WO2023080587A1 - Deep learning-based mlcc stacked alignment inspection system and method - Google Patents

Deep learning-based mlcc stacked alignment inspection system and method Download PDF

Info

Publication number
WO2023080587A1
WO2023080587A1 PCT/KR2022/016880 KR2022016880W WO2023080587A1 WO 2023080587 A1 WO2023080587 A1 WO 2023080587A1 KR 2022016880 W KR2022016880 W KR 2022016880W WO 2023080587 A1 WO2023080587 A1 WO 2023080587A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
mlcc
learning
deep learning
defect detection
Prior art date
Application number
PCT/KR2022/016880
Other languages
French (fr)
Korean (ko)
Inventor
오흥선
손성빈
박주찬
이선훈
정준욱
박용준
Original Assignee
한국기술교육대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기술교육대학교 산학협력단 filed Critical 한국기술교육대학교 산학협력단
Priority to US18/276,450 priority Critical patent/US20240103076A1/en
Publication of WO2023080587A1 publication Critical patent/WO2023080587A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • G01R31/318307Generation of test inputs, e.g. test vectors, patterns or sequences computer-aided, e.g. automatic test program generator [ATPG], program translations, test program debugging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • G01R31/318342Generation of test inputs, e.g. test vectors, patterns or sequences by preliminary fault modelling, e.g. analysis, simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to an MLCC stacked alignment inspection system and method, and more particularly, to a deep learning-based method for determining whether or not a defect is present by a margin ratio range using a key region detection and segmentation result of a deep learning-based model for a photographed image. It relates to an MLCC stack alignment inspection system and method.
  • MLCC Multi Layer Ceramic Capacitor
  • the stacking alignment inspection of the MLCC chip may include an inspection process after the stacking process.
  • Lamination is a process of stacking several hundred layers of dielectric sheets printed with Ni electrodes in pattern units, and the laminated product is called a Green Bar
  • trimming is a process of It is a process to prepare for vision inspection by dividing it into 4 equal parts and trimming the 4 sides additionally to expose the Ni electrode layer.
  • the inspection process is usually a process of taking images of a total of 8 points, 2 points each at the corner with a vision camera, and determining whether the laminated alignment is good or bad with the naked eye.
  • the MLCC inspection can generally focus on four types of stacked alignment defects: alignment slip, sheet folding, electrode skewing, and alignment misalignment.
  • the margin rate is judged with the captured image, and if it is out of the margin range, it is judged to be defective.
  • the existing inspection method there is a deviation between inspectors when judging the margin rate. This is because the visual evaluation rather than the numerical evaluation is mainly used to measure the distance value between the electrodes by adjusting the threshold value based on the naked eye until it becomes clear and visually determining the highest point and the lowest point.
  • deep learning-based MLCC stack alignment inspection can remove noise through object recognition on images and improve the judgment of defects based on the margin rate range through learning on bad data and normal data. Research on systems and methods has become necessary.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2011-0004929 (published on January 17, 2011)
  • An object of the present invention is to remove noise through object recognition on an image and object recognition in a key area that requires inspection of image data taken from a semiconductor MLCC chip to improve defect determination by margin rate range through defect data learning.
  • At least one deep learning-based core region detection model including an algorithm is used to detect in the image, segment the detected core region, and use the segmentation result to determine whether the defect is defective or not according to the standard margin rate range. It is to provide a learning-based MLCC stacked alignment inspection system and method.
  • visualization is performed for each result of core area detection, segmentation, and defect detection of the integrated defect detection unit, and through the analysis of the visualized step-by-step analysis data, the inspector is provided to determine whether to modify the data, thereby providing an error when detecting defects. It is to provide a deep learning-based MLCC stacked alignment inspection system and method that is robust to
  • a deep learning-based MLCC stack alignment inspection system utilizes at least one deep learning-based core area detection model for a core area requiring inspection of image data in which a stacked structure is photographed from a semiconductor MLCC chip.
  • an integrated defect detection unit that detects defects, performs segmentation in the detected core regions, determines whether defects are present according to a standard margin rate range using the segmentation results, and generates normal/defective data to detect defects;
  • a result analysis unit that performs visualization for each result of the core region detection, segmentation, and defect detection of the integrated defect detection unit, and provides the inspector to determine whether to modify the data through analysis of the visualized step-by-step analysis data; and a data storage for storing the normal/defective data and step-by-step analysis data.
  • the integrated defect detection unit performs boundary segmentation using a segmentation model that divides boundary surfaces for each class in a plurality of core regions detected by the core region detection model, and uses a segmentation result of the core region to perform electrode segmentation.
  • the margin ratio for the straight line distance between the electrode and the electrode is measured, and if the measured margin ratio is within a preset reference margin ratio range, it is judged normal, and if it is outside the reference margin ratio range, it is characterized in that it can be judged to be defective.
  • the system further includes an annotation tool, which is a program that corrects labeling for step-by-step analysis data that requires modification obtained through a visualization process through the result analysis unit and result analysis.
  • the system further includes a self-learning unit that performs periodic learning on normal/defective data generated by the integrated defect detection unit to improve model performance.
  • the system may further include a bad data generation unit generating bad data necessary for learning through a model based on an adversarial generative neural network (GAN) in order to alleviate an imbalance between normal data and bad data.
  • GAN adversarial generative neural network
  • the integrated defect detection unit provided in the deep learning-based MLCC stack alignment inspection system utilizes a key region extraction model pre-learned from semiconductor image data, extracting a region; classifying an inspection area by the integrated defect detection unit using segmentation within a core area; determining, by the integrated defect detection unit, whether the semiconductor chip is defective by comparing a margin rate in an inspection area classified by segmentation with a reference margin rate;
  • the result analysis unit includes a step of analyzing and visualizing the result of each process when a defect is detected, generating analysis data, and providing it to determine whether or not to correct it.
  • the result analysis unit stores the data storage together with normal data and defective data generated when determining whether or not the defect is defective for learning. contains more
  • the self-learning unit performs self-learning by utilizing normal data, defective data, and corrected data, improves the prediction accuracy of a model used when detecting defects, and periodically updates and reflects for optimization.
  • the deep learning-based MLCC stacked alignment inspection system of the present invention removes noise through object recognition learning for images based on deep learning learning and improves defect judgment by margin rate range through defect data learning.
  • the key area that needs to be inspected in the image data taken from the chip is detected in the image using at least one deep learning-based key area detection model including an object recognition algorithm, segmentation is performed in the detected key area, and segmentation is performed. Using the result, there is an advantage in that it is possible to accurately determine whether or not a defect is present according to the standard margin ratio range.
  • visualization is performed for each result of key area detection, segmentation, and defect detection, and the inspector analyzes the visualized step-by-step analysis data to determine whether to modify the data, so that it is robust against errors when detecting defects. there is.
  • the existing model used for defect detection is a model learned with a small amount of data, when a certain amount of model results, generated defect data, and modified data are gathered, self-learning is performed periodically so that defect detection is better, It has the advantage of achieving performance improvement and variable optimization of prediction models (key region extraction model, segmentation model, defect detection model, etc.).
  • FIG. 1 is a block diagram showing the configuration of a deep learning-based MLCC stack alignment inspection system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing detailed functions of the integrated defect detection unit of FIG. 1 .
  • FIG. 3 is a view showing detailed functions of the result analysis unit of FIG. 1 .
  • FIG. 4 is a diagram showing detailed functions of the annotation tool of FIG. 1 .
  • FIG. 5 is a diagram showing detailed functions of the data storage of FIG. 1 .
  • FIG. 6 is a diagram showing detailed functions of the self-learning unit of FIG. 1 .
  • FIG. 7 is a diagram showing detailed functions of the defective data generating unit of FIG. 1 .
  • FIG. 8 is a flowchart of a deep learning-based MLCC stack alignment inspection method according to an embodiment of the present invention.
  • 9 is a view showing the entire process from conventional MLCC lamination to inspection.
  • FIG. 10 is a diagram showing general MLCC inspection types.
  • 11 is a diagram for explaining an example of margin rate determination in the present invention.
  • the deep learning-based MLCC stacking alignment inspection system 1000 of the present invention is a system for inspecting MLCC stacking defects, and as shown in FIG. 1 to perform specific functions, an integrated defect detection unit 100, a result analysis unit ( 200), a data storage 300, an annotation tool 400, a self-learning unit 500, and a bad data generator 600.
  • the integrated defect detection unit 100 performs a key region detection function, a segmentation function, and a defect detection function that require inspection of image data captured from a semiconductor MLCC chip step by step to detect defects. can do.
  • the core region detection function detects a core region in an image by using at least one core region detection model capable of determining whether semiconductor image data is defective.
  • the model used here can be applied to any detection model based on deep learning, including object recognition algorithms, and the detection result of the model can be the box coordinates of the predicted core area.
  • the key area may be an image area taken for the MLCC stacked structure that needs to be inspected.
  • the object recognition algorithm or deep learning-based detection model may be CNN (Convolutional Neural Networks) and a Transformer algorithm, where the CNN algorithm is a neural network algorithm that recognizes an object through a convolution operation, and the Transformer algorithm converts an image into a sequence form. , and is an algorithm capable of detecting global importance using multi-head attention.
  • CNN Convolutional Neural Networks
  • Transformer algorithm converts an image into a sequence form.
  • an object may be recognized using an R-CNN (Region-based CNN) algorithm or a DETR (Detection Transformer) using a deep learning object recognition method to excel in detecting an object position.
  • R-CNN Registered-based CNN
  • DETR Detection Transformer
  • the R-CNN algorithm is a neural network algorithm that first creates a candidate region and trains CNN based on it to find the location of an object in an image. It includes the process of converting each candidate region to the same size, extracting features through CNN, and classifying the location and class of objects in the candidate region by inputting the extracted features as an input to the fully-connected layer.
  • the object region box position and class can be accurately corrected through the regression learning module and the class classification module.
  • the Detection Transformer algorithm first configures images in the form of a sequence and passes them through the Transformer Encoder to create an embedding that well contains the information of the image, additionally configures the Transformer Decoder, and converts the resulting embedding into the Transformer Encoder. It includes the process of accurately classifying the location of the actual object and the class of the object by reusing it in the decoder.
  • neural network algorithms include Fast R-CNN, R-FCN, YOLO (You only Look Once), and SSD (Single Shot MultiBox Detector).
  • object recognition speed may be improved by applying an algorithm corresponding to 1-stage among the above-mentioned neural network algorithms.
  • AdaBoost AdaBoost
  • SVM Support Vector Machine
  • LDA Linear Discriminant Analysis
  • PCA Principal Component Analysis
  • the segmentation function may perform boundary segmentation by utilizing a segmentation model that divides boundary surfaces for each class in a plurality of core regions detected by the core region detection model. That is, here, the boundary surface may correspond to one or more inspection areas requiring defect detection within the core area.
  • any algorithm-based or deep-learning-based segmentation model can be applied to the segmentation model, and the detection result of this segmentation model can be a class of each pixel existing in the predicted core region.
  • the integrated defect detection unit 100 may perform a defect detection function of measuring a margin rate for a straight line distance between electrodes using a segmentation result of a core region.
  • the reference margin ratio for comparing the measured margin ratio can be set individually for each semiconductor image data. Taking the set reference margin ratio as the reference point, if the measured margin ratio range is within the standard margin ratio range, it can be judged normal, and if it is outside the standard margin ratio range, it can be judged as defective.
  • the reference margin ratio linear distance range may be, for example, the distance between each electrode pattern in the MLCC stacked structure.
  • the margin ratio determination is performed by dividing the distance between the electrodes (margin section) in the printed pattern into 4 parts with the captured image data, and the criterion that the electrode corresponds to the margin part If it exceeds the margin rate of 1/4 (25%) (green circled area), it is judged to be defective, and if it is within 1/4, it is judged to be good.
  • the result analysis unit may perform a function of analyzing and converting data so that the result of the integrated defect detection unit 100 may be visually visualized after preprocessing.
  • the result analysis unit may select data (existing, normal, defective, and modified data) in the data storage 300 to perform result visualization.
  • the result analysis unit provides the result visualization data to the inspector so that the visualized step-by-step results can be used to determine whether or not the result predicted by the model is modified.
  • the result analysis unit performs visualization for each result of the core region detection, segmentation, and defect detection, which are each functional step of the integrated defect detection unit 100, and the inspector directly checks the result, the analysis data for each stage, to determine whether correction is necessary. is to decide
  • the data storage 300 serves as a database in which normal data and defective data calculated through the integrated defect detection unit 100 are stored and managed along with existing data.
  • the data storage 300 may additionally store modified data modified through the annotation tool 400 to be described later.
  • various data stored in the data storage 300 is composed of an image file (eg, *.jpg, *.png, etc.) and a labeling file corresponding to the image, and the result analysis visualized by the result analysis unit 200 is analyzed. Data and bad data can be used for self-learning through the self-learning unit 500 to be described later.
  • the existing data is data pre-learned by the self-learning unit 500, and may be normal/defective data generated by the integrated defect detection unit 100 in the past, and when normal/defective data does not initially exist
  • initial normal data of the MLCC chip model at the time of shipment and defective data randomly generated by the defective data generating unit 600 may be used.
  • the annotation tool 400 performs re-labeling by correcting the labeling for step-by-step analysis data that requires correction obtained through the visualization process through the result analysis unit 200 and the result analysis. It is a tool (program tool).
  • labeling supports two functions: key area and segmentation, and through the web-based annotation tool for labeling correction (400), step-by-step analysis data that needs correction is corrected and relabeled, and the corrected data is stored in data storage (300). It can be saved and used for self-learning.
  • annotation tool 400 may be installed in the form of a program in a manager terminal possessed by an inspector or in the result analysis unit 200 .
  • the self-learning unit 500 Since it is difficult for the self-learning unit 500 to collect semiconductor data, referring to FIG. 6, since the existing model is a model learned with little data, when a certain amount of model results, generated defective data, and corrected data are gathered, defect detection becomes more difficult. Learning may be periodically performed to improve the performance of the above-described predictive models (key region extraction model, segmentation model, defect detection model, etc.)
  • the self-learning unit 500 provides a web-based deep-learning-based learning service so that non-experts can use deep-learning algorithm-based self-learning, and values necessary for learning, such as selection of existing models and setting parameters, are stored on the web. It can be set through the base UI (User Interface) so that self-learning proceeds, the model is automatically updated when learning is finished, and it is set as the basic learning model.
  • base UI User Interface
  • the self-learning unit 500 may receive initial data for prior learning that is a standard for each model (core region extraction model, segmentation model, defect detection model, etc.) for each step used in the integrated defect detection unit and perform preliminary learning.
  • the initial data may be initial normal data of the MLCC chip model at the time of shipment and defective data randomly generated by the defective data generator 600.
  • the defective data generating unit 600 may generate defective data in order to alleviate the imbalance since there is an imbalance between normal and defective data since the generation rate of defective data is very low in an actual semiconductor process.
  • the bad data generator 600 may extract normal data from the data storage 300 and generate bad data through a model based on an adversarial generative neural network (GAN), and the generated bad data is stored in the data storage 300. It is stored as defective data and used for learning.
  • GAN adversarial generative neural network
  • the adversarial generative neural network is a structure composed of several deep neural networks, unlike conventional deep learning networks, and requires dozens of times more computation than conventional deep neural network models to generate high-resolution images, but is excellent for image restoration and generation. performance can be provided.
  • the adversarial generative neural network is an unsupervised learning-based generative model that adversarially trains two networks with a generator and a discriminator. Input data is input to the generator and a fake image similar to the real image (in the present invention) of bad data images).
  • a noise value may be input as the input data.
  • Noise values can follow any probability distribution. For example, it may be data generated with a zero-mean Gaussian.
  • the discriminator can be trained to discriminate between the real image and the fake image generated by the generator. More specifically, it is possible to learn to have a high probability when a real image is input, and to have a low probability when a fake image is input. That is, the discriminator can gradually learn to discriminate between real images and fake images.
  • FIG. 8 is a flowchart of a deep learning-based MLCC stack alignment inspection method according to an embodiment of the present invention.
  • the integrated defect detection unit 100 provided in the deep learning-based MLCC stack alignment inspection system 1000 may extract a core region by using a pre-learned core region extraction model from semiconductor image data (S100).
  • the integrated defect detection unit 100 may classify the inspection area using segmentation within the core area (S102).
  • the integrated defect detection unit 100 may determine whether the semiconductor chip (MLCC chip) is defective by comparing the margin rate in the inspection area classified by the segmentation with the reference margin rate (S104).
  • the result analysis unit 200 analyzes and visualizes the results of each process when a defect is detected, generates analysis data, and may be provided to an inspector to determine whether or not to correct (S106).
  • the result analysis unit 200 uses the annotation tool 400 when correction data is generated from visualized step-by-step analysis data, normal data and defective data generated when determining whether or not the data storage 300 is defective for learning Save together (S108).
  • the self-learning unit 500 performs self-learning by utilizing normal, defective data, and corrected data, improves the prediction accuracy of a model used when detecting defects, and periodically updates and reflects for optimization (S110).

Abstract

A deep learning-based MLCC stacked alignment inspection system according to one embodiment of the present invention comprises an integrated defect detection unit which detects defects by detecting a key area requiring inspection in captured image data of a stacked structure of a semiconductor MLCC chip by using at least one deep learning-based key area detection model, segmenting the detected key area, and generating normal/defective data by determining whether or not a defect is present according to a standard margin rate range using the segmentation result; a result analysis unit which performs visualization of results from key area detection, segmentation, and defect detection of the integrated defect detection unit, and provides, through inspector's analysis of visualized analysis data for each step, an ability to determine whether to modify the data; and a data storage which stores the normal/defective data and the analysis data for each step.

Description

딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템 및 방법MLCC stacked alignment inspection system and method based on deep learning
본 발명은 MLCC 적층 얼라인먼트 검사 시스템 및 방법에 관한 것으로, 더욱 상세하게는 촬영된 이미지에 대한 딥러닝 기반 모델의 핵심영역 검출 및 세그멘테이션 결과를 이용하여 마진율 범위에 의한 불량 여부를 판단하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템 및 방법에 관한 것이다.The present invention relates to an MLCC stacked alignment inspection system and method, and more particularly, to a deep learning-based method for determining whether or not a defect is present by a margin ratio range using a key region detection and segmentation result of a deep learning-based model for a photographed image. It relates to an MLCC stack alignment inspection system and method.
일반적으로, MLCC(Multi Layer Ceramic Capacitor)칩은 전자제품의 회로에 전류가 일정하게 흐르도록 제어하는 핵심 부품으로 자동차를 비롯하여 다양한 스마트 전자기기 분야에 활용되고 있다.In general, MLCC (Multi Layer Ceramic Capacitor) chips are used in various smart electronic device fields, including automobiles, as a key component that controls current to flow uniformly in circuits of electronic products.
이러한 MLCC 칩의 적층 얼라인먼트 검사는 적층 공정 이후의 검사공정을 포함할 수 있다.The stacking alignment inspection of the MLCC chip may include an inspection process after the stacking process.
도 10은 종래에 적층부터 검사까지의 전체 공정을 도시한 것으로, 적층은 패턴 단위의 Ni 전극이 인쇄된 유전체 Sheet를 수백층 쌓는 공정이며, 적층된 제품은 Green Bar라 하고, 트리밍은 Green Bar를 4등분으로 나누고 4측면을 추가로 트리밍해서 Ni 전극층을 노출시킴으로써 Vision 검사가 가능하도록 준비하는 공정이다.10 shows the entire process from lamination to inspection in the prior art. Lamination is a process of stacking several hundred layers of dielectric sheets printed with Ni electrodes in pattern units, and the laminated product is called a Green Bar, and trimming is a process of It is a process to prepare for vision inspection by dividing it into 4 equal parts and trimming the 4 sides additionally to expose the Ni electrode layer.
또한 검사 공정은 대개 Vision 카메라로 모서리 부분의 2포인트씩 총 8포인트의 이미지를 촬영하고 육안으로 적층 얼라인먼트 양불을 판단하는 공정이다.In addition, the inspection process is usually a process of taking images of a total of 8 points, 2 points each at the corner with a vision camera, and determining whether the laminated alignment is good or bad with the naked eye.
또한 MLCC 검사는 일반적으로 도 11을 참조하면 적층 얼라인먼트 불량인 얼라인먼트 밀림, Sheet 접힘, 전극삐침, 얼라인먼트 틀어짐의 4종류를 중점으로 검사할 수 있다.In addition, referring to FIG. 11, the MLCC inspection can generally focus on four types of stacked alignment defects: alignment slip, sheet folding, electrode skewing, and alignment misalignment.
그러나 기존의 검사 방식은 Green Bar를 검사 Stage에 놓고 수작업으로 핸들링하므로 WD(Working Distance) 편차가 발생하고, 절단면의 각도에 의한 DOF(Depth of Focus) Range 차가 발생해 균일한 이미지 확보가 어려움이 있으며, 카메라와 검사 Stage 등이 고정 되어있지 않은 불균일한 촬영환경 개선이 필요하다.However, in the existing inspection method, since the Green Bar is placed on the inspection stage and manually handled, WD (Working Distance) deviation occurs and DOF (Depth of Focus) Range difference due to the angle of the cutting surface occurs, making it difficult to secure a uniform image. However, it is necessary to improve the non-uniform shooting environment where cameras and inspection stages are not fixed.
또한 촬영된 이미지를 가지고 마진율 판단을 하여 마진 범위를 벗어나면 불량으로 판단하는데, 기존 검사 방식에는 마진율 판단시 검사자간 편차가 발생하는데 원인은 촬영 이미지를 전극(검정색)과 유전체(흰색)의 경계가 뚜렷해질 때까지 임계값을 육안 기준으로 조절하고, 최고점 최저점을 육안으로 판단하여 전극 사이의 거리 값을 측정하는데 수치적 평가보다 육안 평가가 주를 이루기 때문이다.In addition, the margin rate is judged with the captured image, and if it is out of the margin range, it is judged to be defective. In the existing inspection method, there is a deviation between inspectors when judging the margin rate. This is because the visual evaluation rather than the numerical evaluation is mainly used to measure the distance value between the electrodes by adjusting the threshold value based on the naked eye until it becomes clear and visually determining the highest point and the lowest point.
따라서, 전술한 문제를 해결하기 위하여 이미지에 대한 객체 인식을 통하여 노이즈를 제거하고, 불량 데이터 및 정상 데이터에 대한 학습을 통하여 마진율 범위에 의한 불량 판단을 개선할 수 있는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템 및 방법에 대한 연구가 필요하게 되었다.Therefore, in order to solve the above-mentioned problem, deep learning-based MLCC stack alignment inspection can remove noise through object recognition on images and improve the judgment of defects based on the margin rate range through learning on bad data and normal data. Research on systems and methods has become necessary.
[선행기술문헌] [Prior art literature]
(특허문헌 1) 대한민국 공개특허 제10-2011-0004929호(2011년01월17일 공개)(Patent Document 1) Republic of Korea Patent Publication No. 10-2011-0004929 (published on January 17, 2011)
본 발명의 목적은 이미지에 대한 객체 인식을 통하여 노이즈를 제거하고, 불량 데이터 학습을 통하여 마진율 범위에 의한 불량 판단을 개선할 수 있도록 반도체 MLCC 칩으로부터 촬영된 이미지 데이터의 검사가 필요한 핵심영역을 객체 인식 알고리즘을 포함한 딥러닝 기반의 적어도 하나의 핵심영역 검출 모델을 활용하여 이미지 내에서 검출하고, 검출된 핵심영역에서 세그멘테이션(segmentation)하고, 세그멘테이션 결과를 이용하여 기준 마진율 범위에 따라 불량 여부를 판단하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템 및 방법을 제공하는 것이다.An object of the present invention is to remove noise through object recognition on an image and object recognition in a key area that requires inspection of image data taken from a semiconductor MLCC chip to improve defect determination by margin rate range through defect data learning. At least one deep learning-based core region detection model including an algorithm is used to detect in the image, segment the detected core region, and use the segmentation result to determine whether the defect is defective or not according to the standard margin rate range. It is to provide a learning-based MLCC stacked alignment inspection system and method.
다른 목적으로는 통합형 불량검출부의 핵심영역 검출, 세그멘테이션, 불량검출에 대한 결과별로 시각화를 수행하고, 시각화된 단계별 분석 데이터의 검사자 분석을 통하여 해당 데이터의 수정 여부를 결정할 수 있도록 제공하여 불량 검출시 오류에 강인하도록 하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템 및 방법을 제공하는 것이다.For other purposes, visualization is performed for each result of core area detection, segmentation, and defect detection of the integrated defect detection unit, and through the analysis of the visualized step-by-step analysis data, the inspector is provided to determine whether to modify the data, thereby providing an error when detecting defects. It is to provide a deep learning-based MLCC stacked alignment inspection system and method that is robust to
본 발명의 일 실시예에 따른 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템은, 반도체 MLCC 칩으로부터 적층 구조가 촬영된 이미지 데이터의 검사가 필요한 핵심영역을 딥러닝 기반의 적어도 하나의 핵심영역 검출 모델을 활용하여 검출하고, 검출된 핵심영역에서 세그멘테이션(segmentation)하고, 세그멘테이션 결과를 이용하여 기준 마진율 범위에 따라 불량 여부를 판단하여 정상/불량 데이터를 생성하여 불량 검출이 이루어지도록 하는 통합형 불량검출부; 상기 통합형 불량검출부의 핵심영역 검출, 세그멘테이션, 불량검출에 대한 결과별로 시각화를 수행하고, 시각화된 단계별 분석 데이터의 검사자 분석을 통하여 해당 데이터의 수정 여부를 결정할 수 있도록 제공하는 결과분석부; 및 상기 정상/불량 데이터, 단계별 분석 데이터를 저장하는 데이터 스토리지를 포함한다.A deep learning-based MLCC stack alignment inspection system according to an embodiment of the present invention utilizes at least one deep learning-based core area detection model for a core area requiring inspection of image data in which a stacked structure is photographed from a semiconductor MLCC chip. an integrated defect detection unit that detects defects, performs segmentation in the detected core regions, determines whether defects are present according to a standard margin rate range using the segmentation results, and generates normal/defective data to detect defects; A result analysis unit that performs visualization for each result of the core region detection, segmentation, and defect detection of the integrated defect detection unit, and provides the inspector to determine whether to modify the data through analysis of the visualized step-by-step analysis data; and a data storage for storing the normal/defective data and step-by-step analysis data.
상기 시스템에 있어서, 상기 통합형 불량검출부는 상기 핵심영역 검출 모델에 의해 검출된 다수의 핵심영역에서 클래스 별 경계면을 분할하는 세그멘테이션 모델을 활용하여 경계면 분할을 수행하고, 상기 핵심영역의 세그멘테이션 결과를 이용해 전극과 전극 사이 직선거리에 대한 마진율을 측정하고, 측정된 마진율이 미리 설정된 기준마진율 범위 이내이면 정상으로 판단하고, 기준마진율 범위 밖이면 불량으로 판단할 수 있는 것을 특징으로 한다.In the system, the integrated defect detection unit performs boundary segmentation using a segmentation model that divides boundary surfaces for each class in a plurality of core regions detected by the core region detection model, and uses a segmentation result of the core region to perform electrode segmentation. The margin ratio for the straight line distance between the electrode and the electrode is measured, and if the measured margin ratio is within a preset reference margin ratio range, it is judged normal, and if it is outside the reference margin ratio range, it is characterized in that it can be judged to be defective.
상기 시스템에 있어서, 상기 결과분석부를 통해 시각화 과정을 거쳐 결과 분석을 통해 얻은 수정이 필요한 단계별 분석 데이터에 대해서 레이블링을 수정하는 프로그램인 어노테이션 도구를 더 포함한다.The system further includes an annotation tool, which is a program that corrects labeling for step-by-step analysis data that requires modification obtained through a visualization process through the result analysis unit and result analysis.
상기 시스템에 있어서, 상기 통합형 불량검출부에서 생성된 정상/불량 데이터에 대해 모델 성능 향상을 위해 주기적인 학습을 수행하는 자가학습부를 더 포함한다.The system further includes a self-learning unit that performs periodic learning on normal/defective data generated by the integrated defect detection unit to improve model performance.
상기 시스템에 있어서, 정상 데이터와 불량 데이터의 불균형을 완화시키기 위해 학습에 필요한 불량 데이터를 적대적 생성 신경망(GAN) 기반의 모델을 통해 생성하는 불량데이터 생성부를 더 포함한다.The system may further include a bad data generation unit generating bad data necessary for learning through a model based on an adversarial generative neural network (GAN) in order to alleviate an imbalance between normal data and bad data.
본 발명의 일 실시예에 따른 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 방법은, 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템 내 구비된 통합형 불량검출부는 반도체 이미지 데이터로부터 사전 학습된 핵심영역 추출 모델을 활용하여 핵심영역을 추출하는 단계; 상기 통합형 불량검출부는 핵심영역 내 세그멘테이션을 이용하여 검사영역을 구분하는 단계; 상기 통합형 불량검출부는 세그멘테이션에 의해 구분된 검사영역 내 마진율을 기준 마진율과 비교하여 반도체 칩의 불량 여부를 판단하는 단계; 결과분석부는 불량 검출시 각 과정에 대한 결과를 분석하여 시각화하여 분석 데이터 생성하고, 수정여부를 판단할 수 있도록 제공하는 단계를 포함한다.In the deep learning-based MLCC stack alignment inspection method according to an embodiment of the present invention, the integrated defect detection unit provided in the deep learning-based MLCC stack alignment inspection system utilizes a key region extraction model pre-learned from semiconductor image data, extracting a region; classifying an inspection area by the integrated defect detection unit using segmentation within a core area; determining, by the integrated defect detection unit, whether the semiconductor chip is defective by comparing a margin rate in an inspection area classified by segmentation with a reference margin rate; The result analysis unit includes a step of analyzing and visualizing the result of each process when a defect is detected, generating analysis data, and providing it to determine whether or not to correct it.
상기 방법에 있어서, 상기 결과분석부는 어노테이션 도구를 활용하여 시각화된 단계별 분석 데이터로부터 수정 데이터가 생성된 경우, 학습을 위해 데이터 스토리지에 불량 여부 판단시 생성된 정상 데이터 및 불량 데이터와 함께 저장하는 단계를 더 포함한다.In the above method, when the correction data is generated from the visualized step-by-step analysis data using the annotation tool, the result analysis unit stores the data storage together with normal data and defective data generated when determining whether or not the defect is defective for learning. contains more
상기 방법에 있어서, 자가학습부는 정상 데이터, 불량 데이터 및 수정데이터를 활용하여 자가 학습을 수행하고, 불량 검출시 활용되는 모델의 예측 정확도를 향상시키고, 최적화를 위해 주기적으로 업데이트하여 반영하는 단계를 더 포함한다.In the method, the self-learning unit performs self-learning by utilizing normal data, defective data, and corrected data, improves the prediction accuracy of a model used when detecting defects, and periodically updates and reflects for optimization. include
본 발명의 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템은 딥러닝 학습을 기반으로 이미지에 대한 객체 인식 학습을 통하여 노이즈를 제거하고, 불량 데이터 학습을 통하여 마진율 범위에 의한 불량 판단을 개선할 수 있도록 반도체 MLCC 칩으로부터 촬영된 이미지 데이터의 검사가 필요한 핵심영역을 객체 인식 알고리즘을 포함한 딥러닝 기반의 적어도 하나의 핵심영역 검출 모델을 활용하여 이미지 내에서 검출하고, 검출된 핵심영역에서 세그멘테이션(segmentation)하고, 세그멘테이션 결과를 이용하여 기준 마진율 범위에 따라 정확하게 불량 여부를 판단할 수 있는 장점이 있다.The deep learning-based MLCC stacked alignment inspection system of the present invention removes noise through object recognition learning for images based on deep learning learning and improves defect judgment by margin rate range through defect data learning. The key area that needs to be inspected in the image data taken from the chip is detected in the image using at least one deep learning-based key area detection model including an object recognition algorithm, segmentation is performed in the detected key area, and segmentation is performed. Using the result, there is an advantage in that it is possible to accurately determine whether or not a defect is present according to the standard margin ratio range.
또한, 핵심영역 검출, 세그멘테이션, 불량검출에 대한 결과별로 시각화를 수행하고, 시각화된 단계별 분석 데이터의 검사자 분석을 통하여 해당 데이터의 수정 여부를 결정할 수 있도록 제공하여 불량 검출시 오류에 강인하도록 하는 장점이 있다.In addition, visualization is performed for each result of key area detection, segmentation, and defect detection, and the inspector analyzes the visualized step-by-step analysis data to determine whether to modify the data, so that it is robust against errors when detecting defects. there is.
또한 불량 검출시 활용되는 기존 모델은 적은 데이터로 학습된 모델이므로 모델의 결과와 생성된 불량데이터, 수정된 데이터들이 일정량이 모이게 되면 불량 검출이 더욱 잘 이루어지도록 주기적으로 자가 학습을 진행함으로써, 상술한 예측 모델들(핵심영역 추출 모델, 세그멘테이션 모델, 불량 검출 모델 등)의 성능 향상 및 변수 최적화를 이룰 수 있는 장점이 있다.In addition, since the existing model used for defect detection is a model learned with a small amount of data, when a certain amount of model results, generated defect data, and modified data are gathered, self-learning is performed periodically so that defect detection is better, It has the advantage of achieving performance improvement and variable optimization of prediction models (key region extraction model, segmentation model, defect detection model, etc.).
도 1은 본 발명의 일 실시예에 따른 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템의 구성을 보인 블록도이다.1 is a block diagram showing the configuration of a deep learning-based MLCC stack alignment inspection system according to an embodiment of the present invention.
도 2는 도 1의 통합형 불량검출부의 세부 기능을 보인 도면이다.FIG. 2 is a diagram showing detailed functions of the integrated defect detection unit of FIG. 1 .
도 3은 도 1의 결과분석부의 세부 기능을 보인 도면이다.3 is a view showing detailed functions of the result analysis unit of FIG. 1 .
도 4는 도 1의 어노테이션 도구의 세부 기능을 보인 도면이다.4 is a diagram showing detailed functions of the annotation tool of FIG. 1 .
도 5는 도 1의 데이터 스토리지의 세부 기능을 보인 도면이다.5 is a diagram showing detailed functions of the data storage of FIG. 1 .
도 6은 도 1의 자가학습부의 세부 기능을 보인 도면이다.6 is a diagram showing detailed functions of the self-learning unit of FIG. 1 .
도 7은 도 1의 불량데이터 생성부의 세부 기능을 보인 도면이다.FIG. 7 is a diagram showing detailed functions of the defective data generating unit of FIG. 1 .
도 8은 본 발명의 일 실시예에 따른 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 방법의 순서도이다.8 is a flowchart of a deep learning-based MLCC stack alignment inspection method according to an embodiment of the present invention.
도 9는 종래의 MLCC 적층부터 검사까지의 전체 공정을 나타낸 도면이다.9 is a view showing the entire process from conventional MLCC lamination to inspection.
도 10은 일반적인 MLCC 검사 종류를 나타낸 도면이다.10 is a diagram showing general MLCC inspection types.
도 11는 본 발명에서 마진율 판단 예시를 설명하기 위한 도면이다.11 is a diagram for explaining an example of margin rate determination in the present invention.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상 범위 내에 포함된다고 할 것이다. 또한, 각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, the spirit of the present invention is not limited to the presented embodiments, and those skilled in the art who understand the spirit of the present invention may add, change, delete, etc. other elements within the scope of the same spirit, through other degenerative inventions or the present invention. Other embodiments included within the scope of the inventive idea can be easily proposed, but it will also be said to be included within the scope of the inventive concept. In addition, components having the same function within the scope of the same idea appearing in the drawings of each embodiment are described using the same reference numerals.
본 발명의 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템(1000)은 MLCC 적층 불량 검사를 위한 시스템으로서, 구체적 기능을 수행하기 위해 도 1에 도시된 바와 같이, 통합형 불량검출부(100), 결과분석부(200), 데이터 스토리지(300), 어노테이션 도구(400), 자가학습부(500), 불량데이터 생성부(600)를 포함한다.The deep learning-based MLCC stacking alignment inspection system 1000 of the present invention is a system for inspecting MLCC stacking defects, and as shown in FIG. 1 to perform specific functions, an integrated defect detection unit 100, a result analysis unit ( 200), a data storage 300, an annotation tool 400, a self-learning unit 500, and a bad data generator 600.
통합형 불량검출부(100)는 도 2에 도시된 바와 같이 반도체 MLCC 칩으로부터 촬영된 이미지 데이터의 검사가 필요한 핵심영역 검출 기능, 세그멘테이션(segmentation) 기능, 불량검출 기능을 단계적으로 수행하여 불량 검출이 이루어지도록 할 수 있다.As shown in FIG. 2 , the integrated defect detection unit 100 performs a key region detection function, a segmentation function, and a defect detection function that require inspection of image data captured from a semiconductor MLCC chip step by step to detect defects. can do.
먼저 핵심영역 검출 기능은 반도체 이미지 데이터의 불량 유무를 판단할 수 있는 적어도 하나의 핵심영역 검출 모델을 활용하여 이미지 내에서 핵심영역을 검출한다. First, the core region detection function detects a core region in an image by using at least one core region detection model capable of determining whether semiconductor image data is defective.
여기서 활용되는 모델은 객체 인식 알고리즘을 포함한 딥러닝 기반의 어떤 검출 모델도 적용 가능하며, 모델의 검출 결과는 예측한 핵심영역의 Box 좌표가 될 수 있다. 또한 핵심영역은 검사가 필요한 MLCC 적층 구조에 대해 촬영된 이미지 영역이 될 수 있다.The model used here can be applied to any detection model based on deep learning, including object recognition algorithms, and the detection result of the model can be the box coordinates of the predicted core area. In addition, the key area may be an image area taken for the MLCC stacked structure that needs to be inspected.
여기서 객체 인식 알고리즘 내지 딥러닝 기반 검출 모델은 CNN(Convolutional Neural Networks)과, Transfomer 알고리즘이 될 수 있으며, 여기서 CNN 알고리즘은 합성곱 연산을 통하여 객체를 인식시키는 신경망 알고리즘이고, Transformer 알고리즘은 이미지를 Sequence 형태로 구성하고 Multi-head attention을 사용해 전역적인 중요성을 탐지 가능한 알고리즘이다.Here, the object recognition algorithm or deep learning-based detection model may be CNN (Convolutional Neural Networks) and a Transformer algorithm, where the CNN algorithm is a neural network algorithm that recognizes an object through a convolution operation, and the Transformer algorithm converts an image into a sequence form. , and is an algorithm capable of detecting global importance using multi-head attention.
또한 본 발명에서는 특히 객체 위치를 검출하는데 탁월하도록 딥러닝 객체 인식 방법을 사용한 R-CNN(Region-based CNN) 알고리즘 혹은 DETR(Detection Transformer)을 이용하여 객체를 인식할 수도 있다.In addition, in the present invention, an object may be recognized using an R-CNN (Region-based CNN) algorithm or a DETR (Detection Transformer) using a deep learning object recognition method to excel in detecting an object position.
R-CNN 알고리즘은 먼저 후보영역을 생성하고 이를 기반으로 CNN을 학습시켜 영상 내 객체의 위치를 찾아내는 신경망 알고리즘으로, 객체인식과정은 입력된 영상에서 선택적 탐색을 이용하여 후보 영역 생성하는 과정과, 생성된 각 후보 영역들을 동일한 크기로 변환하고, CNN을 통해 특징을 추출하는 과정과, 추출된 특징을 Fully-connected layer의 입력으로 넣어 후보 영역 내의 객체의 위치와 클래스를 분류하는 과정을 포함한다.The R-CNN algorithm is a neural network algorithm that first creates a candidate region and trains CNN based on it to find the location of an object in an image. It includes the process of converting each candidate region to the same size, extracting features through CNN, and classifying the location and class of objects in the candidate region by inputting the extracted features as an input to the fully-connected layer.
이때 후보 영역의 위치는 정확하지 않기 때문에 최종적으로 회귀 학습 모듈과, 클래스 분류 모둘을 통해 객체 영역 박스 위치와 클래스를 정확히 보정할 수 있다.At this time, since the position of the candidate region is not accurate, finally, the object region box position and class can be accurately corrected through the regression learning module and the class classification module.
또한 Detection Transformer 알고리즘은 먼저 이미지를 시퀀스(Sequence) 형태로 구성하고 이를 Transformer Encoder에 통과시켜, 이미지의 정보를 잘 내포시킨 임베딩을 만드는 과정과, Transformer Decoder를 추가로 구성하고, Transformer Encoder의 결과인 임베딩을 Decoder에서 재사용함으로써 실제 객체의 위치와 객체의 클래스를 정확하게 분류하는 과정을 포함한다. In addition, the Detection Transformer algorithm first configures images in the form of a sequence and passes them through the Transformer Encoder to create an embedding that well contains the information of the image, additionally configures the Transformer Decoder, and converts the resulting embedding into the Transformer Encoder. It includes the process of accurately classifying the location of the actual object and the class of the object by reusing it in the decoder.
또한 Encoder에서 이미지의 정보를 잘 내포시킨 임베딩을 만드는 과정에서, 시퀀스(Sequence)간의 중요도를 확인하여 학습에 도움을 줄 수 있는 Multi-head attention을 사용함으로써, 이미지에 대한 고 품질의 특징을 포착할 수 있고, 객체의 위치와 카테고리를 분류하는 과정에서 기존과 달리 Non-Maximum Suppression(NMS) 방식을 쓰지 않고, 헝가리안 알고리즘과 이분매칭을 사용함으로써 중복을 최소화하여 객체의 위치와 클래스를 정확히 보정할 수도 있다.In addition, in the process of creating an embedding that well contains image information in the encoder, it is possible to capture high-quality features of an image by using multi-head attention, which can help learning by checking the importance between sequences. In the process of classifying the position and category of an object, unlike the existing Non-Maximum Suppression (NMS) method, it is possible to accurately correct the position and class of an object by minimizing duplication by using the Hungarian algorithm and binary matching. may be
또한 다른 신경망 알고리즘으로 Fast R-CNN, R-FCN, YOLO(You only Look Once), SSD(Single Shot MultiBox Detector) 등이 있는데, 상술한 신경망 알고리즘을 추가로 적용하거나 R-CNN을 대체하여 적용할 수 있으며, 상술한 신경망 알고리즘 중 1-stage에 해당하는 알고리즘을 적용하여 객체 인식 속도를 향상시킬 수도 있다.In addition, other neural network algorithms include Fast R-CNN, R-FCN, YOLO (You only Look Once), and SSD (Single Shot MultiBox Detector). In addition, the object recognition speed may be improved by applying an algorithm corresponding to 1-stage among the above-mentioned neural network algorithms.
나아가, 객체 인식율을 높이기 위해 에이다부스트(AdaBoost), 서포트 벡터 머신(Support Vector Machine: SVM), 선형판별식 해석(Linear Disciminant Analysis: LDA), 주성분 분석(Principal Component Analusis: PCA) 등의 알고리즘이 추가로 이용될 수도 있으며, 이러한 알고리즘 기법들은 모두 외형에 기반하여 인식대상 영역을 식별하는 것으로, 트레이닝에 사용될 영상 이미지들의 집합에 의해 트레이닝된 모델을 이용해서 객체(예컨대 핵심영역에 해당하는 MLCC 적층 구조에 대한 이미지 영역) 주위의 영역을 검출하며, 여러 주변의 제약 조건들이 트레이닝을 통해 극복되어지기 때문에 결과적으로 이미지 노이즈(불량 화소 등)에 강인하도록 하고, 객체 인식 정확도와 신뢰도를 높일 수 있다.Furthermore, algorithms such as AdaBoost, Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Principal Component Analysis (PCA) are added to increase the object recognition rate. All of these algorithm techniques identify the region to be recognized based on the appearance, and use a model trained by a set of video images to be used for training to object (e.g., MLCC stacked structure corresponding to the core region). Detects the surrounding area, and since various surrounding constraints are overcome through training, as a result, it is robust against image noise (defective pixels, etc.), and object recognition accuracy and reliability can be increased.
또한 세그멘테이션 기능은 핵심영역 검출 모델에 의해 검출된 다수의 핵심영역에서 클래스 별 경계면을 분할하는 세그멘테이션 모델을 활용하여 경계면 분할을 수행할 수 있다. 즉 여기서 경계면은 핵심영역 내에서 불량 검출이 필요한 하나 이상의 검사영역에 해당할 수 있다.In addition, the segmentation function may perform boundary segmentation by utilizing a segmentation model that divides boundary surfaces for each class in a plurality of core regions detected by the core region detection model. That is, here, the boundary surface may correspond to one or more inspection areas requiring defect detection within the core area.
또한 세그멘테이션 모델은 알고리즘 혹은 딥러닝 기반의 어떤 세그멘테이션 모델도 적용 가능하며, 이 세그멘테이션 모델 검출 결과는 예측한 핵심영역에 존재하는 각 픽셀들의 클래스가 될 수 있다.In addition, any algorithm-based or deep-learning-based segmentation model can be applied to the segmentation model, and the detection result of this segmentation model can be a class of each pixel existing in the predicted core region.
또한, 통합형 불량검출부(100)는 핵심영역의 세그멘테이션 결과를 이용해 전극과 전극 사이 직선거리에 대한 마진율을 측정하는 불량검출기능을 수행할 수 있다.In addition, the integrated defect detection unit 100 may perform a defect detection function of measuring a margin rate for a straight line distance between electrodes using a segmentation result of a core region.
측정된 마진율을 비교하기 위한 기준마진율은 반도체 이미지 데이터마다 개별적으로 설정 가능하고, 설정한 기준마진율을 기준점으로 잡고 측정된 마진율 범위가 기준마진율 범위 이내이면 정상, 기준마진율 범위 밖이면 불량으로 판단할 수 있게 된다. 여기서 기준마진율 직선거리 범위는 예컨대 MLCC 적층 구조에서 각 전극 패턴 간의 거리가 될 수 있다.The reference margin ratio for comparing the measured margin ratio can be set individually for each semiconductor image data. Taking the set reference margin ratio as the reference point, if the measured margin ratio range is within the standard margin ratio range, it can be judged normal, and if it is outside the standard margin ratio range, it can be judged as defective. there will be Here, the reference margin ratio linear distance range may be, for example, the distance between each electrode pattern in the MLCC stacked structure.
좀 더 구체적으로 도 11을 참조하여 예를 들어 설명하면, 마진율 판단은 촬영된 이미지 데이터를 가지고 인쇄 패턴에서의 전극과 전극 사이의 거리(마진 구간)를 4등분하여 전극이 마진부분에 해당하는 기준마진율인 1/4(25%)을 초과(초록색 동그라미 부분)하여 벗어나면 불량, 1/4 이내면 양품으로 판단하는 것이다.More specifically, referring to FIG. 11 as an example, the margin ratio determination is performed by dividing the distance between the electrodes (margin section) in the printed pattern into 4 parts with the captured image data, and the criterion that the electrode corresponds to the margin part If it exceeds the margin rate of 1/4 (25%) (green circled area), it is judged to be defective, and if it is within 1/4, it is judged to be good.
결과 분석부는 도 3을 참조하면, 통합형 불량검출부(100)의 단계별 결과를 전처리 후 시각화하여 눈으로 볼 수 있게 데이터를 분석하고 변환하는 기능을 수행할 수 있다.Referring to FIG. 3 , the result analysis unit may perform a function of analyzing and converting data so that the result of the integrated defect detection unit 100 may be visually visualized after preprocessing.
또한 결과 분석부는 데이터 스토리지(300)에 있는 데이터(기존, 정상, 불량, 수정 데이터들)를 선택하여 결과 시각화를 진행할 수도 있다. In addition, the result analysis unit may select data (existing, normal, defective, and modified data) in the data storage 300 to perform result visualization.
또한 결과 분석부는 결과 시각화를 진행한 데이터를 검사자에게 제공하여 시각화된 단계별 결과를 통해 모델이 예측한 결과의 수정 유무를 판단할 수 있도록 한다.In addition, the result analysis unit provides the result visualization data to the inspector so that the visualized step-by-step results can be used to determine whether or not the result predicted by the model is modified.
즉, 결과 분석부는 통합형 불량검출부(100)의 각 기능 단계인 핵심영역 검출, 세그멘테이션, 불량검출에 대한 결과별로 시각화를 수행하고, 그 결과인 단계별 분석 데이터를 검사자가 직접 확인하여 수정이 필요한지 여부를 결정하도록 하는 것이다.That is, the result analysis unit performs visualization for each result of the core region detection, segmentation, and defect detection, which are each functional step of the integrated defect detection unit 100, and the inspector directly checks the result, the analysis data for each stage, to determine whether correction is necessary. is to decide
데이터 스토리지(300)는 도 5를 참조하면 기존데이터와 함께, 통합형 불량검출부(100)를 통해 산출된 정상 데이터와 불량 데이터가 저장되고 관리되는 데이터베이스로서의 역할을 수행한다.Referring to FIG. 5 , the data storage 300 serves as a database in which normal data and defective data calculated through the integrated defect detection unit 100 are stored and managed along with existing data.
또한 데이터 스토리지(300)는 후술할 어노테이션 도구(400)를 통해 수정한 수정데이터가 추가로 저장될 수 있다.In addition, the data storage 300 may additionally store modified data modified through the annotation tool 400 to be described later.
또한 여기서 데이터 스토리지(300)에 저장되는 각종 데이터는 이미지 파일(예컨대 *.jpg, *.png 등)과 이미지에 해당하는 레이블링 파일로 구성되어 있으며, 결과분석부(200)에 의해 시각화된 결과 분석 데이터 및 불량데이터는 후술할 자가학습부(500)를 통하여 자가학습에 사용될 수 있다.In addition, here, various data stored in the data storage 300 is composed of an image file (eg, *.jpg, *.png, etc.) and a labeling file corresponding to the image, and the result analysis visualized by the result analysis unit 200 is analyzed. Data and bad data can be used for self-learning through the self-learning unit 500 to be described later.
또한 기존 데이터는 자가학습부(500)에 의해 사전 학습되는 데이터로서, 과거에 통합형 불량검출부(100)에 의해 생성된 정상/불량 데이터가 될 수 있으며, 초기에 정상/불량 데이터가 존재하지 않는 경우 사전 학습을 위해 출하시 MLCC 칩 모델의 초기 정상 데이터와 불량데이터 생성부(600)에 의해 임의로 생성된 불량 데이터가 될 수 있다.In addition, the existing data is data pre-learned by the self-learning unit 500, and may be normal/defective data generated by the integrated defect detection unit 100 in the past, and when normal/defective data does not initially exist For prior learning, initial normal data of the MLCC chip model at the time of shipment and defective data randomly generated by the defective data generating unit 600 may be used.
어노테이션 도구(400)는 도 4를 참조하면 결과분석부(200)를 통해 시각화 과정을 거쳐 결과 분석을 통해 얻은 수정이 필요한 단계별 분석 데이터에 대해서 레이블링(Labeling)을 수정하여 재레이블링(Re-Labeling)하는 도구(프로그램 툴)이다.Referring to FIG. 4, the annotation tool 400 performs re-labeling by correcting the labeling for step-by-step analysis data that requires correction obtained through the visualization process through the result analysis unit 200 and the result analysis. It is a tool (program tool).
이때 레이블링은 핵심영역, 세그멘테이션로 두 가지 기능을 지원하며, 웹 기반 레이블링 수정용 어노테이션 도구(400)를 통해 수정이 필요한 단계별 분석 데이터를 수정하하여 재레이블링하고, 수정된 데이터를 데이터 스토리지(300)에 저장하여 자가학습에 활용할 수 있다. 또한 이러한 어노테이션 도구(400)는 검사자가 소지한 관리자단말 또는 결과분석부(200) 내에 프로그램 형태로 설치될 수 있다.At this time, labeling supports two functions: key area and segmentation, and through the web-based annotation tool for labeling correction (400), step-by-step analysis data that needs correction is corrected and relabeled, and the corrected data is stored in data storage (300). It can be saved and used for self-learning. In addition, such an annotation tool 400 may be installed in the form of a program in a manager terminal possessed by an inspector or in the result analysis unit 200 .
자가학습부(500)는 도 6을 참조하면 반도체 데이터 수집이 어렵기 때문에 기존 모델은 적은 데이터로 학습된 모델이므로 모델의 결과와 생성된 불량데이터, 수정된 데이터들이 일정량이 모이게 되면 불량 검출이 더욱 잘 이루어지도록 상술한 예측 모델들(핵심영역 추출 모델, 세그멘테이션 모델, 불량 검출 모델 등)의 성능 향상 및 변수 최적화를 위해 주기적으로 학습을 진행할 수 있다.Since it is difficult for the self-learning unit 500 to collect semiconductor data, referring to FIG. 6, since the existing model is a model learned with little data, when a certain amount of model results, generated defective data, and corrected data are gathered, defect detection becomes more difficult. Learning may be periodically performed to improve the performance of the above-described predictive models (key region extraction model, segmentation model, defect detection model, etc.)
또한 자가학습부(500)는 딥러닝 알고리즘 기반 자가학습을 비전문가도 사용할 수 있도록 웹기반의 딥러닝 기반 학습 서비스를 제공하며, 기존에 존재하는 모델들 중 선택 및 파라미터 설정 등 학습에 필요한 값들을 웹기반 UI(User Interface)를 통하여 설정하여 자가학습이 진행되고, 학습이 끝나면 자동으로 모델이 업데이트되고, 학습 기본 모델로 설정되도록 할 수 있다.In addition, the self-learning unit 500 provides a web-based deep-learning-based learning service so that non-experts can use deep-learning algorithm-based self-learning, and values necessary for learning, such as selection of existing models and setting parameters, are stored on the web. It can be set through the base UI (User Interface) so that self-learning proceeds, the model is automatically updated when learning is finished, and it is set as the basic learning model.
또한 자가학습부(500)는 통합형 불량 검출부에서 활용되는 단계별 각 모델들(핵심영역 추출 모델, 세그멘테이션 모델, 불량 검출 모델 등)의 기준이 되는 사전 학습을 위해 초기 데이터를 제공받아 사전 학습을 진행할 수 있으며, 초기 데이터는 전술한 바와 같이, 출하시 MLCC 칩 모델의 초기 정상 데이터와 불량데이터 생성부(600)에 의해 임의로 생성된 불량 데이터가 될 수 있다.In addition, the self-learning unit 500 may receive initial data for prior learning that is a standard for each model (core region extraction model, segmentation model, defect detection model, etc.) for each step used in the integrated defect detection unit and perform preliminary learning. As described above, the initial data may be initial normal data of the MLCC chip model at the time of shipment and defective data randomly generated by the defective data generator 600.
불량데이터 생성부(600)는 도 7을 참조하면 실제 반도체 공정에서는 불량데이터의 발생률이 매우 적으므로 정상과 불량 데이터의 불균형이 존재하므로, 불균형을 완화시키기 위해 불량데이터를 생성할 수 있다.Referring to FIG. 7 , the defective data generating unit 600 may generate defective data in order to alleviate the imbalance since there is an imbalance between normal and defective data since the generation rate of defective data is very low in an actual semiconductor process.
구체적으로 불량데이터 생성부(600)는 데이터 스토리지(300)에서 정상 데이터를 추출 후 적대적 생성 신경망(GAN) 기반의 모델을 통해 불량 데이터를 생성할 수 있으며, 생성된 불량 데이터는 데이터 스토리지(300)에 불량 데이터로 저장되어 학습시 활용된다.Specifically, the bad data generator 600 may extract normal data from the data storage 300 and generate bad data through a model based on an adversarial generative neural network (GAN), and the generated bad data is stored in the data storage 300. It is stored as defective data and used for learning.
여기서 적대적 생성 신경망(GAN)은 기존의 딥러닝 네트워크와는 달리 여러 개의 심층 신경망으로 이루어진 구조로, 고해상도 이미지를 생성하기 위해 기존 심층 신경망 모델보다 수십 배 많은 연산량을 요구하지만, 이미지 복원 및 생성에 탁월한 성능을 제공할 수 있다.Here, the adversarial generative neural network (GAN) is a structure composed of several deep neural networks, unlike conventional deep learning networks, and requires dozens of times more computation than conventional deep neural network models to generate high-resolution images, but is excellent for image restoration and generation. performance can be provided.
또한 적대적 생성 신경망은 생성기(Generator)와 판별기(Discriminator)로 두 네트워크를 적대적(Adversarial)으로 학습시키는 비지도 학습 기반 생성모델로서, 생성기에는 입력 데이터가 입력되어 실제 이미지와 유사한 가짜 이미지(본 발명의 불량 데이터 이미지)를 만들어내도록 학습될 수 있다.In addition, the adversarial generative neural network is an unsupervised learning-based generative model that adversarially trains two networks with a generator and a discriminator. Input data is input to the generator and a fake image similar to the real image (in the present invention) of bad data images).
입력 데이터는 노이즈 값이 입력될 수 있다. 노이즈 값은 어떤 확률 분포를 따를 수 있다. 예컨대, 제로 평균 가우시안(Zero-Mean Gaussian)으로 생성된 데이터일 수 있다.A noise value may be input as the input data. Noise values can follow any probability distribution. For example, it may be data generated with a zero-mean Gaussian.
판별기는 실제 이미지와 생성기가 생성한 가짜 이미지를 판별하도록 학습할 수 있다. 보다 구체적으로는, 실제 이미지를 입력하면 높은 확률이 나오도록, 가짜 이미지를 입력하면 확률이 낮아지도록 학습할 수 있다. 즉, 판별기는 실제 이미지와 가짜 이미지를 잘 판별하도록 점진적으로 학습할 수 있다.The discriminator can be trained to discriminate between the real image and the fake image generated by the generator. More specifically, it is possible to learn to have a high probability when a real image is input, and to have a low probability when a fake image is input. That is, the discriminator can gradually learn to discriminate between real images and fake images.
도 8은 본 발명의 일 실시예에 따른 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 방법의 순서도이다.8 is a flowchart of a deep learning-based MLCC stack alignment inspection method according to an embodiment of the present invention.
먼저, 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템(1000) 내 구비된 통합형 불량검출부(100)는 반도체 이미지 데이터로부터 사전 학습된 핵심영역 추출 모델을 활용하여 핵심영역을 추출할 수 있다(S100).First, the integrated defect detection unit 100 provided in the deep learning-based MLCC stack alignment inspection system 1000 may extract a core region by using a pre-learned core region extraction model from semiconductor image data (S100).
다음 통합형 불량검출부(100)는 핵심영역 내 세그멘테이션을 이용하여 검사영역을 구분할 수 있다(S102).Next, the integrated defect detection unit 100 may classify the inspection area using segmentation within the core area (S102).
또한 통합형 불량검출부(100)는 세그멘테이션에 의해 구분된 검사영역 내 마진율을 기준 마진율과 비교하여 반도체 칩(MLCC 칩)의 불량 여부를 판단할 수 있다(S104).In addition, the integrated defect detection unit 100 may determine whether the semiconductor chip (MLCC chip) is defective by comparing the margin rate in the inspection area classified by the segmentation with the reference margin rate (S104).
또한 결과분석부(200)는 불량 검출시 각 과정에 대한 결과를 분석하여 시각화하여 분석 데이터를 생성하고, 수정 여부를 판단할 수 있도록 검사자에게 제공될 수 있다(S106).In addition, the result analysis unit 200 analyzes and visualizes the results of each process when a defect is detected, generates analysis data, and may be provided to an inspector to determine whether or not to correct (S106).
또한 결과분석부(200)는 어노테이션 도구(400)를 활용하여 시각화된 단계별 분석 데이터로부터 수정 데이터가 생성된 경우, 학습을 위해 데이터 스토리지(300)에 불량 여부 판단시 생성된 정상 데이터 및 불량 데이터와 함께 저장한다(S108).In addition, the result analysis unit 200 uses the annotation tool 400 when correction data is generated from visualized step-by-step analysis data, normal data and defective data generated when determining whether or not the data storage 300 is defective for learning Save together (S108).
자가학습부(500)는 정상, 불량 데이터 및 수정데이터를 활용하여 자가 학습을 수행하고, 불량 검출시 활용되는 모델의 예측 정확도를 향상시키고, 최적화를 위해 주기적으로 업데이트하여 반영한다(S110).The self-learning unit 500 performs self-learning by utilizing normal, defective data, and corrected data, improves the prediction accuracy of a model used when detecting defects, and periodically updates and reflects for optimization (S110).
결과적으로 누적된 기존 데이터(과거 데이터), 정상/불량 데이터 및 수정데이터가 많을수록 학습에 의해 모델의 성능이 향상되어 예측 정확도를 향상시키고, 변수의 최적화를 이루어 궁극적으로 불량 검출 성능을 높일 수 있게 된다.As a result, the more accumulated existing data (past data), normal/defective data, and correction data, the better the performance of the model through learning, thereby improving the prediction accuracy and optimizing the variables to ultimately improve the defect detection performance. .

Claims (8)

  1. 반도체 MLCC 칩으로부터 적층 구조가 촬영된 이미지 데이터의 검사가 필요한 핵심영역을 딥러닝 기반의 적어도 하나의 핵심영역 검출 모델을 활용하여 검출하고, 검출된 핵심영역에서 세그멘테이션(segmentation)하고, 세그멘테이션 결과를 이용하여 기준 마진율 범위에 따라 불량 여부를 판단하여 정상/불량 데이터를 생성하여 불량 검출이 이루어지도록 하는 통합형 불량검출부;At least one core region detection model based on deep learning is used to detect the core region requiring inspection of the image data of the stacked structure taken from the semiconductor MLCC chip, segmentation is performed in the detected core region, and the segmentation result is used. an integrated defect detection unit that determines whether or not a defect is present according to a standard margin rate range and generates normal/defective data so that defect detection is performed;
    상기 통합형 불량검출부의 핵심영역 검출, 세그멘테이션, 불량검출에 대한 결과별로 시각화를 수행하고, 시각화된 단계별 분석 데이터의 검사자 분석을 통하여 해당 데이터의 수정 여부를 결정할 수 있도록 제공하는 결과분석부; 및A result analysis unit that performs visualization for each result of the core region detection, segmentation, and defect detection of the integrated defect detection unit, and provides the inspector to determine whether to modify the data through analysis of the visualized step-by-step analysis data; and
    상기 정상/불량 데이터, 단계별 분석 데이터를 저장하는 데이터 스토리지Data storage that stores the normal/defective data and analysis data for each step
    를 포함하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템.Deep learning-based MLCC stacked alignment inspection system including.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 통합형 불량검출부는The integrated defect detection unit
    상기 핵심영역 검출 모델에 의해 검출된 다수의 핵심영역에서 클래스 별 경계면을 분할하는 세그멘테이션 모델을 활용하여 경계면 분할을 수행하고, Performing boundary segmentation using a segmentation model that divides boundary surfaces for each class in a plurality of core regions detected by the core region detection model;
    상기 핵심영역의 세그멘테이션 결과를 이용해 전극 패턴과 전극 패턴 사이 직선거리에 대한 마진율을 측정하고, 측정된 마진율이 미리 설정된 기준마진율 범위 이내이면 정상으로 판단하고, 기준마진율 범위 밖이면 불량으로 판단할 수 있는 것을 특징으로 하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템.Using the segmentation result of the core area, the margin rate for the straight line distance between the electrode patterns is measured, and the measured margin rate is within the preset standard margin rate range. Deep learning-based MLCC stacked alignment inspection system, characterized in that.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 결과분석부를 통해 시각화 과정을 거쳐 결과 분석을 통해 얻은 수정이 필요한 단계별 분석 데이터에 대해서 레이블링을 수정하는 프로그램인 어노테이션 도구 An annotation tool, which is a program that corrects the labeling of the analyzed data obtained through the result analysis through the visualization process through the result analysis unit and requires correction at each stage.
    를 더 포함하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템.Deep learning-based MLCC stacked alignment inspection system further comprising a.
  4. 청구항 2에 있어서,The method of claim 2,
    상기 통합형 불량검출부에서 생성된 정상/불량 데이터에 대해 모델 성능 향상을 위해 주기적인 학습을 수행하는 자가학습부A self-learning unit that performs periodic learning to improve model performance on the normal/defective data generated by the integrated defect detection unit.
    를 더 포함하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템.Deep learning-based MLCC stacked alignment inspection system further comprising a.
  5. 청구항 4에 있어서,The method of claim 4,
    정상 데이터와 불량 데이터의 불균형을 완화시키기 위해 학습에 필요한 불량데이터를 적대적 생성 신경망(GAN) 기반의 모델을 통해 생성하는 불량데이터 생성부Bad data generation unit that generates bad data necessary for learning through a model based on adversarial generative neural network (GAN) to alleviate the imbalance between normal data and bad data.
    를 더 포함하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템.Deep learning-based MLCC stacked alignment inspection system further comprising a.
  6. 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 시스템 내 구비된 통합형 불량검출부는 반도체 이미지 데이터로부터 사전 학습된 핵심영역 추출 모델을 활용하여 핵심영역을 추출하는 단계;Extracting a core region using a pre-learned core region extraction model from the semiconductor image data by an integrated defect detection unit provided in the deep learning-based MLCC stack alignment inspection system;
    상기 통합형 불량검출부는 핵심영역 내 세그멘테이션을 이용하여 검사영역을 구분하는 단계;classifying an inspection area by the integrated defect detection unit using segmentation within a core area;
    상기 통합형 불량검출부는 세그멘테이션에 의해 구분된 검사영역 내 마진율을 기준 마진율과 비교하여 반도체 칩의 불량 여부를 판단하는 단계;determining, by the integrated defect detection unit, whether the semiconductor chip is defective by comparing a margin rate in an inspection area classified by segmentation with a reference margin rate;
    결과분석부는 불량 검출시 각 과정에 대한 결과를 분석하여 시각화하여 분석 데이터 생성하고, 수정여부를 판단할 수 있도록 제공하는 단계The result analysis unit analyzes and visualizes the results of each process when a defect is detected, generates analysis data, and provides it to determine whether or not to correct it.
    를 포함하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 방법.Deep learning-based MLCC stacked alignment inspection method including.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 결과분석부는 어노테이션 도구를 활용하여 시각화된 단계별 분석 데이터로부터 수정 데이터가 생성된 경우, 학습을 위해 데이터 스토리지에 불량 여부 판단시 생성된 정상 데이터 및 불량 데이터와 함께 저장하는 단계When the correction data is generated from the visualized step-by-step analysis data using the annotation tool, the result analysis unit stores the normal data and defective data generated when determining whether the data is defective or not in the data storage for learning.
    를 더 포함하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 방법.Deep learning-based MLCC stacked alignment inspection method further comprising a.
  8. 청구항 7에 있어서,The method of claim 7,
    자가학습부는 정상 데이터, 불량 데이터 및 수정데이터를 활용하여 자가 학습을 수행하고, 불량 검출시 활용되는 모델의 예측 정확도를 향상시키고, 최적화를 위해 주기적으로 업데이트하여 반영하는 단계The self-learning unit performs self-learning using normal data, defective data, and corrected data, improves the prediction accuracy of the model used when detecting defects, and periodically updates and reflects them for optimization.
    를 더 포함하는 딥러닝 기반의 MLCC 적층 얼라인먼트 검사 방법.Deep learning-based MLCC stacked alignment inspection method further comprising a.
PCT/KR2022/016880 2021-11-05 2022-11-01 Deep learning-based mlcc stacked alignment inspection system and method WO2023080587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/276,450 US20240103076A1 (en) 2021-11-05 2022-11-01 Deep learning-based mlcc stacked alignment inspection system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0151239 2021-11-05
KR1020210151239A KR102602167B1 (en) 2021-11-05 2021-11-05 Deep learning-based MLCC stacked alignment inspection system and method

Publications (1)

Publication Number Publication Date
WO2023080587A1 true WO2023080587A1 (en) 2023-05-11

Family

ID=86241774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016880 WO2023080587A1 (en) 2021-11-05 2022-11-01 Deep learning-based mlcc stacked alignment inspection system and method

Country Status (3)

Country Link
US (1) US20240103076A1 (en)
KR (1) KR102602167B1 (en)
WO (1) WO2023080587A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117094990A (en) * 2023-10-16 2023-11-21 江苏富松模具科技有限公司 Defect detection method and system for composite stamping die

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100311282B1 (en) * 1999-01-14 2001-11-02 김상렬 Automatic inspection system for quality of connection cable
KR20140082095A (en) * 2012-12-21 2014-07-02 삼성전기주식회사 Apparatus for detecting falut and method for detecting falut using the same
CN108982508A (en) * 2018-05-23 2018-12-11 江苏农林职业技术学院 A kind of plastic-sealed body IC chip defect inspection method based on feature templates matching and deep learning
KR20190063839A (en) * 2017-11-30 2019-06-10 전자부품연구원 Method and System for Machine Vision based Quality Inspection using Deep Learning in Manufacturing Process
KR20210122030A (en) * 2020-03-31 2021-10-08 주식회사 세컨핸즈 Method, system and non-transitory computer-readable recording medium for estimating information about objects

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692691B2 (en) * 2008-05-09 2015-04-01 Nltテクノロジー株式会社 Display device inspection method, inspection device, display device substrate, and display device
KR20110004929A (en) 2009-07-09 2011-01-17 김교영 The development of algorithms and systems for mlcc inpection machine
JP7122524B2 (en) * 2017-12-05 2022-08-22 パナソニックIpマネジメント株式会社 Inspection program generation system, inspection program generation method, and inspection program generation program
KR102342337B1 (en) * 2019-01-24 2021-12-23 가천대학교 산학협력단 System and method for diagnosising display panel using deep learning neural network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100311282B1 (en) * 1999-01-14 2001-11-02 김상렬 Automatic inspection system for quality of connection cable
KR20140082095A (en) * 2012-12-21 2014-07-02 삼성전기주식회사 Apparatus for detecting falut and method for detecting falut using the same
KR20190063839A (en) * 2017-11-30 2019-06-10 전자부품연구원 Method and System for Machine Vision based Quality Inspection using Deep Learning in Manufacturing Process
CN108982508A (en) * 2018-05-23 2018-12-11 江苏农林职业技术学院 A kind of plastic-sealed body IC chip defect inspection method based on feature templates matching and deep learning
KR20210122030A (en) * 2020-03-31 2021-10-08 주식회사 세컨핸즈 Method, system and non-transitory computer-readable recording medium for estimating information about objects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117094990A (en) * 2023-10-16 2023-11-21 江苏富松模具科技有限公司 Defect detection method and system for composite stamping die
CN117094990B (en) * 2023-10-16 2024-01-23 江苏富松模具科技有限公司 Defect detection method and system for composite stamping die

Also Published As

Publication number Publication date
US20240103076A1 (en) 2024-03-28
KR102602167B1 (en) 2023-11-13
KR20230065558A (en) 2023-05-12

Similar Documents

Publication Publication Date Title
EP3502966B1 (en) Data generation apparatus, data generation method, and data generation program
US10885618B2 (en) Inspection apparatus, data generation apparatus, data generation method, and data generation program
CN103917987B (en) Pass through the measurement of the belt wear of the rim detection of raster image
CN111899241B (en) Quantitative on-line detection method and system for defects of PCB (printed Circuit Board) patches in front of furnace
CN108765373A (en) A kind of insulator exception automatic testing method based on integrated classifier on-line study
Mahalingam et al. Pcb-metal: A pcb image dataset for advanced computer vision machine learning component analysis
TW202239281A (en) Electronic substrate defect detection
CN109859164A (en) A method of by Quick-type convolutional neural networks to PCBA appearance test
JP2013167596A (en) Defect inspection device, defect inspection method, and program
TWI669519B (en) Board defect filtering method and device thereof and computer-readabel recording medium
CN113724231A (en) Industrial defect detection method based on semantic segmentation and target detection fusion model
WO2023080587A1 (en) Deep learning-based mlcc stacked alignment inspection system and method
Wu et al. Automated visual inspection of surface mounted chip components
CN112419260A (en) PCB character area defect detection method
CN116718600B (en) Detection device for intelligent detection of wire harness product
CN113505789A (en) Electrical equipment nameplate text recognition method based on CRNN
JPH11337498A (en) Apparatus and method for inspecting printed circuit board
CN111582332B (en) Picture identification method for high-speed railway contact net dropper component
CN114782431B (en) Printed circuit board defect detection model training method and defect detection method
CN108898584B (en) Image analysis-based full-automatic veneered capacitor welding polarity discrimination method
CN115937555A (en) Industrial defect detection algorithm based on standardized flow model
CN116188376A (en) Digital printing stepping channel detection method based on twin neural network
CN112927170B (en) Automatic defect removing method in semiconductor manufacturing process
CN113506290A (en) Method and device for detecting defects of line insulator
Guan et al. A golden-block-based self-refining scheme for repetitive patterned wafer inspections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18276450

Country of ref document: US