动信息是在第一激励源终端开启激励源扰动后获取的,第一扰动信息与第一光路对应,第二扰动信息与第二光路对应,第一扰动信息和第二扰动信息分别包括扰动回波信号;同路由检测单元根据第一扰动信息和第二扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
需要说明的是,该方法可以由同路由检测单元执行,或者,也可以由用于同路由检测单 元的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由同路由检测单元执行为例进行说明。
根据本申请提供的方案,在第一激励源终端开启激励源扰动后,通过接收来自不同光路的扰动信息,进行判断扰动位置即为第一光路和第二光路的同路由位置。基于主动加扰后的光纤传感数据同路由识别方法,能够快速、准确地识别两条光路是否具有同路由。
可选地,本申请同样适用于识别和检测多条光路具有同路由段。例如,存在另一扰动位置,同路由检测单元根据上述实现方式确定该另一扰动位置也为第一光路和第二光路的同路由位置。因此,可以认为这两个扰动位置形成的地理路段即为第一光路和第二光路的同路由段。
应理解,在上述实现方式中,第一网元和第二网元处分别部署第一光纤传感模块和第二光纤传感模块,即一个网元对应一个光纤传感模块。可选地,也可以是一个网元(例如,第一网元)处部署多个光纤传感模块(例如,第一光纤传感模块和第二光纤传感模块),该网元可以根据端口(例如,光纤接口单元(fiber interface unit,FIU)端口)标识确定不同的光纤传感模块检测到的对应的扰动信息等,本申请技术方案对网元数量以及光纤传感模块的数量不作具体限定。以上仅是示例性说明,不应构成对本申请技术方案的任何限定。
还应理解,同一网元处部署的多个光纤传感模块检测的多个光路可以是同路由,也可以是不同路由,本申请对此不作具体限定。
在本申请技术方案中,扰动回波信号的采集可以理解为:利用光时域反射仪(optical time domain reflectometer,OTDR)的工作原理,监测并采集光在光纤中由于瑞利散射产生的相位信息,从而判断光纤在各个的传输特性。例如,通过检测两个光纤在激励源终端的扰动位置处的相位情况,进一步检测该两条光路在扰动位置是否具有同路由。
结合第一方面,在第一方面的某些实现方式中,第一激励源终端通过编码的方式控制激励源扰动。
示例性的,采用编码的方式控制激励源终端是否启动。例如,当码字为0,用于指示停止激励源终端的扰动。当码字为1,用于指示开始激励源终端的扰动。以上仅是示例性说明,不应构成对本申请技术方案的任何限定。
结合第一方面,在第一方面的某些实现方式中,第一激励源终端的激励源采用机械波或声波。
结合第一方面,在第一方面的某些实现方式中,第一激励源终端的扰动编码的生成方式包括:基于单频时域编码的机械波编码方式和/或基于多频率组合编码的声波编码方式。
示例性的,光纤传感模块在每一个检测周期(例如,0.5s)会给出一次振动检测结果(检测到振动可以标识为1、未检测到振动标识为0)。由于机械振动启停有惯性,快速(0.5s时间内)启停编码不具有操作性,本申请技术方案采用将多个连续光纤传感检测周期作为一个振动编码(振动为1,非振动为0),振动编码可以采用两种方式:其一,振动(M个检测周期)/非振动编码(N个检测周期)时间不固定,通过控制M/N占比生成不同编码;其二,振动(M个检测周期)/非振动编码(N个检测周期)时间固定(M=N),采用通信编码(例如,码分多址(code division multiple access,CDMA)等)生成不同编码。
结合第一方面,在第一方面的某些实现方式中,同路由检测单元根据第一扰动信息和第二扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置,包括:当 第一扰动信息和第二扰动信息的扰动回波信号之间的相似度大于预设阈值时,同路由检测单元确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
结合第一方面,在第一方面的某些实现方式中,同路由检测单元接收来自第一激励源终端的第三扰动信息,该第三扰动信息包括以下至少一种信息:第一激励源终端开启激励源扰动的扰动时间、第一激励源终端所在的位置、第一激励源终端的扰动编码;同路由检测单元根据第一扰动信息、第二扰动信息和第三扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
需要说明的是,同路由检测单元可以基于第一扰动信息、第二扰动信息和第三扰动信息,以判断第一光路和第二光路在激励源终端的扰动位置是否具有同路由。该实现方式的准确率能够得到进一步提高。其中,激励源终端上报的第三扰动信息与第一扰动信息、第二扰动信息中扰动时间、扰动位置理想状态下是相同的。
应理解,第一扰动信息、第二扰动信息分别是第一光纤传感模块和第二光纤传感模块监测并上报的,第三扰动信息是激励源终端直接上报的。另外,同路由检测单元可以根据第一扰动信息和/或第二扰动信息确定第一光路和第二光路分别对应的第一扰动编码和第二扰动编码,而从第三扰动信息中可以直接获取第三扰动编码。
换句话说,第一扰动信息、第二扰动信息和第三扰动信息的上报对象不同、来源不同、上报的具体形式也有所不同。
结合第一方面,在第一方面的某些实现方式中,同路由检测单元根据第一扰动信息、第二扰动信息和第三扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置,包括:同路由检测单元根据第一扰动信息确定第一扰动编码,和/或根据第二扰动信息确定第二扰动编码;当第一扰动编码和第二扰动编码中的至少一个扰动编码与第一激励源终端的扰动编码之间的相似度大于预设阈值时,同路由检测单元确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
在该实现方式中,基于编码检测能够有效抵抗环境干扰,提高同路由检测的效率和准确率。
需要说明的是,上述根据扰动编码和/或扰动回波判断多条光路在激励源终端的扰动位置是否具有同路由的方式,可以独立使用,也可以组合使用,本申请技术方案对此不作具体限定。
结合第一方面,在第一方面的某些实现方式中,第一光纤传感模块和第二光纤传感模块分别部署在第一网元和第二网元,第一激励源终端部署在第一光路和/或第二光路的任意位置。
示例性的,第一激励源终端可以部署在光路的管井、光交箱、熔纤盒、架空杆等位置。
结合第一方面,在第一方面的某些实现方式中,同路由检测单元向第一光纤传感模块和第二光纤传感模块发送请求消息,该请求消息分别用于请求获取第一扰动信息和第二扰动信息。
结合第一方面,在第一方面的某些实现方式中,至少一个激励源终端包括第二激励源终端,该方法还包括:同路由检测单元接收来自第一光纤传感模块的第三扰动信息,以及接收来自第二光纤传感模块的第四扰动信息,第三扰动信息和第四扰动信息是在第二激励源终端开启激励源扰动后获取的,第三扰动信息与第一光路对应,第四扰动信息与第二光路对应,第三扰动信息和第四扰动信息包括扰动时间和扰动回波信号;同路由检测单元根据第一扰动 信息和第三扰动信息生成第一光纤地理信息系统GIS信息,以及根据第二扰动信息和第四扰动信息生成第二光纤地理信息系统GIS信息;同路由检测单元根据第一光纤GIS信息和第二光纤GIS信息匹配空间具有相近点,确定第一激励源终端的扰动位置和/或第二激励源终端的扰动位置为第一光路和第二光路的同路由位置。
其中,光纤地理信息系统GIS信息可以理解为光纤的真实地理位置。例如,光纤所在的经纬度。
在该实现方式中,通过确定多条光路上部署的多个激励源终端,并检测多条光路在多个扰动位置是否具有同路由,来实现全网自动同路由的识别,支持多点同时检测,效率倍增。
结合第一方面,在第一方面的某些实现方式中,同路由检测单元接收来自第一光纤传感模块的至少一个扰动信息,该至少一个扰动信息与第一范围内的至少一个激励源终端一一对应,第一范围是以距离目标断纤点最近的第一激励源终端为圆心,半径为R的范围,目标断纤点是第一光纤传感模块在第一光路检测到的断纤位置;同路由检测单元根据第一范围内至少一个扰动信息确定从第一激励源终端下一跳的至少一个第二激励源终端,至少一个第二激励源终端是第一光路上的激励源终端。
结合第一方面,在第一方面的某些实现方式中,同路由检测单元接收来自第一光纤传感模块的至少一个扰动信息,该至少一个扰动信息与第i范围内的至少一个激励源终端一一对应,第i范围是以第i激励源终端为圆心,半径为R的范围,第i激励源终端是第一光路上第i-1激励源终端的下一跳的激励源终端,i为大于或等于2的整数;同路由检测单元根据第i范围内至少一个扰动信息确定从第i激励源终端下一跳的至少一个第i+1激励源终端,至少一个第i+1激励源终端是第一光路上距离第三网元最近的激励源终端,第三网元与第一网元是第一光路的起始位置和结束位置,第一光纤传感模块部署在第一网元;同路由检测单元基于i+1个激励源终端更新第一光路的同路由。
在该实现方式中,提供了一种在断纤或割接场景下,同路由检测以及更新的方法。
第二方面,提供了一种同路由检测方法,应用于同路由检测系统,同路由检测系统包括多个光纤传感模块、至少一个激励源终端和同路由检测单元,多个光纤传感模块包括第一光纤传感模块和第二光纤传感模块,至少一个激励源终端包括第一激励源终端,该方法包括:在第一激励源终端开启激励源扰动后,第一光纤传感模块和第二光纤传感模块分别获取第一扰动信息和第二扰动信息,第一扰动信息与第一光路对应,第二扰动信息与第二光路对应,第一扰动信息和第二扰动信息分别包括扰动回波信号,第一扰动信息和第二扰动信息用于确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置;第一光纤传感模块和第二光纤传感模块分别向同路由检测单元发送第一扰动信息和第二扰动信息。
需要说明的是,该方法可以由光纤传感模块(例如,第一光纤传感模块和第二光纤传感模块)执行,或者,也可以由用于光纤传感模块的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由光纤传感模块执行为例进行说明。
根据本申请提供的方案,通过在第一激励源终端开启激励源扰动后,通过接收来自不同光路的扰动信息,进行判断扰动位置即为第一光路和第二光路的同路由位置。提供一种基于主动加扰后的光纤传感数据同路由识别方法,能够快速、准确地识别两条光路是否具有同路由。
可选地,本申请同样适用于识别和检测多条光路具有同路由段。例如,存在另一扰动位 置,同路由检测单元根据上述实现方式确定该另一扰动位置也为第一光路和第二光路的同路由位置。因此,可以认为这两个扰动位置形成的地理路段即为第一光路和第二光路的同路由段。
应理解,在上述实现方式中,第一网元和第二网元处分别部署第一光纤传感模块和第二光纤传感模块,即一个网元对应一个光纤传感模块。可选地,也可以是一个网元(例如,第一网元)处部署多个光纤传感模块(例如,第一光纤传感模块和第二光纤传感模块),该网元可以根据端口(例如,光纤接口单元(fiber interface unit,FIU)端口)标识确定不同的光纤传感模块检测到的对应的扰动信息等,本申请技术方案对网元数量以及光纤传感模块的数量不作具体限定。以上仅是示例性说明,不应构成对本申请技术方案的任何限定。
还应理解,同一网元处部署的多个光纤传感模块检测的多个光路可以是同路由,也可以是不同路由,本申请对此不作具体限定。
在本申请技术方案中,扰动回波信号的采集可以理解为:利用光时域反射仪(optical time domain reflectometer,OTDR)的工作原理,监测并采集光在光纤中由于瑞利散射产生的相位信息,从而判断光纤在各个的传输特性。例如,通过检测两个光纤在激励源终端的扰动位置处的相位情况,进一步检测该两条光路在扰动位置是否具有同路由。
结合第二方面,在第二方面的某些实现方式中,第一光纤传感模块和第二光纤传感模块分别部署在第一网元和第二网元,第一激励源终端部署在第一光路和/或所述第二光路的任意位置。
示例性的,第一激励源终端可以部署在光路的管井、光交箱、熔纤盒、架空杆等位置。结合第二方面,在第二方面的某些实现方式中,第一光纤传感模块和第二光纤传感模块接收来自同路由检测单元的请求消息,该请求消息分别用于请求获取第一扰动信息和第二扰动信息。
第三方面,提供了一种同路由检测装置,包括:收发单元,用于接收来自第一光纤传感模块的第一扰动信息,以及接收来自第二光纤传感模块的第二扰动信息,第一扰动信息和第二扰动信息是在第一激励源终端开启激励源扰动后获取的,第一扰动信息与第一光路对应,第二扰动信息与第二光路对应,第一扰动信息和第二扰动信息分别包括扰动回波信号;处理单元,用于根据第一扰动信息和第二扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
可选地,本申请同样适用于识别和检测多条光路具有同路由段。例如,存在另一扰动位置,同路由检测单元根据上述实现方式确定该另一扰动位置也为第一光路和第二光路的同路由位置。因此,可以认为这两个扰动位置形成的地理路段即为第一光路和第二光路的同路由段。
应理解,在上述实现方式中,第一网元和第二网元处分别部署第一光纤传感模块和第二光纤传感模块,即一个网元对应一个光纤传感模块。可选地,也可以是一个网元(例如,第一网元)处部署多个光纤传感模块(例如,第一光纤传感模块和第二光纤传感模块),该网元可以根据端口(例如,光纤接口单元(fiber interface unit,FIU)端口)标识确定不同的光纤传感模块检测到的对应的扰动信息等,本申请技术方案对网元数量以及光纤传感模块的数量不作具体限定。以上仅是示例性说明,不应构成对本申请技术方案的任何限定。
还应理解,同一网元处部署的多个光纤传感模块检测的多个光路可以是同路由,也可以 是不同路由,本申请对此不作具体限定。
在本申请技术方案中,扰动回波信号的采集可以理解为:利用光时域反射仪(optical time domain reflectometer,OTDR)的工作原理,监测并采集光在光纤中由于瑞利散射产生的相位信息,从而判断光纤在各个的传输特性。例如,通过检测两个光纤在激励源终端的扰动位置处的相位情况,进一步检测该两条光路在扰动位置是否具有同路由。结合第三方面,在第三方面的某些实现方式中,第一激励源终端通过编码的方式控制激励源扰动。
示例性的,采用编码的方式控制激励源终端是否启动。例如,当码字为0,用于指示停止激励源终端的扰动。当码字为1,用于指示开始激励源终端的扰动。以上仅是示例性说明,不应构成对本申请技术方案的任何限定。
结合第三方面,在第三方面的某些实现方式中,第一激励源终端的激励源采用机械波或声波。
结合第三方面,在第三方面的某些实现方式中,第一激励源终端的扰动编码的生成方式包括:基于单频时域编码的机械波编码方式和/或基于多频率组合编码的声波编码方式。
示例性的,光纤传感模块在每一个检测周期(例如,0.5s)会给出一次振动检测结果(检测到振动可以标识为1、未检测到振动标识为0)。由于机械振动启停有惯性,快速(0.5s时间内)启停编码不具有操作性,本申请技术方案采用将多个连续光纤传感检测周期作为一个振动编码(振动为1,非振动为0),振动编码可以采用两种方式:其一,振动(M个检测周期)/非振动编码(N个检测周期)时间不固定,通过控制M/N占比生成不同编码;其二,振动(M个检测周期)/非振动编码(N个检测周期)时间固定(M=N),采用通信编码(例如,码分多址CDMA)生成不同的编码。
结合第三方面,在第三方面的某些实现方式中,当第一扰动信息和第二扰动信息的扰动回波信号之间的相似度大于预设阈值时,处理单元,还用于确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
结合第三方面,在第三方面的某些实现方式中,收发单元,还用于接收来自第一激励源终端的第三扰动信息,该第三扰动信息包括以下至少一种信息:第一激励源终端开启激励源扰动的扰动时间、第一激励源终端所在的位置、第一激励源终端的扰动编码;处理单元,还用于根据第一扰动信息、第二扰动信息和第三扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
需要说明的是,同路由检测单元可以基于第一扰动信息、第二扰动信息和第三扰动信息,以判断第一光路和第二光路在激励源终端的扰动位置是否具有同路由。该实现方式的准确率能够得到进一步提高。其中,激励源终端上报的第三扰动信息与第一扰动信息、第二扰动信息中扰动时间、扰动位置理想状态下是相同的。
应理解,第一扰动信息、第二扰动信息分别是第一光纤传感模块和第二光纤传感模块监测并上报的,第三扰动信息是激励源终端直接上报的。另外,同路由检测单元可以根据第一扰动信息和/或第二扰动信息确定第一光路和第二光路分别对应的第一扰动编码和第二扰动编码,而从第三扰动信息中可以直接获取第三扰动编码。
换句话说,第一扰动信息、第二扰动信息和第三扰动信息的上报对象不同、来源不同、上报的具体形式也有所不同。
结合第三方面,在第三方面的某些实现方式中,处理单元,还用于根据第一扰动信息确 定第一扰动编码,和/或根据第二扰动信息确定第二扰动编码;当第一扰动编码和第二扰动编码中的至少一个扰动编码与第一激励源终端的扰动编码之间的相似度大于预设阈值时,处理单元,还用于确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
在该实现方式中,基于编码检测能够有效抵抗环境干扰,提高同路由检测的效率和准确率。
需要说明的是,上述根据扰动编码和/或扰动回波判断多条光路在激励源终端的扰动位置是否具有同路由的方式,可以独立使用,也可以组合使用,本申请技术方案对此不作具体限定。
结合第三方面,在第三方面的某些实现方式中,第一光纤传感模块和第二光纤传感模块分别部署在第一网元和第二网元,第一激励源终端部署在第一光路和/或第二光路的任意位置。
示例性的,第一激励源终端可以部署在光路的管井、光交箱、熔纤盒、架空杆等位置。
结合第三方面,在第三方面的某些实现方式中,收发单元,还用于向第一光纤传感模块和第二光纤传感模块发送请求消息,该请求消息分别用于请求获取第一扰动信息和第二扰动信息。
结合第三方面,在第三方面的某些实现方式中,至少一个激励源终端包括第二激励源终端,收发单元,还用于接收来自第一光纤传感模块的第三扰动信息,以及接收来自第二光纤传感模块的第四扰动信息,第三扰动信息和第四扰动信息是在第二激励源终端开启激励源扰动后获取的,第三扰动信息与第一光路对应,第四扰动信息与第二光路对应,第三扰动信息和第四扰动信息包括扰动时间和扰动回波信号;处理单元,还用于根据第一扰动信息和第三扰动信息生成第一光纤地理信息系统GIS信息,以及根据第二扰动信息和第四扰动信息生成第二光纤地理信息系统GIS信息;处理单元,还用于根据第一光纤GIS信息和第二光纤GIS信息匹配空间具有相近点,确定第一激励源终端的扰动位置和/或第二激励源终端的扰动位置为第一光路和第二光路的同路由位置。
其中,光纤地理信息系统GIS信息可以理解为光纤的真实地理位置。例如,光纤所在的经纬度。
在该实现方式中,通过确定多条光路上部署的多个激励源终端,并检测多条光路在多个扰动位置是否具有同路由,来实现全网自动同路由的识别,支持多点同时检测,效率倍增。
结合第三方面,在第三方面的某些实现方式中,收发单元,还用于接收来自第一光纤传感模块的至少一个扰动信息,该至少一个扰动信息与第一范围内的至少一个激励源终端一一对应,第一范围是以距离目标断纤点最近的第一激励源终端为圆心,半径为R的范围,目标断纤点是第一光纤传感模块在第一光路检测到的断纤位置;处理单元,还用于根据第一范围内至少一个扰动信息确定从第一激励源终端下一跳的至少一个第二激励源终端,至少一个第二激励源终端是第一光路上的激励源终端。
结合第三方面,在第三方面的某些实现方式中,收发单元,还用于接收来自第一光纤传感模块的至少一个扰动信息,该至少一个扰动信息与第i范围内的至少一个激励源终端一一对应,第i范围是以第i激励源终端为圆心,半径为R的范围,第i激励源终端是第一光路上第i-1激励源终端的下一跳的激励源终端,i为大于或等于2的整数;处理单元,还用于根据第i范围内至少一个扰动信息确定从第i激励源终端下一跳的至少一个第i+1激励源终端,至少一个第i+1激励源终端是第一光路上距离第三网元最近的激励源终端,第三网元与第一网 元是第一光路的起始位置和结束位置,第一光纤传感模块部署在第一网元;处理单元,还用于基于i+1个激励源终端更新第一光路的同路由。
在该实现方式中,提供了一种在断纤或割接场景下,同路由检测以及更新的方法。
第四方面,提供了一种同路由检测装置,包括:处理单元,用于在第一激励源终端开启激励源扰动后,第一光纤传感模块和第二光纤传感模块分别获取第一扰动信息和第二扰动信息,第一扰动信息与第一光路对应,第二扰动信息与第二光路对应,第一扰动信息和第二扰动信息分别包括扰动回波信号,第一扰动信息和第二扰动信息用于确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置;收发单元,用于第一光纤传感模块和第二光纤传感模块分别向同路由检测单元发送第一扰动信息和第二扰动信息。
可选地,本申请同样适用于识别和检测多条光路具有同路由段。例如,存在另一扰动位置,同路由检测单元根据上述实现方式确定该另一扰动位置也为第一光路和第二光路的同路由位置。因此,可以认为这两个扰动位置形成的地理路段即为第一光路和第二光路的同路由段。
应理解,在上述实现方式中,第一网元和第二网元处分别部署第一光纤传感模块和第二光纤传感模块,即一个网元对应一个光纤传感模块。可选地,也可以是一个网元(例如,第一网元)处部署多个光纤传感模块(例如,第一光纤传感模块和第二光纤传感模块),该网元可以根据端口(例如,光纤接口单元(fiber interface unit,FIU)端口)标识确定不同的光纤传感模块检测到的对应的扰动信息等,本申请技术方案对网元数量以及光纤传感模块的数量不作具体限定。以上仅是示例性说明,不应构成对本申请技术方案的任何限定。
还应理解,同一网元处部署的多个光纤传感模块检测的多个光路可以是同路由,也可以是不同路由,本申请对此不作具体限定。
在本申请技术方案中,扰动回波信号的采集可以理解为:利用光时域反射仪(optical time domain reflectometer,OTDR)的工作原理,监测并采集光在光纤中由于瑞利散射产生的相位信息,从而判断光纤在各个的传输特性。例如,通过检测两个光纤在激励源终端的扰动位置处的相位情况,进一步检测该两条光路在扰动位置是否具有同路由。
结合第四方面,在第四方面的某些实现方式中,第一光纤传感模块和第二光纤传感模块分别部署在第一网元和第二网元,第一激励源终端部署在第一光路和/或所述第二光路的任意位置。
示例性的,第一激励源终端可以部署在光路的管井、光交箱、熔纤盒、架空杆等位置。
结合第四方面,在第四方面的某些实现方式中,收发单元,还用于第一光纤传感模块和第二光纤传感模块接收来自同路由检测单元的请求消息,该请求消息分别用于请求获取第一扰动信息和第二扰动信息。
第五方面,提供了一种同路由检测装置,包括,处理器,可选地,还包括存储器,该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得同路由检测单元执行上述第一方面或第一方面中任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
可选地,该同路由检测装置还包括收发器,收发器具体可以为发射机(发射器)和接收 机(接收器)。
第六方面,提供了一种同路由检测装置,包括,处理器,可选地,还包括存储器,该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得光纤传感模块执行上述第二方面或第二方面中任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
可选地,该同路由检测装置还包括收发器,收发器具体可以为发射机(发射器)和接收机(接收器)。
第七方面,提供了一种同路由检测系统,包括:同路由检测单元,用于执行上述第一方面或第一方面任一种可能实现方式中的方法;以及多个光纤传感模块,用于执行上述第二方面或第二方面任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或代码,该计算机程序或代码在计算机上运行时,使得该计算机执行上述第一方面或第一方面任一种可能实现方式中的方法,或者使得该计算机执行上述第二方面或第二方面任一种可能实现方式中的方法。
第九方面,提供了一种芯片,包括至少一个处理器,该至少一个处理器与存储器耦合,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片的同路由检测单元执行上述第一方面或第一方面任一种可能实现方式中的方法,或者使得安装有该芯片的光纤传感模块执行上述第二方面或第二方面任一种可能实现方式中的方法。
其中,该芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
第十方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被同路由检测单元运行时,使得该同路由检测单元执行上述第一方面或第一方面任一种可能实现方式中的方法;或者,当该计算机程序代码被光纤传感模块运行时,使得该光纤传感模块执行上述第二方面或第二方面任一种可能实现方式中的方法。
根据本申请实施例的方案,提供了一种同路由检测的方法和装置,在激励源终端开启激励源扰动后,通过接收来自不同光路的扰动信息,能够快速、准确地识别扰动位置是否为不同光路的同路由位置。
附图说明
图1是适用本申请的通信系统的一例示意图。
图2是适用本申请的一种光缆的截面的一例示意图。
图3是适用本申请的一条光纤的一例示意图。
图4是适用本申请的主备路径保护方案的一例示意图。
图5是适用本申请的主备路径同路由的一例示意图。
图6是适用本申请的光纤共用光缆段的一例示意图。
图7是适用本申请的同路由检测系统装置的一例示意图。
图8是适用本申请的同路由检测方法的一例示意图。
图9是适用本申请的基于机械波的单点振动同路由检测系统的一例示意图。
图10是适用本申请的同路由检测方法的一例示意图。
图11是适用本申请的激励源终端振动编码的一例示意图。
图12是适用本申请的激励源终端振动编码的另一例示意图。
图13是适用本申请的基于机械波的单点振动同路由检测系统的一例示意图。
图14是适用本申请的同路由检测方法的另一例示意图。
图15是适用本申请的全网自动同路由检测系统的一例示意图。
图16是适用本申请的同路由检测方法的又一例示意图。
图17是适用本申请的断纤/割接场景同路由检测的一例示意图。
图18是适用本申请的同路由检测方法的又一例示意图。
图19是适用本申请的同路由检测装置的一例示意图。
图20是适用本申请的同路由检测装置的另一例示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
光纤作为重要的通信介质,在高速、大容量、低延时等通信体统中得到了广泛应用。光纤自身比较纤细、易折断,无法直接用于设备间连接。光缆是将一定数量的光纤按照一定方式组成缆芯,光缆的基本结构包括缆芯、加强钢丝、填充物、保护套等几部分。光缆对光纤起到了强有力的保护作用,使得光纤连接设备具有工程可实现方案。
光纤通信是以光波为载体,以光纤为传输媒介的通信方式。从物理结构上看,光纤可以分为两部分,即近端光纤和远端光纤。其中,将合分波单元与光纤配线架(optical distribution frame,ODF)之间作为站点内结构,将站点内用于连接各个光学器件的光纤作为近端光纤。将ODF与传输接收端之间作为站点外结构,将站点外用于传输信号的光纤作为远端光纤。
本申请实施例可以应用于光通信系统,用于检测多条光纤之间是否具有同路由。该光通信网络包括但不限于:光传送网(optical transport network,OTN)、光接入网(optical access network,OAN)、同步数字体系(synchronous digital hierarchy,SDH)、无源光网络(passive optical network,PON)、以太网(Ethernet)、或灵活以太网(flex Ethernet,FlexE)、波分复用(wavelength division multiplexing,WDM)网络等中的任意一种或多种的组合。
下面结合图1中所示的光通信网络,对本申请提供的同路由检测的方法应用的通信系统进行示例性说明。其中,该光通信网络中可以包括多个网元以及控制器。该多个网元如图1中所示的发送设备A、发送设备B、接收设备C和接收设备D等。当然,此处的四个网元仅仅是示例性说明,实际应用场景中可以包括更多或者更少的设备,本申请对此并不作限定。
发送设备A和接收设备C之间通过光纤连接,发送设备B和接收设备D之间也通过光纤连接,光纤用于传输设备之间的数据。
控制器和光通信网络中的接收设备连接,从而获取接收设备接收到的光信号的具体信息,例如频率或相位等信息。例如,当接收设备C和接收设备D接收到发送设备A和发送设备B发送的光信号之后,对接收到的光信号进行检测,得到光信号的频率或相位等信息,并将光信号的频率或相位等信息发送至控制器。控制器用于根据接收设备采集到的光信号的具体信 息,确定两条光纤之间存在同路由。
当然,控制器也可以与光通信网络中的发送设备连接。本申请以下实施方式中,以控制器与接收设备连接为例进行示例性说明,对于控制器与发送设备之间的连接不作限定。并且,光通信网络中的网元,可以同时具备发送光信号和接收光信号的功能。因此,本申请实施例中的发送设备是指发送光信号的网元,接收设备是指接收光信号的网元。在实际应用场景中,发送设备也可以具备接收光信号的功能,接收设备也可以具备发送光信号的功能。
本申请提供的同路由检测的方法可以由控制器执行,例如软件定义网络(software defined network,SDN)控制器或路径计算单元(path computation element,PCE)等执行,也可以由光通信网络中的网元来执行,具体可以根据实际应用场景进行调整。
为便于理解本申请实施例,首先对本申请中涉及的几个术语做简单说明。
1、光纤。光纤是一种由玻璃或塑料制成的纤维,可作为光传导工具,用于传输设备之间传输数据。
2、光缆。一种通信线缆,通过其内部纤芯传播光信号实现大容量信息通信。通常,随着距离的增加,光缆的体积、重量也增加,因此,对一段光缆无法实现距离较远的设备之间的数据传输,需要将多段光缆拼接起来。并且,一段光缆内可以包括一条或多条光纤,该一条或多条光纤外部包裹有保护套管等。
示例性地,图2为一种光缆的横截面的一例示意图,其中,该光缆包括保护套管21,保护套管21内部包裹有四条光纤22,即图2中的光纤1、光纤2、光纤3和光纤4。此外,光缆内还设置有其他部件,例如,填充物以及电源线等,本申请此处对光缆和光纤之间的结构关系进行说明,对光缆所包括的其他部件不作限定。
3、光缆段。光缆中相邻的交接点或接头点之间的部分,是光缆的使用单元。
4、光传送段路径(optical transmission section trail,OTS)。指两个相邻站点之间,以两端FIU单板为起始和终止单板的路径。
5、光路。一系列首尾衔接的纤芯,是光传送段路径OTS的物理路由。
6、光纤接口单元(fiber interface unit,FIU)。指波分复用(wavelength division multiplexing,WDM)站点上的光接口单元。
7、同缆。指任意两个光路通过相同的光缆段。
8、光纤配线架ODF。用于光纤通信系统中局端主干光缆的成端和分配,可方便地实现光纤线路的连接、分配和调度。
9、光交箱。也可以称光缆交接箱,是一个无源设备,用于将大对数的光缆通过光缆交接箱分为不同方向的几个小对数光缆。
10、接头盒。也可以称为熔纤盒,用于将多段光缆连接在一起。
随着设备之间的距离的增加,光缆的体积、重量也增加。因此,一段光缆无法实现距离较远的设备之间的数据传输,需要将多段光缆拼接起来。且因一段光缆的长度有限,多段光缆之间可以通过ODF、光交箱或者接线盒等连接,也可以理解为光交箱或者接线盒等将光缆分为多段光缆段。
图3是适用本申请的一条光纤的一例示意图。如图3所示,ODF 1、接头盒、光交箱和ODF 2将发送设备与接收设备之间的光纤分为多个分段,每段光纤位于或者包裹于不同的光缆段中,如ODF 1和接头盒之间的光纤位于或者包裹于光缆段1,接头盒和光交箱之间的光 纤位于或者包裹于光缆段2,光交箱和ODF 2之间的光纤位于或者包裹于光缆段3。光缆段可以理解为两个连接点之间的一段连续光缆,这段连续的光缆中没有熔接点或者连接点。
可选地,在本申请中,可以在需要进行同路由检测的光缆段设置激励源终端,用于产生振动从而带动光纤振动。例如,结合前述图3,可以在无熔纤盒的管井、接头盒、光交箱、机房或者光缆段的任意一个位置设置激励源终端,从而使激励源终端发生振动,通过检测扰动信息从而判断不同光纤在扰动位置是否存在同路由。
光纤凭借大容量、低延时等特点成为近年来主要的通信媒介,被称作“信息高速公路”。国家、运营商、企业竞相投入大量资金、人力建设光缆网,使得光缆覆盖率呈现爆发式增长。但是,光纤本身的物理特征,例如易折、易断、怕火、怕应力,使得光纤故障成为网络的最大隐患。在光通信系统中,为了获得通信的高可靠性,通常采用主备路径保护方案,即连接两个设备的光路有多条。
图4是适用本申请的主备路径保护方案的一例示意图。如图4所示,连接设备A和设备B的光路有两条,分别是主路径和备路径。即设备A和设备B可以分别在主路径和备路径上通信。其中,当主路径出现故障的时候,可以将业务切到备路径上。该实现方式可以保证通信的可靠性,避免光纤故障引起设备之间数据传输的中断。
需要说明的是,当两条业务途径的光缆路由存在同缆、同沟(埋地)、同沟(架空)、同光交箱或接线盒时,被称为同路由。随着光缆数量倍增,光缆网错综复杂。并且,光缆网挖断、割接、新铺、改路等变更频繁,使得光缆网实时、准确地管理比较困难。当管理面维护的地理信息系统(geographic information system,GIS)信息与真实物理GIS不一致的时候,就会造成规划的主备路径出现同路由的情况。
然而,随着距离的增加,光缆的体积、重量等都随之增,对于远距离传输的设备之间,连接的光缆需要由多段光缆段拼接而成。并且,一段光缆中可能包括了多条光纤,而不同的光纤可能传输至不同的设备,可以理解为不同的光纤通往不同的方向,需要对光缆中的光纤进行分路。
连接两个站点之间通信的光纤称为通信路径,两条通信路径可能共用同一段光缆。例如,若通信路径1由光缆段1和光缆段2组成,通信路径2由光缆段2和光缆段3组成,则光缆段2为通信路径1和通信路径2共同的光缆段,共用的光缆段以下可以称为同缆段。并且,一旦通信路径1和通信路径2的同缆段出现故障,例如被挖断、弯折、挤压等,将导致通信路径1和通信路径2都出现通信质量变差、甚至中断等问题。
图5是适用本申请的主备路径同路由的一例示意图。如图5所示,设备A和设备B之间有两条光路,分别为主路径和备路径。其中,两条路径对应的光缆1和光缆2路由存在同沟(埋地)的情况,因此主路径和备路径之间形成同路由。
应理解,同路由的两条路径的典型特点是在物理空间上相距较近。当其中一条路径出现故障时,通常伴随着另一条路径也同时出现故障。例如,同沟的两根光缆被挖掘机挖断。需要说明的是,当主备路径具有同路由路段后,主备路径具有较高的同时中断的风险。当风险发生后,主备路径保护将彻底失效,无法起到保护作用,进而影响业务的可靠性和可用率。因此,为了避免该风险,一种能够快速适应网络动态变化的识别两条光路是否具有同路由的手段成为迫切需求。
当前,厂商不能自建光缆,均以租赁运营商的光缆为主。光缆资源是运营商最重要的基 础资源之一。其中,光缆资源包括光纤配线架ODF、光缆、光交、管道、杆路等,需要依靠人工进行收集、录入及核对。
由于运营商光缆量大、且一直处于动态变化(例如,新建、割接、拆旧等),人工管理效率低。在租用光纤时,人工检测有无同缆同路由的效率低、耗时长。为了维护高准确、全面的光缆信息,需要的人力成本高、难度大。另外,获取全面、实时、准确的光缆信息很困难,甚至不可能。
图6是适用本申请的同路由检测的一例示意图。如图6的(a)所示,该应用场景中可以包括至少两个光通信设备,例如可以包括发送设备A、发送设备B、接收设备C和接收设备D。设备A和设备C之间以及设备B和设备D之间通过光纤连接。设备A和设备C之间形成光路A-C,设备B和设备D之间形成光路B-D。其中,相邻两段光缆通常采用机械连接头或熔纤的方式连接。光路A-C和光路B-D途经的光缆路由存在同缆(例如,光缆段3)、同光交箱、同接线盒。
发送设备A和接收设备C之间连接的光纤可以位于或者包裹于光缆段1、光缆段3和光缆段4中,发送设备B和接收设备D之间连接的光纤可以位于或者包裹于光缆段2、光缆段3和光缆段5。因此,光缆段3为发送设备A和接收设备C之间连接的光纤和发送设备B和接收设备D之间连接的光纤共用的光缆段。
如图6的(b)所示,该应用场景中可以包括发送设备A、接收设备C和接收设备D等,发送设备A和接收设备C之间连接的光纤可以位于或者包裹于光缆段3和光缆段4中,发送设备A和接收设备D之间连接的光纤可以位于或者包裹于光缆段3和光缆段5,因此,光缆段3为发送设备A和接收设备C之间连接的光纤和发送设备A和接收设备D之间连接的光纤共用的光缆段。
光缆虽然对光纤的起到了保护作用,但是一旦光缆出现故障(例如,被挖断、弯折或挤压等),将会使得经过该光缆的所有光路出现故障,造成通信质量变差、甚至中断等。因此,为了提高通信的可靠性,通常采用主备保护,即连接两个设备之间的光纤有多条,当主路径出现故障时,可以将业务数据切换到备用路径上传输。
如图6的(c)所示,发送设备和接收设备之间存在由光纤组成的路径1和路径2。其中,路径1和路径2存在同缆段,若该同缆段出现故障,例如被挖断、弯折或挤压等,则导致路径1和路径2的传输均中断,使发送设备和接收设备之间的数据传输受到影响,甚至不能传输数据。因此,为了避免主备路径同缆的风险,需要快速、准确且能够适应网络动态变化地实现同缆段的识别。然而,若由人工记录光缆途径的设备信息,需要耗费较大的人力成本,且当光缆中的某些设备或者光缆发生变化或更新时,需要人工进行维护,可能人工无法及时记录更新的设备或者光缆,导致两条光纤之间的共用的光缆段无法及时记录,影响设备之间的数据传输。
然而,当主路径和备用路径同路由时,若共用的光缆段出现故障,例如被挖断、弯折或挤压等,则导致两个设备之间无法传输数据,主备保护失效,主路径和备用路径无法起到保护作用。
应理解,一根光纤可以经过一段或多段光缆。如果两根光纤经过相同的一段或多段光缆时,可以通过光时域反射仪(optical time domain reflectometer,OTDR)检测两根光纤的光缆特征是否相近,进而确定两根光纤的同缆概率。
然而,该实现方式只能检测两根光纤是否同缆,而不能检测同沟/同杆、同路由等场景,具有一定的局限性。
当前,采用人工结合巡缆辅助工具的方式,提供了一种光缆巡缆手段。其中,巡线分析仪接入巡缆光纤,光纤配线架ODF与管井1、管井2、...、管井n通过光纤连接,移动终端用于显示巡缆分析仪回波信号。
在该实现方式中,人工沿路敲击光缆恢复光缆路由,建立光缆路由数据库。由于光纤传感对振动非常敏感,当锤子敲击井盖(例如,管井1、管井2、...、管井n)时,可以在光纤传感回波信号中看到敲击信号。通过在巡缆点反复敲击,且观察移动终端上显示的巡缆分析仪回波信号,来判断移动终端显示的信号是否为该巡缆点处敲击信号。如果移动终端确认在该巡缆点出现敲击信号,则标记光缆经过该巡缆点。如果移动终端未出现信号,则无法确定光缆是否经过该巡缆点。
然而,考虑到自然界中类似敲击的扰动很多,采用敲击方式容易受到干扰,出现误检测的情况。而且,这一敲击方式需要操作者有较为丰富的辨别经验,操作难度大。由于需要人工到场,导致巡缆效率低、人工成本高等问题。另外,在光缆变更后,仍然需要人工到场,更新存在延迟且容易出现漏更新、数据更新慢等。总之,整体方案准确率低、效率不高。最后,人工敲击进行同路由检测需要在两个站点同时检测,并且敲中同路由点,当前方案几乎是不可行的。
综上所述,路由分离是影响光通信可靠性的关键动态因素,因此受到高度重视。实现路由分离,是主备路径保护起到增强可靠性的前提。但是,由于光缆GIS信息主要通过人工收集、录入以及核对,效率低、维护成本高,并且光缆更新(例如,新建、割接、拆旧)不及时将无法保证业务实时、动态地调整,容易发生大量同缆单点故障,造成重大损失。
有鉴于此,本申请提供一种准确、快速、能够适应网络动态变化的同路由检测方法,在同路由检测系统中配置一个有编码的加扰终端,使得同路由中所有的光纤将感知到扰动信号。并通过光纤传感接收光纤传感信号,分析光纤中是否包含特定扰动信号来进行同路由检测。
为了便于理解本申请实施例,作出以下几点说明:
本申请中,“至少一种”是指一种或多种以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中“第一”、“第二”以及各种数字编号指示为了描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息等。
在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其 各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
在本申请实施例中,“当……时”、“在……情况下”以及“如果”等描述均指在某种客观情况下设备会做出相应的处理,并非是限定时间,且也不要求设备在实现时一定要有判断的动作,也不意味着存在其它限定。
下面将结合附图详细说明本申请实施例提供的方法。
图7是适用本申请的同路由检测系统装置的一例示意图。如图7所示,该系统装置包括光纤传感模块、同路由共享风险链路组(shared risk link groups,SRLG)检测单元和激励源终端。具体地,在同路由点(例如,共光交箱、熔纤盒、同杆等)或者同路由段(例如,同沟或同架空段)放置一个有编码的加扰终端时,同路由中所有的光纤将感知到该扰动信号。同时,在网元处部署光纤传感器来接收光纤传感信号,通过分析光纤中是否包含特定扰动信号来进行同路由检测。另外,在网络某一节点(例如,某个网元、网络控制引擎(network cloud engine,NCE)、网管等)上部署同路由SRLG检测单元,来实现同路由SRLG检测。
光纤传感模块主要包括探测模块和数据分析模块。其中,探测模块用于获取光纤各点的扰动回波信号。数据分析模块用于通过分析获取的光纤各点的扰动回波信号,确定什么位置存在扰动。如果有扰动,则将扰动回波信号上报同路由SRLG检测单元。
需要说明的是,分布式光纤传感器可以实现振动和声场连续分布式探测的传感技术。它利用窄线宽激光器在光纤中激发的相干瑞利散射对应变变化高度敏感的特性,结合反射计原理,对与光纤相互作用的环境振动与声场信息进行长距离、高时空精度的感知。。
同路由SRLG检测单元主要包括控制或管理模块、数据管理模块、SRLG检测模块、SRLG管理模块等。其中,控制或管理模块用于控制或管理光纤传感和/或激励源终端,负责使能、下发配置、采集光纤传感和/或激励源终端的数据等。数据管理模块负责采集数据存储等。SRLG检测模块用于根据光纤传感上报的扰动回波信号、以及激励源终端上报的激励扰动信息、时间等,进行匹配是否存在两个扰动回波信号满足相似度阈值。例如,根据扰动回波之间的相似度,以及扰动回波与激励源扰动信息之间的相似度大于预设阈值,进行双重保障同路由SRLG检测准确率。SRLG管理模块用于管理SRLG新增、失效、变更等。
激励源终端具有编码的扰动的基本功能,可以附带支持上报位置GIS信息、时间信息、可远程编码控制等功能。其中,激励源可以采用机械波和声波,二者特点或实现编码方式包括机械振动波和声波。机械振动波的频率范围通常小于150Hz,可以采用单频时域编码。声波的频率范围通常为20-20000Hz,可以采用多频率组合编码。例如,音乐等,不同音乐包含不同声谱。
图8是本申请实施例提供的一种同路由检测方法800的一例示意图,该方法应用于同路由检测系统,该同路由检测系统包括多个光纤传感模块、至少一个激励源终端和同路由检测单元,该多个光纤传感模块包括第一光纤传感模块和第二光纤传感模块,该至少一个激励源终端包括第一激励源终端,具体实现步骤包括:
S810,第一光纤传感模块和第二光纤传感模块获取第一扰动信息和第二扰动信息。其中, 第一扰动信息和第二扰动信息是在第一激励源终端开启激励源扰动后获取的,第一扰动信息与第一光路对应,第二扰动信息与第二光路对应,第一扰动信息和第二扰动信息分别包括扰动回波信号。
应理解,在上述实现方式中,第一网元和第二网元处分别部署第一光纤传感模块和第二光纤传感模块,即一个网元对应一个光纤传感模块。可选地,也可以是一个网元(例如,第一网元)处部署多个光纤传感模块(例如,第一光纤传感模块和第二光纤传感模块),该网元可以根据端口(例如,光纤接口单元(fiber interface unit,FIU)端口)标识确定不同的光纤传感模块检测到的对应的扰动信息等,本申请技术方案对网元数量以及光纤传感模块的数量不作具体限定。以上仅是示例性说明,不应构成对本申请技术方案的任何限定。
还应理解,同一网元处部署的多个光纤传感模块检测的多个光路可以是同路由,也可以是不同路由,本申请对此不作具体限定。
在本申请技术方案中,扰动回波信号的采集可以理解为:利用光时域反射仪(optical time domain reflectometer,OTDR)的工作原理,监测并采集光在光纤中由于瑞利散射产生的相位信息,从而判断光纤在各个的传输特性。例如,通过检测两个光纤在激励源终端的扰动位置处的相位情况,进一步检测该两条光路在扰动位置是否具有同路由。
需要说明的是,相位OTDR系统作为一种分布式光纤传感系统,通常使用窄线宽脉冲激光器作为传感光源,可以响应相位调制。其中,光脉冲从光纤的一端注入,用光探测器探测后向瑞利散射光。注入光纤中的光是强相干的,因此该传感系统的输出是后向瑞利散射光相干干涉的结果。相位OTDR通过测量注入脉冲与接收到的信号之间的时间延迟得到扰动的位置。当光纤线路发生扰动时,相应位置光纤的折射率及长度将会发生变化,这将导致该位置光相位的变化。因为扰动位置的散射光传输到探测器经历的是周期性的相位变化,因此最终相位的变化由于干涉作用将导致光强发生变化,并与扰动位置对应。相位OTDR具有灵敏度高、定位精度高、数据处理简单等优点。
作为示例而非限定,第一激励源终端通过编码的方式控制激励源扰动。
示例性的,采用编码的方式控制激励源终端是否启动。例如,当码字为0,用于指示停止激励源终端的扰动。当码字为1,用于指示开始激励源终端的扰动。以上仅是示例性说明,不应构成对本申请技术方案的任何限定。
在本申请实施例中,第一激励源终端的激励源采用机械波或声波。
作为示例而非限定,第一激励源终端的扰动编码的生成方式包括:基于单频时域编码的机械波编码方式和/或基于多频率组合编码的声波编码方式。
示例性的,光纤传感模块在每一个检测周期(例如,0.5s)会给出一次振动检测结果(检测到振动可以标识为1、未检测到振动标识为0)。由于机械振动启停有惯性,快速(0.5s时间内)启停编码不具有操作性,本申请技术方案采用将多个连续光纤传感检测周期作为一个振动编码(振动为1,非振动为0),振动编码可以采用两种方式:其一,振动(M个检测周期)/非振动编码(N个检测周期)时间不固定,通过控制M/N占比生成不同编码;其二,振动(M个检测周期)/非振动编码(N个检测周期)时间固定(M=N),采用通信编码(例如,码分多址,CDMA)生成不同的编码。
在本申请实施例中,第一光纤传感模块和第二光纤传感模块分别部署在第一网元和第二网元,第一激励源终端部署在第一光路和/或第二光路的任意位置。
示例性的,第一激励源终端可以部署在光路的管井、光交箱、熔纤盒、架空杆等位置。
可选地,同路由检测单元向第一光纤传感模块和第二光纤传感模块发送请求消息。
对应的,第一光纤传感模块和第二光纤传感模块接收来自同路由检测单元的请求消息
其中,该请求消息分别用于请求获取第一扰动信息和第二扰动信息。
S820,第一光纤传感模块和第二光纤传感模块分别向同路由检测单元发送第一扰动信息和第二扰动信息。
对应的,同路由检测单元分别接收来自第一光纤传感模块和第二光纤传感模块的第一扰动信息和第二扰动信息。
S830,同路由检测单元根据第一扰动信息和第二扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
作为示例而非限定,当第一扰动信息和第二扰动信息的扰动回波信号之间的相似度大于预设阈值时,同路由检测单元确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
示例性的,同路由检测单元收集一段时间数据后,启动同路由检测。具体同路由检测方法包括:记录第一网元采集的扰动回波为data1,第二网元采集的扰动回波为data2,回波相似性用r来表示,即:
r(data1,data2)=cov(data1,data2)/sqrt(var(data1)*var(data2))
其中,r(a,b)表示a和b相关系数,cov(a,b)表示a和b协方差,var(a)表示a的方差。
当r大于预设阈值(threshold)时,例如0.8,则认为该扰动位置为第一光路和第二光路的同路由位置。
在一种可能的实现方式中,同路由检测单元接收来自第一激励源终端的第三扰动信息,该第三扰动信息包括以下至少一种信息:第一激励源终端开启激励源扰动的扰动时间、第一激励源终端所在的位置、第一激励源终端的扰动编码;同路由检测单元根据第一扰动信息、第二扰动信息和第三扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
需要说明的是,同路由检测单元可以基于第一扰动信息、第二扰动信息和第三扰动信息,以判断第一光路和第二光路在激励源终端的扰动位置是否具有同路由。该实现方式的准确率能够得到进一步提高。其中,激励源终端上报的第三扰动信息与第一扰动信息、第二扰动信息中扰动时间、扰动位置理想状态下是相同的。
应理解,第一扰动信息、第二扰动信息分别是第一光纤传感模块和第二光纤传感模块监测并上报的,第三扰动信息是激励源终端直接上报的。另外,同路由检测单元可以根据第一扰动信息和/或第二扰动信息确定第一光路和第二光路分别对应的第一扰动编码和第二扰动编码,而从第三扰动信息中可以直接获取第三扰动编码。
换句话说,第一扰动信息、第二扰动信息和第三扰动信息的上报对象不同、来源不同、上报的具体形式也有所不同。
进一步地,在该实现方式中,同路由检测单元根据第一扰动信息确定第一扰动编码,和/或根据第二扰动信息确定第二扰动编码;当第一扰动编码和第二扰动编码中的至少一个扰动编码与第一激励源终端的扰动编码之间的相似度大于预设阈值时,同路由检测单元确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
示例性的,同路由检测单元收集一段时间数据后,启动同路由检测。具体同路由检测方法包括:记录第一网元提取的扰动编码为code1,第二网元提取的扰动编码为code2,激励源终端上报的扰动编码为code0,编码相似性用levenshtein距离来表示,即:
levab(code1,code2)=1-ch<code1,code2>/max(len_code1,len_code2)
levab(code1,code0)=1-ch<code1,code0>/max(len_code1,len_code0)
levab(code0,code2)=1-ch<code0,code2>/max(len_code0,len_code2)
其中levab(a,b)表示编码a和b的levenshtein距离,ch<a,b>表示从编码a变成b的最小操作数,len_a表示编码a的长度。
当上述3组levab都大于预设阈值(threshold)时,例如0.8,则认为该扰动位置为第一光路和第二光路的同路由位置。
示例性的,同路由检测单元根据第一扰动编码code1和第二扰动编码code2之间的编码相似性levab(code1,code2)=1-ch<code1,code2>/max(len_code1,len_code2)大于预设阈值,即可确定激励源终端的扰动位置即为第一光路和第二光路的同路由位置。
在该实现方式中,基于编码检测能够有效抵抗环境干扰,提高同路由检测的效率和准确率。
需要说明的是,上述根据扰动编码和/或扰动回波判断多条光路在激励源终端的扰动位置是否具有同路由的方式,可以独立使用,也可以组合使用,本申请技术方案对此不作具体限定。
需要说明的是,本申请技术方案同样适用于识别和检测多条光路具有同路由段。例如,存在另一扰动位置,同路由检测单元根据上述实现方式确定该另一扰动位置也为第一光路和第二光路的同路由位置。因此,可以认为这两个扰动位置形成的地理路段即为第一光路和第二光路的同路由段。
在另一种可能的实现方式中,至少一个激励源终端包括第二激励源终端。
首先,第一光纤传感模块和第二光纤传感模块分别向同路由检测单元发送第三扰动信息和第四扰动信息。对应的,同路由检测单元分别接收来自第一光纤传感模块和第二光纤传感模块的第三扰动信息和第四扰动信息,
其中,第三扰动信息和第四扰动信息是在第二激励源终端开启激励源扰动后获取的,第三扰动信息与第一光路对应,第四扰动信息与第二光路对应,第三扰动信息和第四扰动信息包括扰动时间和扰动回波信号。
其次,同路由检测单元根据第一扰动信息和第三扰动信息生成第一光纤地理信息系统GIS信息,以及根据第二扰动信息和第四扰动信息生成第二光纤地理信息系统GIS信息;
最后,同路由检测单元根据第一光纤GIS信息和第二光纤GIS信息匹配空间具有相近点,确定第一激励源终端的扰动位置和/或第二激励源终端的扰动位置为第一光路和第二光路的同路由位置。
其中,光纤地理信息系统GIS信息可以理解为光纤的真实地理位置。例如,光纤所在的经纬度。
在该实现方式中,通过确定多条光路上部署的多个激励源终端,并检测多条光路在多个扰动位置是否具有同路由,来实现全网自动同路由的识别,支持多点同时检测,效率倍增。
在又一种实现方式中,同路由检测单元接收来自第一光纤传感模块的至少一个扰动信息, 该至少一个扰动信息与第一范围内的至少一个激励源终端一一对应,第一范围是以距离目标断纤点最近的第一激励源终端为圆心,半径为R的范围,目标断纤点是第一光纤传感模块在第一光路检测到的断纤位置;同路由检测单元根据第一范围内至少一个扰动信息确定从第一激励源终端下一跳的至少一个第二激励源终端,至少一个第二激励源终端是第一光路上的激励源终端。
进一步地,同路由检测单元接收来自第一光纤传感模块的至少一个扰动信息,该至少一个扰动信息与第i范围内的至少一个激励源终端一一对应,第i范围是以第i激励源终端为圆心,半径为R的范围,第i激励源终端是第一光路上第i-1激励源终端的下一跳的激励源终端,i为大于或等于2的整数;同路由检测单元根据第i范围内至少一个扰动信息确定从第i激励源终端下一跳的至少一个第i+1激励源终端,至少一个第i+1激励源终端是第一光路上距离第三网元最近的激励源终端,第三网元与第一网元是第一光路的起始位置和结束位置,第一光纤传感模块部署在第一网元;同路由检测单元基于i+1个激励源终端更新第一光路的同路由。
在该实现方式中,提供了一种在断纤或割接场景下,同路由检测以及更新的方法。
示例性的,网元A和网元B之间形成第一光路,当光纤发生中断时,根据位置可以检测到距离断纤点最近的管井或光交箱为a点,那么以a点为圆心,R为半径的范围内启动激励源终端扰动,网元A处的光纤传感模块可以监测并采集到一个或多个扰动信息,可以确定该一个或多个扰动信息对应的一个或多个激励源终端是部署在该第一光路上的。然后,再启动以该一个或多个激励源终端为圆心,R为半径的范围内的所有激励源终端,对应的,网元A处的光纤传感模块继续监测并采集一个或多个扰动信息。依次监测并采集扰动信息,直至形成网元A与网元B之间的第一光路的最新路由。
综上所述,本申请实施例提供一种同路由识别检测和装置,在第一激励源终端开启激励源扰动后,通过接收来自不同光路的扰动信息,进行判断扰动位置即为第一光路和第二光路的同路由位置。该方法能够自适应网络动态变化、准确、快速地检测多条光路的同路由。
图9是适用本申请的基于机械波的单点振动同路由SRLG检测系统的一例示意图。如图9所示,该系统装置包括光纤传感模块、同路由SRLG检测单元和机械振动激励源终端。
示例性的,网元A1和网元B1、以及网元A2和网元B2之间分别形成一条光路,两条光路途经的光缆路由存在同路由点或同路由段。在同路由点或者同路由段放置一个有编码的机械振动激励源终端,同路由中所有的光纤会感知到该机械振动激励源终端的扰动信号。同时,在网元A1、A2、B1和B2处分别部署光纤传感器来接收光纤传感信号,用于分析光纤中是否包含特定扰动信号,进而进行同路由检测。另外,在网络某一节点上部署同路由SRLG检测单元,来实现同路由SRLG检测。
其中,同路由SRLG检测单元通过接收来自机械波振动激励源终端上报的第一信息,即扰动位置GIS、扰动特征信息、扰动编码#0、扰动时间等信息,以及来自光纤传感模块上报的第二信息,即扰动编码#1、扰动时间、扰动距离等感知扰动特征信息,进行两条光路的同路由检测。
图10是适用本申请的同路由检测方法1000的一例示意图。如图10所示,激励源采用机械波,具体实现步骤包括:
S1010,激励源终端向同路由SRLG检测单元发送第一信息。
对应的,同路由SRLG检测单元接收来自激励源终端的第一信息。
其中,第一信息包括以下至少一种信息:激励源终端扰动位置GIS、扰动时间、扰动编码#0等信息。
示例性的,巡缆人员到计划检测点,启动机械振动激励源终端扰动。然后,激励源终端向同路由SRLG检测单元上报该第一信息,用于后续步骤S1050中判断同路由SRLG检测的准确率。
在本申请实施例中,同路由SRLG检测单元包括网管、NCE等。
需要说明的是,光纤传感模块每一个检测周期(例如,0.5s)会给出一次振动检测结果(例如,检测到振动可以标识为1、未检测到振动标识为0)。由于机械振动启停有惯性,快速(0.5s时间内)启停编码不具有操作性。因此,本申请实施例将多个连续光纤传感检测周期作为一个扰动编码(例如,扰动为1,非扰动为0)。具体的机械振动激励源终端的扰动编码#0可以采用以下两种方式:
方式一:扰动编码(M个检测周期)/非扰动编码(N个检测周期)的时间不固定,通过控制M/N占比生成不同的编码。其中,M和N是不相同的正整数。
图11是适用本申请的激励源终端振动编码的一例示意图。如图11的(a)所示,激励源终端的扰动编码#0为:10。其中,1表示扰动,0表示非扰动,对应的扰动编码序列为[11111,00000,11111,…]。即在该实现方式中,扰动编码和非扰动编码的占空比为50%。如图11的(b)所示,激励源终端的扰动编码#0为:10。其中,1表示扰动,0表示非扰动,对应的扰动编码序列为[11111111,00,1111111,…]。即在该实现方式中,扰动编码和非扰动编码的占空比为70%。
方式二:扰动编码(M个检测周期)/非扰动编码(N个检测周期)的时间固定,采用通信编码(例如,码分多址CDMA)生成不同编码。其中,M和N是相同的正整数。
图12是适用本申请的激励源终端振动编码的另一例示意图。如图12的(a)所示,激励源终端的扰动编码#0为:11001。其中,1表示扰动,0表示非扰动,对应的扰动编码序列为[11111,11111,00000,00000,11111]。如图12的(b)所示,激励源终端的扰动编码#0为:10110。其中,1表示扰动,0表示非扰动,对应的扰动编码序列为[11111,00000,1111,11111,00000]。
需要说明的是,上述提供的两种扰动编码#0方式仅仅是示例性说明,不应对本申请技术方案构成任何限定。
S1020,同路由SRLG检测单元向光纤传感模块(例如,第一光纤传感模块和第二光纤传感模块)发送请求消息。
对应的,光纤传感模块接收来自同路由SRLG检测单元的请求消息。
其中,该请求消息用于请求获取第二信息(即,第一扰动信息和第二扰动信息)。例如,该第二消息包括扰动回波信号#0和扰动时间等。
具体地,第一扰动信息是激励源发生扰动时第一光路产生的扰动回波信号,第二扰动信息是激励源发生扰动时第二光路产生的扰动回波信号。
示例性的,同路由SRLG检测单元在接收激励源终端扰动信息之后,向其管理区域内的所有光纤传感模块发送数据采集的请求消息。
S1030,光纤传感模块根据请求消息采集扰动回波信号#0。
示例性的,各个光纤传感模块在接收数据采集的请求消息后,开始采集数据(例如,光 纤各点的扰动回波信号)。
S1040,光纤传感模块向同路由SRLG检测单元发送第二信息。
对应的,同路由SRLG检测单元接收来自光纤传感模块的第二信息。
示例性的,光纤传感模块在采集完光纤的扰动回波信号后,向同路由SRLG检测单元上报光纤发生扰动位置的扰动时间、扰动距离、扰动回波信号#0等信息。
S1050,同路由SRLG检测单元根据第一信息和第二信息确定扰动位置为第一光路和第二光路的同路由位置。
示例性的,同路由SRLG检测单元在收集一段时间数据后(例如,第二信息),启动同路由SRLG检测。基于编码相似度匹配算法,同路由检测单元根据第一扰动信息和/或第二扰动信息可以确定第一扰动编码和/或第二扰动编码,进而通过判断第一扰动编码和/或第二扰动编码之间相似度是否大于预设阈值,0或者,通过判断第一扰动编码和/或第二扰动编码与激励源终端上报的扰动编码#0之间的相似度是否大于预设阈值,从而确定在扰动位置第一光路与第二光路是否存在同路由,该实现方式能够双重保障同路由SRLG检测的准确率。
示例性的,记录网元A1提取扰动编码为code1,网元A2提取扰动编码为code2,机械振动激励源终端的扰动编码为code0。其中,编码相似性用levenshtein距离来表示:
levab(code1,code2)=1-ch<code1,code2>/max(len_code1,len_code2)
levab(code1,code0)=1-ch<code1,code0>/max(len_code1,len_code0)
levab(code2,code0)=1-ch<code2,code0>/max(len_code2,len_code0)
其中,levab(a,b)表示编码a,b的levenshtein距离,ch<a,b>表示从编码a变成b的最小操作数,len_a表示编码a的长度。
如果上述3组相似性levab都大于预设阈值threshold(例如,0.8),即当第一扰动编码和第二扰动编码之间相似性大于0.8,和/或第一扰动编码和第二扰动编码,以及激励源终端的扰动编码#0之间相似性大于0.8时,则认为在该检测点(激励源终端的扰动位置)存在同路由SRLG。
总之,基于机械波编码的同路由SRLG检测方法,能够自动识别同缆风险,保障业务的可靠性。引入编码,可以支持多点同时检测,提升检测效率。基于编码检测可以有效克服环境干扰,通过多次检测还可以提升检测结果的准确率。
图13是适用本申请的基于声波的单点振动同路由SRLG检测系统的一例示意图。如图13所示,该系统装置包括光纤传感模块、同路由SRLG检测单元和声波振动激励源终端。
示例性的,网元A1和网元B1、以及网元A2和网元B2之间分别形成一条光路,两条光路途经的光缆路由存在同路由点或同路由段。在同路由点或者同路由段放置一个有编码的声波振动激励源终端,同路由中所有的光纤会感知到该声波振动激励源终端的扰动信号。同时,在网元A1、A2、B1和B2处分别部署光纤传感器来接收光纤传感信号,用于分析光纤中是否包含特定扰动信号,进而进行同路由检测。另外,在网络某一节点上部署同路由SRLG检测单元,来实现同路由SRLG检测。
其中,同路由SRLG检测单元通过接收来自声波振动激励源终端上报的第一信息,即扰动位置GIS、扰动时间、扰动编码#1等,以及来自光纤传感模块上报的第二信息,即扰动时间、扰动回波信号等信息,进行多条光路的同路由检测。
图14是适用本申请的同路由检测方法1400的另一例示意图。如图14所示,该实现方式 中激励源采用声波,具体实现步骤包括:
S1410,激励源终端向同路由SRLG检测单元发送第一信息。
对应的,同路由SRLG检测单元接收来自激励源终端的第一信息。
其中,第一信息包括以下至少一种信息:激励源终端的扰动位置GIS、扰动时间信息、扰动编码#1等信息。
示例性的,巡缆人员到计划检测点,启动机械振动激励源终端扰动。然后,激励源终端向同路由SRLG检测单元上报该第一信息,用于后续步骤S1450中判断同路由SRLG检测的准确率。
在本申请实施例中,同路由SRLG检测单元包括网管、NCE等。
需要说明的是,在该实现方式中,激励源终端振动编码可参照上述图11和图12,为了简洁,此处不再赘述。
S1420,同路由SRLG检测单元向光纤传感模块(例如,第一光纤传感模块和第二光纤传感模块)发送请求消息。
对应的,光纤传感模块接收来自同路由SRLG检测单元的请求消息。
其中,该请求消息用于请求获取第二信息(即,第一扰动信息和第二扰动信息)。例如,该第二消息包括扰动回波信号#1和扰动时间等。
具体地,第一扰动信息是激励源发生扰动时第一光路产生的扰动回波信号,第二扰动信息是激励源发生扰动时第二光路产生的扰动回波信号。
示例性的,同路由SRLG检测单元在接收激励源终端扰动信息之后,向其管理区域内的所有光纤传感模块发送数据采集的请求消息。
S1430,光纤传感模块根据请求消息采集扰动回波信号#1。
示例性的,各个光纤传感模块在接收数据采集的请求消息后,开始采集数据(例如,光纤各点的扰动回波信号)。
S1440,光纤传感模块向同路由SRLG检测单元发送第二信息。
对应的,同路由SRLG检测单元接收来自光纤传感模块的第二信息。
示例性的,光纤传感模块在采集完光纤的扰动回波信号后,向同路由SRLG检测单元上报光纤发生扰动位置的扰动回波信号#1、扰动时间、扰动距离等信息。
S1450,同路由SRLG检测单元根据第一信息和第二信息确定扰动位置为第一光路和第二光路的同路由位置。
示例性的,同路由SRLG检测单元在收集一段时间数据后(例如,第二信息),启动同路由SRLG检测。基于声波相似度匹配算法,通过判断光纤传感模块上报的多个扰动回波信号之间的相似度是否大于预设阈值,从而确定在扰动位置第一光路与第二光路是否存在同路由。
示例性的,当网元A1的光纤传感模块上报的扰动回波信号与网元A2的光纤传感模块上报的扰动回波信号之间的相似度大于预设阈值0.8,则认为激励源终端的扰动位置的为两路光纤(例如,光路A1-B1和光路A2-B2)的同路由位置。
示例性的,结合图11所示的基于声波的单点振动同路由SRLG检测系统的示意图进行说明。记录网元A1提取扰动回波为data1,网元A2提取扰动回波为data2。其中,声波相关性用r来表示:
r(data1,data2)=cov(data1,data2)/sqrt(var(data1)*var(data2))
其中r(a,b)表示a,b相关系数,cov(a,b)表示a,b协方差,var(a)表示a方差。
如果相似性r大于预设阈值threshold(例如,0.8),即当第一扰动回波信号与第二扰动回波信号之间相似性大于0.8,则认为在该检测点(激励源终端的扰动位置)存在同路由SRLG。
总之,基于声波编码的同路由SRLG检测方法,能够自动识别同缆风险,保障业务的可靠性。
图15是适用本申请的全网自动同路由SRLG检测系统的一例示意图。如图15所示,该系统装置包括光纤传感模块、同路由SRLG检测单元和智能激励源终端集合。其中,光纤传感模块A、B、C和D是振动感知单元,ODF#1、#3、#7和#9,管井#2、#5、#8,以及光交箱#4、#6处分别部署一种智能激励源终端。
示例性的,在光纤关键物理节点ODF#1、#3、#7和#9,管井#2、#5、#8,以及光交箱#4、#6处均部署一种智能激励源终端,同路由中所有的光纤会感知到该激励源终端的扰动信号。同路由SRLG检测单元与智能激励源终端之间进行信息回传/控制下发。在各个网元处分别部署光纤传感器,接收光纤传感信号,用于分析光纤中是否包含特定扰动信号,进而进行同路由检测。另外,在网络某一节点上部署同路由SRLG检测单元,来实现同路由SRLG检测。
图16是适用本申请的同路由检测方法1600的又一例示意图。如图16所示,该实现方式采用全网自动同路由SRLG检测以及光缆网GIS自动收集,具体实现步骤包括:
S1610,同路由SRLG检测单元向智能激励终端集合分组下发配置信息。
对应的,智能激励终端集合分别接收来自同路由SRLG检测单元的配置信息。
其中,该配置信息用于使能智能扰动激励源终端。
示例性的,该智能激励终端集合根据ODF、管井、光交箱三类进行分组。同路由SRLG检测单元分别给ODF、管井、光交箱下发配置信息。
需要说明的是,该智能激励源终端同时支持上报位置GIS信息、时间信息、可远程编码控制等功能。
S1620,智能激励源终端根据配置信息配置扰动模式,并启动激励源扰动。
S1630,智能激励源终端向同路由SRLG检测单元发送响应消息。
对应的,同路由SRLG检测单元接收来自智能激励源终端的响应消息。
其中,该响应消息用于回复使能智能激励源终端扰动成功或失败。
同时,该响应消息可以包括回传IVT-GIS的标识信息(IVT_ID-GIS),用于指示智能激励源终端扰动成功或失败的位置。
具体地,同路由SRLG检测单元延时等待获取响应成功列表、失败列表。
其中,响应成功列表可以是[IVD_ID1-mod1,IVD_ID2-mod2,……],失败列表可以是关联维修单等。
可选地,该响应消息还可以以下信息中的一种或多种:扰动特征信息、时间信息、扰动回波信号、扰动编码等信息。
S1640,同路由SRLG检测单元向光纤传感模块A-D发送请求消息。
对应的,光纤传感模块A-D接收来自同路由SRLG检测单元的请求消息。
其中,该请求消息用于请求采集数据,包括扰动特征信息,使能光纤传感启动检测。例如,光纤各点扰动回波信号、扰动编码等。其中,扰动特征信息包括以下至少一种信息:扰 动回波信号、扰动时间和扰动距离等。
示例性的,同路由SRLG检测单元在接收激励源终端扰动信息之后,向其管理区域内的所有光纤传感模块发送数据采集的请求消息。
S1650,光纤传感模块向同路由SRLG检测单元发送扰动特征信息。
对应的,同路由SRLG检测单元接收来自光纤传感模块的扰动特征信息。
其中,扰动特征信息包括以下至少一种信息:扰动回波信号、扰动时间和扰动距离等。
可选地,光纤传感模块根据请求消息采集数据,即扰动特征信息,进而确定光纤中存在扰动的位置。
S1660,待同路由SRLG检测单元延时等待扰动回波后,将智能激励源终端扰动标识IVT-ID与光纤标识Fiber_ID关联,以生成光纤路由节点(Fiber_ID-IVT_ID-dis-GIS)集合。
S1670,智能激励源终端去使能。
需要说明的是,重复上述步骤S1610-S1680,遍历所有智能激励源终端。
S1680,同路由SRLG检测单元预处理光纤路由节点集合,以生成对应的光纤GIS信息。
其中,预处理可以包括去噪、上下游关联等,本申请对此不作具体限定。
S1690,同路由SRLG检测单元根据光纤GIS信息匹配空间是否存在相近点,生成全网同路由SRLG检测。
总之,本申请提供一种高效、准确的自动同缆SRLG检测方法,减少人工到场,实现多点同时检测,大大提升检测效率。
图17是适用本申请的断纤/割接场景同路由检测的一例示意图。如图17所示,该装置包括光纤传感模块、同路由检测单元和管井/光交箱。其中,光纤传感模块A、B、C和D是振动感知单元,管井/光交箱处分别部署一种智能激励源终端。
示例性的,在光纤关键物理节点管井/光交箱处部署一种智能激励源终端,同路由中所有的光纤会感知到该激励源终端的扰动信号。在网元A和网元B处分别部署光纤传感器,接收光纤传感信号,用于分析光纤中是否包含特定扰动信号,进而进行同路由检测。其中,虚线部分是光纤传感模块A和B之间割接前的光路路径,实线部分是割接后光路路径。
图18是适用本申请的同路由检测方法的又一例示意图。如图18所示,该实现方式针对断纤/割接场景进行同路由检测,具体实施步骤包括:
S1810,网元A上报业务功率损耗(power loss)告警,并启动光纤传感/OTDR检测断纤相对站点(例如,站点A)的位置。
S1820,根据断纤位置确定离断纤点最近的管井/光交箱,例如图中a点。
S1830,当业务power loss告警消失,即业务恢复时,以a点为圆心,确定半径为R范围内的管井/光交。NCE向管井/光交下发配置信息(包含码型生成),用于启动扰动激励源终端,并收集启动成功列表。
S1840,收集启动成功列表后,下发至站点A,并启动站点A处部署的光纤传感采集数据。
需要说明的是,具体实现过程可以参照上述步骤S1640-S1650,为了简洁,此处不再赘述。
S1850,站点A处的光纤传感检测以a点为圆心,半径为R范围内的管井/光交是否存在匹配码型。并确认从a点开始下一跳b点,关闭上述步骤S1830中启动的智能扰动激励源终端。
S1860,依次循环上述步骤S1830-S1850,即光纤路由从a处沿着光路中管井/光交箱的位置依次检测跳至站点B处结束,实现智能激励源终端扰动的遍历检测。
S1870,重新根据更新后的光纤GIS信息匹配空间是否存在相近点,确定全网同路由位置。
总之,本申请提供一种高效、准确的收集光纤GIS信息以及自动同缆SRLG检测方法,减少人工到场,实现多点同时检测,大大提升检测效率。同时,在光纤路由变更或者故障时,可以快速启动检测和抢修,保障光纤GIS信息的实时性。
综上所述,本申请提供一种基于机械波/声波的同路由SRLG检测方法,能够自动识别同缆风险,保障业务可靠性。还提供了一种高效、准确的自动同缆SRLG检测方法/收集光纤GIS信息方法,可以减少人工到场,由原来人工到处逐点排除变成远程遥控操作。通过引入编码,可以实现多点同时检测,效率大大提升;有效克服环境干扰,并且多次检测能够提升结果准确率。另外,当光纤路由变更或光纤故障时,能够根据光纤GIS快速锁定故障地理位置,快速启动检测和准确抢修,保障光纤GIS信息的实时性。
总之,实时、准确的光纤GIS信息/同路由SRLG检测能够保证光纤资源可管、同路由检测、业务路径规划等有益效果。
上文结合图1至图18,详细描述了本申请的同路由检测方法的实施例,下面将结合图19和图20,详细描述本申请的同路由检测装置的实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图19是本申请实施例提供的同路由检测装置的一例示意图。如图19所示,该装置1000可以包括处理单元1100和收发单元1200。
可选地,该装置1000可对应于上文方法实施例中的同路由检测单元,例如,可以为同路由检测单元,或者配置于同路由检测单元中的部件(如电路、芯片或芯片系统等)。
示例性的,收发单元1200,用于同路由检测单元接收来自第一光纤传感模块的第一扰动信息,以及接收来自第二光纤传感模块的第二扰动信息,第一扰动信息和第二扰动信息是在第一激励源终端开启激励源扰动后获取的,第一扰动信息与第一光路对应,第二扰动信息与第二光路对应,第一扰动信息和第二扰动信息分别包括扰动回波信号;
处理单元1100,用于同路由检测单元根据第一扰动信息和第二扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
可选地,第一激励源终端通过编码的方式控制激励源扰动。
可选地,第一激励源终端的激励源采用机械波或声波。
可选地,第一激励源终端的扰动编码的生成方式包括:基于单频时域编码的机械波编码方式和/或基于多频率组合编码的声波编码方式。
可选地,处理单元1100,还用于当第一扰动信息和第二扰动信息的扰动回波信号之间的相似度大于预设阈值时,同路由检测单元确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
可选地,收发单元1200,还用于同路由检测单元接收来自第一激励源终端的第三扰动信息,第三扰动信息包括以下至少一种信息:第一激励源终端开启激励源扰动的扰动时间、第一激励源终端所在的位置、第一激励源终端的扰动编码;
处理单元1100,还用于同路由检测单元根据第一扰动信息、第二扰动信息和第三扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
可选地,处理单元1100,还用于同路由检测单元根据第一扰动信息确定第一扰动编码,和/或根据第二扰动信息确定第二扰动编码;
处理单元1100,还用于当第一扰动编码和第二扰动编码中的至少一个扰动编码与第一激励源终端的扰动编码之间的相似度大于预设阈值时,同路由检测单元确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
可选地,第一光纤传感模块和第二光纤传感模块分别部署在第一网元和第二网元,第一激励源终端部署在第一光路和/或第二光路的任意位置。
应理解,该装置1000可对应于根据本申请实施例的方法中的同路由检测单元,该装置1000可以包括用于执行本申请实施例的方法中同路由检测单元执行的方法的单元。并且,该装置1000中的各单元和上述其它操作和/或功能分别为了实现本申请实施例的方法的相应流程。
还应理解,该装置1000为同路由检测单元时,该装置1000中的收发单元1200可以通过收发器实现,例如可对应于图20中示出的装置2000中的收发器2020,该装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图20中示出的装置2000中的处理器2010。
还应理解,该装置1000为配置于同路由检测单元中的芯片或芯片系统时,该装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
可选地,该装置1000可对应于上文方法实施例中的光纤传感模块,例如,可以为光纤传感模块,或者配置于光纤传感模块中的部件(如电路、芯片或芯片系统等)。
示例性的,处理单元1100,用于在第一激励源终端开启激励源扰动后,第一光纤传感模块和第二光纤传感模块分别获取第一扰动信息和第二扰动信息,第一扰动信息与第一光路对应,第二扰动信息与第二光路对应,第一扰动信息和第二扰动信息分别包括扰动回波信号,第一扰动信息和第二扰动信息用于确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置;
收发单元1200,用于第一光纤传感模块和第二光纤传感模块分别向同路由检测单元发送第一扰动信息和第二扰动信息。
可选地,第一光纤传感模块和第二光纤传感模块分别部署在第一网元和第二网元,第一激励源终端部署在第一光路和/或第二光路的任意位置。
可选地,收发单元1200,还用于第一光纤传感模块和第二光纤传感模块接收来自同路由检测单元的请求消息,请求消息分别用于请求获取第一扰动信息和第二扰动信息。
应理解,该装置1000可对应于根据本申请实施例的方法中的同光纤传感模块,该装置1000可以包括用于执行本申请实施例的方法中光纤传感模块执行的方法的单元。并且,该装置1000中的各单元和上述其它操作和/或功能分别为了实现本申请实施例的方法的相应流程。
还应理解,该装置1000为光纤传感模块时,该装置1000中的收发单元1200可以通过收发器实现,例如可对应于图20中示出的装置2000中的收发器2020,该装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图20中示出的装置2000中的处理器 2010。
还应理解,该装置1000为配置于光纤传感模块中的芯片或芯片系统时,该装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图20是本申请实施例提供的同路由检测装置的另一例示意图。如图20所示,该装置2000包括处理器2010、收发器2020和存储器2030。其中,处理器2010、收发器2020和存储器2030通过内部连接通路互相通信,该存储器2030用于存储指令,该处理器2010用于执行该存储器2030存储的指令,以控制该收发器2020发送信号和/或接收信号。
应理解,该装置2000可以对应于上述方法实施例中的光纤传感/同路由SRLG检测单元/激励源终端,并且可以用于执行上述方法实施例中光纤传感/同路由SRLG检测单元/激励源终端执行的各个步骤和/或流程。可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器2030可以是一个单独的器件,也可以集成在处理器2010中。该处理器2010可以用于执行存储器2030中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与光纤传感/同路由SRLG检测单元/激励源终端对应的方法实施例的各个步骤和/或流程。
可选地,该装置2000是前文实施例中的同路由检测单元。
示例性的,收发器2020,用于同路由检测单元接收来自第一光纤传感模块的第一扰动信息,以及接收来自第二光纤传感模块的第二扰动信息,第一扰动信息和第二扰动信息是在第一激励源终端开启激励源扰动后获取的,第一扰动信息与第一光路对应,第二扰动信息与第二光路对应,第一扰动信息和第二扰动信息分别包括扰动回波信号;
处理器2010,用于同路由检测单元根据第一扰动信息和第二扰动信息确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置。
可选地,该装置2000是前文实施例中的光纤传感模块。
处理器2010,用于在第一激励源终端开启激励源扰动后,第一光纤传感模块和第二光纤传感模块分别获取第一扰动信息和第二扰动信息,第一扰动信息与第一光路对应,第二扰动信息与第二光路对应,第一扰动信息和第二扰动信息分别包括扰动回波信号,第一扰动信息和第二扰动信息用于确定第一激励源终端的扰动位置为第一光路和第二光路的同路由位置;
收发器2020,用于第一光纤传感模块和第二光纤传感模块分别向同路由检测单元发送第一扰动信息和第二扰动信息。
其中,收发器2020可以包括发射机和接收机。该处理器2010和存储器2030与收发器2020可以是集成在不同芯片上的器件。如,处理器2010和存储器2030可以集成在基带芯片中,收发器2020可以集成在射频芯片中。该处理器2010和存储器2030与收发器2020也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该装置2000是配置在光纤传感/同路由SRLG检测单元/激励源终端中的部件,如电路、芯片、芯片系统等。
其中,收发器2020也可以是通信接口,如输入/输出接口、电路等。该收发器2020与处理器2010和存储器2020都可以集成在同一个芯片中,如集成在基带芯片中。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请 的技术方案,上述具体实现方式可以认为是本申请最优的实现方式,而非限制本申请实施例的范围。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种同路由检测方法,其特征在于,应用于同路由检测系统,所述同路由检测系统包括多个光纤传感模块、至少一个激励源终端和同路由检测单元,所述多个光纤传感模块包括第一光纤传感模块和第二光纤传感模块,所述至少一个激励源终端包括第一激励源终端,所述方法包括:
    所述同路由检测单元接收来自所述第一光纤传感模块的第一扰动信息,以及接收来自所述第二光纤传感模块的第二扰动信息,所述第一扰动信息和所述第二扰动信息是在所述第一激励源终端开启激励源扰动后获取的,所述第一扰动信息与第一光路对应,所述第二扰动信息与第二光路对应,所述第一扰动信息和所述第二扰动信息分别包括扰动回波信号;
    所述同路由检测单元根据所述第一扰动信息和所述第二扰动信息确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置。
  2. 根据权利要求1所述的方法,其特征在于,所述第一激励源终端通过编码的方式控制激励源扰动。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一激励源终端的激励源采用机械波或声波。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一激励源终端的扰动编码的生成方式包括:基于单频时域编码的机械波编码方式和/或基于多频率组合编码的声波编码方式。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述同路由检测单元根据所述第一扰动信息和所述第二扰动信息确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置,包括:
    当所述第一扰动信息和所述第二扰动信息的扰动回波信号之间的相似度大于预设阈值时,所述同路由检测单元确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述同路由检测单元接收来自所述第一激励源终端的第三扰动信息,所述第三扰动信息包括以下至少一种信息:所述第一激励源终端开启激励源扰动的扰动时间、所述第一激励源终端所在的位置、所述第一激励源终端的扰动编码;
    所述同路由检测单元根据所述第一扰动信息、所述第二扰动信息和所述第三扰动信息确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置。
  7. 根据权利要求6所述的方法,其特征在于,所述同路由检测单元根据所述第一扰动信息、所述第二扰动信息和所述第三扰动信息确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置,包括:
    所述同路由检测单元根据所述第一扰动信息确定第一扰动编码,和/或根据所述第二扰动信息确定第二扰动编码;
    当所述第一扰动编码和所述第二扰动编码中的至少一个扰动编码与所述第一激励源终端的扰动编码之间的相似度大于预设阈值时,所述同路由检测单元确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一光纤传感模块和所述第二光纤传感模块分别部署在第一网元和第二网元,所述第一激励源终端部署在所述第一光路和/或所述第二光路的任意位置。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述同路由检测单元向所述第一光纤传感模块和所述第二光纤传感模块发送请求消息,所述请求消息分别用于请求获取所述第一扰动信息和所述第二扰动信息。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述至少一个激励源终端包括第二激励源终端,所述方法还包括:
    所述同路由检测单元接收来自所述第一光纤传感模块的第三扰动信息,以及接收来自所述第二光纤传感模块的第四扰动信息,所述第三扰动信息和所述第四扰动信息是在所述第二激励源终端开启激励源扰动后获取的,所述第三扰动信息与所述第一光路对应,所述第四扰动信息与所述第二光路对应,所述第三扰动信息和所述第四扰动信息分别包括扰动时间和扰动回波信号;
    所述同路由检测单元根据所述第一扰动信息和所述第三扰动信息生成第一光纤地理信息系统GIS信息,以及根据所述第二扰动信息和所述第四扰动信息生成第二光纤地理信息系统GIS信息;
    所述同路由检测单元根据所述第一光纤GIS信息和所述第二光纤GIS信息匹配空间具有相近点,确定所述第一激励源终端的扰动位置和/或所述第二激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述同路由检测单元接收来自所述第一光纤传感模块的至少一个扰动信息,所述至少一个扰动信息与第一范围内的至少一个激励源终端一一对应,所述第一范围是以距离目标断纤点最近的第一激励源终端为圆心,半径为R的范围,所述目标断纤点是所述第一光纤传感模块在所述第一光路检测到的断纤位置;
    所述同路由检测单元根据所述第一范围内所述至少一个扰动信息确定从所述第一激励源终端下一跳的至少一个第二激励源终端,所述至少一个第二激励源终端是所述第一光路上的激励源终端。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述同路由检测单元接收来自所述第一光纤传感模块的至少一个扰动信息,所述至少一个扰动信息与第i范围内的至少一个激励源终端一一对应,所述第i范围是以第i激励源终端为圆心,半径为R的范围,所述第i激励源终端是所述第一光路上第i-1激励源终端的下一跳的激励源终端,i为大于或等于2的整数;
    所述同路由检测单元根据所述第i范围内所述至少一个扰动信息确定从所述第i激励源终端下一跳的至少一个第i+1激励源终端,所述至少一个第i+1激励源终端是所述第一光路上距离第三网元最近的激励源终端,所述第三网元与第一网元是所述第一光路的起始位置和结束位置,所述第一光纤传感模块部署在所述第一网元;
    所述同路由检测单元基于所述i+1个激励源终端更新所述第一光路的同路由。
  13. 一种同路由检测方法,其特征在于,应用于同路由检测系统,所述同路由检测系统包括多个光纤传感模块、至少一个激励源终端和同路由检测单元,所述多个光纤传感模块包 括第一光纤传感模块和第二光纤传感模块,所述至少一个激励源终端包括第一激励源终端,所述方法包括:
    在所述第一激励源终端开启激励源扰动后,所述第一光纤传感模块和所述第二光纤传感模块分别获取第一扰动信息和第二扰动信息,所述第一扰动信息与第一光路对应,所述第二扰动信息与第二光路对应,所述第一扰动信息和所述第二扰动信息分别包括扰动回波信号,所述第一扰动信息和所述第二扰动信息用于确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置;
    所述第一光纤传感模块和所述第二光纤传感模块分别向所述同路由检测单元发送所述第一扰动信息和所述第二扰动信息。
  14. 根据权利要求13所述的方法,其特征在于,所述第一光纤传感模块和所述第二光纤传感模块分别部署在第一网元和第二网元,所述第一激励源终端部署在所述第一光路和/或所述第二光路的任意位置。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述第一光纤传感模块和所述第二光纤传感模块接收来自所述同路由检测单元的请求消息,所述请求消息分别用于请求获取所述第一扰动信息和所述第二扰动信息。
  16. 一种同路由检测装置,其特征在于,包括:
    收发单元,用于接收来自第一光纤传感模块的第一扰动信息,以及接收来自第二光纤传感模块的第二扰动信息,所述第一扰动信息和所述第二扰动信息是在第一激励源终端开启激励源扰动后获取的,所述第一扰动信息与第一光路对应,所述第二扰动信息与第二光路对应,所述第一扰动信息和所述第二扰动信息分别包括扰动回波信号;
    处理单元,用于根据所述第一扰动信息和所述第二扰动信息确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置。
  17. 根据权利要求16所述的装置,其特征在于,所述第一激励源终端通过编码的方式控制激励源扰动。
  18. 根据权利要求16或17所述的装置,其特征在于,所述第一激励源终端的激励源采用机械波或声波。
  19. 根据权利要求16至18中任一项所述的装置,其特征在于,所述第一激励源终端的扰动编码的生成方式包括:基于单频时域编码的机械波编码方式和/或基于多频率组合编码的声波编码方式。
  20. 根据权利要求16至19中任一项所述的装置,其特征在于,
    当所述第一扰动信息和所述第二扰动信息的扰动回波信号之间的相似度大于预设阈值时,所述处理单元,还用于确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置。
  21. 根据权利要求16至20中任一项所述的装置,其特征在于,
    所述收发单元,还用于接收来自所述第一激励源终端的第三扰动信息,所述第三扰动信息包括以下至少一种信息:所述第一激励源终端开启激励源扰动的扰动时间、所述第一激励源终端所在的位置、所述第一激励源终端的扰动编码;
    所述处理单元,还用于根据所述第一扰动信息、所述第二扰动信息和所述第三扰动信息确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置。
  22. 根据权利要求21所述的装置,其特征在于,
    所述处理单元,还用于根据所述第一扰动信息确定第一扰动编码,和/或根据所述第二扰动信息确定第二扰动编码;
    当所述第一扰动编码和所述第二扰动编码中的至少一个扰动编码与所述第一激励源终端的扰动编码之间的相似度大于预设阈值时,所述处理单元,还用于确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置。
  23. 根据权利要求16至22中任一项所述的装置,其特征在于,所述第一光纤传感模块和所述第二光纤传感模块分别部署在第一网元和第二网元,所述第一激励源终端部署在所述第一光路和/或所述第二光路的任意位置。
  24. 根据权利要求16至23中任一项所述的装置,其特征在于,
    所述收发单元,还用于向所述第一光纤传感模块和所述第二光纤传感模块发送请求消息,所述请求消息分别用于请求获取所述第一扰动信息和所述第二扰动信息。
  25. 根据权利要求16至24中任一项所述的装置,其特征在于,所述至少一个激励源终端包括第二激励源终端,
    所述收发单元,还用于接收来自所述第一光纤传感模块的第三扰动信息,以及接收来自所述第二光纤传感模块的第四扰动信息,所述第三扰动信息和所述第四扰动信息是在所述第二激励源终端开启激励源扰动后获取的,所述第三扰动信息与所述第一光路对应,所述第四扰动信息与所述第二光路对应,所述第三扰动信息和所述第四扰动信息分别包括扰动时间和扰动回波信号;
    所述处理单元,还用于根据所述第一扰动信息和所述第三扰动信息生成第一光纤地理信息系统GIS信息,以及根据所述第二扰动信息和所述第四扰动信息生成第二光纤地理信息系统GIS信息;
    所述处理单元,还用于根据所述第一光纤GIS信息和所述第二光纤GIS信息匹配空间具有相近点,确定所述第一激励源终端的扰动位置和/或所述第二激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置。
  26. 根据权利要求16至25中任一项所述的装置,其特征在于,
    所述收发单元,还用于接收来自所述第一光纤传感模块的至少一个扰动信息,所述至少一个扰动信息与第一范围内的至少一个激励源终端一一对应,所述第一范围是以距离目标断纤点最近的第一激励源终端为圆心,半径为R的范围,所述目标断纤点是所述第一光纤传感模块在所述第一光路检测到的断纤位置;
    所述处理单元,还用于根据所述第一范围内所述至少一个扰动信息确定从所述第一激励源终端下一跳的至少一个第二激励源终端,所述至少一个第二激励源终端是所述第一光路上的激励源终端。
  27. 根据权利要求26所述的装置,其特征在于,
    所述收发单元,还用于接收来自所述第一光纤传感模块的至少一个扰动信息,所述至少一个扰动信息与第i范围内的至少一个激励源终端一一对应,所述第i范围是以第i激励源终端为圆心,半径为R的范围,所述第i激励源终端是所述第一光路上第i-1激励源终端的下一跳的激励源终端,i为大于或等于2的整数;
    所述处理单元,还用于根据所述第i范围内所述至少一个扰动信息确定从所述第i激励 源终端下一跳的至少一个第i+1激励源终端,所述至少一个第i+1激励源终端是所述第一光路上距离第三网元最近的激励源终端,所述第三网元与第一网元是所述第一光路的起始位置,所述第一光纤传感模块部署在所述第一网元;
    所述处理单元,还用于基于所述i+1个激励源终端更新所述第一光路的同路由。
  28. 一种同路由检测装置,其特征在于,包括:
    处理单元,用于在所述第一激励源终端开启激励源扰动后,所述第一光纤传感模块和所述第二光纤传感模块分别获取第一扰动信息和第二扰动信息,所述第一扰动信息与第一光路对应,所述第二扰动信息与第二光路对应,所述第一扰动信息和所述第二扰动信息分别包括扰动回波信号,所述第一扰动信息和所述第二扰动信息用于确定所述第一激励源终端的扰动位置为所述第一光路和所述第二光路的同路由位置;
    收发单元,用于所述第一光纤传感模块和所述第二光纤传感模块分别向所述同路由检测单元发送所述第一扰动信息和所述第二扰动信息。
  29. 根据权利要求28所述的装置,其特征在于,所述第一光纤传感模块和所述第二光纤传感模块分别部署在第一网元和第二网元,所述第一激励源终端部署在所述第一光路和/或所述第二光路的任意位置。
  30. 根据权利要求28或29所述的装置,其特征在于,
    所述收发单元,还用于所述第一光纤传感模块和所述第二光纤传感模块接收来自所述同路由检测单元的请求消息,所述请求消息分别用于请求获取所述第一扰动信息和所述第二扰动信息。
  31. 一种同路由检测装置,其特征在于,包括:处理器和接口电路,
    所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于所述通信装置实现如权利要求1至15中任一项所述的方法。
  32. 一种同路由检测系统,其特征在于,包括:同路由检测单元和多个光纤传感模块,所述同路由检测单元用于执行如权利要求1至12中任一项所述的方法,所述多个光纤传感模块用于执行如权利要求13至15中任一项所述的方法。
  33. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片执行如权利要求1至15中任一项所述的方法。
  34. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有计算机指令,所述指令在计算机上执行时,使得所述计算机执行如权利要求1至15中任一项所述的方法。
  35. 一种计算机程序产品,其特征在于,所述计算机程序代码或指令在计算机上执行时,使得所述计算机执行如权利要求1至15中任一项所述的方法。
PCT/CN2022/115172 2021-11-11 2022-08-26 同路由检测方法和装置 WO2023082774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111331122.5A CN116112832A (zh) 2021-11-11 2021-11-11 同路由检测方法和装置
CN202111331122.5 2021-11-11

Publications (1)

Publication Number Publication Date
WO2023082774A1 true WO2023082774A1 (zh) 2023-05-19

Family

ID=86253204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115172 WO2023082774A1 (zh) 2021-11-11 2022-08-26 同路由检测方法和装置

Country Status (2)

Country Link
CN (1) CN116112832A (zh)
WO (1) WO2023082774A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116915329B (zh) * 2023-09-13 2023-12-08 高勘(广州)技术有限公司 终端自动接入方法、终端、基站、通信系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018141681A1 (en) * 2017-02-01 2018-08-09 British Telecommunications Public Limited Company Optical fibre event location
JP2019020276A (ja) * 2017-07-18 2019-02-07 日本電信電話株式会社 空間多重光伝送路評価装置及び方法
CN110601751A (zh) * 2018-06-13 2019-12-20 广东电网有限责任公司 一种电网通信光缆中断监测方法和装置
CN112629821A (zh) * 2020-11-17 2021-04-09 中国移动通信集团江苏有限公司 光缆位置的确定方法、装置、电子设备及存储介质
CN113381804A (zh) * 2020-03-10 2021-09-10 华为技术有限公司 一种同缆概率检测的方法以及装置
CN113438020A (zh) * 2020-03-23 2021-09-24 华为技术有限公司 一种同缆概率检测的方法以及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018141681A1 (en) * 2017-02-01 2018-08-09 British Telecommunications Public Limited Company Optical fibre event location
JP2019020276A (ja) * 2017-07-18 2019-02-07 日本電信電話株式会社 空間多重光伝送路評価装置及び方法
CN110601751A (zh) * 2018-06-13 2019-12-20 广东电网有限责任公司 一种电网通信光缆中断监测方法和装置
CN113381804A (zh) * 2020-03-10 2021-09-10 华为技术有限公司 一种同缆概率检测的方法以及装置
CN113438020A (zh) * 2020-03-23 2021-09-24 华为技术有限公司 一种同缆概率检测的方法以及装置
CN112629821A (zh) * 2020-11-17 2021-04-09 中国移动通信集团江苏有限公司 光缆位置的确定方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN116112832A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN103048588B (zh) 电力电缆故障在线定位方法与系统
CN102523037B (zh) 光缆资源集中监测及管理系统
CN113381804B (zh) 一种同缆概率检测的方法以及装置
EP3029853B1 (en) Method, device, and system for optical fiber link identification
EP3018838B1 (en) Optical path processing method and apparatus
CN103905114A (zh) 光缆线路故障点定位方法、装置和系统
CN104655591B (zh) 一种检测敲击位置的光缆普查装置及方法
WO2018141681A1 (en) Optical fibre event location
CN103647601A (zh) 一种光纤监测系统
CN102308498A (zh) 长程传输系统的故障定位器
WO2023082774A1 (zh) 同路由检测方法和装置
CN104144013A (zh) Pon网络故障诊断方法、装置和系统
CN101442691A (zh) 基于无源光网络系统的光缆监测系统
WO2016150204A1 (zh) 一种光缆路由自动发现方法及系统
CN103427898B (zh) 一种确定无源光纤网络分支故障点的方法及系统
KR20110061254A (ko) 수동형 광가입자 망에서의 광선로 감시장치 및 감시방법
CN108809410B (zh) 光缆故障检测方法以及光缆故障检测系统
CN112964301A (zh) 电力管道的监测方法、装置、系统、设备及存储介质
CN203788287U (zh) 基于光信号告警和性能监测触发的光缆自动监测系统
CN103023563A (zh) 一种光缆监控方法
CN110470945A (zh) 一种输变电线路故障检测定位方法
CN103427900B (zh) 一种光纤非对称性补偿方法、设备及系统
KR20130101636A (ko) 광선로 감시 시스템 및 방법
CN106506065B (zh) 传输网路由迂回计算方法
KR20210091936A (ko) 음파탐지장치를 이용한 광코어 경로 확정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891580

Country of ref document: EP

Kind code of ref document: A1