WO2023082617A1 - 一种液冷机组 - Google Patents

一种液冷机组 Download PDF

Info

Publication number
WO2023082617A1
WO2023082617A1 PCT/CN2022/097112 CN2022097112W WO2023082617A1 WO 2023082617 A1 WO2023082617 A1 WO 2023082617A1 CN 2022097112 W CN2022097112 W CN 2022097112W WO 2023082617 A1 WO2023082617 A1 WO 2023082617A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
fluid
diversion
cooling unit
liquid cooling
Prior art date
Application number
PCT/CN2022/097112
Other languages
English (en)
French (fr)
Inventor
李清
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to AU2022387397A priority Critical patent/AU2022387397B2/en
Priority to EP22891427.1A priority patent/EP4254606A1/en
Publication of WO2023082617A1 publication Critical patent/WO2023082617A1/zh
Priority to US18/343,834 priority patent/US20230345674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20381Thermal management, e.g. evaporation control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of liquid cooling equipment, and more specifically, to a liquid cooling unit.
  • a plurality of batteries are connected in series or in parallel to form a battery pack for use.
  • the heat will be more serious, which may cause the batteries to overheat and burn or even explode, posing a serious safety hazard.
  • Water cooling is a commonly used cooling method to uniformly and stably remove the heat from the battery through water flow.
  • the current water-cooling structure generally takes up a lot of space, and the cooling efficiency is not high. Therefore need badly a kind of cooling device with high cooling efficiency.
  • the embodiment of the present application provides a liquid cooling unit, which can provide multiple cooling methods and connect different cooling devices in parallel to improve the cooling efficiency of the liquid cooling unit.
  • An embodiment of the present application provides a liquid cooling unit, including: a first flow collector, a second flow collector, a plate heat exchanger, a radiator, and a heater; the plate heat exchanger, the radiator, and the heater are connected in parallel Between the diversion end of the first diversion collector and the collector end of the second diversion collector; the diversion end of the first diversion collector is used to output to at least one of the plate heat exchanger, radiator and heater Fluid; the plate heat exchanger and the radiator are used to cool the fluid, and the heater is used to heat the fluid; the collecting end of the second diversion collector is used to receive at least one output of the plate heat exchanger, the radiator, and the heater For the fluid, the diversion end of the second diversion collector is used to output the fluid to the battery for thermal management of the battery; the collector end of the first diversion collector is used to receive the fluid after thermal management of the battery.
  • thermal management refers to cooling or heating the battery through a fluid.
  • the liquid cooling unit also includes a compressor, a condenser, and a cooling fan; the compressor, the condenser, a plate heat exchanger, and a cooling fan are used to cool down the refrigerant;
  • the refrigerant pipelines connected to the condenser and the plate heat exchanger are welded in one piece.
  • the compressor, condenser, radiator and plate heat exchanger are connected by integrated welded refrigerant pipelines to form an integrated compressor refrigeration module, which reduces the assembly of refrigerant pipelines and other components The quantity improves the installation efficiency of the liquid cooling unit.
  • the liquid cooling unit further includes a fluid tank, the fluid tank is a closed fluid tank for supplying fluid to the second diverter collector.
  • fluid tank in this application may also be called a water tank, and this application does not limit this name.
  • the fluid tank provides coolant to the pipeline through the second diverter collector, and the closed fluid tank can ensure the sealing of the coolant system during operation, which is beneficial to ensure the cleanliness, stability and long-term effectiveness of the coolant.
  • the liquid cooling unit further includes a water pump for outputting fluid to the battery.
  • the water pump is a brushless DC water pump. Since the brushless DC water pump has no carbon brush friction, it does not generate sparks, and has high efficiency, low power consumption, longer life than brushed motors, and low noise.
  • the number of heaters can be set according to actual needs. For example, when the battery is in an environment with a low ambient temperature, multiple heaters can be installed and connected in parallel between the first shunt collector and the second shunt collector to jointly heat the battery, thereby improving the heating efficiency of the liquid-cooled unit .
  • the plate heat exchanger, the radiator, and the heater are connected to the first diversion collector and the second diversion collector through rubber hoses.
  • the pipelines connected between the plate heat exchanger, radiator, heater, fluid tank, water pump, first diverter collector and second diverter collector in the liquid cooling unit are all rubber hoses Connected to form the coolant circuit of the liquid-cooled unit.
  • a corresponding number of heaters and water pumps can be connected according to the actual requirements of battery thermal management, which increases the flexibility of component installation in the liquid cooling unit.
  • both the first diversion collector and the second diversion collector are provided with normally closed drain valves, which are used to clean the connecting pipelines with the first diversion collector and the second diversion collector. Drain and vent.
  • the first current diversion collector and the second current diversion collector are integrally welded and formed.
  • the cooling fan when the ambient temperature is lower than the first threshold, the cooling fan is turned on to cool down the fluid inside the radiator.
  • the purpose of turning on the heat dissipation fan is to make the heat dissipation fan cool down the cooling fluid inside the radiator and thereby cool down the temperature of the battery.
  • the water pump is turned on to cool down the coolant.
  • the power consumption of the cooling fan and the water pump working together is much smaller than that of the compressor cooling module.
  • the power of cooling fans and water pumps is at the hundred-watt level, while the electric power of the compressor refrigeration module is above the kilowatt level. Therefore, turning on the heat dissipation fan and the water pump for cooling can reduce the power consumption of the liquid cooling unit.
  • the radiator and water pump can be forcibly turned on, and the cooling fan can be used for ventilation to cool or lower the temperature of the coolant.
  • the system is cooled to reduce the power consumption of the unit.
  • the liquid cooling unit can select different equipment to work according to the thermal management requirements of the battery.
  • the temperature of the battery can also be jointly cooled through the plate heat exchanger and the radiator branch, which improves the cooling efficiency of the liquid cooling unit.
  • FIG. 1 is a schematic block diagram of a liquid cooling unit provided in some embodiments of the present application.
  • Fig. 2 is a schematic diagram of the connection of the coolant circuit of the liquid cooling unit provided in some embodiments of the present application;
  • Fig. 3 is a schematic structural diagram of a liquid cooling unit provided in some embodiments of the present application.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • the use of batteries is usually composed of multiple batteries connected in series or in parallel to form a battery pack to enhance the power supply performance of the battery, and the box-type battery has a large capacity.
  • the various heating phenomena of the battery pack will be more serious, which may cause the batteries to overheat and burn or even explode, posing serious safety hazards and affecting the service life of the batteries.
  • Existing cooling methods for batteries can generally be divided into two types.
  • the air-cooled cooling method mainly relies on the external cold air to take away the heat from the battery surface to cool the battery. This process is affected by many uncertain factors such as air flow and wind speed, which may easily cause uneven heat dissipation and low cooling and heating efficiency.
  • the water-cooling cooling method is to cool the battery by taking away the heat of the battery through the water flow. This method has high stability, but the current water-cooling structure or system generally has the problems of large space occupation and low cooling efficiency. As far as the liquid cooling unit is concerned, its components need to be installed and connected at the power station site, which increases the difficulty and cost of on-site installation and maintenance.
  • the embodiment of the present application provides a liquid-cooled unit, which integrates all its components into an integrated unit, which solves the problem of cold and temperature leakage caused by the large space occupied by the existing water-cooled structure, thereby improving the heat dissipation of the battery pack Efficiency;
  • the integrated liquid cooling unit is exempt from on-site installation, reducing the difficulty and cost of on-site installation and maintenance.
  • the liquid cooling unit provided by this application is suitable for thermal management of various batteries or battery packs, and can control the temperature of the batteries or battery packs within a reasonable range.
  • FIG. 1 is a structural diagram of a liquid cooling unit 100 provided in an embodiment of the present application, which is used for thermal management of a battery 200 .
  • the liquid cooling unit 100 includes a first split collector 11, a second split collector 12, a plate heat exchanger 13, a radiator 14, and a heater 15; the plate heat exchanger 13, the radiator 14, and the heater 15 are connected in parallel Between the diversion end of the first diversion collector 11 and the collector end of the second diversion collector 12; the diversion end of the first diversion collector 11 is used to heat the plate heat exchanger 13, radiator 14, At least one output fluid in the device 15; the plate heat exchanger 13 and the radiator 14 are used to cool the fluid, and the heater 15 is used to heat the fluid; The fluid output by at least one of the heater 13, the radiator 14, and the heater 15, the diversion end of the second diversion collector 12 is used to output the fluid to the battery 200 to perform thermal management on the battery 200; the first diversion collector The collector end of the device 11 is used to receive the fluid after thermal management of the battery 200 .
  • the above-mentioned first flow diversion collector 11 and the second flow diversion collector 12 may also be referred to as flow diversion and collector valves.
  • the function of the diverter valve is to make the same oil source in the hydraulic system supply the same flow rate (equal split flow) to two or more actuators, or to supply flow to two actuators in a certain proportion (proportional split flow), so as to realize The speeds of the two actuators maintain a synchronous or proportional relationship.
  • the function of the collecting valve is to collect the equal flow or proportional oil return from the two actuators, so as to realize the speed synchronization or proportional relationship between them.
  • the diverter-collector valve has the functions of both a diverter valve and a diverter valve.
  • the plate heat exchanger 13 is a heat exchanger formed by pressing thin metal plates into heat exchange plates with a certain corrugated shape, then stacking them, and fastening them with splints and bolts. Thin rectangular channels are formed between the various plates, and heat exchange is performed through the half plates. The working fluid flows through the narrow and tortuous channel formed between the two plates. The hot and cold fluids pass through the flow channel in turn, and there is an interlayer plate in the middle to separate the fluids and exchange heat through the plates.
  • the radiator 14 is made of aluminum material with a parallel-flow tube-sheet structure, and the internal fluid circulates through the flow.
  • the parallel flow channel is designed with a harmonica tube structure, and the surface is brazed with thin fins, which can increase the heat dissipation area.
  • the heat management in the embodiment of the present application refers to cooling or heating the battery 200 through a fluid.
  • the plate heat exchanger 13 , the radiator 14 , and the heater 15 inside the liquid cooling unit 100 are designed in parallel, and different branch circuits can be selected according to the different requirements of the battery 200 for heating or cooling.
  • the temperature of the battery can also be jointly cooled through the plate heat exchanger 13 and the branch circuit of the radiator 14 , so as to improve the cooling efficiency of the liquid cooling unit 100 .
  • the liquid cooling unit 100 also includes a compressor 16, a compressor 17, and a cooling fan 18, and the compressor 16, the compressor 17, the cooling fan 18, and a plate heat exchanger are used to cool the refrigerant, wherein, with The compressor 16, the compressor 17, and the refrigerant pipeline 19 connected to the plate heat exchanger 13 are integrally welded.
  • compressor 17 is a driven fluid machine that raises low-pressure gas to high-pressure, and is the heart of the refrigeration system. It sucks low-temperature and low-pressure refrigerant gas from the suction pipe, and drives the piston to compress it through the operation of the motor. Finally, high-temperature and high-pressure refrigerant liquid is discharged to the exhaust pipe to provide power for the refrigeration cycle. Compressor 17 can convert gas or vapor into liquid, and the heat in the pipe is transferred to the air near the pipe in a very fast manner.
  • the compressor 16 , the compressor 17 , the cooling fan 18 , the plate heat exchanger 13 , and the refrigerant pipeline 19 constitute the compressor refrigeration module 110 of the liquid cooling unit 100 in the embodiment of the present application.
  • the refrigerant pipeline is formed by an integrated welding process, which reduces the number of components assembled in the refrigerant pipeline 20 and the compressor refrigeration module 110, and reduces the difficulty of on-site installation and maintenance of the liquid cooling unit 100 .
  • the liquid circulating in the refrigerant pipeline 19 in the compressor refrigeration module 110 of the liquid cooling unit 100 is refrigerant.
  • the liquid circulating in other pipelines is coolant.
  • radiator 14 the heat dissipation fan 18 and the supporting coolant pipe constitute the radiator refrigeration module 120 of the liquid cooling unit 10 in the embodiment of the present application
  • the heater 12 and the heater 15 constitute the heating and cooling liquid pipeline module 130 of the liquid cooling unit 100 in the embodiment of the present application.
  • the liquid cooling unit further includes a fluid tank 20 , which is a closed fluid tank, and is used to supply fluid to the second diverter collector 12 .
  • the fluid tank 20 may also be called a water tank for storing fluid.
  • the fluid refers to cooling liquid.
  • the fluid tank 20 can be a closed fluid tank, which can ensure the sealing of the coolant system during operation, and is beneficial to ensure the cleanliness, stability and long-term effectiveness of the coolant.
  • the fluid tank 20 may be a closed expansion fluid tank, which can buffer pressure fluctuations in the system and also play a role in unloading. If the water pressure in the system changes, its automatic expansion and contraction function will sense the change in water pressure and then play a buffer role.
  • the expansion fluid tank can keep the water pressure stable and control the water pump not to change due to the pressure.
  • the liquid cooling unit 100 further includes a water pump 21 for outputting fluid to the battery 200 to cool or heat the battery 200 .
  • the number of water pumps 21 of the liquid cooling unit 100 is multiple.
  • the liquid-cooled unit 100 shown in FIG. 1 includes 5 water pumps, the 5 water pumps are connected in parallel to the second shunt collector 12, and each water pump is connected to a battery 200, so that the battery 200 connected to it is Cool or heat.
  • the water pump 21 is a brushless DC water pump. Since the brushless DC water pump has no carbon brush friction, it does not generate sparks, and has high efficiency, low power consumption, longer life than brushed motors, and lower noise.
  • the water pump 21 is the power source of the entire coolant circulation system, which can control the outlet flow rate, ensure that the peripheral cooling objects (battery, battery pack, battery box, etc.) have sufficient coolant flow rate, and ensure the supply flow rate consistency.
  • the water pump 21 is a water pump that can be adjusted by pulse width modulation (Pulse Width Modulation, PMW) frequency conversion, which is beneficial to adjust and output different coolant flows according to the different working conditions of the peripheral pipeline system for the coolant objects.
  • PMW Pulse Width Modulation
  • the number of water pumps 21 can be selected and configured according to the number of peripheral batteries 200, so as to conveniently take into account the requirements of various customer systems. For example, when a customer needs to cool or heat four batteries 200 , the number of water pumps 21 in the liquid cooling unit 100 can be set to four. Of course, the number of water pumps 21 can also be designed redundantly. For example, when the customer needs to cool or heat four batteries 200, the water pump water volume of the liquid cooling unit 100 can be set to 5. At this time, only the fifth water pump needs to be turned off, and the water channel is blocked with a plug pipe. If a water pump fails in the later period, it can be quickly restored by switching to the fifth water pump, so that there is no need to replace the new unit.
  • the plate heat exchanger 13 , the radiator 14 , and the heater 15 are connected to the first diversion collector 11 and the second diversion collector 12 through rubber hoses.
  • the water pump 21 is also connected to the second diverter collector 12 and the battery 200 through a rubber hose.
  • a normally closed drain valve is provided on the first flow diversion collector 11 and the second flow diversion collector 12 for connecting the first flow diversion collector and the second flow diversion collector. Connect the tubing for drain and vent.
  • the device 11 and the second diverter collector 12 are provided with a normally closed exhaust valve to drain and exhaust the internal pipeline of the liquid cooling unit 100 .
  • the first current diversion collector 11 and the second current diversion collector 12 are integrally welded and formed.
  • the cooling fan 18 when the ambient temperature is lower than the first threshold, the cooling fan 18 is turned on to cool down the fluid inside the radiator 14 .
  • the radiator cooling module 120 can be used to cool down the cooling liquid, thereby cooling and cooling the battery 200 .
  • the concrete method of using the radiator refrigeration module 120 to cool down is to turn on the cooling fan 18 and the water pump 21, and use the cooling fan 18 to ventilate, so as to cool down the cooling fluid inside the radiator.
  • the radiator cooling module 120 can work alone, or can work together with the refrigerant cooling module 130 in an auxiliary manner to cool down the battery 100 , which is not limited in this application.
  • the electric power consumption of using the cooling fan 18 and the water pump 21 to jointly cool down is much smaller than that of the compressor cooling module 110 .
  • the power of the radiator and the water pump is at the hundred-watt level, while the electric power of the compressor cooling module 110 is above the kilowatt level. Therefore, the radiator cooling module 120 can be used to reduce the power consumption of the liquid cooling unit 100 .
  • FIG. 2 shows the coolant circuit of the liquid-cooled unit 10 provided in the embodiment of the present application. All the connecting pipelines in Figure 2 are coolant pipelines, and the arrows indicate the flow direction of the coolant.
  • the number of heaters 15 can be set according to actual needs. For example, when the battery is in a low-temperature environment, a plurality of heaters 15 can be set and connected in parallel between the first current diversion collector 11 and the second current diversion collector 12 to jointly heat the battery 200, thereby improving the efficiency of the liquid cooling unit. 100 heating efficiency.
  • the number of heaters 15 in the liquid cooling unit 100 shown in FIG. 2 is two, which are connected in parallel between the first diversion collector 11 and the second diversion collector 12 . Therefore, the first split current collector 11 comprises four split ports. Furthermore, it can be obtained that when the number of heaters is 3, the first flow diversion collector 11 includes five flow diversion ports.
  • the diversion ports of the first current collector and diverter can be set or manufactured according to requirements.
  • the water pump 21 corresponding to the battery is turned on, and the fluid tank 20 provides cooling liquid to the second diverter collector 12 , and the cooling liquid flows out from the water pump 21 to the battery 200 to cool down the battery 200 .
  • the cooling liquid after cooling the battery 200 flows into the first branch collector 11 through the cooling liquid pipe 300 outside the liquid cooling unit 100 .
  • the first flow collector 11 outputs the coolant to the plate heat exchanger 13 and the radiator 14, and turns on the cooling fan 18.
  • the plate heat exchanger 13 cools the cooling liquid flowing through; in the radiator branch, the cooling fan 18 cools the cooling liquid inside the radiator 14, and then cools down The final cooling liquid is sent to the second branch current collector 12 to continue cooling the battery 200 in circulation.
  • the first branch collector 11 only outputs the cooling liquid to the plate heat exchanger 13 .
  • the battery 200 when the temperature of the battery 200 is lower than a certain threshold, for example, when the temperature of the battery 10 is lower than the temperature of the coolant, the battery 200 needs to be heated.
  • the water pump 21 corresponding to the battery is turned on, the fluid box 20 provides cooling fluid to the second diverter collector 12 , and the cooling fluid flows out from the water pump 21 to the battery 200 to heat the battery 200 .
  • the cooling liquid after heating the battery 200 flows into the first branch collector 11 through the cooling liquid pipe 300 outside the liquid cooling unit 100 .
  • the first branch collector 11 outputs the cooling liquid to the heater 15, and the heater 15 heats the cooling liquid, and then sends the heated cooling liquid to the second branch collector 12 to continue circulating heating for the battery 10 .
  • the first current diverter collector 11 can output the cooling liquid to one heater 15 or multiple heaters 15 according to actual working conditions, which is not limited in this application.
  • FIG. 3 shows a schematic structural diagram of a liquid cooling unit 100 according to an embodiment of the present application.
  • the assembly method of the internal parts of the liquid cooling unit 100 is shown in Figure 3. All the parts of the liquid cooling unit 100 are fixed inside the sheet metal frame 22, and a forklift opening 23 is provided on the sheet metal frame to facilitate transportation. Or transport the liquid cooling unit 100 to the application site.
  • the interior of the liquid cooling unit 100 can be divided into three layers, the uppermost layer fixes the radiator 14, the compressor 17, the fluid box 20, and the cooling fan 18; the middle layer fixes the plate heat exchanger 13 and the compressor 16; The bottom layer fixes the first flow collector 11 , the second flow collector 12 , the heater 15 and the water pump 21 .
  • the fluid box 20 is arranged at the highest level inside the liquid cooling unit 100, which is beneficial to increase the water pressure.
  • the fixing positions of all the above parts are only examples, and the actual fixing positions and methods can be reset according to working conditions or customer needs, which is not limited in this application.
  • all components for cooling or heating the battery 200 are combined into an integrated integrated liquid cooling unit 100, which overcomes the problems of complex pipelines and low cooling efficiency brought about by the traditional design of split indoor and outdoor units. , and also avoid the problems of large space occupation of the part-type liquid cooling unit and high cost of on-site installation and maintenance. In some embodiments, it is beneficial to control the mass production of the liquid cooling unit 100 and has industrial application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Secondary Cells (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

一种液冷机组(100),该液冷机组包括:第一分流集流器(11)、第二分流集流器(12)、板式换热器(13)、散热器(14)、加热器(15);板式换热器、散热器、加热器并联于第一分流集流器的分流端和第二分流集流器的集流端之间;第一分流集流器的分流端用于向板式换热器、散热器、加热器中至少一个输出流体;板式换热器和散热器用于对流体进行降温,加热器用于对流体进行加热;第二分流集流器的集流端用于接收板式换热器、散热器、加热器中至少一个输出的流体,第二分流集流器的分流端用于将流体输出至电池(200),以对电池进行热管理;第一分流集流器的集流端用于接收对电池进行热管理后的流体。通过将不同的降温设备并联连接,提高了液冷机组的降温效率。

Description

一种液冷机组
相关申请的交叉引用
本申请要求享有于2021年11月15日提交的名称为“一种液冷机组”的中国专利申请202122794342.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及液冷设备技术领域,更为具体地,涉及一种液冷机组。
背景技术
为了增强电池的供电性能,一般由多个电池串联或并联构成电池组进行使用。但多个电池同时通电,会产生发热现象,尤其在高温环境下,发热现象更为严重,可能会造成电池过热燃烧甚至爆炸,存在严重的安全隐患。
水冷降温通过水流均匀稳定地带走电池的热量,是一种常用的降温方式。但目前的水冷结构一般占用空间较大,且降温效率不高。因此亟需一种降温效率高的水冷装置。
发明内容
本申请实施例提供了一种液冷机组,能够提供多种降温方式,并将不同的降温设备并联连接,提高了液冷机组的降温效率。
本申请实施例提供了一种液冷机组,包括:第一分流集流器、第二集流分流器、板式换热器、散热器、加热器;板式换热器、散热器、加 热器并联于第一分流集流器的分流端和第二分流集流器的集流端之间;第一分流集流器的分流端用于向板式换热器、散热器、加热器中至少一个输出流体;板式换热器和散热器用于对流体进行降温,加热器用于对流体进行加热;第二分流集流器的集流端用于接收板式换热器、散热器、加热器中至少一个输出的流体,第二分流集流器的分流端用于将流体输出至电池,以对电池进行热管理;第一分流集流器的集流端用于接收对电池进行热管理后的流体。
需要说明的是,上述热管理指的是通过流体对电池进行降温或加热。
在一些实施例中,液冷机组还包括压缩机、冷凝器、散热风机;压缩机、冷凝器、板式换热器及散热风机用于对制冷剂进行降温;其中,与压缩机、散热器、冷凝器、板式换热器连接的制冷剂管路一体化焊接。
上述实施方式,压缩机、冷凝器、散热器以及板式换热器使用一体化焊接成型的制冷剂管路连接,形成一体化的压缩机制冷模块,减少了制冷剂管路和其他零部件的装配数量,提高了液冷机组的安装效率。
在一些实施例中,液冷机组还包括流体箱,流体箱为闭式流体箱,用于向第二分流集流器提供流体。
应理解,本申请的流体箱也可称为水箱,本申请对此名称不作限定。
上述实施方式,流体箱通过第二分流集流器向管路中提供冷却液,采用闭式流体箱可以确保冷却液系统运行时密封,有利于保证冷却液洁净、稳定和长效性。
在一些实施例中,液冷机组还包括水泵,水泵用于将流体输出至电池。
在一些实施例中,水泵为无刷直流水泵,由于无刷直流水泵没有 碳刷摩擦,所以不产生火花,其效率高、低功耗、比有刷电机寿命长、噪音低。
在一些实施例中,加热器的数量为多个。
上述实施方式,可以根据实际需求,设置加热器的数量。例如,当电池处于环境温度较低的环境,可以设置多个加热器,并联于第一分流集流器与第二分流集流器之间,共同对电池加热,从而提高液冷机组的制热效率。
在一些实施例中,板式换热器、散热器、加热器通过橡胶软管与第一分流集流器和第二分流集流器连接。
需要说明的是,液冷机组内的板式换热器、散热器、加热器、流体箱、水泵、第一分流集流器以及第二分流集流器之间连接的管路均为橡胶软管连接,构成液冷机组的冷却液回路。
上述实施方式,可以根据电池热管理的实际需求连接相应数量的加热器和水泵,增加了液冷机组中零部件安装的灵活性。
在一些实施例中,第一分流集流器和第二分流集流器上均设置常闭性排水阀,用于对与第一分流集流器和第二分流集流器的连接管路进行排水和排气。
在一些实施例中,第一分流集流器与第二分流集流器均一体化焊接成型。
在一些实施例中,当环境温度低于第一阈值时,开启散热风机以对散热器内部的流体进行降温。
应理解,开启散热风机是为了使散热风机对散热器内部的冷却液进行降温冷却从而对电池进行降温。默认情况下,水泵是开启状态才会对冷却液进行降温。散热风机和水泵共同工作的电耗功率远小于压缩机制冷模块。一般散热风机和水泵的功率在百瓦级,而压缩机制冷模块的电功率 都大于千瓦级别以上。因此,开启散热风机和水泵进行降温可以降低液冷机组的功耗。
上述实施方式,当外界空气温度比冷却液回路的冷却液温度低时,例如环境温度低于一定阈值时,可以强制开启散热器和水泵,利用散热风机通风,对冷却液进行冷却或降温,辅助系统进行冷却,降低机组功耗。
本申请的实施例中,通过板式换热器、散热器、加热器间的并联结构设计,液冷机组可以根据电池对热管理的需求选择不同的设备工作。在一些实施例中,还可以通过板式换热器和散热器支路对电池进行共同降温,提高了液冷机组的降温效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的液冷机组的框图示意图;
图2为本申请一些实施例提供的液冷机组的冷却液回路的连接示意图;
图3为本申请一些实施例提供的液冷机组的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向” “径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
电池的使用通常是由多个电池串联或并联构成电池组进行使用,以增强电池的供电性能,箱式电池更是容量超大。但是当多个电池同时通电时,会产生发热现象,电池组的种种发热现象更为严重,可能造成电池过热燃烧甚至爆炸,存在严重的安全隐患,影响电池的使用寿命。现有对电池的降温方式一般可分为两种。风冷降温方式主要依靠外界冷空气带走电池表面的热量从而对电池进行冷却降温,该过程受气流风速等许多不确定因素影响,容易造成散热不均,制冷制热效率低。水冷降温方式是通过水流带走电池的热量从而对电池进行冷却降温,这种方式的稳定性高,但当前的水冷结构或系统普遍存在空间占用大,降温效率不高的问题,并且对于零件式液冷机组而言,其部件需要到电站现场安装和连接,增加了现场安装维护的难度以及成本。
针对上述问题,本申请实施例提供了一种液冷机组,将其所有零部件集成于一体机组内,解决了由于现有水冷结构占用空间大引起的冷温泄露问题,从而提高了电池组的散热效率;此外,一体化的液冷机组免于 现场安装,降低现场安装维护的难度和成本。本申请提供的液冷机组适用于各种电池或电池组的热管理,可将电池或电池组的温度控制在合理范围内。
图1是本申请实施例提供的一种液冷机组100的结构图,用于对电池200进行热管理。该液冷机组100包括第一分流集流器11、第二分流集流器12,板式换热器13,散热器14,加热器15;板式换热器13、散热器14、加热器15并联于第一分流集流器11的分流端与第二分流集流器12的集流端之间;第一分流集流器11的分流端用于向板式换热器13、散热器14、加热器15中至少一个输出流体;板式换热器13和散热器14用于对流体进行降温,加热器15用于对流体进行加热;第二分流集流器12的集流端用于接收板式换热器13、散热器14、加热器15中至少一个输出的流体,第二分流集流器12的分流端用于将流体输出至电池200,以对电池200进行热管理;第一分流集流器11的集流端用于接收对电池200进行热管理后的流体。
上述第一分流集流器11和第二分流集流器12也可称为分流集流阀。其中,分流阀的作用是使液压系统中由同一个油源向两个以上执行元件供应相同的流量(等量分流),或按一定比例向两个执行元件供应流量(比例分流),以实现两个执行元件的速度保持同步或定比关系。集流阀的作用是从两个执行元件收集等流量或按比例的回油量,以实现其间的速度同步或定比关系。分流集流阀则兼有分流阀和集流阀的功能。
板式换热器13是用薄金属板压制成具有一定波纹形状的换热板片,然后叠装,用夹板、螺栓紧固而成的一种换热器。各种板片之间形成薄矩形通道,通过半片进行热量交换。工作流体在两块板片间形成的窄小而曲折的通道中流过。冷热流体依次通过流道,中间有一隔层板片将流体 分开,并通过此板片进行换热。
散热器14采用铝材质的平行流管片式结构,行流内部流体流通,其平行流道采用口琴管结构设计,表面钎焊薄翅片,可以增加散热面积。
应理解,本申请实施例中的热管理指的是通过流体对电池200进行降温或加热。
通过该实施方式,液冷机组100内部的板式换热器13、散热器14、加热器15并联结构设计,可以根据电池200对制热或制冷的不同需求选择不同的支路工作。在一些实施例中,还可以通过板式换热器13和散热器14支路对电池进行共同降温,从而提高液冷机组100的降温效率。
在一些实施例中,液冷机组100还包括压缩机16、压缩机17和散热风机18,压缩机16、压缩机17、散热风机18和板式换热器用于对制冷剂进行降温,其中,与压缩机16、压缩机17、以及板式换热器13连接的制冷剂管道19一体化焊接。
其中,压缩机17,是将低压气体提升为高压的一种从动的流体机械,是制冷系统的心脏,它从吸气管吸入低温低压的制冷剂气体,通过电机运转带动活塞对其进行压缩后,向排气管排出高温高压的制冷剂液体,为制冷循环提供动力。压缩机17能把气体或蒸气转变成液体,将管子中的热量,以很快的方式,传到管子附近的空气中。
需要说明的是,压缩机16、压缩机17、散热风机18、板式换热器13、制冷剂管道19构成本申请实施例中液冷机组100的压缩机制冷模块110。
上述实施方式中,制冷剂管路通过一体化焊接工艺成型,减少了制冷剂管路20与压缩机制冷模块110中多个零部件的装配数量,降低了液冷机组100现场安装和维护的难度。
还需要说明的是,本申请实施例中液冷机组100的压缩机制冷模块110中的制冷剂管道19中流通的液体是制冷剂。液冷机组100中除压缩机制冷模块110内部的管路,其他管路流通的液体为冷却液。
还需要说明的是,散热器14、散热风机18及其配套的冷却液管道构成本申请实施例中液冷机组10的散热器制冷模块120;第一分流集流器11、第二分流集流器12和加热器15构成本申请实施例中液冷机组100的制热及冷却液管路模块130。
在一些实施例中,液冷机组还包括流体箱20,该流体箱为闭式流体箱,用于向第二分流集流器12提供流体。
应理解,流体箱20也可被称为水箱,用于存储流体。在本申请实施例中,流体指冷却液。
上述实施方式中,流体箱20可为闭式流体箱,能够确保冷却液系统运营时密封,有利于保证冷却液洁净、稳定和长效性。
在一些实施例中,流体箱20可以为闭式膨胀流体箱,这种膨胀流体箱可以缓冲系统里面的压力波动,也可起到卸荷的作用。如果系统里面的水压有所变化时,其自动膨胀收缩功能,会感应到水压的变化,然后起到缓冲的作用。膨胀流体箱可以使水压维持稳定,控制水泵不因压力而改变。
在一些实施例中,液冷机组100还包括水泵21,用于将流体输出至电池200,以对电池200进行降温或加热。
在一些实施例中,液冷机组100的水泵21数量为多个。
例如,如图1所示的液冷机组100中包括5个水泵,该5个水泵并联连接于第二分流集流器12,且每个水泵连接一个电池200,从而对其 连接的电池200进行降温或加热。
在一些实施例中,水泵21为无刷直流型水泵,由于无刷直流型水泵没有碳刷摩擦,所以不产生火花,其效率高、低功耗、比有刷电机寿命长、噪音低。
需要说明的是,水泵21是整个冷却液循环系统的动力源,其可以控制出口流量,确保外围冷却对象(电池、电池包、电池箱体等)有足够的冷却液流量,以及确保供给流量的一致性。
在一些实施例中,水泵21为可以脉冲宽度调制(pulse width modulation,PMW)变频调节的水泵,有利于根据外围管路系统对冷却液对象的不同工况需求,调节输出不同冷却液流量。
在本申请实施例中,水泵21的数量可以根据外围电池200的数量进行选择配置,以方便兼顾各种客户系统的需求。例如,客户需求给4个电池200进行冷却或加热时,可将液冷机组100中水泵21数量设置为4。当然,水泵21的数量也可以作冗余设计。例如,客户需求给4个电池200进行冷却或加热时,可将液冷机组100的水泵水量设置为5,此时仅需要将第五路水泵关闭,并用堵头管路封堵该水路,待后期若某路水泵发生故障时,转接至第五路水泵即可快速恢复使用,从而无需更换新的机组。
在一些实施例中,板式换热器13、散热器14、加热器15通过橡胶软管与第一分流集流器11和第二分流集流器12连接。
在一些实施例中,水泵21也是通过橡胶软管与第二分流集流器12和电池200连接。
在一些实施例中,第一分流集流器11和所述第二分流集流器12上均设置常闭性排水阀,用于对与第一分流集流器和第二分流集流器的连接管路进行排水和排气。
在首次注液或售后维护时补液时,若液冷机组100内部管路存在气泡,会影响液冷机组100内部冷却液流动的稳定性和水压采样的稳定性,通过在第一分流集流器11和第二分流集流器12设置常闭性排气阀,对液冷机组100内部管路进行排水和排气。
在一些实施例中,第一分流集流器11与所述第二分流集流器12均一体化焊接成型。
在一些实施例中,当环境温度低于第一阈值时,开启散热风机18,以对散热器14内部的流体进行降温。
应理解,当液冷机组100在温度低于一定阈值环境中工作时,例如15℃,可以利用散热器制冷模块120为冷却液降温,进而实现对电池200的降温和冷却。使用散热器制冷模块120降温的具体方式是开启散热风机18和水泵21,利用散热风机18通风,对散热器行流内部的冷却液进行降温冷却。其中,散热器制冷模块120既可以单独工作,也可以作为辅助方式与制冷剂制冷模块130共同工作为电池100降温,本申请对此不作限定。
上述实施方式中,使用散热风机18和水泵21共同降温的电耗功率远小于压缩机制冷模块110。一般散热器和水泵的功率在百瓦级,而压缩机制冷模块110的电功率都大于千瓦级别以上,因此,可以利用散热器制冷模块120降低液冷机组100的功耗。
为了便于理解本申请实施例液冷机组的冷却液流向,图2示出了本申请实施例提供的液冷机组10的冷却液回路。图2中所有的连接管路均为冷却液管路,箭头为冷却液的流动方向。
在一些实施例中,加热器15的数量为多个。
通过该实施方式,可以根据实际需求,设置加热器15的数量。 例如,当电池处于温度较低的环境,可以设置多个加热器15,并联于第一分流集流器11与第二分流集流器12之间,共同对电池200加热,从而提高液冷机组100的制热效率。
示例性的,如图2所示的液冷机组100中的加热器15数目为2,并联连接于第一分流集流器11与第二分流集流器12之间。因此,第一分流集流器11包括四个分流端口。进而可以得出,当加热器数目为3时,第一分流集流器11包括五个分流端口。第一集流分流器的分流端口可以根据需求设定或制造。
为了便于理解液冷机组100中制冷及冷却液管路的工作流程,通过以下实施例进行举例介绍。
在一些实施例中,当电池100的温度高于某一阈值时,为了避免电池10发生热失控,需要对电池200进行降温。此时,将该电池对应的水泵21打开,流体箱20向第二分流集流器12提供冷却液,冷却液从水泵21流出至该电池200从而对该电池200进行降温。对电池200进行降温后的冷却液通过液冷机组100外部的冷却液管道300流入至第一分流集流器11。此时判断外界温度是否小于第一阈值,当外界温度小于第一阈值时,第一分流集流器11将冷却液输出至板式换热器13和散热器14,并打开散热风机18。其中,在板式换热器支路,由板式换热器13对流经的冷却液进行降温;在散热器支路,由散热风机18对散热器14行流内部的冷却液进行降温,然后将降温后的冷却液输送至第二分流集流器12,以继续为电池200进行循环降温。当外界温度不小于第一阈值时,第一分流集流器11仅将冷却液输出至板式换热器13。
在一些实施例中,当电池200的温度低于某一阈值时,例如,电池10的温度低于冷却液温度时,需要对电池200进行加热。此时,将该 电池对应的水泵21打开,流体箱20向第二分流集流器12提供冷却液,冷却液从水泵21流出至该电池200从而对该电池200进行加热。对电池200进行加热后的冷却液通过液冷机组100外部的冷却液管道300流入至第一分流集流器11。第一分流集流器11将冷却液输出加热器15,由加热器15对冷却液进行加热,然后将加热后的冷却液输送至第二分流集流器12,以继续为电池10进行循环加热。
需要说明的是,在对电池200进行加热时,第一分流集流器11可以根据实际工况需求将冷却液输出至一个加热器15或多个加热器15,本申请对此不作限定。
图3示出了本申请实施例的一种液冷机组100的结构示意图。
在一些实施例中,液冷机组100内部零件的装配方式如图3所示,该液冷机组100的所有零件被固定在钣金框架22内部,该钣金框架上设置叉车口23,便于运输或搬运该液冷机组100至应用现场。
在一些实施例中,液冷机组100内部可分为三层,最上层固定散热器14、压缩机17,、流体箱20、散热风机18;中间层固定板式换热器13和压缩机16;最底层固定第一分流集流器11、第二分流集流器12、加热器15和水泵21。
其中,将流体箱20设置在液冷机组100内部的最高层,有利于提升水压。
在其他实施例中,以上所有零件的固定位置仅作为示例,实际中固定的位置和方式均可以根据工况或客户需求重新设置,本申请对此不作限定。
上述实施方式中,将对电池200进行降温或加热的所有零部件组成集成式的一体液冷机组100,克服了传统采用分体式室内室外机设计方 案带来的管路复杂、降温效率低等问题,还避免了零件式液冷机组占用空间大,现场安装与维护成本高的问题,在一些实施例中,有利于控制液冷机组100的批量生产,具有产业上的利用价值。
以上实施例仅用以说明本申请的技术方案,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种液冷机组(100),其中,包括:
    第一分流集流器(11)、第二分流集流器(12),板式换热器(13),散热器(14),加热器(15);
    所述板式换热器(13)、所述散热器(14)、所述加热器(15)并联于所述第一分流集流器(11)的分流端与所述第二分流集流器(12)的集流端之间;
    所述第一分流集流器(11)的分流端用于向所述板式换热器(13)、所述散热器(14)、所述加热器(15)中至少一个输出流体;
    所述板式换热器(13)和所述散热器(14)用于对所述流体进行降温,所述加热器(15)用于对所述流体进行加热;
    所述第二分流集流器(12)的集流端用于接收所述板式换热器(13)、所述散热器(14)、所述加热器(15)中至少一个输出的所述流体,所述第二分流集流器(12)的分流端用于将所述流体输出至电池(200),以对所述电池(200)进行热管理;
    所述第一分流集流器(11)的集流端用于接收对所述电池(200)进行热管理后的所述流体。
  2. 根据权利要求1所述的液冷机组(100),其中,所述液冷机组(100)还包括压缩机(16)、冷凝器(17)、散热风机(18);
    所述压缩机(16)、所述冷凝器(17)、所述板式换热器(13)及所述散热风机(18)用于对制冷剂进行降温;
    其中,与所述压缩机(16)、所述冷凝器(17)、所述板式换热器(13)连接的制冷剂管路(19)一体化焊接。
  3. 根据权利要求2所述的液冷机组(100),其中,所述液冷机组(100)还包括:
    流体箱(20),所述流体箱(20)为闭式流体箱,用于向所述第二分流集流器(12)提供流体。
  4. 根据权利要求3所述的液冷机组(100),其中,所述液冷机组(100)还包括:
    水泵(21),所述水泵(21)用于将所述流体输出至所述电池(200)。
  5. 根据权利要求中4所述的液冷机组(100),其中,所述水泵(21)为无刷直流水泵。
  6. 根据权利要求1所述的端盖组件,其中,所述加热器(15)的个数为多个。
  7. 根据权利要求中1所述的液冷机组(100),其中,
    所述板式换热器(13)、所述散热器(14)、所述加热器(15)通过橡胶软管与所述第一分流集流器(11)和所述第二分流集流器(12)连接。
  8. 根据权利要求1所述的液冷机组(100),其中,所述第一分流集流器(11)和所述第二分流集流器(12)上均设置常闭性排水阀,用于对与所述第一分流集流器(11)和所述第二分流集流器(12)的连接管路进行排水和排气。
  9. 根据权利要求1所述的液冷机组(100),其中,所述第一分流集流器(11)与所述第二分流集流器(12)均一体化焊接成型。
  10. 根据权利要求1至9中任一项所述的液冷机组(100),其中,当环境温度低于第一阈值时,开启所述散热风机(18),以对所述散热器(14)内部的所述流体进行降温。
PCT/CN2022/097112 2021-11-15 2022-06-06 一种液冷机组 WO2023082617A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2022387397A AU2022387397B2 (en) 2021-11-15 2022-06-06 Liquid cooling unit
EP22891427.1A EP4254606A1 (en) 2021-11-15 2022-06-06 Liquid cooling unit
US18/343,834 US20230345674A1 (en) 2021-11-15 2023-06-29 Liquid cooling unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122794342.3U CN216529039U (zh) 2021-11-15 2021-11-15 一种液冷机组
CN202122794342.3 2021-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/343,834 Continuation US20230345674A1 (en) 2021-11-15 2023-06-29 Liquid cooling unit

Publications (1)

Publication Number Publication Date
WO2023082617A1 true WO2023082617A1 (zh) 2023-05-19

Family

ID=81530695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097112 WO2023082617A1 (zh) 2021-11-15 2022-06-06 一种液冷机组

Country Status (5)

Country Link
US (1) US20230345674A1 (zh)
EP (1) EP4254606A1 (zh)
CN (1) CN216529039U (zh)
AU (1) AU2022387397B2 (zh)
WO (1) WO2023082617A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216529039U (zh) * 2021-11-15 2022-05-13 宁德时代新能源科技股份有限公司 一种液冷机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204885359U (zh) * 2015-07-16 2015-12-16 金龙联合汽车工业(苏州)有限公司 一种电池组温度调节系统
CN205194809U (zh) * 2015-11-12 2016-04-27 东软集团股份有限公司 电动汽车动力电池的热管理系统和电动汽车
CN105720319A (zh) * 2016-05-09 2016-06-29 深圳市赛尔盈电子有限公司 一种ptc加热器及动力电池加热与冷却装置
CN205355204U (zh) * 2016-03-02 2016-06-29 宁德时代新能源科技股份有限公司 电池包热管理系统
CN216529039U (zh) * 2021-11-15 2022-05-13 宁德时代新能源科技股份有限公司 一种液冷机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204885359U (zh) * 2015-07-16 2015-12-16 金龙联合汽车工业(苏州)有限公司 一种电池组温度调节系统
CN205194809U (zh) * 2015-11-12 2016-04-27 东软集团股份有限公司 电动汽车动力电池的热管理系统和电动汽车
CN205355204U (zh) * 2016-03-02 2016-06-29 宁德时代新能源科技股份有限公司 电池包热管理系统
CN105720319A (zh) * 2016-05-09 2016-06-29 深圳市赛尔盈电子有限公司 一种ptc加热器及动力电池加热与冷却装置
CN216529039U (zh) * 2021-11-15 2022-05-13 宁德时代新能源科技股份有限公司 一种液冷机组

Also Published As

Publication number Publication date
AU2022387397A1 (en) 2023-07-27
AU2022387397A9 (en) 2024-05-09
US20230345674A1 (en) 2023-10-26
CN216529039U (zh) 2022-05-13
EP4254606A1 (en) 2023-10-04
AU2022387397B2 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
WO2015043259A1 (zh) 电力电子器件冷却系统及分布式发电系统
CN106765760A (zh) 一种回收机房液冷散热量的供暖系统
WO2023082617A1 (zh) 一种液冷机组
CN106129435A (zh) 一种液流电池换热装置
CN115513572A (zh) 一种储能电池组半导体温度控制系统
CN213636112U (zh) 冷水机组与储能系统
CN219082000U (zh) 一种带冷却功能的液压油箱
CN207842707U (zh) 一种动力电池冷却加热管理系统及动力电池
CN219454079U (zh) 一种分体式空气能装置及具有其的多联供系统
CN219754741U (zh) 一种空压系统散热装置及空压系统
CN215933678U (zh) 一种电池热管理系统及电动车辆
CN214254532U (zh) 一种用于集装箱式储能系统的热管理机组
CN216244637U (zh) 管道双储交换系统
CN110792506A (zh) 一种用于内燃机的水冷空冷一体式冷却器
WO2024092918A1 (zh) 一种应用综合热能管理技术的轨道车辆
CN214120493U (zh) 一种环保设备用散热装置
CN211376877U (zh) 用于储能充电桩的液体管路
CN209993703U (zh) 一种纯电动重卡电池热管理装置
CN213718500U (zh) 一种svg水冷装置
CN218677135U (zh) 热源管理系统
CN220292472U (zh) 一种水空调控制箱散热结构及其水空调控制箱
CN213574324U (zh) 一种船用柴油机冷却阀
CN220753551U (zh) 空调机组
CN219123332U (zh) 一种电动农机用电池热管理机组的管路系统
CN217685964U (zh) 冷却换热器、制冷剂循环系统、冷却水设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022891427

Country of ref document: EP

Effective date: 20230627

ENP Entry into the national phase

Ref document number: 2022387397

Country of ref document: AU

Date of ref document: 20220606

Kind code of ref document: A