WO2023080596A1 - Elastic damper for controlling flow pulsation, manufacturing method therefor, and flow pulsation reduction method - Google Patents

Elastic damper for controlling flow pulsation, manufacturing method therefor, and flow pulsation reduction method Download PDF

Info

Publication number
WO2023080596A1
WO2023080596A1 PCT/KR2022/016911 KR2022016911W WO2023080596A1 WO 2023080596 A1 WO2023080596 A1 WO 2023080596A1 KR 2022016911 W KR2022016911 W KR 2022016911W WO 2023080596 A1 WO2023080596 A1 WO 2023080596A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
inlet
flow pulsation
outlet
damper
Prior art date
Application number
PCT/KR2022/016911
Other languages
French (fr)
Korean (ko)
Inventor
박근환
이상협
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Priority claimed from KR1020220143483A external-priority patent/KR20230065168A/en
Publication of WO2023080596A1 publication Critical patent/WO2023080596A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/08Coating a former, core or other substrate by spraying or fluidisation, e.g. spraying powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/38Moulds, cores or other substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/42Removing articles from moulds, cores or other substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00

Definitions

  • the present invention relates to a flow pulsation control elastic damper, a method for manufacturing the flow pulsation control elastic damper, and a method for reducing flow pulsation, and more particularly, to a flow pulsation control elastic damper for mitigating pulsation generated from a pump during fluid transport, the flow rate It relates to a manufacturing method of a pulsation control elastic damper and a flow pulsation reduction method using the flow pulsation control elastic damper.
  • the technical problem of the present invention is to provide a flow pulsation control elastic damper having a simple structure and a high pulsation mitigation rate.
  • Another object of the present invention is to provide a method for manufacturing the pulsation control elastic damper.
  • Another object of the present invention is to provide an elastic damper for controlling flow pulsation.
  • An elastic damper for controlling flow pulsation forms an inner spherical space in a spherical shape, and has an elastic body formed of an elastic body and an inlet communicating with the space It forms an inlet connected to the body, and an outlet communicating with the space, and includes an outlet connected to the body.
  • the body portion may be formed using a silicone elastomer.
  • the volume of the body portion may change according to the pressure and volume of the fluid accommodated therein.
  • the change in volume of the body is three-dimensionally along a first direction, a second direction perpendicular to the first direction, and a third direction perpendicular to the first and second directions. It can be done.
  • the inlet and the outlet are each cylindrical, located in the opposite direction of the body and arranged on a straight line, according to the pressure and flow rate of the fluid flowing inside the body, the inlet
  • the distance between the part and the outlet part can vary.
  • the flow pulsation control elastic damper may further include an inlet support for supporting the inlet and an outlet support for supporting the outlet.
  • a distance between the inlet support part and the outlet support part may change according to a volume change of the body part.
  • a method for reducing flow pulsation according to an embodiment for realizing the object of the present invention described above is to reduce flow pulsation of a fluid transport system including a pump and a flow path connected to the pump, an elastic damper for controlling flow pulsation in the flow path to install
  • the calculating step may use the following Equation 1.
  • the material, volume and thickness of the body can be calculated so that the coefficient of the sin term and the coefficient of the cos term are 0.
  • the theoretically calculated pressure and volume change of the body corresponds to a section in which the slope between the maximum pressure and the second pressure increase section is 0 in the theoretically calculated pressure-volume diagram of the body. It is possible to calculate the volume and thickness of the body portion so as to do so.
  • the pump of the fluid transport system may be a peristaltic pump including a motor.
  • a method of manufacturing a flow pulsation control damper includes disposing a lower mold having a hemispherical depression, an inlet groove, and an outlet groove, and forming elastic on the lower mold. Applying a material, disposing an inner mold on the lower mold to which the elastic material is applied, further applying an elastic material on the inner mold, and the inner mold and the lower mold to which the elastic material is applied.
  • an upper mold having a hemispherical depression, an inlet groove, and an outlet groove formed thereon on a mold, curing the elastic material to form an elastic damper for controlling flow pulsation, and then placing the inner mold on the elastic damper for controlling flow pulsation and separating them to the outside using the elastic force of the damper.
  • the flow rate pulsation control damper forms an inner spherical space in a spherical shape, and forms an elastic body portion having elasticity and an inlet communicating with the space portion, the body portion It may include an inlet connected to the inlet, and an outlet connected to the space, and an outlet connected to the body.
  • a body portion forming an inner spherical space in a spherical shape, an inlet portion forming an inlet communicating with the space portion, and an inlet portion connected to the body portion, and A flow pulsation control elastic damper including an outlet port communicating with the space portion and an outlet portion connected to the body portion is manufactured.
  • a method of manufacturing a flow pulsation control damper includes disposing a lower mold formed with a hemispherical depression, an inlet groove connected to the depression, and a cylindrical opening connected to the depression, the inlet groove of the lower mold, Filling the recess with an elastic material, disposing an inner mold having a shape corresponding to the space, the inlet and the outlet in the lower mold filled with the elastic material, the recess in which the inner mold is disposed disposing an upper mold within the portion and the cylindrical opening, curing the elastic material to form a flow pulsation control elastic damper, and then separating the inner mold to the outside using the elastic force of the flow pulsation control elastic damper.
  • the flow pulsation control elastic damper forms an inner spherical space in a spherical shape, and can effectively reduce pulsation by using a body portion formed of an elastic body and having elasticity.
  • FIG. 1 is a view showing an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
  • FIG. 2 is a view showing a method of manufacturing an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
  • FIG. 3 is a view showing a method of manufacturing an elastic damper for controlling flow pulsation according to another embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a method for reducing flow pulsation using an elastic damper for controlling flow pulsation in a flow path according to an embodiment of the present invention.
  • FIG. 5(a) is a graph showing the stress-strain curve of a general linear rubber
  • FIG. 5(b) is a graph showing the pressure-volume curve of a spherical superelastic body.
  • FIG. 6 is a diagram modeling a fluid flow of an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
  • Figure 7 (a) is a graph showing the pressure-volume curve according to the material
  • Figure 7 (b) is a graph showing that a suitable material can be found according to the average pressure.
  • FIG. 8 is a diagram showing experimental results comparing pulsation relief of a conventional commercial pulsation damper and an elastic damper for controlling flow pulsation according to an embodiment of the present invention with respect to a peristaltic pump.
  • FIG. 9 is a view showing experimental results comparing pulsation relief of a conventional commercial pulsation damper and an elastic damper for controlling flow pulsation according to an embodiment of the present invention with respect to an axial flow pump.
  • FIG. 1 is a view showing an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
  • the flow pulsation control elastic damper includes a body portion 100, an inlet portion 110, and an outlet portion 120.
  • the flow pulsation control elastic damper may further include an inlet support part 210 and an outlet support part 220 .
  • the body portion 100 forms an inner spherical space portion SP in a spherical shape, and may have elasticity by being formed of an elastic body.
  • the body portion 100 may be formed using a silicone elastomer.
  • Ecoflex's elastomer has good biocompatibility, so there is a case in which a pressure sensor applicable to the bio/medical field has been developed, and the flow pulsation control elastic damper according to an embodiment of the present invention can also be applied to the bio/medical field will be.
  • silicone elastomer has excellent heat resistance and cold resistance compared to general organic synthetic rubber, can be used for a long time without deterioration of physical properties even when temperature changes, maintains flexibility, and does not significantly change electrical properties, so that the body portion (100 ) is suitable for the material.
  • the inlet part 110 forms an inlet communicating with the space part SP and may have a cylindrical shape connected to the body part.
  • the outlet part 120 forms an outlet communicating with the space part SP and may have a cylindrical shape connected to the body part.
  • the inlet 110 and the outlet 120 may be disposed on a straight line by being located in opposite directions of the body 100 .
  • the inlet part 110 and the outlet part 120 may be inclined at a predetermined angle from each other, but it may be advantageous in the manufacturing process to have a predetermined angle or more in consideration of the removal of the internal mold in the manufacturing process.
  • a peristaltic pump is a pump that transports fluid in the form of squeezing a tube from the outside, and is the most widely used pump in situations where constant delivery of fluid without external contamination is important.
  • Such a peristaltic pump compresses a tube between a roller of a rotor part and an external housing, and suctions and discharges fluid through pressure inside the tube generated while the rotor rotates.
  • flow fluctuations occur during this process.
  • Flow pulsation occurring in fluid transport is known to be a problem for patients in a medical environment because drug/blood is delivered discontinuously.
  • pulsation causes various problems in various industrial fields using fluid movement.
  • the flow pulsation control elastic damper according to the present embodiment is composed of an elastomer based on a balloon filled with water, and the volume of the body portion 100 fluctuates while controlling the flow pulsation due to the hyperelastic property of the elastic body. It acts as an elastic damper.
  • the flow pulsation control elastic damper plays a role similar to that of a capacitor in an electronic circuit in the fluid transport system, and thus effectively reduces pulsation. there is.
  • the flow pulsation control elastic damper according to the present embodiment can be applied for medical purposes.
  • the flow rate pulsation control elastic damper can reduce the flow rate pulsation of a fluid transportation system including a pump and a flow path connected to the pump. At this time, the flow pulsation control elastic damper can efficiently reduce the pulsation by using the fluidly changing volume and elasticity due to its hyperelastic property.
  • An optimal flow rate pulsation control elastic damper can be designed using the flow rate flowing into the flow pulsation control elastic damper, the volume, thickness, and physical properties of the flow pulsation control elastic damper.
  • the inlet support part 210 and the outlet support part 220 may support the inlet part 120 and the outlet part 130, respectively, and may be configured to be movable along the first direction D1.
  • the body portion 100 moves in the first direction D1 and the second direction perpendicular to the first direction D1 by using a rotating member such as a wheel or a guide rail.
  • (D2) and the third direction (D3) perpendicular to the second direction (D2) can be freely expanded and contracted in any direction.
  • FIG. 2 is a view showing a method of manufacturing an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
  • a method of manufacturing an elastic damper for controlling flow pulsation includes disposing a lower mold 10 having a hemispherical depression, an inlet groove, and an outlet groove, and forming an elastic material on the lower mold 10 ( CT), disposing the inner mold 20 on the lower mold 10 to which the elastic material CT is applied, and further applying the elastic material CT on the inner mold 20.
  • Applying step disposing an upper mold 30 formed with a hemispherical depression, an inlet groove, and an outlet groove on the inner mold 20 and the lower mold 10 to which the elastic material (CT) is applied.
  • Step after curing the elastic material (CT) to form a flow pulsation control elastic damper (DP), the inner mold 20 is separated to the outside by using the elastic force of the flow pulsation control elastic damper (DP) steps may be included.
  • 3(a) to 3(e) are diagrams illustrating a method of manufacturing an elastic damper for controlling flow pulsation according to another embodiment of the present invention.
  • a hemispherical depression 12, an inlet groove 16 connected to the depression 12, and a cylindrical opening 14 connected to the depression 120 are formed.
  • the lower mold 10 and the inner mold 20 may be prepared.
  • the inlet groove 16 and the recessed portion 120 of the lower mold 10 may be filled with an elastic material CT.
  • the inner mold 20 may be located at a position slightly spaced apart from the recessed portion 120 (upward direction in the drawing) so that the elastic material CT can be sufficiently filled.
  • a space (see SP in FIG. 1), an inlet (see FIG. 1), and an outlet (see FIG. 1) correspond to each other.
  • the inner mold 20 having a shape may be positioned.
  • a shape corresponding to the space of the inner mold 20 is placed in the depression 120 of the lower mold 10 so that the elastic material is interposed between the inner mold 20 and the lower mold 10. (CT) to form the body of the flow pulsation control elastic damper.
  • the upper mold 30 is placed in the depression 12 and the cylindrical opening 14 where the inner mold 20 is disposed, thereby changing the shape of the flow pulsation control elastic damper.
  • a body portion 100 that forms an inner spherical space in a spherical shape by curing the elastic material CT, an inlet portion 110 that forms an inlet communicating with the space portion and is connected to the body portion, and It is possible to form an elastic damper for controlling flow pulsation including an outlet port communicating with the space portion and an outlet portion 120 connected to the body portion.
  • the upper mold 30 and the lower mold 10 are removed, and the inner mold 20 is separated to the outside using the elastic force of the flow pulsation control elastic damper. , It is possible to manufacture the flow pulsation control damper.
  • FIG. 4 is a diagram illustrating a method for reducing flow pulsation using an elastic damper for controlling flow pulsation in a flow path according to an embodiment of the present invention.
  • a flow pulsation reduction method using an elastic damper for controlling flow pulsation is used in the flow path.
  • the flow pulsation reduction method may include measuring flow characteristics (S100), calculating the volume and thickness of the body (S200), and manufacturing (S300).
  • the characteristics of the flow rate in the passage of the fluid transportation system may be measured.
  • the average flow rate (constant flow rate) of the inlet flow rate of the flow pulsation control elastic damper, the size of the pulsation, the frequency of the pulsation, hydraulic resistance, etc. may be measured.
  • volume and thickness of the body S200
  • physical properties such as the volume, thickness and material of the body of the flow rate pulsation control elastic damper may be calculated using the measured flow rate characteristics.
  • an inner spherical space portion is formed in a spherical shape corresponding to the calculated volume and thickness, an elastic body portion formed of an elastic body and an inlet communicating with the space portion are formed, It is possible to manufacture a flow pulsation control elastic damper including an inlet connected to the body, and an outlet connected to the space, and including an outlet connected to the body.
  • the flow pulsation control elastic damper may be installed in the flow path of the fluid transportation system.
  • FIG. 5(a) is a graph showing the stress-strain curve of a general linear rubber
  • FIG. 5(b) is a graph showing the pressure-volume curve of a spherical superelastic body.
  • a general linear rubber structure increases its length (strain) along the direction in which force is applied, and the stress it receives increases proportionally.
  • the fluid transport system is configured so that the pressure and volume fluctuation section of the flow pulsation control elastic damper is located in the section with a slope of O on the graph, despite the pulsation of the fluid input to the flow pulsation control elastic damper, the flow pulsation control elasticity
  • the fluid passing through the damper can be controlled to be output at a constant pressure.
  • FIG. 6 is a diagram modeling a fluid flow of an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
  • Equations 1 and 2 the fluid flowing through the flow pulsation control elastic damper can be modeled by Equations 1 and 2 below.
  • Qin is the inlet flow rate
  • V is the volume of the body
  • Qout is the outlet flow rate
  • the inlet flow rate Qin can be expressed as the sum of the constant flow Q0 term and the pulsating asinwt term.
  • a0 is the magnitude of the pulsation
  • sinwt is the vibration function of the pulsation.
  • Equation 3 The governing equation of the phase fluid model is Equation 3.
  • Pdamper is the pressure of the flow pulsation control elastic damper
  • Routlet is the hydraulic resistance
  • k is the expansion coefficient of the body (balloon)
  • Vdamper is the volume of the body.
  • Equation 4 The time-dependent derivative of the governing equation is as shown in Equation 4.
  • Equation 6 By solving the differential equation for Qout, Equation 6 can be obtained.
  • Figure 7 (a) is a graph showing the pressure-volume curve according to the material
  • Figure 7 (b) is a graph showing that a suitable material can be found according to the average pressure.
  • the pressure-volume curves were measured (EXP) and predicted (Prediction) for three samples of 2t (mm) and 3t thick materials for two materials. It can be seen that different curves are formed depending on the material and thickness. That is, by properly designing the material, thickness, volume, etc. forming the body for each desired pressure and flow rate, the pressure and flow rate range of the system can be located in the zero stiffness section where the pulsation of the fluid system can be reduced. there is.
  • FIG. 7 (b) it is a graph showing the relationship of the shear modulus according to the average value of the flow rate, and the corresponding value is located according to the material and thickness of the body part on the prediction curve, so that the fluid system can be properly designed.
  • An elastic damper can be designed to control the flow pulsation that can minimize the pulsation of the flow rate.
  • FIG. 8 is a diagram showing experimental results comparing pulsation relief of a conventional commercial pulsation damper and an elastic damper for controlling flow pulsation according to an embodiment of the present invention with respect to a peristaltic pump.
  • a sample of a flow pulsation control elastic damper was fabricated and an experiment was conducted to compare pulsation relief with conventional products.
  • a piezoelectric pressure sensor was fabricated and normalized mechanical stress data generated due to pulsation were collected.
  • the degree of pulsation mitigation was compared with a commercially available pulsation damper on the market.
  • FIG. 9 is a view showing experimental results comparing pulsation relief of a conventional commercial pulsation damper and an elastic damper for controlling flow pulsation according to an embodiment of the present invention with respect to an axial flow pump.
  • body part 110 inlet part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Pipe Accessories (AREA)

Abstract

An elastic damper for controlling flow pulsation comprises: a body part which has a spherical shape and has elasticity by being formed from an elastic body, and has a spherical space part formed therein; an entrance part which is connected to the body part and forms an inlet communicating with the space part; and an exit part which is connected to the body part and forms an outlet communicating with the space part.

Description

유량 맥동 조절 탄성 댐퍼, 이의 제조 방법 및 유량 맥동 저감 방법Flow pulsation control elastic damper, manufacturing method thereof, and flow pulsation reduction method
본 발명은 유량 맥동 조절 탄성 댐퍼, 상기 유량 맥동 조절 탄성 댐퍼의 제조 방법 및 유량 맥동 저감 방법에 관한 것으로, 보다 상세하게는 유체 수송 시 펌프로부터 발생하는 맥동 완화를 위한 유량 맥동 조절 탄성 댐퍼, 상기 유량 맥동 조절 탄성 댐퍼의 제조 방법 및 상기 유량 맥동 조절 탄성 댐퍼를 이용한 유량 맥동 저감 방법에 관한 것이다.The present invention relates to a flow pulsation control elastic damper, a method for manufacturing the flow pulsation control elastic damper, and a method for reducing flow pulsation, and more particularly, to a flow pulsation control elastic damper for mitigating pulsation generated from a pump during fluid transport, the flow rate It relates to a manufacturing method of a pulsation control elastic damper and a flow pulsation reduction method using the flow pulsation control elastic damper.
유체를 수송하는데 있어서 펌프가 필수적으로 이용된다. 모터를 이용한 펌프의 경우, 작동 원리 상 유로에 맥동이 발생하게 되고, 이러한 맥동은 정밀 화학, 의약품 등의 정밀한 유체의 제어가 필요한 산업 분야에서는 치명적인 결함을 발생시킬 수 있다. 이에 다양한 방식의 맥동 저감을 위한 댐퍼 들이 개발되고 있으나, 맥동을 줄이는데 한계가 있다. Pumps are essentially used to transport fluids. In the case of a pump using a motor, pulsation occurs in the flow path due to the operating principle, and this pulsation may cause fatal defects in industries requiring precise fluid control such as fine chemicals and pharmaceuticals. Accordingly, dampers for reducing pulsation in various ways are being developed, but there is a limit to reducing pulsation.
한편, 맥동에 민감한 공정의 경우, 시린지 펌프 등을 이용하여 맥동 자체를 없애기 위한 노력들이 있으나, 시린지 펌프의 구조상 대량 제조에 불리하고, 일반적인 모터 펌프를 이용하는 경우 대비 효율성이 떨어지기 마련이다. On the other hand, in the case of a process sensitive to pulsation, efforts are made to eliminate pulsation itself by using a syringe pump, etc., but the structure of the syringe pump is disadvantageous to mass production, and the efficiency is lowered compared to the case of using a general motor pump.
따라서, 기존의 모터 펌프를 이용하면서도, 맥동을 저감하기 위한 유량 맥동 저감 장치에 대한 연구가 있어왔다.Therefore, there has been a study on a flow pulsation reducing device for reducing pulsation while using an existing motor pump.
이에 본 발명의 기술적 과제는 단순한 구조와 높은 맥동 완화율을 갖는 유량 맥동 조절 탄성 댐퍼를 제공하는 것이다. Therefore, the technical problem of the present invention is to provide a flow pulsation control elastic damper having a simple structure and a high pulsation mitigation rate.
본 발명의 다른 목적은 상기 맥동 조절 탄성 댐퍼의 제조 방법을 제공하는 것이다. Another object of the present invention is to provide a method for manufacturing the pulsation control elastic damper.
본 발명의 다른 목적은 유량 맥동 조절 탄성 댐퍼을 제공하는 것이다.Another object of the present invention is to provide an elastic damper for controlling flow pulsation.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼는 구체 형태로 내부 구형의 공간부를 형성하며, 탄성체로 형성되어 탄성을 갖는 몸체부, 상기 공간부에 연통되는 유입구를 형성하며, 상기 몸체부에 연결되는 입구부, 및 상기 공간부에 연통되는 유출구를 형성하며, 상기 몸체부에 연결되는 출구부를 포함한다. An elastic damper for controlling flow pulsation according to an embodiment for realizing the above object of the present invention forms an inner spherical space in a spherical shape, and has an elastic body formed of an elastic body and an inlet communicating with the space It forms an inlet connected to the body, and an outlet communicating with the space, and includes an outlet connected to the body.
본 발명의 일 실시예에 있어서, 상기 몸체부는 실리콘 탄성 중합체를 이용하여 형성할 수 있다. In one embodiment of the present invention, the body portion may be formed using a silicone elastomer.
본 발명의 일 실시예에 있어서, 상기 몸체부는 내부에 수용되는 유체의 압력과 부피에 따라 부피가 변화할 수 있다. In one embodiment of the present invention, the volume of the body portion may change according to the pressure and volume of the fluid accommodated therein.
본 발명의 일 실시예에 있어서, 상기 몸체부의 부피의 변화는 제1 방향, 상기 제1 방향과 수직한 제2 방향 및 상기 제1 및 제2 방향과 수직한 제3 방향을 따라 3차원적으로 이루어질 수 있다. In one embodiment of the present invention, the change in volume of the body is three-dimensionally along a first direction, a second direction perpendicular to the first direction, and a third direction perpendicular to the first and second directions. It can be done.
본 발명의 일 실시예에 있어서, 상기 입구부와 상기 출구부는 각각 원통형이며, 상기 몸체부의 반대 방향에 위치하여 일직선 상에 배치되고, 상기 몸체부 내부를 흐르는 유체의 압력과 유속에 따라, 상기 입구부와 상기 출구부 사이의 거리가 변화할 수 있다. In one embodiment of the present invention, the inlet and the outlet are each cylindrical, located in the opposite direction of the body and arranged on a straight line, according to the pressure and flow rate of the fluid flowing inside the body, the inlet The distance between the part and the outlet part can vary.
본 발명의 일 실시예에 있어서, 상기 유량 맥동 조절 탄성 댐퍼는 상기 입구부를 지지하는 입구부 지지부, 및 상기 출구부를 지지하는 출구부 지지부를 더 포함할 수 있다. 상기 입구부 지지부와 상기 출구부 지지부 사이의 간격은 상기 몸체부의 부피 변화에 따라 변화할 수 있다. In one embodiment of the present invention, the flow pulsation control elastic damper may further include an inlet support for supporting the inlet and an outlet support for supporting the outlet. A distance between the inlet support part and the outlet support part may change according to a volume change of the body part.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 유량 맥동 저감 방법은 펌프 및 상기 펌프에 연결되는 유로를 포함하는 유체 수송 시스템의 유량 맥동을 저감하기 위해, 상기 유로에 유량 맥동 조절 탄성 댐퍼를 설치한다. 상기 유량 맥동 저감 방법은 상기 유체 수송 시스템의 상기 유로 내의 유량의 특성을 측정하는 단계, 측정된 상기 유량의 특성을 이용하여, 상기 유량 맥동 조절 탄성 댐퍼의 몸체부의 부피와 두께를 산출하는 단계, 상기 산출된 부피와 두께에 대응하는 구체 형태로 내부 구형의 공간부를 형성하며, 탄성체로 형성되어 탄성을 갖는 상기 몸체부, 상기 공간부에 연통되는 유입구를 형성하며 상기 몸체부에 연결되는 입구부, 및 상기 공간부에 연통되는 유출구를 형성하며 상기 몸체부에 연결되는 출구부를 포함하는 유량 맥동 조절 탄성 댐퍼를 제조하는 단계, 및 상기 유량 맥동 조절 탄성 댐퍼를 상기 유체 수송 시스템의 상기 유로에 설치하는 단계를 포함한다. A method for reducing flow pulsation according to an embodiment for realizing the object of the present invention described above is to reduce flow pulsation of a fluid transport system including a pump and a flow path connected to the pump, an elastic damper for controlling flow pulsation in the flow path to install The flow pulsation reduction method includes measuring the characteristics of the flow rate in the flow path of the fluid transport system, calculating the volume and thickness of the body portion of the flow pulsation control elastic damper using the measured characteristics of the flow rate, the An inner spherical space in a spherical shape corresponding to the calculated volume and thickness, the body part formed of an elastic body and having elasticity, an inlet part connected to the body part and forming an inlet communicating with the space part, and Forming an outlet communicating with the space and manufacturing a flow pulsation control elastic damper including an outlet connected to the body, and installing the flow pulsation control elastic damper in the flow path of the fluid transport system include
본 발명의 일 실시예에 있어서, 상기 산출하는 단계는, 다음의 수학식1을 이용할 수 있다. In one embodiment of the present invention, the calculating step may use the following Equation 1.
Figure PCTKR2022016911-appb-img-000001
[수학식1]
Figure PCTKR2022016911-appb-img-000001
[Equation 1]
(Qin 입구 유량, q0: 일정 유량, a0: 맥동의 크기, sinwt, coswt: 맥동의 진동함수, R: 유압 저항, k: 몸체부의 팽창 계수)(Qin inlet flow rate, q0: constant flow rate, a0: magnitude of pulsation, sinwt, coswt: vibration function of pulsation, R: hydraulic resistance, k: expansion coefficient of body part)
본 발명의 일 실시예에 있어서, Sin항의 계수와 cos항의 계수가 0이되도록, 상기 몸체부의 재질, 부피와 두께를 산출할 수 있다. In one embodiment of the present invention, the material, volume and thickness of the body can be calculated so that the coefficient of the sin term and the coefficient of the cos term are 0.
본 발명의 일 실시예에 있어서, 상기 몸체부의 압력과 부피 변화를 이론적으로 계산하여, 이론적으로 계산된 상기 몸체부의 압력-부피 선도에서 최대 압력과 두번째 압력 증가 구간 사이의 기울기가 O인 구간에 대응하도록 상기 몸체부의 부피와 두께를 산출할 수 있다. In one embodiment of the present invention, the theoretically calculated pressure and volume change of the body corresponds to a section in which the slope between the maximum pressure and the second pressure increase section is 0 in the theoretically calculated pressure-volume diagram of the body. It is possible to calculate the volume and thickness of the body portion so as to do so.
본 발명의 일 실시예에 있어서, 상기 유체 수송 시스템의 상기 펌프는 모터를 포함하는 연동 펌프일 수 있다. In one embodiment of the present invention, the pump of the fluid transport system may be a peristaltic pump including a motor.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 유량 맥동 조절 댐퍼의 제조 방법은 반구형의 함몰부와 입구부 홈 및 출구부 홈이 형성된 하부 몰드를 배치하는 단계, 상기 하부 몰드 상에 탄성 물질을 도포하는 단계, 상기 탄성 물질이 도포된 상기 하부 몰드 상에 내부 몰드를 배치하는 단계, 상기 내부 몰드 상에 탄성 물질을 추가로 도포하는 단계, 상기 탄성 물질이 도포된 상기 내부 몰드 및 상기 하부 몰드 상에 반구형의 함몰부와 입구부 홈 및 출구부 홈이 형성된 상부 몰드를 배치하는 단계, 상기 탄성 물질을 경화시켜, 유량 맥동 조절 탄성 댐퍼를 형성한 후, 상기 내부 몰드를 상기 유량 맥동 조절 탄성 댐퍼의 탄성력을 이용하여 외부로 분리시키는 단계를 포함한다. A method of manufacturing a flow pulsation control damper according to an embodiment for realizing the object of the present invention described above includes disposing a lower mold having a hemispherical depression, an inlet groove, and an outlet groove, and forming elastic on the lower mold. Applying a material, disposing an inner mold on the lower mold to which the elastic material is applied, further applying an elastic material on the inner mold, and the inner mold and the lower mold to which the elastic material is applied. Disposing an upper mold having a hemispherical depression, an inlet groove, and an outlet groove formed thereon on a mold, curing the elastic material to form an elastic damper for controlling flow pulsation, and then placing the inner mold on the elastic damper for controlling flow pulsation and separating them to the outside using the elastic force of the damper.
본 발명의 일 실시예에 있어서, 상기 유량 맥동 조절 댐퍼는 구체 형태로 내부 구형의 공간부를 형성하며, 탄성체로 형성되어 탄성을 갖는 몸체부, 상기 공간부에 연통되는 유입구를 형성하며, 상기 몸체부에 연결되는 입구부, 및 상기 공간부에 연통되는 유출구를 형성하며, 상기 몸체부에 연결되는 출구부를 포함할 수 있다. In one embodiment of the present invention, the flow rate pulsation control damper forms an inner spherical space in a spherical shape, and forms an elastic body portion having elasticity and an inlet communicating with the space portion, the body portion It may include an inlet connected to the inlet, and an outlet connected to the space, and an outlet connected to the body.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따르면, 구체 형태로 내부 구형의 공간부를 형성하는 몸체부, 상기 공간부에 연통되는 유입구를 형성하며, 상기 몸체부에 연결되는 입구부, 및 상기 공간부에 연통되는 유출구를 형성하며, 상기 몸체부에 연결되는 출구부를 포함하는 유량 맥동 조절 탄성 댐퍼를 제조한다. 유량 맥동 조절 댐퍼의 제조 방법은 반구형의 함몰부, 상기 함몰부에 연결되는 입구부 홈, 및 상기 함몰부에 연결되는 원통형 개구부가 형성된 하부 몰드를 배치하는 단계, 상기 하부 몰드의 상기 입구부 홈, 상기 함몰부에 탄성 물질을 채우는 단계, 상기 탄성 물질이 채워진 상기 하부 몰드 내에, 상기 공간부, 상기 유입구 및 상기 유출구에 대응되는 형태를 갖는 내부 몰드를 배치하는 단계, 상기 내부 몰드가 배치된 상기 함몰부 및 상기 원통형 개구부 내에 상부 몰드를 배치하는 단계, 상기 탄성 물질을 경화시켜, 유량 맥동 조절 탄성 댐퍼를 형성한 후, 상기 내부 몰드를 상기 유량 맥동 조절 탄성 댐퍼의 탄성력을 이용하여 외부로 분리시키는 단계를 포함한다. According to one embodiment for realizing the above object of the present invention, a body portion forming an inner spherical space in a spherical shape, an inlet portion forming an inlet communicating with the space portion, and an inlet portion connected to the body portion, and A flow pulsation control elastic damper including an outlet port communicating with the space portion and an outlet portion connected to the body portion is manufactured. A method of manufacturing a flow pulsation control damper includes disposing a lower mold formed with a hemispherical depression, an inlet groove connected to the depression, and a cylindrical opening connected to the depression, the inlet groove of the lower mold, Filling the recess with an elastic material, disposing an inner mold having a shape corresponding to the space, the inlet and the outlet in the lower mold filled with the elastic material, the recess in which the inner mold is disposed disposing an upper mold within the portion and the cylindrical opening, curing the elastic material to form a flow pulsation control elastic damper, and then separating the inner mold to the outside using the elastic force of the flow pulsation control elastic damper. includes
본 발명의 실시예들에 따르면, 유량 맥동 조절 탄성 댐퍼는 구체 형태로 내부 구형의 공간부를 형성하며, 탄성체로 형성되어 탄성을 갖는 몸체부를 이용하여 맥동을 효과적으로 저감할 수 있다. According to embodiments of the present invention, the flow pulsation control elastic damper forms an inner spherical space in a spherical shape, and can effectively reduce pulsation by using a body portion formed of an elastic body and having elasticity.
다만, 본 발명의 효과는 상기 효과들로 한정되는 것이 아니며, 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위에서 다양하게 확장될 수 있을 것이다. However, the effects of the present invention are not limited to the above effects, and may be expanded in various ways without departing from the spirit and scope of the present invention.
도 1은 본 발명의 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼를 나타낸 도면이다.1 is a view showing an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼의 제조 방법을 나타낸 도면이다. 2 is a view showing a method of manufacturing an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 유량 맥동 조절 탄성 댐퍼의 제조 방법을 나타낸 도면이다.3 is a view showing a method of manufacturing an elastic damper for controlling flow pulsation according to another embodiment of the present invention.
도 4은 본 발명의 일 실시예에 따른 유로에 유량 맥동 조절 탄성 댐퍼를 이용하는 유량 맥동 저감 방법을 나타낸 도면이다. 4 is a diagram illustrating a method for reducing flow pulsation using an elastic damper for controlling flow pulsation in a flow path according to an embodiment of the present invention.
도 5(a)는 일반적인 선형 형태의 고무의 stress- strain 커브를 나타낸 그래프이고, 도 5(b)는 구형 초탄성체의 pressure-volume 커브를 나타낸 그래프이다. FIG. 5(a) is a graph showing the stress-strain curve of a general linear rubber, and FIG. 5(b) is a graph showing the pressure-volume curve of a spherical superelastic body.
도 6은 본 발명의 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼의 유체 흐름을 모델링한 도면이다. 6 is a diagram modeling a fluid flow of an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
도 7(a)는 재질에 따른 pressure-volume 커브를 나타낸 그래프이고, 도 7(b)는 평균 압력에 따라 적절한 재질을 찾을 수 있음을 나타내는 그래프이다.Figure 7 (a) is a graph showing the pressure-volume curve according to the material, Figure 7 (b) is a graph showing that a suitable material can be found according to the average pressure.
도 8은 연동 펌프에 대해, 종래 상용 맥동 댐퍼와 본 발명의 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼의 맥동 완화를 비교한 실험결과는 나타낸 도면이다.8 is a diagram showing experimental results comparing pulsation relief of a conventional commercial pulsation damper and an elastic damper for controlling flow pulsation according to an embodiment of the present invention with respect to a peristaltic pump.
도 9는 축류 펌프에 대해, 종래 상용 맥동 댐퍼와 본 발명의 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼의 맥동 완화를 비교한 실험결과는 나타낸 도면이다. 9 is a view showing experimental results comparing pulsation relief of a conventional commercial pulsation damper and an elastic damper for controlling flow pulsation according to an embodiment of the present invention with respect to an axial flow pump.
이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention may have various changes and various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, it should be understood that this is not intended to limit the present invention to the specific disclosed form, and includes all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
도 1은 본 발명의 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼를 나타낸 도면이다.1 is a view showing an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
도 1을 참조하면, 유량 맥동 조절 탄성 댐퍼는 몸체부(100), 입구부(110) 및 출구부(120)를 포함한다. 상기 유량 맥동 조절 탄성 댐퍼는 입구부 지지부(210) 및 출구부 지지부(220)를 더 포함할 수 있다. Referring to FIG. 1 , the flow pulsation control elastic damper includes a body portion 100, an inlet portion 110, and an outlet portion 120. The flow pulsation control elastic damper may further include an inlet support part 210 and an outlet support part 220 .
상기 몸체부(100)는 구체 형태로 내부 구형의 공간부(SP)를 형성하며, 탄성체로 형성되어 탄성을 가질 수 있다. 예를 들면, 상기 몸체부(100)는 실리콘 탄성 중합체를 이용하여 형성될 수 있다. 예를 들면, Ecoflex사의 탄성 중합체는 생체 적합성이 좋아서 바이오/의료 분야에 적용 가능한 압력 센서를 개발한 사례가 있으며, 본 발명의 실시예에 따른 유량 맥동 조절 탄성 댐퍼 역시 바이오/의료 분야에 적용될 수 있을 것이다. 또한, 실리콘 탄성 중합체는 일반 유기 합성 고무에 비해 내열성과 내한성이 우수하며, 온도 변화에도 물성의 저하 없이 장시간 사용이 가능하고, 유연성을 유지할 뿐만 아니라 전기적 특성 또한 크게 변화하지 않아, 상기 몸체부(100)의 재질로 적합하다. The body portion 100 forms an inner spherical space portion SP in a spherical shape, and may have elasticity by being formed of an elastic body. For example, the body portion 100 may be formed using a silicone elastomer. For example, Ecoflex's elastomer has good biocompatibility, so there is a case in which a pressure sensor applicable to the bio/medical field has been developed, and the flow pulsation control elastic damper according to an embodiment of the present invention can also be applied to the bio/medical field will be. In addition, silicone elastomer has excellent heat resistance and cold resistance compared to general organic synthetic rubber, can be used for a long time without deterioration of physical properties even when temperature changes, maintains flexibility, and does not significantly change electrical properties, so that the body portion (100 ) is suitable for the material.
상기 입구부(110)는 상기 공간부(SP)에 연통되는 유입구를 형성하며, 상기 몸체부에 연결되는 원통 형상을 가질 수 있다. 상기 출구부(120)는 상기 공간부(SP)에 연통되는 유출구를 형성하며, 상기 몸체부에 연결되는 원통 형상을 가질 수 있다. The inlet part 110 forms an inlet communicating with the space part SP and may have a cylindrical shape connected to the body part. The outlet part 120 forms an outlet communicating with the space part SP and may have a cylindrical shape connected to the body part.
상기 입구부(110)와 상기 출구부(120)는 서로 상기 몸체부(100)의 반대 방향에 위치하여 일직선 상에 배치될 수 있다. 상기 입구부(110)와 상기 출구부(120)는 서로 소정각도 경사지게 배치될 수 있으나, 제조 과정상의 내부 몰드 제거를 고려하여 소정각도 이상을 갖는 것이 제조 과정에 있어서 유리할 수 있다. The inlet 110 and the outlet 120 may be disposed on a straight line by being located in opposite directions of the body 100 . The inlet part 110 and the outlet part 120 may be inclined at a predetermined angle from each other, but it may be advantageous in the manufacturing process to have a predetermined angle or more in consideration of the removal of the internal mold in the manufacturing process.
일반적으로, 연동펌프(peristaltic pump)는 튜브를 외부에서 짜내는 형식으로 유체를 수송하는 펌프로써 외부 오염없이 유체의 정량 토출(constant delivery)이 중요한 상황에서 가장 널리 사용되는 펌프이다. In general, a peristaltic pump is a pump that transports fluid in the form of squeezing a tube from the outside, and is the most widely used pump in situations where constant delivery of fluid without external contamination is important.
이러한 연동 펌프를 구성하는 로터의 회전 속도를 조절하면 유량을 세밀하게 조절함으로써 정량 토출이 가능하기 때문에 심장수술 중 혈액 공급에 사용되거나, 환자의 체내에 약물을 공급하기 위해서 정확한 양을 지속적인 방법으로 주입해야 하는 치료 상황이나 휴대용 약물 주입의 펌프 등 펌프에 의한 오염 없이 미량의 유동을 제어하는 환경에서 사용될 수 있다. 또한 화학 물질로 인한 부식이나 슬러지(sludge)로 인한 손상이 발생했을 때 호스만 교체하면 되어 위생관리에 용이하며 유일한 교체 부품인 호스는 단기간에 쉽게 교체할 수 있어 효과적이고 경제적이다. By adjusting the rotational speed of the rotor constituting these peristaltic pumps, it is possible to discharge a fixed amount by finely adjusting the flow rate, so it is used for blood supply during heart surgery or to continuously inject an accurate amount to supply drugs to the patient's body. It can be used in an environment where a small amount of flow is controlled without contamination by a pump, such as a treatment situation or a portable drug infusion pump. In addition, when corrosion due to chemicals or damage due to sludge occurs, only the hose needs to be replaced, which is convenient for hygiene management, and the hose, which is the only replacement part, can be easily replaced in a short period of time, which is effective and economical.
이러한 연동 펌프는, 로터부의 롤러와 외부 하우징 사이에서 튜브를 압착하고 로터가 회전하면서 생기는 튜브 내부 압력을 통해 유체를 흡입 송출되게 된다. 하지만 이 과정에서 유량맥동(flow fluctuation)이 발생한다.Such a peristaltic pump compresses a tube between a roller of a rotor part and an external housing, and suctions and discharges fluid through pressure inside the tube generated while the rotor rotates. However, flow fluctuations occur during this process.
유체 수송에서 발생하는 유량맥동은 의료 환경에서는 약물/혈액이 비연속적으로 전달되어 환자에게 문제되는 것으로 알려져 있다. 또한 유체의 이동을 이용하는 다양한 산업분야에서도 맥동은 다양한 문제의 원인이 된다. Flow pulsation occurring in fluid transport is known to be a problem for patients in a medical environment because drug/blood is delivered discontinuously. In addition, pulsation causes various problems in various industrial fields using fluid movement.
본 실시예에 따른 유량 맥동 조절 탄성 댐퍼는 물을 가득 채운 풍선에 착안해서 탄성체(elastomer)로 구성되어있으며, 탄성체의 hyperelastic 한 성질에 의해, 상기 몸체부(100)의 부피가 변동하면서 유량 맥동 조절 탄성 댐퍼로서 작용하게 된다. 특히, 탄성체로 구성된 상기 몸체부(100)의 hyperelastic 한 성질에 의해, 상기 유량 맥동 조절 탄성 댐퍼는 상기 유체 수송 시스템에서 전자 회로의 캐퍼시터와 유사한 역할을 하게 되며, 이에 따라 맥동을 효율적으로 저감할 수 있다. 또한, 본 실시예에 따른 유량 맥동 조절 탄성 댐퍼는 의료용으로 적용될 수 있음을 확인하였다. The flow pulsation control elastic damper according to the present embodiment is composed of an elastomer based on a balloon filled with water, and the volume of the body portion 100 fluctuates while controlling the flow pulsation due to the hyperelastic property of the elastic body. It acts as an elastic damper. In particular, due to the hyperelastic nature of the body part 100 composed of an elastic body, the flow pulsation control elastic damper plays a role similar to that of a capacitor in an electronic circuit in the fluid transport system, and thus effectively reduces pulsation. there is. In addition, it was confirmed that the flow pulsation control elastic damper according to the present embodiment can be applied for medical purposes.
본 실시예에 따르면, 상기 유량 맥동 조절 탄성 댐퍼는 펌프 및 상기 펌프에 연결되는 유로를 포함하는 유체 수송 시스템의 유량 맥동을 저감할 수 있다. 이때, 상기 유량 맥동 조절 탄성 댐퍼는 hyperelastic 한 성질에 의해, 유동적으로 변화하는 부피와 탄성을 이용해 맥동을 효율적으로 저감할 수 있다. According to this embodiment, the flow rate pulsation control elastic damper can reduce the flow rate pulsation of a fluid transportation system including a pump and a flow path connected to the pump. At this time, the flow pulsation control elastic damper can efficiently reduce the pulsation by using the fluidly changing volume and elasticity due to its hyperelastic property.
상기 유량 맥동 조절 탄성 댐퍼에 유입되는 유량, 상기 유량 맥동 조절 탄성 댐퍼의 부피, 두께 및 물성 등을 이용하여 최적의 유량 맥동 조절 탄성 댐퍼를 설계할 수 있다. An optimal flow rate pulsation control elastic damper can be designed using the flow rate flowing into the flow pulsation control elastic damper, the volume, thickness, and physical properties of the flow pulsation control elastic damper.
상기 입구부 지지부(210) 및 상기 출구부 지지부(220)는 각각 상기 입구부(120) 및 상기 출구부(130)를 지지하고, 제1 방향(D1)을 따라 이동 가능하도록 구성될 수 있다. 예를 들면, 도면에 도시된 바와 같이 바퀴 등의 회전 부재 또는 가이드 레일을 이용하여, 상기 몸체부(100)가 상기 제1 방향(D1), 상기 제1 방향(D1) 과 수직한 제2 방향(D2) 및 상기 제2 방향(D2)과 수직한 제3 방향(D3) 어느 방향으로도 자유롭게 팽창, 수축할 수 있도록 할 수 있다. The inlet support part 210 and the outlet support part 220 may support the inlet part 120 and the outlet part 130, respectively, and may be configured to be movable along the first direction D1. For example, as shown in the drawing, the body portion 100 moves in the first direction D1 and the second direction perpendicular to the first direction D1 by using a rotating member such as a wheel or a guide rail. (D2) and the third direction (D3) perpendicular to the second direction (D2) can be freely expanded and contracted in any direction.
도 2는 본 발명의 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼의 제조 방법을 나타낸 도면이다. 2 is a view showing a method of manufacturing an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
도 2를 참조하면, 유량 맥동 조절 탄성 댐퍼의 제조 방법은 반구형의 함몰부와 입구부 홈 및 출구부 홈이 형성된 하부 몰드(10)를 배치하는 단계, 상기 하부 몰드(10) 상에 탄성 물질(CT)을 도포하는 단계, 상기 탄성 물질(CT)이 도포된 상기 하부 몰드(10) 상에 내부 몰드(20)를 배치하는 단계, 상기 내부 몰드(20) 상에 탄성 물질(CT)을 추가로 도포하는 단계, 상기 탄성 물질(CT)이 도포된 상기 내부 몰드(20) 및 상기 하부 몰드(10) 상에 반구형의 함몰부와 입구부 홈 및 출구부 홈이 형성된 상부 몰드(30)를 배치하는 단계, 상기 탄성 물질(CT)을 경화시켜, 유량 맥동 조절 탄성 댐퍼(DP)를 형성한 후, 상기 내부 몰드(20)를 상기 유량 맥동 조절 탄성 댐퍼(DP)의 탄성력을 이용하여 외부로 분리시키는 단계를 포함할 수 있다. Referring to FIG. 2, a method of manufacturing an elastic damper for controlling flow pulsation includes disposing a lower mold 10 having a hemispherical depression, an inlet groove, and an outlet groove, and forming an elastic material on the lower mold 10 ( CT), disposing the inner mold 20 on the lower mold 10 to which the elastic material CT is applied, and further applying the elastic material CT on the inner mold 20. Applying step, disposing an upper mold 30 formed with a hemispherical depression, an inlet groove, and an outlet groove on the inner mold 20 and the lower mold 10 to which the elastic material (CT) is applied. Step, after curing the elastic material (CT) to form a flow pulsation control elastic damper (DP), the inner mold 20 is separated to the outside by using the elastic force of the flow pulsation control elastic damper (DP) steps may be included.
도 3(a) 내지 도 3(e)는 본 발명의 다른 실시예에 따른 유량 맥동 조절 탄성 댐퍼의 제조 방법을 나타낸 도면들이다.3(a) to 3(e) are diagrams illustrating a method of manufacturing an elastic damper for controlling flow pulsation according to another embodiment of the present invention.
도 3(a)을 참조하면, 반구형의 함몰부(12), 상기 함몰부(12)에 연결되는 입구부 홈(16), 및 상기 함몰부(120)에 연결되는 원통형 개구부(14)가 형성된 하부 몰드(10) 및 내부 몰드(20)를 준비할 수 있다. Referring to FIG. 3 (a), a hemispherical depression 12, an inlet groove 16 connected to the depression 12, and a cylindrical opening 14 connected to the depression 120 are formed. The lower mold 10 and the inner mold 20 may be prepared.
도 3(b)를 참조하면, 상기 하부 몰드(10)의 상기 입구부 홈(16) 및 상기 함몰부(120)에 탄성 물질(CT)을 채울 수 있다. 이때, 상기 내부 몰드(20)는 상기 탄성 물질(CT) 이 충분히 채워질 수 있도록, 상기 함몰부(120)로부터 다소 이격된 위치(도면 상의 상측 방향)에 위치할 수 있다. Referring to FIG. 3(b) , the inlet groove 16 and the recessed portion 120 of the lower mold 10 may be filled with an elastic material CT. At this time, the inner mold 20 may be located at a position slightly spaced apart from the recessed portion 120 (upward direction in the drawing) so that the elastic material CT can be sufficiently filled.
도 3(c)를 참조하면, 상기 탄성 물질(CT)이 채워진 상기 하부 몰드(10) 내에, 공간부(도 1의 SP 참조), 유입구(도 1 참조) 및 유출구(도1 참조)에 대응되는 형태를 갖는 상기 내부 몰드(20)를 위치시킬 수 있다. 상기 내부 몰드(20)의 상기 공간부에 대응되는 형태를 상기 하부 몰드(10)의 상기 함몰부(120)에 위치시켜, 상기 내부 몰드(20)와 상기 하부 몰드(10) 사이에 상기 탄성 물질(CT)이 유량 맥동 조절 탄성 댐퍼의 몸체부를 형성할 수 있도록 한다. Referring to FIG. 3(c), in the lower mold 10 filled with the elastic material CT, a space (see SP in FIG. 1), an inlet (see FIG. 1), and an outlet (see FIG. 1) correspond to each other. The inner mold 20 having a shape may be positioned. A shape corresponding to the space of the inner mold 20 is placed in the depression 120 of the lower mold 10 so that the elastic material is interposed between the inner mold 20 and the lower mold 10. (CT) to form the body of the flow pulsation control elastic damper.
도 3(d)를 참조하면, 상기 내부 몰드(20)가 배치된 상기 함몰부(12) 및 상기 원통형 개구부(14) 내에 상부 몰드(30)를 위치시켜, 상기 유량 맥동 조절 탄성 댐퍼의 형태를 완성시킬 수 있다. 상기 탄성 물질(CT)을 경화시켜, 구체 형태로 내부 구형의 공간부를 형성하는 몸체부(100), 상기 공간부에 연통되는 유입구를 형성하며, 상기 몸체부에 연결되는 입구부(110), 및 상기 공간부에 연통되는 유출구를 형성하며, 상기 몸체부에 연결되는 출구부(120)를 포함하는 유량 맥동 조절 탄성 댐퍼를 형성할 수 있다. Referring to FIG. 3(d), the upper mold 30 is placed in the depression 12 and the cylindrical opening 14 where the inner mold 20 is disposed, thereby changing the shape of the flow pulsation control elastic damper. can be completed A body portion 100 that forms an inner spherical space in a spherical shape by curing the elastic material CT, an inlet portion 110 that forms an inlet communicating with the space portion and is connected to the body portion, and It is possible to form an elastic damper for controlling flow pulsation including an outlet port communicating with the space portion and an outlet portion 120 connected to the body portion.
도 3(e)를 참조하면, 이후, 상기 상부 몰드(30)와 상기 하부 몰드(10)를 제거하고, 상기 내부 몰드(20)를 상기 유량 맥동 조절 탄성 댐퍼의 탄성력을 이용하여 외부로 분리시켜, 상기 유량 맥동 조절 댐퍼를 제조할 수 있다. Referring to FIG. 3(e), thereafter, the upper mold 30 and the lower mold 10 are removed, and the inner mold 20 is separated to the outside using the elastic force of the flow pulsation control elastic damper. , It is possible to manufacture the flow pulsation control damper.
도 4은 본 발명의 일 실시예에 따른 유로에 유량 맥동 조절 탄성 댐퍼를 이용하는 유량 맥동 저감 방법을 나타낸 도면이다. 4 is a diagram illustrating a method for reducing flow pulsation using an elastic damper for controlling flow pulsation in a flow path according to an embodiment of the present invention.
도 4를 참조하면, 펌프 및 상기 펌프에 연결되는 유로를 포함하는 유체 수송 시스템의 유량 맥동을 저감하기 위해, 상기 유로에 유량 맥동 조절 탄성 댐퍼를 이용하는 유량 맥동 저감 방법이 이용된다. 상기 유량 맥동 저감 방법은 유량의 특성을 측정하는 단계(S100), 몸체부의 부피와 두께를 산출하는 단계(S200), 및 제조 단계(S300)를 포함할 수 있다. Referring to FIG. 4 , in order to reduce flow pulsation of a fluid transportation system including a pump and a flow path connected to the pump, a flow pulsation reduction method using an elastic damper for controlling flow pulsation is used in the flow path. The flow pulsation reduction method may include measuring flow characteristics (S100), calculating the volume and thickness of the body (S200), and manufacturing (S300).
상기 유량의 특성을 측정하는 단계(S100)에서는, 상기 유체 수송 시스템의 상기 유로 내의 유량의 특성을 측정할 수 있다. 예를 들면, 상기 유량 맥동 조절 탄성 댐퍼의 입구 유량의 평균(일정 유량), 맥동의 크기, 맥동의 진동수, 유압 저항 등을 측정할 수 있다. In the step of measuring the characteristics of the flow rate ( S100 ), the characteristics of the flow rate in the passage of the fluid transportation system may be measured. For example, the average flow rate (constant flow rate) of the inlet flow rate of the flow pulsation control elastic damper, the size of the pulsation, the frequency of the pulsation, hydraulic resistance, etc. may be measured.
상기 몸체부의 부피와 두께를 산출하는 단계(S200)에서는, 측정된 상기 유량의 특성을 이용하여, 상기 유량 맥동 조절 탄성 댐퍼의 몸체부의 부피와 두께, 재질 등의 물성치를 산출할 수 있다. In the step of calculating the volume and thickness of the body (S200), physical properties such as the volume, thickness and material of the body of the flow rate pulsation control elastic damper may be calculated using the measured flow rate characteristics.
상기 제조 단계(S300)에서는, 상기 산출된 부피와 두께에 대응하는 구체 형태로 내부 구형의 공간부를 형성하며, 탄성체로 형성되어 탄성을 갖는 몸체부, 상기 공간부에 연통되는 유입구를 형성하며, 상기 몸체부에 연결되는 입구부, 및 상기 공간부에 연통되는 유출구를 형성하며, 상기 몸체부에 연결되는 출구부를 포함하는 유량 맥동 조절 탄성 댐퍼를 제조할 수 있다. In the manufacturing step (S300), an inner spherical space portion is formed in a spherical shape corresponding to the calculated volume and thickness, an elastic body portion formed of an elastic body and an inlet communicating with the space portion are formed, It is possible to manufacture a flow pulsation control elastic damper including an inlet connected to the body, and an outlet connected to the space, and including an outlet connected to the body.
이후, 상기 유량 맥동 조절 탄성 댐퍼를 상기 유체 수송 시스템의 상기 유로에 설치할 수 있다. Thereafter, the flow pulsation control elastic damper may be installed in the flow path of the fluid transportation system.
도 5(a)는 일반적인 선형 형태의 고무의 stress- strain 커브를 나타낸 그래프이고, 도 5(b)는 구형 초탄성체의 pressure-volume 커브를 나타낸 그래프이다. FIG. 5(a) is a graph showing the stress-strain curve of a general linear rubber, and FIG. 5(b) is a graph showing the pressure-volume curve of a spherical superelastic body.
도 5(a)를 참조하면, 일반적인 선형 형태의 고무 구조체는 힘이 가해지는 방향을 따라 길이가 늘어날수록(변형; strain) 받는 압력(stress)이 비례하게 증가한다. Referring to FIG. 5 (a), a general linear rubber structure increases its length (strain) along the direction in which force is applied, and the stress it receives increases proportionally.
한편, 도 5(b)를 참조하면, 풍선과 같은 초탄성체의 경우, 압력 변형 곡선이 빠르게 최대 압력(limit point)에 도달하고, 이후 팽창에서는 압력이 감소하다 다시 증가하면서 풍선이 터지게 된다. 최대 압력과 두번째 압력 증가 구간(second ascending point) 사이에 기울기가 O인 구간이 존재하는데, 이를 해석해 보면, 입력 유량의 변동에 따라 부피가 변동되어 압력이 일정하게 유지되는 것으로 이해할 수 있으며, 따라서, 유량 맥동 조절 탄성 댐퍼의 압력과 부피 변동 구간이 그래프 상의 기울기가 O인 구간에 위치하도록, 유체 수송 시스템을 구성하면, 유량 맥동 조절 탄성 댐퍼에 입력되는 유체의 맥동에도 불구하고, 상기 유량 맥동 조절 탄성 댐퍼를 통과한 유체는 일정한 압력으로 출력되도록 제어할 수 있다. On the other hand, referring to FIG. 5 (b), in the case of a hyperelastic material such as a balloon, the pressure deformation curve quickly reaches a maximum pressure (limit point), and then the balloon bursts as the pressure decreases and then increases again during expansion. There is a section with a slope of O between the maximum pressure and the second ascending point, and if you analyze this, it can be understood that the volume fluctuates according to the fluctuation of the input flow rate and the pressure is kept constant. Therefore, If the fluid transport system is configured so that the pressure and volume fluctuation section of the flow pulsation control elastic damper is located in the section with a slope of O on the graph, despite the pulsation of the fluid input to the flow pulsation control elastic damper, the flow pulsation control elasticity The fluid passing through the damper can be controlled to be output at a constant pressure.
도 6은 본 발명의 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼의 유체 흐름을 모델링한 도면이다. 6 is a diagram modeling a fluid flow of an elastic damper for controlling flow pulsation according to an embodiment of the present invention.
도 6을 참조하면, 다음 수학식 1, 2로 상기 유량 맥동 조절 탄성 댐퍼에 흐르는 유체를 모델링할 수 있다. Referring to FIG. 6 , the fluid flowing through the flow pulsation control elastic damper can be modeled by Equations 1 and 2 below.
[수학식1][Equation 1]
Figure PCTKR2022016911-appb-img-000002
Figure PCTKR2022016911-appb-img-000002
[수학식2][Equation 2]
Qin = QQin = Q
Figure PCTKR2022016911-appb-img-000003
Figure PCTKR2022016911-appb-img-000003
여기서 Qin 은 유입구의 유량이며, V는 몸체부의 부피, Qout 은 유출구의 유량이며, 유입구의 유량 Qin 은 일정한 유량인 Q0 항과 맥동하는 asinwt 항의 합으로 나타낼 수 있다. 이때, a0는 맥동의 크기이며, sinwt는 맥동의 진동 함수이다. Here, Qin is the inlet flow rate, V is the volume of the body, Qout is the outlet flow rate, and the inlet flow rate Qin can be expressed as the sum of the constant flow Q0 term and the pulsating asinwt term. Here, a0 is the magnitude of the pulsation, and sinwt is the vibration function of the pulsation.
상 유체 모델의 지배 방정식은 수학식3과 같다. The governing equation of the phase fluid model is Equation 3.
[수학식3][Equation 3]
Figure PCTKR2022016911-appb-img-000004
Figure PCTKR2022016911-appb-img-000004
Figure PCTKR2022016911-appb-img-000005
Figure PCTKR2022016911-appb-img-000005
여기서, Pdamper 는 유량 맥동 조절 탄성 댐퍼의 압력이며, Routlet은 유압 저항, k는 몸체부(풍선) 팽창 계수이며, Vdamper는 몸체부의 부피이다. Here, Pdamper is the pressure of the flow pulsation control elastic damper, Routlet is the hydraulic resistance, k is the expansion coefficient of the body (balloon), and Vdamper is the volume of the body.
상기 지배방정식의 시간에 따른 미분은 수학식 4 와 같다. The time-dependent derivative of the governing equation is as shown in Equation 4.
[수학식4][Equation 4]
Figure PCTKR2022016911-appb-img-000006
Figure PCTKR2022016911-appb-img-000006
Figure PCTKR2022016911-appb-img-000007
Figure PCTKR2022016911-appb-img-000007
지배방정식에 모델링한 수식을 대입하면 수학식 5와 같으며, Substituting the modeled formula into the governing equation is equivalent to Equation 5,
[수학식5][Equation 5]
Figure PCTKR2022016911-appb-img-000008
Figure PCTKR2022016911-appb-img-000008
Qout 에 대해 미분 방적식을 풀면, 수학식 6을 얻을 수 있다. By solving the differential equation for Qout, Equation 6 can be obtained.
[수학식6][Equation 6]
Figure PCTKR2022016911-appb-img-000009
Figure PCTKR2022016911-appb-img-000009
이때 Qout 의 sinwt 항의 계수와 coswt 항의 계수가 0에 근사되도록, k값이 0인 제로 강성 구간(도 5(b)의 기울기가 0인 구간)에서 이론적으로 모든 맥동을 제거할 수 있을 것으로 기대할 수 있다. At this time, it can be expected that all pulsation can be theoretically removed in the zero stiffness section where the k value is 0 (the section where the slope is 0 in FIG. 5(b)) so that the coefficients of the sinwt term and the coswt term of Qout approximate 0 there is.
도 7(a)는 재질에 따른 pressure-volume 커브를 나타낸 그래프이고, 도 7(b)는 평균 압력에 따라 적절한 재질을 찾을 수 있음을 나타내는 그래프이다. Figure 7 (a) is a graph showing the pressure-volume curve according to the material, Figure 7 (b) is a graph showing that a suitable material can be found according to the average pressure.
도 7(a)를 참조하면, 몸체부를 형성하는데 있어서, 2가지 재료에 대한 2t(mm) 와 3t 두께의 재질의 3가지 샘플에 대해 Pressure-volume 커브를 측정(EXP) 및 예측(Prediction)한 것이고, 재질과 두께 등에 따라 서로 다른 커브를 형성함을 알 수 있다. 즉, 원하는 압력(Pressure) 과 유량마다 몸체부를 형성하는 재료와 두께, 부피 등을 적절히 설계하면, 유체 시스템의 맥동이 저감될 수 있는 제로 강성 구간에 해당 시스템의 압력과 유량 범위가 위치하도록 할 수 있다. Referring to FIG. 7 (a), in forming the body, the pressure-volume curves were measured (EXP) and predicted (Prediction) for three samples of 2t (mm) and 3t thick materials for two materials. It can be seen that different curves are formed depending on the material and thickness. That is, by properly designing the material, thickness, volume, etc. forming the body for each desired pressure and flow rate, the pressure and flow rate range of the system can be located in the zero stiffness section where the pulsation of the fluid system can be reduced. there is.
도 7(b)를 참조하면, 유량의 평균값에 따른 전단 탄성 계수의 관계를 나타낸 그래프이며, 예측 커브(Prediction) 상에 몸체부의 재질과 두께에 따라 해당값이 위치하여, 적절한 설계를 통해 유체 시스템의 맥동을 최소화할 수 있는 유량 맥동 조절 탄성 댐퍼를 설계할 수 있다. Referring to FIG. 7 (b), it is a graph showing the relationship of the shear modulus according to the average value of the flow rate, and the corresponding value is located according to the material and thickness of the body part on the prediction curve, so that the fluid system can be properly designed. An elastic damper can be designed to control the flow pulsation that can minimize the pulsation of the flow rate.
도 8은 연동 펌프에 대해, 종래 상용 맥동 댐퍼와 본 발명의 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼의 맥동 완화를 비교한 실험결과는 나타낸 도면이다. 8 is a diagram showing experimental results comparing pulsation relief of a conventional commercial pulsation damper and an elastic damper for controlling flow pulsation according to an embodiment of the present invention with respect to a peristaltic pump.
도 8을 참조하면, 유량 맥동 조절 탄성 댐퍼의 샘플을 제작하여, 맥동 완화를 종래 제품과 비교하는 실험을 진행하였다. 정량적인 측정을 위해 피에조 전기 압력 센서를 제작해서 맥동으로 인해 생성되는 기계적 응력(normalized mechanical stress) 데이터를 수집하였다. 비교 실험을 위해, 시중에 판매되고 있는 종래 상용 맥동 댐퍼와 맥동 완화 정도를 비교하였다. Referring to FIG. 8 , a sample of a flow pulsation control elastic damper was fabricated and an experiment was conducted to compare pulsation relief with conventional products. For quantitative measurement, a piezoelectric pressure sensor was fabricated and normalized mechanical stress data generated due to pulsation were collected. For a comparative experiment, the degree of pulsation mitigation was compared with a commercially available pulsation damper on the market.
연동펌프만 있는 경우(Preistatic), 종래 상용 맥동 댐퍼를 사용한 경우(Conventional), 본 발명의 유량 맥동 조절 탄성 댐퍼(Softdamper)를 사용한 경우의 압력(Pressure)-시간(Time) 그래프를 나타내어 맥동의 차이를 확인하였다. 각 경우 푸리에 변환을 통해, 맥동 주파수를 확인해 본 결과, 압력(Pressure)-주파수(Frequency) 그래프 상에서 종래 상용 맥동 댐퍼 대비, 본 발명의 유량 맥동 조절 탄성 댐퍼가 우수한 맥동 완화 효과가 있음을 수치적으로 확인하였다. Difference in pulsation by showing a pressure-time graph in the case of using only a peristaltic pump (Preistatic), the case of using a conventional commercial pulsation damper (Conventional), and the case of using the elastic damper for controlling flow pulsation of the present invention (Softdamper) confirmed. As a result of checking the pulsation frequency through Fourier transform in each case, compared to the conventional commercial pulsation damper on the pressure-frequency graph, the elastic damper for controlling the flow pulsation of the present invention is numerically superior in pulsation mitigation effect Confirmed.
상기 실험을 통해, 연동펌프의 맥동이 유의미하게 줄어드는 것을 확인하였다. Through the above experiment, it was confirmed that the pulsation of the peristaltic pump was significantly reduced.
도 9는 축류 펌프에 대해, 종래 상용 맥동 댐퍼와 본 발명의 일 실시예에 따른 유량 맥동 조절 탄성 댐퍼의 맥동 완화를 비교한 실험결과는 나타낸 도면이다. 9 is a view showing experimental results comparing pulsation relief of a conventional commercial pulsation damper and an elastic damper for controlling flow pulsation according to an embodiment of the present invention with respect to an axial flow pump.
도 9를 참조하면, 도 6에서와 마찬가지로 축류 펌프를 사용하는 시스템에서도, 종래 상용 맥동 댐퍼 대비 우수한 성능을 확인하였다. Referring to FIG. 9 , as in FIG. 6 , even in a system using an axial flow pump, superior performance compared to conventional commercial pulsation dampers was confirmed.
축류 펌프만 있는 경우(Centrifugal), 종래 상용 맥동 댐퍼를 사용한 경우(Conventional), 본 발명의 유량 맥동 조절 탄성 댐퍼(Softdamper)를 사용한 경우의 압력(Pressure)-시간(Time) 그래프를 나타내어 맥동의 차이를 확인하였다. 각 경우 푸리에 변환을 통해, 맥동 주파수를 확인해 본 결과, 압력(Pressure)-주파수(Frequency) 그래프 상에서 종래 상용 맥동 댐퍼 대비, 본 발명의 유량 맥동 조절 탄성 댐퍼가 우수한 맥동 완화 효과가 있음을 수치적로 확인하였다. In the case of using only an axial flow pump (Centrifugal), in the case of using a conventional commercial pulsation damper (Conventional), and in the case of using the elastic damper for controlling the flow pulsation of the present invention (Softdamper), the pressure-time graph is shown to show the difference in pulsation confirmed. As a result of checking the pulsation frequency through Fourier transform in each case, compared to the conventional commercial pulsation damper on the pressure-frequency graph, the elastic damper for controlling the flow pulsation of the present invention is numerically superior in pulsation mitigation effect Confirmed.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described with reference to the above embodiments, those skilled in the art will understand that the present invention can be variously modified and changed without departing from the spirit and scope of the present invention described in the claims below. You will be able to.
[부호의 설명][Description of code]
100: 몸체부 110: 입구부100: body part 110: inlet part
120: 출구부120: exit part

Claims (14)

  1. 구체 형태로 내부 구형의 공간부를 형성하며, 탄성체로 형성되어 탄성을 갖는 몸체부;A body portion forming an inner spherical space in a spherical shape and having elasticity by being formed of an elastic body;
    상기 공간부에 연통되는 유입구를 형성하며, 상기 몸체부에 연결되는 입구부; 및an inlet portion that forms an inlet communicating with the space portion and is connected to the body portion; and
    상기 공간부에 연통되는 유출구를 형성하며, 상기 몸체부에 연결되는 출구부를 포함하는 유량 맥동 조절 탄성 댐퍼.A flow pulsation control elastic damper comprising an outlet connected to the space and an outlet connected to the body.
  2. 제1항에 있어서, According to claim 1,
    상기 몸체부는 실리콘 탄성 중합체를 이용하여 형성하는 것을 특징으로 하는 유량 맥동 조절 탄성 댐퍼.The flow pulsation control elastic damper, characterized in that the body portion is formed using a silicone elastomer.
  3. 제1항에 있어서, According to claim 1,
    상기 몸체부는 내부에 수용되는 유체의 압력과 부피에 따라 부피가 변화하는 것을 특징으로 하는 유량 맥동 조절 탄성 댐퍼.The flow pulsation control elastic damper, characterized in that the volume changes according to the pressure and volume of the fluid accommodated therein.
  4. 제3항에 있어서, According to claim 3,
    상기 몸체부의 부피의 변화는 제1 방향, 상기 제1 방향과 수직한 제2 방향 및 상기 제1 및 제2 방향과 수직한 제3 방향을 따라 3차원적으로 이루어지는 것을 특징으로 하는 유량 맥동 조절 탄성 댐퍼.The change in the volume of the body portion is three-dimensionally performed along a first direction, a second direction perpendicular to the first direction, and a third direction perpendicular to the first and second directions, characterized in that the flow pulsation control elasticity damper.
  5. 제1항에 있어서, According to claim 1,
    상기 입구부와 상기 출구부는 각각 원통형이며, 상기 몸체부의 반대 방향에 위치하여 일직선 상에 배치되고, 상기 몸체부 내부를 흐르는 유체의 압력과 유속에 따라, 상기 입구부와 상기 출구부 사이의 거리가 변화하는 것을 특징으로 하는 유량 맥동 조절 탄성 댐퍼.The inlet and the outlet are cylindrical, respectively, and are disposed on a straight line in opposite directions of the body, and the distance between the inlet and the outlet is determined according to the pressure and flow rate of the fluid flowing inside the body. An elastic damper for controlling flow pulsation, characterized in that it changes.
  6. 제1항에 있어서, According to claim 1,
    상기 입구부를 지지하는 입구부 지지부; 및an inlet support for supporting the inlet; and
    상기 출구부를 지지하는 출구부 지지부를 더 포함하고, Further comprising an outlet support for supporting the outlet,
    상기 입구부 지지부와 상기 출구부 지지부 사이의 간격은 상기 몸체부의 부피 변화에 따라 변화하는 것을 특징으로 하는 유량 맥동 조절 탄성 댐퍼.The flow pulsation control elastic damper, characterized in that the distance between the inlet support and the outlet support varies according to the change in the volume of the body.
  7. 펌프 및 상기 펌프에 연결되는 유로를 포함하는 유체 수송 시스템의 유량 맥동을 저감하기 위해, 상기 유로에 유량 맥동 조절 탄성 댐퍼를 설치하는 유량 맥동 저감 방법에 있어서, In order to reduce flow pulsation of a fluid transportation system including a pump and a flow path connected to the pump, in the flow pulsation reducing method of installing a flow pulsation control elastic damper in the flow path,
    상기 유체 수송 시스템의 상기 유로 내의 유량의 특성을 측정하는 단계;measuring a characteristic of a flow rate within the flow path of the fluid transport system;
    측정된 상기 유량의 특성을 이용하여, 상기 유량 맥동 조절 탄성 댐퍼의 몸체부의 부피와 두께를 산출하는 단계; Calculating the volume and thickness of the body of the flow rate pulsation control elastic damper using the measured flow rate characteristics;
    상기 산출된 부피와 두께에 대응하는 구체 형태로 내부 구형의 공간부를 형성하며, 탄성체로 형성되어 탄성을 갖는 상기 몸체부, 상기 공간부에 연통되는 유입구를 형성하며 상기 몸체부에 연결되는 입구부, 및 상기 공간부에 연통되는 유출구를 형성하며 상기 몸체부에 연결되는 출구부를 포함하는 유량 맥동 조절 탄성 댐퍼를 제조하는 단계; 및An inner spherical space portion formed in a spherical shape corresponding to the calculated volume and thickness, the body portion formed of an elastic body and having elasticity, an inlet portion communicating with the space portion, and an inlet portion connected to the body portion; And forming an outlet communicating with the space and manufacturing a flow pulsation control elastic damper including an outlet connected to the body; and
    상기 유량 맥동 조절 탄성 댐퍼를 상기 유체 수송 시스템의 상기 유로에 설치하는 단계를 포함하는 유량 맥동 저감 방법. and installing the flow pulsation control elastic damper in the flow path of the fluid transportation system.
  8. 제7항에 있어서, According to claim 7,
    상기 산출하는 단계는, The calculating step is
    다음의 수학식1을 이용하는 것을 특징으로 하는 유량 맥동 저감 방법.Flow pulsation reduction method characterized in that using the following Equation 1.
    Figure PCTKR2022016911-appb-img-000010
    [수학식1]
    Figure PCTKR2022016911-appb-img-000010
    [Equation 1]
    (Qin 입구 유량, q0: 일정 유량, a0: 맥동의 크기, sinwt, coswt: 맥동의 진동함수, R: 유압 저항, k: 몸체부의 팽창 계수)(Qin inlet flow rate, q0: constant flow rate, a0: magnitude of pulsation, sinwt, coswt: vibration function of pulsation, R: hydraulic resistance, k: expansion coefficient of body part)
  9. 제8항에 있어서, According to claim 8,
    sin항의 계수와 cos항의 계수가 0이되도록, 상기 몸체부의 재질, 부피와 두께를 산출하는 것을 특징으로 하는 유량 맥동 저감 방법.A flow pulsation reduction method characterized in that the material, volume and thickness of the body are calculated so that the coefficient of the sin term and the coefficient of the cos term are 0.
  10. 제7항에 있어서, According to claim 7,
    상기 산출하는 단계는, The calculating step is
    상기 몸체부의 압력과 부피 변화를 이론적으로 계산하여, By theoretically calculating the pressure and volume change of the body,
    이론적으로 계산된 상기 몸체부의 압력-부피 선도에서 최대 압력과 두번째 압력 증가 구간 사이의 기울기가 O인 구간에 대응하도록 상기 몸체부의 부피와 두께를 산출하는 것을 특징으로 하는 유량 맥동 저감 방법.Flow pulsation reduction method characterized in that the volume and thickness of the body portion is calculated to correspond to a section in which the gradient between the maximum pressure and the second pressure increase section is O in the theoretically calculated pressure-volume diagram of the body section.
  11. 제10항에 있어서, According to claim 10,
    상기 유체 수송 시스템의 상기 펌프는 모터를 포함하는 연동 펌프인 것을 특징으로 하는 유량 맥동 저감 방법.The flow pulsation reduction method according to claim 1 , wherein the pump of the fluid transport system is a peristaltic pump including a motor.
  12. 반구형의 함몰부와 입구부 홈 및 출구부 홈이 형성된 하부 몰드를 배치하는 단계;disposing a lower mold in which a hemispherical depression, an inlet groove, and an outlet groove are formed;
    상기 하부 몰드 상에 탄성 물질을 도포하는 단계;applying an elastic material on the lower mold;
    상기 탄성 물질이 도포된 상기 하부 몰드 상에 내부 몰드를 배치하는 단계;disposing an inner mold on the lower mold to which the elastic material is applied;
    상기 내부 몰드 상에 탄성 물질을 추가로 도포하는 단계;further applying an elastic material on the inner mold;
    상기 탄성 물질이 도포된 상기 내부 몰드 및 상기 하부 몰드 상에 반구형의 함몰부와 입구부 홈 및 출구부 홈이 형성된 상부 몰드를 배치하는 단계;disposing an upper mold having a hemispherical depression, an inlet groove, and an outlet groove formed on the inner mold and the lower mold coated with the elastic material;
    상기 탄성 물질을 경화시켜, 유량 맥동 조절 탄성 댐퍼를 형성한 후, 상기 내부 몰드를 상기 유량 맥동 조절 탄성 댐퍼의 탄성력을 이용하여 외부로 분리시키는 단계를 포함하는 유량 맥동 조절 탄성 댐퍼의 제조 방법.Curing the elastic material to form a flow pulsation control elastic damper, and then separating the inner mold to the outside using the elastic force of the flow pulsation control elastic damper Manufacturing method of the flow pulsation control elastic damper.
  13. 제12항에 있어서, According to claim 12,
    상기 유량 맥동 조절 댐퍼는 구체 형태로 내부 구형의 공간부를 형성하며, 탄성체로 형성되어 탄성을 갖는 몸체부, 상기 공간부에 연통되는 유입구를 형성하며, 상기 몸체부에 연결되는 입구부, 및 상기 공간부에 연통되는 유출구를 형성하며, 상기 몸체부에 연결되는 출구부를 포함하는 것을 특징으로 하는 유량 맥동 조절 탄성 댐퍼의 제조 방법.The flow pulsation control damper forms an inner spherical space in a spherical shape, a body portion formed of an elastic body and having elasticity, an inlet port communicating with the space portion, and an inlet portion connected to the body portion, and the space A method of manufacturing a flow pulsation control elastic damper, characterized in that it forms an outlet communicating with the body and comprises an outlet connected to the body.
  14. 구체 형태로 내부 구형의 공간부를 형성하는 몸체부, 상기 공간부에 연통되는 유입구를 형성하며, 상기 몸체부에 연결되는 입구부, 및 상기 공간부에 연통되는 유출구를 형성하며, 상기 몸체부에 연결되는 출구부를 포함하는 유량 맥동 조절 탄성 댐퍼의 제조 방법에 있어서, A body portion forming an inner spherical space in a spherical shape, an inlet connected to the space, and an inlet connected to the body, and an outlet connected to the space, and connected to the body. In the manufacturing method of the flow pulsation control elastic damper comprising an outlet,
    반구형의 함몰부, 상기 함몰부에 연결되는 입구부 홈, 및 상기 함몰부에 연결되는 원통형 개구부가 형성된 하부 몰드를 배치하는 단계;disposing a lower mold formed with a hemispherical depression, an inlet groove connected to the depression, and a cylindrical opening connected to the depression;
    상기 하부 몰드의 상기 입구부 홈, 상기 함몰부에 탄성 물질을 채우는 단계;filling the inlet groove of the lower mold with an elastic material;
    상기 탄성 물질이 채워진 상기 하부 몰드 내에, 상기 공간부, 상기 유입구 및 상기 유출구에 대응되는 형태를 갖는 내부 몰드를 배치하는 단계;disposing an inner mold having a shape corresponding to the space, the inlet, and the outlet in the lower mold filled with the elastic material;
    상기 내부 몰드가 배치된 상기 함몰부 및 상기 원통형 개구부 내에 상부 몰드를 배치하는 단계;disposing an upper mold within the recessed portion and the cylindrical opening where the inner mold is disposed;
    상기 탄성 물질을 경화시켜, 유량 맥동 조절 탄성 댐퍼를 형성한 후, 상기 내부 몰드를 상기 유량 맥동 조절 탄성 댐퍼의 탄성력을 이용하여 외부로 분리시키는 단계를 포함하는 유량 맥동 조절 탄성 댐퍼의 제조 방법.Curing the elastic material to form a flow pulsation control elastic damper, and then separating the inner mold to the outside using the elastic force of the flow pulsation control elastic damper Manufacturing method of the flow pulsation control elastic damper.
PCT/KR2022/016911 2021-11-04 2022-11-01 Elastic damper for controlling flow pulsation, manufacturing method therefor, and flow pulsation reduction method WO2023080596A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210150378 2021-11-04
KR10-2021-0150378 2021-11-04
KR1020220143483A KR20230065168A (en) 2021-11-04 2022-11-01 Flow pulsation adjustable elastic damper, manufacturing method of the same and method for flow pulsation reduction
KR10-2022-0143483 2022-11-01

Publications (1)

Publication Number Publication Date
WO2023080596A1 true WO2023080596A1 (en) 2023-05-11

Family

ID=86241738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016911 WO2023080596A1 (en) 2021-11-04 2022-11-01 Elastic damper for controlling flow pulsation, manufacturing method therefor, and flow pulsation reduction method

Country Status (1)

Country Link
WO (1) WO2023080596A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088175A (en) * 1998-09-16 2000-03-31 Ohbayashi Corp Pulsation absorbing device for concrete pressure feeding
US20030000588A1 (en) * 2001-03-21 2003-01-02 Kuykendal Robert L. Pulsation dampener
JP2006046635A (en) * 2004-07-02 2006-02-16 Uchiyama Mfg Corp Pressure pulsation absorber and its manufacturing method
JP2006064130A (en) * 2004-08-30 2006-03-09 Uchiyama Mfg Corp Pressure pulsation absorber and method of manufacturing the same
KR100600209B1 (en) * 2005-04-13 2006-07-13 현대자동차주식회사 Resonator for pump of power steering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088175A (en) * 1998-09-16 2000-03-31 Ohbayashi Corp Pulsation absorbing device for concrete pressure feeding
US20030000588A1 (en) * 2001-03-21 2003-01-02 Kuykendal Robert L. Pulsation dampener
JP2006046635A (en) * 2004-07-02 2006-02-16 Uchiyama Mfg Corp Pressure pulsation absorber and its manufacturing method
JP2006064130A (en) * 2004-08-30 2006-03-09 Uchiyama Mfg Corp Pressure pulsation absorber and method of manufacturing the same
KR100600209B1 (en) * 2005-04-13 2006-07-13 현대자동차주식회사 Resonator for pump of power steering

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, SANG-HYEOP ET AL.: "A study on the pulsation reduction effect of a valve composed of elastic bodies", THE KOREAN SOCIETY OF MECHANICAL ENGINEERS 2021 CONFERENCE, 2021, pages 393 - 395, XP009546171 *

Similar Documents

Publication Publication Date Title
US7730793B2 (en) Venturi flow sensor
US20070193368A1 (en) Ultra low pressure drop flow sensor
WO2023080596A1 (en) Elastic damper for controlling flow pulsation, manufacturing method therefor, and flow pulsation reduction method
AU609804B2 (en) Pressure sensor assembly for disposable pump cassette
US4457750A (en) Microprocessor controlled intravenous feed system
CN104363935A (en) Diaphragm repositioning for pressure pod using position sensing
CA2040326A1 (en) Peristaltic pump and method for adjustable flow regulation
US11939968B2 (en) Pumping system
WO2014120842A1 (en) Device and method for lung measurement
BR112014021577B1 (en) APPARATUS FOR THE SUPPLY AND MEASUREMENT OF A FLUID FOR MEDICAL PURPOSES
Salmaz et al. High-precision capacitive sensors for intravenous fluid monitoring in hospitals
WO1998036254A1 (en) Method and apparatus for sensing fluid pressure
WO2019139392A1 (en) Automated pharmaceutical pressure injector
EP1294417B1 (en) Manometer infusion apparatus
KR20230065168A (en) Flow pulsation adjustable elastic damper, manufacturing method of the same and method for flow pulsation reduction
JP4936392B2 (en) Mass flow meter
AU2001252967A1 (en) Manometer infusion apparatus
CN109908432B (en) Infusion state detection device
EP3225267A1 (en) Drug administration mechanism, method for using drug administration mechanism, and pump unit for drug administration mechanism
Cao et al. A review of the factors influencing the infusion accuracy of medical infusion pumps
US20220409790A1 (en) Microfluidic Flow Control Using Direct-Current Peristaltic Pump
US12017038B2 (en) Infusing pumping system including disposable cassette and pump
US11506556B2 (en) Single-use plastic pressure sensor
US11287342B2 (en) Capacitance manometer with improved baffle for improved detection accuracy
CN217440284U (en) Adapter structure and injection module control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890327

Country of ref document: EP

Kind code of ref document: A1