WO2023082577A1 - 垂直腔面发射激光器以及制备方法 - Google Patents

垂直腔面发射激光器以及制备方法 Download PDF

Info

Publication number
WO2023082577A1
WO2023082577A1 PCT/CN2022/092689 CN2022092689W WO2023082577A1 WO 2023082577 A1 WO2023082577 A1 WO 2023082577A1 CN 2022092689 W CN2022092689 W CN 2022092689W WO 2023082577 A1 WO2023082577 A1 WO 2023082577A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
substrate
light
oxidation
emitting
Prior art date
Application number
PCT/CN2022/092689
Other languages
English (en)
French (fr)
Inventor
翁玮呈
丁维遵
彭俊彦
刘嵩
梁栋
Original Assignee
常州纵慧芯光半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州纵慧芯光半导体科技有限公司 filed Critical 常州纵慧芯光半导体科技有限公司
Priority to JP2022540881A priority Critical patent/JP2023552011A/ja
Priority to KR1020227033863A priority patent/KR20230070406A/ko
Priority to GB2317459.2A priority patent/GB2621741A/en
Priority to EP22891388.5A priority patent/EP4325675A1/en
Publication of WO2023082577A1 publication Critical patent/WO2023082577A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18338Non-circular shape of the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • H01S5/18313Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation by oxidizing at least one of the DBR layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode

Definitions

  • the embodiments of the present application relate to the technical field of semiconductors, for example, to a vertical cavity surface emitting laser and a manufacturing method.
  • VSEL Vertical cavity surface emitting laser
  • VCSEL Vertical Cavity Surface Emitting Laser Due to its advantages of small size, low threshold current, high modulation frequency, and easy fiber coupling, it can not only be used in optical communication , optical interconnection, optical information processing and other fields, and can also be used as a light source for structured light technology in 3D (3-dimensional, three-dimensional) recognition in electronic consumer fields such as mobile phones and lidar for driverless cars.
  • Embodiments of the present application provide a vertical cavity surface emitting laser and a manufacturing method.
  • An embodiment of the present application provides a vertical cavity surface emitting laser, including:
  • the light emitting unit is provided with a light emitting hole, a through hole and an oxidation groove; the light emitting hole is used to emit light; the through hole is arranged around the light emitting hole; the oxidation groove is arranged around the light emitting hole;
  • At least one of the through hole and the oxidation trench is shared by at least two of the light emitting units.
  • the embodiment of the present application also provides a method for manufacturing a vertical cavity surface emitting laser, including:
  • the light emitting unit is provided with a light emitting hole, a through hole and an oxidation groove; the light emitting hole is used to emit light; the through hole is arranged around the light emitting hole; the oxidation groove is arranged around the light emitting hole;
  • At least one of the through hole and the oxidation trench is shared by at least two of the light emitting units.
  • Fig. 1 is a top view of a vertical cavity surface emitting laser provided by the related art
  • Fig. 2 is a top view of another vertical cavity surface emitting laser provided by the related art
  • Fig. 3 is a schematic cross-sectional structure diagram of A1-A2 direction in Fig. 1;
  • FIG. 4 is a schematic structural diagram of a vertical cavity surface emitting laser provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • Fig. 6 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a cross-sectional structure in the B1-B2 direction in Fig. 4-Fig. 6;
  • Fig. 8 is a schematic cross-sectional structure diagram of B3-B4 direction in Fig. 5 and Fig. 6;
  • FIG. 9 is a schematic flowchart of a method for manufacturing a vertical cavity surface emitting laser provided in an embodiment of the present application.
  • FIG. 10 is a schematic flow diagram of step 120 in FIG. 9;
  • FIG. 11 is a schematic flow diagram of step 1203 in FIG. 10;
  • FIG. 12 is a schematic flow diagram of step 1204 in FIG. 10;
  • FIG. 13 is another schematic flow diagram included in step 1203 in FIG. 10;
  • FIG. 14 is a structural diagram corresponding to each step of a method for manufacturing a vertical cavity surface emitting laser provided in an embodiment of the present application;
  • FIG. 15 is another structural diagram corresponding to each step of a method for manufacturing a vertical cavity surface emitting laser provided in an embodiment of the present application;
  • FIG. 16 is another structural diagram corresponding to each step of a method for manufacturing a vertical cavity surface emitting laser provided in an embodiment of the present application;
  • FIG. 17 is another structural diagram corresponding to each step of a method for manufacturing a vertical cavity surface emitting laser provided in an embodiment of the present application.
  • FIG. 18 is another structural diagram corresponding to each step of a method for manufacturing a vertical cavity surface emitting laser provided in an embodiment of the present application.
  • FIG. 19 is another structural diagram corresponding to each step of a method for manufacturing a vertical cavity surface emitting laser provided in an embodiment of the present application.
  • FIG. 20 is another structural diagram corresponding to each step of a method for manufacturing a vertical cavity surface emitting laser provided in an embodiment of the present application;
  • FIG. 21 is another structural diagram corresponding to each step of a method for manufacturing a vertical cavity surface emitting laser provided in an embodiment of the present application.
  • FIG. 22 is another structural diagram corresponding to each step of a method for fabricating a vertical cavity surface emitting laser provided in an embodiment of the present application.
  • FIG. 1 is a top view of a vertical cavity surface emitting laser provided in the related art.
  • Fig. 2 is a top view of another vertical cavity surface emitting laser provided in the related art.
  • FIG. 3 is a schematic cross-sectional structure diagram along the direction A1-A2 in FIG. 1 . Referring to FIGS.
  • the vertical cavity surface emitting laser in the related art includes a substrate 10 and light-emitting units 20 arranged in an array, and the light-emitting units 20 are located on the substrate 10 or the epitaxial layer (not shown) ) surface; each light emitting unit 20 is provided with a light emitting hole 21, a through hole 22 and an oxidation trench 23.
  • Each light emitting unit 20 is provided with a through hole 22 surrounding the light emitting hole 21 and an oxidation trench 23 , the through hole 22 is disposed around the light emitting hole 21 , and the oxidation trench 23 is disposed around the through hole 22 .
  • the light-emitting units 20 do not share the through hole 22 , and the light-emitting units 20 do not share the oxidation trench 23 . Therefore, the area of the free area between the light emitting units 20 is relatively large, resulting in that the size between the light emitting units 20 cannot be further reduced.
  • the first pad 25 is not shown in FIG. 1 . Also shown in FIG. 3 are the first pad 25 , the first passivation layer 24 , the first pad metal contact layer 25 a and the second pad 29 .
  • FIG. 4 is a schematic structural diagram of a vertical cavity surface emitting laser provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another vertical cavity surface emitting laser provided by an embodiment of the present application. 4 and 5, the vertical cavity surface emitting laser comprises: a substrate 10; a light emitting unit 20 arranged in an array, the light emitting unit 20 is located on the surface of the substrate 10; wherein the light emitting unit 20 is provided with a light emitting hole 21, a through hole 22 and an oxidation groove 23; the light-emitting hole 21 is used to emit light; the through hole 22 is arranged around the light-emitting hole 21; the oxidation groove 23 is arranged around the light-emitting hole 21; 20 shared.
  • the through hole 22 is used to place a pad for providing electrical signals to the light emitting unit 20 .
  • the pad can be a P-type pad or an N-type pad.
  • the through hole 22 is disposed around the light emitting hole 21 .
  • the through hole 22 is shared by at least three light emitting units 20 . It should be noted that, not shown in the drawings, when the light emitting units 20 include one row or one column, the through holes 22 are shared by at least two light emitting units 20 .
  • the oxidation trench 23 is disposed around the light emitting hole 21 .
  • the oxidation trench 23 is shared by four light emitting units 20 .
  • the oxidation trench 23 is shared by at least three light emitting units 20 . It should be noted that, not shown in the drawings, when the light emitting units 20 include one row or one column, the oxidation trench 23 is shared by at least two light emitting units 20 .
  • the through hole 22 and/or the oxidation trench 23 are shared by at least two light-emitting units 20 , compared to the case where there is no shared through-hole 22 between the light-emitting units 20 and there is no light-emitting unit 20
  • the technical scheme of sharing the oxidation trench 23, the through hole 22 and/or the oxidation trench 23 are shared by different light emitting units 20, the through hole 22 and/or the oxidation trench 23 can occupy the free area between the light emitting units 20, reducing the light emission
  • the size between the units 20 further increases the density of the light-emitting units 20 and the power density of the vertical cavity surface emitting laser.
  • Fig. 6 is a top view of another vertical cavity surface emitting laser provided by an embodiment of the present application.
  • the oxidation trench 23 surrounding the same light-emitting hole 21 includes S oxidation sub-trenches, wherein the value of S includes an even number greater than or equal to 2; and/or, surrounding
  • the through hole 22 of the same light-emitting hole includes Q sub-limiting holes, wherein the value of Q includes an even number greater than or equal to 2, and the projected areas of the oxidation sub-trench and the sub-limiting holes on the substrate do not overlap.
  • the oxidation trench 23 includes four oxidation sub-trenches.
  • the oxidation trench 23 includes six oxidation sub-trenches.
  • the through hole 22 surrounding the same light-emitting hole 21 includes six sub-limiting holes, wherein there is a gap between the boundary of the oxidation sub-trench and the boundary of the through hole 22, that is, the projected area of the oxidation sub-trench on the substrate 10 is equal to The projected areas of the through holes 22 on the substrate 10 do not overlap.
  • the oxidation trench 23 is set as a plurality of spaced apart oxidation sub-trenches, and the oxidation sub-trench can be arranged in the light emitting unit
  • the free area between 20 further reduces the size between the light-emitting units 20, and further increases the density of the light-emitting units 20 and the light-emitting power density of the vertical cavity surface emitting laser.
  • the through hole 22 is set as a plurality of spaced sub-limiting holes, and the sub-limiting holes can be set between the light emitting units 20
  • the free area further reduces the size between the light-emitting units 20, thereby further increasing the density of the light-emitting units 20 and the light-emitting power density of the vertical cavity surface emitting laser.
  • S oxide sub-trenches are arranged at equal intervals in the circumferential direction around the same light emitting hole 21 .
  • the S oxidation sub-trenches are arranged at equal intervals in the circumferential direction around the same light-emitting hole 21 , which simplifies the layout difficulty of the S oxidation sub-trenches in the oxidation trench 23 .
  • Q sub-positioning holes are arranged at equal intervals in the circumferential direction around the same light emitting hole 21 .
  • the sub-limiting holes are arranged at equal intervals in the circumferential direction around the same light-emitting hole 21 , which simplifies the layout difficulty of the Q sub-limiting holes in the through hole 22 .
  • the oxide sub-grooves surrounding the same light emitting hole 21 are separated from the sub-limiting holes surrounding the same light emitting hole 21 set up.
  • the oxidation sub-grooves surrounding the same light-emitting hole 21 are spaced apart from the sub-limiting holes surrounding the same light-emitting hole 21, and the through hole 22 and the oxidation groove 23 together form a light-emitting hole. 21.
  • the distance between the oxidation trench 23 and the light emitting hole 21 is further shortened, the size between the light emitting units 20 is further reduced, and the density of the light emitting units 20 and the power density of the vertical cavity surface emitting laser light are increased.
  • the distance between the side of the oxide sub-trench surrounding the same light-emitting hole 21 adjacent to the light-emitting hole 21 and the light-emitting hole 21 is equal to the distance between the sub-trench surrounding the same light-emitting hole 21 The distance between the side of the position hole adjacent to the light-emitting hole 21 and the light-emitting hole 21 .
  • the distance between the side of the oxidation trench 23 adjacent to the light-emitting hole 21 and the light-emitting hole 21 is greater than the distance between the side of the through hole 22 adjacent to the light-emitting hole 21 and the light-emitting hole 21.
  • the technical solution for the spacing of the holes 21, the technical solution provided by the embodiment of the present application further shortens the distance between the oxidation trench 23 and the light-emitting hole 21, further reduces the size between the light-emitting units 20, and further increases the density of the light-emitting units 20 And the power density of the vertical cavity surface emitting laser light.
  • FIG. 7 is a schematic cross-sectional structure diagram along the B1-B2 direction in Fig. 4-Fig. 6 .
  • FIG. 8 is a schematic cross-sectional structure diagram along the B3-B4 direction in FIG. 5 and FIG. 6 .
  • the first pad 25 is not shown in the top views of FIGS. 4-6 . In one embodiment, on the basis of the above technical solution, referring to FIG.
  • the light emitting unit 20 includes a first reflector 20a, the first reflector 20a is located on the surface of the substrate 10; an active layer 20b, the active layer 20b is located
  • the first reflection mirror 20a is away from the surface of the substrate 10;
  • the second reflection mirror 20c, the second reflection mirror 20c is located on the surface of the active layer 20b away from the substrate 10, and the surface of the second reflection mirror 20c away from the substrate 10 is provided with an oxidation groove Groove 23, the oxidation trench 23 runs through the second reflector 20c, the active layer 20b and part of the first reflector 20a;
  • the first passivation layer 24, the first passivation layer 24 covers the second reflector 20c away from the substrate 10- side surface and the bottom and side surfaces of the oxidation trench 23,
  • the first passivation layer 24 is provided with a through hole 22, and the projection of the through hole 22 on the substrate 10 exposes a part of the second reflector 20c;
  • the first pad 25, the first The pad 25 is located on the surface of the first
  • the first passivation layer 24 can realize electrical insulation between the first pad 25 and the first mirror 20a.
  • it further includes a second pad 29 located on the side of the substrate 10 away from the light emitting unit 20 .
  • the second pad 29 is an N-type pad.
  • the first pad 25 is an N-type pad
  • the second pad 29 is a P-type pad.
  • the first reflector 20 a and the second reflector 20 c have different refractive indices, and their optical thicknesses are both of quarter wavelength odd multiples of semiconductor material grown periodically.
  • the active layer 20b is a quantum well luminescent material, which emits light under the action of a current signal, and the emitted light is reflected between the first reflector 20a and the second reflector 20c and then emerges from the second reflector 20c.
  • the embodiment of the present application includes the light emitted by the vertical cavity surface emitting laser emerging from the second mirror 20c shown in the drawings, and may also include a technical solution in which the light emitted by the vertical cavity surface emitting laser exits the first reflecting mirror 20a.
  • the first pad 25 applies the first current signal to the second mirror 20c, wherein the first ohmic contact layer 27 is formed on the surface of the second mirror 20c away from the substrate 10, that is, the first ohmic contact layer 27 It is provided between the first pad 25 and the second mirror 20c.
  • the first reflector 20 a of each light emitting unit 20 obtains the second current signal through the second pad 29 .
  • the active layer 20b emits light, and the emitted light is reflected between the first reflector 20a and the second reflector 20c, and then exits from the second reflector 20c.
  • the area surrounded by the through hole 22 is the light emitting hole 21 .
  • FIG. 4 and FIG. 5 the area surrounded by the through hole 22 is the light emitting hole 21 .
  • the area surrounded by the through hole 22 and the oxidation trench 23 is the light emitting hole 21 .
  • the first pad ohmic metal layer is not provided on the first pad 25 and the second reflector 20c, which can save the horizontal space occupied by the metal contact layer of the first pad for accommodating oxidation.
  • the groove 23 further shortens the distance between the oxidation groove 23 and the light-emitting hole 21, and further reduces the size between the light-emitting units 20, thereby increasing the density of the light-emitting units 20 and the power density of the VCSEL.
  • a second passivation layer 26 is further included, and the second passivation layer 26 is located between the first passivation layer 24 and the second reflector 20c In between, the via hole 22 penetrates through the second passivation layer 26 .
  • the second passivation layer 26 can protect the film layer corresponding to the light emitting unit 20 when the oxidation trench 23 is formed. It should be noted that, by controlling the thicknesses of the first passivation layer 24 and the second passivation layer 26 , the first passivation layer 24 and the second passivation layer 26 can transmit the light emitted by the light emitting unit 20 .
  • the second passivation layer 26 may also be located between the first passivation layer 24 and the first ohmic contact layer 27 .
  • an oxide layer 28b is also included.
  • the oxide layer 28b is located in the second mirror 20c.
  • the oxide layer 28b surrounds an oxidation hole 28a, and the oxidation hole 28a
  • the projection on the substrate 10 lies within the projection of the luminous aperture 21 on the substrate 10 .
  • the oxidation hole 28a is surrounded by the oxide layer 28b, the oxide layer 28b is formed after the aluminum component layer 28 is oxidized, and the oxidation hole 28a is the unoxidized aluminum component layer.
  • the aluminum component layer may be an AlAs or AlGaAs layer.
  • the aluminum composition ratio in the aluminum composition layer is the highest in the second mirror 20c.
  • the size of the oxidation hole 28 a can limit the size of the light-emitting point in the light-emitting hole 21 .
  • FIG. 9 is a schematic flowchart of a method for fabricating a vertical cavity surface emitting laser provided in an embodiment of the present application.
  • 14-22 are structural diagrams corresponding to each step of a method for manufacturing a vertical cavity surface emitting laser provided in an embodiment of the present application.
  • the embodiment of the present application also provides a method for manufacturing a vertical cavity surface emitting laser. Referring to Fig. 9, the method includes the following steps:
  • Step 110 providing a substrate.
  • the substrate 10 can be made of a semiconductor material, such as gallium arsenide semiconductor material.
  • Step 120 forming light-emitting units arranged in an array on the surface of the substrate.
  • the light-emitting unit is provided with a light-emitting hole, a through hole and an oxidation groove; the light-emitting hole is used to emit light; the through hole is arranged around the light-emitting hole; the oxidation groove is arranged around the light-emitting hole; the through hole and/or the oxidation groove is at least two
  • the lighting unit is shared.
  • the light emitting units 20 are arranged in arrays on the substrate.
  • the light emitting unit 20 is provided with a light emitting hole 21, a through hole 22 and an oxidation groove 23; the light emitting hole 21 is used for emitting light; the through hole 22 is arranged around the light emitting hole 21; the oxidation groove 23 is arranged around the light emitting hole 21; the through hole 22 and/or Or the oxidation trench 23 is shared by at least two light emitting units 20 .
  • FIG. 4 and FIG. 5 exemplarily show 16 light emitting units 20 .
  • the through hole 22 is disposed around the light emitting hole 21 .
  • the through hole 22 is shared by four light emitting units 20 . It should be noted that, not shown in the drawings, when the light emitting unit 20 includes one row or one column, the through hole 22 is shared by two light emitting units.
  • the oxidation trench 23 is disposed around the light emitting hole 21 .
  • the oxidation trench 23 is shared by four light emitting units 20 .
  • the oxidation trench 23 is shared by three light emitting units 20 . It should be noted that, not shown in the drawings, when the light emitting unit 20 includes one row or one column, the oxidation trench 23 is shared by two light emitting units.
  • the through hole 22 and/or the oxidation trench 23 are shared by at least two light-emitting units 20 , compared to the case where there is no shared through-hole 22 between the light-emitting units 20 and there is no light-emitting unit 20
  • the technical scheme of sharing the oxidation trench 23, the through hole 22 and/or the oxidation trench 23 are shared by different light emitting units 20, the through hole 22 and/or the oxidation trench 23 can occupy the free area between the light emitting units 20, reducing the light emission
  • the size between the units 20 further increases the density of the light-emitting units 20 and the power density of the vertical cavity surface emitting laser.
  • FIG. 10 is a schematic flowchart of step 120 in FIG. 9 .
  • step 120 forming light-emitting units arranged in an array on the surface of the substrate includes:
  • Step 1201 forming a first mirror on the surface of the substrate.
  • a first mirror 20 a is formed on the surface of the substrate 10 .
  • Step 1202 forming an active layer on the surface of the first mirror away from the substrate.
  • an active layer 20 b is formed on the surface of the first mirror 20 a away from the substrate 10 .
  • Step 1203 forming a second reflection mirror on the surface of the active layer away from the substrate, wherein the surface of the second reflection mirror away from the substrate is provided with an oxidation groove, and the oxidation groove runs through the second reflection mirror and the active layer and part of the second reflection mirror. a mirror.
  • a second reflection mirror 20c is formed on the surface of the active layer 20b away from the substrate 10, wherein the surface of the second reflection mirror 20c away from the substrate 10 is provided with an oxidation trench 23, and the oxidation trench 23 runs through the second reflector.
  • Step 1204 forming a first passivation layer on the surface of the second reflector away from the substrate and the bottom and side surfaces of the oxidation trench.
  • a through hole is provided on the surface of the first passivation layer away from the substrate, and the projection of the through hole on the substrate exposes part of the second reflector.
  • a first passivation layer 24 is formed on the surface of the second reflector 20c away from the substrate 10 and on the bottom and side surfaces of the oxidation trench 23, wherein the first passivation layer 24 is away from the side of the substrate 10
  • the surface is provided with a through hole 22 , and the projection of the through hole 22 on the substrate 10 exposes a part of the first ohmic contact layer 27 .
  • the first passivation layer 24 may realize electrical insulation between the first pad 25 and the first mirror 20a.
  • Step 1205 forming a first pad on the surface of the first passivation layer away from the substrate, wherein the first pad is connected to the second reflector through a through hole.
  • a first pad 25 is formed on the surface of the first passivation layer away from the substrate, wherein the first pad 25 is connected to the second mirror 20 c through the through hole 22 .
  • the first pad metal contact layer is not provided on the first pad 25 and the second reflector 20c, which can save the horizontal space occupied by the first pad metal contact layer for accommodating oxidation.
  • the groove 23 further shortens the distance between the oxidation groove 23 and the light-emitting hole 21, and further reduces the size between the light-emitting units 20, thereby increasing the density of the light-emitting units 20 and the power density of the VCSEL.
  • a second pad 29 may be formed on the surface of the substrate 10 away from the light emitting unit 20 .
  • the active layer 20b is a quantum well luminescent material, which emits light under the action of a current signal, and the emitted light is reflected between the first reflector 20a and the second reflector 20c and then emerges from the second reflector 20c.
  • the embodiment of the present application includes the light emitted by the vertical cavity surface emitting laser emerging from the second mirror 20c shown in the drawings, and may also include a technical solution in which the light emitted by the vertical cavity surface emitting laser exits the first reflecting mirror 20a.
  • the first pad 25 applies the first current signal to the second mirror 20c, wherein the first ohmic contact layer 27 is formed on the surface of the second mirror 20c away from the substrate 10, that is, the first ohmic contact layer 27 It is provided between the first pad 25 and the second mirror 20c.
  • the first reflector 20 a of each light emitting unit 20 obtains the second current signal through the second pad 29 .
  • the active layer 20b emits light, and the emitted light is reflected between the first reflector 20a and the second reflector 20c, and then exits from the second reflector 20c.
  • the area surrounded by the through hole 22 is the light emitting hole 21 .
  • the area surrounded by the through hole 22 and the oxidation trench 23 is the light emitting hole 21 .
  • FIG. 11 is a schematic flowchart of step 1203 in FIG. 10 .
  • step 1203 forming a second mirror on the surface of the active layer away from the substrate includes:
  • Step 12031 forming a second mirror on the surface of the active layer away from the substrate.
  • a second mirror 20c is formed on the surface of the active layer 20b away from the substrate 10 .
  • the first ohmic contact layer 27 may also be formed.
  • the first ohmic contact layer 27 can realize good ohmic contact between the first pad 25 and the second mirror 20c.
  • Step 12032 forming a second passivation layer on the surface of the second mirror away from the substrate.
  • a second passivation layer 26 is formed on the surface of the second mirror 20 c away from the substrate 10 .
  • the second passivation layer 26 can protect the film layer corresponding to the light emitting unit 20 when the oxidation trench 23 is formed.
  • Step 12033 forming an oxidation trench on the surface of the second passivation layer away from the substrate, wherein the oxidation trench penetrates the second passivation layer, the second mirror, the active layer and part of the first mirror.
  • an oxidation trench 23 is formed on the surface of the second passivation layer 26 away from the substrate 10, wherein the oxidation trench 23 penetrates the second passivation layer 26, the second mirror 20c, the active layer 20b and part of the second passivation layer 26.
  • a mirror 20a is formed on the surface of the second passivation layer 26 away from the substrate 10, wherein the oxidation trench 23 penetrates the second passivation layer 26, the second mirror 20c, the active layer 20b and part of the second passivation layer 26.
  • FIG. 12 is a schematic flowchart of step 1204 in FIG. 10 .
  • step 1204 forming a first passivation layer on the surface of the second reflector away from the substrate and on the bottom and side surfaces of the oxidation trench includes:
  • Step 12041 forming a first passivation layer on the surface of the second passivation layer away from the substrate and on the bottom and side surfaces of the oxidation trench.
  • the first passivation layer 24 is formed on the surface of the second passivation layer 26 away from the substrate 10 and the bottom and side surfaces of the oxidation trench 23 .
  • Step 12042 forming via holes on the surfaces of the second passivation layer and the first passivation layer away from the substrate.
  • the projection of the through hole on the substrate exposes part of the second reflector.
  • a through hole 22 is formed on the surface of the second passivation layer 26 and the first passivation layer 24 away from the substrate 10 , wherein the projection of the through hole 22 on the substrate 10 exposes a portion of the first ohmic contact layer 27 .
  • FIG. 13 is another schematic flowchart of step 1203 in FIG. 10 .
  • step 1203 forming a second mirror on the surface of the active layer away from the substrate includes:
  • Step 12034 forming a second mirror on the surface of the active layer away from the substrate.
  • a second mirror 20c is formed on the surface of the active layer 20b away from the substrate 10 .
  • the second reflecting mirror 20c includes an aluminum composition layer 28 inside.
  • the aluminum composition ratio in the aluminum composition layer 28 is the highest in the second mirror 20c.
  • Step 12035 forming a second passivation layer on the surface of the second mirror away from the substrate.
  • a second passivation layer 26 is formed on the surface of the second mirror 20 c away from the substrate 10 .
  • Step 12036 forming an oxidation trench on the surface of the second passivation layer away from the substrate, wherein the oxidation trench penetrates the second passivation layer, the second mirror and the active layer.
  • an oxidation trench 23 is formed on the surface of the second passivation layer 26 away from the substrate 10 , wherein the oxidation trench 23 penetrates the second passivation layer 26 , the second mirror 20c and the active layer 20b.
  • Step 12037 Through an oxidation process, an oxide layer surrounding an oxidation hole is formed in the second reflector, wherein the projection of the oxidation hole on the substrate is within the projection of the light emitting hole on the substrate.
  • an oxidation layer 28b surrounding an oxidation hole 28a is formed in the second mirror 20c through an oxidation process, wherein the projection of the oxidation hole 28a on the substrate 10 is within the projection of the light emitting hole 21 on the substrate 10 .
  • the oxide layer 28b is formed after the aluminum component layer 28 is oxidized, and the oxidation hole 28a is the unoxidized aluminum component layer 28 .
  • the aluminum component layer 28 may be an AlAs or AlGaAs layer.
  • the size of the oxidation hole 28 a can limit the size of the light-emitting point in the light-emitting hole 21 .
  • the through hole and/or the oxidation trench is shared by at least two light emitting units, compared with the technology in which there is no shared through hole between the light emitting units and the oxidation trench is not shared between the light emitting units solution, through holes and/or oxidation trenches are shared by different light-emitting units, through-holes and/or oxidation trenches can occupy the free area between light-emitting units, reducing the size between light-emitting units, thereby increasing the density of light-emitting units And the power density of the vertical cavity surface emitting laser light.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种垂直腔面发射激光器以及制备方法。垂直腔面发射激光器包括:衬底(10);阵列排布的发光单元(20),发光单元(20)位于衬底(10)的表面;其中,发光单元(20)设置有发光孔(21)、通孔(22)和氧化沟槽(23);发光孔(21)用于出射光线;通孔(22)围绕发光孔(21)设置;氧化沟槽(23)围绕发光孔(21)设置;通孔(22)和/或氧化沟槽(23)被至少两个发光单元(20)共用,降低了垂直腔面发射激光器中发光单元(20)之间的尺寸。

Description

垂直腔面发射激光器以及制备方法
本申请要求在2021年11月11日提交中国专利局、申请号为202111331298.0的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及半导体技术领域,例如涉及一种垂直腔面发射激光器以及制备方法。
背景技术
垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)是以砷化镓半导体材料为基础研制,因具有体积小、阈值电流低、高调制频率、易于光纤耦合等优点,不仅可以应用于光通信、光互联、光信息处理等领域,还可以作为3D(3-dimensional,三维)识别中结构光技术的光源应用在手机、无人驾驶汽的激光雷达等电子消费领域。
为了实现小尺寸的垂直腔面发射激光器,需要不断地缩小垂直腔面发射激光器中发光单元之间的尺寸。但是受限于相关技术中的垂直腔面发射激光器的结构设置,发光单元之间的尺寸无法继续缩小。
发明内容
本申请实施例提供了一种垂直腔面发射激光器以及制备方法。
本申请实施例提供了一种垂直腔面发射激光器,包括:
衬底;
阵列排布的发光单元,所述发光单元位于所述衬底的表面;
其中,所述发光单元设置有发光孔、通孔和氧化沟槽;所述发光孔用于出射光线;所述通孔围绕所述发光孔设置;所述氧化沟槽围绕所述发光孔设置;
所述通孔和所述氧化沟槽中的至少一个被至少两个所述发光单元共用。
本申请实施例还提供了一种垂直腔面发射激光器的制备方法,包括:
提供衬底;
在所述衬底的表面形成阵列排布的发光单元;
其中,所述发光单元设置有发光孔、通孔和氧化沟槽;所述发光孔用于出射光线;所述通孔围绕所述发光孔设置;所述氧化沟槽围绕所述发光孔设置;
所述通孔和所述氧化沟槽中的至少一个被至少两个所述发光单元共用。
附图说明
图1为相关技术提供的一种垂直腔面发射激光器的俯视图;
图2为相关技术提供的另一种垂直腔面发射激光器的俯视图;
图3为图1中A1-A2方向的剖面结构示意图;
图4为本申请实施例提供的一种垂直腔面发射激光器的结构示意图;
图5为本申请实施例提供的另一种垂直腔面发射激光器的结构示意图;
图6为本申请实施例提供的又一种垂直腔面发射激光器的俯视图;
图7为图4-图6中B1-B2方向的剖面结构示意图;
图8为图5和图6中B3-B4方向的剖面结构示意图;
图9为本申请实施例提供的一种垂直腔面发射激光器的制备方法的流程示意图;
图10为图9中步骤120包括的流程示意图;
图11为图10中步骤1203包括的一种流程示意图;
图12为图10中步骤1204包括的流程示意图;
图13为图10中步骤1203包括的另一种流程示意图;
图14为本申请实施例提供的一种垂直腔面发射激光器的制备方法各步骤对应的一种结构图;
图15为本申请实施例提供的一种垂直腔面发射激光器的制备方法各步骤对应的另一种结构图;
图16为本申请实施例提供的一种垂直腔面发射激光器的制备方法各步骤对应的另一种结构图;
图17为本申请实施例提供的一种垂直腔面发射激光器的制备方法各步骤对应的另一种结构图;
图18为本申请实施例提供的一种垂直腔面发射激光器的制备方法各步骤对应的另一种结构图;
图19为本申请实施例提供的一种垂直腔面发射激光器的制备方法各步骤对应的另一种结构图;
图20为本申请实施例提供的一种垂直腔面发射激光器的制备方法各步骤对应的另一种结构图;
图21为本申请实施例提供的一种垂直腔面发射激光器的制备方法各步骤对应的另一种结构图;
图22为本申请实施例提供的一种垂直腔面发射激光器的制备方法各步骤对应的另一种结构图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
正如上述背景技术中所述,受限于相关技术中的垂直腔面发射激光器的结构设置,发光单元之间的尺寸无法继续缩小。图1为相关技术提供的一种垂直腔面发射激光器的俯视图。图2为相关技术提供的另一种垂直腔面发射激光器的俯视图。图3为图1中A1-A2方向的剖面结构示意图。参见图1-图3,申请人经过仔细研究发现,相关技术中的垂直腔面发射激光器包括衬底10和阵列排布的发光单元20,发光单元20位于衬底10或者外延层(未示出)的表面;每一个发光单元20均设置有发光孔21、通孔22和氧化沟槽23。每一个发光单元20都设置有围绕发光孔21的通孔22和氧化沟槽23,通孔22围绕发光孔21设置,氧化沟槽23围绕通孔22设置。发光单元20之间没有存在共用通孔22的情况,且发光单元20之间没有共用氧化沟槽23的情况。因此,发光单元20之间的空闲区域的面积比较大,导致发光单元20之间的尺寸无法继续缩小。图1中未示出第一焊盘25。图3中还示出了第一焊盘25、第一钝化层24、第一焊盘金属接触层25a和第二焊盘29。
针对上述问题,本申请实施例提供了如下技术方案:
图4为本申请实施例提供的一种垂直腔面发射激光器的结构示意图。图5为本申请实施例提供的另一种垂直腔面发射激光器的结构示意图。参见图4和图5,该垂直腔面发射激光器包括:衬底10;阵列排布的发光单元20,发光单元20位于衬底10的表面;其中,发光单元20设置有发光孔21、通孔22和氧化沟槽23;发光孔21用于出射光线;通孔22围绕发光孔21设置;氧化沟槽23围绕发光孔21设置;通孔22和/或氧化沟槽23被至少两个发光单元20共用。
需要说明的是,通孔22用于放置给发光单元20提供电信号的焊盘。其中,焊盘可以是P型焊盘或者是N型焊盘。
图4和图5示例性的示出了16个发光单元20。通孔22围绕发光孔21设置。参见图4,通孔22被至少三个发光单元20共用。需要说明的是,附图中并未示 出,当发光单元20包括一行或者一列时,通孔22被至少两个发光单元20共用。
参见图4和图5,氧化沟槽23围绕发光孔21设置。图4中,氧化沟槽23被四个发光单元20共用。图5中,氧化沟槽23被至少三个发光单元20共用。需要说明的是,附图中并未示出,当发光单元20包括一行或者一列时,氧化沟槽23被至少两个发光单元20共用。
本申请实施例提供的技术方案中,通孔22和/或氧化沟槽23被至少两个发光单元20共用,相比发光单元20之间没有存在共用通孔22的以及发光单元20之间没有共用氧化沟槽23的技术方案,通孔22和/或氧化沟槽23被不同发光单元20共用,通孔22和/或氧化沟槽23可以占据发光单元20之间的空闲区域,缩小了发光单元20之间的尺寸,进而提高了发光单元20的密度以及垂直腔面发射激光器发光的功率密度。
图6为本申请实施例提供的又一种垂直腔面发射激光器的俯视图。参见图4-图6,在一实施例中,围绕同一发光孔21的氧化沟槽23包括S个氧化子沟槽,其中,S的取值包括大于或等于2的偶数;和/或,围绕同一发光孔的通孔22包括Q个子限位孔,其中,Q的取值包括大于或等于2的偶数,氧化子沟槽和子限位孔在衬底的投影面积无交叠。
示例性的,参见图4,氧化沟槽23包括4个氧化子沟槽。参见图5和图6,氧化沟槽23包括6个氧化子沟槽。参见图6,围绕同一发光孔21的通孔22包括6个子限位孔,其中氧化子沟槽的边界与通孔22的边界具有间隙,即氧化子沟槽在衬底10上的投影面积与通孔22在衬底10上的投影面积不重叠。
例如,相比氧化沟槽23是一个整体的垂直腔面发射激光器,本申请实施例中将氧化沟槽23设置成多个间隔开的氧化子沟槽,可以将氧化子沟槽设置在发光单元20之间的空闲区域,进一步缩小了发光单元20之间的尺寸,进一步提高了发光单元20的密度以及垂直腔面发射激光器发光的功率密度。相比通孔22是一个整体的垂直腔面发射激光器,本申请实施例中将通孔22设置成多个间隔开的子限位孔,可以将子限位孔设置在发光单元20之间的空闲区域,进一步缩小了发光单元20之间的尺寸,进而进一步提高了发光单元20的密度以及垂直腔面发射激光器发光的功率密度。
在一实施例中,在上述技术方案的基础上,参见图4-图6,S个氧化子沟槽等间距设置在环绕同一发光孔21的周向上。
例如,S个氧化子沟槽等间距设置在环绕同一发光孔21的周向上,简化了氧化沟槽23中S个氧化子沟槽的布局难度。
在一实施例中,在上述技术方案的基础上,Q个子限位孔等间距设置在环绕同一发光孔21的周向上。
例如,子限位孔等间距设置在环绕同一发光孔21的周向上,简化了通孔22中Q个子限位孔的布局难度。
在一实施例中,在上述技术方案的基础上,参见图6,在环绕同一发光孔21的周向上,围绕同一发光孔21的氧化子沟槽与围绕同一发光孔21的子限位孔间隔设置。
例如,在环绕同一发光孔21的周向上,围绕同一发光孔21的氧化子沟槽与围绕同一发光孔21的子限位孔间隔设置,通孔22和氧化沟槽23共同围成一个发光孔21,进一步缩短了氧化沟槽23距离发光孔21的距离,进一步缩小了发光单元20之间的尺寸,进而提高了发光单元20的密度以及垂直腔面发射激光器发光的功率密度。
在一实施例中,在上述技术方案的基础上,参见图6,围绕同一发光孔21的氧化子沟槽邻近发光孔21的一侧与发光孔21的间距等于围绕同一发光孔21的子限位孔邻近发光孔21的一侧与发光孔21的间距。
例如,利用氧化子沟槽和子限位孔共同围成发光孔21,相比氧化沟槽23邻近发光孔21的一侧与发光孔21的间距大于通孔22邻近发光孔21的一侧与发光孔21的间距的技术方案,本申请实施例提供的技术方案,进一步缩短了氧化沟槽23距离发光孔21的距离,进一步缩小了发光单元20之间的尺寸,进而提高了发光单元20的密度以及垂直腔面发射激光器发光的功率密度。
图7为图4-图6中B1-B2方向的剖面结构示意图。图8为图5和图6中B3-B4方向的剖面结构示意图。需要指出的是,图4-图6的俯视图中并未示出第一焊盘25。在一实施例中,在上述技术方案的基础上,参见图7,发光单元20包括第一反射镜20a,第一反射镜20a位于衬底10的表面;有源层20b,有源层20b位于第一反射镜20a远离衬底10的表面;第二反射镜20c,第二反射镜20c位于有源层20b远离衬底10的表面,第二反射镜20c远离衬底10的表面设置有氧化沟槽23,氧化沟槽23贯穿第二反射镜20c和有源层20b以及部分第一反射镜20a;第一钝化层24,第一钝化层24覆盖第二反射镜20c远离衬底10一侧的表面以及氧化沟槽23的底面和侧面,第一钝化层24设置有通孔22,通孔22在衬底10的投影露出部分第二反射镜20c;第一焊盘25,第一焊盘25位于第一钝化层24远离衬底10的表面,第一焊盘25通过通孔22与第二反射镜20c连接。
例如,第一钝化层24可以实现第一焊盘25和第一反射镜20a之间的电绝缘。在一实施例中,还包括位于衬底10远离发光单元20一侧的第二焊盘29。示例性的,当第一焊盘25是P型焊盘时,第二焊盘29是N型焊盘。当第一焊盘25是N型焊盘时,第二焊盘29是P型焊盘。可知的,第一反射镜20a和第二反射镜20c的折射率不同,光学厚度均为四分之一波长奇数倍的半导体材料周期性生长而成。有源层20b为量子阱发光材料,其在电流信号的作用下发光,发出的光在第一反射镜20a和第二反射镜20c之间进行反射后从第二反射镜20c出射。本申请实施例包括附图中示出的垂直腔面发射激光器发出的光从第二反射镜20c出射,还可以包括垂直腔面发射激光器发出的光从第一反射镜20a出射的技术方案。
例如,第一焊盘25将第一电流信号施加在第二反射镜20c上,其中,第一欧姆接触层27形成于第二反射镜20c远离衬底10的表面,即第一欧姆接触层27设置在第一焊盘25和第二反射镜20c之间。每一个发光单元20的第一反射镜20a通过第二焊盘29来获得第二电流信号。在电流信号的作用下有源层20b发光,发出的光在第一反射镜20a和第二反射镜20c之间进行反射后从第二反射镜20c出射。对应图4和图5,通孔22包围的区域为发光孔21。对应图6,通孔22和氧化沟槽23包围的区域为发光孔21。其中,本申请实施例中没有在第一焊盘25和第二反射镜20c设置第一焊盘欧姆金属层,可以省去第一焊盘金属接触层所占水平方向的空间,用于容纳氧化沟槽23,进一步缩短了氧化沟槽23距离发光孔21的距离,进一步缩小了发光单元20之间的尺寸,进而提高了发光单元20的密度以及垂直腔面发射激光器发光的功率密度。
在一实施例中,参见图7和图8,在上述技术方案的基础上,还包括第二钝化层26,第二钝化层26位于第一钝化层24和第二反射镜20c之间,通孔22贯穿第二钝化层26。
例如,第二钝化层26可以在形成氧化沟槽23时,对发光单元20对应的膜层起到保护作用。需要说明的是,通过控制第一钝化层24和第二钝化层26的厚度,第一钝化层24和第二钝化层26可以透射发光单元20发出的光。
在一实施例中,在形成第一欧姆接触层27后,第二钝化层26也可位于第一钝化层24和第一欧姆接触层27之间。
在一实施例中,在上述技术方案的基础上,参见图7和图8,还包括氧化层28b,氧化层28b位于第二反射镜20c内,氧化层28b围成氧化孔28a,氧化孔28a在衬底10的投影位于发光孔21在衬底10的投影之内。
例如,氧化孔28a是氧化层28b围成的,铝组分层28经过氧化之后形成氧化层28b,氧化孔28a是未被氧化的铝组分层。其中铝组分层可以是AlAs或AlGaAs层。其中铝组分层中的铝组分比例在第二反射镜20c内最高。氧化孔28a的大小可以对发光孔21中的发光点的大小进行限定。
图9为本申请实施例提供的一种垂直腔面发射激光器的制备方法的流程示意图。图14-图22为本申请实施例提供的一种垂直腔面发射激光器的制备方法各步骤对应的结构图。
本申请实施例还提供了一种垂直腔面发射激光器的制备方法。参见图9,该方法包括如下步骤:
步骤110、提供衬底。
参见图14,提供衬底10。衬底10可以选择半导体材料,例如砷化镓半导体材料。
步骤120、在衬底的表面形成阵列排布的发光单元。
其中,发光单元设置有发光孔、通孔和氧化沟槽;发光孔用于出射光线;通孔围绕发光孔设置;氧化沟槽围绕发光孔设置;通孔和/或氧化沟槽被至少两个发光单元共用。
参见图4-图6,在衬底阵列排布的发光单元20。发光单元20设置有发光孔21、通孔22和氧化沟槽23;发光孔21用于出射光线;通孔22围绕发光孔21设置;氧化沟槽23围绕发光孔21设置;通孔22和/或氧化沟槽23被至少两个发光单元20共用。
示例性的,参见图4和图5,图4和图5示例性的示出了16个发光单元20。通孔22围绕发光孔21设置。参见图4,通孔22被4个发光单元20共用。需要说明的是,附图中并未示出,当发光单元20包括一行或者一列时,通孔22被2个发光单元共用。
参见图4和图5,氧化沟槽23围绕发光孔21设置。图4中,氧化沟槽23被四个发光单元20共用。图5中,氧化沟槽23被三个发光单元20共用。需要说明的是,附图中并未示出,当发光单元20包括一行或者一列时,氧化沟槽23被两个发光单元共用。
本申请实施例提供的技术方案中,通孔22和/或氧化沟槽23被至少两个发光单元20共用,相比发光单元20之间没有存在共用通孔22的以及发光单元20之间没有共用氧化沟槽23的技术方案,通孔22和/或氧化沟槽23被不同发光单元20共用,通孔22和/或氧化沟槽23可以占据发光单元20之间的空闲区域, 缩小了发光单元20之间的尺寸,进而提高了发光单元20的密度以及垂直腔面发射激光器发光的功率密度。
图10为图9中步骤120包括的流程示意图。在一实施例中,参见图10,步骤120、在衬底的表面形成阵列排布的发光单元包括:
步骤1201、在衬底的表面形成第一反射镜。
参见图15,在衬底10的表面形成第一反射镜20a。
步骤1202、在第一反射镜远离衬底的表面形成有源层。
参见图16,在第一反射镜20a远离衬底10的表面形成有源层20b。
步骤1203、在有源层远离衬底的表面形成第二反射镜,其中,第二反射镜远离衬底的表面设置有氧化沟槽,氧化沟槽贯穿第二反射镜和有源层以及部分第一反射镜。
参见图19,在有源层20b远离衬底10的表面形成第二反射镜20c,其中,第二反射镜20c远离衬底10的表面设置有氧化沟槽23,氧化沟槽23贯穿第二反射镜20c和有源层20b以及部分第一反射镜20a。
步骤1204、在第二反射镜远离衬底一侧的表面以及氧化沟槽的底面和侧面形成第一钝化层。
其中,第一钝化层远离衬底的表面设置有通孔,通孔在衬底的投影露出部分第二反射镜。
参见图21-22,在第二反射镜20c远离衬底10一侧的表面以及氧化沟槽23的底面和侧面形成第一钝化层24,其中,第一钝化层24远离衬底10的表面设置有通孔22,通孔22在衬底10的投影露出部分第一欧姆接触层27。第一钝化层24可以实现第一焊盘25和第一反射镜20a之间的电绝缘。
步骤1205、在第一钝化层远离衬底的表面形成第一焊盘,其中,第一焊盘通过通孔与第二反射镜连接。
参见图7,在第一钝化层远离衬底的表面形成第一焊盘25,其中,第一焊盘25通过通孔22与第二反射镜20c连接。
其中,本申请实施例中没有在第一焊盘25和第二反射镜20c设置第一焊盘金属接触层,可以省去第一焊盘金属接触层所占水平方向的空间,用于容纳氧化沟槽23,进一步缩短了氧化沟槽23距离发光孔21的距离,进一步缩小了发光单元20之间的尺寸,进而提高了发光单元20的密度以及垂直腔面发射激光器发光的功率密度。
在一实施例中,参见图7,在形成第一焊盘25之后还可以在衬底10远离发 光单元20一侧的表面形成第二焊盘29。
可知的,第一反射镜20a和第二反射镜20c的折射率不同,光学厚度均为四分之一波长奇数倍的半导体材料周期性生长而成。有源层20b为量子阱发光材料,其在电流信号的作用下发光,发出的光在第一反射镜20a和第二反射镜20c之间进行反射后从第二反射镜20c出射。本申请实施例包括附图中示出的垂直腔面发射激光器发出的光从第二反射镜20c出射,还可以包括垂直腔面发射激光器发出的光从第一反射镜20a出射的技术方案。
例如,第一焊盘25将第一电流信号施加在第二反射镜20c上,其中,第一欧姆接触层27形成于第二反射镜20c远离衬底10的表面,即第一欧姆接触层27设置在第一焊盘25和第二反射镜20c之间。每一个发光单元20的第一反射镜20a通过第二焊盘29来获得第二电流信号。在电流信号的作用下有源层20b发光,发出的光在第一反射镜20a和第二反射镜20c之间进行反射后从第二反射镜20c出射。对应图4和图5,通孔22包围的区域为发光孔21。对应图6,通孔22和氧化沟槽23包围的区域为发光孔21。
图11为图10中步骤1203包括的一种流程示意图。在一实施例中,参见图11,步骤1203在有源层远离衬底的表面形成第二反射镜包括:
步骤12031、在有源层远离衬底的表面形成第二反射镜。
参见图17,在有源层20b远离衬底10的表面形成第二反射镜20c。
在一实施例中,参见图17,在有源层20b远离衬底10的表面形成第二反射镜20c之后,还可以形成第一欧姆接触层27。例如,第一欧姆接触层27可以实现第一焊盘25与第二反射镜20c之间具有良好的欧姆接触。
步骤12032、在第二反射镜远离衬底的表面形成第二钝化层。
参见图18,在第二反射镜20c远离衬底10的表面形成第二钝化层26。例如,第二钝化层26可以在形成氧化沟槽23时,对发光单元20对应的膜层起到保护作用。
步骤12033、在第二钝化层远离衬底的表面形成氧化沟槽,其中,氧化沟槽贯穿第二钝化层、第二反射镜、有源层和部分第一反射镜。
参见图19,在第二钝化层26远离衬底10的表面形成氧化沟槽23,其中,氧化沟槽23贯穿第二钝化层26、第二反射镜20c、有源层20b和部分第一反射镜20a。
图12为图10中步骤1204包括的流程示意图。相应的,参见图12,步骤1204在第二反射镜远离衬底一侧的表面以及氧化沟槽的底面和侧面形成第一钝 化层包括:
步骤12041、在第二钝化层远离衬底一侧的表面以及氧化沟槽的底面和侧面形成第一钝化层。
参见图21,在第二钝化层26远离衬底10一侧的表面以及氧化沟槽23的底面和侧面形成第一钝化层24。
步骤12042、在第二钝化层和第一钝化层远离衬底的表面形成通孔。
其中,通孔在衬底的投影露出部分第二反射镜。
参见图22,在第二钝化层26和第一钝化层24远离衬底10的表面形成通孔22,其中,通孔22在衬底10的投影露出部分第一欧姆接触层27。
图13为图10中步骤1203包括的另一种流程示意图。在一实施例中,参见图13,步骤1203在有源层远离衬底的表面形成第二反射镜包括:
步骤12034、在有源层远离衬底的表面形成第二反射镜。
参见图17,在有源层20b远离衬底10的表面形成第二反射镜20c。其中,第二反射镜20c内部包括铝组分层28。其中铝组分层28中的铝组分比例在第二反射镜20c内最高。
步骤12035、在第二反射镜远离衬底的表面形成第二钝化层。
参见图18,在第二反射镜20c远离衬底10的表面形成第二钝化层26。
步骤12036、在第二钝化层远离衬底的表面形成氧化沟槽,其中,氧化沟槽贯穿第二钝化层、第二反射镜和有源层。
参见图19,在第二钝化层26远离衬底10的表面形成氧化沟槽23,其中,氧化沟槽23贯穿第二钝化层26、第二反射镜20c和有源层20b。
步骤12037、通过氧化工艺,在第二反射镜内形成围成氧化孔的氧化层,其中,氧化孔在衬底的投影位于发光孔在衬底的投影之内。
参见图20,通过氧化工艺,在第二反射镜20c内形成围成氧化孔28a的氧化层28b,其中,氧化孔28a在衬底10的投影位于发光孔21在衬底10的投影之内。例如,铝组分层28经过氧化之后形成氧化层28b,氧化孔28a是未被氧化的铝组分层28。其中铝组分层28可以是AlAs或AlGaAs层。氧化孔28a的大小可以对发光孔21中的发光点的大小进行限定。
本申请实施例提供的技术方案中,通孔和/或氧化沟槽被至少两个发光单元共用,相比发光单元之间没有存在共用通孔的以及发光单元之间没有共用氧化沟槽的技术方案,通孔和/或氧化沟槽被不同发光单元共用,通孔和/或氧化沟槽可以占据发光单元之间的空闲区域,缩小了发光单元之间的尺寸,进而提高了 发光单元的密度以及垂直腔面发射激光器发光的功率密度。
注意,上述仅为本申请的一些实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (13)

  1. 一种垂直腔面发射激光器,包括:
    衬底(10);
    阵列排布的发光单元(20),所述发光单元(20)位于所述衬底(10)的表面;
    其中,所述发光单元(20)设置有发光孔(21)、通孔(22)和氧化沟槽(23);所述发光孔(21)用于出射光线;所述通孔(22)围绕所述发光孔(21)设置;所述氧化沟槽(23)围绕所述发光孔(21)设置;
    所述通孔(22)和所述氧化沟槽(23)中的至少一个被至少两个所述发光单元(20)共用。
  2. 根据权利要求1所述的垂直腔面发射激光器,其中,围绕同一所述发光孔(21)的所述氧化沟槽(23)包括S个氧化子沟槽,其中,所述S的取值包括大于或等于2的偶数;
    和/或,围绕同一所述发光孔(21)的所述通孔(22)包括Q个子限位孔,其中,所述Q的取值包括大于或等于2的偶数。
  3. 根据权利要求2所述的垂直腔面发射激光器,其中,
    S个所述氧化子沟槽等间距设置在环绕同一所述发光孔(21)的周向上。
  4. 根据权利要求2所述的垂直腔面发射激光器,其中,
    Q个所述子限位孔等间距设置在环绕同一所述发光孔(21)的周向上。
  5. 根据权利要求2所述的垂直腔面发射激光器,其中,在环绕同一所述发光孔(21)的周向上,围绕所述同一发光孔(21)的所述氧化子沟槽与围绕同一所述发光孔(21)的所述子限位孔间隔设置,所述氧化子沟槽和所述子限位孔在所述衬底(10)的投影面积无交叠。
  6. 根据权利要求5所述的垂直腔面发射激光器,其中,围绕同一所述发光孔(21)的所述氧化子沟槽邻近所述发光孔(21)的一侧与所述发光孔(21)的间距等于围绕同一所述发光孔(21)的所述子限位孔邻近所述发光孔(21)的一侧与所述发光孔(21)的间距。
  7. 根据权利要求1所述的垂直腔面发射激光器,其中,所述发光单元(20)包括第一反射镜(20a),所述第一反射镜(20a)位于所述衬底(10)的表面;
    有源层(20b),所述有源层(20b)位于所述第一反射镜(20a)远离所述衬底(10)的表面;
    第二反射镜(20c),所述第二反射镜(20c)位于所述有源层(20b)远离所述衬底(10)的表面,所述第二反射镜(20c)远离所述衬底(10)的表面设置有所述氧化沟槽(23),所述氧化沟槽(23)贯穿所述第二反射镜(20c)、所述有源层(20b)以及部分所 述第一反射镜(20a);
    第一钝化层(24),所述第一钝化层(24)覆盖所述第二反射镜(20c)远离所述衬底(10)一侧的表面以及所述氧化沟槽(23)的底面和侧面,所述第一钝化层(24)设置有所述通孔(22),所述通孔(22)在所述衬底(10)的投影露出部分所述第二反射镜(20c);
    第一焊盘(25),所述第一焊盘(25)位于所述第一钝化层(24)远离所述衬底(10)的表面,所述第一焊盘(25)通过所述通孔(22)与所述第二反射镜(20c)连接。
  8. 根据权利要求7所述的垂直腔面发射激光器,还包括第二钝化层(26),所述第二钝化层(26)位于所述第一钝化层(24)和所述第二反射镜(20c)之间,所述通孔(22)贯穿所述第二钝化层(26)。
  9. 根据权利要求7所述的垂直腔面发射激光器,还包括氧化层(28b),所述氧化层(28b)位于所述第二反射镜(20c)内,所述氧化层(28b)围成氧化孔(28a),所述氧化孔(28a)在所述衬底(10)的投影位于所述发光孔(21)在所述衬底的投影之内。
  10. 一种垂直腔面发射激光器的制备方法,包括:
    提供衬底(10);
    在所述衬底(10)的表面形成阵列排布的发光单元(20);
    其中,所述发光单元(20)设置有发光孔(21)、通孔(22)和氧化沟槽(23);所述发光孔(21)用于出射光线;所述通孔(22)围绕所述发光孔(21)设置;所述氧化沟槽(23)围绕所述发光孔(21)设置;
    所述通孔(22)和所述氧化沟槽(23)中的至少一个被至少两个所述发光单元(20)共用。
  11. 根据权利要求10所述的垂直腔面发射激光器的制备方法,其中,在所述衬底(10)的表面形成阵列排布的发光单元(20)包括:在所述衬底(10)的表面形成第一反射镜(20a);
    在所述第一反射镜(20a)远离所述衬底(10)的表面形成有源层(20b);
    在所述有源层(20b)远离所述衬底(10)的表面形成第二反射镜(20c),其中,所述第二反射镜(20c)远离所述衬底(10)的表面设置有所述氧化沟槽(23),所述氧化沟槽(23)贯穿所述第二反射镜(20c)、所述有源层(20b)以及部分所述第一反射镜(20a);
    在所述第二反射镜(20c)远离所述衬底(10)一侧的表面以及所述氧化沟槽(23)的底面和侧面形成第一钝化层(24),其中,所述第一钝化层(24)远离所述衬 底(10)的表面设置有所述通孔(22),所述通孔(22)在所述衬底(10)的投影露出部分所述第二反射镜(20c);
    在所述第一钝化层(24)远离所述衬底(10)的表面形成第一焊盘(25),其中,所述第一焊盘(25)通过所述通孔(22)与所述第二反射镜(20c)连接。
  12. 根据权利要求11所述的垂直腔面发射激光器的制备方法,在所述有源层(20b)远离所述衬底(10)的表面形成第二反射镜(20c)之后,还包括:
    在所述第二反射镜(20c)远离所述衬底(10)的表面形成第二钝化层(26);
    在所述第二钝化层(26)远离所述衬底(10)的表面形成所述氧化沟槽(23),其中,所述氧化沟槽(23)贯穿所述第二钝化层(26)、所述第二反射镜(20c)、所述有源层(20b)以及部分所述第一反射镜(20a);
    在所述第二反射镜(20c)远离所述衬底(10)一侧的表面以及所述氧化沟槽(23)的底面和侧面形成第一钝化层(24),包括:
    在所述第二钝化层(26)远离所述衬底(10)一侧的表面以及所述氧化沟槽(23)的底面和侧面形成第一钝化层(24);
    在所述第二钝化层(26)和所述第一钝化层(24)远离所述衬底(10)的表面形成所述通孔(22),其中,所述通孔(22)在所述衬底(10)的投影露出部分所述第二反射镜(20c)。
  13. 根据权利要求11所述的垂直腔面发射激光器的制备方法,在所述有源层(20b)远离所述衬底(10)的表面形成第二反射镜(20c)之后,还包括:
    在所述第二反射镜(20c)远离所述衬底(10)的表面形成第二钝化层(26);
    在所述第二钝化层(26)远离所述衬底(10)的表面形成所述氧化沟槽(23),其中,所述氧化沟槽(23)贯穿所述第二钝化层(26)、所述第二反射镜(20c)、所述有源层(20b)和部分所述第一反射镜(20a);
    通过氧化工艺,在所述第二反射镜(20c)内形成围成氧化孔(28a)的氧化层(28b),其中,所述氧化孔(28a)在所述衬底(10)的投影位于所述发光孔(21)在所述衬底(10)的投影之内。
PCT/CN2022/092689 2021-11-11 2022-05-13 垂直腔面发射激光器以及制备方法 WO2023082577A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022540881A JP2023552011A (ja) 2021-11-11 2022-05-13 垂直共振器面発光レーザー及び製造方法
KR1020227033863A KR20230070406A (ko) 2021-11-11 2022-05-13 수직 공동 표면 방사 레이저 장치 및 그의 제조방법
GB2317459.2A GB2621741A (en) 2021-11-11 2022-05-13 Vertical-cavity surface-emitting laser and preparation method
EP22891388.5A EP4325675A1 (en) 2021-11-11 2022-05-13 Vertical-cavity surface-emitting laser and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111331298.0A CN114069391B (zh) 2021-11-11 2021-11-11 一种垂直腔面发射激光器以及制备方法
CN202111331298.0 2021-11-11

Publications (1)

Publication Number Publication Date
WO2023082577A1 true WO2023082577A1 (zh) 2023-05-19

Family

ID=80274885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092689 WO2023082577A1 (zh) 2021-11-11 2022-05-13 垂直腔面发射激光器以及制备方法

Country Status (7)

Country Link
EP (1) EP4325675A1 (zh)
JP (1) JP2023552011A (zh)
KR (1) KR20230070406A (zh)
CN (1) CN114069391B (zh)
GB (1) GB2621741A (zh)
TW (1) TWI813360B (zh)
WO (1) WO2023082577A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069391B (zh) * 2021-11-11 2023-06-16 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器以及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104363A (zh) * 2016-02-23 2017-08-29 朗美通经营有限责任公司 用于垂直腔表面发射激光器的紧凑发射器设计
CN110323669A (zh) * 2018-03-28 2019-10-11 朗美通经营有限责任公司 具有到达邻近发射器间共享的欧姆金属层的共享过孔的发射器阵列
CN110649464A (zh) * 2019-07-05 2020-01-03 武汉仟目激光有限公司 一种垂直腔面发射激光器及其密集型阵列结构
CN114069391A (zh) * 2021-11-11 2022-02-18 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器以及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088508B2 (en) * 2017-08-28 2021-08-10 Lumentum Operations Llc Controlling beam divergence in a vertical-cavity surface-emitting laser
CN110649646B (zh) * 2019-08-19 2022-06-03 深圳供电局有限公司 下垂控制方法、装置、计算机设备和可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104363A (zh) * 2016-02-23 2017-08-29 朗美通经营有限责任公司 用于垂直腔表面发射激光器的紧凑发射器设计
CN110323669A (zh) * 2018-03-28 2019-10-11 朗美通经营有限责任公司 具有到达邻近发射器间共享的欧姆金属层的共享过孔的发射器阵列
CN110649464A (zh) * 2019-07-05 2020-01-03 武汉仟目激光有限公司 一种垂直腔面发射激光器及其密集型阵列结构
CN114069391A (zh) * 2021-11-11 2022-02-18 常州纵慧芯光半导体科技有限公司 一种垂直腔面发射激光器以及制备方法

Also Published As

Publication number Publication date
TW202320436A (zh) 2023-05-16
GB202317459D0 (en) 2023-12-27
EP4325675A1 (en) 2024-02-21
CN114069391A (zh) 2022-02-18
CN114069391B (zh) 2023-06-16
JP2023552011A (ja) 2023-12-14
GB2621741A (en) 2024-02-21
KR20230070406A (ko) 2023-05-23
TWI813360B (zh) 2023-08-21

Similar Documents

Publication Publication Date Title
US6144682A (en) Spatial absorptive and phase shift filter layer to reduce modal reflectivity for higher order modes in a vertical cavity surface emitting laser
CN110233424B (zh) 一体发光区大功率垂直腔面发射激光器
WO2007116659A1 (ja) 面発光レーザ
CN111224320A (zh) 一种激光器芯片及其制造方法与应用
WO2023035549A1 (zh) 垂直腔面发射激光器及其制备方法
WO2013176201A1 (ja) 垂直共振面発光レーザ
CN111313233B (zh) 一种激光器及其制造方法与应用
WO2023082577A1 (zh) 垂直腔面发射激光器以及制备方法
WO2019133655A1 (en) Structured light projection system including narrow beam divergence semiconductor sources
JP2009528683A (ja) 半導体レーザ装置
EP4290710A1 (en) Vertical cavity surface emitting laser (vcsel) having small divergence angle, chip, and light source for use in lidar system
JPH06334215A (ja) 面発光型発光ダイオード
US6717974B2 (en) Apparatus and method for improving electrical conduction structure of a vertical cavity surface emitting laser
WO2021196368A1 (en) Bottom-emitting multijunction vcsel array
EP4340143A1 (en) Vertical cavity surface emitting laser
CN111129953B (zh) 一种激光器及其制造方法及激光器阵列
CN111224319A (zh) 有中空发光区的垂直腔面发射激光器及其制造方法和应用
CN114552380A (zh) 谐振腔、激光单元及芯片和激光器及形成方法、激光雷达
JP2022139943A (ja) 面発光レーザアレイ、光源モジュール及び測距装置
CN113422291B (zh) 一种激光器及其制造方法与应用
CN111613967B (zh) 一种发射相干激光的垂直腔面发射激光器及其制作方法
US11870217B2 (en) Bi-directional vertical cavity surface emitting lasers
CN212784189U (zh) 组合式vcsel芯片
US20240213294A1 (en) Micro-cavity micro-led pixel design with directional emission for high efficiency ar/mr applications
JP7172182B2 (ja) 発光装置、光信号送信装置及び光伝送システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022540881

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202317459

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220513

WWE Wipo information: entry into national phase

Ref document number: 2022891388

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891388

Country of ref document: EP

Effective date: 20231114

WWE Wipo information: entry into national phase

Ref document number: 18569728

Country of ref document: US