WO2023082397A1 - 一种a-fabp蛋白抑制剂及其应用 - Google Patents

一种a-fabp蛋白抑制剂及其应用 Download PDF

Info

Publication number
WO2023082397A1
WO2023082397A1 PCT/CN2021/137800 CN2021137800W WO2023082397A1 WO 2023082397 A1 WO2023082397 A1 WO 2023082397A1 CN 2021137800 W CN2021137800 W CN 2021137800W WO 2023082397 A1 WO2023082397 A1 WO 2023082397A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabp
protein
cobimetinib
metabolic disease
cardiovascular
Prior art date
Application number
PCT/CN2021/137800
Other languages
English (en)
French (fr)
Inventor
畅君雷
杨时伦
李思梦
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023082397A1 publication Critical patent/WO2023082397A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • G06F18/24155Bayesian classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression

Definitions

  • the invention belongs to the technical field of metabolic diseases and cardiovascular and cerebrovascular complications thereof, and specifically relates to an A-FABP protein inhibitor and application thereof.
  • Adipocyte-type fatty acid binding protein is a member of the apolipoprotein family, with a molecular weight of 14.6KD, mainly expressed in mature adipocytes and macrophages.
  • the main function of A-FABP protein is as a carrier of free fatty acid molecules, regulating fat storage and decomposition in adipocytes; regulating lipid accumulation and promoting the expression of various inflammatory factors in macrophages, including MCP-1, TNF- ⁇ , IL-6, IL-1 ⁇ , etc.
  • A-FABP protein can be secreted into extracellular and blood, promote inflammatory response, and is closely related to the occurrence and development of a variety of metabolic diseases, such as obesity, diabetes, lipid metabolism disorders, non-alcoholic steatohepatitis, atherosclerosis, etc.
  • metabolic diseases such as obesity, diabetes, lipid metabolism disorders, non-alcoholic steatohepatitis, atherosclerosis, etc.
  • mice with A-FABP gene knockout bone marrow transplantation can improve atherosclerosis in an all-round way without metabolic side effects; at the same time, A-FABP gene mutations lead to a small decrease in the expression level of A-FABP.
  • A-FABP protein up-regulates the expression of various inflammatory factors through the JNK/c-Jun/AP-1 signaling axis in macrophages, and confirmed that after ischemic stroke, blood neutralization
  • the expression level of A-FABP protein in brain tissue increases, which promotes the expression of inflammatory factors, thereby exacerbating neuroinflammation after stroke. Therefore, A-FABP can be used as a potential therapeutic target for improving metabolic diseases and cardiovascular and cerebrovascular complications caused by metabolic diseases.
  • A-FABP inhibitors including nicotinic acid, arylquinoline, bicyclic pyridine, urea, derivatives of aromatic compounds and other novel heterocyclic compounds, Some of these inhibitors have been proven to be effective in treating related diseases such as atherosclerosis and diabetes in animal experiments.
  • Several potent small molecules have been identified as A-FABP inhibitors, such as BMS309403 and HTS01037, etc.
  • BMS309403 has been systematically studied in in vitro and in vivo disease models. Although the inhibitory effect of BMS309403 on A-FABP has been well verified in related mouse disease models, further clinical trials have not been carried out due to cardiotoxicity , so there is no therapeutic drug targeting A-FABP in clinical research.
  • levofloxacin screened levofloxacin (Levofloxacin) from the FDA drug library (about 1,500 species) by molecular docking method, and performed biochemical detection to verify the inhibitory activity of levofloxacin on A-FABP.
  • Machine learning is a multi-field interdisciplinary subject, including probability theory, statistics and other disciplines.
  • the Naive Bayesian model is a classic classification model, which only needs to estimate the necessary parameters based on a small amount of training data, and has a good performance. classification learning ability.
  • the object of the present invention is to provide an A-FABP protein inhibitor and its application.
  • Cobimetinib is an oral small molecule mitogen-activated extracellular signal-regulated kinase (mitogen-activated extracellular signal-regulated kinase, MEK) inhibitor, approved by the FDA on November 10, 2015, for In combination with the BRAFV600 inhibitor Vemurafenib in the treatment of unresectable or metastatic melanoma with BRAFV600E or BRAFV600K-positive mutations.
  • the approved dosage form is tablet, the specification is 20mg.
  • the first aspect of the present invention provides the application of cobimetinib as an A-FABP protein inhibitor.
  • the second aspect of the present invention provides an A-FABP protein inhibitor, the active ingredient of which is cobimetinib.
  • the third aspect of the present invention provides the application of cobimetinib in the preparation of drugs for the prevention and/or treatment of diseases with A-FABP as the therapeutic target.
  • the disease with A-FABP as the therapeutic target is a metabolic disease or cardiovascular and cerebrovascular complications caused by a metabolic disease.
  • the metabolic disease is selected from obesity, type 2 diabetes, lipid metabolism disorder, nonalcoholic steatohepatitis, atherosclerosis, metabolic syndrome, hyperglycemia, insulin resistance, dyslipidemia, hyperlipidemia, hyperglycerol One of triglycerides, hypercholesterolemia and fatty liver;
  • the cardiovascular and cerebrovascular complications caused by the metabolic disease are selected from one of stroke, atherosclerosis and myocardial infarction.
  • the fourth aspect of the present invention provides a pharmaceutical composition for preventing and/or treating diseases with A-FABP as the therapeutic target, the active ingredient of which includes cobimetinib.
  • the disease with A-FABP as the therapeutic target is a metabolic disease or cardiovascular and cerebrovascular complications caused by a metabolic disease.
  • the metabolic disease is selected from obesity, type 2 diabetes, lipid metabolism disorder, nonalcoholic steatohepatitis, atherosclerosis, metabolic syndrome, hyperglycemia, insulin resistance, dyslipidemia, hyperlipidemia, hyperglycerol One of triglycerides, hypercholesterolemia and fatty liver;
  • the cardiovascular and cerebrovascular complications caused by the metabolic disease are selected from one of stroke, atherosclerosis and myocardial infarction.
  • the present invention screens out a new A-FABP inhibitor cobitinib ( Cobimetinib), and the inhibitory effect of the candidate compound on the biological activity of A-FABP was verified by cell experiments.
  • the present invention develops its new application on the basis of existing drugs, which can save a large amount of initial research and development investment, and at the same time greatly shorten the cycle of drug research and development, and solve the problem that the existing small molecule A-FABP protein inhibitors have many side effects and cannot be further clinically tested.
  • the present invention uses the clinically marketed drug cobimetinib to target and inhibit the A-FABP protein, and inhibit the pro-inflammatory biological activity of the A-FABP protein by inhibiting the phosphorylation of the JNK/c-Jun signaling pathway.
  • the invention is suitable for pre-clinical and clinical research with A-FABP protein as the therapeutic target. The research results will provide new ideas for the development of A-FABP inhibitors and provide candidate therapeutic drugs for various metabolic diseases.
  • Figure 1 shows the construction of a virtual screening model for A-FABP using a ligand-based naive Bayesian classification model and a structure-based molecular docking method for the A-FABP target.
  • Figure 2 is a visual representation of active and inactive compounds based on A-FABP inhibition, generated using t-distributed stochastic neighbor embedding (t-SNE) based on Morgan fingerprints (position 4096).
  • t-SNE stochastic neighbor embedding
  • Fig. 3 is the structural formula (A) of the compound obtained by screening, the three-dimensional diagram (B) of the binding mode of the small protein molecule and the two-dimensional diagram (C) of the binding mode of the small protein molecule.
  • Figure 4 shows the inhibitory effect of candidate compounds on the phosphorylation of JNK/c-Jun signaling pathway activated by A-FABP.
  • Figure 5 shows the inhibition of cobitinib on the phosphorylation of JNK/c-Jun signaling pathway activated by A-FABP.
  • Figure 6 shows the toxic effects of candidate compounds on cells.
  • Example 1 Screen out A-FABP inhibitors from the FDA drug library
  • a ligand-based naive Bayesian classification model and a structure-based molecular docking method were used to construct a virtual screening model for A-FABP ( Figure 1).
  • Morgan Fingerprints Morgan Fingerprints
  • RDKit 2019.03.1 of the Python language.
  • A-FABP small-molecule inhibitors and decoys are marked as "1" and "0", respectively, and then fed into a t-distributed stochastic neighbor embedding (t-SNE) algorithm to investigate the diversity and Whether its spatial distribution meets the modeling requirements of subsequent machine learning models.
  • t-SNE stochastic neighbor embedding
  • the molecular docking process in the present invention is carried out in DS 2016 software. Before molecular docking, the A-FABP protein crystal was pretreated to remove water molecules and ligand molecules in the crystal complex, and to protonate the protein structure by hydrogenation. Use the LibDock and CDOCKER docking methods in the DS software to score the docking of the A-FABP protein crystal and the compounds in the FDA database, and evaluate the docking according to the root-mean-square deviation (RMSD) value between the initial conformations reliability of the method.
  • RMSD root-mean-square deviation
  • the present invention has carried out Pearson correlation analysis in constructing machine learning classification model to identify the descriptor highly correlated with activity: first, eliminated the descriptor (descriptor that does not have the diversity table descriptor) that the value of more than 50% occurs in high frequency ; secondly, descriptors with correlation coefficient activities less than 0.1 were excluded. If the absolute value of the correlation coefficient between two descriptors is greater than 0.9, the descriptor with lower correlation coefficient and activity is removed. Finally, the remaining 31 molecular descriptors were further optimized using stepwise linear regression method, and the naive Bayesian classification model was used for machine learning.
  • the learning process generated a large number of Boolean features (Boolean features) through the input descriptors, and used the Lapp Laplacian-adjusted probability estimates, the weights computed for each feature are summed to provide probability estimates for constructing classification models that are good predictors of compound activity. Therefore, a virtual screening of the ingredients in the FDA-approved drug library was performed based on the naive Bayesian classification model, and a total of 369 compounds were predicted to have inhibitory activity against the A-FABP protein. A total of 369 compounds were ranked by the Bayesian score EstPGood (0 ⁇ EstPGood ⁇ 1) (see Table 2).
  • Cobimetinib currently approved for the treatment of melanoma
  • larotrectinib currently approved for the treatment of solid tumors
  • pantoprazole Pantoprazole
  • Determination of the treatment of type 2 diabetes Compound structural formula, protein small molecule binding method The three-dimensional map and the two-dimensional map of the binding mode of small protein molecules are shown in Figure 3).
  • the A-FABP protein of mouse and human is all 132 amino acids, and homology is 91.7%, and several key amino acid sites (Arg106, Arg126, Tyrl128) of its ligand binding are the same in the amino acid sequence, therefore, candidate compound It can be verified by inhibiting the mouse A-FABP protein.
  • RAW 264.7 cells (mouse mononuclear macrophage cell line) were cultured in high-glucose DMEM with 10% fetal bovine serum (FBS, Gibco, USA). The cells were divided into three groups: (1) blank control group; (2) A-FABP protein (1 ⁇ g/ml) treatment group; (3) A-FABP protein (1 ⁇ g/ml) + candidate compound treatment group.
  • Candidate compounds were diluted to two concentrations (10 ⁇ M, 100 ⁇ M). In a 37°C, 5% CO2 incubator, the candidate compound was first incubated with the A-FABP protein for 30 minutes, and then added to the cells for 30 minutes.
  • Brewer thioglycollate medium (BD, Lot5243569) in 1000ml of distilled water, boil the solution until completely dissolved, autoclave at 121°C for 15min, prepare 3.8% Brewer thioglycolate medium, and store at room temperature in the dark.
  • RIPA tissue/cell lysate (Solarbio, Cat#R0020) to extract the total protein of the cells respectively, and do the following processing: first, the protein samples are separated by SDS-polyacrylamide gel electrophoresis and transferred to PVDF membrane; then, respectively, with Phospho -SAPK/JNK(Thr183/Tyr185)(81E11)Rabbit mAb(CST,#4668), SAPK/JNK Antibody(CST,#9252) and Phospho-c-Jun-S63Rabbit mAb(ABclonal, AP0105), JUN Rabbit pAb( ABclonal, A16905) and ⁇ -Actin (8H10D10) Mouse mAb (CST, #3700) were incubated overnight at 4°C; then corresponding to Anti-rabbit IgG, HRP-linked Antibody (CST, #7074) labeled with horseradish peroxidase Incubate with Anti-mouse IgG, HRP
  • the concentration gradient of cobitinib was further set to (1 ⁇ M, 10 ⁇ M, 30 ⁇ M, 100 ⁇ M), and the same method as above was used to detect the phosphorylation of JNK/c-Jun signaling pathway in RAW 264.7 cells.
  • Cobitinib (10 ⁇ M, 30 ⁇ M, 100 ⁇ M) had an inhibitory effect on A-FABP-activated JNK/c-Jun phosphorylation (as shown in Figure 5).
  • cobimetinib can be used as a potential A-FABP inhibitor.
  • Embodiment 3 the detection of candidate compound to cytotoxicity
  • the Cell Counting Kit-8 kit (Bioss, BA00208) was used to detect cytotoxicity, and the RAW264.6 cells were cultured according to the above requirements, and the experimental groups were set up: (1) blank control group (medium + CCK8 reagent, no cells) ( 2) Reagent control group (cell + medium + CCK8 reagent) (3) Solvent control group (DMSO 100 ⁇ M) (cell + medium + DMSO + CCK8 reagent) (4) A-FABP protein (1 ⁇ g/ml) treatment group ( Cell + medium + A-FBP4 protein + CCK8 reagent) (5) A-FABP protein (1 ⁇ g/ml) + candidate compound treatment group (cell + medium + A-FBP4 protein + candidate compound + CCK8 reagent), the candidate Compounds were diluted to two concentrations (10 ⁇ M, 100 ⁇ M).
  • the candidate compound was first incubated with the A-FABP protein for 30 minutes, and then added to the cells for 30 minutes. Then add CCK8 reagent and treat at 37° C., 5% CO 2 for 2 h. Finally, the absorbance (OD) at 450 nm was measured using a microplate reader.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Diabetes (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Software Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Endocrinology (AREA)

Abstract

公开了代谢性疾病及其心脑血管并发症技术领域的一种A-FABP蛋白抑制剂及其应用。公开了一种A-FABP蛋白抑制剂,其活性成分为考比替尼。应用临床上市药物考比替尼进行靶向抑制A-FABP蛋白,通过抑制JNK/c-Jun信号通路磷酸化,抑制A-FABP蛋白促炎生物学活性。在现有药物的基础上开发其新用途能够节省大量前期研发投入,同时大大缩短药物研发的周期,研究结果为多种代谢性疾病提供候选治疗药物。

Description

一种A-FABP蛋白抑制剂及其应用 技术领域
本发明属于代谢性疾病及其心脑血管并发症技术领域,具体涉及一种A-FABP蛋白抑制剂及其应用。
背景技术
脂肪细胞型脂肪酸结合蛋白(adipocyte-type fatty acid binding protein,A-FABP)是载脂蛋白家族的成员之一,分子量为14.6KD,主要在成熟脂肪细胞和巨噬细胞中表达。A-FABP蛋白主要功能是作为游离脂肪酸分子的载体,在脂肪细胞中调节脂肪的储存和分解;在巨噬细胞中调节脂质的累积和促进多种炎性因子的表达,包括MCP-1、TNF-α、IL-6、IL-1β等。A-FABP蛋白可分泌到细胞外和血液中,促进炎症反应,同时与多种代谢疾病的发生发展密切相关,如肥胖、糖尿病、脂代谢紊乱、非酒精性脂肪肝炎、动脉粥样硬化等。而在动物实验中,进行A-FABP基因敲除的骨髓移植的小鼠已被证明可以全面改善动脉粥样硬化,并且没有代谢副作用;同时A-FABP基因突变导致A-FABP表达水平降低的小鼠,具有较低的甘油三酯水平,降低了心血管疾病的风险,并且减少肥胖引起的2型糖尿病。有关研究还阐明了A-FABP蛋白在巨噬细胞中通过JNK/c-Jun/AP-1信号轴上调多种炎症因子表达的分子机制,并证实在发生缺血性脑卒中后,血液中和脑组织中的A-FABP蛋白表达水平都上升,促进炎性因子的表达,从而加剧脑卒中后神经炎症。因此,A-FABP可作为潜在的改善代谢性疾病及代谢性疾病引起的心脑血管并发症的治疗靶点。
在过去的十几年中,已有研究报道了数百种A-FABP抑制剂,包括烟酸、芳基喹啉、双环吡啶、尿素、芳族化合物的衍生物化合物和其他新型杂环化合物,其中部分抑制剂被证实在动物实验中可有效治疗动脉粥样硬化和糖尿病等相关疾病。几种有效的小分子已被鉴定为A-FABP抑制剂,例如BMS309403和HTS01037等。但仅BMS309403在体外和体内疾病模型中进行了系统研究,虽然BMS309403对A-FABP抑制作用已经在相关小鼠疾病模型中得到了很好的验证,但因存在心脏毒性而未能开展进一步临床试验,所以目前尚未有针对A-FABP这一靶点的治疗药物进入临床研究。
在近几年中,研究者们聚焦于天然来源和美国食品药品监督管理局(Food and Drug Administration,FDA)批准的药物,用于开发A-FABP抑制剂。传统的药物设计方法耗时久、成本高,这时研究者们将目光聚焦在计算机技术方面,从而使机器学习(Machine Learning,ML)和分子对接(Molecular Docking)等计算机辅助药物设计技术在药物设计上的应用发展 迅速。分子对接是一种常用的计算机辅助药物研究技术,是通过受体的特征以及受体和药物分子之间的相互作用方式来进行药物设计的方法,具有较高的准确性。例如,王等人2014年通过分子对接的方法从FDA药物库(大约1500种)中筛选出左氧氟沙星(Levofloxacin),并进行生化检测验证了左氧氟沙星对A-FABP的抑制活性。而机器学习是一门多领域交叉学科,包含概率论、统计学等多门学科,朴素贝叶斯模型则是经典的分类模型,只需要根据少量的训练数据估计出必要的参数,具有较好的分类学习能力。
发明内容
为了解决现有技术中的不足,本发明的目的是提供一种A-FABP蛋白抑制剂及其应用。
考比替尼(Cobimetinib)是一款口服小分子丝裂原活化的细胞外信号调节激酶(mitogen-activated extracellular signal-regulated kinase,MEK)抑制剂,2015年11月10日获FDA批准,用于与BRAFV600抑制剂维莫非尼(Vemurafenib)联合治疗BRAFV600E或BRAFV600K阳性突变的无法手术切除或转移性黑色素瘤。批准剂型为片剂,规格20mg。尽管考比替尼的抗黑色素瘤效果得到多方面的印证,但其在制备A-FABP蛋白抑制剂的药物中的作用尚未见报道。考比替尼的化学结构式如下式所示:
Figure PCTCN2021137800-appb-000001
本发明第一方面提供考比替尼作为A-FABP蛋白抑制剂的应用。
本发明第二方面提供一种A-FABP蛋白抑制剂,其活性成分为考比替尼。
本发明第三方面提供考比替尼在制备预防和/或治疗以A-FABP为治疗靶点的疾病的药物中的应用。
本发明的上述技术方案中,所述以A-FABP为治疗靶点的疾病为代谢性疾病或代谢性疾病引起的心脑血管并发症。
进一步地,所述代谢性疾病选自肥胖、2型糖尿病、脂代谢紊乱、非酒精性脂肪肝炎、 动脉粥样硬化、代谢综合征、高血糖症、胰岛素抵抗、血脂失调、高血脂、高甘油三酯、高胆固醇血症和脂肪肝中的一种;
所述代谢性疾病引起的心脑血管并发症选自脑卒中、动脉粥样硬化和心肌梗死中的一种。
本发明第四方面提供一种预防和/或治疗以A-FABP为治疗靶点的疾病的药物组合物,其活性成分包括考比替尼。
本发明的上述技术方案中,所述以A-FABP为治疗靶点的疾病为代谢性疾病或代谢性疾病引起的心脑血管并发症。
进一步地,所述代谢性疾病选自肥胖、2型糖尿病、脂代谢紊乱、非酒精性脂肪肝炎、动脉粥样硬化、代谢综合征、高血糖症、胰岛素抵抗、血脂失调、高血脂、高甘油三酯、高胆固醇血症和脂肪肝中的一种;
所述代谢性疾病引起的心脑血管并发症选自脑卒中、动脉粥样硬化和心肌梗死中的一种。
本发明的有益效果为:
1、本发明通过基于朴素贝叶斯分类模型的机器学习方法并结合分子对接,从最新的FDA上市药物库(大约2600种)中筛选出了一个新的A-FABP抑制剂考比替尼(Cobimetinib),并通过细胞实验验证了候选化合物对A-FABP生物活性的抑制作用。本发明在现有药物的基础上开发其新用途能够节省大量前期研发投入,同时大大缩短药物研发的周期,解决现有小分子A-FABP蛋白抑制剂副作用多,无法进一步临床试验的问题。
2、本发明应用临床上市药物考比替尼进行靶向抑制A-FABP蛋白,通过抑制JNK/c-Jun信号通路磷酸化,抑制A-FABP蛋白促炎生物学活性。本发明适用于以A-FABP蛋白为治疗靶点的临床前和临床研究。研究结果将为开发A-FABP抑制剂提供新思路,并为多种代谢性疾病提供候选治疗药物。
附图说明
图1为针对A-FABP靶点,运用基于配体的朴素贝叶斯分类模型和基于结构的分子对接方法,构建A-FABP的虚拟筛选模型。
图2为活性化合物和非活性化合物基于A-FABP抑制的可视化表示,使用基于Morgan指纹(4096位)的t分布随机邻居嵌入(t-SNE)生成。
图3为筛选得到的化合物结构式(A)、蛋白小分子结合方式的三维图(B)与蛋白小分子结合方式的二维图(C)。
图4为候选化合物对A-FABP激活JNK/c-Jun信号通路磷酸化的抑制作用。
图5为考比替尼对A-FABP激活JNK/c-Jun信号通路磷酸化的抑制。
图6为候选化合物对细胞的毒性作用。
具体实施方式
为了更清楚地理解本发明,现参照下列实施例及附图进一步描述本发明。实施例仅用于解释而不以任何方式限制本发明。实施例中,各原始试剂材料均可商购获得,未注明具体条件的实验方法为所属领域熟知的常规方法和常规条件,或按照仪器制造商所建议的条件。
实施例1:从FDA药物库筛选出A-FABP抑制剂
针对A-FABP这一靶点,运用基于配体的朴素贝叶斯分类模型和基于结构的分子对接方法,构建A-FABP的虚拟筛选模型(图1)。
在DrugBank数据库(https://go.drugbank.com)中收集FDA批准上市药物,总共2595种化合物,供下一步研究。从ChEMBL数据库以及现有文献中收集A-FABP小分子抑制剂定义为具有活性的化合物。从ChEMBL数据库收集的化合物未与FDA数据集中的化合物重叠。相应的诱饵(定义为非活性)是由DUD-E在线数据库(http://dude.docking.org/)自动生成的。如表1所示,有活性化合物数据集和非活性化合物数据集以1:4的比例随机分配到训练集和测试集中。在本发明中,我们通过Python语言的RDKit软件包(RDKit 2019.03.1)使用摩根分子指纹(Morgan Fingerprints)将单个化合物结构式以高维度二进制文本表示(4096bits,radius=2),在所有数据集中,A-FABP小分子抑制剂和诱饵分别标记为“1”和“0”,然后被馈送到t分布的随机邻居嵌入(t-SNE)算法,考察用于机器学习的数据集合化合物的多样性及其空间分布情况是否满足后续机器学习模型的建模要求。
表1构建的数据集
Figure PCTCN2021137800-appb-000002
进一步,选取Discovery Studio 2016(DS 2016)和MOE 2014.9软件共542个分子描述符作为描述符集作于构建模型。每个化合物由上述软件的描述符组合所表征。
从PDB(Protein Data Bank)数据库中下载人源A-FABP蛋白晶体结构(2NNQ)。本发明中的分子对接过程在DS 2016软件中进行。在分子对接之前,对A-FABP蛋白晶体进行去除水分子和晶体复合物中的配体分子、加氢使蛋白结构质子化的预处理。利用DS软件中的 LibDock、CDOCKER对接方法对A-FABP蛋白晶体与FDA数据库中化合物进行对接打分,并根据初始构象之间的均方根差值(Root-mean-square deviation,RMSD)值评价对接方法的可靠性。
本发明在构建机器学习分类模型中进行了皮尔逊相关分析以识别与活动高度相关的描述符:首先,消除了高频出现超过50%的值的描述符(去除不具备多样性表描述符);其次,排除了相关系数活度小于0.1的描述符。如果两个描述符之间的相关系数的绝对值大于0.9,则删除具有较低相关系数且具有活动性的描述符。最后剩余的31个分子描述符利用逐步线性回归方法进一步地优化,并采用朴素贝叶斯分类模型进行机器学习,学习过程通过输入描述符生成了大量的布尔特征(Boolean features),并使用拉普拉斯调整(Laplacian-adjusted)后的概率估计,为每个特征计算的权重相加以提供概率估计,从而构建良好的预测化合物活性的分类模型。因此,基于朴素贝叶斯分类模型对FDA批准药物库中的成分进行了虚拟筛选,预计共有369种化合物对A-FABP蛋白具有抑制活性。通过贝叶斯评分EstPGood(0≤EstPGood≤1)对总共369种化合物进行了排名(见表2)。
对上述机器学习筛选到的小分子进行分子对接,选择高分辨率蛋白编号为1tou的蛋白作为对接受体蛋白。以BMS309403为参照,以打分docking score(Kcal/mol)和相互作用模式判断最终候选化合物(如表3所示)。通过蛋白-配体相互作用模式分析,筛选出打分最高的四个化合物:考比替尼(Cobimetinib,目前批准用于治疗黑色素瘤)、拉罗替尼(Larotrectinib,目前批准用于治疗实体瘤)、泮托拉唑(Pantoprazole,目前批准用于治疗胃溃疡、十二指肠溃疡等)、维达列汀(Vildagliptin,目前批准用于治疗2型糖尿病)(化合物结构式、蛋白小分子结合方式的三维图与蛋白小分子结合方式的二维图如图3所示)。
表2贝叶斯分类模型评分结果(选取排名前30的化合物)
Figure PCTCN2021137800-appb-000003
Figure PCTCN2021137800-appb-000004
表3分子对接docking score
Figure PCTCN2021137800-appb-000005
实施例2:基于细胞的候选化合物对A-FABP抑制活性的测定
小鼠和人的A-FABP蛋白都为132个氨基酸,同源性为91.7%,且氨基酸序列中与其配体结合的几个关键氨基酸位点一样(Arg106、Arg126、Tyrl128),因此,候选化合物可通过对小鼠A-FABP蛋白抑制作用进行验证。
将RAW 264.7细胞(小鼠单核巨噬细胞系)使用10%胎牛血清(FBS,美国Gibco)的高糖DMEM培养。将细胞分为三组:(1)空白对照组;(2)A-FABP蛋白(1μg/ml)处理组;(3)A-FABP蛋白(1μg/ml)+候选化合物处理组。将候选化合物稀释至两个浓度(10μM、100μM)。在37℃,5%CO2培养箱中,候选化合物先与A-FABP蛋白共孵育30min后再加入细胞中处理30min。
取38g Brewer硫乙醇酸盐培养基(BD,Lot5243569)于1000ml蒸馏水,将溶液煮沸至完全溶解,121℃高压灭菌15min,配制成3.8%Brewer硫乙醇酸盐培养基,室温、避光保存。吸取1ml3.8%Brewer硫乙醇酸盐培养基注射至小鼠腹腔,等待3天;颈椎脱臼法处死小鼠,将5ml预冷D-PBS注射至小鼠腹腔;在腹腔上轻轻按摩,吸出液体至15ml离心管中,400×g离心10min,整个过程保持低温,弃上清,即可获得较大纯度的原代巨噬细胞,使用10%胎牛血清(FBS,美国Gibco)的高糖DMEM重悬和培养。在37℃,5%CO2培养箱中培养24h后换液继续培养24h,按上述细胞分组和处理方式同样对原代巨噬细胞进行分组和处理细胞。
使用RIPA组织/细胞裂解液(Solarbio,Cat#R0020)分别提取细胞总蛋白,并做以下处理:首先,蛋白样品通过SDS-聚丙烯酰胺胶电泳分离并转移至PVDF膜上;然后,分别用Phospho-SAPK/JNK(Thr183/Tyr185)(81E11)Rabbit mAb(CST,#4668)、SAPK/JNK Antibody(CST,#9252)和Phospho-c-Jun-S63Rabbit mAb(ABclonal,AP0105)、JUN Rabbit pAb(ABclonal,A16905)和β-Actin(8H10D10)Mouse mAb(CST,#3700)4℃过夜孵育;再对应使用辣根过氧化物酶标记的Anti-rabbit IgG,HRP-linked Antibody(CST,#7074)和Anti-mouse IgG,HRP-linked Antibody(CST,#7076)室温孵育1h;最后,使用ECL plus结合放射自显影的方式获取蛋白印记的图片。
结果显示:与空白对照组相比,A-FABP蛋白处理组增强了JNK/c-Jun的磷酸化,而从上述四种候选化合物中可发现考比替尼有明显抑制A-FABP激活JNK/c-Jun磷酸化的作用,而拉罗替尼、泮托拉唑、维达列汀对抑制A-FABP活性作用并不显著(如图4)。
进一步设置考比替尼浓度梯度分别为(1μM、10μM、30μM、100μM),并采取上述同样方法检测RAW 264.7细胞内JNK/c-Jun信号通路磷酸化的变化。综合考虑发现考比替尼(10μM、30μM、100μM)对A-FABP激活JNK/c-Jun磷酸化具有抑制作用(如图5)。综上,考比替尼可作为潜在的A-FABP抑制剂。
实施例3:候选化合物对细胞毒性的检测
使用Cell Counting Kit-8试剂盒(Bioss,BA00208)检测细胞毒性,将RAW264.6细胞培养按上述要求进行培养,设立实验分组:(1)空白对照组(培养基+CCK8试剂,无细胞)(2)试剂对照组(细胞+培养基+CCK8试剂)(3)溶剂对照组(DMSO 100μM)(细胞+培养基+DMSO+CCK8试剂)(4)A-FABP蛋白(1μg/ml)处理组(细胞+培养基+A-FBP4蛋白+CCK8试剂)(5)A-FABP蛋白(1μg/ml)+候选化合物处理组(细胞+培养基+A-FBP4蛋白+候选化合物+CCK8试剂),将候选化合物稀释至两个浓度(10μM、100μM)。在37℃,5%CO2 培养箱中,候选化合物先与A-FABP蛋白共孵育30min后,加入细胞中处理30min。再加入CCK8试剂在37℃,5%CO2条件下处理2h。最后使用酶标仪测定450nm处的吸光度(OD)。
结果显示:比较空白对照组、试剂对照组和溶剂对照组的吸光度,发现溶剂DMSO(100μM)对细胞无明显的毒性作用;比较溶剂对照组和A-FABP蛋白+候选化合物处理组的吸光度(OD),发现除考比替尼之外其他候选化合物低/高浓度对细胞都无明显的毒性作用,而考比替尼的低浓度(10μM)对细胞无明显毒性作用,高浓度(100μM)对细胞有很强的毒性作用。同时对考比替尼浓度梯度分别为(1μM、10μM、30μM、100μM)采取上述同样方法检测对RAW264.7细胞的毒性作用,发现考比替尼除高浓度(100μM)对细胞有很强的毒性作用以外,其他浓度对细胞无明显毒性作用(图6)。这个结果表明在图4和图5中考比替尼对JNK/c-Jun磷酸化的抑制作用并不是因为细胞毒性作用。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (8)

  1. 考比替尼作为A-FABP蛋白抑制剂的应用。
  2. 一种A-FABP蛋白抑制剂,其特征在于,其活性成分为考比替尼。
  3. 考比替尼在制备预防和/或治疗以A-FABP为治疗靶点的疾病的药物中的应用。
  4. 根据权利要求3所述的应用,其特征在于,所述以A-FABP为治疗靶点的疾病为代谢性疾病或代谢性疾病引起的心脑血管并发症。
  5. 根据权利要求4所述的应用,其特征在于,所述代谢性疾病选自肥胖、2型糖尿病、脂代谢紊乱、非酒精性脂肪肝炎、动脉粥样硬化、代谢综合征、高血糖症、胰岛素抵抗、血脂失调、高血脂、高甘油三酯、高胆固醇血症和脂肪肝中的一种;
    所述代谢性疾病引起的心脑血管并发症选自脑卒中、动脉粥样硬化和心肌梗死中的一种。
  6. 一种预防和/或治疗以A-FABP为治疗靶点的疾病的药物组合物,其特征在于,其活性成分包括考比替尼。
  7. 根据权利要求6所述的药物组合物,其特征在于,所述以A-FABP为治疗靶点的疾病为代谢性疾病或代谢性疾病引起的心脑血管并发症。
  8. 根据权利要求7所述的药物组合物,其特征在于,所述代谢性疾病选自肥胖、2型糖尿病、脂代谢紊乱、非酒精性脂肪肝炎、动脉粥样硬化、代谢综合征、高血糖症、胰岛素抵抗、血脂失调、高血脂、高甘油三酯、高胆固醇血症和脂肪肝中的一种;
    所述代谢性疾病引起的心脑血管并发症选自脑卒中、动脉粥样硬化和心肌梗死中的一种。
PCT/CN2021/137800 2021-11-15 2021-12-14 一种a-fabp蛋白抑制剂及其应用 WO2023082397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111349737.0A CN114081882B (zh) 2021-11-15 2021-11-15 一种a-fabp蛋白抑制剂及其应用
CN202111349737.0 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023082397A1 true WO2023082397A1 (zh) 2023-05-19

Family

ID=80300703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137800 WO2023082397A1 (zh) 2021-11-15 2021-12-14 一种a-fabp蛋白抑制剂及其应用

Country Status (2)

Country Link
CN (1) CN114081882B (zh)
WO (1) WO2023082397A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000347A1 (zh) * 2022-06-30 2024-01-04 中国科学院深圳先进技术研究院 一种a-fabp单克隆抗体2b8及其制备方法和用途
CN118047862A (zh) * 2022-11-17 2024-05-17 港大科桥有限公司 一种a-fabp中和单克隆抗体及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006047759A2 (en) * 2004-10-29 2006-05-04 Odyssey Thera, Inc. Kinase inhibitors for the treatment of diabetes and obesity
US20160113937A1 (en) * 2014-10-25 2016-04-28 The Chinese University Of Hong Kong Discovery of fda-approved drugs as inhibitors of fatty acid binding protein 4 using molecular docking screening
CN110151763A (zh) * 2019-06-26 2019-08-23 深圳市第三人民医院 考比替尼作为制备治疗结核病药物中的应用
CN111826431A (zh) * 2019-04-16 2020-10-27 中国人民解放军军事科学院军事医学研究院 诊断和治疗心血管疾病的生物标志物、靶点及其应用
WO2020225147A1 (en) * 2019-05-03 2020-11-12 Singapore Health Services Pte. Ltd. Treatment and prevention of metabolic diseases

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061749A2 (en) * 2009-11-19 2011-05-26 Ganga Raju Gokaraju Agents derived from holoptelea integrifolia and their compositions for the control of metabolic syndrome and associated diseases

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006047759A2 (en) * 2004-10-29 2006-05-04 Odyssey Thera, Inc. Kinase inhibitors for the treatment of diabetes and obesity
US20160113937A1 (en) * 2014-10-25 2016-04-28 The Chinese University Of Hong Kong Discovery of fda-approved drugs as inhibitors of fatty acid binding protein 4 using molecular docking screening
CN111826431A (zh) * 2019-04-16 2020-10-27 中国人民解放军军事科学院军事医学研究院 诊断和治疗心血管疾病的生物标志物、靶点及其应用
WO2020225147A1 (en) * 2019-05-03 2020-11-12 Singapore Health Services Pte. Ltd. Treatment and prevention of metabolic diseases
CN110151763A (zh) * 2019-06-26 2019-08-23 深圳市第三人民医院 考比替尼作为制备治疗结核病药物中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, YAN ET AL.: "Using molecular docking screening for identifying hyperoside as an inhibitor of fatty acid binding protein 4 from a natural product database", JOURNAL OF FUNCTIONAL FOODS, vol. 20, 17 November 2015 (2015-11-17), pages 159 - 170, XP029360126, DOI: 10.1016/j.jff.2015.10.031 *
梁停停 等 (LIANG, TINGTING ET AL.): "小分子ERK抑制剂的研究进展 (Research Progress of ERK Small Molecule Inhibitors)", 中国药科大学学报 (JOURNAL OF CHINA PHARMACEUTICAL UNIVERSITY), vol. 51, no. 3, 31 December 2020 (2020-12-31), pages 260 - 269 *

Also Published As

Publication number Publication date
CN114081882A (zh) 2022-02-25
CN114081882B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
Wang et al. Acupuncture reduces apoptosis of granulosa cells in rats with premature ovarian failure via restoring the PI3K/Akt signaling pathway
Heckler et al. Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms
Makarov et al. Development of macozinone for TB treatment: an update
WO2023082397A1 (zh) 一种a-fabp蛋白抑制剂及其应用
Yum et al. Minoxidil induction of VEGF is mediated by inhibition of HIF-prolyl hydroxylase
Beck et al. Structural basis for regulation of human glucokinase by glucokinase regulatory protein
Mei et al. Radiosensitization by hyperthermia: The effects of temperature, sequence, and time interval in cervical cell lines
Gao et al. Chlorogenic acid targeting of the AKT PH domain activates AKT/GSK3β/FOXO1 signaling and improves glucose metabolism
Li et al. Neuropeptide trefoil factor 3 reverses depressive-like behaviors by activation of BDNF-ERK-CREB signaling in olfactory bulbectomized rats
Rondanelli et al. Berberine phospholipid is an effective insulin sensitizer and improves metabolic and hormonal disorders in women with polycystic ovary syndrome: a one-group pretest–post-test explanatory study
Kang et al. Intermedin in paraventricular nucleus attenuates Ang II-induced sympathoexcitation through the inhibition of NADPH oxidase-dependent ROS generation in obese rats with hypertension
Coppi et al. PGC1s and beyond: Disentangling the complex regulation of mitochondrial and cellular metabolism
Ceresa Spatial regulation of epidermal growth factor receptor signaling by endocytosis
Ji et al. Rutacecarpine inhibits angiogenesis by targeting the VEGFR2 and VEGFR2-mediated Akt/mTOR/p70s6k signaling pathway
Giraud et al. Recent advances in pain management: relevant protein kinases and their inhibitors
Abood et al. Melatonin potentiates the therapeutic effects of metformin in women with metabolic syndrome
Gugel et al. Contribution of mTOR and PTEN to radioresistance in sporadic and NF2-associated vestibular schwannomas: a microarray and pathway analysis
Wu et al. Effects of melatonin on dairy herd improvement (DHI) of Holstein cow with high SCS
Wu et al. Mirtazapine reduces adipocyte hypertrophy and increases glucose transporter expression in obese mice
Mastnak et al. Prolactin in polycystic ovary syndrome: metabolic effects and therapeutic prospects
Koszła et al. Current approaches and tools used in drug development against parkinson’s disease
Lin et al. Role of HMGB1/TLR4 axis in ischemia/reperfusion-impaired extracellular glutamate clearance in primary astrocytes
Woldańska-Okońska et al. Chronic-exposure low-frequency magnetic fields (magnetotherapy and magnetic stimulation) influence serum serotonin concentrations in patients with low back pain—clinical observation study
Zawirska-Wojtasiak et al. β-Carbolines in experiments on laboratory animals
Sukhanov et al. Inhibition of PDE10A in a new rat model of severe dopamine depletion suggests new approach to non-dopamine Parkinson’s disease therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963835

Country of ref document: EP

Kind code of ref document: A1