WO2023080303A1 - Method for preparing dental and total medical resins for 3d printing by utilizing xylitol and propolis - Google Patents

Method for preparing dental and total medical resins for 3d printing by utilizing xylitol and propolis Download PDF

Info

Publication number
WO2023080303A1
WO2023080303A1 PCT/KR2021/016273 KR2021016273W WO2023080303A1 WO 2023080303 A1 WO2023080303 A1 WO 2023080303A1 KR 2021016273 W KR2021016273 W KR 2021016273W WO 2023080303 A1 WO2023080303 A1 WO 2023080303A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed solution
stirring
dental
mpa
preparing
Prior art date
Application number
PCT/KR2021/016273
Other languages
French (fr)
Korean (ko)
Inventor
정인선
Original Assignee
정인선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정인선 filed Critical 정인선
Publication of WO2023080303A1 publication Critical patent/WO2023080303A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K11/00Use of ingredients of unknown constitution, e.g. undefined reaction products

Definitions

  • the present invention relates to a method for manufacturing dental and total medical 3D printing resins using xylitol and propolis, and more specifically, to a method for manufacturing xylitol and By using propolis, it relates to a method for manufacturing dental and total medical 3D printing resins using xylitol and propolis capable of providing stable and excellent mechanical properties as well as increasing antibacterial effects.
  • Dental caries commonly called tooth decay, is a phenomenon in which components such as calcium and phosphorus on the surface of teeth are melted by acid to form holes in the teeth. Such dental caries can cause problems with pronunciation, chewing, and aesthetics. Problems such as damage to the gums may also occur, and when dental caries is intensified due to failure to recognize the invention at an early stage, a problem of removing damaged teeth may occur.
  • dental restorative resin compositions are composed of inorganic fillers, PP polymers, diluents, photoinitiators, and other additives, and have mechanical strength that can withstand high occlusal pressure generated when chewing food, thermal expansion similar to natural teeth, and polymerization. Requirements such as having the same appearance and texture as natural teeth, as well as physical properties of low polymerization shrinkage to prevent separation from teeth during curing, must be met.
  • 3D printing is being introduced to the dental world, and is currently being applied and used to various products such as temporary crowns, splints, surgical guides, and dentures.
  • Saliva exists in the oral cavity, there is a temperature difference depending on the food eaten, masticatory pressure is continuously applied, and abnormal forces such as bruxism and clenching are applied. It should be non-toxic.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a resin material that can be used not only for dental purposes but also for general medical 3D printing resin materials, and has excellent mechanical properties, aesthetics, and antibacterial properties. is to provide
  • the present invention provides 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane ( Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), ethoxylate bisphenol A dimethacrylate (Bis-EMA), a pretreatment step of performing surface modification by irradiation with urethane dimethacrylate (UDMA); preparing a first mixed solution by adding xylitol to the triethylene glycol dimethacrylate (TEGDMA) and then stirring; 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (Bis-GMA), ethoxylate bisphenol A dimethacrylate (Bis-EMA) and urethane dimetha
  • a second mixed solution by mixing and stirring acrylate (UDMA)
  • preparing a third mixed solution by mixing and then stirring the first mixed solution and the second mixed solution
  • stirring is performed in a vacuum atmosphere, and stirring is performed for 60 minutes at a light intensity of 600mW/cm 2 to 1,000mW/cm 2 at a temperature of 60° C. to 80° C.
  • a post-treatment step of performing surface modification by irradiating the fourth mixed solution with light corresponding to a wavelength range capable of being absorbed by the photoinitiator further comprising, In the post-treatment step, stirring is performed in a vacuum atmosphere for the same temperature and time as the pre-treatment step, but the agitation is performed at a light intensity higher than that of the pre-treatment step.
  • the light intensity in the post-processing step is 1000mW/cm 2 to 2,000mW/cm 2 .
  • stirring is performed in a vacuum atmosphere for 6 hours or more, but stirring is performed at room temperature in the summer season and at a temperature of 50 ° C to 60 ° C in the winter season.
  • the sixth mixed solution is aged at a temperature of 32° C. to 36° C. for 48 hours or longer.
  • the first mixed solution contains 2% to 10% by weight of xylitol.
  • the fifth mixed solution contains 0.2% to 3.5% by weight of the propolis compared to the fourth mixed solution.
  • the material containing the flavonoids is propolis.
  • the present invention has the following excellent effects.
  • the surface of xylitol is coated with a glycol substrate of triethylene glycol dimethacrylate (TEGDMA) and then mixed with each monomer to prepare a resin, so that xylitol has reduced antibacterial properties due to the phospahte substrate.
  • TEGDMA triethylene glycol dimethacrylate
  • the surface of each monomer or mixture is modified by irradiating light of a wavelength capable of being absorbed by the photoinitiator used in the manufacture in the same environment as the temperature generated during the resin polymerization process of 3D printing, It is possible to provide a resin having excellent photopolymerization efficiency and suitable mechanical properties as a resin material for 3D printing that can produce dental and total medical products as well as general dental restoration.
  • FIG. 1 is a flow chart of a resin manufacturing method according to an embodiment of the present invention.
  • the resin manufacturing method according to an embodiment of the present invention has an antibacterial function usable as a dental restorative and medical 3D printing resin material. It relates to a method for manufacturing a resin having a pretreatment step (S1000) for monomers to be used in the manufacture, a first mixture solution preparation step (S2000), a second mixture solution preparation step (S3000), a third mixture solution preparation step (S4000), and a fourth mixture solution preparation step (S4000). It includes a mixture solution preparation step (S5000), a post-processing step (S6000), a fifth mixture solution preparation step (S7000), a sixth mixture solution preparation step (S8000), and a aging step (S9000).
  • pretreatment is performed to modify the surface of monomers (S1000).
  • each monomer performs surface modification by irradiating light in a wavelength range capable of being absorbed by the photoinitiator according to the photoinitiator to be used for preparing the resin.
  • the photoinitiator to be used in resin production is 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO)
  • TPO 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • the surface modification may be performed by irradiation with light having a wavelength of 350 nm to 420 nm, and light having a wavelength of 370 nm to 450 nm in the case of 1-phenyl-1,2-propanedione (PPD) and 420 nm to 420 nm in the case of camphorquinone (CQ).
  • PPD 1-phenyl-1,2-propanedione
  • CQ camphorquinone
  • Surface modification may be performed by irradiating light with a wavelength of 540 nm.
  • a pretreatment process of modifying the surface of the monomer is performed in order to minimize the unpolymerized portion of the resin.
  • the surface of the monomer is irradiated with light of a wavelength capable of being absorbed by the photoinitiator to be used in preparing the resin to perform surface modification, and the surface hydrophilicity of the surface-modified monomer is improved.
  • the pretreatment process (S1000) is preferably performed in a vacuum atmosphere, and for this purpose, a vacuum mixer capable of irradiating a light source and generating a vacuum pressure may be used.
  • stirring may be performed for 60 minutes at a light intensity of 600mW to 1,000mw/cm 2 depending on the wavelength.
  • the pretreatment process (S1000) may be performed at a vacuum pressure of 0.05mpa to 0.2mpa, and at a stirring speed of 5 RPM to 15 RPM.
  • the pretreatment process (S1000) may be performed at a temperature of 60 °C to 80 °C.
  • the pretreatment process (S1000) is performed at a temperature of 60 ° C to 80 ° C because the efficiency of surface modification is excellent when performed under the same conditions as the exothermic temperature generated during polymerization in the resin printing process.
  • the monomers are compounds having an unsaturated double bond, 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane (Bis-GMA), ethylene glycol dimethacrylate (EGDMA) ), ethylene glycol diacrylate (EDGA), triethylene glycol dimethacrylate (TEGDMA), triethylene glycol diacrylate (TEGDA), ethoxylate bisphenol A dimethacrylate (Bis-EMA), urethane dimetha Acrylates (UDMA), polyurethane diacrylate (PUDA), dipentaerythritol pentaacrylate monophosphate (PENTA), 2-hydroxyethyl methacrylate (HEMA), poly and polyalkenoic acid, biphenyl dimethacrylate (BPDM), biphenyl diacrylate BPDA, or glycerol phosphate dimethacrylate (GPDM).
  • Bis-GMA 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy)
  • TEGDMA triethylene glycol dimethacrylate
  • UDMA Toxylate bisphenol A dimethacrylate
  • TEGDMA triethylene glycol dimethacrylate
  • xylitol is added to the triethylene glycol dimethacrylate (TEGDMA) and stirred to prepare a first mixed solution (S2000).
  • TEGDMA triethylene glycol dimethacrylate
  • the xylitol is a non-cariogenic and anti-cariogenic material, and is a natural material that is more effective in preventing caries than sorbitol or other sugar alcohols.
  • xylitol which is stably used as a food and medicine, was used as an effective material for preventing caries, and a resin having excellent antibacterial properties and mechanical properties compared to conventional fluorine-containing materials was prepared.
  • the process of preparing the first mixed solution (S2000) it is preferable that 2% to 10% by weight of xylitol is added compared to the first mixed solution, which reduces the degree of polymerization by reducing the light transmission efficiency when the xylitol is added in excess. because it drops
  • the process of preparing the first mixed solution (S2000) is prepared by mixing and stirring the triethylene glycol dimethacrylate (TEGDMA) and xylitol in a vacuum atmosphere, vacuum pressure 0.05 mpa to 0.2 mpa, temperature 40 ° C to 50 ° C, It can be carried out for 120 minutes at a stirring speed of 5 RPM to 10 RPM.
  • TEGDMA triethylene glycol dimethacrylate
  • the second mixed solution preparation process (S3000) is prepared by mixing and stirring in a vacuum atmosphere, vacuum pressure 0.05mpa to 0.2mpa, temperature 40 °C to 50 °C, stirring speed 5 RPM to 10 RPM for 60 minutes.
  • a third mixed solution is prepared by mixing and stirring the first mixed solution and the second mixed solution (S4000).
  • the third mixture preparation process (S4000) is prepared by mixing and stirring in a vacuum atmosphere, vacuum pressure 0.05mpa to 0.2mpa, temperature 40 °C to 50 °C, stirring speed 5 RPM to 10 RPM for 120 minutes.
  • the 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), ethoxylate bisphenol A Mixing dimethacrylate (Bis-EMA) and urethane dimethacrylate (UDMA) and the xylitol at the same time does not perform stirring, which is a phosphate substrate of the remaining monomers except for triethylene glycol dimethacrylate (TEGDMA).
  • the xylitol is mixed with the triethylene glycol dimethacrylate (TEGDMA) to form a glycol substrate of the triethylene glycol dimethacrylate (TEGDA).
  • TEGDMA triethylene glycol dimethacrylate
  • TAGDA triethylene glycol dimethacrylate
  • a fourth mixed solution is prepared by mixing the nano-filler with the prepared third mixed solution and then stirring (S5000).
  • the nano-filler means a filler of nano-sized particles, and various known organic/inorganic fillers for improving wear resistance and mechanical strength of a resin may be manufactured and used in nano-size.
  • the fourth mixed solution manufacturing process (S5000) is prepared by mixing and stirring 2 to 10% by weight of the nano-filler with 90 to 98% by weight of the third mixed solution compared to the fourth mixed solution.
  • the fourth mixture preparation process (S5000) is prepared by mixing and stirring in a vacuum atmosphere, vacuum pressure of 0.05 mpa to 0.2 mpa, temperature of 40 °C to 50 °C, stirring speed 10 RPM to 25 RPM for 240 minutes or more can
  • a material having a flavonoid component is added to the fourth mixed solution to prepare a fifth mixed solution (S6000).
  • the flavonoid is a component having antibacterial, antiviral, and antiallergic effects
  • propolis vitamin P, hesperadin, anthocyanidin, naringenin, isoflavone, etc.
  • propolis vitamin P, hesperadin, anthocyanidin, naringenin, isoflavone, etc.
  • propolis vitamin P, hesperadin, anthocyanidin, naringenin, isoflavone, etc.
  • the fifth mixture preparation process (S6000) is prepared by mixing and stirring in a vacuum atmosphere, the vacuum pressure is 0.05 mpa to 0.2 mpa, the temperature is room temperature to 60 ° C, and the stirring speed is 5 RPM to 15 RPM for 360 minutes or more can be performed
  • the manufacturing process of the fifth mixed solution (S6000) may be prepared by varying the temperature according to the summer season and the winter season.
  • the process of preparing the fifth mixed solution may be performed at room temperature in summer and at a temperature of 50° C. to 60° C. in winter. This is because dew condensation and moisture in the chamber can occur due to the difference in temperature between the outside and the inside of the chamber of the vacuum mixer that performs stirring, which can cause product quality deterioration and contamination, as well as an obstacle to maintaining polymer softening during the mixing process. am.
  • the fifth mixture is irradiated with light in a wavelength range that can be absorbed by the photoinitiator to perform post-treatment for surface modification (S7000).
  • the post-treatment process (S7000) performs surface modification by irradiating light in a wavelength range capable of being absorbed by the photoinitiator to be used for manufacturing, but with higher light intensity than in the pre-treatment process (S1000). is performed with
  • the post-processing process (S7000) is performed in a vacuum atmosphere at a light intensity of 1,000 mW/cm 2 to 2,000 mW/cm 2 depending on the wavelength for 60 minutes, a vacuum pressure of 0.05 mpa to 0.2 mpa, a temperature of 60 °C to 80 °C, and Agitation may be performed at a speed of 5 RPM to 15 RPM.
  • the reason for performing the surface modification with a higher light intensity than in the pre-treatment process (S1000) in the post-treatment process (S7000) is to increase the light transmission efficiency because the fifth mixture is mixed with nano-fillers, and furthermore, the resin This is to maximize the surface modification of the monomers before polymerization of
  • a photoinitiator and other additives are mixed with the fifth mixed solution and stirred to prepare a sixth mixed solution (S8000).
  • a pigment for adjusting the color tone of the fissure sealant may be used.
  • a reaction accelerator may be used.
  • a diluent may be used.
  • the photoinitiator is 2,4,6-trimethyl benzoyl diphenyl phosphine (2,4,6-trimethyl benzoyl diphenyl phosphine, TPO), 1-phenyl-1,2-propane dione (1-phenyl-1 ,2-propanedione, PPD), and camphorquinone (Camphorquinoe, CQ) can be selected and used.
  • the sixth mixed solution is prepared by mixing and stirring in a vacuum atmosphere, and may be performed at a vacuum pressure of 0.05 mpa to 0.2 mpa, a temperature of 40 ° C to 50 ° C, and a stirring speed of 5 RPM to 15 RPM for 240 minutes or more.
  • the prepared sixth mixed solution is aged in a room temperature or lukewarm environment (S9000).
  • the sixth mixed solution is aged in a room temperature or lukewarm environment, and in detail, naturally aged at a temperature of 32 ° C to 36 ° C for 48 hours or more.
  • the surface of the activated nano-filler can be deposited to make resin discharge smooth, and the mechanical properties of monomers damaged by stirring can be restored in the process of making mixed solutions, and furthermore, the cross-linking of xylitol and propolis can be strengthened. It has the advantage of increasing functionality as well as mechanical properties.
  • Bis-GMA 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane
  • TEGDMA triethylene glycol dimethacrylate
  • UDMA urethane dimethacrylate
  • CQ camphorquinone
  • xylitol 1.1 g, 2.2 g, 4.4 g, and 11 g of xylitol were added to each 200 g of the pretreated triethylene glycol dimethacrylate (TEGDMA) in a vacuum mixer, and then the temperature was 50 ° C, the stirring speed was 15 RPM, and the vacuum pressure was 0.2 mpa. The mixture was stirred for 4 minutes to prepare a first mixed solution.
  • TEGDMA triethylene glycol dimethacrylate
  • the mixture was prepared by stirring in a vacuum mixer at a temperature of 50 ° C., a stirring speed of 25 RPM, and a vacuum pressure of 0.2 mpa for 24 hours.
  • Each of the prepared fourth mixed solutions was heated in a vacuum mixer at a temperature of 60° C., a stirring speed of 15 RPM, a vacuum pressure of 0.2 mpa, and a light intensity of 400 nm corresponding to the absorption wavelength of camphorquinone (CQ), a photoinitiator to be used for the preparation, at an optical intensity of 2,000 mw/ It was stirred for 60 minutes in a state irradiated with cm 2 .
  • CQ camphorquinone
  • a resin was prepared in the same manner as in Example, but in the process of preparing the first mixed solution, fluorine was added instead of xylitol to prepare the resin.
  • Comparative Examples 1 to 4 it can be classified into Comparative Examples 1 to 4 according to the content (concentration) of the composition contained in the prepared resin, and the content of each composition is shown in Table 2 below.
  • a flexural strength test was performed by making five specimens each of Examples and Comparative Examples.
  • the wavelength of light was 500 nm and the light intensity was 1,500 mw/cm 2 , and photopolymerization was performed by irradiating twice for 25 seconds.
  • the adhesive strength test of the resin according to the xylitol content of the examples and the fluorine content of the comparative example was performed, and each prepared resin was tested by making specimens using a 20x100x4mm mold.
  • a pair of specimens were made in each of Examples and Comparative Examples, and the pair of specimens were overlapped by 5 mm in the longitudinal direction, and dentin adhesive was applied uniformly to the overlapping area, and then bonded.
  • Example 4 Based on the content of each composition in Example 4, a prototype resin was prepared and the depth of polymerization was measured. In the case of not performing both the pre- and post-treatment processes during the manufacturing process, only the pre-treatment process, and the post-treatment process The depth of polymerization was measured when only the polymerization was performed and when the pretreatment and posttreatment processes were performed together.
  • the test method for measuring the depth of polymerization was carried out in accordance with the ISO 4049 depth of polymerization test method. In each case, 5 prototype resins were manufactured. When manufacturing the prototype resin, the wavelength of light was 500 nm and the light intensity was 1,500 mw/cm2 for 25 seconds. Photopolymerization was performed by irradiation twice.
  • the polymerization depth was significantly greater when the pre-treatment or post-treatment process was performed, or when both the pre-treatment process and the post-treatment process were performed than when the pre-treatment process and the post-treatment process were not performed.
  • the polymerization depth is more than twice as high as when the pre-treatment process and the post-treatment process are not performed, compared to the case where only the pre-treatment process or the post-treatment process is performed. there is.
  • Example 4 Five circular specimens of Example 4 and Comparative Example 5 were each produced with a size of 20x20x2mm, and Streptococcus mutans (S.mutans, ATCC 25175) was used to 'JIS Z 2801: 2006 Antimicrobial products Test for antimicrobial activity and efficacy' Antimicrobial activity was evaluated accordingly.
  • Streptococcus mutans S.mutans, ATCC 25175
  • the wavelength of light was 500 nm and the light intensity was 1,500 mw/cm 2 , and photopolymerization was performed by irradiating twice for 25 seconds.
  • Example 1 95% 94.3% 95.2% 93.7% 95.6% 94.6% Comparative Example 5 68.4% 67.2% 70.1% 65.9% 66.5% 67.6%
  • Example 4 As a result of the antibacterial test, referring to Table 6, 2,2-bis[4-(2-hydroxy-3-methacrylic acid) was added to the first mixture obtained by mixing xylitol and triethylene glycol dimethacrylate (TEGDMA) first.
  • the resin prepared by the resin manufacturing method of the present invention shows excellent antibacterial properties of 94% or more because xylitol and propolis are used together, and further It has the advantage of being usable as a resin material for 3D printing that can produce not only dental products but also various medical products, as it exhibits excellent mechanical properties such as flexural strength of 112 MPa or more, adhesive strength of 11.3 MPa or more, and polymerization depth of 2.1 mm or more.
  • the present invention can also be used industrially as a medical 3D printing resin material.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Dental Preparations (AREA)

Abstract

The present invention relates to a method for preparing dental and total medical resins for 3D printing by utilizing xylitol and propolis and, more particularly, to a method for preparing, by utilizing xylitol and propolis, dental and total medical resins for 3D printing that can improve antibacterial effects by using natural materials, xylitol and propolis, replacing fluoride ions conventionally used for antibacterial effects, and furthermore can provide stable and excellent mechanical properties.

Description

자일리톨 및 프로폴리스를 활용한 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법Manufacturing method of dental and total medical 3D printing resin using xylitol and propolis
본 발명은 자일리톨 및 프로폴리스를 활용한 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법에 관한 것으로, 보다 구체적으로는 종래에 항균 효과를 위해 사용된 불소 이온이 함유된 물질을 대체하여 천연 소재인 자일리톨과 프로폴리스를 사용함으로써, 항균 효과를 증대시킬 뿐만 아니라 안정적이고 우수한 기계적 물성을 제공할 수 있는 자일리톨 및 프로폴리스를 활용한 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법에 관한 것이다. The present invention relates to a method for manufacturing dental and total medical 3D printing resins using xylitol and propolis, and more specifically, to a method for manufacturing xylitol and By using propolis, it relates to a method for manufacturing dental and total medical 3D printing resins using xylitol and propolis capable of providing stable and excellent mechanical properties as well as increasing antibacterial effects.
일반적으로 충치라고 불리는 치아 우식증은 치아 표면의 칼슘이나 인과 같은 성분들이 산에 의해 녹아 치아에구멍이생기는 현상으로, 이러한 치아우식증에 의해 발음, 저작, 심미성의 문제가 발생할 수 있고, 통증,시림, 잇몸 손상 등의 문제도 발생할 수 있으며, 초기에 발명을 인지하지 못해 치아 우식증이 심화된 경우에는 손상된 치아를 제거해야 하는 문제가 발생할 수도 있다.Dental caries, commonly called tooth decay, is a phenomenon in which components such as calcium and phosphorus on the surface of teeth are melted by acid to form holes in the teeth. Such dental caries can cause problems with pronunciation, chewing, and aesthetics. Problems such as damage to the gums may also occur, and when dental caries is intensified due to failure to recognize the invention at an early stage, a problem of removing damaged teeth may occur.
따라서, 치아 우식증이 발생된 경우, 치아의 손상된 부분 또는 전체를 치과수복용 레진으로 대체함으로써 구강의 기능을 유지시키거나 회복시키는 시술이 수행된다.Therefore, when dental caries occurs, a procedure for maintaining or restoring the function of the oral cavity is performed by replacing the damaged part or the whole of the tooth with a dental restorative resin.
예로부터 시술이 쉽고 내마모성과 기계적 강도가 우수한 수은 아말감(Amalgam)이 널리 사용되어 왔으나, 자연 치아와의 색상 차이가 뚜렸하고, 치아 조직과의 접합성이 떨어지며, 장기간에 걸쳐 수은이 유출되어 인체에 유해하다고 알려져 있어, 최근에는 이러한 단점을 보완할 수 있는 고분자 소재가 각광받고 있다Since ancient times, mercury amalgam has been widely used because of its easy operation and excellent abrasion resistance and mechanical strength. Recently, polymeric materials that can compensate for these disadvantages are in the limelight.
통상적으로 치과수복용 레진 조성물은 무기 충전재와 프피폴리머, 희석제, 광개시제및 기타 첨가제 등으로 구성되며, 음식물을 씹을 때 발생되는 높은 교합압을 견디어 낼 수 있는 기계적 강도, 자연 치아와 유사한 열팽창율, 중합 경화시 치아와의 박리를 방지하기 위한 낮은 중합수축률 들의 물리적 특성과 더불어 자연 치아와 동일한 외관 및 질감을 갖는 등의 요건을 갖추어야 한다.Conventionally, dental restorative resin compositions are composed of inorganic fillers, PP polymers, diluents, photoinitiators, and other additives, and have mechanical strength that can withstand high occlusal pressure generated when chewing food, thermal expansion similar to natural teeth, and polymerization. Requirements such as having the same appearance and texture as natural teeth, as well as physical properties of low polymerization shrinkage to prevent separation from teeth during curing, must be met.
그러나, 이러한 치과수복용 레진 조성물은 경화시 발생하는 수축과 미세 크랙에 의해 수복 부위에 다시 치아 우식증을 발생시키는 문제가 있으며, 이에 수축과 미세 크랙을 최소화하고, 치아 우식증의 재발을 예방할 수 있는 항균성을 갖는 레진 개발이 중요한 관심사로 떠오르고 있다.However, such a dental restorative resin composition has a problem of causing dental caries in the repaired area again due to shrinkage and microcracks generated during curing, thereby minimizing shrinkage and microcracks and preventing the recurrence of dental caries The development of resins with
이에, 종래에는 항균성 및 치아우식증 방지를 위해 불소(F) 이온 성분을 첨가하여 방출시키는 제품들이 개발되었으나 기준량 이상의 불소(F) 이온 성분 첨가 시 레진의 접착성과 강도 등의 물성을 현저하게 떨어지게 하여 오히려 레진이 탈락되어 더 큰 문제를 발생시키는 문제가 있다.Accordingly, conventionally, products that add and release fluorine (F) ions for antibacterial properties and prevention of dental caries have been developed. There is a problem that the resin is dropped and causes a bigger problem.
한편, 3D 프린팅 시장이 커지면서 치의학계에도 3D 프린팅을 도입하고 있으며, 현재 임시 치관, 스플린트, 서지컬 가이드, 의치 등과 같은 다양한 제품에 적용하여 사용되고 있다.On the other hand, as the 3D printing market grows, 3D printing is being introduced to the dental world, and is currently being applied and used to various products such as temporary crowns, splints, surgical guides, and dentures.
구강 내에는 타액이 존재하고, 섭취하는 음식에 따라 온도차가 있으며, 저작압이 지속적으로 가해지고, 또한 이갈이와 이악물기 같은 비정상적인 힘이 가해지기 때문에 이를 견딜 수 있는 높은 기계적 성질등이 필요하며, 세포 독성이 없어야 한다.Saliva exists in the oral cavity, there is a temperature difference depending on the food eaten, masticatory pressure is continuously applied, and abnormal forces such as bruxism and clenching are applied. It should be non-toxic.
의치의 경우 최소한 주간에는 지속적으로 구강 내에 위치하는 보철물로서 위에서 언급된 모든 성질들을 필요로하며, 일반적인 3D 프린팅용 의치상 레진은 낮은 기계적 성질과 심미성의 문제로 사용하기가 어려운 문제가 있다.In the case of dentures, as prostheses that are continuously positioned in the oral cavity at least during the week, all of the above-mentioned properties are required, and general denture base resins for 3D printing are difficult to use due to low mechanical properties and aesthetic problems.
따라서, 위에서 언급한 문제점을 해결하기 종래의 불소 이온 방출 물질을 대체할 수 있으며, 우수한 기계적 성질과 심미성을 나타내 3D 프린팅용으로 사용이 가능한 레진 소재의 개발이 필요한 실정이다. Therefore, in order to solve the above-mentioned problems, it is necessary to develop a resin material that can replace conventional fluorine ion-emitting materials and exhibits excellent mechanical properties and aesthetics and can be used for 3D printing.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로 본 발명의 목적은 치과용으로 뿐만 아니라 더나아가 전반적인 의료용 3D 프린팅 레진 소재로도 사용될 수 있으며, 우수한 기계적 성질과 심미성 및 향균성이 증대된 레진 소재를 제공하는 것이다.The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a resin material that can be used not only for dental purposes but also for general medical 3D printing resin materials, and has excellent mechanical properties, aesthetics, and antibacterial properties. is to provide
한편, 본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며,언급되지 않은 또 다른 목적들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.Meanwhile, the objects of the present invention are not limited to the objects mentioned above, and other objects not mentioned above will be clearly understood by those skilled in the art from the description below.
상술한 목적들을 달성하기 위하여 본 발명은 제조에 사용될 광개시제의 흡수 가능한 파장 범위에 해당하는 광을 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 트리에틸렌글리콜 디메타크릴레이트(TEGDMA), 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA),우레탄 디메타크릴레이트(UDMA)에 조사하여 표면 개질을 수행하는 전처리 단계; 상기 트리에틸렌글리콜 디메타크릴레이트(TEGDMA)에 자일리톨(xylitol)을 투입한 후 교반하여 제1 혼합액을 제조하는 단계; 상기 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA) 및 우레탄 디메타크릴레이트(UDMA)를 혼합한 후 교반하여 제2 혼합액을 제조하는 단계; 상기 제1 혼합액과 상기 제2 혼합액을 혼합한 후 교반하여 제3 혼합액을 제조하는 단계; 상기 제3 혼합액에 나노 필러를 투입한 후 교반하여 제4 혼합액 제조하는 단계; 상기 제4 혼합액에 플라보노이드를 함유한 물질을 투입한 후 교반하여 제5 혼합액을 제조하는 단계; 상기 제5 혼합액에 상기 광개시제 및 기타 첨가제를 투입하고 교반하여 제6 혼합액을 제조하는 단계; 및 상기 제 6 혼합액을 실온 또는 미온 환경에서 숙성시키는 단계;를 포함하는 것을 특징으로 하는 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법을 제공한다.In order to achieve the above objects, the present invention provides 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane ( Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), ethoxylate bisphenol A dimethacrylate (Bis-EMA), a pretreatment step of performing surface modification by irradiation with urethane dimethacrylate (UDMA); preparing a first mixed solution by adding xylitol to the triethylene glycol dimethacrylate (TEGDMA) and then stirring; 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (Bis-GMA), ethoxylate bisphenol A dimethacrylate (Bis-EMA) and urethane dimetha Preparing a second mixed solution by mixing and stirring acrylate (UDMA); preparing a third mixed solution by mixing and then stirring the first mixed solution and the second mixed solution; Preparing a fourth mixed solution by adding nano fillers to the third mixed solution and then stirring; preparing a fifth mixed solution by adding a flavonoid-containing material to the fourth mixed solution and then stirring; preparing a sixth mixed solution by adding the photoinitiator and other additives to the fifth mixed solution and stirring; and aging the sixth mixed solution at room temperature or in a lukewarm environment.
바람직한 실시예에 있어서, 상기 전처리 단계는 진공 분위기에서 교반이 수행되되, 60℃ 내지 80℃ 온도에서, 광강도 600mW/cm2 내지 1,000mW/cm2으로 60분간 교반을 수행된다.In a preferred embodiment, in the pretreatment step, stirring is performed in a vacuum atmosphere, and stirring is performed for 60 minutes at a light intensity of 600mW/cm 2 to 1,000mW/cm 2 at a temperature of 60° C. to 80° C.
바람직한 실시예에 있어서, 상기 제4 혼합액을 제조하는 단계 이후에, 상기 제4 혼합액에 상기 광개시제의 흡수 가능한 파장 범위에 해당하는 광을 조사하여 표면 개질을 수행하는 후처리 단계;를 더 포함하며, 상기 후처리 단계는 진공 분위기에서 상기 전처리 단계와 동일한 온도와 시간 동안 교반이 수행되되 광강도는 상기 전처리 단계보다 높은 광강도로 교반이 수행된다.In a preferred embodiment, after the step of preparing the fourth mixed solution, a post-treatment step of performing surface modification by irradiating the fourth mixed solution with light corresponding to a wavelength range capable of being absorbed by the photoinitiator; further comprising, In the post-treatment step, stirring is performed in a vacuum atmosphere for the same temperature and time as the pre-treatment step, but the agitation is performed at a light intensity higher than that of the pre-treatment step.
바람직한 실시예에 있어서, 상기 후처리 단계에서의 광강도는 1000mW/cm2 내지 2,000mW/cm2 이다.In a preferred embodiment, the light intensity in the post-processing step is 1000mW/cm 2 to 2,000mW/cm 2 .
바람직한 실시예에 있어서, 상기 제5 혼합액을 제조하는 단계는 진공 분위기에서 6시간 이상 교반을 수행하되, 하절기의 경우 실온에서, 동절기의 경우 50℃ 내지 60℃의 온도에서 교반이 수행된다.In a preferred embodiment, in the step of preparing the fifth mixture, stirring is performed in a vacuum atmosphere for 6 hours or more, but stirring is performed at room temperature in the summer season and at a temperature of 50 ° C to 60 ° C in the winter season.
바람직한 실시예에 있어서, 상기 숙성시키는 단계는 상기 제6 혼합액을 32℃ 내지 36℃의 온도에서 48시간 이상 숙성시킨다.In a preferred embodiment, in the aging step, the sixth mixed solution is aged at a temperature of 32° C. to 36° C. for 48 hours or longer.
바람직한 실시예에 있어서 , 상기 제1 혼합액은 상기 자일리톨 2 중량% 내지 10 중량%를 포함한다.In a preferred embodiment, the first mixed solution contains 2% to 10% by weight of xylitol.
바람직한 실시예에 있어서, 상기 제5 혼합액은 상기 제4 혼합액 대비 상기 프로폴리스 0.2 중량% 내지 3.5 중량%를 포함한다.In a preferred embodiment, the fifth mixed solution contains 0.2% to 3.5% by weight of the propolis compared to the fourth mixed solution.
바람직한 실시예에 있어서, 상기 플라노보이드를 함유한 물질은 프로폴리스(propolis)이다.In a preferred embodiment, the material containing the flavonoids is propolis.
본 발명은 다음과 같은 우수한 효과가 있다.The present invention has the following excellent effects.
본 발명의 레진 제조 방법에 의하면, 트리에틸렌글리콜 디메타크릴레이트(TEGDMA)의 glycol 기질로 자일리톨의 표면에 막을 씌운 후 각 단량체 등과 함께 혼합하여 레진을 제조하기 때문에 자일리톨이 phospahte 기질로 인한 항균성의 저하를 최소화하고, 더 나아가 플라보노이드를 함유한 물질인 프로폴리스를 함께 사용함으로써, 항균성과 기계적 물성이 우수한 레진을 제공할 수 있다.According to the resin manufacturing method of the present invention, the surface of xylitol is coated with a glycol substrate of triethylene glycol dimethacrylate (TEGDMA) and then mixed with each monomer to prepare a resin, so that xylitol has reduced antibacterial properties due to the phospahte substrate. By minimizing and further using propolis, a material containing flavonoids, it is possible to provide a resin with excellent antibacterial and mechanical properties.
또한, 본 발명의 레진 제조 방법에 의하면, 3D 프린팅의 레진 중합 과정에서 발생하는 온도와 동일한 환경에서 제조에 사용된 광개시제의 흡수 가능한 파장의 광을 조사하여 각 단량체 또는 혼합물의 표면 개질을 수행함으로써, 광중합 효율이 뛰어나며, 일반적인 치과수복용 뿐만 아니라, 치과용 및 토탈 의료용 제품을 제작할 수 있는 3D 프린팅용 레진 소재로도 적합한 기계적 물성을 갖는 레진을 제공할 수 있다.In addition, according to the resin manufacturing method of the present invention, the surface of each monomer or mixture is modified by irradiating light of a wavelength capable of being absorbed by the photoinitiator used in the manufacture in the same environment as the temperature generated during the resin polymerization process of 3D printing, It is possible to provide a resin having excellent photopolymerization efficiency and suitable mechanical properties as a resin material for 3D printing that can produce dental and total medical products as well as general dental restoration.
도 1은 본 발명의 일 실시예에 따른 레진 제조 방법의 순서도이다.1 is a flow chart of a resin manufacturing method according to an embodiment of the present invention.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명을 실시하기 위한 구체적인 내용에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다. The terms used in the present invention have been selected from general terms that are currently widely used as much as possible, but in certain cases, there are terms arbitrarily selected by the applicant. should be taken into account to understand its meaning.
이하, 첨부한 도면에 도시된 바람직한 실시 예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical configuration of the present invention will be described in detail with reference to preferred embodiments shown in the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 레진 제조 방법에 관한 것으로, 도 1을 참조하면, 본 발명의 일 실시예에 따른 레진 제조 방법은 치과수복용 및 의료용 3D 프린팅 레진 소재로 사용 가능한 항균 기능을 갖는 레진 제조 방법에 관한 것으로, 제조에 사용될 단량체들에 전처리 단계(S1000), 제1 혼합액 제조 단계(S2000), 제2 혼합액 제조 단계(S3000), 제3 혼합액 제조 단계(S4000), 제4 혼합액 제조 단계(S5000), 후처리 단계(S6000), 제5 혼합액 제조 단계(S7000), 제6 혼합액 제조 단계(S8000) 및 숙성 단계(S9000)를 포함하여 이루어진다.1 relates to a resin manufacturing method according to an embodiment of the present invention. Referring to FIG. 1, the resin manufacturing method according to an embodiment of the present invention has an antibacterial function usable as a dental restorative and medical 3D printing resin material. It relates to a method for manufacturing a resin having a pretreatment step (S1000) for monomers to be used in the manufacture, a first mixture solution preparation step (S2000), a second mixture solution preparation step (S3000), a third mixture solution preparation step (S4000), and a fourth mixture solution preparation step (S4000). It includes a mixture solution preparation step (S5000), a post-processing step (S6000), a fifth mixture solution preparation step (S7000), a sixth mixture solution preparation step (S8000), and a aging step (S9000).
먼저, 본 발명의 레진 제조 방법은 단량체들의 표면을 개질하기 위한 전처리가 수행된다(S1000).First, in the resin manufacturing method of the present invention, pretreatment is performed to modify the surface of monomers (S1000).
상세하게는 각 단량체는 레진 제조에 사용될 광개시제에 따라, 상기 광개시제가 흡수 가능한 파장 범위의 광을 조사하여 표면 개질을 수행한다.In detail, each monomer performs surface modification by irradiating light in a wavelength range capable of being absorbed by the photoinitiator according to the photoinitiator to be used for preparing the resin.
더욱 상세하게는 레진 제조에 사용될 광개시제가 2,4,6-트리메틸벤조일디페닐포스핀 산화물(TPO) 일 경우 상기 2,4,6-트리메틸벤조일디페닐포스핀 산화물(TPO)의 흡수 가능한 파장 범위인 350nm 내지 420nm 파장의 광으로 조사하여 표면 개질이 수행될 수 있으며, 1-페닐-1,2-프로판디온(PPD)일 경우 370nm 내지 450nm 파장의 광을, 캠퍼퀴논(CQ)일 경우 420nm 내지 540nm 파장의 광을 조사하여 표면 개질이 수행될 수 있다.More specifically, when the photoinitiator to be used in resin production is 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO), the wavelength range that can be absorbed by the 2,4,6-trimethylbenzoyldiphenylphosphine oxide (TPO) The surface modification may be performed by irradiation with light having a wavelength of 350 nm to 420 nm, and light having a wavelength of 370 nm to 450 nm in the case of 1-phenyl-1,2-propanedione (PPD) and 420 nm to 420 nm in the case of camphorquinone (CQ). Surface modification may be performed by irradiating light with a wavelength of 540 nm.
한편, 광중합형 레진은 대기 중에서 중합될 때 공기 중의 산소가 라디칼과 결합하여 미중합 부위가 발생하는데, 이러한 미중합 부위에 의해 레진의 물리적 성질을 저하시킴은 물론 구강내로 유출되어, 세포독성 및 알러지 반응을 일으킬 수 있다.On the other hand, when light-curing resin is polymerized in the air, oxygen in the air is combined with radicals to generate unpolymerized parts. These unpolymerized parts not only lower the physical properties of the resin but also leak into the oral cavity, causing cytotoxicity and allergy. can cause a reaction.
이에 본 발명에서는 레진의 미중합 부위를 최소화하기 위해, 단량체의 표면을 개질하는 전처리 과정을 수행한다.Accordingly, in the present invention, a pretreatment process of modifying the surface of the monomer is performed in order to minimize the unpolymerized portion of the resin.
이를 위해, 상기 단량체에는 레진 제조에 사용될 광개시제가 흡수 가능한 파장의 광을 조사하여, 표면 개질을 수행하게 되며, 표면 개질된 단량체는 표면 친수성이 향상된다.To this end, the surface of the monomer is irradiated with light of a wavelength capable of being absorbed by the photoinitiator to be used in preparing the resin to perform surface modification, and the surface hydrophilicity of the surface-modified monomer is improved.
특히, 광개시제가 흡수 가능한 파장의 광에 대한 표면 친수성이 향상되어, 레진 중합 과정 시 미중합 부위를 최소화할 수 있다.In particular, surface hydrophilicity for light of a wavelength capable of being absorbed by the photoinitiator is improved, thereby minimizing unpolymerized sites during resin polymerization.
또한, 상기 전처리 과정(S1000)은 진공 분위기에서 수행되는 것이 바람직하며, 이를 위해 광원의 조사가 가능하고, 진공압을 발생할 수 있는 진공 믹서기가 사용될 수 있다.In addition, the pretreatment process (S1000) is preferably performed in a vacuum atmosphere, and for this purpose, a vacuum mixer capable of irradiating a light source and generating a vacuum pressure may be used.
한편, 진공 분위기에서 교반이 수행될 경우 교반 과정에서 발생하는 기포 발생을 최소화할 수 있으며 이를 통해 광굴곡을 최소화하여 광원에 의한 표면 개질에 대한 효율을 최대화 시킬 수 있다.On the other hand, when stirring is performed in a vacuum atmosphere, the generation of bubbles generated during the stirring process can be minimized, and through this, light bending can be minimized to maximize the efficiency of surface modification by a light source.
또한, 상기 전처리 과정(S1000)은 파장에 따라 광강도 600mW 내지 1,000mw/cm2 으로, 60분 동안 교반이 수행될 수 있다.In addition, in the pretreatment process (S1000), stirring may be performed for 60 minutes at a light intensity of 600mW to 1,000mw/cm 2 depending on the wavelength.
또한, 상기 전처리 과정(S1000)은 진공압은 0.05mpa 내지 0.2mpa으로 수행될 수 있으며, 교반 속도는 5 RPM 내지 15 RPM으로 수행된다.In addition, the pretreatment process (S1000) may be performed at a vacuum pressure of 0.05mpa to 0.2mpa, and at a stirring speed of 5 RPM to 15 RPM.
또한, 상기 전처리 과정(S1000)은 60℃ 내지 80℃의 온도에서 수행될 수 있다.In addition, the pretreatment process (S1000) may be performed at a temperature of 60 ℃ to 80 ℃.
한편, 상기 전처리 과정(S1000)을 60℃ 내지 80℃의 온도로 수행하는 것은 레진의 프린팅 과정에서 중합 시 발생되는 발열 온도와 동일한 조건으로 수행하면표면 개질의 효율이 우수하게 나타나기 때문이다.On the other hand, the pretreatment process (S1000) is performed at a temperature of 60 ° C to 80 ° C because the efficiency of surface modification is excellent when performed under the same conditions as the exothermic temperature generated during polymerization in the resin printing process.
상기 단량체들은 불포화 이중결합을 갖는 화합물로서, 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 에틸렌글리콜디메타크릴레이트(EGDMA), 에틸렌글리콜 디아크릴레이트 (EDGA), 트리에틸렌글리콜 디메타크릴레이트(TEGDMA), 트리에틸렌글리콜 디아크릴레이트 (TEGDA), 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA), 우레탄디메타크릴레이트(UDMA), 폴리우레탄 디아크릴레이트 (PUDA), 디펜타에리트리톨 펜타아크릴레이트 모노포스페이트(dipentaerythritol pentaacrylate monophosphate, PENTA), 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate, HEMA), 폴리알케노익산(polyalkenoic acid), 비페닐 디메타크릴레이트(biphenyl dimethacrylate, BPDM), 비페닐 디아크릴레이트 (biphenyl diacrylate BPDA) 또는 글리세롤 포스페이트 디메타크릴레이트(glycerol phosphate dimethacrylate, GPDM) 등을 포함한다. ,The monomers are compounds having an unsaturated double bond, 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane (Bis-GMA), ethylene glycol dimethacrylate (EGDMA) ), ethylene glycol diacrylate (EDGA), triethylene glycol dimethacrylate (TEGDMA), triethylene glycol diacrylate (TEGDA), ethoxylate bisphenol A dimethacrylate (Bis-EMA), urethane dimetha Acrylates (UDMA), polyurethane diacrylate (PUDA), dipentaerythritol pentaacrylate monophosphate (PENTA), 2-hydroxyethyl methacrylate (HEMA), poly and polyalkenoic acid, biphenyl dimethacrylate (BPDM), biphenyl diacrylate BPDA, or glycerol phosphate dimethacrylate (GPDM). ,
본 발명에서는 레진 제조를 위해 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 트리에틸렌글리콜 디메타크릴레이트(TEGDMA), 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA),우레탄 디메타크릴레이트(UDMA)를 사용하였으며, 상기 트리에틸렌글리콜 디메타크릴레이트(TEGDMA)를 제외한 나머지 단량체들은 불포화 이중결합을 갖는 화합물 중 단일 또는 2종 이상을 함께 사용할 수 있다.In the present invention, 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), and Toxylate bisphenol A dimethacrylate (Bis-EMA) and urethane dimethacrylate (UDMA) were used, and the remaining monomers except for the triethylene glycol dimethacrylate (TEGDMA) were single compounds having an unsaturated double bond. Or two or more types may be used together.
한편, 본 발명은 상기 전처리 과정(S1000) 뿐만 아니라, 아래에서 설명할 교반이 수행되는 모든 제조 과정은 진공 분위기에서 수행되며, 이에, 교반 과정에서 기포 발생이 최소화되어 우수한 기계적 물성과 표면 상태를 갖는 레진을 제공할 수 있다.On the other hand, in the present invention, not only the pretreatment process (S1000), but also all the manufacturing processes in which agitation to be described below are performed in a vacuum atmosphere, thereby minimizing the generation of bubbles during the agitation process to have excellent mechanical properties and surface conditions Resin can be provided.
다음, 상기 트리에틸렌글리콜 디메타크릴레이트(TEGDMA)에 자일리톨(xylitol)을 투입한 후 교반하여 제1 혼합액을 제조한다(S2000).Next, xylitol is added to the triethylene glycol dimethacrylate (TEGDMA) and stirred to prepare a first mixed solution (S2000).
여기서, 상기 자일리톨은 비우식성, 항우식성 물질로서 솔비톨이나 다른 당 알코올류보다 우식 예방에 아주 효과적인 천연소재로, 충치의 원인균인 뮤탄스균이 발효시키지 못하며, 구강 내에서 충치의 직접 원인인 산을 발생시키지 못하게 하여 충치 예방에 효과적인 물질로, 본 발명에서는 식품 및 의약품으로도 안정적으로 사용되고 있는 자일리톨을 이용하여 항균성과 기계적 물성이 종래의 불소 함유 물질보다 우수한 레진을 제조하였다. Here, the xylitol is a non-cariogenic and anti-cariogenic material, and is a natural material that is more effective in preventing caries than sorbitol or other sugar alcohols. In the present invention, xylitol, which is stably used as a food and medicine, was used as an effective material for preventing caries, and a resin having excellent antibacterial properties and mechanical properties compared to conventional fluorine-containing materials was prepared.
또한, 상기 제1 혼합액 제조(S2000) 과정은 상기 자일리톨이 상기 제1 혼합액 대비 2 중량% 내지 10 중량%를 투입되는 것이 바람직하며, 이는 상기 자일리톨이 초과 투입될 경우 광투과 효율을 떨어뜨려 중합도를 떨어뜨리기 때문이다.In addition, in the process of preparing the first mixed solution (S2000), it is preferable that 2% to 10% by weight of xylitol is added compared to the first mixed solution, which reduces the degree of polymerization by reducing the light transmission efficiency when the xylitol is added in excess. because it drops
또한, 제1 혼합액 제조(S2000) 과정은 진공 분위기에서 상기 트리에틸렌글리콜 디메타크릴레이트(TEGDMA)와 자일리톨을 혼합 및 교반하여 제조되며, 진공압 0.05mpa 내지 0.2mpa, 온도 40℃ 내지 50℃, 교반 속도 5RPM 내지 10RPM으로 120분 동안 수행될 수 있다.In addition, the process of preparing the first mixed solution (S2000) is prepared by mixing and stirring the triethylene glycol dimethacrylate (TEGDMA) and xylitol in a vacuum atmosphere, vacuum pressure 0.05 mpa to 0.2 mpa, temperature 40 ° C to 50 ° C, It can be carried out for 120 minutes at a stirring speed of 5 RPM to 10 RPM.
다음, 상기 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA) 및 우레탄 디메타크릴레이트(UDMA)를 혼합 및 교반하여 제2 혼합액을 제조한다(S3000).Next, the 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (Bis-GMA), ethoxylate bisphenol A dimethacrylate (Bis-EMA) and urethane Dimethacrylate (UDMA) is mixed and stirred to prepare a second mixed solution (S3000).
상기 제2 혼합액 제조 (S3000)는 상기 제2 혼합액 대비 상기 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA) 30 중량% 내지 50중량%, 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA) 10 중량% 내지 25 중량% 및 우레탄 디메타크릴레이트(UDMA) 10 중량% 내지 25 중량%를 혼합하여 제조된다. In the preparation of the second mixed solution (S3000), 30% to 50% by weight of the 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane (Bis-GMA) compared to the second mixed solution It is prepared by mixing 10 to 25% by weight of ethoxylate bisphenol A dimethacrylate (Bis-EMA) and 10 to 25% by weight of urethane dimethacrylate (UDMA).
또한, 상기 제2 혼합액 제조 과정(S3000)은 진공 분위기에서 혼합 및 교반하여 제조되며, 진공압 0.05mpa 내지 0.2mpa, 온도 40℃ 내지 50℃, 교반 속도 5 RPM 내지 10 RPM으로 60분 동안 수행될 수 있다In addition, the second mixed solution preparation process (S3000) is prepared by mixing and stirring in a vacuum atmosphere, vacuum pressure 0.05mpa to 0.2mpa, temperature 40 ℃ to 50 ℃, stirring speed 5 RPM to 10 RPM for 60 minutes. can
다음, 상기 제1 혼합액과 상기 제2 혼합액을 혼합 및 교반하여 제3 혼합액을 제조한다(S4000).Next, a third mixed solution is prepared by mixing and stirring the first mixed solution and the second mixed solution (S4000).
이때, 상기 제3 혼합액 제조 과정(S4000)은 상기 제3 혼합액 대비 10 중량% 내지 20 중량%의 상기 제1 혼합액을 상기 제2 혼합액과 혼합 및 교반하는 것이 바람직하다.At this time, in the process of preparing the third mixed solution (S4000), it is preferable to mix and stir the first mixed solution in an amount of 10% to 20% by weight relative to the third mixed solution with the second mixed solution.
또한, 상기 제3 혼합액 제조 과정(S4000)은 진공 분위기에서 혼합 및 교반하여 제조되며, 진공압 0.05mpa 내지 0.2mpa, 온도 40℃ 내지 50℃, 교반 속도 5 RPM 내지 10 RPM으로 120분 동안 수행될 수 있다.In addition, the third mixture preparation process (S4000) is prepared by mixing and stirring in a vacuum atmosphere, vacuum pressure 0.05mpa to 0.2mpa, temperature 40 ℃ to 50 ℃, stirring speed 5 RPM to 10 RPM for 120 minutes. can
한편, 상기 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 트리에틸렌글리콜 디메타크릴레이트(TEGDMA), 에톡실레이트 비스페놀 A 디메타크릴레트(Bis-EMA) 및 우레탄 디메타크릴레이트(UDMA)와 상기 자일리톨을 동시에 혼합하여 교반을 수행하지 않는데, 이는 트리에틸렌글리콜 디메타크릴레이트(TEGDMA)를 제외한 나머지 단량체의 Phospate 기질로 인해 자일리톨의 항균성의 저하 문제가 발생하기 때문이며, 본 발명에서는 상기 트리에틸렌그릴콜 디메타크릴레이트(TEGDMA)에 상기 자일리톨을 혼합하여, 상기 트리에틸렌그릴콜 디메타크릴레이트(TEGDA)의 glycol 기질로 상기 자일리톨 표면에 막을 먼저 씌워 보호한 후 나머지 단량체들과의 혼합을 수행하였다.On the other hand, the 2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), ethoxylate bisphenol A Mixing dimethacrylate (Bis-EMA) and urethane dimethacrylate (UDMA) and the xylitol at the same time does not perform stirring, which is a phosphate substrate of the remaining monomers except for triethylene glycol dimethacrylate (TEGDMA). This is because the problem of deterioration of antimicrobial properties of xylitol occurs, and in the present invention, the xylitol is mixed with the triethylene glycol dimethacrylate (TEGDMA) to form a glycol substrate of the triethylene glycol dimethacrylate (TEGDA). A film was first covered on the surface of the xylitol to protect it, and then mixing with the rest of the monomers was performed.
다음, 제조된 제3 혼합액에 나노필러를 혼합 후 교반하여 제4 혼합액을 제조한다(S5000). Next, a fourth mixed solution is prepared by mixing the nano-filler with the prepared third mixed solution and then stirring (S5000).
상기 나노 필러는 나노 사이즈 입자의 필러를 의미하며, 레진의 내마모성과 기계적 강도를 향상시키기 위한 공지된 다양한 유·무기 필러가 나노 사이즈로 제조되어 사용될 수 있다.The nano-filler means a filler of nano-sized particles, and various known organic/inorganic fillers for improving wear resistance and mechanical strength of a resin may be manufactured and used in nano-size.
상기 제4 혼합액 제조 과정(S5000)은 상기 제4 혼합액 대비 상기 제3 혼합액 90 중량% 내지 98 중량%에 상기 나노 필러 2 중량% 내지 10 중량%를 혼합 및 교반하여 제조된다.The fourth mixed solution manufacturing process (S5000) is prepared by mixing and stirring 2 to 10% by weight of the nano-filler with 90 to 98% by weight of the third mixed solution compared to the fourth mixed solution.
또한, 상기 제4 혼합액 제조 과정(S5000)은 진공 분위기에서 혼합 및 교반하여 제조되며, 진공압 0.05mpa 내지 0.2mpa, 온도 40℃ 내지 50℃, 교반 속도 10 RPM 내지 25 RPM으로 240분 이상 수행될 수 있다.In addition, the fourth mixture preparation process (S5000) is prepared by mixing and stirring in a vacuum atmosphere, vacuum pressure of 0.05 mpa to 0.2 mpa, temperature of 40 ℃ to 50 ℃, stirring speed 10 RPM to 25 RPM for 240 minutes or more can
다음, 상기 제4 혼합액에 플라보노이드 성분을 갖는 물질을 첨가하여, 제5 혼합액을 제조한다(S6000).Next, a material having a flavonoid component is added to the fourth mixed solution to prepare a fifth mixed solution (S6000).
여기서, 플라보노이드는 항균, 항바이러스, 항알레르기 효과를 가진 성분으로, 상기 플라보노이드 성분을 갖는 물질로 프로폴리스, 비타민P, 헤스페라딘, 안토시아니딘, 나린제닌,이소플라본 등이 사용될 수 있으나, 상기 프로폴리스를 사용하는 것이 바람직하다.Here, the flavonoid is a component having antibacterial, antiviral, and antiallergic effects, and propolis, vitamin P, hesperadin, anthocyanidin, naringenin, isoflavone, etc. may be used as a substance having the flavonoid component, It is preferable to use the propolis.
또한, 상기 제5 혼합액 제조 과정(S6000)은 상기 플라보노이드 성분을 갖는 물질로, 프로폴리스를 사용할 경우 상기 제4 혼합액 대비 0.2 중량% 내지 3.5 중량%가 투입되어 제조되며, 상기 프로폴리스가 초과 투입될 경우에는 레진의 성형성 저하로 제품의 내구성과 형태 지속성을 현저하게 떨어뜨릴 수 있다.In addition, in the fifth mixture preparation process (S6000), when propolis is used as a substance having the flavonoid component, it is prepared by adding 0.2% to 3.5% by weight compared to the fourth mixture, and the propolis is added in excess. In this case, the durability and shape sustainability of the product may be significantly reduced due to the decrease in moldability of the resin.
또한, 상기 제5 혼합액 제조 과정(S6000)은 진공 분위기에서 혼합 및 교반하여 제조되며, 진공압은 0.05mpa 내지 0.2mpa, 온도는 실온 내지 60℃, 교반 속도는 5 RPM 내지 15 RPM으로 360분 이상 수행될 수 있다. In addition, the fifth mixture preparation process (S6000) is prepared by mixing and stirring in a vacuum atmosphere, the vacuum pressure is 0.05 mpa to 0.2 mpa, the temperature is room temperature to 60 ° C, and the stirring speed is 5 RPM to 15 RPM for 360 minutes or more can be performed
한편, 상기 제5 혼합액의 제조 과정(S6000)은 하절기와 동절기에 따라 온도를 달리하여 제조될 수 있다.On the other hand, the manufacturing process of the fifth mixed solution (S6000) may be prepared by varying the temperature according to the summer season and the winter season.
예를 들면, 상기 제5 혼합액의 제조 과정(S6000)은 하절기의 경우 실온에서 수행되며, 동절기의 경우 50℃ 내지 60℃의 온도에서 수행될 수 있다. 이는, 실외와 교반을 수행하는 진공 믹서기 챔버 내의 온도 차이로 인해 챔버내 결로 및 수분 발생으로 인해 제품의 품질 저하 및 오염을 발생시킬 수 있고, 이외에도 혼합과정 중 폴리머 연화성 유지에 장애가될 수 있기 때문이다.For example, the process of preparing the fifth mixed solution (S6000) may be performed at room temperature in summer and at a temperature of 50° C. to 60° C. in winter. This is because dew condensation and moisture in the chamber can occur due to the difference in temperature between the outside and the inside of the chamber of the vacuum mixer that performs stirring, which can cause product quality deterioration and contamination, as well as an obstacle to maintaining polymer softening during the mixing process. am.
다음, 레진의 광원중합 반응 최적화를 위해 상기 제5 혼합액에 상기 광개시제가 흡수 가능한 파장 범위의 광을 조사하여 표면 개질을 위한 후처리를 수행한다(S7000).Next, in order to optimize the light source polymerization reaction of the resin, the fifth mixture is irradiated with light in a wavelength range that can be absorbed by the photoinitiator to perform post-treatment for surface modification (S7000).
상기 후처리 과정(S7000)은 상기 전처리 과정(S1000)과 동일한 이유로, 제조에 사용하고자 하는 광개시제가 흡수 가능한 파장 범위의 광을 조사하여 표면 개질을 수행하나 상기 전처리 과정(S1000)에서 보다 높은 광강도로 수행된다.For the same reason as the pretreatment (S1000), the post-treatment process (S7000) performs surface modification by irradiating light in a wavelength range capable of being absorbed by the photoinitiator to be used for manufacturing, but with higher light intensity than in the pre-treatment process (S1000). is performed with
상세하게는 상기 후처리 과정(S7000)은 진공 분위기에서 파장에 따라 광강도 1,000mW/cm2 내지 2,000mW/cm2 으로 60분 동안, 진공압 0.05mpa 내지 0.2mpa, 온도 60℃ 내지 80℃ 및 교반 속도 5 RPM 내지 15 RPM으로 수행될 수 있다.Specifically, the post-processing process (S7000) is performed in a vacuum atmosphere at a light intensity of 1,000 mW/cm 2 to 2,000 mW/cm 2 depending on the wavelength for 60 minutes, a vacuum pressure of 0.05 mpa to 0.2 mpa, a temperature of 60 °C to 80 °C, and Agitation may be performed at a speed of 5 RPM to 15 RPM.
한편, 상기 후처리 과정(S7000)에서 상기 전처리 과정(S1000)보다 높은 광강도로 표면 개질을 수행하는 이유는 상기 제5 혼합액에 나노필러가 섞여 있기 때문에 광투과 효율을 높이기 위함이며, 더나아가 레진의 중합 전 단량체들의 표면 개질을 극대화 시키기 위함이다. On the other hand, the reason for performing the surface modification with a higher light intensity than in the pre-treatment process (S1000) in the post-treatment process (S7000) is to increase the light transmission efficiency because the fifth mixture is mixed with nano-fillers, and furthermore, the resin This is to maximize the surface modification of the monomers before polymerization of
다음, 상기 제5 혼합액에 광개시제 및 기타 첨가제를 혼합한 후 교반하여 제6 혼합액을 제조한다(S8000).Next, a photoinitiator and other additives are mixed with the fifth mixed solution and stirred to prepare a sixth mixed solution (S8000).
여기서, 상기 기타 첨가제는 치면열구전색재의 색조를 맞추기 위한 안료, 반응 촉진제, 희석제 등이 사용될 수 있다.Here, as the other additives, a pigment for adjusting the color tone of the fissure sealant, a reaction accelerator, a diluent, and the like may be used.
또한, 상기 광개시제는 2,4,6-트라이메틸 벤조일 다이페닐 포스핀(2,4,6-trimethyl benzoyl diphenyl phosphine, TPO), 1-페닐-1,2-프로판다이원(1-phenyl-1,2-propanedione, PPD), 캠퍼퀴논 (Camphorquinoe, CQ) 중 1종이 선택되어 사용될 수 있다.In addition, the photoinitiator is 2,4,6-trimethyl benzoyl diphenyl phosphine (2,4,6-trimethyl benzoyl diphenyl phosphine, TPO), 1-phenyl-1,2-propane dione (1-phenyl-1 ,2-propanedione, PPD), and camphorquinone (Camphorquinoe, CQ) can be selected and used.
또한, 상기 제6 혼합액은 진공 분위기에서 혼합 및 교반하여 제조되며, 진공압 0.05mpa 내지 0.2mpa, 온도 40℃ 내지 50℃, 교반 속도 5 RPM 내지 15 RPM으로 240분 이상 수행될 수 있다.In addition, the sixth mixed solution is prepared by mixing and stirring in a vacuum atmosphere, and may be performed at a vacuum pressure of 0.05 mpa to 0.2 mpa, a temperature of 40 ° C to 50 ° C, and a stirring speed of 5 RPM to 15 RPM for 240 minutes or more.
다음, 제조된 제6 혼합액을 실온 또는 미온 환경에서 숙성시킨다(S9000).Next, the prepared sixth mixed solution is aged in a room temperature or lukewarm environment (S9000).
한편, 상기 제6 혼합액을 냉장 온도에서 숙성하게 될 경우, 상기 제6 혼합액에 함유된 물질 간의 밀착이 제대로 이루어지지 않으며, 상기 프로폴리스의 침전을 초래하여 레진의 기계적 물성과 내구성이 저하되는 문제가 있다.On the other hand, when the sixth mixed solution is aged at a refrigerating temperature, adhesion between materials contained in the sixth mixed solution is not properly achieved, and the propolis is precipitated, resulting in a decrease in mechanical properties and durability of the resin. there is.
이에 본 발명에서는 상기 제6 혼합액을 실온 또는 미온 환경에서 숙성시키며, 상세하게는 32℃ 내지 36℃ 온도에서 48시간 이상 자연 숙성시킨다.Accordingly, in the present invention, the sixth mixed solution is aged in a room temperature or lukewarm environment, and in detail, naturally aged at a temperature of 32 ° C to 36 ° C for 48 hours or more.
이러한 숙성 과정을 통해 활성화된 나노 필러의 표면을 침착하여 레진 토출을 원만하게 하고 혼합액들을 만드는 과정에서 교반으로 인해 훼손된 단량체들의 기계적 물성을 회복시킬 수 있으며, 더나아가 자일리톨과 프로폴리스의 교차 결합을 강화할 수 있어 기계적 물성 뿐만 아니라 기능성을 증대시킬 수 있는 장점이 있다. Through this aging process, the surface of the activated nano-filler can be deposited to make resin discharge smooth, and the mechanical properties of monomers damaged by stirring can be restored in the process of making mixed solutions, and furthermore, the cross-linking of xylitol and propolis can be strengthened. It has the advantage of increasing functionality as well as mechanical properties.
이하에서는 본 발명의 실시예에 따라 제조된 레진의 효과에 대해 상세히 설명한다.Hereinafter, effects of the resin prepared according to an embodiment of the present invention will be described in detail.
<실시예 1 ~ 4> <Examples 1 to 4>
1. 전처리 과정1. Pretreatment process
2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 트리에틸렌글리콜 디메타크릴레이트(TEGDMA), 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA),우레탄 디메타크릴레이트(UDMA)를 진공 믹서기에 투입 후 60℃ 온도에서 교반 속도 15RPM, 진공압 0.2mpa, 제조에 사용될 광개시제인 캠퍼퀴논(CQ)의 흡수 파장에 해당하는 400nm 파장의 광을 광강도 1,500mw/cm2으로 조사한 상태로 60분간 교반하였다.2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), ethoxylate bisphenol A dimethacryl After adding late (Bis-EMA) and urethane dimethacrylate (UDMA) to a vacuum mixer, at a temperature of 60 ° C, a stirring speed of 15 RPM, a vacuum pressure of 0.2 mpa, corresponding to the absorption wavelength of camphorquinone (CQ), a photoinitiator to be used for manufacturing The mixture was stirred for 60 minutes while irradiated with light having a wavelength of 400 nm at a light intensity of 1,500 mw/cm 2 .
2. 제1 혼합액 제조2. Preparation of the first mixed solution
전처리된 트리에틸렌글리콜 디메타크릴레이트(TEGDMA) 각 200g에 자일리톨(xylitol) 1.1g, 2.2g, 4.4g, 11g을 진공 믹서기에 투입한 후 온도 50℃, 교반 속도 15RPM, 진공압 0.2mpa로 120분간 교반하여 4회분의 제1 혼합액을 제조하였다.1.1 g, 2.2 g, 4.4 g, and 11 g of xylitol were added to each 200 g of the pretreated triethylene glycol dimethacrylate (TEGDMA) in a vacuum mixer, and then the temperature was 50 ° C, the stirring speed was 15 RPM, and the vacuum pressure was 0.2 mpa. The mixture was stirred for 4 minutes to prepare a first mixed solution.
3. 제2 혼합액 제조3. Preparation of the second mixed solution
전처리된 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA) 440g, 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA) 240g,우레탄 디메타크릴레이트(UDMA) 200g을 진공 믹서기에 함께 투입한 후 온도 50℃, 교반 속도 15RPM, 진공압 0.2mpa로 120분간 교반하여 4회분의 제2 혼합액을 제조하였다.440 g of pretreated 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (Bis-GMA), 240 g of ethoxylated bisphenol A dimethacrylate (Bis-EMA), After adding 200 g of urethane dimethacrylate (UDMA) to a vacuum mixer, the mixture was stirred at a temperature of 50° C., a stirring speed of 15 RPM, and a vacuum pressure of 0.2 mpa for 120 minutes to prepare a second mixed solution for 4 times.
4. 제3 혼합액 제조4. Preparation of the third mixed solution
제조된 각각의 제2 혼합액에 각기 다른 배합비를 갖는 제1 혼합액을 9.2g씩 혼합 후 진공 믹서기에서 온도 50℃, 교반 속도 15RPM, 진공압 0.2mpa로 120분간 교반하여 제조하였다.After mixing 9.2g of the first mixture having a different mixing ratio with each of the prepared second mixture, it was prepared by stirring in a vacuum mixer at a temperature of 50 ° C., a stirring speed of 15 RPM, and a vacuum pressure of 0.2 mpa for 120 minutes.
5. 제4 혼합액 제조5. Preparation of the 4th Mixed Solution
제조된 각각의 제3 혼합액에 실리카 나노 필러(100nm)를 20g씩을 투입 후 진공 믹서기에서 온도 50℃, 교반 속도 25RPM, 진공압 0.2mpa로 24시간 동안 교반하여 제조하였다.After adding 20 g of silica nano filler (100 nm) to each of the prepared third mixed solutions, the mixture was prepared by stirring in a vacuum mixer at a temperature of 50 ° C., a stirring speed of 25 RPM, and a vacuum pressure of 0.2 mpa for 24 hours.
5. 후처리 과정5. Post-processing process
제조된 각각의 제4 혼합액을 진공 믹서기에서 온도 60℃, 교반 속도 15RPM, 진공압 0.2mpa, 제조에 사용될 광개시제인 캠퍼퀴논(CQ)의 흡수 파장에 해당하는 400nm 파장의 광을 광강도 2,000mw/cm2으로 조사한 상태로 60분간 교반하였다.Each of the prepared fourth mixed solutions was heated in a vacuum mixer at a temperature of 60° C., a stirring speed of 15 RPM, a vacuum pressure of 0.2 mpa, and a light intensity of 400 nm corresponding to the absorption wavelength of camphorquinone (CQ), a photoinitiator to be used for the preparation, at an optical intensity of 2,000 mw/ It was stirred for 60 minutes in a state irradiated with cm 2 .
6. 제5 혼합액 제조6. Preparation of the fifth mixed solution
후처리된 각각의 제4 혼합액에 프로폴리스를 5g씩 투입한 후 진공 믹서기에서 온도 50℃, 교반 속도 15RPM, 진공압 0.2mpa로 6시간 동안 교반하여 제조하였다5 g of propolis was added to each post-treated fourth mixture, and then stirred in a vacuum mixer at a temperature of 50 ° C., a stirring speed of 15 RPM, and a vacuum pressure of 0.2 mpa for 6 hours.
7. 제6 혼합액 제조7. Preparation of the 6th mixed solution
제조된 각각의 제5 혼합액에 광개시제로 캠퍼퀴논(CQ) 1g, 반응촉진제로 에틸 4-다이메틸아미노벤조에이트(ethyl 4-dimethylaminobenzoate, EDMAB) 2g씩을 투입한 후 진공 믹서기에서 온도 50℃, 교반 속도 15RPM, 진공압 0.2mpa로 12시간 동안 교반하여 제조하였다.1 g of camphorquinone (CQ) as a photoinitiator and 2 g of ethyl 4-dimethylaminobenzoate (EDMAB) as a reaction accelerator were added to each of the prepared fifth mixtures, and then in a vacuum mixer at a temperature of 50 ° C and a stirring speed It was prepared by stirring for 12 hours at 15 RPM and vacuum pressure of 0.2 mpa.
8. 숙성 과정8. Maturation Process
제조된 각각의 제6 혼합액을 온도 36℃에서 교반 없이 48시간 동안 자연 숙성함으로써, 최종적으로 레진의 제조를 완료하였다.By naturally aging each of the prepared sixth mixed solutions at a temperature of 36° C. for 48 hours without stirring, the preparation of the resin was finally completed.
이때, 제조된 레진에 함유된 조성물의 함량(농도)에 따라 실시예 1 내지 실시예 4로 구분될 수 있으며, 각 조성물의 함량은 하기의 표 1과 같다.At this time, it can be classified into Examples 1 to 4 according to the content (concentration) of the composition contained in the prepared resin, and the content of each composition is shown in Table 1 below.
Bis-GMABis-GMA Bis-EMABis-EMA UDMAUDMA TEGDMATEGDMA xylitolxylitol propolispropolis Nano fillerNano filler CQCQ EDMABEDMAB
실시예 1Example 1 44%44% 24%24% 20%20% 9.15%9.15% 0.05%0.05% 0.5%0.5% 2%2% 0.1%0.1% 0.2%0.2%
실시예 2Example 2 44%44% 24%24% 20%20% 9.1%9.1% 0.1%0.1% 0.5%0.5% 2%2% 0.1%0.1% 0.2%0.2%
실시예 3Example 3 44%44% 24%24% 20%20% 9.0%9.0% 0.2%0.2% 0.5%0.5% 2%2% 0.1%0.1% 0.2%0.2%
실시예 4Example 4 44%44% 24%24% 20%20% 8.7%8.7% 0.5%0.5% 0.5%0.5% 2%2% 0.1%0.1% 0.2%0.2%
<비교예 1~4> <Comparative Examples 1 to 4>
실시예와 동일한 방법으로 레진을 제조하되, 제1 혼합액을 제조하는 과정에서 자일리톨 대신 불소를 투입하여 레진을 제조하였다.A resin was prepared in the same manner as in Example, but in the process of preparing the first mixed solution, fluorine was added instead of xylitol to prepare the resin.
이때, 제조된 레진에 함유된 조성물의 함량(농도)에 따라 비교예 1 내지 비교예 4로 구분될 수 있으며, 각 조성물의 함량은 하기의 표 2와 같다.At this time, it can be classified into Comparative Examples 1 to 4 according to the content (concentration) of the composition contained in the prepared resin, and the content of each composition is shown in Table 2 below.
Bis-GMABis-GMA Bis-EMABis-EMA UDMAUDMA TEGDMATEGDMA fluoridefluoride propolispropolis Nano fillerNano filler CQCQ EDMABEDMAB
비교예 1Comparative Example 1 44%44% 24%24% 20%20% 9.15%9.15% 0.05%0.05% 0.5%0.5% 2%2% 0.1%0.1% 0.2%0.2%
비교예 2Comparative Example 2 44%44% 24%24% 20%20% 9.1%9.1% 0.1%0.1% 0.5%0.5% 2%2% 0.1%0.1% 0.2%0.2%
비교예 3Comparative Example 3 44%44% 24%24% 20%20% 9.0%9.0% 0.2%0.2% 0.5%0.5% 2%2% 0.1%0.1% 0.2%0.2%
비교예 4Comparative Example 4 44%44% 24%24% 20%20% 8.7%8.7% 0.5%0.5% 0.5%0.5% 2%2% 0.1%0.1% 0.2%0.2%
<실험예 1> 굴곡강도 실험<Experimental Example 1> Flexural strength test
실시예의 자일리톨 함유량과 비교예의 불소 함유량에 따른 레진의 굴곡 강도 실험을 수행하였으며, 제조된 각 레진을 30x100x2mm의 몰드를 이용하여 시편을 만들고 ISO 4049 굴곡 강도 시험법에 준하여 동일한 시험을 실시하였다.Experiments were conducted on the flexural strength of the resins according to the xylitol content of Examples and the fluorine content of Comparative Examples. Specimens were made using a mold of 30x100x2mm for each prepared resin, and the same test was performed according to the ISO 4049 flexural strength test method.
실시예와 비교예 각각 5개의 시편을 만들어 굴곡강도 실험을 수행하였으며, 광의 파장은 500nm 였고 광도는 1,500mw/cm2 으로 25초간 2회 조사하여 광중합을 수행하였다.A flexural strength test was performed by making five specimens each of Examples and Comparative Examples. The wavelength of light was 500 nm and the light intensity was 1,500 mw/cm 2 , and photopolymerization was performed by irradiating twice for 25 seconds.
제1 시편
굴곡강도
Psalm 1
flexural strength
제2 시편
굴곡강도
Psalm 2
flexural strength
제3 시편
굴곡강도
Psalm 3
flexural strength
제4 시편
굴곡강도
Psalm 4
flexural strength
제5 시편
굴곡강도
Psalm 5
flexural strength
평균
굴곡강도
average
flexural strength
실시예1Example 1 120 mpa120MPa 116 mpa116 MPa 117 mpa117 MPa 125 mpa125 MPa 124 mpa124 MPa 120.40 mmpa120.40mmPa
실시예2Example 2 124 mpa124 MPa 125 mpa125 MPa 119 mpa119 MPa 112 mpa112 MPa 113 mpa113 MPa 118.60 mpa118.60 MPa
실시예3Example 3 119 mpa119 MPa 125 mpa125 MPa 121 mpa121 MPa 122 mpa122 MPa 116 mpa116 MPa 120. 60 mpa120.60MPa
실시예4Example 4 116 mpa116 MPa 124 mpa124 MPa 125 mpa125 MPa 119 mpa119 MPa 123 mpa123 MPa 121.40 mpa121.40 MPa
비교예1Comparative Example 1 102 mpa102 MPa 99 mpa99MPa 97 mpa97 MPa 95 mpa95 MPa 108 mpa108 MPa 100.20 mpa100.20 MPa
비교예2Comparative Example 2 95 mpa95 MPa 90 mpa90 MPa 92 mpa92MPa 94 mpa94MPa 89 mpa89 MPa 92.00 mpa92.00 MPa
비교예3Comparative Example 3 89 mpa89 MPa 82 mpa82MPa 81 mpa81 MPa 79 mpa79 MPa 83 mpa83 MPa 82.80 mpa82.80 MPa
비교예4Comparative Example 4 69 mpa69 MPa 75 mpa75 MPa 77 mpa77 MPa 75 mpa75 MPa 69 mpa69 MPa 73.00 mpa73.00 MPa
굴곡 강도 실험을 수행한 결과 표 3을 참조하면, 자일리톨이 투입된 실시예 1~4가 불소가 투입된 비교예 1~4 보다 전반적으로 굴곡 강도가 높은 것으로 나타났으며, 실시예 1~4의 경우 자일리톨 함유량이 늘어나도 굴곡 강도 변화가 적거 증가하는 반면, 비교예 1~4의 경우 불소 함유량이 늘어남에 따라 굴곡 강도가 점차 낮아지는 것을 확인할 수 있다. As a result of the flexural strength test, referring to Table 3, it was found that Examples 1 to 4 in which xylitol was added had generally higher flexural strength than Comparative Examples 1 to 4 in which fluorine was added. In the case of Examples 1 to 4, xylitol It can be seen that the flexural strength gradually decreases as the fluorine content increases in the case of Comparative Examples 1 to 4, while the flexural strength change increases little by little even when the content is increased.
<실험예 2> 접착 강도 실험<Experimental Example 2> Adhesion strength test
실시예의 자일리톨 함유량과 비교예의 불소 함유량에 따른 레진의 접착 강도 실험을 수행하였으며, 제조된 각 레진을 20x100x4mm의 몰드를 이용하여 시편을 만들어 시험을 실시하였다.The adhesive strength test of the resin according to the xylitol content of the examples and the fluorine content of the comparative example was performed, and each prepared resin was tested by making specimens using a 20x100x4mm mold.
실시예와 비교예 각각 한 쌍의 시편을 만들었으며, 한 쌍의 시편을 세로 방향으로 5mm 겹치게 하여 겹치는 부위에 상아질 접착제를 균일하게 바른 후 접착하였다.A pair of specimens were made in each of Examples and Comparative Examples, and the pair of specimens were overlapped by 5 mm in the longitudinal direction, and dentin adhesive was applied uniformly to the overlapping area, and then bonded.
이후, 만능 시험기를 이용해 접착된 시편 상하를 지그에 고정하고 10mm/min의 속도로 인장 압력을 주어 접착강도를 측정 하였으며, 시편 제작 시 광의 파장은 500nm 였고 광도는 1,500mw/cm2 으로 25초간 2회 조사하여 광중합을 수행하였다.Then, using a universal tester, the top and bottom of the bonded specimen was fixed in a jig, and the tensile pressure was applied at a rate of 10 mm/min to measure the adhesive strength. Photopolymerization was performed by irradiation.
제1 시편
접착 강도
Psalm 1
adhesive strength
제2 시편
접착강도
Psalm 2
adhesive strength
제3 시편
접착 강도
Psalm 3
adhesive strength
제4 시편
접착강도
Psalm 4
adhesive strength
제5 시편
접착강도
Psalm 5
adhesive strength
평균
접착 강도
average
adhesive strength
실시예1Example 1 11.7 mpa11.7 MPa 12.4 mpa12.4MPa 12.3 mpa12.3MPa 11.7 mpa11.7 MPa 12.0 mpa12.0 MPa 12.02 mpa12.02 MPa
실시예2Example 2 11.4 mpa11.4 MPa 12.6 mpa12.6MPa 12.2 mpa12.2MPa 13.2 mpa13.2MPa 11.7 mpa11.7 MPa 12.22 mpa12.22MPa
실시예3Example 3 10.9 mpa10.9 MPa 11.3 mpa11.3 MPa 11.5 mpa11.5 MPa 11.9 mpa11.9 MPa 12.5 mpa12.5 MPa 11.62 mpa11.62 MPa
실시예4Example 4 11.5 mpa11.5 MPa 12.3 mpa12.3MPa 12.2 mpa12.2MPa 12.3 mpa12.3MPa 11.7 mpa11.7 MPa 12.00 mpa12.00 MPa
비교예1Comparative Example 1 9 mpa9 MPa 9.7 mpa9.7 MPa 9.5 mpa9.5MPa 9.5 mpa9.5MPa 9.7 mpa9.7 MPa 9.48 mpa9.48MPa
비교예2Comparative Example 2 8.1 mpa8.1MPa 9.6 mpa9.6MPa 7.9 mpa7.9 MPa 8.2 mpa8.2MPa 8.4 mpa8.4MPa 8.24 mpa8.24MPa
비교예3Comparative Example 3 8.0 mpa8.0 MPa 7.6 mpa7.6 MPa 7.7 mpa7.7 MPa 7.4 mpa7.4 MPa 7.6 mpa7.6 MPa 7.66 mpa7.66MPa
비교예4Comparative Example 4 7.2 mpa7.2MPa 7.1 mpa7.1 MPa 6.8 mpa6.8 MPa 6.9 mpa6.9 MPa 6.8 mpa6.8 MPa 6.96 mpa6.96MPa
접착 강도 실험을 수행한 결과 표 4를 참조하면, 자일리톨이 투입된 실시예 1~4가 불소가 투입된 비교예 1~4 보다 전반적으로 접착 강도가 높은 것으로 나타났으며, 실시예 1~4의 경우 자일리톨 함유량이 늘어나도 접착 강도 변화가 적은 반면, 비교예 1~4의 경우 불소 함유량이 늘어남에 따라 접착 강도가 점차 낮아지는 것을 확인할 수 있다. As a result of the adhesive strength test, referring to Table 4, it was found that Examples 1 to 4 in which xylitol was added had generally higher adhesive strength than Comparative Examples 1 to 4 in which fluorine was added, and in the case of Examples 1 to 4, xylitol was added. While the change in adhesive strength is small even if the content is increased, in the case of Comparative Examples 1 to 4, it can be seen that the adhesive strength gradually decreases as the fluorine content increases.
<실험예 3> 중합 깊이 측정<Experimental Example 3> Measurement of polymerization depth
실시예 4의 각 조성물의 함유량을 기준으로 시제품 레진을 제조하여 중합 깊이 측정을 수행하였으며, 제조 과정 중에서 전처리 과정과 후처리 과정 중을 모두 실시 하지 않을 경우, 전처리 과정만 수행하였을 경우, 후처리 과정만 수행하였을 경우 그리고 전처리 과정과 후처리 과정을 함께 수행하였을 경우의 중합 깊이를 측정하였다.Based on the content of each composition in Example 4, a prototype resin was prepared and the depth of polymerization was measured. In the case of not performing both the pre- and post-treatment processes during the manufacturing process, only the pre-treatment process, and the post-treatment process The depth of polymerization was measured when only the polymerization was performed and when the pretreatment and posttreatment processes were performed together.
중합 깊이 측정의 실험 방법은 ISO 4049 중합깊이 시험법에 준하여 동일하게 실시하였고, 각 경우에 따라 5개의 시제품 레진을 제조하였으며, 시제품 레진 제작 시 광의 파장은 500nm 였고 광도는 1,500mw/cm2 으로 25초간 2회 조사하여 광중합을 수행하였다.The test method for measuring the depth of polymerization was carried out in accordance with the ISO 4049 depth of polymerization test method. In each case, 5 prototype resins were manufactured. When manufacturing the prototype resin, the wavelength of light was 500 nm and the light intensity was 1,500 mw/cm2 for 25 seconds. Photopolymerization was performed by irradiation twice.
미실시not implemented 전처리 실시Conduct pretreatment 후처리 실시post-processing 전처리 및 후처리 실시Conducting pre- and post-processing
제1 시편
중합 깊이
Psalm 1
polymerization depth
1.2mm1.2mm 2.2mm2.2mm 2.1mm2.1mm 2.8mm2.8mm
제2 시편
중합 깊이
Psalm 2
polymerization depth
1.4mm1.4mm 2.1mm2.1mm 2.2mm2.2mm 2.7mm2.7mm
제3 시편
중합 깊이
Psalm 3
polymerization depth
1.3mm1.3mm 2.5mm2.5mm 2.2mm2.2mm 2.8mm2.8mm
제4 시편
중합 깊이
Psalm 4
polymerization depth
1.1mm1.1mm 2.4mm2.4mm 2.1mm2.1mm 2.6mm2.6mm
제5 시편
중합 깊이
Psalm 5
polymerization depth
1.2mm1.2mm 2.2mm2.2mm 2.0mm2.0mm 2.7mm2.7mm
평균 중합 깊이average polymerization depth 1.24mm1.24mm 2.28mm2.28mm 2.12mm2.12mm 2.72mm2.72mm
중합 깊이 실험 결과 표 5를 참조하면, 전처리 과정과 후처리 과정을 실시하지 않을 경우보다 전처리 과정 또는 후처리 과정만을 실시할 경우와 전처리 과정과 후처리 과정을 모두 수행할 경우가 중합 깊이이가 월등히 깊은 것을 확인할 수 있다.특히, 전처리 과정 또는 후처리 과정만을 실시할 경우보다 전처리 과정과 후러치 과정을 함께 수행하면 전처리 과정과 후처리 과정을 미실시하는 경우보다 중합 깊이는 2배 이상 차이나는 것을 확인할 수 있다. Referring to Table 5 of the results of the polymerization depth experiment, the polymerization depth was significantly greater when the pre-treatment or post-treatment process was performed, or when both the pre-treatment process and the post-treatment process were performed than when the pre-treatment process and the post-treatment process were not performed. In particular, it can be confirmed that when the pre-treatment process and the flushing process are performed together, the polymerization depth is more than twice as high as when the pre-treatment process and the post-treatment process are not performed, compared to the case where only the pre-treatment process or the post-treatment process is performed. there is.
<실험예 4> 항균성 측정 실험<Experimental Example 4> Antimicrobial measurement test
항균성 측정 실험을 위해 실시예 4의 각 조성물의 함유량을 기준으로 제작된 레진의 원형 시편과 실시예 4와 동일한 조성물의 함유량을 갖되 제조 시 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 트리에틸렌글리콜 디메타크릴레이트(TEGDMA), 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA) 및 우레탄 디메타크릴레이트(UDMA)를 동시에 혼합하여 제조된 레진(비교예 5)의 원형 시편을 제작하였다. 2,2-bis[4-(2-hydroxy-3 -methacryloxypropoxy)phenyl]propane (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), ethoxylate bisphenol A dimethacrylate (Bis-EMA) and urethane dimethacrylate (UDMA) A circular specimen of the resin (Comparative Example 5) prepared by simultaneously mixing was produced.
실시예 4와 비교예 5의 원형 시편은 20x20x2mm의 크기로 각각 5개씩 제작되었으며, Streptococcus mutans (S.mutans, ATCC 25175)를 이용하여 ‘JIS Z 2801 : 2006 Antimicrobial products Test for antimicrobial activity and efficacy’에 준하여 항균성 평가를 수행하였다.Five circular specimens of Example 4 and Comparative Example 5 were each produced with a size of 20x20x2mm, and Streptococcus mutans (S.mutans, ATCC 25175) was used to 'JIS Z 2801: 2006 Antimicrobial products Test for antimicrobial activity and efficacy' Antimicrobial activity was evaluated accordingly.
원형 시편 제작 시 광의 파장은 500nm 였고 광도는 1,500mw/cm2 으로 25초간 2회 조사하여 광중합을 수행하였다.When producing a circular specimen, the wavelength of light was 500 nm and the light intensity was 1,500 mw/cm 2 , and photopolymerization was performed by irradiating twice for 25 seconds.
제1 시편
항균성
Psalm 1
antibacterial
제2 시편
항균성
Psalm 2
antibacterial
제3 시편
항균성
Psalm 3
antibacterial
제4 시편
항균성
Psalm 4
antibacterial
제5 시편
항균성
Psalm 5
antibacterial
항균성 평균antibacterial average
실시예 1Example 1 95%95% 94.3%94.3% 95.2%95.2% 93.7%93.7% 95.6%95.6% 94.6%94.6%
비교예 5Comparative Example 5 68.4%68.4% 67.2%67.2% 70.1%70.1% 65.9%65.9% 66.5%66.5% 67.6%67.6%
항균성 실험을 수행한 결과 표 6을 참조하면, 자일리톨과 트리에틸렌글리콜 디메타크릴레이트(TEGDMA)를 먼저 혼합한 제1 혼합액에 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA) 및 우레탄 디메타크릴레이트(UDMA)을 혼합한 제2 혼합액을 혼합 및 교반하여 제조된 실시예 4의 항균성이 비교예 5 보다 우수한 항균성을 나타내는 것을 확인할 수 있다.따라서, 본 발명의 레진 제조 방법에 의해 제조된 레진은 자일리톨과 프로폴리스를 함께 사용하기 때문에 94% 이상의 우수한 항균성 보이며, 더나아가 112mpa 이상의 굴곡 강도와 11.3mpa 이상의 접착 강도, 중합 깊이 2.1mm 이상의 우수한 기계적 물성을 나타내, 치과용 뿐만 아니라 다양한 의료 분야의 제품을 제작할 수 있는 3D 프린팅용 레진 소재로 사용 가능하다는 장점이 있다.As a result of the antibacterial test, referring to Table 6, 2,2-bis[4-(2-hydroxy-3-methacrylic acid) was added to the first mixture obtained by mixing xylitol and triethylene glycol dimethacrylate (TEGDMA) first. Example prepared by mixing and stirring a second mixed solution in which oxypropoxy) phenyl] propane (Bis-GMA), ethoxylate bisphenol A dimethacrylate (Bis-EMA) and urethane dimethacrylate (UDMA) are mixed It can be confirmed that the antibacterial properties of Example 4 exhibit better antibacterial properties than those of Comparative Example 5. Therefore, the resin prepared by the resin manufacturing method of the present invention shows excellent antibacterial properties of 94% or more because xylitol and propolis are used together, and further It has the advantage of being usable as a resin material for 3D printing that can produce not only dental products but also various medical products, as it exhibits excellent mechanical properties such as flexural strength of 112 MPa or more, adhesive strength of 11.3 MPa or more, and polymerization depth of 2.1 mm or more.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며, 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.As described above, the present invention has been shown and described with preferred embodiments, but is not limited to the above embodiments, and those skilled in the art to which the present invention pertains within the scope of not departing from the spirit of the present invention Various changes and modifications will be possible.
본 발명은 치과수복용 레진 등 치과 재료로 사용되는 것 이외에도, 의료용 3D 프린팅 레진 소재로도 산업상 이용 가능하다.In addition to being used as a dental material such as a dental restorative resin, the present invention can also be used industrially as a medical 3D printing resin material.

Claims (9)

  1. 제조에 사용될 광개시제의 흡수 가능한 파장 범위에 해당하는 광을 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 트리에틸렌글리콜 디메타크릴레이트(TEGDMA), 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA),우레탄 디메타크릴레이트(UDMA)에 조사하여 표면 개질을 수행하는 전처리 단계;2,2-bis [4- (2-hydroxy-3-methacryloxypropoxy) phenyl] propane (Bis-GMA), triethylene glycol dimethate A pretreatment step of performing surface modification by irradiating acrylate (TEGDMA), ethoxylate bisphenol A dimethacrylate (Bis-EMA), and urethane dimethacrylate (UDMA);
    상기 트리에틸렌글리콜 디메타크릴레이트(TEGDMA)에 자일리톨(xylitol)을 투입한 후 교반하여 제1 혼합액을 제조하는 단계;preparing a first mixed solution by adding xylitol to the triethylene glycol dimethacrylate (TEGDMA) and then stirring;
    상기 2,2-비스[4-(2-하이드록시-3-메타크릴옥시프로폭시)페닐]프로판(Bis-GMA), 에톡실레이트 비스페놀 A 디메타크릴레이트(Bis-EMA) 및 우레탄 디메타크릴레이트(UDMA)를 혼합한 후 교반하여 제2 혼합액을 제조하는 단계;2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (Bis-GMA), ethoxylate bisphenol A dimethacrylate (Bis-EMA) and urethane dimetha Preparing a second mixed solution by mixing and stirring acrylate (UDMA);
    상기 제1 혼합액과 상기 제2 혼합액을 혼합한 후 교반하여 제3 혼합액을 제조하는 단계;preparing a third mixed solution by mixing and then stirring the first mixed solution and the second mixed solution;
    상기 제3 혼합액에 나노 필러를 투입한 후 교반하여 제4 혼합액 제조하는 단계;Preparing a fourth mixed solution by adding nano fillers to the third mixed solution and then stirring;
    상기 제4 혼합액에 플라보노이드를 함유한 물질을 투입한 후 교반하여 제5 혼합액을 제조하는 단계:Preparing a fifth mixed solution by adding a flavonoid-containing material to the fourth mixed solution and then stirring the mixture:
    상기 제5 혼합액에 상기 광개시제 및 기타 첨가제를 투입하고 교반하여 제6 혼합액을 제조하는 단계; 및preparing a sixth mixed solution by adding the photoinitiator and other additives to the fifth mixed solution and stirring; and
    상기 제 6 혼합액을 실온 또는 미온 환경에서 숙성시키는 단계;를 포함하는 것을 특징으로 하는 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법3D printing resin manufacturing method for dental and total medical use, comprising the step of aging the sixth mixed solution in a room temperature or lukewarm environment.
  2. 제 1 항에 있어서,According to claim 1,
    상기 전처리 단계는 진공 분위기에서 교반이 수행되되, 60℃ 내지 80℃ 온도에서, 광강도 600mW/cm2 내지 1,000mW/cm2으로 60분간 교반을 수행하는 것을 특징으로 하는 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법In the pretreatment step, stirring is performed in a vacuum atmosphere, at a temperature of 60 ° C to 80 ° C, a light intensity of 600 mW / cm 2 to 1,000 mW / cm 2 Dental and total medical 3D printing, characterized in that performing stirring for 60 minutes Resin manufacturing method
  3. 제 2 항에 있어서,According to claim 2,
    상기 제4 혼합액을 제조하는 단계 이후에,After the step of preparing the fourth mixed solution,
    상기 제4 혼합액에 상기 광개시제의 흡수 가능한 파장 범위에 해당하는 광을 조사하여 표면 개질을 수행하는 후처리 단계;를 더 포함하며,Further comprising:
    상기 후처리 단계는 진공 분위기에서 상기 전처리 단계와 동일한 온도와 시간 동안 교반이 수행되되 광강도는 상기 전처리 단계보다 높은 광강도로 교반이 수행되는 것을 특징으로 하는 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법In the post-treatment step, stirring is performed in a vacuum atmosphere for the same temperature and time as the pre-treatment step, but the light intensity is higher than the light intensity of the dental and total medical 3D printing resin manufacturing method, characterized in that the stirring is performed
  4. 제 3 항에 있어서,According to claim 3,
    상기 후처리 단계에서의 광강도는 1000mW/cm2 내지 2,000mW/cm2 인 것을 특징으로 하는 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법The light intensity in the post-processing step is 1000mW/cm 2 to 2,000mW/cm 2 Dental and total medical 3D printing resin manufacturing method, characterized in that
  5. 제 1 항에 있어서,According to claim 1,
    상기 제5 혼합액을 제조하는 단계는 진공 분위기에서 6시간 이상 교반을 수행하되, 하절기의 경우 실온에서, 동절기의 경우 50℃ 내지 60℃의 온도에서 교반이 수행되는 것을 특징으로 하는 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법In the step of preparing the fifth mixed solution, stirring is performed in a vacuum atmosphere for 6 hours or more, for dental and total medical purposes, characterized in that stirring is performed at room temperature in the summer season and at a temperature of 50 ° C to 60 ° C in the winter season. 3D printing resin manufacturing method
  6. 제 1 항에 있어서,According to claim 1,
    상기 숙성시키는 단계는 상기 제6 혼합액을 32℃ 내지 36℃의 온도에서 48시간 이상 숙성시키는 것을 특징으로 하는 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법The aging step is a method for manufacturing dental and total medical 3D printing resin, characterized in that for aging the sixth mixed solution at a temperature of 32 ° C to 36 ° C for 48 hours or more
  7. 제 1 항에 있어서,According to claim 1,
    상기 제1 혼합액은 상기 자일리톨 2 중량% 내지 10 중량%를 포함하는 것을 특징으로 하는 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법3D printing resin manufacturing method for dental and total medical use, characterized in that the first mixture contains 2% to 10% by weight of xylitol
  8. 제 7 항에 있어서,According to claim 7,
    상기 제5 혼합액은 상기 제4 혼합액 대비 상기 플라보노이드를 함유한 물질 0.2 중량% 내지 3.5 중량%를 포함하는 것을 특징으로 하는 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법3D printing resin manufacturing method for dental and total medical use, characterized in that the fifth mixture contains 0.2% to 3.5% by weight of the flavonoid-containing material compared to the fourth mixture
  9. 제 1 항에 있어서,According to claim 1,
    상기 플라노보이드를 함유한 물질은 프로폴리스(propolis)인 것을 특징으로 하는 치과용 및 토탈 의료용 3D 프린팅 레진 제조 방법3D printing resin manufacturing method for dental and total medical use, characterized in that the material containing the flavonoid is propolis
PCT/KR2021/016273 2021-11-08 2021-11-09 Method for preparing dental and total medical resins for 3d printing by utilizing xylitol and propolis WO2023080303A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0152402 2021-11-08
KR1020210152402A KR20230066900A (en) 2021-11-08 2021-11-08 Manufacturing method of 3D printing resin for dental and total medical using xylitol and propolis

Publications (1)

Publication Number Publication Date
WO2023080303A1 true WO2023080303A1 (en) 2023-05-11

Family

ID=86241699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016273 WO2023080303A1 (en) 2021-11-08 2021-11-09 Method for preparing dental and total medical resins for 3d printing by utilizing xylitol and propolis

Country Status (2)

Country Link
KR (1) KR20230066900A (en)
WO (1) WO2023080303A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101728463B1 (en) * 2015-02-13 2017-04-19 원광대학교산학협력단 Dual-cured bis-GMA based fluoride composition for dental with long-term sustained fluoride release and antibacterial activity
KR101929652B1 (en) * 2017-03-20 2018-12-17 주식회사 케이씨씨 Curable composition
US20200015946A1 (en) * 2009-12-22 2020-01-16 3M Innovative Properties Company Dental compositions, mill blocks, and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200015946A1 (en) * 2009-12-22 2020-01-16 3M Innovative Properties Company Dental compositions, mill blocks, and methods
KR101728463B1 (en) * 2015-02-13 2017-04-19 원광대학교산학협력단 Dual-cured bis-GMA based fluoride composition for dental with long-term sustained fluoride release and antibacterial activity
KR101929652B1 (en) * 2017-03-20 2018-12-17 주식회사 케이씨씨 Curable composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JEON, MI YOUNG ET AL.: "Characteristics of Polymeric Dental Restorative Composites Fabricated from Bis-GMA Derivatives Having Low Viscosity", POLYMER, vol. 31, no. 6, 2007, pages 491 - 496, XP009546048 *
RYU, HO-NAM ET AL.: "Mechanical properties of composite resins for dental restorative", JOURNAL OF INDUSTRIAL TECHNOLOGY, KANGWON NATIONAL UNIVERSITY, KOREA, vol. 35, 2015, pages 31 - 34 *

Also Published As

Publication number Publication date
KR20230066900A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US4267133A (en) Manufacture of denture base
Rueggeberg From vulcanite to vinyl, a history of resins in restorative dentistry
US9028254B2 (en) Dental prosthetics comprising curable acrylate polymer compositions and methods of their use
EP0742001B1 (en) Colour stable dental restorative materials
EP2642967B1 (en) High strength dental material
JPH02178205A (en) Visible light-curable dental composition
US8853321B2 (en) Laser curable polymerisable composition for the protection of hard tissue
JPH04211602A (en) Semi-thermoplastic molding composition having thermally stable custom shape memory
EP0554890A1 (en) Dental composition and method
JPH05139927A (en) Dental and medical composition and its use
US5171147A (en) Dental bridge
WO2019132595A1 (en) Dental composite blank and method for manufacturing same
GB2320028A (en) Dental elastic restorative material
WO2019132472A1 (en) Photocurable composition and molded article manufactured using same
JP4162738B2 (en) Photopolymerization type orthodontic resin composition
EP3606493A1 (en) Dental cement compositions and methods of use
CN113677718A (en) Radiation curable compositions for rapid prototyping or rapid manufacturing processes
JPH07145018A (en) Composition and prosthesis for dentistry and preparation of prosthesis for dentistry
WO2019132473A1 (en) Photocurable composition and molded article manufactured using same
WO2023080303A1 (en) Method for preparing dental and total medical resins for 3d printing by utilizing xylitol and propolis
WO2021132861A1 (en) Method for manufacturing dental composite blank
KR101873570B1 (en) Dental prosthetic restorative material manufacturing method
WO2023204416A1 (en) Method for manufacturing transparent bleaching tray
WO2022103226A1 (en) Dental hybrid resin block composition and method for manufacturing dental hybrid resin block by using same
Lindén Applied photochemistry in dental science

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963403

Country of ref document: EP

Kind code of ref document: A1