WO2023082383A1 - 一种检测盐酸四环素的 TiO2 基分子印迹型光电化学传感器及其制备方法 - Google Patents

一种检测盐酸四环素的 TiO2 基分子印迹型光电化学传感器及其制备方法 Download PDF

Info

Publication number
WO2023082383A1
WO2023082383A1 PCT/CN2021/135198 CN2021135198W WO2023082383A1 WO 2023082383 A1 WO2023082383 A1 WO 2023082383A1 CN 2021135198 W CN2021135198 W CN 2021135198W WO 2023082383 A1 WO2023082383 A1 WO 2023082383A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio2
tio
preparation
preparing
molecularly imprinted
Prior art date
Application number
PCT/CN2021/135198
Other languages
English (en)
French (fr)
Inventor
张敏
彭科富
程发良
谢世磊
满足
柳鹏
谢东
王寿山
Original Assignee
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞理工学院 filed Critical 东莞理工学院
Publication of WO2023082383A1 publication Critical patent/WO2023082383A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Definitions

  • the invention relates to the technical field of electrode materials, in particular to a method for preparing a molecularly imprinted titanium-based anode using tetracycline hydrochloride as a template molecule.
  • Tetracycline hydrochloride is a broad-spectrum antibiotic, which has inhibitory effect on most Gram-positive and negative bacteria, high concentration has bactericidal effect, and can inhibit Rickettsia, trachoma virus, etc., and has a better effect on Gram-negative bacilli. Widely used in the pharmaceutical industry, animal husbandry and aquaculture. However, only part of it will be absorbed and metabolized by the passive body, and the rest will still be excreted with excrement in active form, causing harm to the environment and humans, so the detection of tetracycline hydrochloride is very important.
  • a TiO2-based molecularly imprinted photoelectrochemical sensor for detecting tetracycline hydrochloride with good selectivity and high sensitivity is provided. Also provided is a preparation method of a TiO2-based molecular imprinting photoelectrochemical sensor for detecting tetracycline hydrochloride.
  • a method for preparing a TiO2 - based molecularly imprinted photoelectrochemical sensor for detecting tetracycline hydrochloride comprising the following steps: S1, preparing TiO2 /FTO; S2, preparing Au/ TiO2 ; S3, preparing MIP/Au/ TiO2 ; S4 , preparing NIP/Au/TiO 2 ; S5 , eluting tetracycline hydrochloride molecules; S6 , performing a photocurrent test.
  • the preparation method of TiO 2 /FTO is as follows: a. Place the conductive surface of FTO upwards in acetone, deionized water, and ethanol in sequence for ultrasonication; b. Prepare A Solution; c. Put the conductive side of the FTO that has completed the ultrasonic wave downward, pour the A solution into the submerged FTO, transfer to the autoclave, keep it at 150°C for 4h, and cool it to room temperature naturally; d. The product is clamped out, washed, dried naturally, then heated to 450°C for 1 hour, and then cooled to room temperature to obtain TiO 2 /FTO.
  • a further improvement to the above technical solution is that in the above-mentioned S1, the method for preparing the A solution is: stir with 15ml of deionized water, 15ml of concentrated hydrochloric acid, and 0.5ml of tetrabutyl titanate until clear to obtain the A solution.
  • a further improvement to the above-mentioned technical solution is that, in said S2, the preparation method of Au/TiO is: insert TiO2/ FTO into the chloroauric acid solution, set the potential range in the electrochemical workstation to be -1 ⁇ 0.8V, The scanning speed is 100mV/s, and Au/TiO 2 can be obtained by continuously scanning 10 circles.
  • the preparation method of MIP/Au/ TiO2 is as follows: a. preparing the polymerization solution B; b. inserting Au/ TiO2 into the above-mentioned polymerization solution B, and electrochemically In the workstation, set the potential range to -0.4 ⁇ 1.2V, scan speed to 50mV/s, and scan continuously for 5 circles to obtain MIP/Au/TiO 2 .
  • a further improvement to the above-mentioned technical solution is that in said S4, the preparation method of NIP/Au/ TiO is as follows: a, preparing the polymerization solution C; b inserting Au/ TiO into the above-mentioned polymerization solution C, and performing Set the potential range to -0.4 ⁇ 1.2V, scan speed to 50mV/s, and scan 5 times continuously to get NIP/Au/TiO 2 .
  • a further improvement to the above-mentioned technical solution is that in the above-mentioned S5, the method for eluting the tetracycline hydrochloride molecule is: a, preparing NaOH solution; b, inserting MIP/Au/ TiO into the above-mentioned NaOH solution, and in the electrochemical workstation
  • the constant voltage potential is set to 1.3V, and the duration is 360s. Under the bias voltage of 1.3V, tetracycline hydrochloride molecules can be eluted.
  • a further improvement to the above-mentioned technical solution is that in said S6, the steps of the photocurrent test are: a, preparing a PBS solution; b, inserting MIP/Au/ TiO into the above-mentioned PBS solution, and setting a bias in the electrochemical workstation The voltage is 0V, and the conductive surface of MIP/Au/TiO 2 faces the light source, and the light source is switched on and off every 20s.
  • the working electrode is MIP/Au/TiO 2
  • the counter electrode is a platinum sheet
  • the reference electrode is a calomel electrode
  • the light source is a 100W xenon lamp.
  • a TiO2 - based molecularly imprinted photoelectrochemical sensor for detecting tetracycline hydrochloride which is prepared by the above-mentioned preparation method.
  • the invention obtains a TiO2- based molecularly imprinted photoelectrochemical sensor with good selectivity and high sensitivity.
  • the TiO2- based molecularly imprinted photoelectrochemical sensor is used to detect tetracycline hydrochloride.
  • the detection method is simple, the detection sensitivity is high, and the response speed is fast. It can be extended to the actual sample detection of tetracycline hydrochloride, and it also provides a way for the detection of other substances.
  • Figure 1 is a schematic diagram of the preparation and mechanism of the MIP/Au/TiO 2 molecularly imprinted photoelectrochemical sensor.
  • Figure 2 is the SEM image of the prepared MIP/Au/TiO 2 .
  • Figure 3 is the photocurrent response diagram of MIP/Au/TiO 2 placed in 0.1 mol/L PBS solution containing 0 ⁇ 25 ⁇ mol/L tetracycline hydrochloride.
  • Figure 4 is a linear calibration curve diagram for the detection of tetracycline hydrochloride.
  • a method for preparing a TiO2- based molecularly imprinted photoelectrochemical sensor for detecting tetracycline hydrochloride comprises the following steps.
  • a method for preparing a TiO2 - based molecularly imprinted photoelectrochemical sensor for detecting tetracycline hydrochloride characterized in that it comprises the following steps: S1, preparing TiO2 /FTO; S2, preparing Au/ TiO2 ; S3, preparing MIP/Au/ TiO 2 ; S4, preparing NIP/Au/TiO 2 ; S5, eluting tetracycline hydrochloride molecules; S6, performing a photocurrent test.
  • the preparation method of the TiO 2 /FTO is as follows: a. Using the hydrothermal method, the conductive surface of the FTO conductive glass of 15ml ⁇ 20ml is facing upward, and press 1.5ml Cut into several pieces with a size of ⁇ 2.5ml, place the cut FTO in acetone, deionized water, and ethanol in turn for 30 minutes; b. Prepare solution A: use 15ml deionized water, 15ml concentrated hydrochloric acid, and 0.5ml titanic acid Stir the tetrabutyl ester until it becomes clear to obtain solution A; c.
  • step a Put the conductive side of the FTO conductive glass that has been ultrasonicated in step a facing down, place it in a 25ml polytetrafluoroethylene lining and pour solution A into it to submerge the FTO conductive glass , then cover the inner liner and put it into a high-pressure reactor, and place it in a blast drying oven, keep it at 150 ° C for 4 hours, and then cool it to room temperature naturally; d.
  • the preparation method of the Au/TiO 2 is: using the method of electrodeposition, inserting TiO 2 /FTO into a 1 nmol/L chloroauric acid solution, and In the CHI660E electrochemical workstation, the potential range is set to -1 ⁇ 0.8V, the scan rate is 100mV/s, and Au/TiO2 can be obtained by scanning continuously for 10 cycles.
  • the preparation method of the MIP/Au/ TiO2 is as follows: a. Prepare the polymerization liquid B: add 30ml of methanol, 1.6 ⁇ L of o-aminothiophenol, 1.4mg of hydrochloric acid Tetracycline and 5mg tetrabutylammonium perchlorate to obtain the polymer solution B; b. Using electropolymerization, insert Au/TiO 2 into the above polymer solution B, and set the potential range in the CHI660E electrochemical workstation to -0.4 ⁇ 1.2 V, the scanning speed is 50mV/s, and continuous scanning is performed for 5 circles to obtain MIP/Au/TiO 2 .
  • the preparation method of the NIP/Au/TiO 2 is: a. Prepare the polymerization solution C: add 30ml of methanol, 1.6 ⁇ L of o-aminothiophenol and 5mg of tetrabutyl Based on ammonium perchlorate to obtain the polymer solution C; b. Using electropolymerization, insert Au/TiO 2 into the above polymer solution C, set the potential range to -0.4 ⁇ 1.2V in the CHI660E electrochemical workstation, and the sweep speed is 50mV/s, continuous scanning 5 circles, you can get NIP/Au/TiO 2 . NIP/Au/ TiO2 without adding tetracycline hydrochloride was used as the control group of MIP/Au/TiO2.
  • the preparation method of the eluting tetracycline hydrochloride molecule is as follows: a. preparing 20 ml of NaOH solution with a concentration of 0.2 mol/L; b. mixing MIP/Au/TiO 2 Insert it into the above NaOH solution, use the method of electrolysis, set the constant voltage potential to 1.3V in the CHI660E electrochemical workstation, and the duration is 360s. Under the bias voltage of 1.3V, the tetracycline hydrochloride molecules can be eluted.
  • the working electrode is MIP/Au/TiO 2
  • the counter electrode is a platinum sheet
  • the reference electrode is a calomel electrode
  • the light source is a 100W xenon lamp.
  • a TiO2 - based molecularly imprinted photoelectrochemical sensor for detecting tetracycline hydrochloride which is prepared by the above-mentioned preparation method.
  • Example 1 Synthesis of MIP/Au/TiO 2 .
  • the conductive surface of the FTO conductive glass that has been ultrasonicated is facing down, placed in a 25ml polytetrafluoroethylene liner and poured into the A solution to submerge the FTO conductive glass, then cover the liner and put it into the autoclave, and place it side by side. Keep it at 150°C for 4 hours in a blast drying oven, and then cool down to room temperature naturally; d.
  • Use tweezers to clamp out the hydroheated titanium oxyhydroxide/FTO, wash the surface residue with deionized water, and then scrape it with a blade Remove the excess, leave an area of 1.5ml ⁇ 1.5ml, wash, and dry naturally; e.
  • the FTO conductive glass in the crucible, cover it, and place it in a muffle furnace to raise the temperature at a rate of 5°C/min to Anneal at 450°C for 1 hour, and then cool naturally to room temperature to obtain TiO2/FTO.
  • NIP/Au/TiO 2 specifically, a. Prepare polymerization solution C: add 30ml methanol, 1.6 ⁇ L o-aminothiophenol and 5mg tetrabutylammonium perchlorate to obtain polymerization solution C; b. Polymerization method, insert Au/TiO 2 into the above-mentioned polymerization solution C, set the potential range to -0.4 ⁇ 1.2V in the CHI660E electrochemical workstation, scan at a speed of 50mV/s, and scan continuously for 5 laps to obtain NIP/Au /TiO 2 . NIP/Au/TiO 2 without adding tetracycline hydrochloride was used as the control group of MIP/Au/TiO 2 .
  • S5 eluting tetracycline hydrochloride molecules, specifically, a, preparing 20ml of NaOH solution with a concentration of 0.2mol/L; b, inserting MIP/Au/ TiO into the above NaOH solution, using the method of electrolytic degradation, electrochemically
  • the constant voltage potential is set to 1.3V in the workstation, and the duration is 360s. Under the bias voltage of 1.3V, tetracycline hydrochloride molecules can be eluted.
  • Example 2 Determination of the photocurrent response of MIP/Au/TiO 2 to tetracycline hydrochloride.

Abstract

一种检测盐酸四环素的TiO 2基分子印迹型光电化学传感器的制备方法,包括如下步骤:S1、制备TiO2/FTO;S2、制备Au/TiO2;S3、制备MIP/Au/TiO2;S4、制备NIP/Au/TiO2;S5、洗脱盐酸四环素分子;S6、进行光电流测试。一种检测盐酸四环素的TiO2基分子印迹型光电化学传感器,在检测水中痕量盐酸四环素中具有很好的选择性,响应速度快,灵敏度高。

Description

一种检测盐酸四环素的TiO2基分子印迹型光电化学传感器及其制备方法
相关申请的交叉引用。
本申请要求于2021年11月9日提交中国专利局,申请号为202111322013.7,发明名称为“一种检测盐酸四环素的TiO2基分子印迹型光电化学传感器及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电极材料技术领域,特别是涉及一种以盐酸四环素为模板分子的分子印迹型钛基阳极的制备方法。
背景技术
盐酸四环素是广谱抗生素,对多数革兰阳性与阴性菌有抑制作用,高浓度有杀菌作用,并能抑制立克次体、沙眼病毒等,对革兰阴性杆菌作用较好。广泛应用于医药行业、畜牧业和水产养殖业。然而,其中只有部分会被动物体吸收代谢,其余仍以活性形式随排泄物排出体外,对环境和人类产生危害,因此盐酸四环素的检测至关重要。
技术问题
Sangeeta Adhikari等人用Bi 2S 3和Bi 2O 2CO 3形成异质结,构建了盐酸四环素的光电检测平台,但该技术没有涉及对盐酸四环素的选择性、稳定性、重现性、真实性等性能的研究。
技术解决方案
根据本申请的各种实施例,提供一种选择性好、灵敏度高的检测盐酸四环素的TiO2基分子印迹型光电化学传感器。还提供一种检测盐酸四环素的TiO2基分子印迹型光电化学传感器的制备方法。
一种检测盐酸四环素的TiO 2基分子印迹型光电化学传感器的制备方法,包括如下步骤:S1、制备TiO 2/FTO;S2、制备Au/ TiO 2;S3、制备MIP/Au/ TiO 2;S4、制备NIP/Au/ TiO 2;S5、洗脱盐酸四环素分子;S6、进行光电流测试。
对上述技术方案的进一步改进为,在所述S1中,TiO 2/FTO的制备方法为:a、将FTO的导电面朝上依次置于丙酮、去离子水、乙醇中超声;b、配制A溶液;c、将完成超声的FTO的导电面朝下,将A溶液倒入至淹没FTO,转移到高压反应釜,在150℃下保持4h,自然冷却至室温;d、将步骤c中得到的产物夹出,洗涤,自然晾干后再升温至450℃退火1h,自然冷却至室温即可得TiO 2/FTO。
对上述技术方案的进一步改进为,在所述S1中,配制A溶液的方法为:用15ml去离子水、15ml浓盐酸、0.5ml钛酸四丁酯搅拌至澄清,即可得A溶液。
对上述技术方案的进一步改进为,在所述S2中,Au/ TiO 2的制备方法为:将TiO2/FTO插入氯金酸溶液中,在电化学工作站中设置电位范围为-1~0.8V,扫速为100mV/s,连续扫描10圈,即可得到Au/ TiO 2
对上述技术方案的进一步改进为,在所述S3中,MIP/Au/ TiO 2的制备方法为:a、配制聚合液B;b、将Au/ TiO 2插入上述聚合液B中,在电化学工作站中设置电位范围为-0.4~1.2V,扫速为50mV/s,连续扫描5圈,即可得MIP/Au/ TiO 2
对上述技术方案的进一步改进为,在所述S4中,NIP/Au/ TiO 2的制备方法为:a、配制聚合液C;b将Au/ TiO 2插入上述聚合液C中,在电化学工作站中设置电位范围为-0.4~1.2V,扫速为50mV/s,连续扫描5圈,即可得NIP/Au/ TiO 2
对上述技术方案的进一步改进为,在所述S5中,洗脱盐酸四环素分子的方法为:a、配制NaOH溶液;b、将MIP/Au/ TiO 2插入上述NaOH溶液中,在电化学工作站中设置恒压电位为1.3V,持续时间为360s,在1.3V的偏压下,即可洗脱盐酸四环素分子。
对上述技术方案的进一步改进为,在所述S6中,光电流测试的步骤为:a、配制PBS溶液;b、将MIP/Au/ TiO 2插入上述PBS溶液中,在电化学工作站中设置偏压为0V,将MIP/Au/ TiO 2的导电面对着光源,每20s就开关光源一次。
对上述技术方案的进一步改进为,在所述光电流测试中,工作电极为MIP/Au/ TiO 2,对电极为铂片,参比电极为甘汞电极,光源为100W的氙灯。
一种检测盐酸四环素的TiO 2基分子印迹型光电化学传感器,所述检测盐酸四环素的TiO 2基分子印迹型光电化学传感器使用上述制备方法制得。
有益效果
本发明获得一种选择性好、灵敏度高的TiO 2基分子印迹型光电化学传感器。采用该TiO 2基分子印迹型光电化学传感器检测盐酸四环素,检测方法简单,检测灵敏度高,响应速度快,能够扩展到盐酸四环素的实际样品检测,同时也为其他物质的检测提供了一种思路。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为MIP/Au/ TiO 2分子印迹型光电化学传感器制备及其机制示意图。
图2为制得的MIP/Au/ TiO 2的SEM图。
图3为MIP/Au/ TiO 2置于含有0~25μmol/L盐酸四环素的0.1 mol/L的PBS溶液的光电流响应图。
图4为盐酸四环素检测的线性校准曲线图。
本发明的实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
一种检测盐酸四环素的TiO 2基分子印迹型光电化学传感器的制备方法,包括如下步骤。
一种检测盐酸四环素的TiO 2基分子印迹型光电化学传感器的制备方法,其特征在于,包括如下步骤:S1、制备TiO 2/FTO;S2、制备Au/ TiO 2;S3、制备MIP/Au/ TiO 2;S4、制备NIP/Au/ TiO 2;S5、洗脱盐酸四环素分子;S6、进行光电流测试。
对上述技术方案的进一步改进为,在所述S1中,所述TiO 2/FTO的制备方法为:a、使用水热法,将15ml×20ml的FTO导电玻璃的导电面朝上,按1.5ml×2.5ml的规格切成若干块,将切出的FTO依次置于丙酮、去离子水、乙醇中各超声30min;b、配制A溶液:用15ml去离子水、15ml浓盐酸、0.5ml钛酸四丁酯搅拌至澄清即得A溶液;c、将a步骤中完成超声的FTO导电玻璃的导电面朝下,置于25ml聚四氟乙烯内衬中并将A溶液倒入,淹没FTO导电玻璃,再将内衬盖好装入高压反应釜,并置于鼓风干燥箱中,在150℃下保持4h,然后自然冷却至室温;d、用镊子把经过水热后的羟基氧化钛/FTO夹出,用去离子水洗涤表面残渣,然后用刀片刮去多余部分,留下1.5ml×1.5ml的面积,洗涤,自然晾干;e、将FTO导电玻璃置于坩埚,盖上盖子,并置于马弗炉中以5℃/min的速率升温至450℃退火1h,之后自然冷却至室温,即可得TiO2/FTO。
对上述技术方案的进一步改进为,在所述S2中,所述Au/ TiO 2的制备方法为:使用电沉积的方法,将TiO 2/FTO插入1 nmol/L的氯金酸溶液中,在CHI660E电化学工作站中设置电位范围为-1~0.8V,扫速为100mV/s,连续扫描10圈,即可得到Au/TiO2。
对上述技术方案的进一步改进为,在所述S3中,所述MIP/Au/ TiO 2的制备方法为:a、配制聚合液B:加入30ml甲醇、1.6μL邻氨基苯硫酚、1.4mg盐酸四环素和5mg四丁基高氯酸铵即得聚合液B;b、使用电聚合的方法,将Au/ TiO 2插入上述聚合液B中,在CHI660E电化学工作站中设置电位范围为-0.4~1.2V,扫速为50mV/s,连续扫描5圈,即可得MIP/Au/TiO 2
对上述技术方案的进一步改进为,在所述S4中,所述NIP/Au/ TiO 2的制备方法为:a、配制聚合液C:加入30ml甲醇、1.6μL邻氨基苯硫酚和5mg四丁基高氯酸铵即得聚合液C;b、使用电聚合的方法,将Au/ TiO 2插入上述聚合液C中,在CHI660E电化学工作站中设置电位范围为-0.4~1.2V,扫速为50mV/s,连续扫描5圈,即可得NIP/Au/TiO 2。不添加盐酸四环素的NIP/Au/TiO 2作为MIP/Au/TiO2的对照组。
对上述技术方案的进一步改进为,在所述S5中,所述洗脱盐酸四环素分子的制备方法为:a、配制20ml浓度为0.2mol/L的NaOH溶液;b、将MIP/Au/TiO 2插入上述NaOH溶液中,使用电降解的方法,在CHI660E电化学工作站中设置恒压电位为1.3V,持续时间为360s,在1.3V的偏压下,即可洗脱盐酸四环素分子。
对上述技术方案的进一步改进为,在所述S6中,所述进行光电流测试的步骤为:a、配制20ml浓度为0.1mol/L的PBS溶液(PH=6.98),其中包括1.68g的磷酸氢二钠、1.37g的磷酸二氢钠和20ml去离子水;b、将MIP/Au/ TiO 2插入上述PBS溶液,在CHI660E电化学工作站中设置偏压为0V,将MIP/Au/ TiO 2的导电面方向对着光源,每20s就开关光源一次。
对上述技术方案的进一步改进为,在所述光电流测试中,工作电极为MIP/Au/ TiO 2,对电极为铂片,参比电极为甘汞电极,光源为100W的氙灯。
一种检测盐酸四环素的TiO 2基分子印迹型光电化学传感器,所述检测盐酸四环素的TiO 2基分子印迹型光电化学传感器使用上述制备方法制得。
实施例1:合成MIP/Au/ TiO 2
S1、制备TiO 2/FTO,具体为,a、使用水热法,将15ml×20ml的FTO导电玻璃的导电面朝上,按1.5ml×2.5ml的规格切成若干块,将切出的FTO依次置于丙酮、去离子水、乙醇中各超声30min;b、配制A溶液:用15ml去离子水、15ml浓盐酸、0.5ml钛酸四丁酯搅拌至澄清即得A溶液;c、将a步骤中完成超声的FTO导电玻璃的导电面朝下,置于25ml聚四氟乙烯内衬中并将A溶液倒入,淹没FTO导电玻璃,再将内衬盖好装入高压反应釜,并置于鼓风干燥箱中,在150℃下保持4h,然后自然冷却至室温;d、用镊子把经过水热后的羟基氧化钛/FTO夹出,用去离子水洗涤表面残渣,然后用刀片刮去多余部分,留下1.5ml×1.5ml的面积,洗涤,自然晾干;e、将FTO导电玻璃置于坩埚,盖上盖子,并置于马弗炉中以5℃/min的速率升温至450℃退火1h,之后自然冷却至室温,即可得TiO2/FTO。
S2、制备Au/ TiO 2,具体为,使用电沉积的方法,将TiO 2/FTO插入1 nmol/L的氯金酸溶液中,在CHI660E电化学工作站中设置电位范围为-1~0.8V,扫速为100mV/s,连续扫描10圈,即可得到Au/ TiO 2
S3、制备MIP/Au/ TiO 2,具体为,a、配制聚合液B:加入30ml甲醇、1.6μL邻氨基苯硫酚、1.4mg盐酸四环素和5mg四丁基高氯酸铵即得聚合液B;b、使用电聚合的方法,将Au/ TiO 2插入上述聚合液B中,在CHI660E电化学工作站中设置电位范围为-0.4~1.2V,扫速为50mV/s,连续扫描5圈,即可得MIP/Au/ TiO 2
S4、制备NIP/Au/ TiO 2,具体为,a、配制聚合液C:加入30ml甲醇、1.6μL邻氨基苯硫酚和5mg四丁基高氯酸铵即得聚合液C;b、使用电聚合的方法,将Au/TiO 2插入上述聚合液C中,在CHI660E电化学工作站中设置电位范围为-0.4~1.2V,扫速为50mV/s,连续扫描5圈,即可得NIP/Au/TiO 2。不添加盐酸四环素的NIP/Au/ TiO 2作为MIP/Au/ TiO 2的对照组。
S5、洗脱盐酸四环素分子,具体为,a、配制20ml浓度为0.2mol/L的NaOH溶液;b、将MIP/Au/ TiO 2插入上述NaOH溶液中,使用电降解的方法,在CHI660E电化学工作站中设置恒压电位为1.3V,持续时间为360s,在1.3V的偏压下,即可洗脱盐酸四环素分子。
对制得的MIP/Au/ TiO 2测试其SEM图,结果如图2所示。从图A可看到,本实施例中TiO2呈棒状生长。从图B可看到,分子印迹聚合膜覆盖在TiO2表面。
实施例2:测定MIP/Au/ TiO 2对盐酸四环素的光电流响应。
a、配制20ml浓度为0.1mol/L的PBS溶液(PH=6.98),其中包括1.68g的磷酸氢二钠、1.37g的磷酸二氢钠和20ml去离子水;b、取实施例1中的MIP/Au/ TiO 2作为工作电极,对电极为铂片,参比电极为甘汞电极,插入上述PBS溶液,在CHI660E电化学工作站中设置偏压为0V,采用100W的氙灯作为光源,将MIP/Au/ TiO 2的导电面方向对着光源,每20s就开关光源一次。检测结果如图3所示。
从图3可看到,在含有0~25μmol/L盐酸四环素的0.1 mol/L的PBS溶液(pH=6.98)中,光电化学响应仅在1s内就可达到相对稳定的信号,且光电流随盐酸四环素浓度的增加而减小。
从图4可看到,当盐酸四环素的浓度在1~25μmol/L范围内,光电流与盐酸四环素的浓度呈线性关系。线性回归方程为△I(μA)=1.6493C(μmol/L)-0.1251,相关系数C为0.9974。检测限(LOD)为25.465nmol/L(S/N=3)。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种检测盐酸四环素的TiO 2基分子印迹型光电化学传感器的制备方法,其特征在于,包括如下步骤:S1、制备TiO 2/FTO;S2、制备Au/ TiO 2;S3、制备MIP/Au/ TiO 2;S4、制备NIP/Au/ TiO 2;S5、洗脱盐酸四环素分子;S6、进行光电流测试。
  2. 根据权利要求1所述的TiO 2基分子印迹型光电化学传感器的制备方法,其特征在于,在所述S1中,TiO 2/FTO的制备方法为:a、将FTO的导电面朝上依次置于丙酮、去离子水、乙醇中超声;b、配制A溶液;c、将完成超声的FTO的导电面朝下,将A溶液倒入至淹没FTO,转移到高压反应釜,在150℃下保持4h,自然冷却至室温;d、将步骤c中得到的产物夹出,洗涤,自然晾干后再升温至450℃退火1h,自然冷却至室温即可得TiO 2/FTO。
  3. 根据权利要求2所述的TiO 2基分子印迹型光电化学传感器的制备方法,其特征在于,在所述S1中,配制A溶液的方法为:用15ml去离子水、15ml浓盐酸、0.5ml钛酸四丁酯搅拌至澄清,即可得A溶液。
  4. 根据权利要求1所述的TiO 2基分子印迹型光电化学传感器的制备方法,其特征在于,在所述S2中,Au/ TiO 2的制备方法为:将TiO 2/FTO插入氯金酸溶液中,在电化学工作站中设置电位范围为-1~0.8V,扫速为100mV/s,连续扫描10圈,即可得到Au/TiO 2
  5. 根据权利要求1所述的TiO 2基分子印迹型光电化学传感器的制备方法,其特征在于,在所述S3中,MIP/Au/ TiO 2的制备方法为:a、配制聚合液B;b、将Au/ TiO 2插入上述聚合液B中,在电化学工作站中设置电位范围为-0.4~1.2V,扫速为50mV/s,连续扫描5圈,即可得MIP/Au/TiO2。
  6. 根据权利要求1所述的TiO 2基分子印迹型光电化学传感器的制备方法,其特征在于,在所述S4中,NIP/Au/ TiO 2的制备方法为:a、配制聚合液C;b将Au/TiO 2插入上述聚合液C中,在电化学工作站中设置电位范围为-0.4~1.2V,扫速为50mV/s,连续扫描5圈,即可得NIP/Au/TiO 2
  7. 根据权利要求1所述的TiO 2基分子印迹型光电化学传感器的制备方法,其特征在于,在所述S5中,洗脱盐酸四环素分子的方法为:a、配制NaOH溶液;b、将MIP/Au/TiO 2插入上述NaOH溶液中,在电化学工作站中设置恒压电位为1.3V,持续时间为360s,在1.3V的偏压下,即可洗脱盐酸四环素分子。
  8. 根据权利要求1所述的TiO 2基分子印迹型光电化学传感器的制备方法,其特征在于,在所述S6中,光电流测试的步骤为:a、配制PBS溶液;b、将MIP/Au/ TiO 2插入上述PBS溶液中,在电化学工作站中设置偏压为0V,将MIP/Au/TiO 2的导电面对着光源,每20s就开关光源一次。
  9. 根据权利要求8所述的TiO 2基分子印迹型光电化学传感器的制备方法,其特征在于,在所述光电流测试中,工作电极为MIP/Au/ TiO 2,对电极为铂片,参比电极为甘汞电极,光源为100W的氙灯。
  10. 一种检测盐酸四环素的TiO 2基分子印迹型光电化学传感器,其特征在于,所述检测盐酸四环素的TiO 2基分子印迹型光电化学传感器使用如权利要求1-9任一项所述的制备方法制得。
PCT/CN2021/135198 2021-11-09 2021-12-02 一种检测盐酸四环素的 TiO2 基分子印迹型光电化学传感器及其制备方法 WO2023082383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111322013.7A CN114018998B (zh) 2021-11-09 2021-11-09 一种检测盐酸四环素的TiO2基分子印迹型光电化学传感器及其制备方法
CN202111322013.7 2021-11-09

Publications (1)

Publication Number Publication Date
WO2023082383A1 true WO2023082383A1 (zh) 2023-05-19

Family

ID=80062720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135198 WO2023082383A1 (zh) 2021-11-09 2021-12-02 一种检测盐酸四环素的 TiO2 基分子印迹型光电化学传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN114018998B (zh)
WO (1) WO2023082383A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738445A (zh) * 2016-05-06 2016-07-06 华东交通大学 一种分子印迹传感器及对双酚a的检测方法
CN106552620A (zh) * 2016-10-27 2017-04-05 江苏大学 一种选择性降解四环素的分子印迹催化膜的制备方法及用途
US20170227486A1 (en) * 2016-02-09 2017-08-10 The Florida International University Board Of Trustees Sensors for the detection of analytes
CN107576704A (zh) * 2017-07-26 2018-01-12 上海师范大学 微囊藻毒素‑lr分子印迹光电化学传感器及其制备与应用
WO2020099560A1 (en) * 2018-11-16 2020-05-22 Danmarks Tekniske Universitet Electrochemical sensor system comprising molecularly imprinted polymer for early warning of urinary tract infections

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170227486A1 (en) * 2016-02-09 2017-08-10 The Florida International University Board Of Trustees Sensors for the detection of analytes
CN105738445A (zh) * 2016-05-06 2016-07-06 华东交通大学 一种分子印迹传感器及对双酚a的检测方法
CN106552620A (zh) * 2016-10-27 2017-04-05 江苏大学 一种选择性降解四环素的分子印迹催化膜的制备方法及用途
CN107576704A (zh) * 2017-07-26 2018-01-12 上海师范大学 微囊藻毒素‑lr分子印迹光电化学传感器及其制备与应用
WO2020099560A1 (en) * 2018-11-16 2020-05-22 Danmarks Tekniske Universitet Electrochemical sensor system comprising molecularly imprinted polymer for early warning of urinary tract infections

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU, NA ET AL.: "Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activitySynthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity", JOURNAL OF SOLID STATE CHEMISTRY, vol. 181, no. 10, 15 July 2008 (2008-07-15), pages 2852 - 2858, XP025534752, DOI: 10.1016/j.jssc.2008.07.004 *
WANG PANPAN, DAI WEIJIAN, GE LEI, YAN MEI, GE SHENGUANG, YU JINGHUA: "Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO 2 nanotubes for specific and sensitive detection chlorpyrifos", ANALYST, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 138, no. 3, 1 January 2013 (2013-01-01), UK , pages 939 - 945, XP093065700, ISSN: 0003-2654, DOI: 10.1039/C2AN36266J *

Also Published As

Publication number Publication date
CN114018998A (zh) 2022-02-08
CN114018998B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
Pang et al. Construction of self-powered cytosensing device based on ZnO nanodisks@ g-C3N4 quantum dots and application in the detection of CCRF-CEM cells
Tang et al. A glucose biosensor based on the synergistic action of nanometer-sized TiO2 and polyaniline
Shao et al. A highly sensitive ascorbic acid sensor based on hierarchical polyaniline coated halloysite nanotubes prepared by electrophoretic deposition
Yang et al. Polypyrrole/sulfonated multi-walled carbon nanotubes conductive hydrogel for electrochemical sensing of living cells
Sun et al. Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier
Zhao et al. Electrochemical dopamine sensor based on the use of a thermosensitive polymer and an nanocomposite prepared from multiwalled carbon nanotubes and graphene oxide
Liu et al. Enzyme nanoparticles-based electronic biosensor
Shalini et al. An amperometric urea bisosensor based on covalent immobilization of urease on N2 incorporated diamond nanowire electrode
Wu et al. Direct electrochemistry of horseradish peroxidase on TiO2 nanotube arrays via seeded-growth synthesis
Liu et al. A facile electrochemical uricase biosensor designed from gold/amino acid nanocomposites
Kalaiyarasi et al. Mediator-free simultaneous determination of acetaminophen and caffeine using a glassy carbon electrode modified with a nanotubular clay
CN111103340A (zh) 纳米粒子修饰的玻碳电极的制备方法及其应用
Shi et al. Application of titanium dioxide nanowires for the direct electrochemistry of hemoglobin and electrocatalysis
Ke et al. Electrochemistry and electrocatalysis of myoglobin on carbon coated Fe 3 O 4 nanospindle modified carbon ionic liquid electrode
CN106324056B (zh) 一种利用超声剥离多孔碳修饰电极检测氯霉素的方法
Yang et al. PEDOT: PSS hydrogels with high conductivity and biocompatibility for in situ cell sensing
WO2023082383A1 (zh) 一种检测盐酸四环素的 TiO2 基分子印迹型光电化学传感器及其制备方法
Chavhan et al. Nanostructured titanium oxide platform for application to ascorbic acid detection
Liu et al. Study on Direct Electrochemistry of Glucose Oxidase Stabilized by Cross‐Linking and Immobilized in Silica Nanoparticle Films
Zhang et al. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a polymeric ionic liquid film
CN113155917A (zh) 一种用于检测赭曲霉毒素a或黄曲霉毒素b1的光助双极自供能传感器的构建方法
Rawat et al. Potential of Gelatin‐Zinc Oxide Nanocomposite as Ascorbic Acid Sensor
CN106959323B (zh) 一种检测溶菌酶的方法
Zheng et al. Preparation of poly (l-lactide) and its application in bioelectrochemistry
Kafi et al. Hemoglobin Immobilization on Multiporous Nanofibers of SnO2 and Chitosan Composite for Hydrogen Peroxide Sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963821

Country of ref document: EP

Kind code of ref document: A1