WO2023082259A1 - 能躲避台风等海洋灾害的海洋浮体及其躲避方法 - Google Patents

能躲避台风等海洋灾害的海洋浮体及其躲避方法 Download PDF

Info

Publication number
WO2023082259A1
WO2023082259A1 PCT/CN2021/130674 CN2021130674W WO2023082259A1 WO 2023082259 A1 WO2023082259 A1 WO 2023082259A1 CN 2021130674 W CN2021130674 W CN 2021130674W WO 2023082259 A1 WO2023082259 A1 WO 2023082259A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating body
marine
wind
controller
cavity
Prior art date
Application number
PCT/CN2021/130674
Other languages
English (en)
French (fr)
Inventor
盛松伟
张亚群
王振鹏
王坤林
Original Assignee
南方海洋科学与工程广东省实验室(广州)
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方海洋科学与工程广东省实验室(广州), 中国科学院广州能源研究所 filed Critical 南方海洋科学与工程广东省实验室(广州)
Priority to PCT/CN2021/130674 priority Critical patent/WO2023082259A1/zh
Publication of WO2023082259A1 publication Critical patent/WO2023082259A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/18Buoys having means to control attitude or position, e.g. reaction surfaces or tether
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/10Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving buoyancy
    • B63B43/12Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving buoyancy using inboard air containers or inboard floating members

Definitions

  • the application relates to the technical field of ocean engineering, in particular to an ocean floating body capable of avoiding typhoons and other ocean disasters and an avoiding method thereof.
  • the purpose of this application is to provide a marine floating body capable of avoiding typhoons and other marine disasters and its avoidance method, which is conducive to the safe operation of marine floating bodies, is beneficial to saving maintenance costs of marine equipment, and reduces the risk of marine floating bodies being completely destroyed by typhoons and other marine disasters. probability.
  • the application provides a marine floating body capable of avoiding typhoons and other marine disasters, including a floating body body.
  • a floating airbag the top of the airbag is equipped with a trachea, the top of the trachea extends to the outside of the floating body, the top of the trachea is equipped with an air valve, and the top of the air valve is set at a height higher than that of the floating body
  • the setting height of the top of the body; the bottom of the cavity is provided with a normally open water pipe.
  • both the floating body body and the cavity have symmetrical structures.
  • the floating body and the cavity are arranged in a symmetrical structure, which is conducive to the uniform force of the floating body in the process of water intake and drainage, and maintains stability during the lifting process, avoiding the problem of large tilt or overturning.
  • a wind force detecting device for detecting wind force is installed on the upper part of the floating body body.
  • the air valve is an electromagnetic control valve
  • water level detection sensors are installed on the top and middle of the floating body body
  • an air pump arranged in a waterproof cover is installed on the floating body body
  • the water level detection sensor the water level detection sensor
  • the wind detection device, the air pump, and the air valve are all connected to the controller signal, and when the wind detection device detects that the real-time wind value reaches a preset threshold, the feedback signal is sent to the controller, and the controller controls
  • the air pump acts to inflate the airbag or controls the air valve to open to release the air in the airbag.
  • the application also discloses a method for avoiding marine floating bodies capable of avoiding marine disasters such as typhoons, including the following steps:
  • Step 1 Real-time detection of sea surface wind value P, and preset wind response threshold A, which is a reference value for controlling inflation or deflation of the airbag;
  • Step 2 When the wind force value P on the sea surface is less than the wind force response threshold value A, inflate the airbag, and the seawater in the cavity is squeezed out from the water pipe until the middle part of the buoyant body floats out of the water;
  • Step 3 When the sea surface wind value P is greater than or equal to the wind response threshold A, the air valve is opened, the air bag is deflated, and seawater flows into the cavity from the water pipe until the top of the floating body sinks to After the water surface is below, the air valve is closed.
  • the step 1 also includes: installing an air pump and a wind detection device on the floating body, installing water level detection sensors on the top and middle of the floating body, and setting the air valve as an electromagnetic control valve , the water level detection sensor, the wind force detection device, the air pump, and the air valve are all signally connected to the controller; the response value of the wind force detection device is set as a preset wind force response threshold A.
  • said step two specifically includes:
  • the wind detection device feeds back a signal to the controller, and the controller controls the air pump to start inflating the airbag, and the seawater in the cavity is squeezed
  • the pressure flows out from the water pipe, and when the water level detection sensor installed in the middle of the floating body body responds, the water level detection sensor feeds back a signal to the controller, and the controller controls the air pump to turn off.
  • said step three specifically includes:
  • the wind force detection device feeds back a signal to the controller, and the controller controls the air valve to open, the air bag is deflated, and seawater flows in from the water pipe In the cavity, when the water level detection sensor installed on the top of the floating body responds, the water level detection sensor feeds back a signal to the controller, and the controller controls the air valve to close.
  • the marine floating body capable of avoiding typhoons and other marine disasters of the present application and the avoiding method thereof are simple and easy to realize, and can meet the requirement of controlling the heave of various marine structures.
  • Many marine floating structures are hollow, that is, have cavities, and only need to be modified on the basis of their original structures to meet the needs of controllable heave functions. In terms of controlling the heave movement, it can be easily realized.
  • the invention is beneficial to the safe operation of the marine floating body, is beneficial to saving the maintenance cost of marine equipment, reduces the probability that the marine floating body is completely destroyed by typhoons and other marine disasters, and greatly prolongs its working life.
  • Fig. 1 is the structural schematic diagram of the marine floating body that can avoid typhoon and other marine disasters in the embodiment 1 of the present application;
  • Fig. 2 is the structural schematic diagram of the marine floating body that can avoid typhoon and other marine disasters in the embodiment 2 of the present application
  • a marine floating body capable of avoiding marine disasters such as typhoons includes a floating body body 1 , and the floating body body 1 can be any marine structure in the prior art.
  • the middle part of the floating body 1 is provided with a cavity 2, the cavity 2 can be any kind of hollow chamber that the floating body 1 itself has, or it can be a hollow chamber opened on the floating body 1 later, the cavity 2 has a certain Volume, its function is to adjust the buoyancy and gravity of the floating body.
  • the cavity 2 is provided with an air bag 3 that drives the floating body 1 to float after being inflated.
  • the top of the air bag 3 is equipped with a trachea 4, and the top of the trachea 4 extends to the outside of the floating body 1.
  • the air bag 3 can be easily inflated and The airbag 3 is exhausted, and the airbag 3 expanded after inflation can reach a sufficiently large volume in the cavity 2 or even completely occupy the cavity 2 .
  • the ups and downs of the floating body 1 are jointly determined by the additional seawater gravity in the cavity 2 and the buoyancy of the floating body 1, that is, the inflow and displacement in the cavity 2 have a great influence.
  • An air valve 5 is installed on the top of the air pipe 4, and the setting height of the top of the air valve 5 is higher than that of the top of the floating body 1; the bottom of the cavity 2 is provided with a normally open water pipe 6.
  • the floating body 1 and the cavity 2 are symmetrical structures, which is conducive to the uniform force of the floating body 1 in the process of water intake and drainage, and is conducive to the maintenance of the floating body during the lifting process. Steady and avoid sharp tilts or overturns.
  • the method for avoiding marine floating bodies that can avoid marine disasters such as typhoons in this embodiment includes the following steps:
  • Step 1 Real-time detection of sea surface wind value P, and preset wind response threshold A, which is a reference value for controlling the airbag 3 to inflate or deflate;
  • Step 2 When the sea surface wind value P is less than the wind response threshold A, inflate the airbag 3, and the seawater in the cavity 2 is squeezed out from the water pipe 6 until the middle part of the floating body 1 emerges from the water;
  • Step 3 When the sea surface wind value P is greater than or equal to the wind response threshold A, open the air valve 5, the air bag 3 is deflated, and the seawater flows into the cavity 2 from the water pipe 6 until the top of the floating body 1 sinks below the water surface, then close the air bag. valve 5.
  • a wind force detection device 7 for detecting wind force is installed on the top of the floating body body 1, and the wind force detection device 7 can be any one in the prior art, such as a wind force detection sensor, etc. , which is used to detect the wind force on the sea surface. According to the wind force detection value, it can be judged whether it is currently in a storm environment or a typhoon environment.
  • the air valve 5 is an electromagnetic control valve, and the top and middle of the floating body body 1 are equipped with water level detection sensors.
  • the water level detection sensor can be any one in the prior art. When the water level reaches the setting position of the water level detection sensor, the water level detection The sensors respond and feed back corresponding signals.
  • An air pump 8 arranged in the waterproof cover is screwed on the floating body body 1, and the air pump 8 can be any one in the prior art.
  • Water level detection sensor, wind power detection device 7, air pump 8, air valve 5 are all connected with controller 9 signals, and controller 9 can be any one in the prior art, as microcomputer chip etc.
  • the wind detection device 7 detects that the real-time wind value reaches the preset threshold
  • the feedback signal is sent to the controller 9, and the controller 9 controls the action of the air pump 8 to inflate the airbag 3 or control the opening of the air valve 5 to release the gas in the airbag 3 .
  • the working method of this kind of marine floating body capable of avoiding marine disasters such as typhoons in this embodiment includes the following steps:
  • Step 1 Real-time detection of the sea surface wind value P.
  • An air pump 8 and a wind detection device 7 are installed on the floating body 1.
  • Water level detection sensors are installed on the top and middle of the floating body 1.
  • the air valve 5 is set as an electromagnetic control valve.
  • the detection sensor, the wind force detection device 7, the air pump 8, and the air valve 5 are all signal-connected to the controller 9; the response value of the wind force detection device 7 is set as the preset wind force response threshold A;
  • Step 2 When the wind force value P on the sea surface is less than the wind force response threshold value A, the wind force detection device 7 feeds back a signal to the controller 9, and the controller 9 controls the air pump 8 to start inflating the airbag 3, and the seawater in the cavity 2 is squeezed and passed through automatically.
  • the water pipe 6 flows out, and when the water level detection sensor installed in the middle of the floating body 1 responds, the water level detection sensor feeds back a signal to the controller 9, and the controller 9 controls the air pump 8 to close.
  • Step 3 When the sea surface wind value P is greater than or equal to the wind response threshold A, the wind detection device 7 feeds back a signal to the controller 9, and the controller 9 controls the air valve 5 to open, the air bag 3 is deflated, and seawater flows into the cavity 2 from the water pipe 6 , when the water level detection sensor installed on the top of the floating body 1 responds, the water level detection sensor feeds back a signal to the controller 9, and the controller 9 controls the air valve 5 to close.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wind Motors (AREA)

Abstract

一种能躲避台风等海洋灾害的海洋浮体及其躲避方法,该浮体包括浮体本体(1),浮体本体(1)的中部设置有空腔(2),空腔(2)内设置有充气后带动浮体本体(1)上浮的气囊(3),气囊(3)的顶部安装有气管(4),气管(4)的顶端延伸至浮体本体(1)的外部,气管(4)的顶端安装有气阀(5),气阀(5)顶端的设置高度高于浮体本体(1)顶端的设置高度;空腔(2)的底部设置有常开的通水管(6)。该浮体结构简单,能够降低被台风等海洋灾害彻底摧毁的几率。

Description

能躲避台风等海洋灾害的海洋浮体及其躲避方法 技术领域
本申请涉及海洋工程技术领域,具体是一种能躲避台风等海洋灾害的海洋浮体及其躲避方法。
背景技术
保护海洋权益、开发海洋资源已经受到世界各国的广泛关注。人类正在利用各种手段来探测、开发和利用海洋中蕴藏丰富的资源,由此而产生众多海洋仪器、设备等被安置在远离大陆的海区。由于海洋气候不稳定,常出现强烈的大气扰动,风暴甚至台风等海洋灾害时常发生。我国面临的太平洋西北部便是台风的多发地区。因此,使漂浮式浮体本体能有效的躲避和抵抗海洋风暴是设计工作者面临的一项重要课题。
技术问题
本申请的目的在于提供一种能躲避台风等海洋灾害的海洋浮体及其躲避方法,有利于海洋浮体的安全运行,有益于节约海洋设备的维修费用,降低海洋浮体被台风等海洋灾害彻底摧毁的几率。
技术解决方案
为实现上述目的,本申请提供了一种能躲避台风等海洋灾害的海洋浮体,包括浮体本体,所述浮体本体的中部设置有空腔,所述空腔内设置有充气后带动所述浮体本体上浮的气囊,所述气囊的顶部安装有气管,所述气管的顶端延伸至所述浮体本体的外部,所述气管的顶端安装有气阀,所述气阀顶端的设置高度高于所述浮体本体顶端的设置高度;所述空腔的底部设置有常开的通水管。
作为优选,所述浮体本体与所述空腔均为对称式结构。
进一步地,将浮体本体与空腔设置为对称式结构,有利于浮体在进水和排水过程中受力均匀,并在升降过程中保持平稳,避免出现大幅倾斜或颠覆的问题。
作为优选,所述浮体本体的上部安装有用于检测风力的风力检测装置。
作为优选,所述气阀为电磁控制阀,所述浮体本体的顶部和中部均安装有水位检测传感器,所述浮体本体上安装有设置于防水罩内的气泵,所述水位检测传感器、所述风力检测装置、所述气泵、所述气阀均与控制器信号连接,在所述风力检测装置检测到实时的风力值达到预设阈值时,反馈信号至所述控制器,所述控制器控制所述气泵动作以向所述气囊内充气或控制所述气阀打开以释放所述气囊内的气体。
基于统一发明构思,本申请还公开了一种能躲避台风等海洋灾害的海洋浮体的的躲避方法包括以下步骤:
步骤一:实时检测海面风力值P,并预设风力响应阈值A,该风力响应阈值为控制所述气囊充气或泄气的参考值;
步骤二:当海面风力值P小于风力响应阈值A时,向所述气囊内充气,所述空腔内的海水被挤压自所述通水管流出,直至所述浮体本体的中部浮出水面;
步骤三:当海面风力值P大于或等于风力响应阈值A时,打开所述气阀,所述气囊泄气,海水自所述通水管流入所述空腔,直至所述浮体本体的顶部下沉至水面以下后关闭所述气阀。
作为优选,所述步骤一中还包括:在所述浮体本体上安装有气泵和风力检测装置,在所述浮体本体的顶部和中部均安装水位检测传感器,将所述气阀设置为电磁控制阀,所述水位检测传感器、所述风力检测装置、所述气泵、所述气阀均与控制器信号连接;将所述风力检测装置的响应数值设置为预设风力响应阈值A。
作为优选,所述步骤二具体包括:
当海面风力值P小于风力响应阈值A时,所述风力检测装置反馈信号至所述控制器,所述控制器控制所述气泵启动向所述气囊内充气,所述空腔内的海水被挤压自所述通水管流出,当安装于所述浮体本体中部的所述水位检测传感器响应时,该水位检测传感器反馈信号至所述控制器,所述控制器控制所述气泵关闭。
作为优选,所述步骤三具体包括:
当海面风力值P大于或等于风力响应阈值A时,所述风力检测装置反馈信号至所述控制器,所述控制器控制所述气阀打开,所述气囊泄气,海水自所述通水管流入所述空腔,当安装于所述浮体本体顶部的所述水位检测传感器响应时,该水位检测传感器反馈信号至所述控制器,所述控制器控制所述气阀关闭。
有益效果
本申请的能躲避台风等海洋灾害的海洋浮体及其躲避方法,简单易实现,可满足控制多种海洋结构物的升沉需要。许多海洋漂浮结构物本身是中空的,即具有空腔,只需在其原有结构基础上改造一下就能满足可控性升沉功能的需要。在控制升沉运动方面,能够简单易实现,浮体本体漂浮于海面时,其内部空腔的体积大部分被气囊占据,当浮体需要下沉时打开气阀排气,空腔进水,重力加大,浮体本体下沉。当浮体本体需要上浮时,向气囊充气,气囊体积增大,排出空腔内水,重力减小,浮体上浮。整个升沉过程即不需要大型设备,也不需要大量的人力,只需完成开阀、充气、放气和闭阀等操作。与传统的躲避台风的方式相比而言,具有便捷、快速的优点。
本发明有利于海洋浮体的安全运行,有益于节约海洋设备的维修费用,降低海洋浮体被台风等海洋灾害彻底摧毁的几率,大大延长其工作寿命。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例1中能躲避台风等海洋灾害的海洋浮体的结构示意图;
图2为本申请实施例2中能躲避台风等海洋灾害的海洋浮体的结构示意图
附图标记:1、浮体本体;2、空腔;3、气囊;4、气管;5、气阀;6、通水管;7、风力检测装置;8、气泵。
本发明的最佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
参考图1所示的一种能躲避台风等海洋灾害的海洋浮体,包括浮体本体1,浮体本体1可以是现有技术中的任意一种海洋结构物。浮体本体1的中部设置有空腔2,空腔2可以是浮体本体1本身具有的任意一种空心腔室,也可以是后期开设于浮体本体1上的空心腔室,空腔2具有一定的体积,它的作用是调节浮体的浮力和重力。空腔2内设置有充气后带动浮体本体1上浮的气囊3,气囊3的顶部安装有气管4,气管4的顶端延伸至浮体本体1的外部,通过气管4可方便地向气囊3内充气和使气囊3排气,充气后张开的气囊3可以在空腔2内达到足够大的体积甚至全部占满空腔2。浮体本体1的沉浮状态受空腔2内附加海水重力和浮体本体1浮力共同决定,即在于空腔2内进、排水量有很大的影响。气管4的顶端安装有气阀5,气阀5顶端的设置高度高于浮体本体1顶端的设置高度;空腔2的底部设置有常开的通水管6。当遇到台风等恶劣天气,浮体将受到威胁时,打开气管4的气阀5使气囊3排气,气囊3体积变小,空腔2内的空置体积变大,海水逐步进入空腔2,浮体本体1重力逐步加大而开始下沉。当浮体本体1下沉到足以躲避风暴破坏的深度后,停止气囊3排气,浮体本体1停止下沉。当风暴已过,需要浮体本体1回复到海面正常位置工作时,打开气管4的气阀5并向气囊3内泵压气体,使气囊3体积逐步增大,气囊3排开空腔2内海水,浮体本体1重力减轻,浮力增大,浮体上浮,直至露出水面到达工作状态。此时,停止向气囊3内泵压气体并关闭气阀5,浮体就停止上浮,平稳地处于工作状态。
作为本实施例的一种优选地实施方式,浮体本体1与空腔2均为对称式结构,这有利于浮体本体1在进水和排水过程中受力均匀,有利于浮体在升降过程中保持平稳,避免出现大幅倾斜或颠覆的情况。
综上,本实施例中的能躲避台风等海洋灾害的海洋浮体的躲避方法包括以下步骤:
步骤一:实时检测海面风力值P,并预设风力响应阈值A,该风力响应阈值为控制气囊3充气或泄气的参考值;
步骤二:当海面风力值P小于风力响应阈值A时,向气囊3内充气,空腔2内的海水被挤压自通水管6流出,直至浮体本体1的中部浮出水面;
步骤三:当海面风力值P大于或等于风力响应阈值A时,打开气阀5,气囊3泄气,海水自通水管6流入空腔2,直至浮体本体1的顶部下沉至水面以下后关闭气阀5。
实施例2
与实施例1不同的是,参考图2所示,浮体本体1的上部安装有用于检测风力的风力检测装置7,风力检测装置7可以是现有技术中的任意一种,如风力检测传感器等,其用于检测海面的风力,根据风力检测数值即可判断当前是否处于风暴环境、台风环境等。气阀5为电磁控制阀,浮体本体1的顶部和中部均安装有水位检测传感器,水位检测传感器可以是现有技术中的任意一种,当水位达到该水位检测传感器的设置位置时,水位检测传感器响应并反馈对应的信号。浮体本体1上螺接安装有设置于防水罩内的气泵8,气泵8可以是现有技术中的任意一种。水位检测传感器、风力检测装置7、气泵8、气阀5均与控制器9信号连接,控制器9可以是现有技术中的任意一种,如微机芯片等。在风力检测装置7检测到实时的风力值达到预设阈值时,反馈信号至控制器9,控制器9控制气泵8动作以向气囊3内充气或控制气阀5打开以释放气囊3内的气体。
综上,本实施例中的该种能躲避台风等海洋灾害的海洋浮体的工作方法包括以下步骤:
步骤一:实时检测海面风力值P,在浮体本体1上安装有气泵8和风力检测装置7,在浮体本体1的顶部和中部均安装水位检测传感器,将气阀5设置为电磁控制阀,水位检测传感器、风力检测装置7、气泵8、气阀5均与控制器9信号连接;将风力检测装置7的响应数值设置为预设风力响应阈值A;
步骤二:当海面风力值P小于风力响应阈值A时,风力检测装置7反馈信号至控制器9,控制器9控制气泵8启动向气囊3内充气,空腔2内的海水被挤压自通水管6流出,当安装于浮体本体1中部的水位检测传感器响应时,该水位检测传感器反馈信号至控制器9,控制器9控制气泵8关闭。
步骤三:当海面风力值P大于或等于风力响应阈值A时,风力检测装置7反馈信号至控制器9,控制器9控制气阀5打开,气囊3泄气,海水自通水管6流入空腔2,当安装于浮体本体1顶部的水位检测传感器响应时,该水位检测传感器反馈信号至控制器9,控制器9控制气阀5关闭。
最后应说明的是:以上仅所述为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种能躲避台风等海洋灾害的海洋浮体,包括浮体本体(1),其特征在于,所述浮体本体(1)的中部设置有空腔(2),所述空腔(2)内设置有充气后带动所述浮体本体(1)上浮的气囊(3),所述气囊(3)的顶部安装有气管(4),所述气管(4)的顶端延伸至所述浮体本体(1)的外部,所述气管(4)的顶端安装有气阀(5),所述气阀(5)顶端的设置高度高于所述浮体本体(1)顶端的设置高度;所述空腔(2)的底部设置有常开的通水管(6)。
  2. 根据权利要求1所述的能躲避台风等海洋灾害的海洋浮体,其特征在于,所述浮体本体(1)与所述空腔(2)均为对称式结构。
  3. 根据权利要求1所述的能躲避台风等海洋灾害的海洋浮体,其特征在于,所述浮体本体(1)的上部安装有用于检测风力的风力检测装置(7)。
  4. 根据权利要求3所述的能躲避台风等海洋灾害的海洋浮体,其特征在于,所述气阀(5)为电磁控制阀,所述浮体本体(1)的顶部和中部均安装有水位检测传感器,所述浮体本体(1)上安装有设置于防水罩内的气泵(8),所述水位检测传感器、所述风力检测装置(7)、所述气泵(8)、所述气阀(5)均与控制器(9)信号连接,在所述风力检测装置(7)检测到实时的风力值达到预设阈值时,反馈信号至所述控制器(9),所述控制器(9)控制所述气泵(8)动作以向所述气囊(3)内充气或控制所述气阀(5)打开以释放所述气囊(3)内的气体。
  5. 根据权利要求1-4任意一项所述的能躲避台风等海洋灾害的海洋浮体的躲避方法,其特征在于,包括以下步骤:
    步骤一:实时检测海面风力值P,并预设风力响应阈值A,该风力响应阈值为控制所述气囊(3)充气或泄气的参考值;
    步骤二:当海面风力值P小于风力响应阈值A时,向所述气囊(3)内充气,所述空腔(2)内的海水被挤压自所述通水管(6)流出,直至所述浮体本体(1)的中部浮出水面;
    步骤三:当海面风力值P大于或等于风力响应阈值A时,打开所述气阀(5),所述气囊(3)泄气,海水自所述通水管(6)流入所述空腔(2),直至所述浮体本体(1)的顶部下沉至水面以下后关闭所述气阀(5)。
  6. 根据权利要求5所述的能躲避台风等海洋灾害的海洋浮体的躲避方法,其特征在于,所述步骤一中还包括:在所述浮体本体(1)上安装有气泵(8)和风力检测装置(7),在所述浮体本体(1)的顶部和中部均安装水位检测传感器,将所述气阀(5)设置为电磁控制阀,所述水位检测传感器、所述风力检测装置(7)、所述气泵(8)、所述气阀(5)均与控制器(9)信号连接;将所述风力检测装置(7)的响应数值设置为预设风力响应阈值A。
  7. 根据权利要求6所述的能躲避台风等海洋灾害的海洋浮体的躲避方法,其特征在于,所述步骤二具体包括:
    当海面风力值P小于风力响应阈值A时,所述风力检测装置(7)反馈信号至所述控制器(9),所述控制器(9)控制所述气泵(8)启动向所述气囊(3)内充气,所述空腔(2)内的海水被挤压自所述通水管(6)流出,当安装于所述浮体本体(1)中部的所述水位检测传感器响应时,该水位检测传感器反馈信号至所述控制器(9),所述控制器(9)控制所述气泵(8)关闭。
  8. 根据权利要求6所述的能躲避台风等海洋灾害的海洋浮体的躲避方法,其特征在于,所述步骤三具体包括:
    当海面风力值P大于或等于风力响应阈值A时,所述风力检测装置(7)反馈信号至所述控制器(9),所述控制器(9)控制所述气阀(5)打开,所述气囊(3)泄气,海水自所述通水管(6)流入所述空腔(2),当安装于所述浮体本体(1)顶部的所述水位检测传感器响应时,该水位检测传感器反馈信号至所述控制器(9),所述控制器(9)控制所述气阀(5)关闭。
PCT/CN2021/130674 2021-11-15 2021-11-15 能躲避台风等海洋灾害的海洋浮体及其躲避方法 WO2023082259A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130674 WO2023082259A1 (zh) 2021-11-15 2021-11-15 能躲避台风等海洋灾害的海洋浮体及其躲避方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130674 WO2023082259A1 (zh) 2021-11-15 2021-11-15 能躲避台风等海洋灾害的海洋浮体及其躲避方法

Publications (1)

Publication Number Publication Date
WO2023082259A1 true WO2023082259A1 (zh) 2023-05-19

Family

ID=86334916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130674 WO2023082259A1 (zh) 2021-11-15 2021-11-15 能躲避台风等海洋灾害的海洋浮体及其躲避方法

Country Status (1)

Country Link
WO (1) WO2023082259A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117657376A (zh) * 2023-12-21 2024-03-08 连云港建港实业有限公司 具有自适应防横风结构的组合式水上操作平台

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994812A (zh) * 2006-12-21 2007-07-11 中国科学院广州能源研究所 一种能躲避台风等自然灾害的漂浮式海洋装置
CN103029811A (zh) * 2012-12-27 2013-04-10 上海海洋大学 沉浮式海洋安全装置
CN103879521A (zh) * 2014-03-24 2014-06-25 上海海洋大学 预警型海洋安全装置
KR20140125955A (ko) * 2013-04-19 2014-10-30 인하대학교 산학협력단 해양 부유 구조물의 자가 부력 조절장치
CN110641659A (zh) * 2019-10-18 2020-01-03 江苏科技大学 一种自避风浪的海洋监测机器人
CN112483329A (zh) * 2020-11-26 2021-03-12 海南电网有限责任公司 一种可躲避台风的波浪能发电装置
CN212797236U (zh) * 2020-08-19 2021-03-26 青岛霍金海洋高新科技有限公司 一种升降式海洋信息采集漂浮平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994812A (zh) * 2006-12-21 2007-07-11 中国科学院广州能源研究所 一种能躲避台风等自然灾害的漂浮式海洋装置
CN103029811A (zh) * 2012-12-27 2013-04-10 上海海洋大学 沉浮式海洋安全装置
KR20140125955A (ko) * 2013-04-19 2014-10-30 인하대학교 산학협력단 해양 부유 구조물의 자가 부력 조절장치
CN103879521A (zh) * 2014-03-24 2014-06-25 上海海洋大学 预警型海洋安全装置
CN110641659A (zh) * 2019-10-18 2020-01-03 江苏科技大学 一种自避风浪的海洋监测机器人
CN212797236U (zh) * 2020-08-19 2021-03-26 青岛霍金海洋高新科技有限公司 一种升降式海洋信息采集漂浮平台
CN112483329A (zh) * 2020-11-26 2021-03-12 海南电网有限责任公司 一种可躲避台风的波浪能发电装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117657376A (zh) * 2023-12-21 2024-03-08 连云港建港实业有限公司 具有自适应防横风结构的组合式水上操作平台
CN117657376B (zh) * 2023-12-21 2024-05-28 连云港建港实业有限公司 具有自适应防横风结构的组合式水上操作平台

Similar Documents

Publication Publication Date Title
JP3541197B1 (ja) 津波又は洪水に対する防災用として地上設置される浮遊型シェルタ
JPH03103525A (ja) エアリフト式閘門
CN101715744B (zh) 一种hdpe自张力平底升降式耐流网箱装置
WO2023082259A1 (zh) 能躲避台风等海洋灾害的海洋浮体及其躲避方法
KR101505725B1 (ko) 해양 부유 구조물의 자가 부력 조절장치
CN1994812A (zh) 一种能躲避台风等自然灾害的漂浮式海洋装置
CN108353835A (zh) 一种深远海沉浮式网箱系统及沉浮方法
CN102269105B (zh) 一种漂浮式全液压海浪发电装置
CN114179970A (zh) 一种基于ais的智能感知航标设备及其预警方法
CN113636026A (zh) 一种半潜式起重拆解平台快速压载系统及其操作方法
CN113928486A (zh) 能躲避台风等海洋灾害的海洋浮体及其躲避方法
CN209025795U (zh) 一种海上发电风机的升降控制系统
CN216783794U (zh) 一种能躲避台风海洋灾害的海洋浮体
CN113415724A (zh) 一种海上风电多筒导管架基础浪溅区姿态控制方法
CN112483329A (zh) 一种可躲避台风的波浪能发电装置
CN2552336Y (zh) 升降式网箱
CN113463679B (zh) 一种海上风电多筒导管架基础安装和回收方法
JPS5948244B2 (ja) 多連式可撓性膜製起伏堰
CN209510533U (zh) 一种海上发电风机的升降结构
CN219904653U (zh) 一种水质监测浮标
CN2439183Y (zh) 潜浮式深海潜网
US10745877B2 (en) Typhoon-resistant floating breakwater system and control method thereof
CN216165313U (zh) 一种儿童训练泳装
CN2756560Y (zh) 海上不倒救生舱
CN218400933U (zh) 一种水下机器人中央浮力系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963705

Country of ref document: EP

Kind code of ref document: A1