WO2023082475A1 - 一种电池组件的加热电路以及用于加热电路的加热方法 - Google Patents

一种电池组件的加热电路以及用于加热电路的加热方法 Download PDF

Info

Publication number
WO2023082475A1
WO2023082475A1 PCT/CN2022/073995 CN2022073995W WO2023082475A1 WO 2023082475 A1 WO2023082475 A1 WO 2023082475A1 CN 2022073995 W CN2022073995 W CN 2022073995W WO 2023082475 A1 WO2023082475 A1 WO 2023082475A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
auxiliary
switch
auxiliary switch
battery assembly
Prior art date
Application number
PCT/CN2022/073995
Other languages
English (en)
French (fr)
Inventor
颜广博
杨红新
张放南
尹小月
孙宇
刘雪涛
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Publication of WO2023082475A1 publication Critical patent/WO2023082475A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/50Charging of capacitors, supercapacitors, ultra-capacitors or double layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery heating, in particular to a heating circuit of a battery assembly and a heating method for the heating circuit.
  • the charging and discharging performance of the power battery of an electric vehicle is greatly affected by the temperature, especially at low temperature due to the inertness of the reaction of the electrochemical substances that make up the electrode, which directly affects the charging and discharging current of the battery at low temperature.
  • the battery In order to improve the battery Charge and discharge performance at low temperature The battery must be heated to increase the activity of the electrochemical substance of the electrode, in order to increase the charge and discharge current in a low temperature environment.
  • the application provides a heating circuit for battery components and a heating method for the heating circuit, which can quickly use the charging and discharging process to improve the heating efficiency in the battery, quickly adjust the current size, and enable the battery to recover in a short time Charge and discharge capability, and through the charge and discharge control of the main resonant circuit and auxiliary regulation circuit, the energy loss can be reduced as much as possible.
  • An embodiment of the present application provides a heating circuit for a battery assembly, the heating circuit may include a main circuit switch, a main resonant circuit, and an auxiliary regulation circuit, the main resonant circuit includes a first inductance and capacitance device; wherein,
  • the main switch of the circuit is set between the battery assembly and the main resonant circuit, and is used to control the connection state between the battery assembly and the main resonant circuit;
  • the auxiliary regulating circuit is connected to the main resonant circuit, and is used for changing the difference between the first voltage value of the battery assembly and the second voltage value of the capacitor device, so as to adjust the resonant current amplitude of the main resonant circuit.
  • the first end of the main circuit switch can be connected to the first end of the battery assembly
  • the second end of the main circuit switch can be connected to the first end of the first inductance
  • the second end of the first inductance can be connected to the capacitor
  • the first terminal of the capacitor device, the second terminal of the capacitive device can be connected to the second terminal of the battery pack.
  • the first terminal of the auxiliary regulating circuit may be connected to the target connection terminal of the first inductor, and the second terminal of the auxiliary regulating circuit may be connected between the second terminal of the battery assembly and the second terminal of the capacitor device; wherein,
  • the target connection end of the first inductor may include at least one of a first end and a second end of the first inductor.
  • the auxiliary regulating circuit may include a first auxiliary switch, a second auxiliary switch and a second inductor;
  • the first end of the first auxiliary switch is connected between the second end of the main circuit switch and the first end of the first inductance
  • the second end of the first auxiliary switch is connected to the first end of the second inductance
  • the second The second end of the inductance is connected to the first end of the second auxiliary switch
  • the second end of the second auxiliary switch is connected between the second end of the battery assembly and the second end of the capacitive device, and is set at the first auxiliary switch
  • a diode is connected in parallel with the first auxiliary switch
  • a diode is arranged in series with the second end of the first auxiliary switch at the second end of the first auxiliary switch
  • a diode is arranged at the second auxiliary switch and connected in parallel with the second auxiliary switch
  • at A diode is arranged at the first end of the second auxiliary switch in series with the first end of the second auxiliary switch.
  • the auxiliary regulation circuit may include a second inductor, a third auxiliary switch, and a fourth auxiliary switch;
  • the first end of the third auxiliary switch is connected between the second end of the first inductor and the first end of the capacitor device, the second end of the third auxiliary switch is connected to the second end of the second inductor, and the second inductor
  • the first end of the fourth auxiliary switch is connected to the first end of the fourth auxiliary switch, the second end of the fourth auxiliary switch is connected to the second end of the battery assembly, and a diode and the fourth auxiliary switch can be provided at the fourth auxiliary switch.
  • the auxiliary switches are connected in parallel, a diode may be provided at the first end of the fourth auxiliary switch in series with the first end of the fourth auxiliary switch, and a diode may be arranged at the third auxiliary switch
  • the third auxiliary switch is connected in parallel, and a diode may be provided at the second end of the third auxiliary switch in series with the second end of the third auxiliary switch.
  • the auxiliary regulating circuit may include a first auxiliary switch, a second auxiliary switch, a second inductor, a third auxiliary switch and a fourth auxiliary switch;
  • the first end of the first auxiliary switch is connected between the second end of the main circuit switch and the first end of the first inductance
  • the second end of the first auxiliary switch is connected to the first end of the second inductance
  • the second The second end of the inductance is connected to the first end of the second auxiliary switch
  • the second end of the second auxiliary switch is connected between the second end of the battery assembly and the second end of the capacitor device
  • the first end of the third auxiliary switch connected between the second terminal of the first inductor and the first terminal of the capacitive device
  • the second terminal of the third auxiliary switch is connected to the second terminal of the second inductor
  • the first terminal of the second inductor is connected to the fourth auxiliary switch
  • the first end of the fourth auxiliary switch is connected to the second end of the battery pack, wherein the first auxiliary switch, the second auxiliary switch, the third auxiliary switch and the fourth auxiliary switch in the auxiliary regulation circuit are all connected with A diode is connected in parallel.
  • the auxiliary regulation circuit may include a first single-bridge auxiliary circuit, and the first single-bridge auxiliary circuit may include a third inductor, a first diode, and a fifth auxiliary switch; wherein, the third inductor of the third inductor One end is connected between the second end of the main circuit switch and the first end of the first inductor, the second end of the third inductor is connected to the first end of the first diode, and the second end of the first diode end is connected to the first end of the capacitive device; the first end of the fifth auxiliary switch is connected between the second end of the third inductor and the first end of the first diode, and the second end of the fifth auxiliary switch is connected to between the second end of the battery assembly and the second end of the capacitor device; and/or, the auxiliary regulation circuit further includes a second single-bridge auxiliary circuit, and the second single-bridge auxiliary circuit includes a fourth inductor, a second two pole transistor and the sixth auxiliary switch; wherein, the first
  • the embodiment of the present application also provides a heating method for a heating circuit
  • the heating circuit may include a main switch of the circuit, a main resonant circuit and an auxiliary regulating circuit, the main resonant circuit may include a first inductance and capacitance device, so
  • the heating method can include:
  • the step of controlling the start-up of the main resonant circuit through the main circuit switch may include one of the following steps: increasing the second voltage value of the capacitive device by controlling the access and cut-out of the auxiliary regulating circuit to control the main resonant circuit Start vibration; reduce the second voltage value of the capacitive device by controlling the access and cut-out of the auxiliary regulating circuit to control the main resonant circuit start-up; increase the second voltage value of the capacitive device by controlling the main switch of the circuit to Control the start-up of the main resonant circuit.
  • the amplitude of the resonant current of the main resonant circuit can be adjusted in the following manner: when the charge-discharge circuit formed between the battery assembly and the capacitive device is in a stable state, the auxiliary regulation circuit is controlled to be connected to the main resonant circuit to The auxiliary regulating circuit is used to store energy during the charging and discharging process between the battery assembly and the capacitor device; the auxiliary regulating circuit is controlled to cut out from the main resonant circuit, and the first energy of the battery assembly is changed by releasing the energy stored in the auxiliary regulating circuit. The difference between the voltage value and the second voltage value of the capacitive device.
  • changing the difference between the first voltage value of the battery assembly and the second voltage value of the capacitor device by releasing the energy stored in the auxiliary regulating circuit may include:
  • changing the difference between the first voltage value of the battery assembly and the second voltage value of the capacitor device by releasing the energy stored in the auxiliary regulating circuit may include:
  • the charging and discharging circuit may include a charging process from a battery assembly to a capacitive device, and the auxiliary regulating circuit includes a second inductance, the inductance value of the first inductance is greater than the inductance value of the second inductance by a predetermined multiple; wherein, The amplitude of the resonant current of the main resonant circuit is adjusted in the following way: control the access of the auxiliary regulation circuit, and use the second inductance to store energy while the battery pack is charging the capacitive device; control the auxiliary regulation circuit to cut out the second The energy stored in the inductor is released to the capacitive device, and the difference between the first voltage value of the battery assembly and the second voltage value of the capacitive device is changed by increasing the second voltage value of the capacitive device.
  • the charging and discharging circuit may also include a charging process of the capacitor device to the battery assembly, the auxiliary regulating circuit includes a second inductance, the inductance value of the first inductance is greater than the inductance value of the second inductance by a predetermined multiple; wherein, The amplitude of the resonant current of the main resonant circuit is adjusted in the following way: control the access of the auxiliary regulation circuit, and use the second inductance to store energy while the capacitor device is charging the battery component; control the auxiliary regulation circuit to cut out, and switch the second The energy stored in the inductor is released to the battery assembly, and the difference between the first voltage value of the battery assembly and the second voltage value of the capacitor device is changed by reducing the second voltage value of the capacitor device.
  • the present application provides a heating circuit of a battery assembly and a heating method for the heating circuit
  • the heating circuit includes a main circuit switch, a main resonant circuit and an auxiliary regulating circuit
  • the main resonant circuit includes a first inductance and a capacitor
  • the main switch of the circuit is set between the battery assembly and the main resonant circuit, and is used to control the connection state between the battery assembly and the main resonant circuit
  • the auxiliary regulating circuit is connected to the main resonant circuit, and is used to change the first voltage value of the battery assembly The difference with the second voltage value of the capacitive device to adjust the amplitude of the resonant current of the main resonant circuit.
  • the charging and discharging process can be used to quickly improve the heating efficiency of the battery, and the current can be quickly adjusted, so that the battery can recover the charging and discharging capacity in a short period of time, and through the charge and discharge control of the main resonant circuit and the auxiliary regulation circuit, it can be controlled as much as possible. Reduce energy loss as much as possible.
  • FIG. 1 is a block diagram of a heating circuit of a battery assembly provided in an embodiment of the present application
  • FIG. 2 is a flow chart of a heating method for heating a circuit provided in an embodiment of the present application
  • FIG. 3 is one of the schematic circuit diagrams of a heating circuit of a battery assembly provided in an embodiment of the present application
  • Fig. 4 is the second schematic circuit diagram of a heating circuit of a battery assembly provided in the embodiment of the present application.
  • Fig. 5 is the third schematic circuit diagram of a heating circuit of a battery assembly provided in the embodiment of the present application.
  • FIG. 6 is the fourth schematic circuit diagram of a heating circuit of a battery assembly provided in the embodiment of the present application.
  • FIG. 7 is a fifth schematic circuit diagram of a heating circuit of a battery assembly provided by an embodiment of the present application.
  • Icons 100-heating circuit of battery pack; 110-battery pack; 111-battery pack; 112-battery pack internal resistance; 120-main circuit switch; 130-main resonant circuit; 131-first inductance; 132-capacitor; 140-auxiliary regulation circuit; 141-first auxiliary switch; 142-second auxiliary switch; 143-second inductance; 144-third auxiliary switch; 145-fourth auxiliary switch; 146-first single bridge auxiliary circuit; 1461 - third inductor; 1462 - fifth auxiliary switch; 1463 - first diode; 147 - second single bridge auxiliary circuit; 1471 - fourth inductor; 1472 - second diode; 1473 - sixth auxiliary switch.
  • the processing method of the related technology is: utilize the motor winding of the electric vehicle and the three-phase bridge electronic switch of the drive controller to exchange energy with the battery pack to realize.
  • the advantage of this method is: directly use the motor to drive the assembly equipment, without additional hardware assembly equipment and heating equipment, but the above method also has the following problems:
  • the use of the driving device requires a rearrangement of the batteries and modules, that is, a special module structure is required to match the driving device;
  • busbar filter capacitor cannot be used.
  • the effect of the busbar filter capacitor is just opposite to that of low-temperature heating when the vehicle is driven.
  • the busbar is filtered, and the amplitude of the AC waveform is required to be as large as possible for low-temperature heating.
  • the hardware structure includes the three-phase bridge electronic switch structure of the motor winding and the motor controller, and its software control also needs to be integrated in it, resulting in poor real-time performance of the software control, which affects the system efficiency, and is not compatible with the motor
  • the control software is difficult to integrate and is easily limited by the inductance of the motor winding.
  • one aspect of the present application proposes a heating circuit for a battery pack, which can recharge the output energy back into the battery pack, so that the current of the battery pack passes through the internal resistance of the battery in the process of discharging and charging, thereby improving The utilization rate of electric energy.
  • FIG. 1 is a block diagram of a heating circuit of a battery assembly provided in an embodiment of the present application.
  • the heating circuit 100 of the battery assembly shown in FIG. 1 may include: a main circuit switch 120 , a main resonant circuit 130 and an auxiliary regulating circuit 140 .
  • the main resonant circuit 130 may include a first inductor 131 and a capacitor 132 .
  • the main circuit switch 120 is disposed between the battery assembly 110 and the main resonant circuit 130 for controlling the connection state between the battery assembly 110 and the main resonant circuit 130 .
  • the first end of the main circuit switch 120 is connected to the first end of the battery assembly 110
  • the second end of the main circuit switch 120 is connected to the first end of the first inductor 131
  • the second end of the first inductor 131 is connected to To the first terminal of the capacitive device 132
  • the second terminal of the capacitive device 132 is connected to the second terminal of the battery assembly 110 .
  • the auxiliary regulating circuit 140 is connected to the main resonant circuit 130, and is used to change the difference between the first voltage value of the battery assembly 110 and the second voltage value of the capacitor device 132, so as to adjust the resonant current of the main resonant circuit 130 the magnitude of .
  • the first terminal of the auxiliary regulation circuit 140 is connected to the target connection terminal of the first inductor 131
  • the second terminal of the auxiliary regulation circuit 140 is connected between the second terminal of the battery assembly 110 and the second terminal of the capacitor device 132 .
  • the target connection end of the first inductor 131 may include at least one of the first end and the second end of the first inductor 131 . That is to say, the first end of the auxiliary regulation circuit 140 has the following three connection modes: the first end of the auxiliary regulation circuit 140 is connected to the first end of the first inductor 131, the first end of the auxiliary regulation circuit 140 is connected to the first The second terminal of the inductor 131 and the first terminal of the auxiliary regulation circuit 140 are simultaneously connected to the first terminal and the second terminal of the first inductor 131 .
  • the circuit structure and working principle of the above three different connection modes will be introduced in detail later.
  • FIG. 2 is a flowchart of a heating method for heating a circuit provided by an embodiment of the present application.
  • the heating method shown in FIG. 2 can be applied to the heating circuit shown in FIG. 1 , and the working principle of the heating circuit shown in FIG. 1 will be described below with reference to FIG. 2 .
  • the heating method may include:
  • S101 Control the start-up of the main resonant circuit through the main switch of the circuit.
  • the switching state of the main circuit switch 120 includes a closed state and an open state, and the main resonant circuit 130 is controlled to start oscillation by controlling the switching state of the main circuit switch 120 .
  • control circuit main switch 120 is in a closed state, which can make the battery assembly 110 and the main resonant circuit 130 in a connected state, that is, a charging and discharging circuit is formed between the battery assembly 110 and the main resonant circuit 130, and the control circuit main switch 120 In the open state, the battery assembly 110 and the main resonant circuit 130 can be in a disconnected state.
  • the main resonant circuit may be an LC resonant circuit composed of the first inductor 131 and the capacitive device 132 .
  • the manners of controlling the start-up of the main resonant circuit 130 include but not limited to the following two.
  • the first resonant starting method is: controlling the main resonant circuit 130 to start resonating by increasing the voltage value on the capacitor side.
  • the second voltage value of the capacitive device 132 is increased.
  • a charging current and/or a discharging current is formed in the charging and discharging circuit between 130 , so that the main resonant circuit 130 forms an oscillation and starts to oscillate.
  • the second voltage value of the capacitive device 132 may be increased by controlling the main switch 120 of the circuit, so as to control the main resonant circuit 130 to start to oscillate.
  • the main switch 120 of the control circuit when the main switch 120 of the control circuit is in the open state, the second voltage value of the capacitive device 132 is lower than the first voltage value of the battery assembly, at this time, the auxiliary regulating circuit 140 is not connected to the main resonant circuit 130, in this case , the main switch 120 of the control circuit is in the closed state, at this time, the battery assembly 110 charges the capacitor 132 , so that the main resonant circuit 130 starts to vibrate.
  • the second resonant starting method is: controlling the main resonant circuit 130 to start resonating by reducing the voltage value on the side of the capacitive device.
  • the second voltage value of the capacitive device 132 is reduced by controlling the switching in and switching out of the auxiliary regulation circuit 140 to control the main resonant circuit 130 to start to oscillate.
  • the second voltage value of the capacitive device 132 is reduced.
  • a charging current is formed in the charging and discharging loop between 130 , so that the main resonant circuit 130 starts to oscillate.
  • the control process for adjusting the resonant current is as follows: the oscillation of the main resonant circuit is a damped oscillation due to the internal resistance of the cells in the battery pack, and the internal resistance of the cells consumes energy and generates heat.
  • the resonant current of the main resonant circuit can be adjusted, for example, the amplitude of the resonant current of the main resonant circuit can be changed.
  • the magnitude of the resonant current of the main resonant circuit 130 can be adjusted in the following manner: when the charging and discharging circuit formed between the battery assembly 110 and the capacitor device 132 is in a stable state, the auxiliary regulating circuit 140 is controlled to be connected to In the main resonant circuit 130, energy storage is carried out during the charging and discharging process between the battery assembly 110 and the capacitive device 132 through the auxiliary regulating circuit 140; 140 to change the difference between the first voltage value of the battery assembly 110 and the second voltage value of the capacitive device 132 .
  • the energy stored in the auxiliary regulating circuit 140 can be released to the capacitor device 132, so that the second voltage value of the capacitor device 132 increases, and at this time, the first voltage value of the battery assembly 110 and the second The difference between the voltage values becomes larger accordingly, thereby increasing the magnitude of the resonant current of the main resonant circuit 130 to increase the resonant current.
  • the energy stored in the auxiliary regulating circuit 140 may be released to the battery assembly 110, so that the first voltage value of the battery assembly 110 increases, and the second voltage value of the capacitor device 132 decreases, so that the second voltage value of the battery assembly 110
  • the difference between the first voltage value and the second voltage value of the capacitive device 132 becomes larger accordingly, thereby increasing the magnitude of the resonant current of the main resonant circuit to increase the resonant current.
  • the first connection mode between the auxiliary regulation circuit 140 and the main resonant circuit 130 will be introduced below.
  • FIG. 3 is one of the schematic circuit diagrams of a heating circuit of a battery assembly provided in an embodiment of the present application.
  • the battery assembly 110 may include a battery pack 111 and a battery pack internal resistance 112 , and the battery pack 111 and the battery pack internal resistance 112 are connected in series.
  • connection mode between the auxiliary regulation circuit 140 and the main resonant circuit 130 is: the first terminal of the auxiliary regulation circuit 140 is connected to the first terminal of the first inductor 131, and the second terminal of the auxiliary regulation circuit 140 is connected to the battery assembly Between the second end of 110 and the second end of capacitive device 132 .
  • the auxiliary regulation circuit 140 may include a first auxiliary switch 141 , a second auxiliary switch 142 , and a second inductor 143 .
  • the first end of the first auxiliary switch 141 is connected between the second end of the main circuit switch 120 and the first end of the first inductor 131, and the second end of the first auxiliary switch 141 is connected to the second end of the second inductor 143.
  • the first end, the second end of the second inductor 143 is connected to the first end of the second auxiliary switch 142, the second end of the second auxiliary switch 142 is connected to the second end of the battery assembly 110 and the second end of the capacitor device 132 between, and at the first auxiliary switch 141 a diode is arranged in parallel with the first auxiliary switch 141, at the second end of the first auxiliary switch 141 a diode is arranged in series with the second end of the first auxiliary switch 141, at A diode is provided at the second auxiliary switch 142 in parallel with the second auxiliary switch 142 , and a diode is provided at the first end of the second auxiliary switch 142 in series with the first end of the second auxiliary switch 142 .
  • each auxiliary switch in the auxiliary regulation circuit 140 is connected in parallel with a diode.
  • first auxiliary switch 141 and the second end of the battery assembly 110 between the first end of the second auxiliary switch 142 and the second end of the first inductor 131, respectively set a diode.
  • the first working process the start-up process of the main resonant circuit.
  • the main switch 120 of the control circuit is closed, and a charging and discharging circuit is formed between the battery assembly 110 and the capacitive device 132.
  • the first inductance 131 and the capacitive device 132 of the main resonant circuit 130 will generate damping resonance .
  • the main resonant circuit is controlled to start oscillation.
  • the above-mentioned first resonant starting method can be used to start the main resonant circuit 130 to oscillate. That is, the main resonant circuit 130 is controlled to start to oscillate by increasing the voltage value on the side of the capacitive device.
  • the battery assembly 110 injects current into the capacitive device 132 via the main circuit switch 120 and the first inductance 131, so that the second voltage value UC of the capacitive device 132 rises rapidly, so that the capacitive device 132 passes through the first An inductor 131 charges the battery assembly 110 to form a charging current.
  • the first auxiliary switch 141 and the second auxiliary switch 142 are controlled to be closed at the same time, forming a connection from the positive pole of the battery assembly 110 to the battery assembly 110 via the first auxiliary switch 141, the second inductor 143, and the second auxiliary switch 142. Negative discharge current.
  • the above discharge current can be calculated by the following formula:
  • i represents the discharge current
  • I represents the stable maximum current in the charging and discharging circuit
  • I E0/R0
  • E0 represents the electromotive force of the battery pack
  • R0 represents the internal resistance of the equivalent battery pack
  • t represents the first auxiliary switch 141 and The closing time of the second auxiliary switch 142
  • represents the time constant of the charging and discharging circuit.
  • the energy stored in the second inductor 143 can be calculated by the following formula:
  • j represents the energy stored in the second inductor 143
  • L 2 represents the inductance of the second inductor 143
  • i represents the discharge current
  • the first auxiliary switch 141 and the second auxiliary switch 142 are controlled to be turned on at the same time, so that the energy stored in the second inductor 143 is rapidly transferred to the capacitive device 132 to form a charging current for the capacitive device 132 .
  • the capacitive device 132 receives the energy released by the second inductance 143, resulting in UC>E0, so that the capacitive device 132 charges the battery assembly 110 via the first inductance 131 to form a charging current for the battery assembly 110, so that the main resonant circuit 130 forms an oscillation to start vibration.
  • the second working process the resonant current adjustment process.
  • the inductance value of the first inductance is greater than the inductance value of the second inductance with a predetermined multiple.
  • the predetermined multiple is 2. It should be understood that the present application is not limited thereto, and the value of the predetermined multiple can also be selected. other values.
  • closing the first auxiliary switch 141 and the second auxiliary switch 142 at the same time does not affect the charging of the battery pack 110 to the capacitor device 132 via the first inductance 131 Charge.
  • the closing time of the first auxiliary switch 141 and the second auxiliary switch 142 can be controlled according to the magnitude of the required resonant current, the time between the magnitude of the resonant current and the closing time of the first auxiliary switch 141 and the second auxiliary switch 142
  • the association relationship of can refer to the above-mentioned formula (1).
  • FIG. 4 is the second schematic circuit diagram of a heating circuit of a battery assembly provided in an embodiment of the present application.
  • the connection mode between the auxiliary regulation circuit 140 and the main resonant circuit 130 is as follows: the first end of the auxiliary regulation circuit 140 is connected to the second end of the first inductor 131, and the second end of the auxiliary regulation circuit 140 is connected to Between the second end of the battery assembly 110 and the second end of the capacitive device 132 .
  • the auxiliary regulation circuit 140 may include a third auxiliary switch 144 , a fourth auxiliary switch 145 , and a second inductor 143 .
  • the first end of the third auxiliary switch 144 is connected between the second end of the first inductor 131 and the first end of the capacitive device 132, and the second end of the third auxiliary switch 144 is connected to the first end of the second inductor 143.
  • the first end of the second inductor 143 is connected to the first end of the fourth auxiliary switch 145
  • the second end of the fourth auxiliary switch 145 is connected to the second end of the battery assembly 110
  • a diode is arranged in parallel with the fourth auxiliary switch 145
  • a diode is arranged in series with the first end of the fourth auxiliary switch 145 at the first end of the fourth auxiliary switch 145
  • a diode is arranged in series with the first end of the fourth auxiliary switch 145 at the third auxiliary switch 144.
  • the three auxiliary switches 144 are connected in parallel, and a diode is provided at the second end of the third auxiliary switch 144 in series with the second end of the third auxiliary switch 144 .
  • each auxiliary switch in the auxiliary regulation circuit 140 is connected with a diode.
  • a diode is optionally, between the second end of the third auxiliary switch 144 and the second end of the capacitive device 132, between the first end of the fourth auxiliary switch 145 and the first end of the first inductor 131, a diode.
  • the first working process the start-up process of the main resonant circuit.
  • the main switch 120 of the control circuit is closed, and a charge-discharge circuit is formed between the battery assembly 110 and the capacitive device 132.
  • the first inductance 131 and the capacitive device 132 of the main resonant circuit 130 will generate damping resonance .
  • the main resonant circuit is controlled to start oscillation.
  • the above-mentioned second resonance starting method can be used to start the main resonance circuit 130 to oscillate. That is, the main resonant circuit 130 is controlled to start to oscillate by reducing the voltage value on the side of the capacitive device.
  • the battery assembly 110 injects current into the capacitive device 132 via the main circuit switch 120 and the first inductor 131 , so that the second voltage value UC of the capacitive device 132 rises rapidly.
  • the third auxiliary switch 144 and the fourth auxiliary switch 145 are controlled to be closed simultaneously, and the capacitive device 132 forms a discharge path through the third auxiliary switch 144, the second inductor 143, and the fourth auxiliary switch 145, and the capacitive device 132 discharges the Energy is stored in the second inductor 143 , and at this time, the second voltage value UC of the capacitive device 132 is reduced.
  • the second working process the resonant current adjustment process.
  • the third auxiliary switch 144 and the fourth auxiliary switch 145 are controlled to be closed simultaneously. While the capacitive device 132 continues to charge the battery pack 110 via the first inductance 131, another capacitive device 132 returns to the negative pole of the capacitive device 132 via the third auxiliary switch 144, the second inductance 143, and the fourth auxiliary switch 145 to form a discharge circuit. Discharging, storing the energy discharged from the capacitive device 132 in the second inductor 143 .
  • the energy released by the second inductor 143 is determined by the closing time of the third auxiliary switch 144 and the fourth auxiliary switch 145, and the specific determination method can refer to the above formula (1) and formula (2), Since the inductance value of the first inductance is greater than the inductance value of the second inductance of a predetermined multiple, it is determined that the charging end time of the main loop capacitor 132 to the battery assembly 110 via the first inductor 131 is greater than or equal to that of the auxiliary loop capacitor 132 via the second inductor. The discharge end time of the inductor 143 to the battery assembly 110 .
  • the third connection mode between the auxiliary regulation circuit 140 and the main resonant circuit 130 will be introduced below.
  • FIG. 5 is a third schematic circuit diagram of a heating circuit of a battery assembly provided in an embodiment of the present application.
  • the connection mode between the auxiliary regulation circuit 140 and the main resonant circuit 130 is: the first terminal of the auxiliary regulation circuit 140 is connected to the first terminal and the second terminal of the first inductor 131, and the second terminal of the auxiliary regulation circuit 140 The terminal is connected between the second terminal of the battery assembly 110 and the second terminal of the capacitive device 132 .
  • the auxiliary regulation circuit may include a first auxiliary switch 141 , a second auxiliary switch 142 , a second inductor 143 , a third auxiliary switch 144 and a fourth auxiliary switch 145 .
  • the first end of the first auxiliary switch 141 is connected between the second end of the main circuit switch 120 and the first end of the first inductor 131, and the second end of the first auxiliary switch 141 is connected to the second end of the second inductor 143.
  • the first end, the second end of the second inductor 143 is connected to the first end of the second auxiliary switch 142, the second end of the second auxiliary switch 142 is connected to the second end of the battery assembly 110 and the second end of the capacitor device 132 between.
  • the first end of the third auxiliary switch 144 is connected between the second end of the first inductor 131 and the first end of the capacitive device 132, and the second end of the third auxiliary switch 144 is connected to the second end of the second inductor 143,
  • the first end of the second inductor 143 is connected to the first end of the fourth auxiliary switch 145
  • the second end of the fourth auxiliary switch 145 is connected to the second end of the battery assembly 110 .
  • each auxiliary switch in the auxiliary regulation circuit 140 is connected in parallel with a diode.
  • FIG. 6 Another schematic circuit diagram of the third connection mode between the auxiliary regulation circuit 140 and the main resonant circuit 130 will be introduced below with reference to FIG. 6 .
  • FIG. 6 is a fourth schematic circuit diagram of a heating circuit of a battery assembly provided in an embodiment of the present application.
  • the auxiliary regulation circuit 140 may include a first single-bridge auxiliary circuit 146 , and the first single-bridge auxiliary circuit 146 may include a third inductor 1461 , a fifth auxiliary switch 1462 and a first diode 1463 .
  • the first end of the third inductor 1461 is connected between the second end of the main circuit switch 120 and the first end of the first inductor 131, and the second end of the third inductor 1461 is connected to the first diode
  • the first end of the first diode 1463 and the second end of the first diode 1463 are connected to the first end of the capacitive device 132 .
  • the first end of the fifth auxiliary switch 1462 is connected between the second end of the third inductor 1461 and the first end of the first diode 1463, and the second end of the fifth auxiliary switch 1462 is connected to the first end of the battery pack 110. Between the two terminals and the second terminal of the capacitive device 132 . Its working principle is consistent with that of Fig. 3 above, and will not be repeated in this part.
  • auxiliary regulating circuit 140 for the third connection mode between the auxiliary regulating circuit 140 and the main resonant circuit 130, in addition to the circuit structures shown in Fig. 5 and Fig. 6 above, other circuit structures can also be used to realize the auxiliary regulating circuit 140 and the third connection mode of the main resonant circuit 130 .
  • FIG. 7 another schematic circuit diagram of the third connection mode between the auxiliary regulation circuit 140 and the main resonant circuit 130 will be introduced below.
  • FIG. 7 is a fifth schematic circuit diagram of a heating circuit of a battery assembly provided in an embodiment of the present application.
  • the auxiliary regulation circuit 140 may further include a second single-bridge auxiliary circuit 147 , and the second single-bridge auxiliary circuit 147 may include a fourth inductor 1471 , a second diode 1472 and a sixth auxiliary switch 1473 .
  • the first end of the fourth inductor 1471 is connected to the second end of the first inductor 131
  • the second end of the fourth inductor 1471 is connected to the first end of the second diode 1472
  • the second diode The second end of 1472 is connected between the second end of the main circuit switch 120 and the first end of the first inductor 131
  • the first end of the sixth auxiliary switch 1473 is connected between the second end of the fourth inductor 1471 and the second end
  • the second terminal of the sixth auxiliary switch 1473 is connected between the second terminal of the battery pack and the second terminal of the capacitor device 132 .
  • the amplitude adjustment of the resonant current can be realized during the charging and discharging process of the main resonant circuit by using the capacitor device.
  • the required heating power is not large, only one-way adjustment of the charging and discharging is required. , which can save the number of electronic switching devices, reduce costs, improve efficiency, and simplify control.
  • the first single-bridge auxiliary circuit and the second single-bridge auxiliary circuit shown above may also be included in the heating circuit of the battery assembly, so as to improve the internal heating efficiency of the battery assembly.
  • the charging and discharging process can be used to quickly improve the heating efficiency in the battery, and the current can be quickly adjusted, so that the battery can recover the charging and discharging capacity in a short period of time, and through
  • the charge and discharge control of the main resonant circuit and the auxiliary regulation circuit can reduce energy loss as much as possible.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some communication interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are realized in the form of software function units and sold or used as independent products, they can be stored in a non-volatile computer-readable storage medium executable by a processor.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-OnlyMemory, ROM), random-access memory (RandomAccessMemory, RAM), magnetic disk or optical disk, and various media capable of storing program codes.
  • the present application provides a heating circuit of a battery assembly and a heating method for the heating circuit
  • the heating circuit includes a main circuit switch, a main resonant circuit and an auxiliary regulating circuit
  • the main resonant circuit includes a first inductance and capacitance
  • the main switch of the circuit is set between the battery assembly and the main resonant circuit, and is used to control the connection state between the battery assembly and the main resonant circuit
  • the auxiliary regulating circuit is connected to the main resonant circuit, and is used to change the first voltage value of the battery assembly and the The difference between the second voltage values of the capacitive device to adjust the magnitude of the resonance current of the main resonance circuit.
  • the charging and discharging process can be used to quickly improve the heating efficiency of the battery, and the current can be quickly adjusted, so that the battery can recover the charging and discharging capacity in a short period of time, and through the charge and discharge control of the main resonant circuit and the auxiliary regulation circuit, it can be controlled as much as possible. Reduce energy loss as much as possible. .
  • a heating circuit for a battery assembly and a heating method for the heating circuit of the present application are reproducible and can be used in various industrial applications.
  • a heating circuit for a battery assembly of the present application and a heating method for the heating circuit can be used in the technical field of battery heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供了一种电池组件的加热电路以及用于加热电路的加热方法,该加热电路包括电路总开关、主谐振电路和辅助调节电路,所述主谐振电路包括第一电感和电容器件;其中,电路总开关设置在电池组件与主谐振电路之间,用于控制电池组件与主谐振电路之间的连接状态;辅助调节电路连接到主谐振电路,用于改变电池组件的第一电压值与电容器件的第二电压值之间的差值,以调节主谐振电路的谐振电流的幅值。通过本申请,可以快速利用充放电过程提高电池内加热效率,快速调节电流大小,使电池可以在较短时间内恢复充放电能力,并且通过主谐振电路和辅助调节电路的充放电控制,可以尽可能地减少能量损失。

Description

一种电池组件的加热电路以及用于加热电路的加热方法
相关申请的交叉引用
本申请要求于2021年11月15日提交中国国家知识产权局的申请号为202111345172.9、名称为“一种电池组件的加热电路以及用于加热电路的加热方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池加热技术领域,尤其是涉及一种电池组件的加热电路以及用于加热电路的加热方法。
背景技术
电动汽车的动力电池的充、放电性能受温度影响很大,特别是在低温时由于其组成电极的电化学物质反应的惰性,直接影响电池在低温时的充、放电的电流大小,为了提高电池在低温时充、放电性能必须将电池进行加热来提高电极的电化学物质的活性,才能提高在低温环境下充、放电的电流。
现阶段,电池低温加热多数都采用电池的外加热技术,由于外加热存在问题较多,随之产生了内加热技术。但是,在内加热技术中由于电池内阻很小,一般情况下在几个毫欧左右,因此要想实现快速加热效果需要几百安培的加热电流,这样大的电流在电池内阻能耗只占其中一小部分,电能利用率较低。因此如何使电能高效利用是不容小觑的技术问题。
发明内容
有鉴于此,本申请提供了一种电池组件的加热电路以及用于加热电路的加热方法,可以快速利用充放电过程提高电池内加热效率,快速调节电流大小,使电池可以在较短时间内恢复充放电能力,并且通过主谐振电路和辅助调节电路的充放电控制,可以尽可能地减少能量损失。
本申请实施例提供了一种电池组件的加热电路,所述加热电路可以包括电路总开关、主谐振电路和辅助调节电路,所述主谐振电路包括第一电感和电容器件;其中,
电路总开关设置在电池组件与主谐振电路之间,用于控制电池组件与主谐振电路之间的连接状态;
辅助调节电路连接到主谐振电路,用于改变电池组件的第一电压值与电容器件的第二电压值的差值,以调节主谐振电路的谐振电流的幅值。
可选地,电路总开关的第一端可以连接到电池组件的第一端,电路总开关的第二端可以连接到第一电感的第一端,第一电感的第二端可以连接到电容器件的第一端,电容器件 的第二端可以连接到电池组件的第二端。
可选地,辅助调节电路的第一端可以连接到第一电感的目标连接端,辅助调节电路的第二端可以连接到电池组件的第二端与电容器件的第二端之间;其中,第一电感的目标连接端可以包括第一电感的第一端和第二端中的至少一个。
可选地,辅助调节电路可以包括第一辅助开关、第二辅助开关和第二电感;
其中,第一辅助开关的第一端连接到电路总开关的第二端与第一电感的第一端之间,第一辅助开关的第二端连接到第二电感的第一端,第二电感的第二端连接到第二辅助开关的第一端,第二辅助开关的第二端连接到电池组件的第二端与电容器件的第二端之间,并且在第一辅助开关处设置一二极管与第一辅助开关并联,在第一辅助开关的第二端处设置一二极管与第一辅助开关的第二端串联,在第二辅助开关处设置一二极管与第二辅助开关并联,在第二辅助开关的第一端处设置一二极管与第二辅助开关的第一端串联。
可选地,辅助调节电路可以包括第二电感、第三辅助开关和第四辅助开关;
其中,第三辅助开关的第一端连接到第一电感的第二端与电容器件的第一端之间,第三辅助开关的第二端连接到第二电感的第二端,第二电感的第一端连接到第四辅助开关的第一端,第四辅助开关的第二端连接到电池组件的第二端,并且在所述第四辅助开关处可以设置有二极管与所述第四辅助开关并联,在所述第四辅助开关的所述第一端处可以设置有二极管与所述第四辅助开关的所述第一端串联,在所述第三辅助开关处可以设置有一二极管与所述第三辅助开关并联,在所述第三辅助开关的所述第二端处可以设置有一二极管与所述第三辅助开关的所述第二端串联。
可选地,辅助调节电路可以包括第一辅助开关、第二辅助开关、第二电感、第三辅助开关和第四辅助开关;
其中,第一辅助开关的第一端连接到电路总开关的第二端与第一电感的第一端之间,第一辅助开关的第二端连接到第二电感的第一端,第二电感的第二端连接到第二辅助开关的第一端,第二辅助开关的第二端连接到电池组件的第二端与电容器件的第二端之间;第三辅助开关的第一端连接到第一电感的第二端与电容器件的第一端之间,第三辅助开关的第二端连接到第二电感的第二端,第二电感的第一端连接到第四辅助开关的第一端,第四辅助开关的第二端连接到电池组件的第二端,其中,辅助调节电路中的第一辅助开关、第二辅助开关、第三辅助开关和第四辅助开关都与一个二极管并联。
可选地,辅助调节电路可以包括第一单桥辅助电路,所述第一单桥辅助电路可以包括第三电感器、第一二极管和第五辅助开关;其中,第三电感器的第一端连接到电路总开关的第二端与第一电感的第一端之间,第三电感器的第二端连接到第一二极管的第一端,第一二极管的第二端连接到电容器件的第一端;第五辅助开关的第一端连接到第三电感器的 第二端与第一二极管的第一端之间,第五辅助开关的第二端连接到电池组件的第二端与电容器件的第二端之间;和/或,辅助调节电路还包括第二单桥辅助电路,所述第二单桥辅助电路包括第四电感器、第二二极管和第六辅助开关;其中,第四电感器的第一端连接到第一电感的第二端,第四电感器的第二端连接到第二二极管的第一端,第二二极管的第二端连接到电路总开关的第二端与第一电感的第一端之间;第六辅助开关的第一端连接到第四电感器的第二端与第二二极管的第一端之间,第六辅助开关的第二端连接到电池组件的第二端与电容器件的第二端之间。
本申请实施例还提供了一种用于加热电路的加热方法,所述加热电路可以包括电路总开关、主谐振电路和辅助调节电路,所述主谐振电路可以包括第一电感和电容器件,所述加热方法可以包括:
通过电路总开关控制主谐振电路启振;
在电池组件与电容器件之间形成的充放电回路处于稳定状态时,通过控制辅助调节电路的接入或者切出,改变电池组件的第一电压值与电容器件的第二电压值的差值,以调节主谐振电路的谐振电流的幅值。
可选地,可以通过以下方式确定充放电回路是否处于稳定状态:如果所述电池组件的第一电压值与所述电容器件的第二电压值相等,则确定充放电回路处于稳定状态;如果所述电池组件的第一电压值与所述电容器件的第二电压值不相等,则确定充放电回路没有处于稳定状态。
可选地,通过电路总开关控制主谐振电路启振的步骤可以包括以下步骤之一:通过控制辅助调节电路的接入和切出,增大电容器件的第二电压值,以控制主谐振电路启振;通过控制辅助调节电路的接入和切出,减小电容器件的第二电压值,以控制主谐振电路启振;通过控制电路总开关,增大电容器件的第二电压值,以控制主谐振电路启振。
可选地,可以通过以下方式调节主谐振电路的谐振电流的幅值:在电池组件与电容器件之间形成的充放电回路处于稳定状态时,控制辅助调节电路接入到主谐振电路中,以通过辅助调节电路在电池组件与电容器件之间的充放电过程中进行能量存储;控制辅助调节电路从主谐振电路中切出,通过释放辅助调节电路所存储的能量,来改变电池组件的第一电压值与电容器件的第二电压值的差值。
可选地,通过释放辅助调节电路所存储的能量,来改变电池组件的第一电压值与电容器件的第二电压值的差值可以包括:
将所述辅助调节电路所存储的能量释放到所述电容器件,使得所述电容器件的第二电压值增大,从而致使所述电池组件的第一电压值与所述电容器件的第二电压值之间的差值变大。
可选地,通过释放辅助调节电路所存储的能量,来改变电池组件的第一电压值与电容器件的第二电压值的差值可以包括:
将所述辅助调节电路所存储的能量释放到所述电池组件,使得所述电池组件的第一电压值增大、所述电容器件的第二电压值减小,致使所述电池组件的第一电压值与所述电容器件的第二电压值之间的差值变大。
可选地,所述充放电回路可以包括由电池组件向电容器件的充电过程,所述辅助调节电路包括第二电感,第一电感的电感值大于预定倍数的第二电感的电感值;其中,通过以下方式调节主谐振电路的谐振电流的幅值:控制辅助调节电路接入,在电池组件向电容器件进行充电的同时,利用第二电感进行能量存储;控制辅助调节电路切出,将第二电感所存储的能量释放到电容器件,通过增大电容器件的第二电压值,来改变电池组件的第一电压值与电容器件的第二电压值的差值。
可选地,所述充放电回路还可以包括电容器件向电池组件的充电过程,所述辅助调节电路包括第二电感,第一电感的电感值大于预定倍数的第二电感的电感值;其中,通过以下方式调节主谐振电路的谐振电流的幅值:控制辅助调节电路接入,在电容器件向电池组件进行充电的同时,利用第二电感进行能量存储;控制辅助调节电路切出,将第二电感所存储的能量释放到电池组件,通过减小电容器件的第二电压值,来改变电池组件的第一电压值与电容器件的第二电压值的差值。
本申请提供了一种电池组件的加热电路以及用于加热电路的加热方法,所述加热电路包括电路总开关、主谐振电路和辅助调节电路,所述主谐振电路包括第一电感和电容器件;其中,电路总开关设置在电池组件与主谐振电路之间,用于控制电池组件与主谐振电路之间的连接状态;辅助调节电路连接到主谐振电路,用于改变电池组件的第一电压值与电容器件的第二电压值的差值,以调节主谐振电路的谐振电流的幅值。
通过本申请,可以快速利用充放电过程提高电池内加热效率,快速调节电流大小,使电池可以在较短时间内恢复充放电能力,并且通过主谐振电路和辅助调节电路的充放电控制,可以尽可能地减少能量损失。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例所提供的一种电池组件的加热电路的模块示意图;
图2为本申请实施例所提供的一种用于加热电路的加热方法的流程图;
图3为本申请实施例所提供的一种电池组件的加热电路的电路示意图之一;
图4为本申请实施例所提供的一种电池组件的加热电路的电路示意图之二;
图5为本申请实施例所提供的一种电池组件的加热电路的电路示意图之三;
图6为本申请实施例所提供的一种电池组件的加热电路的电路示意图之四;
图7为本申请实施例所提供的一种电池组件的加热电路的电路示意图之五。
图标:100-电池组件的加热电路;110-电池组件;111-电池包;112-电池包内阻;120-电路总开关;130-主谐振电路;131-第一电感;132-电容器件;140-辅助调节电路;141-第一辅助开关;142-第二辅助开关;143-第二电感;144-第三辅助开关;145-第四辅助开关;146-第一单桥辅助电路;1461-第三电感器;1462-第五辅助开关;1463-第一二极管;147-第二单桥辅助电路;1471-第四电感器;1472-第二二极管;1473-第六辅助开关。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的每个其他实施例,都属于本申请保护的范围。
为了使得本领域技术人员能够使用本申请内容,结合特定应用场景“电池加热”,给出以下实施方式,对于本领域技术人员来说,在不脱离本申请的精神和范围的情况下,可以将这里定义的一般原理应用于其他实施例和应用场景。
本申请实施例下述方法、装置、可以应用于任何需要进行电池加热的场景,本申请实施例并不对具体的应用场景作限制,任何使用本申请实施例提供的一种电池组件的加热电路以及用于加热电路的加热方法的方案均在本申请保护范围内。
值得注意的是,现阶段,电池低温加热多数都采用电池的外加热技术,由于外加热存在问题较多,随之产生了内加热技术。但是,在内加热技术中由于电池内阻很小,一般情况下在几个毫欧左右,因此要想实现快速加热效果需要几百安培的加热电流,这样大的电流在电池内阻能耗只占其中一小部分,电能利用率较低。
针对上述问题,相关技术的处理方式是:利用电动汽车的电机绕组及驱动控制器的三 相桥电子开关与电池包进行能量交换而实现。这种方法的优点是:直接利用电机驱动总成设备,无需另外增设硬件总成设备和加热设备,但上述方法也存在如下问题:
(1)利用该驱动设备需要对电池及模组进行从新排布,即,需要特殊的模组结构来与该驱动设备相匹配;
(2)母线滤波电容无法利用,母线滤波电容在整车驱动时和低温加热的作用正好相反,在整车驱动时是将母线滤波,而在低温加热则是需要交流波形的幅值越大越好;
(3)上述方法在与电池包进行能量交换时,所有的能量都需要经过三相桥电子开关,从而造成大量的开关损耗。
(4)在与电池包进行能量交换时,电流经电机绕组及三相桥电子开关会产生很高的反电动势,该反电动势会击穿三相桥电子开关。因此,上述方法不会产生较大加热功率,内加热时间较长。
(5)基于上述结构,导致在与电池能量进行交换时,会产生较大的EMC电磁干扰。
(6)在上述方法中,硬件结构包括电机绕组和电机控制器的三相桥电子开关结构,其软件控制也需要集成在其中,导致软件控制的实时性较差,影响系统效率,并且与电机控制的软件集成难度大、易受到电机绕组的电感量的局限。
基于此,本申请的一个方面提出了一种电池组件的加热电路,可以将输出的能量再充回电池组件中,以达到电池组件在放电、充电过程中的电流都经过电池内阻,从而提高电能的利用率。
请参阅图1,图1为本申请实施例所提供的一种电池组件的加热电路的模块示意图。图1中所示的电池组件的加热电路100可以包括:电路总开关120、主谐振电路130和辅助调节电路140。其中,主谐振电路130可以包括第一电感131和电容器件132。
具体的,电路总开关120设置在电池组件110与主谐振电路130之间,用于控制电池组件110与主谐振电路130之间的连接状态。
示例性的,电路总开关120的第一端连接到电池组件110的第一端,电路总开关120的第二端连接到第一电感131的第一端,第一电感131的第二端连接到电容器件132的第一端,电容器件132的第二端连接到电池组件110的第二端。
示例性的,辅助调节电路140连接到主谐振电路130,用于改变电池组件110的第一电压值与电容器件132的第二电压值之间的差值,以调节主谐振电路130的谐振电流的幅值。
具体的,辅助调节电路140的第一端连接到第一电感131的目标连接端,辅助调节电路140的第二端连接到电池组件110的第二端与电容器件132的第二端之间。
在一可选示例中,第一电感131的目标连接端可包括第一电感131的第一端和第二端中的至少一个。也就是说,辅助调节电路140的第一端存在以下三种连接方式:辅助调节 电路140的第一端连接到第一电感131的第一端、辅助调节电路140的第一端连接到第一电感131的第二端、辅助调节电路140的第一端同时连接到第一电感131的第一端和第二端。后续将针对上述三种不同连接方式下的电路结构和工作原理进行详细介绍。
请参阅图2,图2为本申请实施例所提供的一种用于加热电路的加热方法的流程图。示例性的,图2所示的加热方法可应用于对图1所示的加热电路中,下面参照图2来介绍图1所示的加热电路的工作原理。如图2所示,所述加热方法可以包括:
S101:通过电路总开关控制主谐振电路启振。
这里,电路总开关120的开关状态包括闭合状态和打开状态,通过控制电路总开关120的开关状态来控制主谐振电路130进行启振。
该步骤中,控制电路总开关120处于闭合状态,可以使得电池组件110与主谐振电路130处于接通状态,即,电池组件110与主谐振电路130之间形成充放电回路,控制电路总开关120处于打开状态,可以使得电池组件110与主谐振电路130处于断开状态。
示例性的,主谐振电路可为由第一电感131和电容器件132组成的LC谐振电路。
本申请实施例中,控制主谐振电路130启振的方式包括但不限于以下两种。
第一种谐振启动方式为:通过增大电容器件侧电压值的方式来控制主谐振电路130启振。
例如,通过控制辅助调节电路140的接入和切出,增大电容器件132的第二电压值,此时,由于电容器件132的第二电压值的增大,在电池组件110与主谐振电路130之间的充放电回路中形成充电电流和/或放电电流,从而使得主谐振电路130形成震荡而启振。
在一可选示例中,可以通过控制电路总开关120,增大电容器件132的第二电压值,以控制主谐振电路130启振。
例如,当控制电路总开关120处于打开状态时,电容器件132的第二电压值小于电池组件的第一电压值,此时,辅助调节电路140不接入主谐振电路130中,在此情况下,控制电路总开关120处于闭合状态,此时,由电池组件110向电容器件132进行充电,从而使主谐振电路130启振。
第二种谐振启动方式为:通过减小电容器件侧电压值的方式来控制主谐振电路130启振。
例如,通过控制辅助调节电路140的接入和切出,减小电容器件132的第二电压值,以控制主谐振电路130启振。
例如,通过控制辅助调节电路140的接入和切出,减小电容器件132的第二电压值,此时,由于电容器件132的第二电压值的减小,在电池组件110与主谐振电路130之间的充放电回路中形成充电电流,从而使得主谐振电路130启振。
S102:在电池组件与电容器件之间形成的充放电回路处于稳定状态时,通过控制辅助调节电路的接入或者切出,改变电池组件的第一电压值与电容器件的第二电压值之间的差值,以调节主谐振电路的谐振电流的幅值。
在一可选示例中,可以通过以下方式确定充放电回路是否处于稳定状态:如果电池组件110的第一电压值与电容器件132的第二电压值相等,则确定充放电回路处于稳定状态;如果电池组件110的第一电压值与电容器件132的第二电压值不相等,则确定充放电回路没有处于稳定状态。
在本申请实施例中,针对调节谐振电流大小的控制过程为:由于电池包中的电芯有内阻存在会导致主谐振电路的震荡是阻尼振荡,电芯内阻消耗能量产生热量。为了使主谐振持续震荡下去或者根据电芯状况改变电芯加热速度,可以调节主谐振电路的谐振电流,例如,改变主谐振电路的谐振电流的幅值。
在一优选示例中,可以通过以下方式调节主谐振电路130的谐振电流的幅值:在电池组件110与电容器件132之间形成的充放电回路处于稳定状态时,控制辅助调节电路140接入到主谐振电路130中,以通过辅助调节电路140在电池组件110与电容器件132之间的充放电过程中进行能量存储;控制辅助调节电路140从主谐振电路130中切出,通过释放辅助调节电路140所存储的能量,来改变电池组件110的第一电压值与电容器件132的第二电压值的差值。
一种情况,可以将辅助调节电路140所存储的能量释放到电容器件132,使得电容器件132的第二电压值增大,此时,电池组件110的第一电压值与电容器件132的第二电压值之间的差值随之变大,从而提高了主谐振电路130的谐振电流的幅值,以增大谐振电流。
另一种情况,可以将辅助调节电路140所存储的能量释放到电池组件110,使得电池组件110的第一电压值增大、电容器件132的第二电压值减小,使得电池组件110的第一电压值与电容器件132的第二电压值之间的差值随之变大,从而提高了主谐振电路的谐振电流的幅值,以增大谐振电流。
下面参照图3来介绍辅助调节电路140与主谐振电路130的第一种连接方式。
请参阅图3,图3为本申请实施例所提供的一种电池组件的加热电路的电路示意图之一。
如图3所示,电池组件110可包括电池包111和电池包内阻112,电池包111与电池包内阻112串联连接。
在本示例中,辅助调节电路140与主谐振电路130的连接方式为:辅助调节电路140的第一端连接到第一电感131的第一端,辅助调节电路140的第二端连接到电池组件110的第二端与电容器件132的第二端之间。
在一优选示例中,辅助调节电路140可包括第一辅助开关141、第二辅助开关142、第 二电感143。
具体的,第一辅助开关141的第一端连接到电路总开关120的第二端与第一电感131的第一端之间,第一辅助开关141的第二端连接到第二电感143的第一端,第二电感143的第二端连接到第二辅助开关142的第一端,第二辅助开关142的第二端连接到电池组件110的第二端与电容器件132的第二端之间,并且,在第一辅助开关141处设置一二极管与第一辅助开关141并联,在第一辅助开关141的第二端处设置一二极管与第一辅助开关141的第二端串联,在第二辅助开关142处设置一二极管与第二辅助开关142并联,在第二辅助开关142的第一端处设置一二极管与第二辅助开关142的第一端串联。
示例性的,辅助调节电路140中的每个辅助开关都与一个二极管并联。可选地,在第一辅助开关141的第二端与电池组件110的第二端之间、在第二辅助开关142的第一端与第一电感131的第二端之间,分别设置一二极管。
基于图3所示的加热电路的电路结构其具体的工作原理如下:
第一工作过程:主谐振电路的启振过程。
如图3所示,首先控制电路总开关120闭合,在电池组件110与电容器件132之间形成的充放电回路,此时,主谐振电路130的第一电感131和电容器件132会产生阻尼谐振。
当电池组件110与电容器件132之间形成的充放电回路处于稳定状态时,即,E0=UC时,控制主谐振电路启振。
针对图3所示的电路结构,可以采用上述的第一种谐振启动方式来主谐振电路130启振。即,通过增大电容器件侧电压值的方式来控制主谐振电路130启振。
具体的,当E0=UC后,电池组件110经由电路总开关120、第一电感131向电容器件132注入电流,使得电容器件132的第二电压值UC迅速升高,从而使得电容器件132经过第一电感131向电池组件110充电,形成充电电流。
在此情况下,控制第一辅助开关141和第二辅助开关142同时闭合,形成了由电池组件110的正极经由第一辅助开关141、第二电感143、第二辅助开关142到电池组件110的负极的放电电流。
作为示例,可以通过如下公式来计算上述放电电流:
Figure PCTCN2022073995-appb-000001
公式(1)中,i表示放电电流,I表示充放电回路中稳定最大电流,I=E0/R0,E0表示电池包电动势,R0表示等效电池包内阻,t表示第一辅助开关141和第二辅助开关142的闭合时间,τ表示充放电回路的时间常数。
在此情况下,第二电感143中所存储的能量可以通过如下公式来计算:
Figure PCTCN2022073995-appb-000002
公式(2)中,j表示第二电感143中所存储的能量,L 2表示第二电感143的电感值,i表示放电电流。
此后,控制第一辅助开关141和第二辅助开关142同时打开,使得第二电感143中所存储的能量迅速转移到电容器件132,形成对电容器件132的充电电流。电容器件132接收第二电感143释放的能量,导致UC>E0,使得电容器件132经由第一电感131向电池组件110充电,形成对电池组件110的充电电流,从而主谐振电路130形成震荡而启振。
第二工作过程:谐振电流调节过程。
在主谐振电路130启振之后,在电池组件110经由第一电感131向电容器件132充电过程中,在E0=UC的时刻,控制第一辅助开关141和第二辅助开关142同时闭合。此时,电池组件110经由第一电感131向电容器件132充电,并且,第二电感143在进行储能。
在本申请实施例中,第一电感的电感值大于预定倍数的第二电感的电感值,示例性的,预定倍数为2,应理解,本申请不限于此,预定倍数的取值也可以选取其他数值。此时,由于第一电感的电感值大于预定倍数的第二电感的电感值,因此,同时闭合第一辅助开关141和第二辅助开关142不影响电池组件110经由第一电感131向电容器件132充电。
作为示例,可以根据所需要的谐振电流的大小来控制第一辅助开关141和第二辅助开关142的闭合时间,谐振电流的大小与第一辅助开关141和第二辅助开关142的闭合时间之间的关联关系可以参照上述的公式(1)。
控制第一辅助开关141和第二辅助开关142同步打开,此时,将第二电感143所存储的能量释放到电容器件132,使电容器件132的第二电压值UC升高,达到调节谐振电流的目的。
下面参照图4来介绍辅助调节电路140与主谐振电路130的第二种连接方式。
请参阅图4,图4为本申请实施例所提供的一种电池组件的加热电路的电路示意图之二。
如图4所示,辅助调节电路140与主谐振电路130的种连接方式为:辅助调节电路140的第一端连接到第一电感131的第二端,辅助调节电路140的第二端连接到电池组件110的第二端与电容器件132的第二端之间。
在一优选示例中,辅助调节电路140可包括第三辅助开关144、第四辅助开关145、第二电感143。
具体的,第三辅助开关144的第一端连接到第一电感131的第二端与电容器件132的第一端之间,第三辅助开关144的第二端连接到第二电感143的第二端,第二电感143的第一端连接到第四辅助开关145的第一端,第四辅助开关145的第二端连接到电池组件110 的第二端,并且,在第四辅助开关145处设置一二极管与第四辅助开关145并联,在第四辅助开关145的第一端处设置一二极管与第四辅助开关145的第一端串联,在第三辅助开关144处设置一二极管与第三辅助开关144并联,在第三辅助开关144的第二端处设置一二极管与第三辅助开关144的第二端串联。
示例性的,辅助调节电路140中的每个辅助开关都与一个二极管连接。可选地,在第三辅助开关144的第二端与电容器件132的第二端之间、在第四辅助开关145的第一端与第一电感131的第一端之间,分别设置一二极管。
基于图4所示的加热电路的电路结构其具体的工作原理如下:
第一工作过程:主谐振电路的启振过程。
如图4所示,首先控制电路总开关120闭合,在电池组件110与电容器件132之间形成的充放电回路,此时,主谐振电路130的第一电感131和电容器件132会产生阻尼谐振。
当电池组件110与电容器件132之间形成的充放电回路处于稳定状态时,即,E0=UC时,控制主谐振电路启振。
针对图4所示的电路结构,可以采用上述的第二种谐振启动方式来主谐振电路130启振。即,通过减小电容器件侧电压值的方式来控制主谐振电路130启振。
具体的,当E0=UC后,电池组件110经由电路总开关120、第一电感131向电容器件132注入电流,使得电容器件132的第二电压值UC迅速升高。
在此情况下,控制第三辅助开关144和第四辅助开关145同时闭合,电容器件132经由第三辅助开关144、第二电感143、第四辅助开关145形成放电通路,电容器件132通过放电将能量存储到第二电感143中,此时,导致电容器件132的第二电压值UC降低。
控制第三辅助开关144和第四辅助开关145同步打开,将第二电感143中所存储的能量释放到电池组件110,导致E0>UC,形成由电池组件110经由第一电感131向电容器件132的充电,使得主谐振电路启振。
第二工作过程:谐振电流调节过程。
在主谐振电路130启振之后,在电容器件132经由第一电感131向电池组件110的充电过程中,在E0=UC的时刻,控制第三辅助开关144和第四辅助开关145同时闭合,在电容器件132继续经由第一电感131向电池组件110充电的同时,另一路电容器件132经由第三辅助开关144、第二电感143、第四辅助开关145回到电容器件132的负极形成放电回路进行放电,将电容器件132放电的能量存储在第二电感143中。
控制第三辅助开关144和第四辅助开关145同步打开,此时,将第二电感143所存储的能量释放到电池组件110,使电池组件110的第一电压值升高,达到调节谐振电流的目的。
在本申请实施例中,第二电感143所释放的能量由第三辅助开关144和第四辅助开关 145的闭合时间来决定,具体确定方式可以参照上述的公式(1)和公式(2),由于第一电感的电感值大于预定倍数的第二电感的电感值,决定了主回路电容器件132经由第一电感131向电池组件110的充电结束时间要大于或者等于辅助回路电容器件132经由第二电感143向电池组件110的放电结束时间。
下面参照图5来介绍辅助调节电路140与主谐振电路130的第三种连接方式。
请参阅图5,图5为本申请实施例所提供的一种电池组件的加热电路的电路示意图之三。
如图5所示,辅助调节电路140与主谐振电路130的连接方式为:辅助调节电路140的第一端连接到第一电感131的第一端和第二端,辅助调节电路140的第二端连接到电池组件110的第二端与电容器件132的第二端之间。
在一优选示例中,辅助调节电路可包括第一辅助开关141、第二辅助开关142、第二电感143、第三辅助开关144和第四辅助开关145。
具体的,第一辅助开关141的第一端连接到电路总开关120的第二端与第一电感131的第一端之间,第一辅助开关141的第二端连接到第二电感143的第一端,第二电感143的第二端连接到第二辅助开关142的第一端,第二辅助开关142的第二端连接到电池组件110的第二端与电容器件132的第二端之间。第三辅助开关144的第一端连接到第一电感131的第二端与电容器件132的第一端之间,第三辅助开关144的第二端连接到第二电感143的第二端,第二电感143的第一端连接到第四辅助开关145的第一端,第四辅助开关145的第二端连接到电池组件110的第二端。示例性的,辅助调节电路140中的每个辅助开关都与一个二极管并联。
基于图5所示的电路结构的加热电路的工作原理可以参照上述针对图3和图4的工作原理的描述,本申请对此不再赘述。
在本申请实施例中,针对辅助调节电路140与主谐振电路130的第三种连接方式,除上述图5所示的电路结构之外,还可以采用其他电路结构来实现辅助调节电路140与主谐振电路130的第三种连接方式。
下面参照图6来介绍辅助调节电路140与主谐振电路130的第三种连接方式的另一电路示意图。
请参阅图6,图6为本申请实施例所提供的一种电池组件的加热电路的电路示意图之四。
如图6所示,辅助调节电路140可包括第一单桥辅助电路146,第一单桥辅助电路146可包括第三电感器1461、第五辅助开关1462和第一二极管1463。
具体的,第三电感器1461的第一端连接到电路总开关120的第二端与第一电感131的第一端之间,第三电感器1461的第二端连接到第一二极管1463的第一端,第一二极管1463的第二端连接到电容器件132的第一端。
第五辅助开关1462的第一端连接到第三电感器1461的第二端与第一二极管1463的第一端之间,第五辅助开关1462的第二端连接到电池组件110的第二端与电容器件132的第二端之间。其工作原理与上述图3的工作原理相一致,此部分不再赘述。
在本申请实施例中,针对辅助调节电路140与主谐振电路130的第三种连接方式,除上述图5和图6所示的电路结构之外,还可以采用其他电路结构来实现辅助调节电路140与主谐振电路130的第三种连接方式。
下面参照图7来介绍辅助调节电路140与主谐振电路130的第三种连接方式的再一电路示意图。
请参阅图7,图7为本申请实施例所提供的一种电池组件的加热电路的电路示意图之五。
如图7所示,辅助调节电路140可还包括第二单桥辅助电路147,第二单桥辅助电路147可包括第四电感器1471、第二二极管1472和第六辅助开关1473。
具体的,第四电感器1471的第一端连接到第一电感131的第二端,第四电感器1471的第二端连接到第二二极管1472的第一端,第二二极管1472的第二端连接到电路总开关120的第二端与第一电感131的第一端之间;第六辅助开关1473的第一端连接到第四电感器1471的第二端与第二二极管1472的第一端之间,第六辅助开关1473的第二端连接到电池组件的第二端与电容器件132的第二端之间。其工作原理与上述图4的工作原理相一致,此部分不再赘述。
上述的各电路示意图中,利用电容器件,在主谐振电路的充放电过程中均可以实现谐振电流的幅值调节,针对有些所需加热功率不大的情况,仅需要充放电单向调节即可,这样可以节省电子开关器件的数量,降低成本、提高效率、简化控制。
在本申请实施例中,也可以在电池组件的加热电路中同时包括上述所示的第一单桥辅助电路、第二单桥辅助电路,以提高对电池组件的内加热效率。
通过本申请的电池组件的加热电路以及用于加热电路的加热方法,可以快速利用充放电过程提高电池内加热效率,快速调节电流大小,使电池可以在较短时间内恢复充放电能力,并且通过主谐振电路和辅助调节电路的充放电控制,可以尽可能地减少能量损失。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的 间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-OnlyMemory,ROM)、随机存取存储器(RandomAccessMemory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
工业实用性
本申请提供了一种电池组件的加热电路以及用于加热电路的加热方法,该加热电路包括电路总开关、主谐振电路和辅助调节电路,所述主谐振电路包括第一电感和电容器件;其中,电路总开关设置在电池组件与主谐振电路之间,用于控制电池组件与主谐振电路之间的连接状态;辅助调节电路连接到主谐振电路,用于改变电池组件的第一电压值与电容器件的第二电压值之间的差值,以调节主谐振电路的谐振电流的幅值。通过本申请,可以快速利用充放电过程提高电池内加热效率,快速调节电流大小,使电池可以在较短时间内恢复充放电能力,并且通过主谐振电路和辅助调节电路的充放电控制,可以尽可能地减少能量损失。。
此外,可以理解的是,本申请的一种电池组件的加热电路以及用于加热电路的加热方法是可以重现的,并且可以用在多种工业应用中。例如,本申请的一种电池组件的加热电 路以及用于加热电路的加热方法可以用于电池加热技术领域。

Claims (15)

  1. 一种电池组件的加热电路,其特征在于,所述加热电路包括电路总开关、主谐振电路和辅助调节电路,所述主谐振电路包括第一电感和电容器件;其中,
    电路总开关设置在电池组件与主谐振电路之间,用于控制电池组件与主谐振电路之间的连接状态;
    辅助调节电路连接到主谐振电路,用于改变电池组件的第一电压值与电容器件的第二电压值之间的差值,以调节主谐振电路的谐振电流的幅值。
  2. 根据权利要求1所述的加热电路,其特征在于,电路总开关的第一端连接到电池组件的第一端,电路总开关的第二端连接到第一电感的第一端,第一电感的第二端连接到电容器件的第一端,电容器件的第二端连接到电池组件的第二端。
  3. 根据权利要求2所述的加热电路,其特征在于,辅助调节电路的第一端连接到第一电感的目标连接端,辅助调节电路的第二端连接到电池组件的第二端与电容器件的第二端之间;
    其中,第一电感的目标连接端包括第一电感的第一端和第二端中的至少一个。
  4. 根据权利要求3所述的加热电路,其特征在于,辅助调节电路包括第一辅助开关、第二辅助开关和第二电感;
    其中,第一辅助开关的第一端连接到电路总开关的第二端与第一电感的第一端之间,第一辅助开关的第二端连接到第二电感的第一端,第二电感的第二端连接到第二辅助开关的第一端,第二辅助开关的第二端连接到电池组件的第二端与电容器件的第二端之间,并且在第一辅助开关处设置一二极管与第一辅助开关并联,在第一辅助开关的第二端处设置一二极管与第一辅助开关的第二端串联,在第二辅助开关处设置一二极管与第二辅助开关并联,在第二辅助开关的第一端处设置一二极管与第二辅助开关的第一端串联。
  5. 根据权利要求3所述的加热电路,其特征在于,辅助调节电路包括第二电感、第三辅助开关和第四辅助开关;
    其中,第三辅助开关的第一端连接到第一电感的第二端与电容器件的第一端之间,第三辅助开关的第二端连接到第二电感的第二端,第二电感的第一端连接到第四辅助开关的第一端,第四辅助开关的第二端连接到电池组件的第二端,并且在所述第四辅助开关处设置有二极管与所述第四辅助开关并联,在所述第四辅助开关的所述第一端处设置有二极管与所述第四辅助开关的所述第一端串联,在所述第三辅助开关处设置有一二极管与所述第三辅助开关并联,在所述第三辅助开关的所述第二端处设置有一二极管与所述第三辅助开关的所述第二端串联。
  6. 根据权利要求3所述的加热电路,其特征在于,辅助调节电路包括第一辅助开关、第二辅助开关、第二电感、第三辅助开关和第四辅助开关;
    其中,第一辅助开关的第一端连接到电路总开关的第二端与第一电感的第一端之间,第一辅助开关的第二端连接到第二电感的第一端,第二电感的第二端连接到第二辅助开关的第一端,第二辅助开关的第二端连接到电池组件的第二端与电容器件的第二端之间;
    第三辅助开关的第一端连接到第一电感的第二端与电容器件的第一端之间,第三辅助开关的第二端连接到第二电感的第二端,第二电感的第一端连接到第四辅助开关的第一端,第四辅助开关的第二端连接到电池组件的第二端,其中,辅助调节电路中的第一辅助开关、第二辅助开关、第三辅助开关和第四辅助开关都与一个二极管并联。
  7. 根据权利要求3所述的加热电路,其特征在于,辅助调节电路包括第一单桥辅助电路,所述第一单桥辅助电路包括第三电感器、第一二极管和第五辅助开关;
    其中,第三电感器的第一端连接到电路总开关的第二端与第一电感的第一端之间,第三电感器的第二端连接到第一二极管的第一端,第一二极管的第二端连接到电容器件的第一端;
    第五辅助开关的第一端连接到第三电感器的第二端与第一二极管的第一端之间,第五辅助开关的第二端连接到电池组件的第二端与电容器件的第二端之间;
    和/或,辅助调节电路还包括第二单桥辅助电路,所述第二单桥辅助电路包括第四电感器、第二二极管和第六辅助开关;
    其中,第四电感器的第一端连接到第一电感的第二端,第四电感器的第二端连接到第二二极管的第一端,第二二极管的第二端连接到电路总开关的第二端与第一电感的第一端之间;
    第六辅助开关的第一端连接到第四电感器的第二端与第二二极管的第一端之间,第六辅助开关的第二端连接到电池组件的第二端与电容器件的第二端之间。
  8. 一种用于加热电路的加热方法,其特征在于,所述加热电路包括电路总开关、主谐振电路和辅助调节电路,所述主谐振电路包括第一电感和电容器件,所述加热方法包括:
    通过电路总开关控制主谐振电路启振;
    在电池组件与电容器件之间形成的充放电回路处于稳定状态时,通过控制辅助调节电路的接入或者切出,改变电池组件的第一电压值与电容器件的第二电压值的差值,以调节主谐振电路的谐振电流的幅值。
  9. 根据权利要求8所述的加热方法,其特征在于,通过以下方式确定充放电回路是否处于稳定状态:如果所述电池组件的第一电压值与所述电容器件的第二电压值相等,则确定充放电回路处于稳定状态;如果所述电池组件的第一电压值与所述电容器件的第二电压 值不相等,则确定充放电回路没有处于稳定状态。
  10. 根据权利要求8或9所述的加热方法,其特征在于,通过电路总开关控制主谐振电路启振的步骤包括以下步骤之一:
    通过控制辅助调节电路的接入和切出,增大电容器件的第二电压值,以控制主谐振电路启振;
    通过控制辅助调节电路的接入和切出,减小电容器件的第二电压值,以控制主谐振电路启振;
    通过控制电路总开关,增大电容器件的第二电压值,以控制主谐振电路启振。
  11. 根据权利要求8至10中任一项所述的加热方法,其特征在于,通过以下方式调节主谐振电路的谐振电流的幅值:
    在电池组件与电容器件之间形成的充放电回路处于稳定状态时,控制辅助调节电路接入到主谐振电路中,以通过辅助调节电路在电池组件与电容器件之间的充放电过程中进行能量存储;
    控制辅助调节电路从主谐振电路中切出,通过释放辅助调节电路所存储的能量,来改变电池组件的第一电压值与电容器件的第二电压值的差值。
  12. 根据权利要求11所述的加热方法,其特征在于,通过释放辅助调节电路所存储的能量,来改变电池组件的第一电压值与电容器件的第二电压值的差值包括:
    将所述辅助调节电路所存储的能量释放到所述电容器件,使得所述电容器件的第二电压值增大,从而致使所述电池组件的第一电压值与所述电容器件的第二电压值之间的差值变大。
  13. 根据权利要求12所述的加热方法,其特征在于,通过释放辅助调节电路所存储的能量,来改变电池组件的第一电压值与电容器件的第二电压值的差值包括:
    将所述辅助调节电路所存储的能量释放到所述电池组件,使得所述电池组件的第一电压值增大、所述电容器件的第二电压值减小,致使所述电池组件的第一电压值与所述电容器件的第二电压值之间的差值变大。
  14. 根据权利要求11至13中任一项所述的加热方法,其特征在于,所述充放电回路包括由电池组件向电容器件的充电过程,所述辅助调节电路包括第二电感,第一电感的电感值大于预定倍数的第二电感的电感值;
    其中,通过以下方式调节主谐振电路的谐振电流的幅值:
    控制辅助调节电路接入,在电池组件向电容器件进行充电的同时,利用第二电感进行能量存储;
    控制辅助调节电路切出,将第二电感所存储的能量释放到电容器件,通过增大电容器 件的第二电压值,来改变电池组件的第一电压值与电容器件的第二电压值的差值。
  15. 根据权利要求11至13中任一项所述的加热方法,其特征在于,所述充放电回路还包括电容器件向电池组件的充电过程,所述辅助调节电路包括第二电感,第一电感的电感值大于预定倍数的第二电感的电感值;
    其中,通过以下方式调节主谐振电路的谐振电流的幅值:
    控制辅助调节电路接入,在电容器件向电池组件进行充电的同时,利用第二电感进行能量存储;
    控制辅助调节电路切出,将第二电感所存储的能量释放到电池组件,通过减小电容器件的第二电压值,来改变电池组件的第一电压值与电容器件的第二电压值的差值。
PCT/CN2022/073995 2021-11-15 2022-01-26 一种电池组件的加热电路以及用于加热电路的加热方法 WO2023082475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111345172.9 2021-11-15
CN202111345172.9A CN113782873B (zh) 2021-11-15 2021-11-15 一种电池组件的加热电路以及用于加热电路的加热方法

Publications (1)

Publication Number Publication Date
WO2023082475A1 true WO2023082475A1 (zh) 2023-05-19

Family

ID=78873841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073995 WO2023082475A1 (zh) 2021-11-15 2022-01-26 一种电池组件的加热电路以及用于加热电路的加热方法

Country Status (2)

Country Link
CN (1) CN113782873B (zh)
WO (1) WO2023082475A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782873B (zh) * 2021-11-15 2022-04-08 蜂巢能源科技有限公司 一种电池组件的加热电路以及用于加热电路的加热方法
CN114650628B (zh) * 2022-03-31 2023-05-26 蜂巢能源科技(无锡)有限公司 加热电路的控制方法、装置、电子设备及存储介质
CN115224397B (zh) * 2022-08-26 2023-12-15 阿维塔科技(重庆)有限公司 一种电池包自加热电路及汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130336013A1 (en) * 2011-02-21 2013-12-19 Sma Solar Technology Ag DC-to-DC Converter and Method for Operating a DC-to-DC Converter
CN107039708A (zh) * 2016-11-29 2017-08-11 北京交通大学 一种锂离子电池组低温自加热方法
CN108847513A (zh) * 2018-05-08 2018-11-20 北京航空航天大学 一种锂离子电池低温加热控制方法
CN213816258U (zh) * 2021-01-11 2021-07-27 河北工业大学 一种基于lc谐振的低温电池组件加热装置
CN214314619U (zh) * 2020-12-29 2021-09-28 欣旺达电动汽车电池有限公司 电池加热装置及锂电池
CN113782873A (zh) * 2021-11-15 2021-12-10 蜂巢能源科技有限公司 一种电池组件的加热电路以及用于加热电路的加热方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209644B2 (en) * 2010-07-30 2015-12-08 Byd Company Limited Circuits and methods for heating batteries in series using resonance components in series
US9083196B2 (en) * 2010-07-30 2015-07-14 Byd Company Limited Circuits and methods for heating batteries in parallel using resonance components in series
CN103213543B (zh) * 2012-01-18 2015-11-25 比亚迪股份有限公司 一种电动车行车控制系统
CN106025443B (zh) * 2016-07-25 2018-12-07 北京理工大学 一种基于lc谐振进行加热的电源系统及车辆
CN106229583B (zh) * 2016-07-25 2018-08-03 北京理工大学 一种基于lc谐振进行加热的蓄电装置加热方法
CN212060996U (zh) * 2020-04-30 2020-12-01 蜂巢能源科技有限公司 电芯温度调节电路及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130336013A1 (en) * 2011-02-21 2013-12-19 Sma Solar Technology Ag DC-to-DC Converter and Method for Operating a DC-to-DC Converter
CN107039708A (zh) * 2016-11-29 2017-08-11 北京交通大学 一种锂离子电池组低温自加热方法
CN108847513A (zh) * 2018-05-08 2018-11-20 北京航空航天大学 一种锂离子电池低温加热控制方法
CN214314619U (zh) * 2020-12-29 2021-09-28 欣旺达电动汽车电池有限公司 电池加热装置及锂电池
CN213816258U (zh) * 2021-01-11 2021-07-27 河北工业大学 一种基于lc谐振的低温电池组件加热装置
CN113782873A (zh) * 2021-11-15 2021-12-10 蜂巢能源科技有限公司 一种电池组件的加热电路以及用于加热电路的加热方法

Also Published As

Publication number Publication date
CN113782873B (zh) 2022-04-08
CN113782873A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023082475A1 (zh) 一种电池组件的加热电路以及用于加热电路的加热方法
EP4160862A1 (en) Battery energy processing apparatus and method, and vehicle
CN101953016A (zh) 用于组合电池芯和组合电池芯系统的充电方法
WO2021244649A1 (zh) 能量转换装置及其安全控制方法
US20220200309A1 (en) Battery control device and mobile battery
CN114650628B (zh) 加热电路的控制方法、装置、电子设备及存储介质
US20230037930A1 (en) Systems and methods for battery charging using a negotiable power supply
CN201113508Y (zh) 电池组均衡装置
CN104167780B (zh) 一种连续可控隔离式有源主动均衡充电模块及其充电系统
EP4020751A1 (en) Battery control device and mobile battery
CN115663975A (zh) 一种电池充放电管理电路及系统
CN216121850U (zh) 一种锂电池管理系统
CN115621620A (zh) 一种电池自加热方法、装置、电子设备及存储介质
WO2018119798A1 (zh) 电池充电方法、充电系统、充电器及电池
CN116368706A (zh) 动力电池的加热方法和加热系统
Lee et al. Reconfigurable multi-cell battery pack for portable electronic devices with the capability of simultaneous charging and discharging
CN113540621A (zh) 一种正弦交流的锂电池低温自加热装置及方法
CN111293746A (zh) 高效的电池能量整体平衡方法
WO2023029048A1 (zh) 电池加热装置及其控制方法、控制电路和动力装置
Mohan et al. Comparing optimal battery warm-up strategies based on self-heating
CN112787362A (zh) 一种主动均衡电路及方法
WO2023207495A1 (zh) 电池自加热装置、方法及车辆
US20230207916A1 (en) Systems and methods for controlled battery heating
JP7444985B2 (ja) Dc/dc変換回路、パワーユニット、充電スタンド及び充放電加熱方法
US10141857B2 (en) Energy supply device for supplying electric energy and method of operating a corresponding energy supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401002403

Country of ref document: TH