WO2023080243A1 - Method for producing c-arylglucoside derivative - Google Patents

Method for producing c-arylglucoside derivative Download PDF

Info

Publication number
WO2023080243A1
WO2023080243A1 PCT/JP2022/041429 JP2022041429W WO2023080243A1 WO 2023080243 A1 WO2023080243 A1 WO 2023080243A1 JP 2022041429 W JP2022041429 W JP 2022041429W WO 2023080243 A1 WO2023080243 A1 WO 2023080243A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally substituted
formula
derivative
represented
Prior art date
Application number
PCT/JP2022/041429
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 関
和志 真島
シャヘーン カシム ムラニ
サンジープ ラメシュラオ タプキル
マヘシュワラ レディ ナディヴェードヒ
隼人 劒
大樹 加藤
智哉 村瀬
アイマン スキヒリ
Original Assignee
株式会社トクヤマ
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ, 国立大学法人大阪大学 filed Critical 株式会社トクヤマ
Publication of WO2023080243A1 publication Critical patent/WO2023080243A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/02Monothiocarboxylic acids
    • C07C327/04Monothiocarboxylic acids having carbon atoms of thiocarboxyl groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C327/06Monothiocarboxylic acids having carbon atoms of thiocarboxyl groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • C07C69/618Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety having unsaturation outside the six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/20Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/08Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/10Oxygen atoms
    • C07D309/12Oxygen atoms only hydrogen atoms and one oxygen atom directly attached to ring carbon atoms, e.g. tetrahydropyranyl ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H7/00Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond
    • C07H7/04Carbocyclic radicals

Definitions

  • the present invention relates to a thioester derivative and its production method, a ketone derivative and its production method, a production method of a C-aryl-hydroxyglycoside derivative, and a production method of a C-arylglycoside derivative.
  • SGLT2 inhibitors are useful as antidiabetic agents.
  • “SGLT2” means sodium-glucose cotransporter-2.
  • SGLT2 inhibitors include, for example, canagliflozin (1-( ⁇ -D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene), empagliflozin ( (1S)-1,5-anhydro-1-C- ⁇ 4-chloro-3-[(4- ⁇ [(3S)-oxolan-3-yl]oxy ⁇ phenyl)methyl]phenyl ⁇ -D-glucitol) , ipragliflozin ((1S)-1,5-anhydro-1-C- ⁇ 3-[(1-benzothiophen-2-yl)methyl]-4-fluorophenyl ⁇ -D-glucitol-(2S)- pyrrolidine-2-carboxylic acid), dapaglif
  • Non-Patent Documents 1 and 3 a method of adding an aryl group by reacting an aryllithium with a D-gluconolactone derivative at an ultra-low temperature of -78°C ( Non-Patent Documents 1 and 3), adding an aryl group by reacting a D-gluconolactone derivative with a turbo Grignard reagent such as ArMgBr.LiCl (where Ar represents an aryl group) at a low temperature of -20 to -10°C.
  • a turbo Grignard reagent such as ArMgBr.LiCl (where Ar represents an aryl group) at a low temperature of -20 to -10°C.
  • Non-Patent Document 2 A reaction method (Non-Patent Document 2), using a magnesiumate complex obtained from lithium tri-n-butyl magnesate (nBu 3 MgLi), under a temperature environment of about -15 ° C., aryl to D-gluconolactone derivative A method of subjecting a group to an addition reaction (Patent Document 2) and the like are known. In addition, it has been reported that a ketone derivative is obtained by reacting a thioester derivative with an organozinc reagent in the presence of a nickel catalyst to cause coupling (Non-Patent Documents 4 and 5).
  • Remdesivir represented by the following formula (X) is a compound that can be used as an antiviral drug.
  • Remdesivir exhibits antiviral activity against single-stranded RNA viruses such as, for example, respiratory syncytial virus, coronavirus.
  • Patent Document 3 discloses a method for producing remdesivir and its intermediates.
  • Patent Document 3 discloses that a lactone represented by the following formula (XI) and a bromopyrazole represented by the following formula (Ar'') are treated in the presence of chlorotrimethylsilane (TMSCl) and n-butyllithium. It is described that a hydroxynucleoside represented by the following formula (XII) can be obtained by reacting at °C. This hydroxynucleoside can be used as an intermediate for remdesivir synthesis. "Bn” represents a benzyl group.
  • An object of the present invention is to provide a novel thioester derivative and its production method, a novel ketone derivative and its production method, a novel production method of a C-aryl-hydroxyglycoside derivative, and a novel production method of a C-arylglycoside derivative. one purpose.
  • W 1 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group, When R each independently represents an optionally substituted alkyl group, R' is an optionally substituted alkylsilyl group, a tetrahydropyranyl group optionally having a substituent, Formula: -CO-L 1 -L 2 [In the formula, L 1 represents an optionally substituted alkylene group or an optionally substituted haloalkylene group, and L 2 is a halogen represents an atom
  • a group represented by Formula: -C(-L 3 )(-L 4 )-OL 5 [In the formula, L 3 represents a hydrogen atom or an optionally substituted alkyl group, and L 4 and L 5 , each independently represents an optionally substituted alkyl group.
  • R independently represents an optionally substituted aryl group
  • R' is an optionally substituted alkylcarbonyl group, an optionally substituted alkylsilyl group, aldehyde group
  • Formula: -CO-L 1 -L 2 [In the formula, L 1 and L 2 have the same definitions as above.
  • W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group, When R each independently represents an optionally substituted alkyl group, R' is an optionally substituted alkylsilyl group, a tetrahydropyranyl group optionally having a substituent, Formula: -CO-L 1 -L 2 [In the formula, L 1 represents an optionally substituted alkylene group or an optionally substituted
  • a group represented by Formula: -C(-L 3 )(-L 4 )-OL 5 [In the formula, L 3 represents a hydrogen atom or an optionally substituted alkyl group, and L 4 and L 5 , each independently represents an optionally substituted alkyl group.
  • R independently represents an optionally substituted aryl group
  • R' is an optionally substituted alkylcarbonyl group, an optionally substituted alkylsilyl group, aldehyde group
  • Formula: -CO-L 1 -L 2 [In the formula, L 1 and L 2 have the same definitions as above.
  • n represents 1 or 2;
  • a ketone derivative (II) represented by [3] The thioester according to [1], wherein each R independently represents an optionally substituted aryl group, and R′ represents an optionally substituted alkylcarbonyl group.
  • [5] A method for producing a thioester derivative (I) according to [1], wherein each R independently represents an optionally substituted aryl group, and R' represents an aldehyde group.
  • Each R independently represents an optionally substituted aryl group, and R′ represents a group represented by the formula: —CO—L 1 -L 2 [1]
  • Each R independently represents an aryl group which may have a substituent
  • R′ is represented by the formula: —CO—C(—L 9 )(—L 10 )(—L 11 )
  • Each R independently represents an optionally substituted alkyl group, and R′ represents a group represented by the formula: —CO—L 1 -L 2 [1]
  • Each R independently represents an optionally substituted alkyl group, and R′ is represented by the formula: —C(—L 3 )(—L 4 )—OL 5
  • each R independently represents an optionally substituted alkyl group
  • R' 8 A method for producing the thioester derivative (I) according to [1], which represents the group represented by in the presence of a base, Formula (III) below: [In the formula, W 1 and n have the same meaning as in [1], and each R independently represents an optionally substituted alkyl group.
  • An acyl-protected lactone derivative (IV) represented by The method according to any one of [3] to [12], comprising the step of producing the thioester derivative (III). [14] In the above step, after the magnesium thiolate is formed by the reaction of the thiol (3) and the Grignard reagent (4), the thioester derivative is formed by the reaction of the magnesium thiolate with the acyl-protected lactone derivative (IV). The method of [13], wherein (III) is formed.
  • R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group
  • W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be R 100 is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkylcarbonyl group, or a substituted represents a good arylcarbonyl group, n represents 1 or 2;
  • a method for producing a C-aryl-hydroxyglycoside derivative (V) represented by The ketone derivative (II) according to [2] is contacted with a first acid and/or base
  • W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be n represents 1 or 2;
  • novel thioester derivatives and production methods thereof, novel ketone derivatives and production methods thereof, novel production methods of C-aryl-hydroxyglycoside derivatives, and novel production methods of C-arylglycoside derivatives are provided.
  • inexpensive and efficient industrial production of thioester derivatives, ketone derivatives, C-aryl-hydroxyglycoside derivatives and C-arylglycoside derivatives becomes possible, and raw material costs, facility costs, running costs, etc. can be reduced. can be greatly suppressed.
  • Organic solvents examples include nitrile solvents such as acetonitrile and propionitrile; ether solvents such as diisopropyl ether, dimethoxyethane and diglyme; ketone solvents such as acetone, methyl ethyl ketone and diethyl ketone; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; dichloromethane (DCM), chloroform, carbon tetrachloride, Halogenated hydrocarbon solvents such as 1,2-dichloroethane and chlorobenzene; aromatic hydrocarbon solvents such as toluene and xylene; and aliphatic hydrocarbon solvents such as hexane and heptane.
  • nitrile solvents such as acetonitrile and propionitrile
  • ether solvents such as diisopropyl ether, dimethoxyethane and diglyme
  • ketone solvents
  • Halogen Atom Halogen is selected from fluorine, chlorine, bromine and iodine.
  • Alkyl group The number of carbon atoms in the alkyl group is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 12 (eg, 1 to 10, 1 to 8, 1 to 6, 1 to 5, 1 to 4, 1 ⁇ 3 or 1 ⁇ 2).
  • Alkyl groups may be linear or branched.
  • the straight-chain alkyl group has 1 or more carbon atoms, and the branched-chain alkyl group has 3 or more carbon atoms.
  • alkenyl group The number of carbon atoms in the alkenyl group is, for example, 2 to 20, preferably 2 to 15, more preferably 2 to 12 (for example, 2 to 10, 2 to 8, 2 to 6, 2 to 5, 2 to 4 or 2 ⁇ 3).
  • An alkenyl group may be linear or branched.
  • the straight-chain alkenyl group has 2 or more carbon atoms, and the branched-chain alkenyl group has 3 or more carbon atoms.
  • Cycloalkyl Group The cycloalkyl group has, for example, 3 to 10 carbon atoms, preferably 3 to 8 carbon atoms, and more preferably 3 to 6 carbon atoms.
  • Heterocycloalkyl group is a monocyclic ring containing one or more heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen atoms in addition to carbon atoms as ring-constituting atoms.
  • a saturated aliphatic heterocyclic group is an aliphatic heterocyclic group whose ring is composed only of saturated bonds.
  • the number of heteroatoms is, for example, 1-4, preferably 1-3, more preferably 1 or 2.
  • the number of members of the heterocycloalkyl group is, for example, 3-8 membered, preferably 4-7 membered, more preferably 5-7 membered, even more preferably 5 or 6 membered.
  • heterocycloalkyl groups include those containing 1 to 2 oxygen atoms, those containing 1 to 2 sulfur atoms, and those containing 1 to 2 oxygen atoms and 1 to 2 sulfur atoms. , those containing 1 to 4 nitrogen atoms, those containing 1 to 3 nitrogen atoms and 1 to 2 sulfur atoms and/or 1 to 2 oxygen atoms.
  • a heterocycloalkyl group preferably contains an oxygen atom as a heteroatom.
  • Heterocycloalkyl groups include aziridinyl, oxiranyl, thiiranyl, azetidinyl, oxetanyl, thietanyl, tetrahydrothienyl, tetrahydrofuranyl, pyrrolidinyl, imidazolidinyl, oxazolidinyl, pyrazolidinyl, thiazolidinyl, and tetrahydroisothionyl.
  • azolyl group tetrahydrooxazolyl group, tetrahydroisoxazolyl group, piperidinyl group, piperazinyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, morpholinyl group, thiomorpholinyl group (the sulfur atom on the ring may be oxidized, good), azepanyl group, diazepanyl group, oxepanyl group, azocanyl group, diazocanyl group and the like.
  • heterocycloalkyl groups are selected from tetrahydrofuranyl and tetrahydropyranyl groups.
  • a heterocycloalkyl group is preferably a tetrahydrofuranyl group.
  • Aryl group is, for example, a monocyclic or polycyclic (eg, bicyclic or tricyclic) aromatic hydrocarbon ring having 4 to 14, preferably 6 to 14, more preferably 6 to 10 carbon atoms. is the base. Polycyclics are preferably fused rings. Examples of aryl groups include phenyl groups and naphthyl groups. Aryl groups are preferably phenyl groups.
  • Heteroaryl Group A heteroaryl group is a monocyclic or polycyclic ring containing, in addition to carbon atoms, one or more heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen atoms as ring atoms. It is a cyclic (eg bicyclic or tricyclic) aromatic heterocyclic group. Polycyclics are preferably fused rings.
  • the number of heteroatoms is, for example, 1-4, preferably 1-3, more preferably 1 or 2.
  • the number of members of the heteroaryl group is preferably 4-14 membered, more preferably 5-10 membered.
  • heteroaryl groups include those containing 1 to 2 oxygen atoms, those containing 1 to 2 sulfur atoms, those containing 1 to 2 oxygen atoms and 1 to 2 sulfur atoms, Examples include those containing 1 to 4 nitrogen atoms, those containing 1 to 3 nitrogen atoms and 1 to 2 sulfur atoms and/or 1 to 2 oxygen atoms.
  • Heteroaryl groups are preferably monocyclic or bicyclic 4- to 10-membered, preferably 5- to 10-membered, aromatic heterocyclic groups.
  • Examples of monocyclic aromatic heterocyclic groups include pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, thienyl, pyrrolyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, furyl, oxazolyl, Isoxazolyl group, oxadiazolyl group (e.g., 1,2,4-oxadiazolyl group, 1,3,4-oxadiazolyl group, etc.), thiadiazolyl group (e.g., 1,2,4-thiadiazolyl group, 1,3,4-thiadiazolyl group) etc.), a triazolyl group (e.g., 1,2,3-triazolyl group, 1,2,4-triazolyl group, etc.), a tetrazolyl group, a 5- to 7-membered monocyclic aromatic heterocyclic group such as a triazinyl group mentioned.
  • condensed polycyclic aromatic heterocyclic groups include benzothiophenyl, benzofuranyl, benzimidazolyl, benzoxazolyl, benzoisoxazolyl, benzothiazolyl, benzoisothiazolyl, benzotri solyl group, imidazopyridinyl group, thienopyridinyl group, furopyridinyl group, pyrrolopyridinyl group, pyrazolopyridinyl group, oxazolopyridinyl group, thiazolopyridinyl group, imidazopyrazinyl group, imidazopyrimidinyl group, thienopyrimidinyl group, furopyrimidinyl group, pyrrolopyrimidinyl group, pyrazolopyrimidinyl group, oxazolopyrimidinyl group, thiazolopyrimidinyl group, pyrazolotriazinyl group, naphtho
  • heteroaryl groups are selected from thienyl groups, benzothiophenyl groups, furyl groups, pyrrolyl groups, imidazolyl groups and pyridyl groups.
  • Heteroaryl groups are preferably selected from thienyl and benzothiophenyl groups.
  • Haloalkyl, haloaryl and haloheteroaryl groups are alkyl, aryl and heteroaryl groups respectively having one or more halogen atoms, and alkyl, aryl and hetero A description of the aryl group is provided above.
  • the number of halogen atoms possessed by the haloalkyl group, haloaryl group or haloheteroaryl group is, for example, 1 to 3, preferably 1 or 2, more preferably 1.
  • Alkylene Groups, Arylene Groups and Heteroarylene Groups Alkylene groups, arylene groups and heteroarylene groups are divalent functional groups generated by removing one hydrogen atom from an alkyl group, an aryl group and a heteroaryl group, respectively. and the descriptions of the alkyl group, the aryl group and the heteroaryl group are as described above.
  • Haloalkylene Groups, Haloarylene Groups, and Haloheteroarylene Groups Haloalkylene groups, haloarylene groups, and haloheteroarylene groups are formed by removing one hydrogen atom from haloalkyl groups, haloaryl groups, and haloheteroaryl groups, respectively. It is a divalent functional group, and the description of the haloalkyl group, the haloaryl group and the haloheteroaryl group is as described above.
  • Arylalkenyl Group An arylalkenyl group is an alkenyl group having one or more aryl groups, and the descriptions of alkenyl groups and aryl groups are given above.
  • the number of aryl groups possessed by the arylalkenyl group is, for example, 1 to 3, preferably 1 or 2, more preferably 1.
  • Alkylcarbonyl Group and Arylcarbonyl Group are groups represented by the formula: -CO-alkyl group and -CO-aryl group, respectively. As above.
  • Alkyloxy group, haloalkyloxy group, heterocycloalkyloxy group and arylalkyloxy group are each represented by the formula: -O-alkyl group, the formula: -O-haloalkyl groups, groups represented by the formula: -O-heterocycloalkyl group and formula: -O-arylalkyl group, and descriptions of the alkyl group, the haloalkyl group, the heterocycloalkyl group and the arylalkyl group are as follows: As above.
  • Alkylthio group, haloalkylthio group, heterocycloalkylthio group and arylalkylthio group are respectively represented by the formula: -S-alkyl group, the formula: -S-haloalkyl group, Groups represented by the formula: -S-heterocycloalkyl group and the formula: -S-arylalkyl group, and the alkyl group, haloalkyl group, heterocycloalkyl group and arylalkyl group are as described above.
  • alkyloxycarbonyl group is a group represented by the formula: --CO--O-alkyl group, and the description of the alkyl group is as described above.
  • the number of carbon atoms in the alkyl group contained in the alkyloxycarbonyl group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3. , more preferably 1 or 2.
  • Amino Group An amino group is a group (primary amino group) represented by the formula: —NH 2 .
  • the monoalkylamino group has the formula: —NH(—Q 1 ) [wherein Q 1 represents an alkyl group. ] and the description of the alkyl group is as described above.
  • the number of carbon atoms in the alkyl group represented by Q 1 is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3, More preferably 1 or 2.
  • Dialkylamino group has the formula: -N(-Q 2 )(-Q 3 ) [wherein Q 2 and Q 3 each independently represent an alkyl group. ] and the description of the alkyl group is as described above.
  • the number of carbon atoms in the alkyl group represented by Q 2 or Q 3 is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 ⁇ 3, more preferably 1 or 2.
  • the alicyclic amino group is, for example, a 5- or 6-membered alicyclic amino group.
  • the 5- or 6-membered alicyclic amino group include a morpholino group and a thiomorpholino group , pyrrolidin-1-yl group, pyrazolidin-1-yl group, imidazolidin-1-yl group, piperidin-1-yl group and the like.
  • the alicyclic amino group has, in addition to the nitrogen atom having the bond of the alicyclic amino group, a heteroatom independently selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom (e.g., one heteroatom atoms).
  • a cycloaliphatic amino group is preferably a morpholino group.
  • Aminocarbonyl group, monoalkylaminocarbonyl group, dialkylaminocarbonyl group and alicyclic aminocarbonyl group aminocarbonyl group, monoalkylaminocarbonyl group, dialkylaminocarbonyl group and alicyclic aminocarbonyl group are each represented by the formula: -CO -amino group, formula: -CO-monoalkylamino group, formula: -CO-dialkylamino group and formula: -CO-alicyclic amino group, monoalkylamino group, dialkylamino group and The description of the alicyclic amino group is given above.
  • Substituent group ⁇ is composed of the following substituents.
  • Substituent group ⁇ is composed of the following substituents. ( ⁇ -1) Substituent represented by formula (i) ( ⁇ -2) Substituent represented by formula (ii)
  • the number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3. , more preferably 1 or 2.
  • the number of carbon atoms in the haloalkyl group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3. , more preferably 1 or 2.
  • the haloalkyl group preferably has 1 to 3 halogen atoms, more preferably 1 or 2, and even more preferably 1.
  • a hydroxy group which may be protected by a protecting group The hydroxy group- protecting group can protect the hydroxy group during the desired reaction, and can be removed from the hydroxy group after the desired reaction is completed. It is preferable to be Examples of hydroxy-protecting groups include alkylcarbonyl-type protecting groups, arylcarbonyl-type protecting groups, arylalkyl-type protecting groups, alkyl-type protecting groups, arylalkyloxyalkyl-type protecting groups, alkyloxyalkyl-type protecting groups, and silyl-type protecting groups. groups, oxycarbonyl-type protecting groups, acetal-type protecting groups, aryl-type protecting groups, and the like. These protecting groups may have one or more halogen atoms.
  • alkylcarbonyl-type protecting groups include alkylcarbonyl groups having 2 to 10 carbon atoms which may have one or more substituents.
  • Substituents include, for example, a halogen atom, a nitro group, a cyano group, a phenyl group, and 1 to 10 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms).
  • an alkyloxy group having 1 to 10 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms), 2 to 11 carbon atoms (preferably carbon It can be selected from alkyloxycarbonyl groups having 2 to 9 carbon atoms, more preferably 2 to 7 carbon atoms, more preferably 2 to 5 carbon atoms, and the like.
  • alkylcarbonyl groups having 2 to 10 carbon atoms which may have one or more substituents include acetyl group, propanoyl group, butanoyl group, isopropanoyl group and pivaloyl group.
  • the alkylcarbonyl-type protecting group is preferably an alkylcarbonyl group having 2 to 5 carbon atoms, more preferably an acetyl group or a pivaloyl group, and still more preferably an acetyl group.
  • arylcarbonyl-type protective groups include arylcarbonyl groups having 7 to 11 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group. Examples of the arylcarbonyl group having 7 to 11 carbon atoms which may have one or more substituents include benzoyl group, 4-nitrobenzoyl group, 4-methyloxybenzoyl group, 4-methylbenzoyl group, 4- tert-butylbenzoyl group, 4-fluorobenzoyl group, 4-chlorobenzoyl group, 4-bromobenzoyl group, 4-phenylbenzoyl group, 4-methyloxycarbonylbenzoyl group and the like.
  • arylalkyl-type protecting groups include arylalkyl groups having 7 to 11 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group. Examples of arylalkyl groups having 7 to 11 carbon atoms which may have one or more substituents include benzyl group, 1-phenylethyl group, diphenylmethyl group, 1,1-diphenylethyl group and naphthylmethyl group. , a trityl group, and the like. Arylalkyl-type protecting groups are preferably benzyl groups.
  • alkyl-type protecting groups include alkyl groups having 1 to 10 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group.
  • the alkyl-type protecting group is preferably an alkyl group having 1 to 5 carbon atoms which may have one or more substituents, more preferably a methyl group, an ethyl group or a tert-butyl group, and more More preferably, it is a methyl group.
  • arylalkyloxyalkyl-type protecting group examples include an arylalkyloxymethyl group having 8 to 12 carbon atoms which may have one or more substituents, and an arylalkyloxymethyl group which may have one or more substituents.
  • Examples include arylalkyloxyalkyl groups such as 9-13 arylalkyloxyethyl groups and optionally substituted 10-14 carbon atom arylalkyloxypropyl groups.
  • substituent are the same as those for the alkylcarbonyl type protective group.
  • the arylalkyloxyalkyl-type protecting group is, for example, a benzyloxymethyl group optionally having one or more substituents, preferably substituted with a halogen atom, a nitro group, a cyano group, a methyl group or a methyloxy group.
  • benzyloxymethyl group more preferably benzyloxymethyl group.
  • alkyloxyalkyl-type protecting groups include alkyloxymethyl groups having 2 to 10 carbon atoms which may have one or more substituents, and alkyloxymethyl groups having 3 to 10 carbon atoms which may have one or more substituents. 10 alkyloxyethyl groups, and alkyloxyalkyl groups such as alkyloxypropyl groups having 4 to 10 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group.
  • the alkyloxyalkyl-type protecting group is preferably an alkyloxymethyl group having 2 to 10 carbon atoms which may have one or more substituents, more preferably a halogen atom, a nitro group, a cyano group, a methyloxy group. or an alkyloxymethyl group having 2 to 6 carbon atoms which may have an ethyloxy group, more preferably a methyloxymethyl group.
  • silyl-type protecting groups include alkyl groups having 1 to 10 carbon atoms which may have one or more substituents, arylalkyl groups having 7 to 11 carbon atoms which may have one or more substituents, and a silyl group having a functional group selected from aryl groups having 6 to 10 carbon atoms which may have one or more substituents.
  • substituents are the same as those for the alkylcarbonyl type protective group.
  • the silyl-type protecting group is preferably a silyl group having a functional group selected from an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms and A silyl group having a functional group selected from a phenyl group, more preferably a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group or a tert-butyldiphenylsilyl group.
  • Examples of the oxycarbonyl-type protecting group include alkyloxycarbonyl groups having 2 to 10 carbon atoms which may have one or more substituents, and 3 to 10 carbon atoms which may have one or more substituents. and an arylalkyloxycarbonyl group having 8 to 12 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group.
  • the oxycarbonyl type protective group is preferably an alkyloxycarbonyl group having 2 to 6 carbon atoms, an alkenyloxycarbonyl group having 3 to 6 carbon atoms or a benzyloxycarbonyl group, more preferably a methyloxymethyl group, an allyloxycarbonyl group or It is a benzyloxycarbonyl group.
  • acetal-type protective group examples include a tetrahydrofuranyl group and a tetrahydropyranyl group.
  • Aryl-type protective groups include, for example, aryl groups such as phenyl groups.
  • a hydroxy group protected with a protecting group is preferably a group represented by the formula: -OQ.
  • Q represents an alkyl group, haloalkyl group, aryl group, haloaryl group, heterocycloalkyl group, alkylcarbonyl group, arylcarbonyl group or arylalkyl group.
  • the group represented by the formula: -OQ preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms.
  • Q is preferably an alkyl group, a heterocycloalkyl group, an alkylcarbonyl group or an arylalkyl group, more preferably an ethyl group, a tetrahydrofuranyl group, an acetyl group or a benzyl group.
  • a thiol group which may be protected by a protecting group The thiol group- protecting group can protect the thiol group during the target reaction, and can be removed from the thiol group after the target reaction is completed. It is preferable to be Examples of thiol group-protecting groups include alkylcarbonyl-type protecting groups, arylcarbonyl-type protecting groups, arylalkyl-type protecting groups, alkyl-type protecting groups, arylalkyloxyalkyl-type protecting groups, alkyloxyalkyl-type protecting groups, and silyl-type protecting groups. groups, oxycarbonyl-type protecting groups, acetal-type protecting groups, aryl-type protecting groups, and the like. These protecting groups may have one or more halogen atoms. A description of these protecting groups is provided above.
  • a thiol group protected with a protecting group is preferably a group represented by the formula: -SQ.
  • a description of Q is provided above.
  • R 11 , R 12 and R 13 each independently represent an alkyl group, a haloalkyl group, an aryl group, a haloaryl group or a hydroxy group which may be protected by a protecting group.
  • the hydroxy group which may be protected by a protecting group is preferably a group represented by the above formula: --OQ. a is 0 or more and 3 or less.
  • V 10 represents an alkylene group, haloalkylene group, arylene group, haloarylene group, heteroarylene group, haloheteroarylene group, ester bond, ether bond or carbonyl group.
  • the alkylene group or haloalkylene group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms.
  • the arylene group, haloarylene group, heteroarylene group or haloheteroarylene group preferably has 4 to 14 carbon atoms, more preferably 6 to 14 carbon atoms.
  • V 10 is preferably an alkylene group, more preferably a methylene group or an ethylene group.
  • b represents 0 or 1. b is preferably one.
  • W 10 represents an alkylene group, haloalkylene group, arylene group, haloarylene group, heteroarylene group, haloheteroarylene group, ester bond, ether bond or carbonyl group.
  • W 10 is preferably a heteroarylene group, more preferably a 5-membered heteroarylene group containing a sulfur atom as a heteroatom, and even more preferably a thienylene group.
  • c represents 0 or 1.
  • c is 1.
  • X 10 is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group represents
  • the alkyl group, aryl group or heteroaryl group represented by X 10 may have one or more substituents, and the one or more substituents are each independently selected from the substituent group ⁇ . can be done.
  • one or more substituents are each independently selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio groups, haloalkylthio groups, heterocycloalkyloxy groups and heterocycloalkylthio groups; is preferred, more preferably selected from a halogen atom, an alkyloxy group having 1 to 3 carbon atoms and a heterocycloalkyloxy group, and more preferably selected from a fluorine atom, an ethyloxy group and a tetrahydrofuranyloxy group.
  • X 10 is preferably an optionally substituted aryl group or an optionally substituted heteroaryl group, wherein a halogen atom, an alkyloxy group having 1 to 3 carbon atoms or an oxygen atom is An aryl group having a heterocycloalkyloxy group containing as a heteroatom or an unsubstituted heteroaryl group is more preferable, and a phenyl group having a fluorine atom, an ethyloxy group or a tetrahydrofuranyloxy group, or an unsubstituted benzo A thiophenyl group is more preferred.
  • Thioester derivative (I) is represented by the following formula (I).
  • n 1 or 2.
  • each R independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group.
  • the thioester derivative (I) in which each R independently represents an optionally substituted aryl group is referred to as a thioester derivative (I-1), and each R is independently Therefore, the thioester derivative (I) representing an optionally substituted alkyl group is sometimes referred to as a thioester derivative (I-2).
  • R when each R independently represents an optionally substituted alkyl group, R' an optionally substituted alkylsilyl group, a tetrahydropyranyl group optionally having a substituent, Formula: -CO-L 1 -L 2 [In the formula, L 1 represents an optionally substituted alkylene group or an optionally substituted haloalkylene group, L 2 is a halogen represents an atom. ] A group represented by Formula: -C(-L 3 )(-L 4 )-OL 5 [wherein L 3 represents a hydrogen atom or an optionally substituted alkyl group, and L 4 and L 5 , each independently represents an optionally substituted alkyl group.
  • R' is an optionally substituted alkylcarbonyl group, an optionally substituted alkylsilyl group, aldehyde group, Formula: -CO-L 1 -L 2 [In the formula, L 1 and L 2 have the same definitions as above. ]
  • a group represented by, or Formula: -CO-C(-L 9 )(-L 10 )(-L 11 ) [wherein L 9 , L 10 and L 11 each independently represent a halogen atom. ] represents the group represented by.
  • each R independently represents an optionally substituted alkyl group, and R' represents an optionally substituted alkylsilyl group.
  • the alkyl group optionally having substituent(s) and the alkylsilyl group optionally having substituent(s) are described below.
  • alkyl Groups which May Have a Substituent The explanations regarding the alkyl groups are as described above.
  • the number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, still more preferably 1-6, still more preferably 1-4, and still more preferably 1-3.
  • Alkyl groups may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups. It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • Alkylsilyl group optionally having substituent(s) is represented by the formula: —Si—R 1 (—R 2 )(—R 3 ) is the base.
  • R 1 , R 2 and R 3 each independently represent an optionally substituted alkyl group or an optionally substituted aryl group, and R 1 , R 2 and R 3 At least one of represents an optionally substituted alkyl group.
  • one of R 1 , R 2 and R 3 represents an optionally substituted alkyl group, and the remaining two represent an optionally substituted aryl group. show.
  • R 1 , R 2 and R 3 represent an optionally substituted alkyl group, and the remaining one represents an optionally substituted aryl group.
  • R 1 , R 2 and R 3 all represent optionally substituted alkyl groups.
  • the number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, even more preferably 1-6, and still more preferably 1-4.
  • Alkyl groups may have one or more substituents.
  • the number of substituents that the alkyl group has is preferably 1 to 3, more preferably 1 or 2.
  • One or more substituents of the alkyl group can be independently selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents of the alkyl group are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, more preferably selected from an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms; 4 alkyl groups and alkyloxy groups having 1 to 4 carbon atoms, and alkyl groups having 1 to 4 carbon atoms (e.g., methyl, ethyl, n-propyl, isopropyl, n- butyl group, t-butyl group
  • Aryl groups may have one or more substituents.
  • the number of substituents on the aryl group is preferably 1-3, more preferably 1 or 2.
  • One or more substituents of the aryl group can be independently selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents on the aryl group are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, more preferably selected from an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms; 4 alkyl groups and alkyloxy groups having 1 to 4 carbon atoms, and alkyl groups having 1 to 4 carbon atoms (e.g., methyl, ethyl, n-propyl, isopropyl, n- butyl group, t-butyl group, etc.).
  • halogen atoms e.g., methyl, ethyl, n-propyl, iso
  • R 1 , R 2 and R 3 each independently represent an alkyl group or an aryl group, and when one or more of R 1 , R 2 and R 3 represent an alkyl group,
  • the group represented by 1 (-R 2 )(-R 3 ) is an alkylsilyl group.
  • alkylsilyl groups include monoalkylsilyl groups such as t-butyldiphenylsilyl group (TBDPS) and methyldiphenylsilyl group (MDPS); dialkylsilyl groups such as dimethylphenylsilyl group; trimethylsilyl group (TMS) and triethylsilyl.
  • TES dimethylisopropylsilyl group
  • IPDMS dimethylisopropylsilyl group
  • DEIPS diethylisopropylsilyl group
  • TDS dimethylthexylsilyl group
  • TBS t-butyldimethylsilyl group
  • TIPS triisopropylsilyl group
  • di- Examples include trialkylsilyl groups such as t-butylmethylsilyl group (DTBMS). Among these, a trialkylsilyl group is preferred, TBS or TMS is more preferred, and TBS is even more preferred.
  • each R independently represents an optionally substituted alkyl group
  • R' represents an optionally substituted tetrahydropyranyl group.
  • the description of the optionally substituted alkyl group is as described in (1a) above.
  • the tetrahydropyranyl group optionally having a substituent is described below.
  • the tetrahydropyranyl group may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups.
  • an alkyl group a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • each R independently represents an optionally substituted alkyl group
  • R' represents a group represented by the formula: -CO-L 1 -L 2 .
  • the description of the optionally substituted alkyl group is as described in (1a) above.
  • the group represented by the formula: -CO-L 1 -L 2 will be described below.
  • the group L 1 represented by the formula: -CO-L 1 -L 2 represents an optionally substituted alkylene group or an optionally substituted haloalkylene group.
  • the number of carbon atoms in the alkylene group and/or haloalkylene group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, and still more preferably 1 to 3. is.
  • Each of the alkylene group and the haloalkylene group may have one or more substituents.
  • the number of substituents each of the alkylene group and the haloalkylene group has is preferably 1 to 3, more preferably 1 or 2.
  • One or more substituents possessed by each of the alkylene group and the haloalkylene group can be independently selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents of the alkylene group and the haloalkylene group are each independently selected from a halogen atom, an alkyl group, a haloalkyl group, an alkyloxy group, a haloalkyloxy group, an alkylthio and a haloalkylthio group, It is more preferably selected from a halogen atom, an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom , an alkyl group having 1 to 4 carbon atoms and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropy
  • L2 represents a halogen atom.
  • a halogen atom is preferably selected from a chlorine atom, a bromine atom and a fluorine atom, and more preferably a chlorine atom.
  • the group represented by the formula: -CO-L 1 -L 2 is preferably selected from -CO-CH 2 Cl, -CO-CHCl 2 and -CO-CCl 3 and is -CO-CH 2 Cl is more preferable.
  • each R independently represents an optionally substituted alkyl group
  • R′ is of the formula: —C(—L 3 )(—L 4 )—O— represents a group represented by L5 ;
  • the description of the optionally substituted alkyl group is as described in (1a) above.
  • the group represented by the formula: -C(-L 3 )(-L 4 )-OL 5 will be described below.
  • the group L 3 represented by the formula (1e): -C(-L 3 )(-L 4 )-OL 5 represents a hydrogen atom or an optionally substituted alkyl group, and L 4 and L5 each independently represent an optionally substituted alkyl group.
  • L 3 is preferably an optionally substituted alkyl group.
  • L 3 , L 4 and L 5 may be the same alkyl group or different alkyl groups.
  • a description of the alkyl group is provided above.
  • the number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, still more preferably 1-6, still more preferably 1-4, and still more preferably 1-3.
  • Alkyl groups may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • the group represented by the formula: -C(-L 3 )(-L 4 )-OL 5 is -C(-CH 3 ) 2 -O-CH 3 and -CH(-CH 3 )-O- It is preferably selected from CH 2 CH 3 , more preferably -C(-CH 3 ) 2 -O-CH 3 .
  • each R independently represents an optionally substituted alkyl group of the formula: —CO—O—C(—L 6 )(—L 7 )(—L 8 ) represents a group represented by The description of the optionally substituted alkyl group is as described in (1a) above. Groups represented by the formulas: —CO—O—C(—L 6 )(—L 7 )(—L 8 ) are described below.
  • a description of the alkyl group is provided above.
  • the number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, still more preferably 1-6, still more preferably 1-4, and still more preferably 1-3.
  • Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • the group represented by the formula: —CO—O—C(—L 6 )(—L 7 )(—L 8 ) is preferably —CO—O—C(—CH 3 ) 3 , —CO—O -C(-CH 2 CH 3 ) 3 , -CO-OC(-CH 3 )(-CH 2 CH 3 ) 2 , -CO-OC(-CH 3 ) 2 (-CH 2 CH 3 ) and more preferably —CO—O—C(—CH 3 ) 3 .
  • each R independently represents an optionally substituted aryl group
  • R' represents an optionally substituted alkylcarbonyl group.
  • the aryl group optionally having substituent(s) and the alkylcarbonyl group optionally having substituent(s) are described below.
  • Aryl group optionally having a substituent The aryl group is as described above.
  • Aryl groups may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • alkylcarbonyl group optionally having substituent(s)
  • the description of the alkylcarbonyl group is as described above.
  • the number of carbon atoms in the alkyl group contained in the alkylcarbonyl group (-CO-alkyl group) is preferably 1 to 10, more preferably 1 to 8, more preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 3.
  • the alkyl group contained in the alkylcarbonyl group may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • each R independently represents an optionally substituted aryl group
  • R' represents an optionally substituted alkylsilyl group.
  • the description of the optionally substituted aryl group is as described in (1g) above.
  • the description of the optionally substituted alkylsilyl group is as described in (1b) above.
  • each R independently represents an optionally substituted aryl group
  • R' represents an aldehyde group (--CHO).
  • the description of the optionally substituted aryl group is as described in (1g) above.
  • each R independently represents an optionally substituted aryl group
  • R' represents a group represented by the formula: -CO-L 1 -L 2 .
  • the description of the optionally substituted aryl group is as described in (1g) above.
  • the group represented by the formula: -CO-L 1 -L 2 is as described in (1d) above.
  • each R independently represents an optionally substituted aryl group
  • R′ is of the formula: —CO—C(—L 9 )(—L 10 )( - represents a group represented by L 11 ).
  • the description of the optionally substituted aryl group is as described in (1g) above.
  • Groups represented by the formulas: -CO-C(-L 9 )(-L 10 )(-L 11 ) are described below.
  • L 9 , L 10 and L 11 may be the same halogen atom or different halogen atoms, but are preferably the same halogen atom.
  • a halogen atom is preferably selected from a fluorine atom, a chlorine atom and a bromine atom, and more preferably a fluorine atom.
  • n 1
  • the three R's may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred.
  • all three R are methyl groups.
  • all three R are phenyl groups.
  • R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O —C(—CH 3 ) 3 .
  • R' is preferably an acetyl group, TBS, TMS, an aldehyde group, -CO- CH2 -Cl or -CO- CF3 , more preferably an acetyl group, TBS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 .
  • n 2
  • the four R may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred.
  • all four R are methyl groups.
  • all four R are phenyl groups.
  • R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O —C(—CH 3 ) 3 .
  • R' is preferably an acetyl group, TBS, TMS, an aldehyde group, -CO- CH2 -Cl or -CO- CF3 , more preferably an acetyl group, TBS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 .
  • W 1 is (1) an optionally substituted alkyl group, (2) an alkenyl group optionally having a substituent, (3) a cycloalkyl group optionally having a substituent, (4) a heterocycloalkyl group optionally having a substituent, (5) an aryl group optionally having a substituent, (6) a heteroaryl group optionally having a substituent, (7) an optionally substituted arylalkyl group, or (8) an optionally substituted arylalkenyl group.
  • Alkyl Group which May Have a Substituent The description of the alkyl group is as described above.
  • Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • Alkenyl Group which May Have a Substituent The description of the alkenyl group is as described above.
  • Alkenyl groups may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the cycloalkyl group optionally having a substituent is as described above.
  • a cycloalkyl group may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • a heterocycloalkyl group may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • Aryl group which May Have a Substituent The aryl group is as described above.
  • Aryl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • a heteroaryl group may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • Arylalkyl Group which May Have a Substituent The arylalkyl group is as described above.
  • An arylalkyl group may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • Arylalkenyl Group which May Have a Substituent The arylalkenyl group is as described above.
  • An arylalkenyl group may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • one or more substituents are each independently selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups. is preferably selected from a halogen atom, an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms.
  • halogen atom an alkyl group having 1 to 4 carbon atoms and an alkyloxy group having 1 to 4 carbon atoms
  • an alkyl group having 1 to 4 carbon atoms e.g., methyl group, ethyl group, n -propyl group, isopropyl group, n-butyl group, t-butyl group, etc.
  • W 1 in formula (I) is an optionally substituted alkyl group, preferably an optionally substituted alkyl group having 1 to 20 carbon atoms, more preferably , an optionally substituted alkyl group having 1 to 16 carbon atoms, more preferably an optionally substituted alkyl group having 1 to 12 carbon atoms.
  • the thioester derivative (I) is a thioester derivative (Ia) represented by the following formula (Ia).
  • R 1 to R 4 each independently represent a group represented by the formula: --CO--R.
  • R has the same definition as in formula (I).
  • R 1 to R 4 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: --CO--R, they are preferably the same group.
  • R 1 -R 4 are all acetyl groups. In another embodiment, R 1 -R 4 are all benzoyl groups.
  • R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--- OC( -CH3 ) 3 .
  • R' is preferably an acetyl group, TBS, TMS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 , more preferably an acetyl group.
  • TBS an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 .
  • W1 has the same meaning as in formula (I).
  • W 1 in formula (Ia) is an optionally substituted alkyl group, preferably an optionally substituted alkyl group having 1 to 20 carbon atoms, more preferably , an optionally substituted alkyl group having 1 to 16 carbon atoms, more preferably an optionally substituted alkyl group having 1 to 12 carbon atoms.
  • Examples of the thioester derivative (Ia) in which W 1 is an optionally substituted alkyl group include the following compounds.
  • “Ac” represents an acetyl group
  • “Bz” represents a benzoyl group (the same applies throughout the specification).
  • R′ is preferably TBS, TMS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—O—C( —CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—OC(—CH 3 ) 3 is.
  • R′ is preferably an acetyl group, TBS, TMS, an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 , more preferably an acetyl group, TBS, an aldehyde group, —CO— CH 2 —Cl or —CO—CF 3 .
  • —C 12 H 25 corresponding to W 1 may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • —C 12 H 25 corresponding to W 1 can be changed to other alkyl groups.
  • Other alkyl groups include, for example, —C 10 H 21 , —C 11 H 23 and the like.
  • Other alkyl groups may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • thioester derivative (I) is thioester derivative (Ib) represented by formula (Ib) below.
  • R 1 to R 3 , R′ and W 1 in formula (Ib) have the same definitions as in formula (Ia), and the above explanations regarding R 1 to R 3 , R′ and W 1 also apply to formula (Ib). be done.
  • R 1 to R 3 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they should be the same group. is preferred.
  • R 1 -R 3 are all acetyl groups. In another embodiment, R 1 -R 3 are all benzoyl groups.
  • R' is preferably TBS, TMS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--- OC( -CH3 ) 3 .
  • R' is preferably an acetyl group, TBS, TMS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 , more preferably an acetyl group.
  • TBS an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 .
  • Ketone derivative (II) is represented by the following formula (II).
  • R, R' and n have the same definitions as in formula (I), and the above explanations regarding R, R' and n also apply to formula (II).
  • the ketone derivative (II) in which each R independently represents an optionally substituted aryl group is referred to as a ketone derivative (II-1), and each R is independently Therefore, the ketone derivative (II) representing an optionally substituted alkyl group is sometimes referred to as the ketone derivative (II-2).
  • n 1
  • the three R's may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred.
  • all three R are methyl groups.
  • all three R are phenyl groups.
  • R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O —C(—CH 3 ) 3 .
  • R' is preferably an acetyl group, TBS, TMS, an aldehyde group, -CO- CH2 -Cl or -CO- CF3 , more preferably an acetyl group, TBS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 .
  • n 2
  • the four R may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred.
  • all four R are methyl groups.
  • all four R are phenyl groups.
  • R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O —C(—CH 3 ) 3 .
  • R' is preferably an acetyl group, TBS, TMS, an aldehyde group, -CO- CH2 -Cl or -CO- CF3 , more preferably an acetyl group, TBS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 .
  • W2 is (1) an optionally substituted alkyl group, (2) an alkenyl group optionally having a substituent, (3) a cycloalkyl group optionally having a substituent, (4) a heterocycloalkyl group optionally having a substituent, (5) an aryl group optionally having a substituent, (6) a heteroaryl group optionally having a substituent, (7) an optionally substituted arylalkyl group, or (8) represents an optionally substituted arylalkenyl group;
  • a carbon atom having an aryl group bond that is, -CO- in formula ( II ) (- It is preferred that the carbon atoms located on both sides of the carbon atom bonding to CO—) do not have a substituent. The remaining carbon atoms may have substituents.
  • a carbon atom having a heteroaryl group bond i.e., -CO-(-CO-W 2 It is preferred that the carbon atoms or heteroatoms located on both sides of the carbon atom bonding to -CO-) in have no substituents. The remaining carbon atoms or heteroatoms may have substituents.
  • W2 may be the same as or different from W1 .
  • W2 is preferably represented by the following formula (iv).
  • Y 10 represents an optionally substituted alkylene group, an optionally substituted arylene group, or an optionally substituted heteroarylene group.
  • the number of carbon atoms in the alkylene group is preferably 1-10, more preferably 1-8.
  • the arylene group or heteroarylene group preferably has 4 to 14 carbon atoms, more preferably 6 to 14 carbon atoms.
  • the alkylene group, arylene group or heteroarylene group represented by Y 10 may have one or more substituents, and the one or more substituents are each independently selected from the substituent group ⁇ . can be done.
  • the one or more substituents are each independently selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio groups and haloalkylthio groups. and an alkyloxy group having 1 to 3 carbon atoms.
  • Y 10 is preferably an arylene group having a substituent, more preferably an arylene group having a halogen atom or an alkyl group having 1 to 3 carbon atoms, and a phenylene group having a fluorine atom, a chlorine atom or a methyl group. is even more preferable.
  • the carbon atoms located on both sides of the carbon atom bonded to —CO— have no substituents, and the remaining carbon atoms have substituents.
  • the arylene group, or the carbon atoms or hetero atoms located on both sides of the carbon atom bonded to -CO- (-CO- in -CO-W 2 ) have no substituents, and the remaining carbon atoms or hetero atoms
  • the atom is preferably a heteroarylene group which may have a substituent.
  • Y 10 does not have a substituent at the ortho position relative to the carbon atom bonded to —CO— (—CO— in —CO—W 2 ), and has a substituent at the meta and/or para position. It is more preferably a phenylene group which may be
  • V 10 , W 10 , X 10 , b and c have the same meanings as in formula (ii).
  • W2 is preferably represented by the following formula (vi).
  • R 41 and R 42 each independently represent a hydrogen atom or an amino group-protecting group.
  • amino-protecting group any protecting group such as carbamate, acyl, amide, sulfonamide, and phthaloyl groups may be used.
  • carbamate-based protective groups include tert-butoxycarbonyl, benzyloxycarbonyl, 9-fluorenylmethyloxycarbonyl, 2,2,2-trichloroethoxycarbonyl, allyloxycarbonyl and the like.
  • Acyl-based protective groups include, for example, an acetyl group, a pivaloyl group, a benzoyl group and the like.
  • Amide-based protective groups include, for example, a trifluoroacetyl group and the like.
  • sulfonamide-based protecting groups include p-toluenesulfonyl group and 2-nitrobenzenesulfonyl group.
  • the amino group-protecting group is preferably an acyl-based or amide-based protecting group. More preferably, the amino-protecting group is a pivaloyl group or a trifluoroacetyl group.
  • R 41 and R 42 may combine with each other to form an amino-protecting group such as a phthaloyl group.
  • the ketone derivative (II) is a ketone derivative (IIa) represented by the following formula (IIa).
  • R 1 to R 4 each independently represent a group represented by the formula: --CO--R.
  • R has the same meaning as above.
  • R 1 to R 4 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: --CO--R, they are preferably the same group.
  • R 1 -R 4 are all acetyl groups. In another embodiment, R 1 -R 4 are all benzoyl groups.
  • R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--- OC( -CH3 ) 3 .
  • R' is preferably an acetyl group, TBS, TMS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 , more preferably an acetyl group.
  • TBS an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 .
  • W2 has the same definition as in formula (II). In one embodiment, W2 in formula (IIa) is an optionally substituted aryl group.
  • Examples of the ketone derivative (IIa) in which W2 is an optionally substituted aryl group include the following compounds.
  • “Ph” represents a phenyl group (same throughout the specification).
  • R′ is preferably TBS, TMS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—O—C( —CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—OC(—CH 3 ) 3 is.
  • R′ is preferably an acetyl group, TBS, TMS, an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 , more preferably an acetyl group, TBS, an aldehyde group, —CO— CH 2 —Cl or —CO—CF 3 .
  • the phenyl group corresponding to W2 may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • W 2 in formula (II) or (IIa) is the same as the functional group possessed by the SGLT-2 inhibitor from the viewpoint of using the ketone derivative (II) or (IIa) as a raw material for producing the SGLT-2 inhibitor or its derivative. or a functional group obtained by derivatizing the functional group of the SGLT-2 inhibitor.
  • canagliflozin (1-( ⁇ -D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene
  • empagliflozin ((1S)-1 , 5-anhydro-1-C- ⁇ 4-chloro-3-[(4- ⁇ [(3S)-oxolan-3-yl]oxy ⁇ phenyl)methyl]phenyl ⁇ -D-glucitol)
  • ipragliflozin (1S)-1,5-anhydro-1-C- ⁇ 3-[(1-benzothiophen-2-yl)methyl]-4-fluorophenyl ⁇ -D-glucitol-(2S)-pyrrolidine-2-carvone acid
  • dapagliflozin ((2S,3R,4R,5S,6R)-2-[4-chloro-3-(4-ethyloxybenzyl)phenyl]-6-(
  • W2 in formula (II) or (IIa) is preferably a functional group represented by formula (A) below.
  • d represents an integer of 0-4.
  • d is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • d R a may be the same or different.
  • each of d R a can be independently selected from substituent group ⁇ .
  • Each of the d R a is preferably independently selected from a halogen atom, an alkyl group, a haloalkyl group, an alkyloxy group, a haloalkyloxy group, an alkylthio and a haloalkylthio group; It is more preferably selected from an alkyl group and an alkyloxy group having 1 to 3 carbon atoms.
  • Ar' is a group represented by formula (v) below.
  • W 10 , X 10 and c each have the same meaning as in formula (ii).
  • Ar' is preferably a group represented by the following formula (Ar'-1), (Ar'-2) or (Ar'-3).
  • p is an integer of 0 to 5.
  • p is preferably an integer from 0 to 3, more preferably an integer from 0 to 2, even more preferably 0 or 1;
  • p R b are each independently one or more selected from substituent group ⁇ and substituent group ⁇ and a heteroaryl group optionally having one or more substituents selected from the substituent group ⁇ .
  • Each of the p R b is preferably independently selected from the substituent group ⁇ and an aryl group optionally having one or more substituents selected from the substituent group ⁇ .
  • One or more substituents selected from the substituent group ⁇ are each independently a halogen atom, an alkyl group, a haloalkyl group, an alkyloxy group, a haloalkyloxy group, an alkylthio group, a haloalkylthio group, a heterocycloalkyloxy group and It is preferably selected from a heterocycloalkylthio group, more preferably selected from a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkyloxy group having 1 to 3 carbon atoms and a heterocycloalkyloxy group, a fluorine atom, ethyloxy It is even more preferred to select from radicals and tetrahydrofuranyloxy radicals.
  • p R b When p is 2 or more, p R b may be the same or different.
  • R b is preferably an optionally substituted phenyl group, more preferably a phenyl group having a halogen atom. and more preferably a phenyl group having a fluorine atom.
  • the position to which the unsubstituted or substituted phenyl group is attached is preferably the 2-position of the thiophene ring.
  • the position to which the halogen atom is bonded is preferably the 4-position of the benzene ring.
  • p is preferably 0.
  • R b is preferably an optionally substituted alkyloxy group or an optionally substituted heterocycloalkyl It is an oxy group.
  • the optionally substituted alkyloxy group is preferably an alkyloxy group having 1 to 3 carbon atoms, more preferably a methoxy group or an ethoxy group.
  • the optionally substituted heterocycloalkyloxy group is preferably a tetrahydrofuranyloxy group.
  • the position to which the optionally substituted alkyloxy group or optionally substituted heterocycloalkyloxy group is preferably bonded is the 4-position of the benzene ring.
  • the functional group represented by formula (A) is preferably a group represented by formula (B) below.
  • Ra and Ar' have the same meanings as in formula (A).
  • the group represented by formula (A) or (B) is preferably a group represented by the following formula (Ar-1), (Ar-2), (Ar-3) or (Ar-4) .
  • “Et” represents an ethyl group (same throughout the specification).
  • Ketone derivatives (II) or (IIa) are, for example, compounds in which W 2 is a group represented by formula (Ar-1). Examples of such compounds include the following compounds.
  • R′ is preferably TBS, TMS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—O—C( —CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—O—C(—CH 3 ) 3 is.
  • R′ is preferably an acetyl group, TBS, TMS, an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 , more preferably an acetyl group, TBS, an aldehyde group, —CO— CH 2 —Cl or —CO—CF 3 .
  • the ketone derivative (II) is a ketone derivative (IIb) represented by the following formula (IIb).
  • R 1 to R 3 , R' and W 2 have the same definitions as in formula (IIa), and the above explanations regarding R 1 to R 3 , R' and W 2 also apply to formula (IIb). Applies.
  • R 1 to R 3 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they should be the same group. is preferred.
  • R 1 -R 3 are all acetyl groups. In another embodiment, R 1 -R 3 are all benzoyl groups.
  • R' is preferably TBS, TMS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--- OC(—CH 3 ) 3 .
  • R' is preferably an acetyl group, TBS, TMS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 , more preferably an acetyl group.
  • TBS an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 .
  • W 2 , R and n have the same definitions as in formula (II), and the above explanations regarding W 2 , R and n also apply to formula (II').
  • the ketone derivative (II') where each R independently represents an optionally substituted aryl group is referred to as the ketone derivative (II'-1), and each R is The ketone derivative (II') independently representing an optionally substituted alkyl group may be referred to as the ketone derivative (II'-2).
  • three R may be different, but from the viewpoint of efficient introduction and removal of the group represented by the formula: —CO—R, they are the same.
  • all three R are methyl groups.
  • all three R are phenyl groups.
  • the four R may be different, but from the viewpoint of efficient introduction and removal of the group represented by the formula: —CO—R, they are the same.
  • all four R are methyl groups.
  • all four R are phenyl groups.
  • the ketone derivative (II') is a ketone derivative (IIa') represented by the following formula (IIa').
  • R 1 to R 4 and W 2 have the same definitions as in formula (IIa), and the above explanations regarding R 1 to R 4 and W 2 also apply to formula (IIa').
  • R 1 to R 4 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they are the same group. is preferred.
  • R 1 -R 4 are all acetyl groups. In another embodiment, R 1 -R 4 are all benzoyl groups.
  • the ketone derivative (II') is a ketone derivative (IIb') represented by the following formula (IIb').
  • R 1 to R 3 and W 2 have the same definitions as in formula (IIb), and the above explanations regarding R 1 to R 3 and W 2 also apply to formula (IIb').
  • R 1 to R 3 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they are the same group. is preferred.
  • R 1 -R 3 are all acetyl groups. In another embodiment, R 1 -R 3 are all benzoyl groups.
  • Thioester derivative (III) is represented by the following formula (III).
  • W 1 , R and n have the same definitions as in formula (I), and the above explanations regarding W 1 , R and n also apply to formula (III).
  • the thioester derivative (III) in which each R independently represents an optionally substituted aryl group is referred to as a thioester derivative (III-1), and each R is independently Therefore, the thioester derivative (III) representing an optionally substituted alkyl group is sometimes referred to as a thioester derivative (III-2).
  • n 1
  • the three R's may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred.
  • all three R are methyl groups.
  • all three R are phenyl groups.
  • n 2
  • the four R may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred.
  • all four R are methyl groups.
  • all four R are phenyl groups.
  • the thioester derivative (III) is a thioester derivative (IIIa) represented by the following formula (IIIa).
  • R 1 to R 4 and W 1 have the same definitions as in formula (Ia), and the above explanations regarding R 1 to R 4 and W 1 also apply to formula (IIIa).
  • R 1 to R 4 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they should be the same group. is preferred.
  • R 1 -R 4 are all acetyl groups. In another embodiment, R 1 -R 4 are all benzoyl groups.
  • the thioester derivative (III) is a thioester derivative (IIIb) represented by the following formula (IIIb).
  • R 1 to R 3 and W 1 have the same definitions as in formula (Ib), and the above explanations regarding R 1 to R 3 and W 1 also apply to formula (IIIb).
  • R 1 to R 3 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they should be the same group. is preferred.
  • R 1 -R 3 are all acetyl groups. In another embodiment, R 1 -R 3 are all benzoyl groups.
  • R and n have the same definitions as in formula (I), and the above explanations regarding R and n also apply to formula (IV).
  • the acyl-protected lactone derivative (IV) in which each R independently represents an optionally substituted aryl group, is referred to as an acyl-protected lactone derivative (IV-1).
  • the acyl-protected lactone derivative (IV) each independently representing an optionally substituted alkyl group may be referred to as an acyl-protected lactone derivative (IV-2).
  • n 1
  • the three R's may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred.
  • all three R are methyl groups.
  • all three R are phenyl groups.
  • n 2
  • the four R may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred.
  • all four R are methyl groups.
  • all four R are phenyl groups.
  • the acyl-protected lactone derivative (IV) is an acyl-protected lactone derivative (IVa) represented by the following formula (IVa).
  • R has the same definition as in formula (IV), and the above explanation regarding R also applies to formula (IVa).
  • R, W 2 and n have the same definitions as in formula (II), and the above explanations regarding R, W 2 and n also apply to formula (V).
  • C-aryl-hydroxyglycoside derivative (V) where each R independently represents an aryl group which may have a substituent is referred to as C-aryl-hydroxyglycoside derivative (V -1), wherein each R independently represents an optionally substituted alkyl group (V) is a C-aryl-hydroxyglycoside derivative (V- 2).
  • R 100 is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkylcarbonyl group, or a substituted represents an arylcarbonyl group which may be substituted.
  • an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkylcarbonyl group and an optionally substituted arylcarbonyl The group will be explained.
  • alkyl group which may have a substituent is as described above.
  • Alkyl groups may be linear or branched.
  • the number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, still more preferably 1-6, still more preferably 1-4, and still more preferably 1-3.
  • Alkyl groups may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • the aryl group which may have a substituent is as described above.
  • Aryl groups may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • the alkylcarbonyl group optionally having substituent( s) is as described above.
  • the alkyl group contained in the alkylcarbonyl group (-CO-alkyl group) may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • the arylcarbonyl group optionally having substituent( s) is as described above.
  • the aryl group contained in the arylcarbonyl group (-CO-aryl group) may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • R 100 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, etc.), more preferably hydrogen an atom or a methyl group.
  • the C-aryl-hydroxyglycoside derivative (V) is a C-aryl-hydroxyglycoside derivative (V') represented by formula (V') below.
  • C-aryl-hydroxyglycoside derivative (V') is an example of C-aryl-hydroxyglycoside derivative (V) in which R 100 is a hydrogen atom.
  • W2 has the same meaning as in formula (V).
  • C-aryl-hydroxyglycoside derivatives (V′) where each R independently represents an optionally substituted aryl group are referred to as C-aryl-hydroxyglycoside derivatives ( C-aryl-hydroxyglycoside derivative (V′-1), wherein each R independently represents an optionally substituted alkyl group, and C-aryl-hydroxyglycoside derivative (V′) (V'-2) in some cases.
  • the C-aryl-hydroxyglycoside derivative (V) is a C-aryl-hydroxyglycoside derivative (Va) represented by formula (Va) below.
  • W2 has the same meaning as in formula (V).
  • C-aryl-hydroxyglycoside derivative (V) is a C-aryl-hydroxyglycoside derivative (Vb) represented by formula (Vb) below.
  • R 101 is a group other than a hydrogen atom, that is, an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkylcarbonyl group, or , is an arylcarbonyl group which may have a substituent.
  • R 101 is preferably an alkyl group having 1 to 4 carbon atoms (eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, etc.), more preferably methyl group .
  • W2 has the same meaning as in formula (V).
  • C-aryl glycoside derivative (VI) is represented by the following formula (VI).
  • R, W 2 and n have the same definitions as in formula (II), and the above explanations regarding R, W 2 and n also apply to formula (VI).
  • C-aryl glycoside derivative (VI), in which each R independently represents an optionally substituted aryl group is referred to as C-aryl glycoside derivative (VI-1).
  • a C-arylglycoside derivative (VI) in which each R independently represents an optionally substituted alkyl group may be referred to as a C-arylglycoside derivative (VI-2).
  • the C-aryl glycoside derivative (VI) is a C-aryl glycoside derivative (VIa) represented by formula (VIa) below.
  • W2 has the same meaning as in formula (VII).
  • Lactone derivative (VII) is represented by the following formula (VII).
  • n has the same definition as in formula (I), and the above explanation regarding n also applies to formula (VII).
  • the lactone derivative (VII) is a lactone derivative (VIIa) represented by the following formula (VIIa).
  • Carboxylic anhydride (1) is represented by the following formula (1).
  • each R'' independently represents an optionally substituted alkyl group.
  • Alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, still more preferably 1-6, still more preferably 1-4, and still more preferably 1-3. Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ . One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • two R'' may be different, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R'', they are the same. preferable.
  • all two R'' are methyl groups. That is, the carboxylic anhydride (1) according to one embodiment is acetic anhydride.
  • each R independently represents an optionally substituted aryl group, and R' has a substituent It corresponds to the group represented by R' in the thioester derivative (I) representing a good alkylcarbonyl group.
  • silylating agent (2) is represented by the following formula (2).
  • R 1 , R 2 and R 3 each independently represent an optionally substituted alkyl group or an optionally substituted aryl group; , R 2 and R 3 represent an optionally substituted alkyl group, and X represents a halogen atom or a trifluoromethanesulfonyl group.
  • —Si—R 1 (—R 2 )(—R 3 ) that is, the alkylsilyl group optionally having substituent(s)
  • a group represented by the formula: -Si-R 1 (-R 2 )(-R 3 ) is preferably an alkylsilyl group, more preferably a trialkylsilyl group, still more preferably TBS or TMS, still more preferably It is TBS.
  • X represents a halogen atom.
  • the halogen atom is preferably selected from a chlorine atom, a bromine atom and an iodine atom, more preferably a chlorine atom and a bromine atom, and even more preferably a chlorine atom.
  • silylating agent (2) examples include tert-butyldimethylsilyltrifluoromethanesulfonate (TBSOTf) and chlorotrimethylsilane (TMSCl).
  • Thiol (3) is represented by the following formula (3).
  • W 1 has the same meaning as in formula (I), and the above description of W 1 also applies to formula (3).
  • the Grignard reagent (4) is represented by the following formula (4).
  • W3 is (1) an optionally substituted alkyl group, (2) an alkenyl group optionally having a substituent, (3) a cycloalkyl group optionally having a substituent, (4) a heterocycloalkyl group optionally having a substituent, (5) an aryl group optionally having a substituent, (6) a heteroaryl group optionally having a substituent, (7) an optionally substituted arylalkyl group, or (8) represents an optionally substituted arylalkenyl group;
  • the remaining carbon atoms or heteroatoms may have substituents.
  • W3 may be the same as or different from W1 .
  • W3 may be the same as or different from W2 .
  • X represents a halogen atom.
  • the halogen atom is preferably selected from a chlorine atom, a bromine atom and an iodine atom, more preferably a chlorine atom and a bromine atom, and even more preferably a chlorine atom.
  • W3 in formula (4) is an optionally substituted alkyl group.
  • Alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, more preferably 1-6, more preferably 1-4, more preferably 1-3. Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ . One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • W3 in formula (4) is an optionally substituted aryl group.
  • a description of the aryl group is provided above.
  • the number of carbon atoms in the aryl group is preferably 6-14, more preferably 6-10.
  • An aryl group is, for example, a phenyl group.
  • Aryl groups may have one or more substituents.
  • the number of substituents is preferably 1-3, more preferably 1 or 2.
  • One or more substituents may each independently be selected from substituent groups ⁇ and ⁇ .
  • One or more substituents may be selected from the substituent group ⁇ and one or more substituents may be selected from the substituent group ⁇ .
  • the one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • alkyloxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
  • Grignard reagents (4) in which W3 is an alkyl group include, for example, alkylmagnesium bromides and alkylmagnesium chlorides, among which alkylmagnesium chlorides are preferred.
  • alkylmagnesium bromide examples include methylmagnesium bromide, ethylmagnesium bromide, n-propylmagnesium bromide, isopropylmagnesium bromide, n-butylmagnesium bromide, and isobutylmagnesium bromide.
  • alkylmagnesium chloride examples include methylmagnesium chloride, ethylmagnesium chloride, n-propylmagnesium chloride, isopropylmagnesium chloride, n-butylmagnesium chloride, and isobutylmagnesium chloride.
  • the Grignard reagent (4) in which W3 is an aryl group includes, for example, arylmagnesium bromide, arylmagnesium chloride, etc. Among these, arylmagnesium chloride is preferred.
  • the arylmagnesium bromide includes, for example, phenylmagnesium bromide.
  • Arylmagnesium chloride includes, for example, phenylmagnesium chloride.
  • the Grignard reagent (5) is selected from a Grignard reagent (5a) represented by the following formula (5a) and a Grignard reagent (5b) represented by the following formula (5b).
  • W2 has the same meaning as in formula (II). That is, in equations (5a) and (5b), W2 is (1) an optionally substituted alkyl group, (2) an alkenyl group optionally having a substituent, (3) a cycloalkyl group optionally having a substituent, (4) a heterocycloalkyl group optionally having a substituent, (5) an aryl group optionally having a substituent, (6) a heteroaryl group optionally having a substituent, (7) an optionally substituted arylalkyl group, or (8) represents an optionally substituted arylalkenyl group;
  • W2 represents an optionally substituted arylalkenyl group;
  • a carbon atom having an aryl group bond i.e., a carbon atom that bonds to Mg in formula (5a) or (5b)
  • the carbon atoms located on both sides of do not have a substituent.
  • the remaining carbon atoms may have substituents.
  • a carbon atom having a heteroaryl group bond i.e., the carbon that binds to Mg in formula (5a) or (5b) It is preferred that the carbon atoms or heteroatoms located on both sides of the atom) have no substituents. The remaining carbon atoms or heteroatoms may have substituents.
  • X represents a halogen atom.
  • the halogen atom is preferably selected from a chlorine atom, a bromine atom and an iodine atom, more preferably a chlorine atom and a bromine atom, more preferably a bromine atom.
  • X in formulas (5a) and (5b) may be the same as or different from X in formula (4).
  • the organic zinc compound (6) includes an organic zinc compound (6a) represented by the following formula (6a), an organic zinc compound (6b) represented by the following formula (6b), and an organic zinc compound represented by the following formula (6c). selected from zinc compounds (6c);
  • W2 has the same meaning as in formula (II). That is, in equations (6a), (6b) and (6c), W2 is (1) an optionally substituted alkyl group, (2) an alkenyl group optionally having a substituent, (3) a cycloalkyl group optionally having a substituent, (4) a heterocycloalkyl group optionally having a substituent, (5) an aryl group optionally having a substituent, (6) a heteroaryl group optionally having a substituent, (7) an optionally substituted arylalkyl group, or (8) represents an optionally substituted arylalkenyl group;
  • W2 represents an optionally substituted arylalkenyl group;
  • a carbon atom having an aryl group bond i.e., a bond with Zn in formula (6a), (6b) or (6c
  • the carbon atoms located on both sides of the carbon atom that The remaining carbon atoms may have substituents.
  • a carbon atom having a heteroaryl group bond i.e., Zn in formula (6a), (6b) or (6c
  • the remaining carbon atoms or heteroatoms may have substituents.
  • X represents a halogen atom.
  • the halogen atom is preferably selected from a chlorine atom, a bromine atom and an iodine atom, more preferably a chlorine atom and a bromine atom, more preferably a bromine atom.
  • X in formulas (6a), (6b) and (6c) may be the same as or different from X in formula (4).
  • X in formulas (6a), (6b) and (6c) may be the same as or different from X in formulas (5a) and (5b).
  • organozinc compound (6a) examples include arylzinc halides (compounds in which W2 is an aryl group and X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom in the formula (6a)), alkyl and zinc halide (compound in which W2 is an alkyl group and X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom in the formula (6a)).
  • organic zinc compound (6b) examples include diarylzinc (compound in which W2 is an aryl group in formula (6b)), dialkylzinc (compound in which W2 is an alkyl group in formula (6b)), and the like. mentioned.
  • thioester derivative (I) in which R each independently represents an optionally substituted aryl group is referred to as a thioester derivative (I-1), and each R independently represents a substituent.
  • a thioester derivative (I) representing an optionally-containing alkyl group is referred to as a thioester derivative (I-2).
  • the first method is a method for producing a thioester derivative (I-1) (hereinafter referred to as "thioester derivative (I-1a)”) in which R' represents an optionally substituted alkylcarbonyl group. .
  • the thioester derivative (I-1a) is produced by contacting the thioester derivative (III-1) with the carboxylic anhydride (1) in the presence of a base or Lewis acid to produce the thioester derivative (I-1a). It can be manufactured by a method comprising:
  • the thioester derivative (III-1) and carboxylic anhydride (1) may be commercially available products or may be produced according to conventional methods.
  • the hydroxy group contained in the thioester derivative (III-1) is represented by the formula: —CO—R′. ' to give a thioester derivative (I-1a).
  • the group represented by the formula: --CO--R'' corresponds to the group represented by R' in the thioester derivative (I-1a).
  • the contact between the thioester derivative (III-1) and the carboxylic anhydride (1) is preferably carried out in a solvent.
  • a solvent By mixing the thioester derivative (III-1) and the carboxylic anhydride (1) in a solvent, the thioester derivative (III-1) and the carboxylic anhydride (1) can be contacted.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably THF, tert-butyl methyl ether, DCM, toluene or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1 to 200 mL, preferably 2 to 100 mL, per 1 g of thioester derivative (III-1).
  • the contact between the thioester derivative (III-1) and the carboxylic anhydride (1) is carried out in the presence of a base or Lewis acid.
  • the amount of carboxylic anhydride (1) used is, for example, 1 to 20 mol, preferably 1 to 10 mol, more preferably 1 to 5 mol, per 1 mol of thioester derivative (III-1).
  • bases examples include triethylamine, pyridine, 4-dimethylaminopyridine (4-DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), organic amines such as diethylaniline, and acetic acid. Sodium, Schottenbaumann conditions, and the like.
  • a Grignard reagent eg, Grignard reagent (4)
  • the base is preferably selected from triethylamine, pyridine and 4-dimethylaminopyridine (4-DMAP).
  • the amount of the base used is, for example, 0.1 to 10 mol, preferably 0.2 to 5 mol, more preferably 0.3 to 3 mol, per 1 mol of the thioester derivative (III-1).
  • the Lewis acid is preferably copper(II) trifluoromethanesulfonate (Cu(OTf) 2 ).
  • the amount of Lewis acid used is, for example, 0.001 to 1 mol, preferably 0.02 to 0.5 mol, more preferably 0.03 to 0.2 mol, per 1 mol of thioester derivative (III-1). is.
  • the contact temperature is, for example, ⁇ 30 to 100° C., preferably ⁇ 10 to 80° C., more preferably 0 to 50. ° C.
  • the contact time is, for example, 0.1 to 24 hours, preferably 0.5 to 17 hours, more preferably 0.5 to 5 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • the second method is a method for producing a thioester derivative (I-1) (hereinafter referred to as "thioester derivative (I-1b)”) in which R' represents an optionally substituted alkylsilyl group. be.
  • the thioester derivative (I-1b) is produced by a method comprising the step of contacting the thioester derivative (III-1) with a silylating agent (2) in the presence of a base to produce the thioester derivative (I-1b). can do.
  • the thioester derivative (III-1) and silylating agent (2) may be commercially available products or may be produced according to conventional methods.
  • the contact between the thioester derivative (III-1) and the silylating agent (2) is preferably carried out in a solvent.
  • the thioester derivative (III-1) and the silylating agent (2) can be contacted by mixing the thioester derivative (III-1) and the silylating agent (2) in a solvent.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably methylene chloride, chloroform, tetrahydrofuran (THF), 2-methyl-THF, 1,4-dioxane, toluene, N,N-dimethylformamide (DMF), acetonitrile or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1-100 mL, preferably 3-30 mL, per 1 g of thioester derivative (III-1).
  • the contact between the thioester derivative (III-1) and the silylating agent (2) is carried out in the presence of a base.
  • the amount of silylating agent (2) used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of thioester derivative (III-1).
  • Examples of the base include triethylamine, pyridine, 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), diethylaniline, 2,6-lutidine and the like. organic amines, sodium acetate, Schottenbaumann conditions, and the like.
  • the base is preferably imidazole.
  • the amount of the base used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the thioester derivative (III-1).
  • the contact temperature is, for example, -10 to 80°C, preferably -5 to 60°C, more preferably 0 to 40°C.
  • the contact time is, for example, 0.1 to 48 hours, preferably 1 to 24 hours, more preferably 2 to 17 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • a third method is a method for producing a thioester derivative (I-1) (hereinafter referred to as "thioester derivative (I-1c)”) in which R' represents an aldehyde group.
  • the thioester derivative (I-1c) is produced by a method comprising the step of producing the thioester derivative (I-1c) by contacting the thioester derivative (III-1) with formic acid in the presence of a base and a condensing agent. can be done.
  • the thioester derivative (III-1) and formic acid may be commercially available products or may be produced according to conventional methods.
  • the thioester derivative (III-1) When the thioester derivative (III-1) is brought into contact with formic acid in the presence of a base and a condensing agent, the hydroxy group contained in the thioester derivative (III-1) is protected with an aldehyde group to give the thioester derivative (I-1c). is obtained.
  • the aldehyde group corresponds to the group represented by R' in the thioester derivative (I-1c).
  • the contact between the thioester derivative (III-1) and formic acid is preferably carried out in a solvent.
  • the thioester derivative (III-1) and formic acid can be brought into contact with each other by mixing the thioester derivative (III-1) and formic acid in a solvent.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, per 1 g of thioester derivative (III-1).
  • the thioester derivative (III-1) is contacted with formic acid in the presence of a base and a condensing agent.
  • the amount of formic acid used is, for example, 1 to 20 mol, preferably 1 to 10 mol, more preferably 1 to 5 mol, per 1 mol of the thioester derivative (III-1).
  • Examples of the base include triethylamine, pyridine, 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), diethylaniline, 2,6-lutidine and the like. organic amines, sodium acetate, Schottenbaumann conditions, and the like.
  • the base is preferably selected from DMAP, triethylamine, diisopropylethylamine and pyridine.
  • the amount of the base used is, for example, 0.001 to 10 mol, preferably 0.01 to 5 mol, more preferably 0.02 to 2 mol, per 1 mol of the thioester derivative (III-1).
  • Condensing agents include N,N'-dicyclohexylcarbodiimide (DCC), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC/HCl), ethyl chlorocarbonate, isobutyl chlorocarbonate, diphenyl chlorophosphate, and the like. is mentioned.
  • the condensing agent is preferably EDC.HCl.
  • the amount of the condensing agent used is, for example, 1-4 mol, preferably 1-3 mol, more preferably 1-2 mol, per 1 mol of the thioester derivative (III-1).
  • the contact temperature is, for example, -20 to 60°C, preferably -15 to 50°C, more preferably -10 to 40°C.
  • the time is, for example, 0.5 to 48 hours, preferably 1 to 24 hours, more preferably 2 to 17 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • a fourth method is to produce a thioester derivative (I-1) (hereinafter referred to as “thioester derivative (I-1d)”) in which R′ represents a group represented by the formula: —CO—L 1 -L 2 It is a way to
  • the thioester derivative (I-1d) is prepared by combining the thioester derivative (III-1) with the formula: J-CO-L 1 -L 2 [wherein L 1 and L 2 are as defined above, J represents a halogen atom. ] to produce the thioester derivative (I-1d).
  • the thioester derivative (III-1) and the compound represented by the formula: J—CO—L 1 -L 2 may be commercially available or may be produced according to conventional methods.
  • J represents a halogen atom.
  • J is preferably selected from chlorine, bromine and iodine, more preferably chlorine.
  • J—CO—L 1 -L 2 are Cl—CO—CH 2 Cl (chloroacetyl chloride), Cl—CO—CHCl 2 (dichloroacetyl chloride) and Cl—CO—CCl 3 ( trichloroacetyl chloride), more preferably Cl--CO--CH 2 Cl.
  • thioester derivative (III-1) When the thioester derivative (III-1) is brought into contact with a compound represented by the formula: J-CO-L 1 -L 2 in the presence of a base, the hydroxy group contained in the thioester derivative (III-1) is A thioester derivative (I-1d) is obtained by protecting with a group represented by the formula: —CO—L 1 -L 2 .
  • the group represented by the formula: -CO-L 1 -L 2 corresponds to the group represented by R' in the thioester derivative (I-1d).
  • the contact between the thioester derivative (III-1) and the compound represented by the formula: J—CO—L 1 -L 2 is preferably carried out in a solvent.
  • the thioester derivative (III-1) and the compound can be contacted by mixing the thioester derivative (III-1) and the compound in a solvent.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1 to 100 mL, preferably 3 to 50 mL, per 1 g of thioester derivative (III-1).
  • the amount of the compound represented by the formula: J—CO—L 1 -L 2 to be used is, for example, 1 to 5 mol, preferably 1 to 3 mol, more preferably 1 to 1 mol, per 1 mol of the thioester derivative (III-1). 1 to 2 mol.
  • Examples of the base include triethylamine, pyridine, 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), diethylaniline, 2,6-lutidine and the like.
  • organic amines sodium acetate, Schottenbaumann conditions, and the like.
  • the base is preferably pyridine.
  • the amount of the base used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the thioester derivative (III-1).
  • the contact temperature is, for example, ⁇ 30 to 50° C., preferably ⁇ 20° C. to 40° C., more preferably ⁇ 10 to 30° C.
  • the contact time is, for example, 0.1 to 17 hours, preferably 0.5 to 8 hours, more preferably 1 to 4 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • a fifth method is a thioester derivative (I- 1 ) (hereinafter referred to as "thioester derivative (I-1e)”).
  • the thioester derivative (I-1e) is obtained by combining the thioester derivative (III-1) with the formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )( -L 10 )(-L 11 ) [Wherein, L 9 , L 10 and L 11 are as defined above. ] to produce the thioester derivative (I-1e).
  • the represented compounds may be commercially available products or may be produced according to conventional methods.
  • C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )(-L 10 )(-L 11 ) is preferably , CF 3 —CO—O—CO—CF 3 (trifluoroacetic anhydride).
  • the hydroxy group contained in the thioester derivative (III-1) is represented by the formula: -CO-C (-L 9 ) (-L 10 ) (-L 11 ) group to give the thioester derivative (I-1e).
  • the group represented by the formula: --CO--C(-L 9 )(-L 10 )(-L 11 ) corresponds to the group represented by R' in the thioester derivative (I-1e).
  • the contact with the compound represented by is preferably carried out in a solvent.
  • the thioester derivative (III-1) and the compound can be contacted by mixing the thioester derivative (III-1) and the compound in a solvent.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, per 1 g of thioester derivative (III-1).
  • the amount of the compound represented by the formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )(-L 10 )(-L 11 ) is , for example, 1 to 5 mol, preferably 1 to 3 mol, more preferably 1 to 2 mol, per 1 mol of the thioester derivative (III-1).
  • the contact temperature is, for example, -20 to 40 ° C., preferably -10 to 30 ° C., more preferably 0 to 20 ° C.
  • the contact time is, for example, 0.5 to 5 hours, preferably 1 to 4 hours, more preferably 1 to 3 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • a sixth method is a method for producing a thioester derivative (I-2) (hereinafter referred to as "thioester derivative (I-2a)”) in which R' represents an optionally substituted alkylsilyl group. be.
  • the thioester derivative (I-2a) is produced by a method comprising the step of contacting the thioester derivative (III-2) with a silylating agent (2) in the presence of a base to produce the thioester derivative (I-2a). can do.
  • the thioester derivative (III-2) and silylating agent (2) may be commercially available products or may be produced according to conventional methods.
  • the contact between the thioester derivative (III-2) and the silylating agent (2) is preferably carried out in a solvent.
  • the thioester derivative (III-2) and the silylating agent (2) can be brought into contact with each other by mixing the thioester derivative (III-2) and the silylating agent (2) in a solvent.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably THF, tert-butyl methyl ether, DCM, toluene or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1-200 mL, preferably 2-100 mL, per 1 g of thioester derivative (III-2).
  • the contact between the thioester derivative (III-2) and the silylating agent (2) is carried out in the presence of a base.
  • the amount of silylating agent (2) used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of thioester derivative (III-2).
  • Examples of the base include triethylamine, pyridine, 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), diethylaniline, 2,6-lutidine and the like. organic amines, sodium acetate, Schottenbaumann conditions, and the like.
  • the base is preferably imidazole.
  • the amount of the base used is, for example, 0.1 to 10 mol, preferably 0.2 to 5 mol, more preferably 0.3 to 3 mol, per 1 mol of the thioester derivative (III-2).
  • the contact temperature is, for example, -30 to 100°C, preferably -10 to 80°C, more preferably 0 to 50°C.
  • the contact time is, for example, 0.1 to 24 hours, preferably 0.5 to 17 hours, more preferably 0.5 to 5 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • a seventh method is a method for producing a thioester derivative (I-2) (hereinafter referred to as "thioester derivative (I-2b)”) in which R' represents a tetrahydropyranyl group which may have a substituent. is.
  • the thioester derivative (I-2b) is prepared by contacting the thioester derivative (III-2) with 3,4-dihydro-2H-pyran optionally having a substituent in the presence of an acid to obtain a thioester derivative ( It can be produced by a method including the step of producing I-2b).
  • the thioester derivative (III-2) and optionally substituted 3,4-dihydro-2H-pyran may be commercially available or may be produced according to a conventional method.
  • R' represents a tetrahydropyranyl group
  • 3,4-dihydro-2H-pyran is used.
  • R' represents a substituted tetrahydropyranyl group
  • substituted 3,4-dihydro-2H-pyran is used.
  • the number and type of substituents possessed by 3,4-dihydro-2H-pyran are the same as the number and type of substituents possessed by the tetrahydropyranyl group.
  • the thioester derivative (III-2) and optionally substituted 3,4-dihydro-2H-pyran are brought into contact with the hydroxy group contained in the thioester derivative (III-2). is protected with an optionally substituted tetrahydropyranyl group to obtain a thioester derivative (I-2b).
  • the tetrahydropyranyl group which may have a substituent corresponds to the group represented by R' in the thioester derivative (I-2b).
  • the contact between the thioester derivative (III-2) and optionally substituted 3,4-dihydro-2H-pyran is preferably carried out in a solvent.
  • a solvent By mixing the thioester derivative (III-2) and optionally substituted 3,4-dihydro-2H-pyran in a solvent, the thioester derivative (III-2) and the substituted thioester derivative (III-2) 3,4-dihydro-2H-pyran, which may be used.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
  • the amount of solvent used is, for example, 2-100 mL, preferably 3-30 mL, per 1 g of thioester derivative (III-2).
  • the amount of 3,4-dihydro-2H-pyran optionally having a substituent to be used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 1 mol, per 1 mol of the thioester derivative (III-2). It is preferably 1 to 3 mol.
  • the acid is preferably p-toluenesulfonic acid monohydrate (TsOH.H 2 O).
  • the amount of acid used is, for example, 0.005 to 1 mol, preferably 0.01 to 0.5 mol, more preferably 0.05 to 0.25 mol, per 1 mol of the thioester derivative (III-2). be.
  • the contact temperature is, for example, ⁇ 10 to 100° C., preferably The temperature is 0 to 80° C., more preferably 5 to 60° C.
  • the contact time is, for example, 0.5 to 8 hours, preferably 1 to 6 hours, more preferably 2 to 4 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • the eighth method is to produce a thioester derivative (I-2) (hereinafter referred to as "thioester derivative (I-2c)”) in which R' represents a group represented by the formula: -CO-L 1 -L 2 It is a way to
  • the thioester derivative (I-2c) is prepared by combining the thioester derivative (III-2) with the formula: J-CO-L 1 -L 2 [wherein L 1 and L 2 are as defined above, J represents a halogen atom. ] to produce the thioester derivative (I-2c).
  • the thioester derivative (III-2) and the compound represented by the formula: J—CO—L 1 -L 2 may be commercially available or may be produced according to conventional methods.
  • J represents a halogen atom.
  • J is preferably selected from chlorine, bromine and iodine, more preferably chlorine.
  • J-CO-L 1 -L 2 are Cl-CO-CH 2 Cl (chloroacetyl chloride), Cl-CO-CHCl 2 (dichloroacetyl chloride) and Cl-CO-CCl 3 (trichloroacetyl chloride), more preferably Cl--CO--CH 2 Cl.
  • the thioester derivative (III-2) When the thioester derivative (III-2) is brought into contact with the compound represented by the formula: J—CO—L 1 -L 2 in the presence of a base, the hydroxy group contained in the thioester derivative (III-2) is A thioester derivative (I-2c) is obtained by protecting with a group represented by the formula: -CO-L 1 -L 2 .
  • the group represented by the formula: -CO-L 1 -L 2 corresponds to the group represented by R' in the thioester derivative (I-2c).
  • the contact between the thioester derivative (III-2) and the compound represented by the formula: J—CO—L 1 -L 2 is preferably carried out in a solvent.
  • the thioester derivative (III-2) and the compound can be contacted by mixing the thioester derivative (III-2) and the compound in a solvent.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, per 1 g of thioester derivative (III-2).
  • the amount of the compound represented by the formula: J—CO—L 1 -L 2 to be used is, for example, 1 to 5 mol, preferably 1 to 3 mol, more preferably 1 to 3 mol, per 1 mol of the thioester derivative (III-2). 1 to 2 mol.
  • Examples of the base include triethylamine, pyridine, 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), diethylaniline, 2,6-lutidine and the like.
  • organic amines sodium acetate, Schottenbaumann conditions, and the like.
  • the base is preferably pyridine.
  • the amount of the base used is, for example, 1-5 mol, preferably 1-4 mol, more preferably 1-3 mol, per 1 mol of the thioester derivative (III-2).
  • the contact temperature is, for example, ⁇ 30 to 50° C., preferably ⁇ 20° C. to 40° C., more preferably ⁇ 10 to 30° C.
  • the contact time is, for example, 0.5 to 17 hours, preferably 1 to 10 hours, more preferably 2 to 8 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • a ninth method is a thioester derivative (I- 2 ) ( hereinafter referred to as "thioester derivative ( I -2d)”).
  • K represents a hydrogen atom or an optionally substituted alkyl group.
  • L4 represents an alkyl group.
  • K represents a substituted alkyl group
  • L4 represents a substituted alkyl group.
  • the number of carbon atoms in the alkyl group represented by K is one less than the number of carbon atoms in the alkyl group represented by L4 .
  • the number and types of substituents possessed by the alkyl group represented by K are the same as the number and types of substituents possessed by the alkyl group represented by L4 .
  • the group represented by the formula: -C(-L 3 )(-L 4 )-OL 5 corresponds to the group represented by R' in the thioester derivative (I-2d).
  • the thioester derivative (III-2) and the compound can be contacted by mixing the thioester derivative (III-2) and the compound in a solvent.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1 to 100 mL, preferably 3 to 50 mL, per 1 g of thioester derivative (III-2).
  • acids include p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid, phosphoric acid, citric acid, acetic acid, pyridine paratoluenesulfonic acid (PPTS), and the like.
  • the acid is preferably PPTS.
  • the amount of acid used is, for example, 0.001 to 1 mol, preferably 0.005 to 0.5 mol, more preferably 0.01 to 0.2 mol, per 1 mol of the thioester derivative (III-2). be.
  • the contact temperature is, for example, 0 to 70°C. , preferably 5 to 60° C., more preferably 10 to 40° C.
  • the contact time is, for example, 0.5 to 24 hours, preferably 1 to 12 hours, more preferably 2 to 8 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • a tenth method is a thioester derivative (I- 2 ) (hereinafter "thioester derivative (I-2e)”).
  • the thioester derivative (I-2e) is prepared by combining the thioester derivative (III-2) with the formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO- in the presence of a base. OC(-L 6 )(-L 7 )(-L 8 ) [wherein L 6 , L 7 and L 8 are as defined above. ] to produce the thioester derivative (I-2e).
  • the compound represented by L 8 ) may be a commercial product or may be produced according to a conventional method.
  • a compound represented by the formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-O-C(-L 6 )(-L 7 )(-L 8 ) is preferably C(--CH 3 ) 3 --O--CO--O--CO--O--C(--CH 3 ) 3 (di-tert-butyl dicarbonate).
  • the hydroxy group contained in the thioester derivative (III- 2 ) is transformed into the 7 ) Protected with a group represented by (-L 8 ) to obtain a thioester derivative (I-2e).
  • the group represented by the formula: -CO-O-C(-L 6 )(-L 7 )(-L 8 ) corresponds to the group represented by R' in the thioester derivative (I-2e).
  • Thioester derivative (III-2) and formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-OC(-L 6 )(-L 7 )( -L 8 ) is preferably carried out in a solvent.
  • the thioester derivative (III-2) and the compound can be contacted by mixing the thioester derivative (III-2) and the compound in a solvent.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, per 1 g of thioester derivative (III-2).
  • Thioester derivative (III-2) and formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-OC(-L 6 )(-L 7 )( -L 8 ) is carried out in the presence of a base.
  • a compound represented by the formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-O-C(-L 6 )(-L 7 )(-L 8 ) is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the thioester derivative (III-2).
  • the base is preferably selected from potassium carbonate (K 2 CO 3 ), 4-dimethylaminopyridine (DMAP) and triethylamine (TEA).
  • K 2 CO 3 potassium carbonate
  • DMAP 4-dimethylaminopyridine
  • TAA triethylamine
  • the amount of the base used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the thioester derivative (III-2).
  • the contact temperature is, for example, ⁇ 10 to 60° C., preferably ⁇ 5 to 50° C., more preferably 0 to 40° C.
  • the contact time is, for example, 0.5 to 48 hours, preferably 1 to 24 hours, more preferably 2 to 17 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • thioester derivatives (I-1a) to (I-1e) are collectively referred to as thioester derivatives (I-1), and thioester derivatives (I-2a) to (I-2e) are collectively referred to as thioester derivatives (I-2 ).
  • the obtained thioester derivative (I-1) or (I-2) can be isolated by the following method.
  • a quenching liquid eg, water, HCl aqueous solution, etc.
  • the reaction solution to which the quench solution has been added is stirred to separate into an aqueous layer and an organic layer.
  • an organic solvent is added to the aqueous layer to separate the organic layer and the aqueous layer again.
  • the organic layer is extracted and combined with the previously extracted organic layer to obtain a total organic layer.
  • the total organic layer is washed with a washing solution (e.g., water, HCl aqueous solution, saturated NaHCO 3 aqueous solution, brine, etc.) and then dried using sodium sulfate or the like to give thioester derivative (I-1) or (I-2). ) to give a residue containing the product of
  • a washing solution e.g., water, HCl aqueous solution, saturated NaHCO 3 aqueous solution, brine, etc.
  • organic solvent added to the aqueous layer are as described above.
  • One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably ethyl acetate, DCM, toluene, hexane or a mixed solvent thereof, more preferably ethyl acetate or DCM.
  • the structure of the thioester derivative (I-1) or (I-2) can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
  • the method for producing the thioester derivative (I-1) may include the step of producing the thioester derivative (III-1). In this case, after the step of producing the thioester derivative (III-1), the step of contacting the thioester derivative (III-1) with the carboxylic anhydride (1) to produce the thioester derivative (I-1). done.
  • the method for producing the thioester derivative (I-2) may include the step of producing the thioester derivative (III-2). In this case, the step of producing the thioester derivative (III-2) is followed by the step of contacting the thioester derivative (III-2) with the silylating agent (2) to produce the thioester derivative (I-2).
  • Thioester derivative (III-1) can be produced by contacting thiol (3) with acyl-protected lactone derivative (IV-1) in the presence of trialkylaluminum.
  • Thioester derivative (III-2) can be produced by contacting thiol (3) with acyl-protected lactone derivative (IV-2) in the presence of trialkylaluminum.
  • a trialkylaluminum acts as a reactant.
  • Trialkylaluminums include, for example, trimethylaluminum, triethylaluminum, and triple aluminum.
  • trialkylaluminum such as trimethylaluminum, which has been conventionally used as a reactant, is highly flammable, so care must be taken when handling it. Therefore, it is preferable to produce thioester derivative (III-1) by contacting thiol (3), Grignard reagent (4) and acyl-protected lactone derivative (IV-1). Moreover, it is preferable to produce the thioester derivative (III-2) by contacting the thiol (3), the Grignard reagent (4) and the acyl-protected lactone derivative (IV-2).
  • Grignard reagent (4) Since the Grignard reagent (4) is less flammable than trialkylaluminum such as trimethylaluminum, there is relatively no need to pay attention to the usage environment. Therefore, when Grignard reagent (4) is used, thioester derivative (III-1) or (III-2) can be produced more efficiently than when trialkylaluminum such as trimethylaluminum is used. , large-scale production of thioester derivatives (III-1) or (III-2) can be realized.
  • Thiol (3), Grignard reagent (4), and acyl-protected lactone derivative (IV-1) or (IV-2) may be commercially available products or may be produced according to conventional methods.
  • Thiol (3) includes, for example, ethanethiol, t-butylmercaptan, thiophenol, benzylmercaptan, 1-decanethiol, 1-dodecanethiol and the like.
  • the amount of thiol (3) used is, for example, 0.5 to 4 mol, preferably 0.7 to 3 mol, more preferably 0.7 to 3 mol, per 1 mol of acyl-protected lactone derivative (IV-1) or (IV-2). is 0.9 to 2 mol.
  • the amount of thiol (3) is preferably larger than the amount of acyl-protected lactone derivative (IV-1) or (IV-2).
  • the Grignard reagent (4) acts as a reactant that reacts with the thiol (3) after ring-opening the acyl-protected lactone derivative (IV-1) or (IV-2).
  • One type of Grignard reagent (4) may be used alone, or two or more types of Grignard reagents (4) may be used in combination.
  • the amount of Grignard reagent (4) used per 1 mol of thiol (3) is, for example, 0.1 to 1 mol, preferably 0.3 to 1 mol, more preferably 0.5 to 1 mol.
  • the amount of Grignard reagent (4) used per 1 mol of acyl-protected lactone derivative (IV-1) or (IV-2) is, for example, 0.1 to 1 mol, preferably 0.3 to 1 mol, more preferably 0. .5 to 1 mol.
  • the "amount of Grignard reagent (4) used” means the amount of the one Grignard reagent (4) when one Grignard reagent (4) is used, and two or more Grignard reagents ( When 4) is used, it means the total amount of the two or more Grignard reagents (4). The same applies to the amounts of other substances used.
  • the contact temperature is, for example, -30 to 50°C, preferably - The temperature is 20 to 40°C, more preferably -10 to 30°C, and the contact time (reaction time) is, for example, 0.1 to 5 hours, preferably 0.2 to 4 hours, more preferably 0.5 to 3 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • the contact between thiol (3), Grignard reagent (4), and acyl-protected lactone derivative (IV-1) or (IV-2) is preferably carried out in a solvent.
  • Thiol (3), Grignard reagent (4), and acyl-protected lactone derivative (IV-1) or (IV-2) are mixed in a solvent to give thiol (3), Grignard reagent (4), and acyl-protected lactone.
  • Derivatives (IV-1) or (IV-2) can be contacted.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the solvent is preferably THF, dibutyl ether, 2-methyltetrahydrofuran or a mixed solvent thereof.
  • the amount of solvent used is, for example, 0.5 to 100 mL, preferably 2 to 50 mL, per 1 g of acyl-protected lactone derivative (IV-1) or (IV-2).
  • the thiol (3), the Grignard reagent (4), and the acyl-protected lactone derivative (IV-1) or (IV-2) are contacted in a solvent, the thiol (3), the Grignard reagent (4), the acyl-protected lactone derivative
  • the order of adding (IV-1) or (V-2) and the solvent is not particularly limited.
  • the Grignard reagent (4) can be added after adding the thiol (3) and solvent to the acyl-protected lactone derivative (IV-1) or (IV-2). Addition of the Grignard reagent (4) can be performed, for example, dropwise.
  • Thioester derivative (III-1) is isolated from the reaction mixture obtained by contacting thiol (3), Grignard reagent (4) and acyl-protected lactone derivative (IV-1) followed by carboxylic anhydride ( It may be used in the reaction with 1) or may be used in the reaction with carboxylic anhydride (1) without isolation from the reaction mixture.
  • Thioester derivative (III-2) is isolated from the reaction mixture obtained by contacting thiol (3) with Grignard reagent (4) and acyl-protected lactone derivative (IV-2) followed by silylating agent (2 ) or the silylating agent (2) without isolation from the reaction mixture.
  • a step of adding carboxylic anhydride (1) to the reaction mixture to bring thioester derivative (III-1) into contact with carboxylic anhydride (1) to produce thioester derivative (I-1) conduct.
  • the amount of carboxylic anhydride (1) used is, for example, 0.5 to 10 mol, preferably 0.8 to 5.0 mol, per 1 mol of acyl-protected lactone derivative (IV-1). , more preferably 1.0 to 3.0 mol.
  • the thioester derivative (I-1) can be produced by contacting the thioester derivative (III-1) with the carboxylic acid anhydride (1) in the presence of a Grignard reagent (4). can.
  • the obtained thioester derivative (III-1) or (III-2) can be isolated, for example, by the following method.
  • a quenching liquid eg, water, HCl aqueous solution, etc.
  • the quenching liquid preferably contains Bronsted acid, and when the quenching liquid does not contain Bronsted acid, it is preferred to add Bronsted acid to the reaction liquid after addition of the quenching liquid. This can prevent the thioester derivative (III-1) or (III-2) from cyclizing into the structure of the acyl-protected lactone derivative (IV-1) or (IV-2).
  • the thioester derivative (III-1) or (III-2) obtained by using the acyl-protected lactone derivative (IV-1) or (IV-2) having a five-membered ring as a substrate has a six-membered ring
  • the thioester derivative (III-1) or (III-2) obtained by using the acyl-protected lactone derivative (IV-1) or (IV-2) having a number of members as the substrate it is easily transformed into the structure of the substrate.
  • the pH of the reaction solution acidic, the cyclization of the thioester derivative (III-1) or (III-2) can be suppressed and the yield can be increased.
  • the amount of Bronsted acid is, for example, 1 mol or more, preferably 3 mol or more, more preferably 5 mol or more, relative to 1 mol of acyl-protected lactone derivative (IV-1) or (IV-2).
  • the upper limit of the amount of Bronsted acid is not particularly limited, according to one example, it is 30 mol or less.
  • Bronsted acids include, for example, hydrogen halide, sulfuric acid (H 2 SO 4 ), carbonic acid, acetic acid, oxalic acid, citric acid, trifluoroacetic acid (TFA), methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfone acid, phosphoric acid, and the like.
  • One Bronsted acid may be used alone, or two or more Bronsted acids may be used in combination.
  • Hydrogen halides include, for example, hydrogen fluoride (HF), hydrogen chloride (HCl), hydrogen bromide (HBr), hydrogen iodide (HI), and the like.
  • Bronsted acids include, for example, hydrogen chloride, hydrogen bromide, sulfuric acid and the like.
  • An acidic solution of Bronsted acid dissolved in water may also be used.
  • the amount is preferably 10-30 mL with respect to 1 g of acyl-protected lactone derivative (IV-1) or (IV-2).
  • the reaction solution to which the Bronsted acid has been added is stirred to separate into an aqueous layer and an organic layer.
  • an organic solvent is added to the aqueous layer to separate the organic layer and the aqueous layer again.
  • the organic layer is extracted and combined with the previously extracted organic layer to obtain a total organic layer.
  • the total organic layer is washed with a washing solution (e.g., water, HCl aqueous solution, saturated NaHCO 3 aqueous solution, brine, etc.) and then dried using sodium sulfate or the like to give thioester derivative (III-1) or (III-2). ) to give a residue containing the product of
  • a washing solution e.g., water, HCl aqueous solution, saturated NaHCO 3 aqueous solution, brine, etc.
  • organic solvent added to the aqueous layer are as described above.
  • One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably ethyl acetate, DCM, toluene, hexane or a mixed solvent thereof, more preferably ethyl acetate or DCM.
  • the structure of the thioester derivative (III-1) or (III-2) can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
  • a method for producing a thioester derivative (I-1) comprises contacting a thiol (3), a Grignard reagent (4) and an acyl-protected lactone derivative (IV-1) to produce a thioester derivative (III-1).
  • the method for producing the thioester derivative (I-1) may comprise the step of producing the acyl-protected lactone derivative (IV-1).
  • the thiol (3), the Grignard reagent (4) and the acyl-protected lactone derivative (IV-1) are brought into contact to obtain the thioester derivative (III- 1) is performed.
  • a method for producing a thioester derivative (I-2) comprises contacting a thiol (3), a Grignard reagent (4) and an acyl-protected lactone derivative (IV-2) to produce a thioester derivative (III-2).
  • the method for producing the thioester derivative (I-2) may comprise the step of producing the acyl-protected lactone derivative (IV-2).
  • the thiol (3), the Grignard reagent (4) and the acyl-protected lactone derivative (IV-2) are contacted to obtain the thioester derivative (III- 2) is performed.
  • the acyl-protected lactone derivative (IV-1) or (IV-2) is prepared by combining the lactone derivative (VII) with a carboxylic acid anhydride represented by the formula: R—CO—O—CO—R in the presence of a Bronsted acid. It can be manufactured by contacting with.
  • each R in the formula: R-CO-O-CO-R independently represents an aryl group which may have a substituent, and the acyl-protected
  • each R in the formula: R—CO—O—CO—R independently represents an optionally substituted alkyl group.
  • the lactone derivative (VII) is brought into contact with a carboxylic acid anhydride represented by the formula: R—CO—O—CO—R, whereby the hydroxy group contained in the lactone derivative (VII) is , protected with a group represented by the formula: -CO-R to obtain an acyl-protected lactone derivative (IV-1) or (IV-2).
  • a carboxylic acid anhydride represented by the formula: R—CO—O—CO—R whereby the hydroxy group contained in the lactone derivative (VII) is , protected with a group represented by the formula: -CO-R to obtain an acyl-protected lactone derivative (IV-1) or (IV-2).
  • the amount of the carboxylic anhydride to be used is, for example, 1 to 200 mol, preferably 1 to 100 mol, more preferably 1 to 50 mol, per 1 mol of the lactone derivative (VII).
  • the contact between the lactone derivative (VII) and the carboxylic anhydride may be carried out without a solvent, but is preferably carried out in a solvent.
  • a solvent By mixing the lactone derivative (VII) and the carboxylic anhydride in a solvent, the lactone derivative (VII) and the carboxylic anhydride can be contacted.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably DCM, toluene or a mixed solvent thereof.
  • Bronsted acids include, for example, trifluoroacetic acid (TFA), sulfuric acid, methanesulfonic acid and the like, preferably TFA and sulfuric acid.
  • the amount of solvent used is, for example, 0 to 100 mL, preferably 0 to 50 mL, more preferably 0 to 10 mL, relative to 1 g of the lactone derivative (VII).
  • the amount of Bronsted acid used is, for example, 0.1 to 100 mL, preferably 0.5 to 50 mL, more preferably 1 to 30 mL, relative to 1 g of lactone derivative (VII).
  • the contact between the lactone derivative (VII) and the carboxylic anhydride may be carried out in the presence of a base.
  • Specific examples of the base are the same as the specific examples of the base used for contacting the thioester derivative (III-1) and the carboxylic anhydride (1).
  • the amount of the base used is, for example, 0 to 10 mol, preferably 0.1 to 5 mol, more preferably 0.5 to 3 mol, per 1 mol of the lactone derivative (VII).
  • the contact temperature is, for example, -10 to 50°C, preferably -5 to 40°C, more preferably 0 to 30°C.
  • the time is, for example, 0.1 to 10 hours, preferably 1 to 8 hours, more preferably 2 to 5 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • Acyl-protected lactone derivatives (IV-1) or (IV-2) may be concentrated by evaporation.
  • the concentrate is used as is (i.e. without isolating the acyl-protected lactone derivative (IV-1) or (IV-2) from the concentrate) for reaction with thiol (3) and Grignard reagent (4). can be done.
  • thiol (3), Grignard reagent (4) and acyl-protected lactone derivative (IV-1) are brought into contact to form thioester derivative (III-). 1) is performed.
  • the carboxylic anhydride (1) is added to the reaction mixture to obtain a thioester derivative (III-1) and a carboxylic anhydride.
  • a step of producing a thioester derivative (I-1) by contacting the substance (1) is carried out.
  • the total amount of carboxylic anhydride used (the amount of carboxylic anhydride used for producing acyl-protected lactone derivative (IV) and the amount of carboxylic anhydride used for producing thioester derivative (I-1)
  • the total amount of compound (1) used is, for example, 1 to 200 mol, preferably 1 to 100 mol, more preferably 1 to 50 mol, per 1 mol of lactone derivative (VII).
  • ketone derivative (II) in which R each independently represents an optionally substituted aryl group is referred to as ketone derivative (II-1), and each R independently represents a substituent.
  • a ketone derivative (II) representing an alkyl group which may be present is referred to as a ketone derivative (II-2).
  • the ketone derivative (II) is obtained by contacting the thioester derivative (I), a Grignard reagent (5) selected from Grignard reagents (5a) and Grignard reagents (5b), and a copper salt to obtain the ketone derivative (II). It can be manufactured by a method including a manufacturing step.
  • the ketone derivative (II-1) is obtained by contacting the thioester derivative (I-1), a Grignard reagent (5) selected from Grignard reagents (5a) and Grignard reagents (5b), and a copper salt to obtain a ketone derivative. It can be produced by a method including the step of producing (II-1).
  • the ketone derivative (II-2) is obtained by contacting a thioester derivative (I-2), a Grignard reagent (5) selected from Grignard reagents (5a) and Grignard reagents (5b), and a copper salt to obtain a ketone derivative. It can be produced by a method including the step of producing (II-2).
  • either one of the Grignard reagent (5a) and the Grignard reagent (5b) may be selected, or both may be selected.
  • a mixture of both may be added to the reaction system, or both may be added to the reaction system separately.
  • the Grignard reagent (5a) may be a commercial product or may be produced according to a conventional method.
  • the Grignard reagent (5) preferably contains the Grignard reagent (5b).
  • the Grignard reagent (5b) is called turbo Grignard reagent.
  • the Grignard reagent (5b) may be a commercial product or may be produced according to a conventional method.
  • the Grignard reagent (5b) is prepared, for example, in a reaction vessel substituted with an inert gas (e.g., nitrogen, argon, etc.), in the presence of a lithium salt, with magnesium in the formula: W 2 X [wherein W 2 and X has the same meaning as above. ] in an organic solvent.
  • an inert gas e.g., nitrogen, argon, etc.
  • Grignard reagent (5b) was prepared according to Angew Chem. Int. According to known methods described in Ed. ] with a compound represented by the formula: W 2 —H.
  • Copper salts include, for example, copper (I) chloride (CuCl), copper (II) chloride (CuCl 2 ), copper (I) bromide (CuBr), copper (II) bromide (CuBr 2 ), copper cyanide (I) (CuCN), copper (I) 3-methylsalicylate, copper mesitylene (I) (MesCu), copper (I) isopropoxy (iPrOCu), copper (I) iodide (CuI), copper (II) iodide ) (CuI 2 ), copper(I) acetate (CuOAc), copper(II) acetate (Cu(OAc) 2 ), copper(II) sulfate (CuSO 4 ), copper(I) oxide (Cu 2 O), oxidation copper (II) (CuO), copper (I) pivalate (CuOPiv), copper (II) pivalate (Cu(OPiv) 2 ), copper salts containing sulfur (S), and the like.
  • Copper salts containing sulfur (S) include, for example, copper (I) thiophene-2-carboxylate (CuTC). S has a high affinity with Cu, and S easily coordinates with Cu in a copper salt. This coordination activates the Cu and increases the yield.
  • S copper (I) thiophene-2-carboxylate
  • the valence of the copper atom contained in the copper salt is usually monovalent or divalent, preferably monovalent.
  • a copper salt in which the valence of the copper atom is monovalent has excellent catalytic activity.
  • CuCN, CuCl, CuI, CuBr, CuOAc and CuTC are particularly excellent in catalytic action. Therefore, the copper salt preferably contains at least one selected from CuCN, CuCl, CuI, CuBr, CuOAc and CuTC, more preferably at least one selected from CuCN, CuCl, CuOAc and CuTC. , CuCN and CuCl.
  • a ketone derivative (II-1) or (II-2) is obtained in high yield by contacting a thioester derivative (I-1) or (I-2) with a Grignard reagent (5) and a copper salt. be able to.
  • the present inventors presume that the reason for this is that an anionic complex (10) represented by the following formula (10) or an anionic complex (11) represented by the following formula (11) is formed. ing. That is, the oxidative addition of the carbon-sulfur bond of the thioester derivative (I-1) or (I-2) is promoted relative to the complex (10) or (11), which is anionic rather than neutral. It is believed that there is.
  • the anionic complex (10) is formed when a copper salt other than CuCN (e.g., CuCl, CuBr, CuI, CuOAc, etc.) is used, and the anionic complex (11) is formed using CuCN as the copper salt. It is considered to be formed when a copper salt other than CuCN (e.g., CuCl, CuBr, CuI, CuOAc, etc.) is used, and the anionic complex (11) is formed using CuCN as the copper salt. It is considered to be formed when a copper salt other than CuCN (e.g., CuCl, CuBr, CuI, CuOAc, etc.) is used, and the anionic complex (11) is formed using CuCN as the copper salt. It is considered to be formed when a copper salt other than CuCN (e.g., CuCl, CuBr, CuI, CuOAc, etc.) is used, and the anionic complex (11) is formed using CuCN as the copper salt. It is considered to be formed when a copper salt other than CuCN (
  • the amount of CuCN used is preferably 0.2 to 1.2 mol, more preferably 0.5 to 1.1 mol, more preferably 0.5 to 1.1 mol, per 1 mol of the Grignard reagent (5). Preferably 0.9 to 1.1 mol, more preferably 1 mol.
  • the amount of CuCl used is preferably 1.3 to 1.5 mol, more preferably 0.4 to 0.95 mol, more preferably 0.4 to 0.95 mol, per 1 mol of the Grignard reagent (5). It is preferably 0.5 to 0.9 mol, more preferably 0.6 to 0.8 mol.
  • the amount of the copper salt other than CuCN and CuCl used is preferably 0.1 to 1 mol, more preferably 0.3 to 0.9 mol, more preferably 0.4, per 1 mol of the Grignard reagent (5). ⁇ 0.8 mol.
  • the amount of the copper salt other than CuCN and CuCl used is 0.5 to 0.9 mol in one example, and 0.6 to 0.6 mol in another example, per 1 mol of the Grignard reagent (5). 8 mol.
  • amount of copper salt other than CuCN and CuCl used means the amount of the one copper salt when one copper salt other than CuCN and CuCl is used, and two copper salts other than CuCN and CuCl are used. When more than one copper salt is used, it means the total amount of the two or more copper salts.
  • the amount of the Grignard reagent (5) used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1.5 to 4 mol, per 1 mol of the thioester derivative (I-1) or (I-2). Mole.
  • the amount of Grignard reagent (5) used does not need to be excessive with respect to the amount of thioester derivative (I-1) or (I-2) used.
  • the "amount of Grignard reagent (5) used” means the amount of the one Grignard reagent (5) when one Grignard reagent (5) is used, and two or more Grignard reagents ( When 5) is used, it means the total amount of the two or more Grignard reagents (5).
  • the amount of the Grignard reagent (5b) is, for example, the total mass of the Grignard reagent (5a) and the Grignard reagent (5b) 10 to 90% by mass based on.
  • the contact between the thioester derivative (I-1) or (I-2), the Grignard reagent (5) and the copper salt is preferably carried out in a solvent.
  • the thioester derivative (I-1) or (I-2) and the Grignard reagent (5 ) can be contacted with a copper salt.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably THF, toluene or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, per 1 g of thioester derivative (I-1) or (I-2).
  • the contact temperature is, for example, -20 to 150°C, preferably -10 to 100°C. , more preferably 0 to 70°C, even more preferably 0 to 50°C.
  • the equipment cost related to temperature control is suppressed, and the ketone derivative (II-1) -1) or (II-2) can be industrially produced at a lower cost. Also, when the contact temperature (reaction temperature) is within the above temperature range, the yield of the ketone derivative (II-1) or (II-2) tends to increase.
  • the contact time is, for example, 0.5 to 72 hours, preferably 1 to 48 hours. is.
  • the Grignard reagent (5) When the thioester derivative (I-1) or (I-2) is brought into contact with the Grignard reagent (5) and the copper salt, the Grignard reagent (5) is brought into contact with the copper salt to form an organocopper reagent, It is preferable to mix the thioester derivative (I-1) or (I-2) and bring the organocopper reagent and the thioester derivative (I-1) or (I-2) into contact. Thereby, the ketone derivative (II-1) or (II-2) can be obtained in high yield.
  • the contact temperature is, for example, ⁇ 20 to 150° C., preferably ⁇ 10 to 100° C., more preferably 0 to 50° C.
  • the contact time is, for example, 0.1 to 5 hours, preferably 0.2 to 2 hours, more preferably 0.5 to 1 hour.
  • the contact temperature is, for example, -20 to 150°C, preferably -10 to 100°C, more preferably 0. to 50° C.
  • the contact time is, for example, 0.1 to 5 hours, preferably 0.2 to 2 hours, more preferably 0.5 to 1 hour.
  • organozinc compound (6) When contacting the thioester derivative (I-1) or (I-2) with the Grignard reagent (5) and the copper salt, it is selected from an organic zinc compound (6a), an organic zinc compound (6b) and an organic zinc compound (6c)
  • the organozinc compound (6) obtained may be used in combination with a Grignard reagent (5) and a copper salt.
  • Organozinc compounds (6) can be used as reagents to introduce group W2 into thioester derivatives (I-1) or (I-2).
  • the organic zinc compound (6) one of the organic zinc compound (6a), the organic zinc compound (6b) and the organic zinc compound (6c) may be selected, or two or more thereof may be selected. When two or more are selected, a mixture of two or more organic zinc compounds may be added to the reaction system, or two or more organic zinc compounds may be added separately to the reaction system.
  • the organic zinc compound (6) When mixing the thioester derivative (I-1) or (I-2), the Grignard reagent (5) and the copper salt, it is preferable to use the organic zinc compound (6) as little as possible. When the organic zinc compound (6) is used, the yield of the ketone derivative (II-1) or (II-2) tends to decrease.
  • the amount of the organic zinc compound (6) used is preferably 10% by mass or less, more preferably 5% by mass or less, more preferably 1% by mass, based on the mass of the thioester derivative (I-1) or (I-2). % or less. The lower bound is zero.
  • the organic zinc compound (6) may be a commercial product or may be produced according to a conventional method.
  • the organic zinc compound (6a) and/or the organic zinc compound (6b) may be used, for example, together with a lithium salt such as lithium chloride.
  • the organozinc compound (6a) may form a complex with a lithium salt.
  • the complex of organozinc compound (6a) and lithium salt corresponds to organozinc compound (6c).
  • Grignard reagent (5) In addition to the Grignard reagent (5), other Grignard reagents may be used. In this case, the amount of Grignard reagent (5) used is preferably 80% by mass or more, and may be 100% by mass, based on the total mass of Grignard reagent (5) and other Grignard reagents.
  • W 2 has no substituents on the carbon atoms located on both sides of the carbon atom having an aryl group bond (the carbon atom bonded to Mg), and the remaining
  • the carbon atom is an aryl group that may have a substituent, or the carbon atom or heteroatom located on both sides of the carbon atom having a bond of a heteroaryl group (the carbon atom that binds to Mg) has a substituent
  • a Grignard reagent (5a) or (5b) which is a heteroaryl group which does not have and the remaining carbon atoms or heteroatoms may have a substituent.
  • the meta positions to the carbon atom bound to MgX have R21 and R23 .
  • the para position to the carbon atom bound to MgX has R22 .
  • R 21 , R 22 and R 23 are each independently a hydrogen atom or a substituent selected from substituent groups ⁇ and ⁇ . f is 0 or 1;
  • the step of producing the ketone derivative (II-1) or (II-2) by contacting the thioester derivative (I-1) or (I-2) with a Grignard reagent (5) and a copper salt,
  • the thioester derivative (I-1) or (I-2), the Grignard reagent (5) and the copper salt may be brought into contact in the presence.
  • the use of a palladium catalyst is advantageous in that it can reduce the amount of by-products produced by coupling reactions between W 2 groups and the like.
  • palladium catalysts include palladium (II) dichloride, palladium (II) dibromide, palladium (II) dichloride bistriphenylphosphine complex, palladium (0) tetrakistriphenylphosphine complex, palladium (II) acetate, and palladium (II) oxide.
  • the palladium catalyst may be supported on a carrier.
  • the use of a carrier-supported palladium catalyst is advantageous in that the palladium catalyst can be easily separated from the reaction mixture.
  • Examples of carriers include activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite, hydrotalcite, aluminum oxide, titanium dioxide, zirconium dioxide, silicon dioxide, clay, silicates, zeolites, and polymer matrices.
  • the polymeric matrix may be, for example, a styrene-divinylbenzene resin or a phenol-formaldehyde resin, to which chelating ligands (such as phosphine, 1,10-phenanthroline or 2,2'-bipyridine) are attached.
  • chelating ligands such as phosphine, 1,10-phenanthroline or 2,2'-bipyridine
  • a ligand that binds to the resin can form a complex with the palladium catalyst, immobilizing the palladium catalyst and making it a heterogeneous catalyst.
  • the carrier is preferably activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite and hydrotalcite, aluminum oxide, titanium dioxide and zirconium dioxide, more preferably activated carbon.
  • the palladium catalyst is palladium black or palladium on carbon (Pd/C).
  • the amount of the palladium catalyst is, for example, 1 to 25 wt%, preferably 3 to 20 wt%, more preferably 4 to 15 wt%, based on the total weight of the palladium catalyst and carrier. %.
  • the amount of the palladium catalyst used is, for example, 0.001 to 1 mol, preferably 0.002 to 0.5 mol, more preferably 0.03 to 0.1 mol, per 1 mol of the Grignard reagent (5). .
  • the C-aryl-hydroxyglycoside derivative (V) is obtained by contacting the ketone derivative (II) with a first acid and/or base to eliminate the group represented by R' from the ketone derivative (II). After that, if necessary, it is further brought into contact with a second acid to produce the C-aryl-hydroxyglycoside derivative (V).
  • C-aryl-hydroxyglycoside derivative (V-1) is converted from ketone derivative (II-1) to R′ by contacting ketone derivative (II-1) with a first acid and/or base. After eliminating the group, if necessary, further contact with a second acid to produce the C-aryl-hydroxyglycoside derivative (V-1).
  • C-aryl-hydroxyglycoside derivative (V-2) is converted from ketone derivative (II-2) to R′ by contacting ketone derivative (II-2) with a first acid and/or base. After eliminating the group, contacting with a second acid, if necessary, to produce a C-aryl-hydroxyglycoside derivative (V-2).
  • bases include fluorides, alkali metal alkoxides, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, and cesium hydroxide.
  • fluorides include tetra-n-butylammonium fluoride (TBAF), ammonium fluoride, ammonium bifluoride, hydrofluoric acid and the like.
  • alkali metal alkoxides include sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium-t-butoxide, potassium-t-butoxide and the like.
  • the base used for removing the group represented by R' from the ketone derivative (II-1) is preferably alkali metal alkoxide, more preferably sodium-t-butoxide or potassium-t-butoxide.
  • the base used for removing the group represented by R' from the ketone derivative (II-2) is preferably fluoride, more preferably TBAF.
  • the amount of the base used is, for example, 0.01 to 50, preferably 0.1 to 20 mol, more preferably 0.5 to 10 mol, per 1 mol of the ketone derivative (II-1) or (II-2). is.
  • the contact between the ketone derivative (II-1) or (II-2) and the base is preferably carried out in a solvent.
  • the ketone derivative (II-1) or (II-2) can be brought into contact with the base by mixing the ketone derivative (II-1) or (II-2) and the base in a solvent.
  • the solvent is preferably water, an organic solvent or a mixed solvent thereof. Specific examples of the organic solvent are as described above. One organic solvent may be used, or two or more organic solvents may be used in combination.
  • Organic solvents are preferably methanol, ethanol, isopropanol (IPA), t-butanol, THF, DCM, chloroform, acetonitrile, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), acetic acid Ethyl or a mixed solvent thereof.
  • the amount of solvent used is, for example, 0.5 to 100 mL, preferably 1 to 80 mL, more preferably 2 to 50 mL, relative to 1 g of ketone derivative (II-1) or (II-2).
  • the contact temperature is, for example, ⁇ 20 to 100° C., preferably ⁇ 10 to 70° C., more preferably 0 to 50. ° C.
  • the contact time is, for example, 0.1 to 24 hours, preferably 0.2 to 17 hours, more preferably 0.5 to 8 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • Examples of the first acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid and hydrogen bromide, and organic acids such as trifluoroacetic acid, trichloroacetic acid, formic acid and phthalic acid.
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid and hydrogen bromide
  • organic acids such as trifluoroacetic acid, trichloroacetic acid, formic acid and phthalic acid.
  • the amount of the first acid used is, for example, 0.01-100 mol, preferably 0.1-50 mol, more preferably 0.1-50 mol, per 1 mol of the ketone derivative (II-1) or (II-2). 5 to 10 mol.
  • the contact between the ketone derivative (II-1) or (II-2) and the first acid is preferably carried out in a solvent.
  • Contacting the ketone derivative (II-1) or (II-2) with the first acid by mixing the ketone derivative (II-1) or (II-2) and the first acid in a solvent be able to.
  • the solvent is preferably water, an organic solvent or a mixed solvent thereof. Specific examples of the organic solvent are as described above. One organic solvent may be used, or two or more organic solvents may be used in combination.
  • solvents examples include water, methanol, ethanol, isopropanol (IPA), t-butanol, tetrahydrofuran (THF), methylene chloride, chloroform, acetonitrile, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone. (NMP), ethyl acetate, or a mixed solvent thereof.
  • the contact temperature is, for example, -20 to 60°C, preferably -10 to 50°C, more preferably 0. to 40° C.
  • the contact time is, for example, 0.5 to 48 hours, preferably 1 to 24 hours, more preferably 2 to 17 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • the first acid and base may be used together.
  • a first acid e.g., inorganic acid such as acetic acid
  • a base e.g., fluoride such as TBAF
  • a deprotected ketone derivative (II -1) is cyclized to produce a C-aryl-hydroxyglycoside derivative (V-1) in which R 100 is a hydrogen atom, ie a C-aryl-hydroxyglycoside derivative (V'-1).
  • a deprotected ketone derivative (II -2) is cyclized to produce a C-aryl-hydroxyglycoside derivative (V-2) in which R 100 is a hydrogen atom, ie a C-aryl-hydroxyglycoside derivative (V'-2).
  • R 100 is a group other than a hydrogen atom, that is, an optionally substituted alkyl group, which may have a substituent C-aryl-hydroxyglycoside derivative (V-1) or (V-2) which is an aryl group, an optionally substituted alkylcarbonyl group, or an optionally substituted arylcarbonyl group ) is manufactured.
  • Examples of the second acid include alkylsulfonic acids such as methylsulfonic acid, and arylsulfonic acids such as p-toluenesulfonic acid and benzenesulfonic acid.
  • a carboxylic acid anhydride may be used as the second acid.
  • Carboxylic anhydrides include, for example, the formula: R—CO—O—CO—R [wherein each R is independently an optionally substituted alkyl group or having a substituent represents an aryl group that may be ] and the like represented by carboxylic acid anhydrides.
  • a carboxylic acid anhydride shall also be included in a 2nd acid.
  • R 100 As the second acid, when using an alkylsulfonic acid represented by the formula: R 100 —SO 3 H (wherein R 100 represents an optionally substituted alkyl group), R 100 is substituted A C-aryl-hydroxyglycoside derivative (V-1) or (V-2), which is an alkyl group optionally having a group, is obtained. More specifically, when methylsulfonic acid is used as the second acid, a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) in which R 100 is a methyl group is obtained.
  • R 100 As the second acid, when using an arylsulfonic acid represented by the formula: R 100 —SO 3 H (wherein R 100 represents an aryl group which may have a substituent), R 100 is substituted A C-aryl-hydroxyglycoside derivative (V-1) or (V-2), which is an aryl group optionally having a group, is obtained. More specifically, when p-toluenesulfonic acid is used as the second acid, a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) in which R 100 is a methylphenyl group is obtained. be done. Also, when benzenesulfonic acid is used as the second acid, a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) in which R 100 is a phenyl group is obtained.
  • the second acid has the formula: R—CO—O—CO—R [wherein each R independently represents an optionally substituted alkyl group. ] may be used.
  • R—CO—O—CO—R [wherein each R independently represents an optionally substituted alkyl group. ]
  • a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) in which R 100 is an optionally substituted alkylcarbonyl group is obtained.
  • the group represented by the formula: —CO—R introduced into the C-aryl-hydroxyglycoside derivative (V′-1) or (V′-2) corresponds to the group represented by R 100 . .
  • R—CO—O—CO—R [wherein each R independently represents an aryl group which may have a substituent. ] may be used.
  • a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) in which R 100 is an optionally substituted arylcarbonyl group is obtained.
  • the group represented by the formula: —CO—R introduced into the C-aryl-hydroxyglycoside derivative (V′-1) or (V′-2) corresponds to the group represented by R 100 . .
  • a carboxylic acid anhydride in which R is a phenyl group is used as the second acid, a C-aryl-hydroxyglycoside derivative (V-1 ) or (V-2) is obtained.
  • the amount of the second acid used is, for example, 0.01 to 100 mol, preferably 0.1 to 100 mol, per 1 mol of the C-aryl-hydroxyglycoside derivative (V'-1) or (V'-2). 50 mol, more preferably 0.5 to 10 mol.
  • the contact between the C-aryl-hydroxyglycoside derivative (V'-1) or (V'-2) and the second acid is preferably carried out in a solvent.
  • C-aryl-hydroxyglycoside derivative (V'-1) by mixing C-aryl-hydroxyglycoside derivative (V'-1) or (V'-2) with a second acid in a solvent
  • (V'-2) can be contacted with a second acid.
  • the solvent is preferably water, an organic solvent or a mixed solvent thereof.
  • solvents examples include water, methanol, ethanol, isopropanol (IPA), t-butanol, tetrahydrofuran (THF), methylene chloride, chloroform, acetonitrile, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone. (NMP), ethyl acetate, or a mixed solvent thereof.
  • the contact temperature is, for example, -20 to 60°C, preferably -10. to 50° C., more preferably 0 to 40° C.
  • the contact time is, for example, 0.5 to 48 hours, preferably 1 to 24 hours, more preferably 2 to 17 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • C-aryl-hydroxyglycoside derivatives (V-1) or (V-2) is particularly useful.
  • the obtained C-aryl-hydroxyglycoside derivative (V-1) or (V-2) may be isolated by silica gel column chromatography, or may be used in the next step as a concentration residue without being purified. .
  • the structure of the C-aryl-hydroxyglycoside derivative (V-1) or (V-2) can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
  • the method for producing the C-aryl-hydroxyglycoside derivative (V-1) may include the step of producing the ketone derivative (II-1). In this case, after the step of producing the ketone derivative (II-1), the ketone derivative (II-1) is brought into contact with a first acid and/or base to obtain R' from the ketone derivative (II-1). After elimination of the represented group, a step of producing the C-aryl-hydroxyglycoside derivative (V-1) is performed, optionally further contacting with a second acid.
  • the method for producing the C-aryl-hydroxyglycoside derivative (V-2) may include the step of producing the ketone derivative (II-2).
  • the ketone derivative (II-2) is brought into contact with a first acid and/or base to convert the ketone derivative (II-2) to R′.
  • a step of producing the C-aryl-hydroxyglycoside derivative (V-2) is carried out, optionally further contacting with a second acid.
  • the ketone derivative (II-1) or (II-2) is obtained by contacting the thioester derivative (I-1) or (I-2) with a Grignard reagent (5) and a copper salt to obtain the ketone derivative (II-1). Alternatively, it can be produced by a method including the step of producing (II-2). A description of this method is provided above.
  • a method for producing a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) comprises contacting a thioester derivative (I-1) or (I-2) with a Grignard reagent (5) and a copper salt. contacting the thioester derivative (I-1) or (I-2) with the Grignard reagent (5) and copper salt After isolating the ketone derivative (II-1) or (II-2) from the reaction mixture obtained by, it may be contacted with a first acid and / or base, or the ketone derivative (II A first acid and/or base may be added to the reaction mixture and contacted with the first acid and/or base without isolating -1) or (II-2).
  • the ketone derivative (II-1) or (II-2) is obtained from the reaction mixture obtained by contacting the thioester derivative (I-1) or (I-2) with a Grignard reagent (5) and a copper salt. ), the C-aryl-hydroxyglycoside derivative (V-1) or (V-2) can be produced efficiently.
  • Ketone derivative (II′) and/or C-aryl-hydroxyglycoside derivative (V′) are reacted with thioester derivative (I) in the presence of a palladium catalyst, organozinc compound (6a), organozinc compound (6b) and contacting with an organozinc compound (6) selected from organozinc compounds (6c) to produce a ketone derivative (II') and/or a C-aryl-hydroxyglycoside derivative (V').
  • a ketone derivative (II′-1) and/or a C-aryl-hydroxyglycoside derivative (V′-1) is reacted with a thioester derivative (I-1), an organic zinc compound (6a), an organic ketone derivative (II'-1) and/or C-aryl-hydroxyglycoside derivative (V' -1) can be produced by a method including the step of producing.
  • (II'-1) and/or by a method comprising the step of producing C-aryl-hydroxyglycoside derivative (V'-1) where n 1.
  • II'-1 and/or by a method comprising the step of producing C-aryl-hydroxyglycoside derivative (V'-1) where n 2.
  • a ketone derivative (II′-2) and/or a C-aryl-hydroxyglycoside derivative (V′-2) is reacted with a thioester derivative (I-2), an organic zinc compound (6a), an organic ketone derivative (II'-2) and/or C-aryl-hydroxyglycoside derivative (V' -2) can be produced by a method including the step of producing.
  • the contact between the thioester derivative (I-1) or (I-2) and the organozinc compound (6) is preferably carried out in a solvent.
  • the thioester derivative (I-1) or (I-2) and the organic zinc compound (6) are obtained by mixing the thioester derivative (I-1) or (I-2) and the organic zinc compound (6) in a solvent. can be brought into contact with
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably THF, 2-methyl-THF, toluene or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, more preferably 3 to 30 mL, relative to 1 g of thioester derivative (I-1) or (I-2).
  • the contact temperature is, for example, 0 to 100°C, preferably 5 to 80°C, more preferably The temperature is 10 to 60° C.
  • the contact time is, for example, 0.1 to 24 hours, preferably 0.3 to 17 hours, more preferably 0.5 to 8 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • Organozinc compounds (6) can be used as reagents to introduce group W2 into thioester derivatives (I-1) or (I-2).
  • the organic zinc compound (6) one of the organic zinc compound (6a), the organic zinc compound (6b) and the organic zinc compound (6c) may be selected, or two or more thereof may be selected. When two or more are selected, a mixture of two or more organic zinc compounds may be added to the reaction system, or two or more organic zinc compounds may be added separately to the reaction system.
  • the organic zinc compound (6) may be a commercial product or may be produced according to a conventional method.
  • the organic zinc compound (6a) and/or the organic zinc compound (6b) may be used, for example, together with a lithium salt such as lithium chloride.
  • the organozinc compound (6a) may form a complex with a lithium salt.
  • the complex of organozinc compound (6a) and lithium salt corresponds to organozinc compound (6c).
  • the amount of the organic zinc compound (6) used is, for example, 1 to 5 mol, preferably 1.05 to 4 mol, more preferably 1.05 to 4 mol, per 1 mol of the thioester derivative (I-1) or (I-2). 1 to 3 mol.
  • the amount of the organic zinc compound (6) used means the amount of the one organic zinc compound (6) when one type of organic zinc compound (6) is used, and two or more types of When the organozinc compound (6) is used, it means the total amount of the two or more organozinc compounds (6).
  • the explanation regarding the palladium catalyst is the same as above.
  • the use of a palladium catalyst is advantageous in that it can reduce the amount of by-products produced by coupling reactions between W 2 groups and the like.
  • the palladium catalyst may be supported on a carrier.
  • a carrier-supported palladium catalyst is advantageous in that the palladium catalyst can be easily separated from the reaction mixture.
  • the description regarding the carrier is the same as above.
  • the amount of the palladium catalyst is, for example, 1 to 25 wt%, preferably 3 to 20 wt%, more preferably 4 to 15 wt%, based on the total weight of the palladium catalyst and carrier. %.
  • the amount of the palladium catalyst used is, for example, 0.001 to 1 mol, preferably 0.002 to 0.5 mol, more preferably 0.002 to 0.5 mol, per 1 mol of the thioester derivative (I-1) or (I-2). 03 to 0.1 mol.
  • ketone derivative (II') and/or C-aryl-hydroxyglycoside derivative (V') may be isolated by silica gel column chromatography, or used as a concentrated residue in the next step without being purified. good too.
  • ketone derivative (II') and/or the C-aryl-hydroxyglycoside derivative (V') can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
  • the C-aryl-hydroxyglycoside derivative (V') is produced by a method comprising the step of contacting the ketone derivative (II') with a base to produce the C-aryl-hydroxyglycoside derivative (V'). be able to.
  • C-aryl-hydroxyglycoside derivative (V'-1) is prepared by contacting ketone derivative (II'-1) with a base to produce C-aryl-hydroxyglycoside derivative (V'-1). It can be produced by a method comprising
  • - hydroxyglycoside derivative (V'-1) can be produced by a method comprising the step of producing.
  • - hydroxyglycoside derivative (V'-1) can be produced by a method comprising the step of producing.
  • C-aryl-hydroxyglycoside derivative (V'-2) is prepared by contacting ketone derivative (II'-2) with a base to produce C-aryl-hydroxyglycoside derivative (V'-2). It can be produced by a method comprising
  • V'-2 C-aryl-hydroxyglycoside derivative
  • - can be produced by a method comprising the step of producing a hydroxyglycoside derivative (V'-2).
  • - can be produced by a method comprising the step of producing a hydroxyglycoside derivative (V'-2).
  • the method for producing the C-aryl-hydroxyglycoside derivative (V') may include the step of producing the ketone derivative (II'). In this case, the step of producing the ketone derivative (II') is followed by the step of contacting the ketone derivative (II') with a base to produce the C-aryl-hydroxyglycoside derivative (V').
  • the ketone derivative (II′) is prepared by reacting the thioester derivative (I) with an organozinc compound (6a), an organozinc compound (6b) and an organozinc compound (6c) in the presence of a palladium catalyst. ) to produce the ketone derivative (II′).
  • an organozinc compound (6a) an organozinc compound (6b) and an organozinc compound (6c) in the presence of a palladium catalyst.
  • bases include fluorides, alkali metal alkoxides, alkali metal hydrides, organic bases, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, and cesium hydroxide.
  • fluorides include tetra-n-butylammonium fluoride (TBAF), ammonium fluoride, ammonium bifluoride, hydrofluoric acid and the like.
  • alkali metal alkoxides include sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium-t-butoxide, potassium-t-butoxide and the like.
  • Alkali metal hydrides include, for example, sodium hydride and potassium hydride.
  • organic bases include triethylamine, diisopropylethylamine, pyridine, lutidine and the like.
  • the base is preferably selected from alkali metal alkoxides, alkali metal hydrides and organic bases, more preferably from sodium-t-butoxide, potassium-t-butoxide, sodium hydride and triethylamine.
  • the amount of the base used is, for example, 0.1 to 2, preferably 0.3 to 1.5 mol, more preferably 0.3 to 1.5 mol, per 1 mol of the ketone derivative (II'-1) or (II'-2). 5 to 1.2 mol.
  • the contact between the ketone derivative (II') and the base is preferably carried out in a solvent.
  • the ketone derivative (II') and the base can be contacted by mixing the ketone derivative (II') and the base in a solvent.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used, or two or more organic solvents may be used in combination.
  • the organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile, methanol, IPA or a mixed solvent thereof.
  • the amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, more preferably 3 to 30 mL, relative to 1 g of ketone derivative (II').
  • the contact temperature is, for example, ⁇ 30 to 40° C., preferably ⁇ 20 to 30° C., more preferably ⁇ 10 to 20° C.
  • the contact time is, for example, 0.1 to 8 hours, preferably 0.2 to 4 hours, and more preferably 0.3 to 3 hours.
  • the contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
  • the obtained C-aryl-hydroxyglycoside derivative (V') may be isolated by silica gel column chromatography, or may be used as a concentrated residue in the next step without being purified.
  • the structure of the C-aryl-hydroxyglycoside derivative (V') can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
  • the C-aryl glycoside derivative (VI) is produced by contacting the C-aryl-hydroxyglycoside derivative (V) or (V') with a silane compound to produce the C-aryl glycoside derivative (VI). It can be manufactured by a method comprising:
  • C-aryl glycoside derivative (VI-1) is prepared by contacting C-aryl-hydroxyglycoside derivative (V-1) or (V'-1) with a silane compound to obtain C-aryl glycoside derivative (VI -1) can be produced by a method including the step of producing.
  • the C-aryl glycoside derivative (VI-2) is obtained by contacting the C-aryl-hydroxyglycoside derivative (V-2) or (V'-2) with a silane compound to obtain the C-aryl glycoside derivative (VI -2) can be produced by a method including the step of producing.
  • the method for producing the C-aryl glycoside derivative (VI) may include the step of producing the C-aryl-hydroxyglycoside derivative (V) or (V'). In this case, after the step of producing the C-aryl-hydroxyglycoside derivative (V) or (V'), the C-aryl-hydroxyglycoside derivative (V) or (V') is brought into contact with the silane compound. , a step of producing a C-aryl glycoside derivative (VI).
  • the C-aryl-hydroxyglycoside derivative (V) is obtained by contacting the ketone derivative (II) with a first acid and/or base to eliminate the group represented by R' from the ketone derivative (II). After that, if necessary, it is further brought into contact with a second acid to produce the C-aryl-hydroxyglycoside derivative (V). A description of this method is provided above.
  • C-aryl-hydroxyglycoside derivative (V') is prepared by contacting thioester derivative (I) with organozinc compound (6) in the presence of a palladium catalyst to obtain C-aryl-hydroxyglycoside derivative (V').
  • the C-aryl-hydroxyglycoside derivative (V') can be prepared by a method comprising the step of contacting the ketone derivative (II') with a base to produce the C-aryl-hydroxyglycoside derivative (V'). can be manufactured. Descriptions of these methods are provided above.
  • the silane compound acts as a reducing agent. Therefore, when the C-aryl-hydroxyglycoside derivative (V) or (V') is brought into contact with the silane compound, the reduction reaction of the C-aryl-hydroxyglycoside derivative (V) or (V') proceeds, and C - aryl glycoside derivatives (VI) are obtained.
  • silane compounds include triethylsilane, triisopropylsilane, phenylsilane, dimethylphenylsilane, tert-butyldimethylsilane, triisobutylsilane, trichlorosilane, trimethoxyhydrosilane, triethoxyhydrosilane, tetramethyldisiloxane, and the like.
  • the silane compound is preferably trimethoxyhydrosilane, triethoxyhydrosilane, tetramethyldisiloxane, etc., and more preferably tetramethyldisiloxane.
  • the amount of the silane compound used is preferably 1 to 10 mol, more preferably 1 to 5 mol, per 1 mol of the C-aryl-hydroxyglycoside derivative (V) or (V'), from the viewpoint of sufficiently advancing the reaction. mol, more preferably 1 to 3 mol.
  • the contact between the C-aryl-hydroxyglycoside derivative (V) or (V') and the silane compound is preferably carried out in the presence of a Lewis acid.
  • Lewis acids examples include BF 3 .Et 2 O (boron trifluoride diethyl ether complex), BF 3 .THF (boron trifluoride tetrahydrofuran), AlCl 3 , ZnCl 2 , FeCl 3 and titanium compounds.
  • titanium compounds are preferred.
  • Titanium compounds for example, those in which titanium has a valence of zero, those in which titanium has a valence of 2, those in which titanium has a valence of 3, and those in which titanium has a valence of 4 are known. good. Titanium compounds include triisopropoxy titanium (IV) monochloride, diisopropoxy titanium (IV) dichloride, monoisopropoxy titanium (IV) trichloride, titanium (IV) chloride, titanium (IV) bromide, iodide.
  • tetravalent titanium salts such as titanium (IV) and titanium oxide (IV) or solvates thereof; trivalent titanium salts such as titanium (III) chloride and titanium (III) bromide or solvates thereof; titanium chloride divalent titanium salts such as (II) or solvates thereof; and zerovalent titanium such as metal Ti or solvates thereof.
  • solvates include those coordinated with solvents such as water and tetrahydrofuran.
  • R c is preferably a chlorine atom, a bromine atom or an iodine atom
  • R d is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms. .
  • Titanium compounds are preferably triisopropoxy titanium (IV) monochloride, diisopropoxy titanium (IV) dichloride, monoisopropoxy titanium (IV) trichloride, titanium (IV) chloride, titanium (III) chloride, and the like. and more preferably titanium (IV) chloride. Titanium chloride (IV) has a low melting point and is liquid at room temperature, and is therefore preferable in terms of ease of handling, low cost, and the like.
  • the amount of Lewis acid used is, for example, 0.1 to 3 mol, preferably 0.5 to 2 mol, more preferably 1 mol, per 1 mol of the C-aryl-hydroxyglycoside derivative (V) or (V'). ⁇ 1.5 moles.
  • the amount of the titanium compound used is, for example, 0.05 to 10 mol, preferably 0.1 to 7 mol, per 1 mol of the C-aryl-hydroxyglycoside derivative (V) or (V'). mol, more preferably 1 to 5 mol.
  • the contact between the C-aryl-hydroxyglycoside derivative (V) or (V') and the silane compound is preferably carried out in a solvent.
  • the solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One solvent may be used alone, or two or more solvents may be used in combination.
  • the organic solvent is preferably acetonitrile, DCM or a mixed solvent thereof. These are preferred because they are aprotic polar solvents and are less susceptible to silane reduction.
  • the amount of solvent used is, for example, 1 to 100 mL, preferably 1 to 50 mL, more preferably 2 to 20 mL, per 1 g of C-aryl-hydroxyglycoside derivative (V) or (V').
  • the contact temperature is, for example, in the range of -100°C to 100°C, more preferably -78°C to -78°C.
  • the temperature is 50° C., more preferably ⁇ 60° C. to 10° C.
  • the contact time is, for example, 10 minutes to 48 hours, preferably 0.5 to 24 hours, more preferably 1 to 17 hours.
  • reaction atmosphere is not particularly limited, it is preferably an inert gas atmosphere or an air atmosphere in order to suppress the contamination of moisture.
  • the inside of the reaction system may be under atmospheric pressure, under pressure, or under reduced pressure, but among these, it is preferable to carry out the reaction under atmospheric pressure.
  • a C-aryl glycoside derivative (VI-1) or (VI-2) can be obtained by a reduction reaction.
  • the products obtained by the reduction reaction are ⁇ -C-arylglycoside derivatives (hereinafter sometimes referred to as “ ⁇ forms”) and ⁇ -C-arylglycoside derivatives (hereinafter sometimes referred to as “ ⁇ forms”).
  • ⁇ forms ⁇ -C-arylglycoside derivatives
  • ⁇ forms ⁇ -C-arylglycoside derivatives
  • the obtained C-aryl glycoside derivative (VI-1) or (VI-2) is preferably removed from the reaction system.
  • the C-aryl glycoside derivative (VI-1) or (VI-2) can be prepared, for example, by adding water to the reaction solution, followed by addition of slightly water-soluble organic solvents such as ethyl acetate, toluene, tert-butyl methyl ether and methylene chloride. and extracting the C-aryl glycoside derivative (VI-1) or (VI-2) with the sparingly water-soluble organic solvent, so that it can be removed from the reaction system.
  • the obtained C-aryl glycoside derivative (VI-1) or (VI-2) can be further purified using known methods such as column separation and recrystallization.
  • column separation and recrystallization it is difficult to separate the ⁇ form and the ⁇ form by column purification using a silica gel column or the like. Therefore, the usefulness of the present invention for producing ⁇ -C-arylglycoside derivatives with high selectivity and high yield is extremely high.
  • the resulting C-aryl glycoside derivative (VI-1) or (VI-2) can be suitably used as an SGLT2 inhibitor useful as an antidiabetic agent or a synthetic intermediate thereof.
  • the structure of the C-aryl glycoside derivative (VI-1) or (VI-2) can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
  • Example 1 Compound 2 was produced from compound 1 (D-(+)-glucono-1,5-lactone) by the reaction represented by the following formula.
  • Ac represents an acetyl group
  • iPr represents an isopropyl group (same below).
  • reaction mixture was added to a THF solution (0.5 mL) of ZnBr2 (169 mg, 0.750 mmol, 1.00 eq) and LiCl (31.8 mg, 0.750 mmol, 1.00 eq) at room temperature. The mixture was stirred at room temperature for an additional hour and used in the next step (Fukuyama coupling reaction).
  • the prepared thiolate solution was added to a THF solution (4 mL) of compound 8 (1.1 g, 1.856 mmol, 1 eq) using a cannula and stirring continued at 0° C. until compound 8 dissolved. After 1 hour, the reaction was quenched with 1M HCl solution, 50 mL of ethyl acetate was added, and the organic layer was washed with 1M HCl, saturated aqueous NaHCO 3 and brine. It was then dried with Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate 9.5/0.5 ⁇ 7/3) to obtain compound 10 (1.478 g, yield 91%).
  • the reaction was carried out at 40°C for 20 hours. After 20 hours, the reaction was filtered using a silica gel pad with a thin layer of celite. The filtrate was then washed with saturated NaHCO 3 solution (10 mL) to quench the reaction and eluted with ethyl acetate (approximately 20 mL). After eluting with 40 mL of ethyl acetate (4 x 10 mL), the aqueous layer was removed. The organic layer was then washed with brine and dried with Na2SO4 .
  • Example 13 Compound 12 was prepared in the same manner as in Example 11, except that the reaction of compound 12 with t-BuOK (12.1 mg, 0.112 mmol, 2.08 eq) was carried out in dichloromethane (DCM) at room temperature for 24 hours. 13 (15.2 mg, 32% yield) was obtained.
  • Example 14 Using 20% sodium ethoxide (EtONa) in ethanol (21 ⁇ L, 0.06017 mmol, 1.1 equiv) instead of t-BuOK, the reaction of compound 12 with EtONa was carried out in ethyl acetate (EtOAc). Compound 13 (13.8 mg, yield 29%) was obtained in the same manner as in Example 11, except that the reaction was carried out at room temperature for 30 hours.
  • Example 16 Compound 12a was produced from compound 11 by the reaction represented by the following formula.
  • Ac represents an acetyl group
  • Bz represents a benzoyl group.
  • Example 17 The reaction represented by the following formula is performed to convert compound 11 to compound 12aa ((2R,3R,4S,5R)-2-acetoxy-6-(4-chloro-3-(4-(((R)-tetrahydrofuran-3 -yl)oxy)benzyl)phenyl)-6-oxohexane-1,3,4,5-tetrayltetrabenzoate)).
  • compound 11 represents compound 11
  • compound 12aa ((2R,3R,4S,5R)-2-acetoxy-6-(4-chloro-3-(4-(((R)-tetrahydrofuran-3 -yl)oxy)benzyl)phenyl)-6-oxohexane-1,3,4,5-tetrayltetrabenzoate)).
  • Ac represents an acetyl group
  • Bz represents a benzoyl group.
  • reaction mixture was quenched with THF (1 mL x 2) through another Schlenk column containing a suspension of CuCN (91 mg, 1.02 mmol, 2 eq) and THF (1 mL, 2 volumes). Transferred to a tube, kept at room temperature for 10 minutes and used in the next step.
  • reaction mixture was filtered through a celite pad and the bed was washed with ethyl acetate (10 mL x 3). The filtrate was dried over anhydrous sodium sulfate and filtered. The solvent was removed by pulling a vacuum to give the crude compound.
  • Example 18 Compound 11b was produced from compound 10 by the reaction represented by the following formula. "Bz” represents a benzoyl group, and “TBS” represents a tert-butyldimethylsilyl group.
  • reaction mixture was then diluted with ethyl acetate, washed with saturated aqueous NaHCO 3 (10 mL) and brine (10 mL), dried over Na 2 SO 4 , filtered and concentrated by applying vacuum.
  • Example 21 Compound 2 was produced from compound 1b by the reaction represented by the following formula.
  • Ac represents an acetyl group
  • iPr represents an isopropyl group.
  • Example 22 Compound 3b was produced from compound 2 by the reaction represented by the following formula.
  • Ac represents an acetyl group
  • THP represents a tetrahydropyranyl group.
  • Example 23 Compound 4b was produced from compound 3b by the reaction represented by the following formula.
  • Ac represents an acetyl group
  • THP represents a tetrahydropyranyl group.
  • Example 24 Compound 6b was produced from compound 4b by the reaction represented by the following formula.
  • Ac represents an acetyl group
  • THP represents a tetrahydropyranyl group.
  • Example 25 The reaction represented by the following formula is carried out to convert compound 2 to compound 3c ((2R,3R,4S,5R)-2-(2-chloroacetoxy)-6-(dodecylthio)-6-oxohexane-1,3,4 , 5-tetrayltetraacetate) was prepared.
  • “Ac” represents an acetyl group.
  • Example 26 The reaction represented by the following formula is carried out to convert compound 2 to compound 3d ((2R,3R,4S,5R)-6-(dodecylthio)-2-((2-methoxypropan-2-yl)oxy)-6-oxo hexane-1,3,4,5-tetrayltetraacetate) was prepared.
  • "Ac” represents an acetyl group.
  • Example 27 The reaction represented by the following formula is carried out to convert compound 2 to compound 3e ((2R,3R,4S,5R)-2-((tert-butoxycarbonyl)oxy)-6-(dodecylthio)-6-oxohexane-1, 3,4,5-tetrayl tetraacetate) was prepared.
  • "Ac” represents an acetyl group.
  • Example 28 The reaction represented by the following formula is carried out to convert compound 2 to compound 3e ((2R,3R,4S,5R)-2-((tert-butoxycarbonyl)oxy)-6-(dodecylthio)-6-oxohexane-1, 3,4,5-tetrayl tetraacetate) was prepared.
  • "Ac” represents an acetyl group.
  • Example 29 The reaction represented by the following formula is carried out to convert compound 10 to compound 11d ((2R,3R,4S,5R)-2-(2-chloroacetoxy)-6-(dodecylthio)-6-oxohexane-1,3,4 , 5-tetrayltetrabenzoate) was prepared.
  • “Bz” represents a benzoyl group.
  • Example 30 The reaction represented by the following formula is performed to convert compound 10 to compound 11e ((2R,3R,4S,5R)-6-(dodecylthio)-6-oxo-2-(2,2,2-trifluoroacetoxy)hexane- 1,3,4,5-tetrayl tetrabenzoate) was prepared.
  • “Bz” represents a benzoyl group.
  • Trifluoroacetic anhydride (131 mg, 1.25 mmol, 2 eq) was added to an ice-cold DCM solution (10 mL, 20 volumes) containing compound 10 (0.5 g, 0.627 mmol, 1 eq) in an oven dried Schlenk tube. ) at 10-15°C. The reaction mixture was stirred at room temperature for 1 hour. The progress of the reaction was monitored by TLC. Solvent was removed by vacuum to give 0.45 g of compound 11e (80% yield) as a yellow oil.
  • Example 31 The reaction represented by the following formula is performed to convert compound 3c to compound 4c ((2R,3R,4S,5R)-2-(2-chloroacetoxy)-6-(3-((5-(4-fluorophenyl)thiophene). -2-yl)methyl)-4-methylphenyl)-6-oxohexane-1,3,4,5-tetrayltetraacetate).
  • Ac represents an acetyl group.
  • Example 32 The reaction represented by the following formula is carried out to convert compound 3d to compound 4d ((2R,3R,4S,5R)-6-(3-((5-(4-fluorophenyl)thiophen-2-yl)methyl)-4 -methylphenyl)-2-((2-methoxypropan-2-yl)oxy)-6-oxohexane-1,3,4,5-tetrayltetraacetate).
  • “Ac” represents an acetyl group.
  • reaction mixture was quenched with THF (2 mL x 2) into another Schlenk tube containing a suspension of CuCN (288 mg, 3.22 mmol, 2 eq) and THF (2 mL, 2 volumes). at room temperature, kept for 10 minutes and used in the next step.
  • Example 33 A reaction represented by the following formula is performed to convert compound 11d to compound 12d ((2R,3R,4S,5R)-2-(2-chloroacetoxy)-6-(3-((5-(4-fluorophenyl)thiophene). -2-yl)methyl)-4-methylphenyl)-6-oxohexane-1,3,4,5-tetrayltetrabenzoate)).
  • “Bz” represents a benzoyl group.
  • reaction mixture was quenched with THF (3.6 mL x 2) into a suspension of CuCN (369 mg, 4.12 mmol, 2 eq) and THF (3.6 mL, 2 volumes). Transfer to another Schlenk tube at room temperature, keep for 10 minutes and use in next step.
  • Example 34 The reaction represented by the following formula is carried out to convert compound 3e to compound 4e ((2R,3R,4S,5R)-2-((tert-butoxycarbonyl)oxy)-6-(3-((5-(4-fluoro phenyl)thiophen-2-yl)methyl)-4-methylphenyl)-6-oxohexane-1,3,4,5-tetrayltetraacetate).
  • “Ac” represents an acetyl group.
  • reaction mixture was quenched with THF (6 mL x 2) into another Schlenk tube containing a suspension of CuCN (829 mg, 9.24 mmol, 2 eq) and THF (6 mL, 2 volumes). at room temperature, kept for 10 minutes and used in the next step.
  • Example 35 The reaction represented by the following formula is carried out to give compound 6 ((2R,3R,4S,5R)-6-(3-((5-(4-fluorophenyl)thiophen-2-yl)methyl)-4 from compound 4d. -methylphenyl)-2-hydroxy-6-oxohexane-1,3,4,5-tetrayltetraacetate). "Ac” represents an acetyl group.
  • Example 36 The reaction represented by the following formula is carried out to convert compound 4e to compound 6 ((2R,3R,4S,5R)-6-(3-((5-(4-fluorophenyl)thiophen-2-yl)methyl)-4 -methylphenyl)-2-hydroxy-6-oxohexane-1,3,4,5-tetrayltetraacetate).
  • "Ac” represents an acetyl group.
  • Example 37 The reaction represented by the following formula is performed to convert compound 6 to compound 5 ((3R,4S,5R,6R)-6-(acetoxymethyl)-2-(3-((5-(4-fluorophenyl)thiophene-2 -yl)methyl)-4-methylphenyl)-2-hydroxytetrahydro-2H-pyran-3,4,5-triyltriacetate).
  • "Ac” represents an acetyl group.

Abstract

One purpose of the present invention is to provide a novel thioester derivative and a method for producing the same, a novel ketone derivative and a method for producing the same, a novel method for producing a C-arylhydroxyglucoside derivative, and a novel method for producing a C-arylglucoside derivative. Provided is a thioester derivative (I) represented by formula (I): [In the formula: W1 represents an alkyl group that may have a substituent, an aryl group that may have a substituent, or the like; each R independently represents an alkyl group that may have a substituent, or independently represents an aryl group that may have a substituent; when each R independently represents an alkyl group that may have a substituent, R' represents an alkylsilyl group that may have a substituent, a tetrahydropyranyl group that may have a substituent, a group represented by the formula -CO-L1-L2, a group represented by the formula -C(-L3)(-L4)-O-L5, or a group represented by the formula -CO-O-C(-L6)(-L7)(-L8); when each R independently represents an aryl group that may have a substituent, R' represents an alkylcarbonyl group that may have a substituent, an alkylsilyl group that may have a substituent, an aldehyde group, a group represented by the formula -CO-L1-L2, or a group represented by the formula -CO-C(-L9)(-L10)(-L11); and n represents 1 or 2].

Description

C-アリールグリコサイド誘導体の製造方法Method for producing C-aryl glycoside derivative
 本発明は、チオエステル誘導体及びその製造方法、ケトン誘導体及びその製造方法、C-アリール-ヒドロキシグリコサイド誘導体の製造方法、並びにC-アリールグリコサイド誘導体の製造方法に関する。 The present invention relates to a thioester derivative and its production method, a ketone derivative and its production method, a production method of a C-aryl-hydroxyglycoside derivative, and a production method of a C-arylglycoside derivative.
 SGLT2阻害剤は、抗糖尿病薬として有用である。なお、「SGLT2」は、ナトリウム-グルコース共輸送担体-2を意味する。SGLT2阻害剤としては、例えば、カナグリフロジン(1-(β-D-グリコピラノシル)-4-メチル-3-[5-(4-フルオロフェニル)-2-チエニルメチル]ベンゼン)、エンパグリフロジン((1S)-1,5-アンヒドロ-1-C-{4-クロロ-3-[(4-{[(3S)-オキソラン-3-イル]オキシ}フェニル)メチル]フェニル}-D-グルシトール)、イプラグリフロジン((1S)-1,5-アンヒドロ-1-C-{3-[(1-ベンゾチオフェン-2-イル)メチル]-4-フルオロフェニル}-D-グルシトール-(2S)-ピロリジン-2-カルボン酸)、ダパグリフロジン((2S,3R,4R,5S,6R)-2-[4-クロロ-3-(4-エチルオキシベンジル)フェニル]-6-(ヒドロキシメチル)テトラヒドロ-2H-ピラン-3,4,5-チオール)等が知られている。 SGLT2 inhibitors are useful as antidiabetic agents. “SGLT2” means sodium-glucose cotransporter-2. SGLT2 inhibitors include, for example, canagliflozin (1-(β-D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene), empagliflozin ( (1S)-1,5-anhydro-1-C-{4-chloro-3-[(4-{[(3S)-oxolan-3-yl]oxy}phenyl)methyl]phenyl}-D-glucitol) , ipragliflozin ((1S)-1,5-anhydro-1-C-{3-[(1-benzothiophen-2-yl)methyl]-4-fluorophenyl}-D-glucitol-(2S)- pyrrolidine-2-carboxylic acid), dapagliflozin ((2S,3R,4R,5S,6R)-2-[4-chloro-3-(4-ethyloxybenzyl)phenyl]-6-(hydroxymethyl)tetrahydro-2H -pyran-3,4,5-thiol) and the like are known.
 SGLT2阻害剤の製造方法として、1-(β-D-グリコピラノシル)-4-メチル-3-[5-(4-フルオロフェニル)-2-チエニルメチル]ベンゼン前駆体の保護基を脱保護してカナグリフロジンを合成することが提案されている(特許文献1参照)。1-(β-D-グリコピラノシル)-4-メチル-3-[5-(4-フルオロフェニル)-2-チエニルメチル]ベンゼン前駆体は、C-アリールヒドロキシグリコサイド誘導体とも称され、SGLT-2阻害薬を製造するための中間体として注目されている(特許文献1~2及び非特許文献1~3)。 As a method for producing an SGLT2 inhibitor, 1-(β-D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene precursor is deprotected to It has been proposed to synthesize canagliflozin (see Patent Document 1). 1-(β-D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene precursor, also called C-arylhydroxyglycoside derivative, SGLT-2 It has attracted attention as an intermediate for producing inhibitors (Patent Documents 1 and 2 and Non-Patent Documents 1 and 3).
 C-アリールヒドロキシグリコサイド誘導体の製造方法として種々の提案がされており、例えば、-78℃の超低温下において、D-グルコノラクトン誘導体にアリールリチウムを作用させてアリール基を付加反応させる方法(非特許文献1及び3)、-20~-10℃の低温下において、D-グルコノラクトン誘導体にArMgBr・LiCl(Arはアリール基を表す)等のターボグリニャール試薬を作用させてアリール基を付加反応させる方法(非特許文献2)、リチウムトリn-ブチルマグネサート(nBuMgLi)から得られたマグネシウムアート錯体を用いて、-15℃程度の温度環境下、D-グルコノラクトン誘導体にアリール基を付加反応させる方法(特許文献2)等が知られている。また、ニッケル触媒存在下でチオエステル誘導体に有機亜鉛試薬を反応させることによりカップリングが起こり、ケトン誘導体が得られることが報告されている(非特許文献4及び5)。 Various methods for producing C-arylhydroxyglycoside derivatives have been proposed. For example, a method of adding an aryl group by reacting an aryllithium with a D-gluconolactone derivative at an ultra-low temperature of -78°C ( Non-Patent Documents 1 and 3), adding an aryl group by reacting a D-gluconolactone derivative with a turbo Grignard reagent such as ArMgBr.LiCl (where Ar represents an aryl group) at a low temperature of -20 to -10°C. A reaction method (Non-Patent Document 2), using a magnesiumate complex obtained from lithium tri-n-butyl magnesate (nBu 3 MgLi), under a temperature environment of about -15 ° C., aryl to D-gluconolactone derivative A method of subjecting a group to an addition reaction (Patent Document 2) and the like are known. In addition, it has been reported that a ketone derivative is obtained by reacting a thioester derivative with an organozinc reagent in the presence of a nickel catalyst to cause coupling (Non-Patent Documents 4 and 5).
 また、下記式(X)で表されるレムデシビル(Remdesivir)は、抗ウイルス薬として用い得る化合物である。レムデシビルは、例えば、RSウイルス、コロナウイルス等の一本鎖RNAウイルスに対して抗ウイルス活性を示す。 In addition, Remdesivir represented by the following formula (X) is a compound that can be used as an antiviral drug. Remdesivir exhibits antiviral activity against single-stranded RNA viruses such as, for example, respiratory syncytial virus, coronavirus.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 特許文献3には、レムデシビル及びその中間体の製造方法が開示されている。特許文献3には、クロロトリメチルシラン(TMSCl)及びn-ブチルリチウム存在下、下記式(XI)で表されるラクトンと、下記式(Ar’’)で表されるブロモピラゾールとを、-78℃で反応させることにより、下記式(XII)で表されるヒドロキシヌクレオシドが得られることが記載されている。このヒドロキシヌクレオシドは、レムデシビル合成のための中間体として用いることができる。なお、「Bn」はベンジル基を表す。 Patent Document 3 discloses a method for producing remdesivir and its intermediates. Patent Document 3 discloses that a lactone represented by the following formula (XI) and a bromopyrazole represented by the following formula (Ar'') are treated in the presence of chlorotrimethylsilane (TMSCl) and n-butyllithium. It is described that a hydroxynucleoside represented by the following formula (XII) can be obtained by reacting at °C. This hydroxynucleoside can be used as an intermediate for remdesivir synthesis. "Bn" represents a benzyl group.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
WO2010/043682号公報WO2010/043682 WO2015/012110号公報WO2015/012110 WO2012/012776号公報WO2012/012776
 C-アリールヒドロキシグリコサイド誘導体又はレムデシビル若しくはその中間体の製造に従前用いられてきた手法はいずれも、厳しい低温条件下で高価な試薬を用いて実施する必要があり、設備コスト又はランニングコストが極めて高価となり、最終原薬を安価に量産することが困難である。このため、C-アリールヒドロキシグリコサイド誘導体又はレムデシビル若しくはその中間体を工業的に安価で効率的に製造することを可能とする、チオエステル誘導体及びその製造方法、ケトン誘導体及びその製造方法、C-アリール-ヒドロキシグリコサイド誘導体の製造方法、並びにC-アリールグリコサイド誘導体の製造方法が求められている。 All of the previously used procedures for the preparation of C-arylhydroxyglycoside derivatives or remdesivir or its intermediates require the use of expensive reagents under severe low temperature conditions, and the equipment or running costs are extremely high. It is expensive, and it is difficult to mass-produce the final drug substance at low cost. Therefore, a thioester derivative and its production method, a ketone derivative and its production method, and a C-aryl thioester derivative, which enable industrially inexpensive and efficient production of a C-aryl hydroxyglycoside derivative or remdesivir or an intermediate thereof, are -Hydroxyglycoside derivatives, as well as methods for preparing C-aryl glycoside derivatives.
 本発明は、新規チオエステル誘導体及びその製造方法、新規ケトン誘導体及びその製造方法、C-アリール-ヒドロキシグリコサイド誘導体の新規製造方法、並びにC-アリールグリコサイド誘導体の新規製造方法を提供することを一つの目的とする。 An object of the present invention is to provide a novel thioester derivative and its production method, a novel ketone derivative and its production method, a novel production method of a C-aryl-hydroxyglycoside derivative, and a novel production method of a C-arylglycoside derivative. one purpose.
 本発明は、以下の発明を提供する。
[1]下記式(I):
Figure JPOXMLDOC01-appb-C000032
[式中、
 Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
 Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表し、
 Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表す場合、R’は、
 置換基を有していてもよいアルキルシリル基、
 置換基を有していてもよいテトラヒドロピラニル基、
 式:-CO-L-L[式中、Lは、置換基を有していてもよいアルキレン基又は置換基を有していてもよいハロアルキレン基を表し、Lは、ハロゲン原子を表す。]で表される基、
 式:-C(-L)(-L)-O-L[式中、Lは、水素原子又は置換基を有していてもよいアルキル基を表し、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表される基、又は、
 式:-CO-O-C(-L)(-L)(-L)[式中、L、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表される基
を表し、
 Rが、それぞれ独立して、置換基を有していてもよいアリール基を表す場合、R’は、
 置換基を有していてよいアルキルカルボニル基、
 置換基を有していてもよいアルキルシリル基、
 アルデヒド基、
 式:-CO-L-L[式中、L及びLは、前記と同義である。]で表される基、又は、
 式:-CO-C(-L)(-L10)(-L11)[式中、L、L10及びL11は、それぞれ独立して、ハロゲン原子を表す。]で表される基
を表し、
 nは、1又は2を表す。]
で表されるチオエステル誘導体(I)。
[2]下記式(II):
Figure JPOXMLDOC01-appb-C000033
[式中、
 Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
 Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表し、
 Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表す場合、R’は、
 置換基を有していてもよいアルキルシリル基、
 置換基を有していてもよいテトラヒドロピラニル基、
 式:-CO-L-L[式中、Lは、置換基を有していてもよいアルキレン基又は置換基を有していてもよいハロアルキレン基を表し、Lは、ハロゲン原子を表す。]で表される基、
 式:-C(-L)(-L)-O-L[式中、Lは、水素原子又は置換基を有していてもよいアルキル基を表し、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表される基、又は、
 式:-CO-O-C(-L)(-L)(-L)[式中、L、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表される基
を表し、
 Rが、それぞれ独立して、置換基を有していてもよいアリール基を表す場合、R’は、
 置換基を有していてよいアルキルカルボニル基、
 置換基を有していてもよいアルキルシリル基、
 アルデヒド基、
 式:-CO-L-L[式中、L及びLは、前記と同義である。]で表される基、又は、
 式:-CO-C(-L)(-L10)(-L11)[式中、L、L10及びL11は、それぞれ独立して、ハロゲン原子を表す。]で表される基
を表し、
 nは、1又は2を表す。]
で表されるケトン誘導体(II)。
[3]Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、置換基を有していてよいアルキルカルボニル基を表す、[1]に記載のチオエステル誘導体(I)を製造する方法であって、
 塩基又はルイス酸の存在下、
 下記式(III):
Figure JPOXMLDOC01-appb-C000034
[式中、W及びnは、[1]と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]
で表されるチオエステル誘導体(III)と、
 下記式(1):
Figure JPOXMLDOC01-appb-C000035
[式中、R’’は、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
で表されるカルボン酸無水物(1)と、
を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
[4]Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、置換基を有していてもよいアルキルシリル基を表す、[1]に記載のチオエステル誘導体(I)を製造する方法であって、
 塩基の存在下、
 下記式(III):
Figure JPOXMLDOC01-appb-C000036
[式中、W及びnは、[1]と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]
で表されるチオエステル誘導体(III)と、
 下記式(2):
Figure JPOXMLDOC01-appb-C000037
[式中、
 R、R及びRは、それぞれ独立して、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表すが、R、R及びRのうちの1以上は置換基を有していてもよいアルキル基を表し、
 Xは、ハロゲン原子又はトリフルオロメタンスルホニル基を表す。]
で表されるシリル化剤(2)と、
を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
[5]Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、アルデヒド基を表す、[1]に記載のチオエステル誘導体(I)を製造する方法であって、
 塩基及び縮合剤の存在下、
 下記式(III):
Figure JPOXMLDOC01-appb-C000038
[式中、W及びnは、[1]と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]
で表されるチオエステル誘導体(III)と、
 ギ酸と、
を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
[6]Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、式:-CO-L-Lで表される基を表す、[1]に記載のチオエステル誘導体(I)を製造する方法であって、
 塩基の存在下、
 下記式(III):
Figure JPOXMLDOC01-appb-C000039
[式中、W及びnは、[1]と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]
で表されるチオエステル誘導体(III)と、
 式:J-CO-L-L[式中、L及びLは前記と同義であり、Jはハロゲン原子を表す。]で表される化合物と、
を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
[7]Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、式:-CO-C(-L)(-L10)(-L11)で表される基を表す、[1]に記載のチオエステル誘導体(I)を製造する方法であって、
 下記式(III):
Figure JPOXMLDOC01-appb-C000040
[式中、W及びnは、[1]と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]
で表されるチオエステル誘導体(III)と、
 式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)[式中、L、L10及びL11は前記と同義である。]で表される化合物と、
を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
[8]Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’が、置換基を有していてもよいアルキルシリル基を表す、[1]に記載のチオエステル誘導体(I)を製造する方法であって、
 塩基の存在下、
 下記式(III):
Figure JPOXMLDOC01-appb-C000041
[式中、W及びnは、[1]と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
で表されるチオエステル誘導体(III)と、
 下記式(2):
Figure JPOXMLDOC01-appb-C000042
[式中、
 R、R及びRは、それぞれ独立して、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表すが、R、R及びRのうちの1以上は置換基を有していてもよいアルキル基を表し、
 Xは、ハロゲン原子又はトリフルオロメタンスルホニル基を表す。]
で表されるシリル化剤(2)と、
を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
[9]Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’が、置換基を有していてもよいテトラヒドロピラニル基を表す、[1]に記載のチオエステル誘導体(I)を製造する方法であって、
 酸の存在下、
 下記式(III):
Figure JPOXMLDOC01-appb-C000043
[式中、W及びnは、[1]と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
で表されるチオエステル誘導体(III)と、
 置換基を有していてもよい3,4-ジヒドロ-2H-ピランと、
を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
[10]Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’が、式:-CO-L-Lで表される基を表す、[1]に記載のチオエステル誘導体(I)を製造する方法であって、
 塩基の存在下、
 下記式(III):
Figure JPOXMLDOC01-appb-C000044
[式中、W及びnは、[1]と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
で表されるチオエステル誘導体(III)と、
 式:J-CO-L-L[式中、L及びLは前記と同義であり、Jはハロゲン原子を表す。]で表される化合物と、
を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
[11]Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’が、式:-C(-L)(-L)-O-Lで表される基を表す、[1]に記載のチオエステル誘導体(I)を製造する方法であって、
 酸の存在下、
 下記式(III):
Figure JPOXMLDOC01-appb-C000045
[式中、W及びnは、[1]と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
で表されるチオエステル誘導体(III)と、
 式:L-C(=CH-K)-O-L[式中、L及びLは前記と同義であり、Kは水素原子又は置換基を有していてもよいアルキル基を表す。]で表される化合物と、
を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
[12]Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’が、式:-CO-O-C(-L)(-L)(-L)で表される基を表す、[1]に記載のチオエステル誘導体(I)を製造する方法であって、
 塩基の存在下、
 下記式(III):
Figure JPOXMLDOC01-appb-C000046
[式中、W及びnは、[1]と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
で表されるチオエステル誘導体(III)と、
 式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)[式中、L、L及びLは前記と同義である。]で表される化合物と、
を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
[13]下記式(3):
Figure JPOXMLDOC01-appb-C000047
[式中、Wは、前記と同義である。]
で表されるチオール(3)と、
 下記式(4):
Figure JPOXMLDOC01-appb-C000048
[式中、
 Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
 Xは、ハロゲン原子を表す。]
で表されるグリニャール試薬(4)と、
 下記式(IV):
Figure JPOXMLDOC01-appb-C000049
[式中、R及びnは、前記と同義である。]
で表されるアシル保護ラクトン誘導体(IV)と、
を接触させて、前記チオエステル誘導体(III)を製造する工程を含む、[3]~[12]のいずれか一項に記載の方法。
[14]前記工程において、前記チオール(3)と前記グリニャール試薬(4)との反応によりマグネシウムチオラートが形成された後、前記マグネシウムチオラートと前記アシル保護ラクトン誘導体(IV)との反応により前記チオエステル誘導体(III)が形成される、[13]に記載の方法。
[15][2]に記載のケトン誘導体(II)を製造する方法であって、
 [1]に記載のチオエステル誘導体(I)と、
 下記式(5a):
Figure JPOXMLDOC01-appb-C000050
[式中、Wは、[2]と同義であり、Xは、ハロゲン原子を表す。]
で表されるグリニャール試薬(5a)、及び、
 下記式(5b):
Figure JPOXMLDOC01-appb-C000051
[式中、W及びXは、前記と同義である。]
で表されるグリニャール試薬(5b)
から選択されるグリニャール試薬(5)と、
 銅塩と、
を接触させて、前記ケトン誘導体(II)を製造する工程を含む、前記方法。
[16]前記工程において、パラジウム触媒の存在下、前記チオエステル誘導体(I)と前記グリニャール試薬(5)と前記銅塩とを接触させる、[15]に記載の方法。
[17]前記工程において、前記グリニャール試薬(5)と前記銅塩とを接触させて有機銅試薬を形成させた後、前記有機銅試薬と前記チオエステル誘導体(I)とを接触させて前記ケトン誘導体(II)を製造する、[15]又は[16]に記載の方法。
[18]前記銅塩が、シアン化銅(I)及び塩化銅(I)からなる群から選択される少なくとも1種を含む、[15]~[17]のいずれか一項に記載の方法。
[19]前記グリニャール試薬(5) 1モルに対して、0.2~1.2モルのシアン化銅(I)又は1.3~1.5モルの塩化銅(I)を用いる、[18]に記載の方法。
[20]前記工程において、-10℃以上100℃以下の温度範囲で、前記チオエステル誘導体(I)と前記グリニャール試薬(5)と前記銅塩とを接触させる、[15]~[18]のいずれか一項に記載の方法。
[21]下記式(V):
Figure JPOXMLDOC01-appb-C000052
[式中、
 Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表し、
 Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
 R100は、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルキルカルボニル基、又は、置換基を有していてもよいアリールカルボニル基を表し、
 nは、1又は2を表す。]
で表されるC-アリール-ヒドロキシグリコサイド誘導体(V)を製造する方法であって、
 [2]に記載のケトン誘導体(II)と第1の酸及び/又は塩基とを接触させて、前記ケトン誘導体(II)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、前記C-アリール-ヒドロキシグリコサイド誘導体(V)を製造する工程を含む、前記方法。
[22]下記式(II’):
Figure JPOXMLDOC01-appb-C000053
[式中、
 Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
 Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表し、
 nは、1又は2を表す。]
で表されるケトン誘導体(II’)、及び/又は、
 下記式(V’):
Figure JPOXMLDOC01-appb-C000054
[式中、R、W及びnは、前記式(II’)と同義である。]
で表されるC-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する方法であって、
 パラジウム触媒の存在下、
 [1]に記載のチオエステル誘導体(I)と、
 下記式(6a):
Figure JPOXMLDOC01-appb-C000055
[式中、Wは、前記と同義であり、Xは、ハロゲン原子を表す。]
で表される有機亜鉛化合物(6a)、
 下記式(6b):
Figure JPOXMLDOC01-appb-C000056
[式中、Wは、前記と同義である。]
で表される有機亜鉛化合物(6b)、及び、
 下記式(6c):
Figure JPOXMLDOC01-appb-C000057
[式中、W及びXは、前記と同義である。]
で表される有機亜鉛化合物(6c)
から選択される有機亜鉛化合物(6)と、
を接触させて、前記ケトン誘導体(II’)及び/又は前記C-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する工程を含む、前記方法。
[23]下記式(V’):
Figure JPOXMLDOC01-appb-C000058
[式中、
 Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
 Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表し、
 nは、1又は2を表す。]
で表されるC-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する方法であって、
 下記式(II’):
Figure JPOXMLDOC01-appb-C000059
[式中、R、W及びnは、前記式(V’)と同義である。]
で表されるケトン誘導体(II’)と塩基とを接触させて、前記C-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する工程を含む、前記方法。
[24]下記式(VI):
Figure JPOXMLDOC01-appb-C000060
[式中、
 Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
 nは、1又は2を表す。]
で表されるC-アリールグリコサイド誘導体(VI)を製造する方法であって、
 [21]に記載の方法によりC-アリール-ヒドロキシグリコサイド誘導体(V)を製造した後、又は、[22]又は[23]に記載の方法によりC-アリール-ヒドロキシグリコサイド誘導体(V’)を製造した後、得られたC-アリール-ヒドロキシグリコサイド誘導体(V)又はC-アリール-ヒドロキシグリコサイド誘導体(V’)とシラン化合物とを接触させて、前記C-アリールグリコサイド誘導体(VI)を製造する工程を含む、前記方法。
The present invention provides the following inventions.
[1] Formula (I) below:
Figure JPOXMLDOC01-appb-C000032
[In the formula,
W 1 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group,
When R each independently represents an optionally substituted alkyl group, R' is
an optionally substituted alkylsilyl group,
a tetrahydropyranyl group optionally having a substituent,
Formula: -CO-L 1 -L 2 [In the formula, L 1 represents an optionally substituted alkylene group or an optionally substituted haloalkylene group, and L 2 is a halogen represents an atom. ] A group represented by
Formula: -C(-L 3 )(-L 4 )-OL 5 [In the formula, L 3 represents a hydrogen atom or an optionally substituted alkyl group, and L 4 and L 5 , each independently represents an optionally substituted alkyl group. ] A group represented by, or
Formula: -CO-O-C(-L 6 )(-L 7 )(-L 8 ) [wherein L 6 , L 7 and L 8 each independently have a substituent represents a good alkyl group. ] Represents a group represented by
When each R independently represents an optionally substituted aryl group, R' is
an optionally substituted alkylcarbonyl group,
an optionally substituted alkylsilyl group,
aldehyde group,
Formula: -CO-L 1 -L 2 [In the formula, L 1 and L 2 have the same definitions as above. ] A group represented by, or
Formula: -CO-C(-L 9 )(-L 10 )(-L 11 ) [wherein L 9 , L 10 and L 11 each independently represent a halogen atom. ] Represents a group represented by
n represents 1 or 2; ]
A thioester derivative (I) represented by
[2] Formula (II) below:
Figure JPOXMLDOC01-appb-C000033
[In the formula,
W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group,
When R each independently represents an optionally substituted alkyl group, R' is
an optionally substituted alkylsilyl group,
a tetrahydropyranyl group optionally having a substituent,
Formula: -CO-L 1 -L 2 [In the formula, L 1 represents an optionally substituted alkylene group or an optionally substituted haloalkylene group, and L 2 is a halogen represents an atom. ] A group represented by
Formula: -C(-L 3 )(-L 4 )-OL 5 [In the formula, L 3 represents a hydrogen atom or an optionally substituted alkyl group, and L 4 and L 5 , each independently represents an optionally substituted alkyl group. ] A group represented by, or
Formula: -CO-O-C(-L 6 )(-L 7 )(-L 8 ) [wherein L 6 , L 7 and L 8 each independently have a substituent represents a good alkyl group. ] Represents a group represented by
When each R independently represents an optionally substituted aryl group, R' is
an optionally substituted alkylcarbonyl group,
an optionally substituted alkylsilyl group,
aldehyde group,
Formula: -CO-L 1 -L 2 [In the formula, L 1 and L 2 have the same definitions as above. ] A group represented by, or
Formula: -CO-C(-L 9 )(-L 10 )(-L 11 ) [wherein L 9 , L 10 and L 11 each independently represent a halogen atom. ] Represents a group represented by
n represents 1 or 2; ]
A ketone derivative (II) represented by
[3] The thioester according to [1], wherein each R independently represents an optionally substituted aryl group, and R′ represents an optionally substituted alkylcarbonyl group. A method for producing derivative (I), comprising:
in the presence of a base or Lewis acid,
Formula (III) below:
Figure JPOXMLDOC01-appb-C000034
[In the formula, W 1 and n have the same definitions as in [1], and each R independently represents an aryl group which may have a substituent. ]
A thioester derivative (III) represented by
Formula (1) below:
Figure JPOXMLDOC01-appb-C000035
[In the formula, each R'' independently represents an optionally substituted alkyl group. ]
A carboxylic anhydride (1) represented by
to produce the thioester derivative (I).
[4] The description of [1], wherein each R independently represents an optionally substituted aryl group, and R′ represents an optionally substituted alkylsilyl group. A method for producing a thioester derivative (I), comprising:
in the presence of a base,
Formula (III) below:
Figure JPOXMLDOC01-appb-C000036
[In the formula, W 1 and n have the same definitions as in [1], and each R independently represents an aryl group which may have a substituent. ]
A thioester derivative (III) represented by
Formula (2) below:
Figure JPOXMLDOC01-appb-C000037
[In the formula,
R 1 , R 2 and R 3 each independently represent an optionally substituted alkyl group or an optionally substituted aryl group, and R 1 , R 2 and R 3 one or more of represents an optionally substituted alkyl group,
X represents a halogen atom or a trifluoromethanesulfonyl group. ]
A silylating agent (2) represented by
to produce the thioester derivative (I).
[5] A method for producing a thioester derivative (I) according to [1], wherein each R independently represents an optionally substituted aryl group, and R' represents an aldehyde group. There is
in the presence of a base and a condensing agent,
Formula (III) below:
Figure JPOXMLDOC01-appb-C000038
[In the formula, W 1 and n have the same definitions as in [1], and each R independently represents an aryl group which may have a substituent. ]
A thioester derivative (III) represented by
formic acid;
to produce the thioester derivative (I).
[6] Each R independently represents an optionally substituted aryl group, and R′ represents a group represented by the formula: —CO—L 1 -L 2 [1] A method for producing the thioester derivative (I) according to
in the presence of a base,
Formula (III) below:
Figure JPOXMLDOC01-appb-C000039
[In the formula, W 1 and n have the same definitions as in [1], and each R independently represents an aryl group which may have a substituent. ]
A thioester derivative (III) represented by
Formula: J—CO—L 1 -L 2 [In the formula, L 1 and L 2 are as defined above, and J represents a halogen atom. ] and a compound represented by
to produce the thioester derivative (I).
[7] Each R independently represents an aryl group which may have a substituent, and R′ is represented by the formula: —CO—C(—L 9 )(—L 10 )(—L 11 ) A method for producing a thioester derivative (I) according to [1], which represents a group represented by
Formula (III) below:
Figure JPOXMLDOC01-appb-C000040
[In the formula, W 1 and n have the same definitions as in [1], and each R independently represents an aryl group which may have a substituent. ]
A thioester derivative (III) represented by
Formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )(-L 10 )(-L 11 ) [wherein L 9 , L 10 and L 11 are as defined above. ] and a compound represented by
to produce the thioester derivative (I).
[8] The description of [1], wherein each R independently represents an optionally substituted alkyl group, and R′ represents an optionally substituted alkylsilyl group. A method for producing a thioester derivative (I), comprising:
in the presence of a base,
Formula (III) below:
Figure JPOXMLDOC01-appb-C000041
[In the formula, W 1 and n have the same meaning as in [1], and each R independently represents an optionally substituted alkyl group. ]
A thioester derivative (III) represented by
Formula (2) below:
Figure JPOXMLDOC01-appb-C000042
[In the formula,
R 1 , R 2 and R 3 each independently represent an optionally substituted alkyl group or an optionally substituted aryl group, and R 1 , R 2 and R 3 one or more of represents an optionally substituted alkyl group,
X represents a halogen atom or a trifluoromethanesulfonyl group. ]
A silylating agent (2) represented by
to produce the thioester derivative (I).
[9] Described in [1], wherein each R independently represents an optionally substituted alkyl group, and R′ represents an optionally substituted tetrahydropyranyl group. A method for producing a thioester derivative (I) of
in the presence of acid,
Formula (III) below:
Figure JPOXMLDOC01-appb-C000043
[In the formula, W 1 and n have the same meaning as in [1], and each R independently represents an optionally substituted alkyl group. ]
A thioester derivative (III) represented by
3,4-dihydro-2H-pyran optionally having a substituent;
to produce the thioester derivative (I).
[10] Each R independently represents an optionally substituted alkyl group, and R′ represents a group represented by the formula: —CO—L 1 -L 2 [1] A method for producing the thioester derivative (I) according to
in the presence of a base,
Formula (III) below:
Figure JPOXMLDOC01-appb-C000044
[In the formula, W 1 and n have the same meaning as in [1], and each R independently represents an optionally substituted alkyl group. ]
A thioester derivative (III) represented by
Formula: J—CO—L 1 -L 2 [In the formula, L 1 and L 2 are as defined above, and J represents a halogen atom. ] and a compound represented by
to produce the thioester derivative (I).
[11] Each R independently represents an optionally substituted alkyl group, and R′ is represented by the formula: —C(—L 3 )(—L 4 )—OL 5 A method for producing a thioester derivative (I) according to [1], wherein
in the presence of acid,
Formula (III) below:
Figure JPOXMLDOC01-appb-C000045
[In the formula, W 1 and n have the same meaning as in [1], and each R independently represents an optionally substituted alkyl group. ]
A thioester derivative (III) represented by
Formula: L 3 -C(=CH-K)-OL 5 [In the formula, L 3 and L 5 are as defined above, and K is a hydrogen atom or an optionally substituted alkyl group. show. ] and a compound represented by
to produce the thioester derivative (I).
[ 12 ] Each R independently represents an optionally substituted alkyl group, and R' 8 ) A method for producing the thioester derivative (I) according to [1], which represents the group represented by
in the presence of a base,
Formula (III) below:
Figure JPOXMLDOC01-appb-C000046
[In the formula, W 1 and n have the same meaning as in [1], and each R independently represents an optionally substituted alkyl group. ]
A thioester derivative (III) represented by
Formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-O-C(-L 6 )(-L 7 )(-L 8 ) [wherein L 6 , L7 and L8 are as defined above. ] and a compound represented by
to produce the thioester derivative (I).
[13] Formula (3) below:
Figure JPOXMLDOC01-appb-C000047
[In the formula, W 1 has the same definition as above. ]
A thiol (3) represented by
Formula (4) below:
Figure JPOXMLDOC01-appb-C000048
[In the formula,
W3 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
X represents a halogen atom. ]
A Grignard reagent (4) represented by
Formula (IV) below:
Figure JPOXMLDOC01-appb-C000049
[In the formula, R and n are as defined above. ]
An acyl-protected lactone derivative (IV) represented by
The method according to any one of [3] to [12], comprising the step of producing the thioester derivative (III).
[14] In the above step, after the magnesium thiolate is formed by the reaction of the thiol (3) and the Grignard reagent (4), the thioester derivative is formed by the reaction of the magnesium thiolate with the acyl-protected lactone derivative (IV). The method of [13], wherein (III) is formed.
[15] A method for producing the ketone derivative (II) according to [2],
The thioester derivative (I) according to [1],
Formula (5a) below:
Figure JPOXMLDOC01-appb-C000050
[In the formula, W2 has the same definition as [2], and X represents a halogen atom. ]
A Grignard reagent (5a) represented by
Formula (5b) below:
Figure JPOXMLDOC01-appb-C000051
[In the formula, W 2 and X are as defined above. ]
Grignard reagent (5b) represented by
a Grignard reagent (5) selected from
a copper salt;
to produce the ketone derivative (II).
[16] The method according to [15], wherein in the step, the thioester derivative (I), the Grignard reagent (5) and the copper salt are brought into contact in the presence of a palladium catalyst.
[17] In the above step, after the Grignard reagent (5) and the copper salt are brought into contact with each other to form an organic copper reagent, the organic copper reagent and the thioester derivative (I) are brought into contact with each other to form the ketone derivative. The method according to [15] or [16] for producing (II).
[18] The method according to any one of [15] to [17], wherein the copper salt contains at least one selected from the group consisting of copper (I) cyanide and copper (I) chloride.
[19] 0.2 to 1.2 mol of copper (I) cyanide or 1.3 to 1.5 mol of copper (I) chloride is used per 1 mol of the Grignard reagent (5); ] The method described in .
[20] Any one of [15] to [18], wherein in the step, the thioester derivative (I), the Grignard reagent (5), and the copper salt are brought into contact at a temperature range of -10°C or higher and 100°C or lower. or the method described in paragraph 1.
[21] Formula (V) below:
Figure JPOXMLDOC01-appb-C000052
[In the formula,
R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group,
W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
R 100 is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkylcarbonyl group, or a substituted represents a good arylcarbonyl group,
n represents 1 or 2; ]
A method for producing a C-aryl-hydroxyglycoside derivative (V) represented by
The ketone derivative (II) according to [2] is contacted with a first acid and/or base to eliminate the group represented by R′ from the ketone derivative (II), and optionally further contacting with a second acid to produce said C-aryl-hydroxyglycoside derivative (V).
[22] Formula (II′) below:
Figure JPOXMLDOC01-appb-C000053
[In the formula,
W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group,
n represents 1 or 2; ]
A ketone derivative (II') represented by and/or
Formula (V′) below:
Figure JPOXMLDOC01-appb-C000054
[In the formula, R, W 2 and n have the same definitions as in formula (II′) above. ]
A method for producing a C-aryl-hydroxyglycoside derivative (V′) represented by
in the presence of a palladium catalyst,
The thioester derivative (I) according to [1],
Formula (6a) below:
Figure JPOXMLDOC01-appb-C000055
[In the formula, W 2 has the same definition as above, and X represents a halogen atom. ]
Organozinc compound (6a) represented by
Formula (6b) below:
Figure JPOXMLDOC01-appb-C000056
[In the formula, W2 has the same definition as above. ]
Organozinc compound (6b) represented by, and
Formula (6c) below:
Figure JPOXMLDOC01-appb-C000057
[In the formula, W 2 and X are as defined above. ]
Organozinc compound (6c) represented by
an organozinc compound (6) selected from
to produce the ketone derivative (II') and/or the C-aryl-hydroxyglycoside derivative (V').
[23] Formula (V′) below:
Figure JPOXMLDOC01-appb-C000058
[In the formula,
W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group,
n represents 1 or 2; ]
A method for producing a C-aryl-hydroxyglycoside derivative (V′) represented by
Formula (II′) below:
Figure JPOXMLDOC01-appb-C000059
[In the formula, R, W 2 and n have the same meanings as in the above formula (V′). ]
and a base to produce the C-aryl-hydroxyglycoside derivative (V').
[24] Formula (VI) below:
Figure JPOXMLDOC01-appb-C000060
[In the formula,
W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
n represents 1 or 2; ]
A method for producing a C-aryl glycoside derivative (VI) represented by
After producing the C-aryl-hydroxyglycoside derivative (V) by the method described in [21], or the C-aryl-hydroxyglycoside derivative (V') by the method described in [22] or [23] After the production of the C-aryl-hydroxyglycoside derivative (V) or the C-aryl-hydroxyglycoside derivative (V′) thus obtained, is brought into contact with a silane compound to obtain the C-arylglycoside derivative (VI ).
 本発明によれば、新規チオエステル誘導体及びその製造方法、新規ケトン誘導体及びその製造方法、C-アリール-ヒドロキシグリコサイド誘導体の新規製造方法、並びにC-アリールグリコサイド誘導体の新規製造方法が提供される。本発明によれば、安価で効率的なチオエステル誘導体、ケトン誘導体、C-アリール-ヒドロキシグリコサイド誘導体及びC-アリールグリコサイド誘導体の工業的製造が可能となり、原料コスト、設備コスト、ランニングコスト等を大幅に抑制し得る。 INDUSTRIAL APPLICABILITY According to the present invention, novel thioester derivatives and production methods thereof, novel ketone derivatives and production methods thereof, novel production methods of C-aryl-hydroxyglycoside derivatives, and novel production methods of C-arylglycoside derivatives are provided. . According to the present invention, inexpensive and efficient industrial production of thioester derivatives, ketone derivatives, C-aryl-hydroxyglycoside derivatives and C-arylglycoside derivatives becomes possible, and raw material costs, facility costs, running costs, etc. can be reduced. can be greatly suppressed.
 以下、本発明について説明する。 The present invention will be described below.
≪用語の説明≫
 以下、本明細書で用いられる用語について説明する。以下の説明は、別段規定される場合を除き、本明細書を通じて適用される。なお、「値A~値B」という表現は、別段規定される場合を除き、値A以上値B以下を意味する。
≪Explanation of terms≫
The terms used in this specification are explained below. The following descriptions apply throughout this specification, except where stated otherwise. The expression "value A to value B" means from value A to value B, unless otherwise specified.
有機溶媒
 有機溶媒としては、例えば、アセトニトリル、プロピオニトリル等のニトリル系溶媒;テトラヒドロフラン(THF)、2-メチル-THF、シクロペンチルメチルエーテル、ジブチルエーテル、1,4-ジオキサン、t-ブチルメチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、ジグライム等のエーテル系溶媒;アセトン、メチルエチルケトン、ジエチルケトン等のケトン系溶媒;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶媒;ジクロロメタン(DCM)、クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素系溶媒;トルエン、キシレン等の芳香族炭化水素系溶媒;ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒等が挙げられる。
Organic solvents Examples of organic solvents include nitrile solvents such as acetonitrile and propionitrile; ether solvents such as diisopropyl ether, dimethoxyethane and diglyme; ketone solvents such as acetone, methyl ethyl ketone and diethyl ketone; ester solvents such as methyl acetate, ethyl acetate and butyl acetate; dichloromethane (DCM), chloroform, carbon tetrachloride, Halogenated hydrocarbon solvents such as 1,2-dichloroethane and chlorobenzene; aromatic hydrocarbon solvents such as toluene and xylene; and aliphatic hydrocarbon solvents such as hexane and heptane.
ハロゲン原子
 ハロゲン原子は、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選択される。
Halogen Atom Halogen is selected from fluorine, chlorine, bromine and iodine.
アルキル基
 アルキル基の炭素数は、例えば1~20、好ましくは1~15、より好ましくは1~12(例えば、1~10、1~8、1~6、1~5、1~4、1~3又は1~2)である。アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよい。直鎖状のアルキル基の炭素数は1以上であり、分岐鎖状のアルキル基の炭素数は3以上である。
Alkyl group The number of carbon atoms in the alkyl group is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 12 (eg, 1 to 10, 1 to 8, 1 to 6, 1 to 5, 1 to 4, 1 ~3 or 1~2). Alkyl groups may be linear or branched. The straight-chain alkyl group has 1 or more carbon atoms, and the branched-chain alkyl group has 3 or more carbon atoms.
アルケニル基
 アルケニル基の炭素数は、例えば2~20、好ましくは2~15、より好ましくは2~12(例えば、2~10、2~8、2~6、2~5、2~4又は2~3)である。アルケニル基は、直鎖状であってもよいし、分岐鎖状であってもよい。直鎖状のアルケニル基の炭素数は2以上であり、分岐鎖状のアルケニル基の炭素数は3以上である。
alkenyl group The number of carbon atoms in the alkenyl group is, for example, 2 to 20, preferably 2 to 15, more preferably 2 to 12 (for example, 2 to 10, 2 to 8, 2 to 6, 2 to 5, 2 to 4 or 2 ~ 3). An alkenyl group may be linear or branched. The straight-chain alkenyl group has 2 or more carbon atoms, and the branched-chain alkenyl group has 3 or more carbon atoms.
シクロアルキル基
 シクロアルキル基の炭素数は、例えば3~10、好ましくは3~8、より好ましくは3~6である。
Cycloalkyl Group The cycloalkyl group has, for example, 3 to 10 carbon atoms, preferably 3 to 8 carbon atoms, and more preferably 3 to 6 carbon atoms.
ヘテロシクロアルキル基
 ヘテロシクロアルキル基は、環構成原子として、炭素原子に加えて、酸素原子、硫黄原子及び窒素原子からなる群から独立して選択される1個以上のヘテロ原子を含む単環式の飽和脂肪族複素環基である。飽和脂肪族複素環基は、飽和結合のみによって環が構成された脂肪族複素環基である。ヘテロ原子の数は、例えば1~4個、好ましくは1~3個、より好ましくは1又は2個である。ヘテロシクロアルキル基の員数は、例えば3~8員、好ましくは4~7員、より好ましくは5~7員、より一層好ましくは5又は6員である。ヘテロシクロアルキル基としては、例えば、1~2個の酸素原子を含むもの、1~2個の硫黄原子を含むもの、1~2個の酸素原子と1~2個の硫黄原子とを含むもの、1~4個の窒素原子を含むもの、1~3個の窒素原子と1~2個の硫黄原子及び/又は1~2個の酸素原子とを含むもの等が挙げられる。ヘテロシクロアルキル基は、酸素原子をヘテロ原子として含むことが好ましい。ヘテロシクロアルキル基としては、アジリジニル基、オキシラニル基、チイラニル基、アゼチジニル基、オキセタニル基、チエタニル基、テトラヒドロチエニル基、テトラヒドロフラニル基、ピロリジニル基、イミダゾリジニル基、オキサゾリジニル基、ピラゾリジニル基、チアゾリジニル基、テトラヒドロイソチアゾリル基、テトラヒドロオキサゾリル基、テトラヒドロイソオキサゾリル基、ピペリジニル基、ピペラジニル基、テトラヒドロピラニル基、テトラヒドロチオピラニル基、モルホリニル基、チオモルホリニル基(環上の硫黄原子は酸化されてもよい)、アゼパニル基、ジアゼパニル基、オキセパニル基、アゾカニル基、ジアゾカニル基等が挙げられる。
Heterocycloalkyl group The heterocycloalkyl group is a monocyclic ring containing one or more heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen atoms in addition to carbon atoms as ring-constituting atoms. is a saturated aliphatic heterocyclic group. A saturated aliphatic heterocyclic group is an aliphatic heterocyclic group whose ring is composed only of saturated bonds. The number of heteroatoms is, for example, 1-4, preferably 1-3, more preferably 1 or 2. The number of members of the heterocycloalkyl group is, for example, 3-8 membered, preferably 4-7 membered, more preferably 5-7 membered, even more preferably 5 or 6 membered. Examples of heterocycloalkyl groups include those containing 1 to 2 oxygen atoms, those containing 1 to 2 sulfur atoms, and those containing 1 to 2 oxygen atoms and 1 to 2 sulfur atoms. , those containing 1 to 4 nitrogen atoms, those containing 1 to 3 nitrogen atoms and 1 to 2 sulfur atoms and/or 1 to 2 oxygen atoms. A heterocycloalkyl group preferably contains an oxygen atom as a heteroatom. Heterocycloalkyl groups include aziridinyl, oxiranyl, thiiranyl, azetidinyl, oxetanyl, thietanyl, tetrahydrothienyl, tetrahydrofuranyl, pyrrolidinyl, imidazolidinyl, oxazolidinyl, pyrazolidinyl, thiazolidinyl, and tetrahydroisothionyl. azolyl group, tetrahydrooxazolyl group, tetrahydroisoxazolyl group, piperidinyl group, piperazinyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, morpholinyl group, thiomorpholinyl group (the sulfur atom on the ring may be oxidized, good), azepanyl group, diazepanyl group, oxepanyl group, azocanyl group, diazocanyl group and the like.
 一実施形態において、ヘテロシクロアルキル基は、テトラヒドロフラニル基及びテトラヒドロピラニル基から選択される。ヘテロシクロアルキル基は、好ましくは、テトラヒドロフラニル基である。 In one embodiment, heterocycloalkyl groups are selected from tetrahydrofuranyl and tetrahydropyranyl groups. A heterocycloalkyl group is preferably a tetrahydrofuranyl group.
アリール基
 アリール基は、例えば、単環式又は多環式(例えば二環式又は三環式)の炭素数4~14、好ましくは6~14、より好ましくは6~10の芳香族炭化水素環基である。多環式は、好ましくは、縮合環式である。アリール基としては、例えば、フェニル基、ナフチル基等が挙げられる。アリール基は、好ましくは、フェニル基である。
Aryl group The aryl group is, for example, a monocyclic or polycyclic (eg, bicyclic or tricyclic) aromatic hydrocarbon ring having 4 to 14, preferably 6 to 14, more preferably 6 to 10 carbon atoms. is the base. Polycyclics are preferably fused rings. Examples of aryl groups include phenyl groups and naphthyl groups. Aryl groups are preferably phenyl groups.
ヘテロアリール基
 ヘテロアリール基は、環構成原子として、炭素原子に加えて、酸素原子、硫黄原子及び窒素原子からなる群から独立して選択される1個以上のヘテロ原子を含む単環式又は多環式(例えば二環式又は三環式)の芳香族複素環基である。多環式は、好ましくは、縮合環式である。ヘテロ原子の数は、例えば1~4個、好ましくは1~3個、より好ましくは1又は2個である。ヘテロアリール基の員数は、好ましくは4~14員、より好ましくは5~10員である。ヘテロアリール基としては、例えば、1~2個の酸素原子を含むもの、1~2個の硫黄原子を含むもの、1~2個の酸素原子と1~2個の硫黄原子とを含むもの、1~4個の窒素原子を含むもの、1~3個の窒素原子と1~2個の硫黄原子及び/又は1~2個の酸素原子とを含むもの等が挙げられる。ヘテロアリール基は、好ましくは単環式又は二環式の4~10員、好ましくは5~10員の芳香族複素環基である。
Heteroaryl Group A heteroaryl group is a monocyclic or polycyclic ring containing, in addition to carbon atoms, one or more heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen atoms as ring atoms. It is a cyclic (eg bicyclic or tricyclic) aromatic heterocyclic group. Polycyclics are preferably fused rings. The number of heteroatoms is, for example, 1-4, preferably 1-3, more preferably 1 or 2. The number of members of the heteroaryl group is preferably 4-14 membered, more preferably 5-10 membered. Examples of heteroaryl groups include those containing 1 to 2 oxygen atoms, those containing 1 to 2 sulfur atoms, those containing 1 to 2 oxygen atoms and 1 to 2 sulfur atoms, Examples include those containing 1 to 4 nitrogen atoms, those containing 1 to 3 nitrogen atoms and 1 to 2 sulfur atoms and/or 1 to 2 oxygen atoms. Heteroaryl groups are preferably monocyclic or bicyclic 4- to 10-membered, preferably 5- to 10-membered, aromatic heterocyclic groups.
 単環式の芳香族複素環基としては、例えば、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、チエニル基、ピロリル基、チアゾリル基、イソチアゾリル基、ピラゾリル基、イミダゾリル基、フリル基、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基(例えば、1,2,4-オキサジアゾリル基、1,3,4-オキサジアゾリル基等)、チアジアゾリル基(例えば、1,2,4-チアジアゾリル基、1,3,4-チアジアゾリル基等)、トリアゾリル基(例えば、1,2,3-トリアゾリル基、1,2,4-トリアゾリル基等)、テトラゾリル基、トリアジニル基等の5~7員の単環式の芳香族複素環基が挙げられる。 Examples of monocyclic aromatic heterocyclic groups include pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, thienyl, pyrrolyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, furyl, oxazolyl, Isoxazolyl group, oxadiazolyl group (e.g., 1,2,4-oxadiazolyl group, 1,3,4-oxadiazolyl group, etc.), thiadiazolyl group (e.g., 1,2,4-thiadiazolyl group, 1,3,4-thiadiazolyl group) etc.), a triazolyl group (e.g., 1,2,3-triazolyl group, 1,2,4-triazolyl group, etc.), a tetrazolyl group, a 5- to 7-membered monocyclic aromatic heterocyclic group such as a triazinyl group mentioned.
 縮合多環式の芳香族複素環基としては、例えば、ベンゾチオフェニル基、ベンゾフラニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基、ベンゾトリアゾリル基、イミダゾピリジニル基、チエノピリジニル基、フロピリジニル基、ピロロピリジニル基、ピラゾロピリジニル基、オキサゾロピリジニル基、チアゾロピリジニル基、イミダゾピラジニル基、イミダゾピリミジニル基、チエノピリミジニル基、フロピリミジニル基、ピロロピリミジニル基、ピラゾロピリミジニル基、オキサゾロピリミジニル基、チアゾロピリミジニル基、ピラゾロトリアジニル基、ナフト[2,3-b]チエニル基、フェノキサチイニル基、インドリル基、イソインドリル基、1H-インダゾリル基、プリニル基、イソキノリル基、キノリル基、フタラジニル基、ナフチリジニル基、キノキサリニル基、キナゾリニル基、シンノリニル基、カルバゾリル基、α-カルボリニル基、フェナントリジニル基、アクリジニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基等の8~14員の縮合多環式(好ましくは2環式又は3環式)の芳香族複素環基等が挙げられる。 Examples of condensed polycyclic aromatic heterocyclic groups include benzothiophenyl, benzofuranyl, benzimidazolyl, benzoxazolyl, benzoisoxazolyl, benzothiazolyl, benzoisothiazolyl, benzotri solyl group, imidazopyridinyl group, thienopyridinyl group, furopyridinyl group, pyrrolopyridinyl group, pyrazolopyridinyl group, oxazolopyridinyl group, thiazolopyridinyl group, imidazopyrazinyl group, imidazopyrimidinyl group, thienopyrimidinyl group, furopyrimidinyl group, pyrrolopyrimidinyl group, pyrazolopyrimidinyl group, oxazolopyrimidinyl group, thiazolopyrimidinyl group, pyrazolotriazinyl group, naphtho[2,3-b]thienyl group, phenoxathiinyl group , indolyl group, isoindolyl group, 1H-indazolyl group, purinyl group, isoquinolyl group, quinolyl group, phthalazinyl group, naphthyridinyl group, quinoxalinyl group, quinazolinyl group, cinnolinyl group, carbazolyl group, α-carbolinyl group, phenanthridinyl group, Examples thereof include 8- to 14-membered condensed polycyclic (preferably bicyclic or tricyclic) aromatic heterocyclic groups such as acridinyl group, phenazinyl group, phenothiazinyl group and phenoxazinyl group.
 一実施形態において、ヘテロアリール基は、チエニル基、ベンゾチオフェニル基、フリル基、ピロリル基、イミダゾリル基及びピリジル基から選択される。ヘテロアリール基は、好ましくは、チエニル基及びベンゾチオフェニル基から選択される。 In one embodiment, heteroaryl groups are selected from thienyl groups, benzothiophenyl groups, furyl groups, pyrrolyl groups, imidazolyl groups and pyridyl groups. Heteroaryl groups are preferably selected from thienyl and benzothiophenyl groups.
ハロアルキル基、ハロアリール基及びハロヘテロアリール基
 ハロアルキル基、ハロアリール基及びハロヘテロアリール基は、それぞれ、1以上のハロゲン原子を有するアルキル基、アリール基及びヘテロアリール基であり、アルキル基、アリール基及びヘテロアリール基に関する説明は、上記の通りである。ハロアルキル基、ハロアリール基又はハロヘテロアリール基が有するハロゲン原子の数は、例えば1~3、好ましくは1又は2、より好ましくは1である。
Haloalkyl, haloaryl and haloheteroaryl groups Haloalkyl, haloaryl and haloheteroaryl groups are alkyl, aryl and heteroaryl groups respectively having one or more halogen atoms, and alkyl, aryl and hetero A description of the aryl group is provided above. The number of halogen atoms possessed by the haloalkyl group, haloaryl group or haloheteroaryl group is, for example, 1 to 3, preferably 1 or 2, more preferably 1.
アルキレン基、アリーレン基及びヘテロアリーレン基
 アルキレン基、アリーレン基及びヘテロアリーレン基は、それぞれ、アルキル基、アリール基及びヘテロアリール基から1個の水素原子を除去することにより生成される2価の官能基であり、アルキル基、アリール基及びヘテロアリール基に関する説明は、上記の通りである。
Alkylene Groups, Arylene Groups and Heteroarylene Groups Alkylene groups, arylene groups and heteroarylene groups are divalent functional groups generated by removing one hydrogen atom from an alkyl group, an aryl group and a heteroaryl group, respectively. and the descriptions of the alkyl group, the aryl group and the heteroaryl group are as described above.
ハロアルキレン基、ハロアリーレン基及びハロヘテロアリーレン基
 ハロアルキレン基、ハロアリーレン基及びハロヘテロアリーレン基は、それぞれ、ハロアルキル基、ハロアリール基及びハロヘテロアリール基から1個の水素原子を除去することにより生成される2価の官能基であり、ハロアルキル基、ハロアリール基及びハロヘテロアリール基に関する説明は、上記の通りである。
Haloalkylene Groups, Haloarylene Groups, and Haloheteroarylene Groups Haloalkylene groups, haloarylene groups, and haloheteroarylene groups are formed by removing one hydrogen atom from haloalkyl groups, haloaryl groups, and haloheteroaryl groups, respectively. It is a divalent functional group, and the description of the haloalkyl group, the haloaryl group and the haloheteroaryl group is as described above.
アリールアルキル基
 アリールアルキル基は、1以上のアリール基を有するアルキル基であり、アルキル基及びアリール基に関する説明は、上記の通りである。アリールアルキル基が有するアリール基の数は、例えば1~3、好ましくは1又は2、より好ましくは1である。
Arylalkyl Group An arylalkyl group is an alkyl group having one or more aryl groups, and the description of the alkyl and aryl groups is given above. The number of aryl groups possessed by the arylalkyl group is, for example, 1 to 3, preferably 1 or 2, more preferably 1.
アリールアルケニル基
 アリールアルケニル基は、1以上のアリール基を有するアルケニル基であり、アルケニル基及びアリール基に関する説明は、上記の通りである。アリールアルケニル基が有するアリール基の数は、例えば1~3、好ましくは1又は2、より好ましくは1である。
Arylalkenyl Group An arylalkenyl group is an alkenyl group having one or more aryl groups, and the descriptions of alkenyl groups and aryl groups are given above. The number of aryl groups possessed by the arylalkenyl group is, for example, 1 to 3, preferably 1 or 2, more preferably 1.
アルキルカルボニル基及びアリールカルボニル基
 アルキルカルボニル基及びアリールカルボニル基は、それぞれ、式:-CO-アルキル基及び式:-CO-アリール基で表される基であり、アルキル基及びアリール基に関する説明は、上記の通りである。
Alkylcarbonyl Group and Arylcarbonyl Group Alkylcarbonyl group and arylcarbonyl group are groups represented by the formula: -CO-alkyl group and -CO-aryl group, respectively. As above.
アルキルオキシ基、ハロアルキルオキシ基、ヘテロシクロアルキルオキシ基及びアリールアルキルオキシ基
 アルキルオキシ基、ハロアルキルオキシ基、ヘテロシクロアルキルオキシ基及びアリールアルキルオキシ基は、それぞれ、式:-O-アルキル基、式:-O-ハロアルキル基、式:-O-ヘテロシクロアルキル基及び式:-O-アリールアルキル基で表される基であり、アルキル基、ハロアルキル基、ヘテロシクロアルキル基及びアリールアルキル基に関する説明は、上記の通りである。
Alkyloxy group, haloalkyloxy group, heterocycloalkyloxy group and arylalkyloxy group Alkyloxy group, haloalkyloxy group, heterocycloalkyloxy group and arylalkyloxy group are each represented by the formula: -O-alkyl group, the formula: -O-haloalkyl groups, groups represented by the formula: -O-heterocycloalkyl group and formula: -O-arylalkyl group, and descriptions of the alkyl group, the haloalkyl group, the heterocycloalkyl group and the arylalkyl group are as follows: As above.
アルキルチオ基、ハロアルキルチオ基、ヘテロシクロアルキルチオ基及びアリールアルキルチオ基
 アルキルチオ基、ハロアルキルチオ基、ヘテロシクロアルキルチオ基及びアリールアルキルチオ基は、それぞれ、式:-S-アルキル基、式:-S-ハロアルキル基、式:-S-ヘテロシクロアルキル基及び式:-S-アリールアルキル基で表される基であり、アルキル基、ハロアルキル基、ヘテロシクロアルキル基及びアリールアルキル基に関する説明は、上記の通りである。
Alkylthio group, haloalkylthio group, heterocycloalkylthio group and arylalkylthio group Alkylthio group, haloalkylthio group, heterocycloalkylthio group and arylalkylthio group are respectively represented by the formula: -S-alkyl group, the formula: -S-haloalkyl group, Groups represented by the formula: -S-heterocycloalkyl group and the formula: -S-arylalkyl group, and the alkyl group, haloalkyl group, heterocycloalkyl group and arylalkyl group are as described above.
アルキルオキシカルボニル基
 アルキルオキシカルボニル基は、式:-CO-O-アルキル基で表される基であり、アルキル基に関する説明は、上記の通りである。アルキルオキシカルボニル基に含まれるアルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3、より一層好ましくは1又は2である。
Alkyloxycarbonyl Group The alkyloxycarbonyl group is a group represented by the formula: --CO--O-alkyl group, and the description of the alkyl group is as described above. The number of carbon atoms in the alkyl group contained in the alkyloxycarbonyl group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3. , more preferably 1 or 2.
アミノ基
 アミノ基は、式:-NHで表される基(1級アミノ基)である。
Amino Group An amino group is a group (primary amino group) represented by the formula: —NH 2 .
モノアルキルアミノ基
 モノアルキルアミノ基は、式:-NH(-Q)[式中、Qは、アルキル基を表す。]で表される基であり、アルキル基に関する説明は、上記の通りである。Qで表されるアルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3、より一層好ましくは1又は2である。
Monoalkylamino group The monoalkylamino group has the formula: —NH(—Q 1 ) [wherein Q 1 represents an alkyl group. ] and the description of the alkyl group is as described above. The number of carbon atoms in the alkyl group represented by Q 1 is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3, More preferably 1 or 2.
ジアルキルアミノ基
 ジアルキルアミノ基は、式:-N(-Q)(-Q)[式中、Q及びQは、それぞれ独立して、アルキル基を表す。]で表される基であり、アルキル基に関する説明は、上記の通りである。Q又はQで表されるアルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3、より一層好ましくは1又は2である。
Dialkylamino group A dialkylamino group has the formula: -N(-Q 2 )(-Q 3 ) [wherein Q 2 and Q 3 each independently represent an alkyl group. ] and the description of the alkyl group is as described above. The number of carbon atoms in the alkyl group represented by Q 2 or Q 3 is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 ~3, more preferably 1 or 2.
脂環式アミノ基
 脂環式アミノ基は、例えば、5又は6員環の脂環式アミノ基であり、5又は6員環の脂環式アミノ基としては、例えば、モルホリノ基、チオモルホリノ基、ピロリジン-1-イル基、ピラゾリジン-1-イル基、イミダゾリジン-1-イル基、ピペリジン-1-イル基等が挙げられる。脂環式アミノ基は、脂環式アミノ基の結合手を有する窒素原子に加えて、酸素原子、硫黄原子及び窒素原子からなる群から独立して選択されるヘテロ原子(例えば、1個のヘテロ原子)を含んでいてもよい。脂環式アミノ基は、好ましくは、モルホリノ基である。
Alicyclic amino group The alicyclic amino group is, for example, a 5- or 6-membered alicyclic amino group. Examples of the 5- or 6-membered alicyclic amino group include a morpholino group and a thiomorpholino group , pyrrolidin-1-yl group, pyrazolidin-1-yl group, imidazolidin-1-yl group, piperidin-1-yl group and the like. The alicyclic amino group has, in addition to the nitrogen atom having the bond of the alicyclic amino group, a heteroatom independently selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom (e.g., one heteroatom atoms). A cycloaliphatic amino group is preferably a morpholino group.
アミノカルボニル基、モノアルキルアミノカルボニル基、ジアルキルアミノカルボニル基及び脂環式アミノカルボニル基
 アミノカルボニル基、モノアルキルアミノカルボニル基、ジアルキルアミノカルボニル基及び脂環式アミノカルボニル基は、それぞれ、式:-CO-アミノ基、式:-CO-モノアルキルアミノ基、式:-CO-ジアルキルアミノ基及び式:-CO-脂環式アミノ基で表される基であり、モノアルキルアミノ基、ジアルキルアミノ基及び脂環式アミノ基に関する説明は、上記の通りである。
Aminocarbonyl group, monoalkylaminocarbonyl group, dialkylaminocarbonyl group and alicyclic aminocarbonyl group aminocarbonyl group, monoalkylaminocarbonyl group, dialkylaminocarbonyl group and alicyclic aminocarbonyl group are each represented by the formula: -CO -amino group, formula: -CO-monoalkylamino group, formula: -CO-dialkylamino group and formula: -CO-alicyclic amino group, monoalkylamino group, dialkylamino group and The description of the alicyclic amino group is given above.
置換基群α
 置換基群αは、以下の置換基で構成される。
(α-1)ハロゲン原子
(α-2)ニトリル基
(α-3)ニトロ基
(α-4)アミノ基
(α-5)アルキル基
(α-6)ハロアルキル基
(α-7)モノアルキルアミノ基
(α-8)ジアルキルアミノ基
(α-9)脂環式アミノ基
(α-10)アルキルオキシカルボニル基
(α-11)アミノカルボニル基
(α-12)モノアルキルアミノカルボニル基
(α-13)ジアルキルアミノカルボニル基
(α-14)脂環式アミノカルボニル基
(α-15)保護基で保護されていてもよいヒドロキシ基
(α-16)保護基で保護されていてもよいチオール基
Substituent group α
The substituent group α is composed of the following substituents.
(α-1) Halogen atom (α-2) Nitrile group (α-3) Nitro group (α-4) Amino group (α-5) Alkyl group (α-6) Haloalkyl group (α-7) Monoalkylamino Group (α-8) dialkylamino group (α-9) alicyclic amino group (α-10) alkyloxycarbonyl group (α-11) aminocarbonyl group (α-12) monoalkylaminocarbonyl group (α-13 ) Dialkylaminocarbonyl group (α-14) Alicyclic aminocarbonyl group (α-15) Hydroxy group optionally protected by a protecting group (α-16) Thiol group optionally protected by a protecting group
置換基群β
 置換基群βは、以下の置換基で構成される。
(β-1)式(i)で表される置換基
(β-2)式(ii)で表される置換基
Substituent group β
Substituent group β is composed of the following substituents.
(β-1) Substituent represented by formula (i) (β-2) Substituent represented by formula (ii)
 以下、置換基群α及びβについて説明する。 The substituent groups α and β are described below.
 (α-5)において、アルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3、より一層好ましくは1又は2である。 In (α-5), the number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3. , more preferably 1 or 2.
 (α-6)において、ハロアルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3、より一層好ましくは1又は2である。ハロアルキル基が有するハロゲン原子の数は、好ましくは1~3、より好ましくは1又は2、より一層好ましくは1である。 In (α-6), the number of carbon atoms in the haloalkyl group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, still more preferably 1 to 3. , more preferably 1 or 2. The haloalkyl group preferably has 1 to 3 halogen atoms, more preferably 1 or 2, and even more preferably 1.
保護基で保護されていてもよいヒドロキシ基
 ヒドロキシ基保護基は、目的の反応を行う際にはヒドロキシ基を保護することができ、目的の反応の終了後にはヒドロキシ基から脱離させることができるものであることが好ましい。ヒドロキシ基保護基としては、例えば、アルキルカルボニル型保護基、アリールカルボニル型保護基、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基、アルキルオキシアルキル型保護基、シリル型保護基、オキシカルボニル型保護基、アセタール型保護基、アリール型保護基等が挙げられる。これらの保護基は、1以上のハロゲン原子を有していてもよい。
A hydroxy group which may be protected by a protecting group The hydroxy group- protecting group can protect the hydroxy group during the desired reaction, and can be removed from the hydroxy group after the desired reaction is completed. It is preferable to be Examples of hydroxy-protecting groups include alkylcarbonyl-type protecting groups, arylcarbonyl-type protecting groups, arylalkyl-type protecting groups, alkyl-type protecting groups, arylalkyloxyalkyl-type protecting groups, alkyloxyalkyl-type protecting groups, and silyl-type protecting groups. groups, oxycarbonyl-type protecting groups, acetal-type protecting groups, aryl-type protecting groups, and the like. These protecting groups may have one or more halogen atoms.
 アルキルカルボニル型保護基としては、例えば、1以上の置換基を有していてもよい炭素数2~10のアルキルカルボニル基が挙げられる。置換基は、例えば、ハロゲン原子、ニトロ基、シアノ基、フェニル基、炭素数1~10(好ましくは炭素数1~8、より好ましくは炭素数1~6、より好ましくは炭素数1~4)のアルキル基、炭素数1~10(好ましくは炭素数1~8、より好ましくは炭素数1~6、より好ましくは炭素数1~4)のアルキルオキシ基、炭素数2~11(好ましくは炭素数2~9、より好ましくは炭素数2~7、より好ましくは炭素数2~5)のアルキルオキシカルボニル基等から選択することができる。1以上の置換基を有していてもよい炭素数2~10のアルキルカルボニル基としては、例えば、アセチル基、プロパノイル基、ブタノイル基、イソプロパノイル基、ピバロイル基等が挙げられる。アルキルカルボニル型保護基は、好ましくは、炭素数2~5のアルキルカルボニル基、より好ましくは、アセチル基又はピバロイル基であり、より一層好ましくは、アセチル基である。 Examples of alkylcarbonyl-type protecting groups include alkylcarbonyl groups having 2 to 10 carbon atoms which may have one or more substituents. Substituents include, for example, a halogen atom, a nitro group, a cyano group, a phenyl group, and 1 to 10 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms). , an alkyloxy group having 1 to 10 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms), 2 to 11 carbon atoms (preferably carbon It can be selected from alkyloxycarbonyl groups having 2 to 9 carbon atoms, more preferably 2 to 7 carbon atoms, more preferably 2 to 5 carbon atoms, and the like. Examples of alkylcarbonyl groups having 2 to 10 carbon atoms which may have one or more substituents include acetyl group, propanoyl group, butanoyl group, isopropanoyl group and pivaloyl group. The alkylcarbonyl-type protecting group is preferably an alkylcarbonyl group having 2 to 5 carbon atoms, more preferably an acetyl group or a pivaloyl group, and still more preferably an acetyl group.
 アリールカルボニル型保護基としては、例えば、1以上の置換基を有していてもよい炭素数7~11のアリールカルボニル基等が挙げられる。置換基の具体例は、アルキルカルボニル型保護基と同様である。1以上の置換基を有していてもよい炭素数7~11のアリールカルボニル基としては、例えば、ベンゾイル基、4-ニトロベンゾイル基、4-メチルオキシベンゾイル基、4-メチルベンゾイル基、4-tert-ブチルベンゾイル基、4-フルオロベンゾイル基、4-クロロベンゾイル基、4-ブロモベンゾイル基、4-フェニルベンゾイル基、4-メチルオキシカルボニルベンゾイル基等が挙げられる。 Examples of arylcarbonyl-type protective groups include arylcarbonyl groups having 7 to 11 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group. Examples of the arylcarbonyl group having 7 to 11 carbon atoms which may have one or more substituents include benzoyl group, 4-nitrobenzoyl group, 4-methyloxybenzoyl group, 4-methylbenzoyl group, 4- tert-butylbenzoyl group, 4-fluorobenzoyl group, 4-chlorobenzoyl group, 4-bromobenzoyl group, 4-phenylbenzoyl group, 4-methyloxycarbonylbenzoyl group and the like.
 アリールアルキル型保護基としては、例えば、1以上の置換基を有していてもよい炭素数7~11のアリールアルキル基等が挙げられる。置換基の具体例は、アルキルカルボニル型保護基と同様である。1以上の置換基を有していてもよい炭素数7~11のアリールアルキル基としては、例えば、ベンジル基、1-フェニルエチル基、ジフェニルメチル基、1,1-ジフェニルエチル基、ナフチルメチル基、トリチル基等が挙げられる。アリールアルキル型保護基は、好ましくは、ベンジル基である。 Examples of arylalkyl-type protecting groups include arylalkyl groups having 7 to 11 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group. Examples of arylalkyl groups having 7 to 11 carbon atoms which may have one or more substituents include benzyl group, 1-phenylethyl group, diphenylmethyl group, 1,1-diphenylethyl group and naphthylmethyl group. , a trityl group, and the like. Arylalkyl-type protecting groups are preferably benzyl groups.
 アルキル型保護基としては、例えば、1以上の置換基を有していてもよい炭素数1~10のアルキル基等が挙げられる。置換基の具体例は、アルキルカルボニル型保護基と同様である。アルキル型保護基は、好ましくは、1以上の置換基を有していてもよい炭素数1~5のアルキル基であり、より好ましくは、メチル基、エチル基、tert-ブチル基であり、より一層好ましくは、メチル基である。 Examples of alkyl-type protecting groups include alkyl groups having 1 to 10 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group. The alkyl-type protecting group is preferably an alkyl group having 1 to 5 carbon atoms which may have one or more substituents, more preferably a methyl group, an ethyl group or a tert-butyl group, and more More preferably, it is a methyl group.
 アリールアルキルオキシアルキル型保護基としては、例えば、1以上の置換基を有していてもよい炭素数8~12のアリールアルキルオキシメチル基、1以上の置換基を有していてもよい炭素数9~13のアリールアルキルオキシエチル基、1以上の置換基を有していてもよい炭素数10~14のアリールアルキルオキシプロピル基等のアリールアルキルオキシアルキル基が挙げられる。置換基の具体例は、アルキルカルボニル型保護基と同様である。アリールアルキルオキシアルキル型保護基は、例えば、1以上の置換基を有していてもよいベンジルオキシメチル基、好ましくは、ハロゲン原子、ニトロ基、シアノ基、メチル基又はメチルオキシ基で置換されていてもよいベンジルオキシメチル基、より好ましくはベンジルオキシメチル基である。 Examples of the arylalkyloxyalkyl-type protecting group include an arylalkyloxymethyl group having 8 to 12 carbon atoms which may have one or more substituents, and an arylalkyloxymethyl group which may have one or more substituents. Examples include arylalkyloxyalkyl groups such as 9-13 arylalkyloxyethyl groups and optionally substituted 10-14 carbon atom arylalkyloxypropyl groups. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group. The arylalkyloxyalkyl-type protecting group is, for example, a benzyloxymethyl group optionally having one or more substituents, preferably substituted with a halogen atom, a nitro group, a cyano group, a methyl group or a methyloxy group. benzyloxymethyl group, more preferably benzyloxymethyl group.
 アルキルオキシアルキル型保護基としては、例えば、1以上の置換基を有していてもよい炭素数2~10のアルキルオキシメチル基、1以上の置換基を有していてもよい炭素数3~10のアルキルオキシエチル基、1以上の置換基を有していてもよい炭素数4~10のアルキルオキシプロピル基等のアルキルオキシアルキル基が挙げられる。置換基の具体例は、アルキルカルボニル型保護基と同様である。アルキルオキシアルキル型保護基は、好ましくは、1以上の置換基を有していてもよい炭素数2~10のアルキルオキシメチル基、より好ましくは、ハロゲン原子、ニトロ基、シアノ基、メチルオキシ基又はエチルオキシ基を有していてもよい炭素数2~6のアルキルオキシメチル基、より一層好ましくは、メチルオキシメチル基である。 Examples of alkyloxyalkyl-type protecting groups include alkyloxymethyl groups having 2 to 10 carbon atoms which may have one or more substituents, and alkyloxymethyl groups having 3 to 10 carbon atoms which may have one or more substituents. 10 alkyloxyethyl groups, and alkyloxyalkyl groups such as alkyloxypropyl groups having 4 to 10 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group. The alkyloxyalkyl-type protecting group is preferably an alkyloxymethyl group having 2 to 10 carbon atoms which may have one or more substituents, more preferably a halogen atom, a nitro group, a cyano group, a methyloxy group. or an alkyloxymethyl group having 2 to 6 carbon atoms which may have an ethyloxy group, more preferably a methyloxymethyl group.
 シリル型保護基としては、例えば、1以上の置換基を有していてもよい炭素数1~10のアルキル基、1以上の置換基を有していてもよい炭素数7~11のアリールアルキル基及び1以上の置換基を有していてもよい炭素数6~10のアリール基から選択される官能基を有するシリル基が挙げられる。置換基の具体例は、アルキルカルボニル型保護基と同様である。シリル型保護基は、好ましくは、炭素数1~10のアルキル基及び炭素数6~10のアリール基から選択される官能基を有するシリル基、より好ましくは、炭素数1~5のアルキル基及びフェニル基から選択される官能基を有するシリル基、より一層好ましくは、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基又はtert-ブチルジフェニルシリル基である。 Examples of silyl-type protecting groups include alkyl groups having 1 to 10 carbon atoms which may have one or more substituents, arylalkyl groups having 7 to 11 carbon atoms which may have one or more substituents, and a silyl group having a functional group selected from aryl groups having 6 to 10 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group. The silyl-type protecting group is preferably a silyl group having a functional group selected from an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms and A silyl group having a functional group selected from a phenyl group, more preferably a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group or a tert-butyldiphenylsilyl group.
 オキシカルボニル型保護基としては、例えば、1以上の置換基を有していてもよい炭素数2~10のアルキルオキシカルボニル基、1以上の置換基を有していてもよい炭素数3~10のアルケニルオキシカルボニル基、1以上の置換基を有していてもよい炭素数8~12のアリールアルキルオキシカルボニル基等が挙げられる。置換基の具体例は、アルキルカルボニル型保護基と同様である。オキシカルボニル型保護基は、好ましくは、炭素数2~6のアルキルオキシカルボニル基、炭素数3~6のアルケニルオキシカルボニル基又はベンジルオキシカルボニル基、より好ましく、メチルオキシメチル基、アリルオキシカルボニル基又はベンジルオキシカルボニル基である。 Examples of the oxycarbonyl-type protecting group include alkyloxycarbonyl groups having 2 to 10 carbon atoms which may have one or more substituents, and 3 to 10 carbon atoms which may have one or more substituents. and an arylalkyloxycarbonyl group having 8 to 12 carbon atoms which may have one or more substituents. Specific examples of the substituent are the same as those for the alkylcarbonyl type protective group. The oxycarbonyl type protective group is preferably an alkyloxycarbonyl group having 2 to 6 carbon atoms, an alkenyloxycarbonyl group having 3 to 6 carbon atoms or a benzyloxycarbonyl group, more preferably a methyloxymethyl group, an allyloxycarbonyl group or It is a benzyloxycarbonyl group.
 アセタール型保護基としては、例えば、テトラヒドロフラニル基、テトラヒドロピラニル基等が挙げられる。 Examples of the acetal-type protective group include a tetrahydrofuranyl group and a tetrahydropyranyl group.
 アリール型保護基としては、例えば、フェニル基等のアリール基が挙げられる。  Aryl-type protective groups include, for example, aryl groups such as phenyl groups.
 保護基で保護されたヒドロキシ基は、式:-O-Qで表される基であることが好ましい。Qは、アルキル基、ハロアルキル基、アリール基、ハロアリール基、ヘテロシクロアルキル基、アルキルカルボニル基、アリールカルボニル基又はアリールアルキル基を表す。式:-O-Qで表される基の炭素数は、好ましくは1~10、より好ましくは1~8である。Qは、アルキル基、ヘテロシクロアルキル基、アルキルカルボニル基又はアリールアルキル基であることが好ましく、エチル基、テトラヒドロフラニル基、アセチル基又はベンジル基であることがより好ましい。 A hydroxy group protected with a protecting group is preferably a group represented by the formula: -OQ. Q represents an alkyl group, haloalkyl group, aryl group, haloaryl group, heterocycloalkyl group, alkylcarbonyl group, arylcarbonyl group or arylalkyl group. The group represented by the formula: -OQ preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms. Q is preferably an alkyl group, a heterocycloalkyl group, an alkylcarbonyl group or an arylalkyl group, more preferably an ethyl group, a tetrahydrofuranyl group, an acetyl group or a benzyl group.
保護基で保護されていてもよいチオール基
 チオール基保護基は、目的の反応を行う際にはチオール基を保護することができ、目的の反応の終了後にはチオール基から脱離させることができるものであることが好ましい。チオール基保護基としては、例えば、アルキルカルボニル型保護基、アリールカルボニル型保護基、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基、アルキルオキシアルキル型保護基、シリル型保護基、オキシカルボニル型保護基、アセタール型保護基、アリール型保護基等が挙げられる。これらの保護基は、1以上のハロゲン原子を有していてもよい。これらの保護基に関する説明は、上記の通りである。
A thiol group which may be protected by a protecting group The thiol group- protecting group can protect the thiol group during the target reaction, and can be removed from the thiol group after the target reaction is completed. It is preferable to be Examples of thiol group-protecting groups include alkylcarbonyl-type protecting groups, arylcarbonyl-type protecting groups, arylalkyl-type protecting groups, alkyl-type protecting groups, arylalkyloxyalkyl-type protecting groups, alkyloxyalkyl-type protecting groups, and silyl-type protecting groups. groups, oxycarbonyl-type protecting groups, acetal-type protecting groups, aryl-type protecting groups, and the like. These protecting groups may have one or more halogen atoms. A description of these protecting groups is provided above.
 保護基で保護されたチオール基は、式:-S-Qで表される基であることが好ましい。Qに関する説明は、上記の通りである。 A thiol group protected with a protecting group is preferably a group represented by the formula: -SQ. A description of Q is provided above.
式(i)で表される置換基Substituent represented by formula (i)
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 式(i)において、R11、R12及びR13は、それぞれ独立して、アルキル基、ハロアルキル基、アリール基、ハロアリール基又は保護基で保護されていてもよいヒドロキシ基を表す。保護基で保護されていてもよいヒドロキシ基は、上記式:-O-Qで表される基であることが好ましい。aは、0以上3以下である。 In formula (i), R 11 , R 12 and R 13 each independently represent an alkyl group, a haloalkyl group, an aryl group, a haloaryl group or a hydroxy group which may be protected by a protecting group. The hydroxy group which may be protected by a protecting group is preferably a group represented by the above formula: --OQ. a is 0 or more and 3 or less.
式(ii)で表される置換基Substituent represented by formula (ii)
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 式(ii)において、V10は、アルキレン基、ハロアルキレン基、アリーレン基、ハロアリーレン基、ヘテロアリーレン基、ハロヘテロアリーレン基、エステル結合、エーテル結合又はカルボニル基を表す。アルキレン基又はハロアルキレン基の炭素数は、1~10であることが好ましく、1~8であることがより好ましい。アリーレン基、ハロアリーレン基、ヘテロアリーレン基又はハロヘテロアリーレン基の炭素数は、4~14であることが好ましく、6~14であることがより好ましい。V10は、アルキレン基であることが好ましく、メチレン基又はエチレン基であることがより好ましい。 In formula (ii), V 10 represents an alkylene group, haloalkylene group, arylene group, haloarylene group, heteroarylene group, haloheteroarylene group, ester bond, ether bond or carbonyl group. The alkylene group or haloalkylene group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms. The arylene group, haloarylene group, heteroarylene group or haloheteroarylene group preferably has 4 to 14 carbon atoms, more preferably 6 to 14 carbon atoms. V 10 is preferably an alkylene group, more preferably a methylene group or an ethylene group.
 式(ii)において、bは、0又は1を表す。bは、1であることが好ましい。 In formula (ii), b represents 0 or 1. b is preferably one.
 式(ii)において、W10は、アルキレン基、ハロアルキレン基、アリーレン基、ハロアリーレン基、ヘテロアリーレン基、ハロヘテロアリーレン基、エステル結合、エーテル結合又はカルボニル基を表す。W10は、ヘテロアリーレン基であることが好ましく、硫黄原子をヘテロ原子として含む5員環のヘテロアリーレン基であることがより好ましく、チエニレン基であることがより一層好ましい。 In formula (ii), W 10 represents an alkylene group, haloalkylene group, arylene group, haloarylene group, heteroarylene group, haloheteroarylene group, ester bond, ether bond or carbonyl group. W 10 is preferably a heteroarylene group, more preferably a 5-membered heteroarylene group containing a sulfur atom as a heteroatom, and even more preferably a thienylene group.
 式(ii)において、cは、0又は1を表す。cは、1であることが好ましい。 In formula (ii), c represents 0 or 1. Preferably, c is 1.
 式(ii)において、X10は、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、又は置換基を有していてもよいヘテロアリール基を表す。 In formula (ii), X 10 is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group represents
 X10で表されるアルキル基、アリール基又はヘテロアリール基は、1以上の置換基を有していてもよく、1以上の置換基は、それぞれ独立して、置換基群αから選択することができる。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ基、ハロアルキルチオ基、ヘテロシクロアルキルオキシ基及びヘテロシクロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~3のアルキルオキシ基及びヘテロシクロアルキルオキシ基から選択することがより好ましく、フッ素原子、エチルオキシ基及びテトラヒドロフラニルオキシ基から選択することがより好ましい。 The alkyl group, aryl group or heteroaryl group represented by X 10 may have one or more substituents, and the one or more substituents are each independently selected from the substituent group α. can be done. one or more substituents are each independently selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio groups, haloalkylthio groups, heterocycloalkyloxy groups and heterocycloalkylthio groups; is preferred, more preferably selected from a halogen atom, an alkyloxy group having 1 to 3 carbon atoms and a heterocycloalkyloxy group, and more preferably selected from a fluorine atom, an ethyloxy group and a tetrahydrofuranyloxy group.
 X10は、置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基であることが好ましく、ハロゲン原子、炭素数1~3のアルキルオキシ基又は酸素原子をヘテロ原子として含むヘテロシクロアルキルオキシ基を有するアリール基、或いは、非置換のヘテロアリール基であることがより好ましく、フッ素原子、エチルオキシ基又はテトラヒドロフラニルオキシ基を有するフェニル基、或いは、非置換のベンゾチオフェニル基であることがより好ましい。 X 10 is preferably an optionally substituted aryl group or an optionally substituted heteroaryl group, wherein a halogen atom, an alkyloxy group having 1 to 3 carbon atoms or an oxygen atom is An aryl group having a heterocycloalkyloxy group containing as a heteroatom or an unsubstituted heteroaryl group is more preferable, and a phenyl group having a fluorine atom, an ethyloxy group or a tetrahydrofuranyloxy group, or an unsubstituted benzo A thiophenyl group is more preferred.
≪チオエステル誘導体(I)≫
 チオエステル誘導体(I)は、下記式(I)で表される。
<<Thioester derivative (I)>>
Thioester derivative (I) is represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 式(I)において、nは、1又は2を表す。 In formula (I), n represents 1 or 2.
 式(I)において、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表す。なお、本明細書において、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表すチオエステル誘導体(I)をチオエステル誘導体(I-1)といい、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表すチオエステル誘導体(I)をチオエステル誘導体(I-2)という場合がある。 In formula (I), each R independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group. In this specification, the thioester derivative (I) in which each R independently represents an optionally substituted aryl group is referred to as a thioester derivative (I-1), and each R is independently Therefore, the thioester derivative (I) representing an optionally substituted alkyl group is sometimes referred to as a thioester derivative (I-2).
 式(I)において、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表す場合、R’は、
 置換基を有していてもよいアルキルシリル基、
 置換基を有していてもよいテトラヒドロピラニル基、
 式:-CO-L-L[式中、Lは、置換基を有していてもよいアルキレン基又は置換基を有していてもよいハロアルキレン基を表し、Lは、ハロゲン原子を表す。]で表される基、
 式:-C(-L)(-L)-O-L[式中、Lは、水素原子又は置換基を有していてもよいアルキル基を表し、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表される基、又は、
 式:-CO-O-C(-L)(-L)(-L)[式中、L、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表される基
を表す。
In formula (I), when each R independently represents an optionally substituted alkyl group, R'
an optionally substituted alkylsilyl group,
a tetrahydropyranyl group optionally having a substituent,
Formula: -CO-L 1 -L 2 [In the formula, L 1 represents an optionally substituted alkylene group or an optionally substituted haloalkylene group, L 2 is a halogen represents an atom. ] A group represented by
Formula: -C(-L 3 )(-L 4 )-OL 5 [wherein L 3 represents a hydrogen atom or an optionally substituted alkyl group, and L 4 and L 5 , each independently represents an optionally substituted alkyl group. ] A group represented by, or
Formula: -CO-O-C(-L 6 )(-L 7 )(-L 8 ) [wherein L 6 , L 7 and L 8 each independently have a substituent represents a good alkyl group. ] represents the group represented by.
 式(I)において、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表す場合、R’は、
 置換基を有していてよいアルキルカルボニル基、
 置換基を有していてもよいアルキルシリル基、
 アルデヒド基、
 式:-CO-L-L[式中、L及びLは、前記と同義である。]で表される基、又は、
 式:-CO-C(-L)(-L10)(-L11)[式中、L、L10及びL11は、それぞれ独立して、ハロゲン原子を表す。]で表される基
を表す。
In formula (I), when each R independently represents an optionally substituted aryl group, R' is
an optionally substituted alkylcarbonyl group,
an optionally substituted alkylsilyl group,
aldehyde group,
Formula: -CO-L 1 -L 2 [In the formula, L 1 and L 2 have the same definitions as above. ] A group represented by, or
Formula: -CO-C(-L 9 )(-L 10 )(-L 11 ) [wherein L 9 , L 10 and L 11 each independently represent a halogen atom. ] represents the group represented by.
 一実施形態において、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’は、置換基を有していてもよいアルキルシリル基を表す。以下、置換基を有していてもよいアルキル基及び置換基を有していてもよいアルキルシリル基について説明する。 In one embodiment, each R independently represents an optionally substituted alkyl group, and R' represents an optionally substituted alkylsilyl group. The alkyl group optionally having substituent(s) and the alkylsilyl group optionally having substituent(s) are described below.
(1a)置換基を有していてもよいアルキル基
 アルキル基に関する説明は、上記の通りである。アルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3である。アルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。
(1a) Alkyl Groups Which May Have a Substituent The explanations regarding the alkyl groups are as described above. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, still more preferably 1-6, still more preferably 1-4, and still more preferably 1-3. Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups. It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
(1b)置換基を有していてもよいアルキルシリル基
 置換基を有していてもよいアルキルシリル基は、式:-Si-R(-R)(-R)で表される基である。R、R及びRは、それぞれ独立して、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表すが、R、R及びRのうちの1以上は置換基を有していてもよいアルキル基を表す。一実施形態において、R、R及びRのうちの1個が置換基を有していてもよいアルキル基を表し、残りの2個が置換基を有していてもよいアリール基を表す。別の実施形態において、R、R及びRのうちの2個が置換基を有していてもよいアルキル基を表し、残りの1個が置換基を有していてもよいアリール基を表す。さらに別の実施形態において、R、R及びRの全てが置換基を有していてもよいアルキル基を表す。アルキル基及びアリール基に関する説明は、上記の通りである。アルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4である。アルキル基は、1以上の置換基を有していてもよい。アルキル基が有する置換基の数は、好ましくは1~3、より好ましくは1又は2である。アルキル基が有する1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。アルキル基が有する1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。アリール基は、1以上の置換基を有していてもよい。アリール基が有する置換基の数は、好ましくは1~3、より好ましくは1又は2である。アリール基が有する1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。アリール基が有する1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。
(1b) Alkylsilyl group optionally having substituent(s) The alkylsilyl group optionally having substituent(s) is represented by the formula: —Si—R 1 (—R 2 )(—R 3 ) is the base. R 1 , R 2 and R 3 each independently represent an optionally substituted alkyl group or an optionally substituted aryl group, and R 1 , R 2 and R 3 At least one of represents an optionally substituted alkyl group. In one embodiment, one of R 1 , R 2 and R 3 represents an optionally substituted alkyl group, and the remaining two represent an optionally substituted aryl group. show. In another embodiment, two of R 1 , R 2 and R 3 represent an optionally substituted alkyl group, and the remaining one represents an optionally substituted aryl group. represents In yet another embodiment, R 1 , R 2 and R 3 all represent optionally substituted alkyl groups. A description of the alkyl group and the aryl group is given above. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, even more preferably 1-6, and still more preferably 1-4. Alkyl groups may have one or more substituents. The number of substituents that the alkyl group has is preferably 1 to 3, more preferably 1 or 2. One or more substituents of the alkyl group can be independently selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents of the alkyl group are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, more preferably selected from an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms; 4 alkyl groups and alkyloxy groups having 1 to 4 carbon atoms, and alkyl groups having 1 to 4 carbon atoms (e.g., methyl, ethyl, n-propyl, isopropyl, n- butyl group, t-butyl group, etc.). Aryl groups may have one or more substituents. The number of substituents on the aryl group is preferably 1-3, more preferably 1 or 2. One or more substituents of the aryl group can be independently selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents on the aryl group are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, more preferably selected from an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms; 4 alkyl groups and alkyloxy groups having 1 to 4 carbon atoms, and alkyl groups having 1 to 4 carbon atoms (e.g., methyl, ethyl, n-propyl, isopropyl, n- butyl group, t-butyl group, etc.).
 R、R及びRは、それぞれ独立して、アルキル基又はアリール基を表すが、R、R及びRのうちの1以上はアルキル基を表す場合、式:-Si-R(-R)(-R)で表される基は、アルキルシリル基である。アルキルシリル基としては、例えば、t-ブチルジフェニルシリル基(TBDPS)、メチルジフェニルシリル基(MDPS)等のモノアルキルシリル基;ジメチルフェニルシリル基等のジアルキルシリル基;トリメチルシリル基(TMS)、トリエチルシリル基(TES)、ジメチルイソプロピルシリル基(IPDMS)、ジエチルイソプロピルシリル基(DEIPS)、ジメチルテキシルシリル基(TDS)、t-ブチルジメチルシリル基(TBS)、トリイソプロピルシリル基(TIPS)、ジ-t-ブチルメチルシリル基(DTBMS)等のトリアルキルシリル基が挙げられる。これらのうち、トリアルキルシリル基が好ましく、TBS又はTMSがより好ましく、TBSがより一層好ましい。 R 1 , R 2 and R 3 each independently represent an alkyl group or an aryl group, and when one or more of R 1 , R 2 and R 3 represent an alkyl group, The group represented by 1 (-R 2 )(-R 3 ) is an alkylsilyl group. Examples of alkylsilyl groups include monoalkylsilyl groups such as t-butyldiphenylsilyl group (TBDPS) and methyldiphenylsilyl group (MDPS); dialkylsilyl groups such as dimethylphenylsilyl group; trimethylsilyl group (TMS) and triethylsilyl. group (TES), dimethylisopropylsilyl group (IPDMS), diethylisopropylsilyl group (DEIPS), dimethylthexylsilyl group (TDS), t-butyldimethylsilyl group (TBS), triisopropylsilyl group (TIPS), di- Examples include trialkylsilyl groups such as t-butylmethylsilyl group (DTBMS). Among these, a trialkylsilyl group is preferred, TBS or TMS is more preferred, and TBS is even more preferred.
 別の実施形態において、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’は、置換基を有していてもよいテトラヒドロピラニル基を表す。置換基を有していてもよいアルキル基に関する説明は、上記(1a)の通りである。以下、置換基を有していてもよいテトラヒドロピラニル基について説明する。 In another embodiment, each R independently represents an optionally substituted alkyl group, and R' represents an optionally substituted tetrahydropyranyl group. The description of the optionally substituted alkyl group is as described in (1a) above. The tetrahydropyranyl group optionally having a substituent is described below.
(1c)置換基を有していてもよいテトラヒドロピラニル基
 テトラヒドロピラニル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。
(1c) Optional Tetrahydropyranyl Group The tetrahydropyranyl group may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups. It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 さらに別の実施形態において、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’は、式:-CO-L-Lで表される基を表す。置換基を有していてもよいアルキル基に関する説明は、上記(1a)の通りである。以下、式:-CO-L-Lで表される基について説明する。 In yet another embodiment, each R independently represents an optionally substituted alkyl group, and R' represents a group represented by the formula: -CO-L 1 -L 2 . The description of the optionally substituted alkyl group is as described in (1a) above. The group represented by the formula: -CO-L 1 -L 2 will be described below.
(1d)式:-CO-L -L で表される基
 Lは、置換基を有していてもよいアルキレン基又は置換基を有していてもよいハロアルキレン基を表す。アルキレン基及び又はハロアルキレン基の炭素数は、それぞれ、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3である。アルキレン基及びハロアルキレン基は、それぞれ、1以上の置換基を有していてもよい。アルキレン基及びハロアルキレン基がそれぞれ有する置換基の数は、好ましくは1~3、より好ましくは1又は2である。アルキレン基及びハロアルキレン基がそれぞれ有する1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。アルキレン基及びハロアルキレン基がそれぞれ有する1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。
(1d) The group L 1 represented by the formula: -CO-L 1 -L 2 represents an optionally substituted alkylene group or an optionally substituted haloalkylene group. The number of carbon atoms in the alkylene group and/or haloalkylene group is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, still more preferably 1 to 4, and still more preferably 1 to 3. is. Each of the alkylene group and the haloalkylene group may have one or more substituents. The number of substituents each of the alkylene group and the haloalkylene group has is preferably 1 to 3, more preferably 1 or 2. One or more substituents possessed by each of the alkylene group and the haloalkylene group can be independently selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. Preferably, the one or more substituents of the alkylene group and the haloalkylene group are each independently selected from a halogen atom, an alkyl group, a haloalkyl group, an alkyloxy group, a haloalkyloxy group, an alkylthio and a haloalkylthio group, It is more preferably selected from a halogen atom, an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom , an alkyl group having 1 to 4 carbon atoms and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, etc.).
 Lは、ハロゲン原子を表す。ハロゲン原子は、塩素原子、臭素原子及びフッ素原子から選択することが好ましく、塩素原子であることがより好ましい。 L2 represents a halogen atom. A halogen atom is preferably selected from a chlorine atom, a bromine atom and a fluorine atom, and more preferably a chlorine atom.
 式:-CO-L-Lで表される基は、-CO-CHCl、-CO-CHCl及び-CO-CClから選択することが好ましく、-CO-CHClであることがより好ましい。 The group represented by the formula: -CO-L 1 -L 2 is preferably selected from -CO-CH 2 Cl, -CO-CHCl 2 and -CO-CCl 3 and is -CO-CH 2 Cl is more preferable.
 さらに別の実施形態において、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’は、式:-C(-L)(-L)-O-Lで表される基を表す。置換基を有していてもよいアルキル基に関する説明は、上記(1a)の通りである。以下、式:-C(-L)(-L)-O-Lで表される基について説明する。 In still another embodiment, each R independently represents an optionally substituted alkyl group, and R′ is of the formula: —C(—L 3 )(—L 4 )—O— represents a group represented by L5 ; The description of the optionally substituted alkyl group is as described in (1a) above. The group represented by the formula: -C(-L 3 )(-L 4 )-OL 5 will be described below.
(1e)式:-C(-L )(-L )-O-L で表される基
 Lは、水素原子又は置換基を有していてもよいアルキル基を表し、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。Lは、置換基を有していてもよいアルキル基であることが好ましい。L、L及びLは、同一のアルキル基であってもよいし、異なるアルキル基であってもよい。アルキル基に関する説明は、上記の通りである。アルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3である。アルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。
The group L 3 represented by the formula (1e): -C(-L 3 )(-L 4 )-OL 5 represents a hydrogen atom or an optionally substituted alkyl group, and L 4 and L5 each independently represent an optionally substituted alkyl group. L 3 is preferably an optionally substituted alkyl group. L 3 , L 4 and L 5 may be the same alkyl group or different alkyl groups. A description of the alkyl group is provided above. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, still more preferably 1-6, still more preferably 1-4, and still more preferably 1-3. Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 式:-C(-L)(-L)-O-Lで表される基は、-C(-CH-O-CH及び-CH(-CH)-O-CHCHから選択することが好ましく、-C(-CH-O-CHであることがより好ましい。 The group represented by the formula: -C(-L 3 )(-L 4 )-OL 5 is -C(-CH 3 ) 2 -O-CH 3 and -CH(-CH 3 )-O- It is preferably selected from CH 2 CH 3 , more preferably -C(-CH 3 ) 2 -O-CH 3 .
 さらに別の実施形態において、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表し、式:-CO-O-C(-L)(-L)(-L)で表される基を表す。置換基を有していてもよいアルキル基に関する説明は、上記(1a)の通りである。以下、式:-CO-O-C(-L)(-L)(-L)で表される基について説明する。 In yet another embodiment, each R independently represents an optionally substituted alkyl group of the formula: —CO—O—C(—L 6 )(—L 7 )(—L 8 ) represents a group represented by The description of the optionally substituted alkyl group is as described in (1a) above. Groups represented by the formulas: —CO—O—C(—L 6 )(—L 7 )(—L 8 ) are described below.
(1f)式:-CO-O-C(-L )(-L )(-L )で表される基
 L、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。L、L及びLは、同一のアルキル基であってもよいし、異なるアルキル基であってもよい。アルキル基に関する説明は、上記の通りである。アルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3である。アルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。
(1f) Groups L 6 , L 7 and L 8 represented by the formula: —CO—O—C(-L 6 )(-L 7 ) ( - L 8 ) each independently have a substituent represents an alkyl group that may be L 6 , L 7 and L 8 may be the same alkyl group or different alkyl groups. A description of the alkyl group is provided above. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, still more preferably 1-6, still more preferably 1-4, and still more preferably 1-3. Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 式:-CO-O-C(-L)(-L)(-L)で表される基は、好ましくは、-CO-O-C(-CH、-CО-O-C(-CHCH、-CО-О-C(-CH)(-CHCH、-CО-О-C(-CH(-CHCH)であり、より好ましくは、-CO-O-C(-CHである。 The group represented by the formula: —CO—O—C(—L 6 )(—L 7 )(—L 8 ) is preferably —CO—O—C(—CH 3 ) 3 , —CO—O -C(-CH 2 CH 3 ) 3 , -CO-OC(-CH 3 )(-CH 2 CH 3 ) 2 , -CO-OC(-CH 3 ) 2 (-CH 2 CH 3 ) and more preferably —CO—O—C(—CH 3 ) 3 .
 さらに別の実施形態において、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’は、置換基を有していてよいアルキルカルボニル基を表す。以下、置換基を有していてもよいアリール基及び置換基を有していてもよいアルキルカルボニル基について説明する。 In yet another embodiment, each R independently represents an optionally substituted aryl group, and R' represents an optionally substituted alkylcarbonyl group. The aryl group optionally having substituent(s) and the alkylcarbonyl group optionally having substituent(s) are described below.
(1g)置換基を有していてもよいアリール基
 アリール基に関する説明は、上記の通りである。アリール基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。
(1g) Aryl group optionally having a substituent The aryl group is as described above. Aryl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
(1h)置換基を有していてもよいアルキルカルボニル基
 アルキルカルボニル基に関する説明は、上記の通りである。アルキルカルボニル基(-CO-アルキル基)に含まれるアルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より好ましくは1~6、より好ましくは1~4、より好ましくは1~3である。アルキルカルボニル基に含まれるアルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。
(1h) Alkylcarbonyl group optionally having substituent(s) The description of the alkylcarbonyl group is as described above. The number of carbon atoms in the alkyl group contained in the alkylcarbonyl group (-CO-alkyl group) is preferably 1 to 10, more preferably 1 to 8, more preferably 1 to 6, more preferably 1 to 4, more preferably 1 to 3. The alkyl group contained in the alkylcarbonyl group may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 さらに別の実施形態において、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’は、置換基を有していてもよいアルキルシリル基を表す。置換基を有していてもよいアリール基に関する説明は、上記(1g)の通りである。置換基を有していてもよいアルキルシリル基に関する説明は、上記(1b)の通りである。 In yet another embodiment, each R independently represents an optionally substituted aryl group, and R' represents an optionally substituted alkylsilyl group. The description of the optionally substituted aryl group is as described in (1g) above. The description of the optionally substituted alkylsilyl group is as described in (1b) above.
 さらに別の実施形態において、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’は、アルデヒド基(-CHO)を表す。置換基を有していてもよいアリール基に関する説明は、上記(1g)の通りである。 In yet another embodiment, each R independently represents an optionally substituted aryl group, and R' represents an aldehyde group (--CHO). The description of the optionally substituted aryl group is as described in (1g) above.
 さらに別の実施形態において、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’は、式:-CO-L-Lで表される基を表す。置換基を有していてもよいアリール基に関する説明は、上記(1g)の通りである。式:-CO-L-Lで表される基に関する説明は、上記(1d)の通りである。 In still another embodiment, each R independently represents an optionally substituted aryl group, and R' represents a group represented by the formula: -CO-L 1 -L 2 . The description of the optionally substituted aryl group is as described in (1g) above. The group represented by the formula: -CO-L 1 -L 2 is as described in (1d) above.
 さらに別の実施形態において、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’は、式:-CO-C(-L)(-L10)(-L11)で表される基を表す。置換基を有していてもよいアリール基に関する説明は、上記(1g)の通りである。以下、式:-CO-C(-L)(-L10)(-L11)で表される基について説明する。 In yet another embodiment, each R independently represents an optionally substituted aryl group, and R′ is of the formula: —CO—C(—L 9 )(—L 10 )( - represents a group represented by L 11 ). The description of the optionally substituted aryl group is as described in (1g) above. Groups represented by the formulas: -CO-C(-L 9 )(-L 10 )(-L 11 ) are described below.
(1i)式:-CO-C(-L )(-L 10 )(-L 11 )で表される基
 L、L10及びL11は、それぞれ独立して、ハロゲン原子を表す。L、L10及びL11は、同一のハロゲン原子であってよいし、異なるハロゲン原子であってもよいが、同一のハロゲン原子であることが好ましい。ハロゲン原子は、フッ素原子、塩素原子及び臭素原子から選択することが好ましく、フッ素原子であることがより好ましい。
Groups L 9 , L 10 and L 11 represented by the formula (1i): —CO—C(-L 9 )(-L 10 )(-L 11 ) each independently represent a halogen atom. L 9 , L 10 and L 11 may be the same halogen atom or different halogen atoms, but are preferably the same halogen atom. A halogen atom is preferably selected from a fluorine atom, a chlorine atom and a bromine atom, and more preferably a fluorine atom.
 式:-CO-C(-L)(-L10)(-L11)で表される基、-CO-CF及び-CO-CClから選択することが好ましく、-CO-CFであることがより好ましい。 A group represented by the formula: -CO-C(-L 9 )(-L 10 )(-L 11 ), preferably selected from -CO-CF 3 and -CO-CCl 3 , -CO-CF 3 is more preferable.
 式(I)において、n=1の場合、3個のRは、異なっていてもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、3個のRはすべてメチル基である。別の実施形態において、3個のRはすべてフェニル基である。3個のRがすべてメチル基である実施形態において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。3個のRがすべてフェニル基である実施形態において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In formula (I), when n = 1, the three R's may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred. In one embodiment, all three R are methyl groups. In another embodiment, all three R are phenyl groups. In embodiments where all three R are methyl groups, R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O —C(—CH 3 ) 3 . In embodiments where all three R are phenyl groups, R' is preferably an acetyl group, TBS, TMS, an aldehyde group, -CO- CH2 -Cl or -CO- CF3 , more preferably an acetyl group, TBS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 .
 式(I)において、n=2の場合、4個のRは、異なっていてもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、4個のRはすべてメチル基である。別の実施形態において、4個のRはすべてフェニル基である。4個のRがすべてメチル基である実施形態において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。4個のRがすべてフェニル基である実施形態において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In formula (I), when n = 2, the four R may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred. In one embodiment, all four R are methyl groups. In another embodiment, all four R are phenyl groups. In embodiments where all four R are methyl groups, R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O —C(—CH 3 ) 3 . In embodiments where all four R are phenyl groups, R' is preferably an acetyl group, TBS, TMS, an aldehyde group, -CO- CH2 -Cl or -CO- CF3 , more preferably an acetyl group, TBS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 .
 式(I)において、Wは、
(1)置換基を有していてもよいアルキル基、
(2)置換基を有していてもよいアルケニル基、
(3)置換基を有していてもよいシクロアルキル基、
(4)置換基を有していてもよいヘテロシクロアルキル基、
(5)置換基を有していてもよいアリール基、
(6)置換基を有していてもよいヘテロアリール基、
(7)置換基を有していてもよいアリールアルキル基、又は
(8)置換基を有していてもよいアリールアルケニル基
を表す。
In formula (I), W 1 is
(1) an optionally substituted alkyl group,
(2) an alkenyl group optionally having a substituent,
(3) a cycloalkyl group optionally having a substituent,
(4) a heterocycloalkyl group optionally having a substituent,
(5) an aryl group optionally having a substituent,
(6) a heteroaryl group optionally having a substituent,
(7) an optionally substituted arylalkyl group, or (8) an optionally substituted arylalkenyl group.
 以下、官能基(1)~(8)について説明する。 The functional groups (1) to (8) are described below.
官能基(1):置換基を有していてもよいアルキル基
 アルキル基に関する説明は、上記の通りである。アルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。
Functional Group (1): Alkyl Group Which May Have a Substituent The description of the alkyl group is as described above. Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β.
官能基(2):置換基を有していてもよいアルケニル基
 アルケニル基に関する説明は、上記の通りである。アルケニル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。
Functional Group (2): Alkenyl Group Which May Have a Substituent The description of the alkenyl group is as described above. Alkenyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β.
官能基(3)置換基を有していてもよいシクロアルキル基
 シクロアルキル基に関する説明は、上記の通りである。シクロアルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。
Functional Group (3) The cycloalkyl group optionally having a substituent is as described above. A cycloalkyl group may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β.
官能基(4):置換基を有していてもよいヘテロシクロアルキル基
 ヘテロシクロアルキル基に関する説明は、上記の通りである。ヘテロシクロアルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。
Functional Group (4): Heterocycloalkyl Group Which May Have a Substituent The description of the heterocycloalkyl group is as described above. A heterocycloalkyl group may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β.
官能基(5):置換基を有していてもよいアリール基
 アリール基に関する説明は、上記の通りである。アリール基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。
Functional Group (5): Aryl Group Which May Have a Substituent The aryl group is as described above. Aryl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β.
官能基(6):置換基を有していてもよいヘテロアリール基
 ヘテロアリール基に関する説明は、上記の通りである。ヘテロアリール基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。
Functional Group (6): Heteroaryl Group Which May Have a Substituent The description of the heteroaryl group is as described above. A heteroaryl group may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β.
官能基(7):置換基を有していてもよいアリールアルキル基
 アリールアルキル基に関する説明は、上記の通りである。アリールアルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。
Functional Group (7): Arylalkyl Group Which May Have a Substituent The arylalkyl group is as described above. An arylalkyl group may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β.
官能基(8):置換基を有していてもよいアリールアルケニル基
 アリールアルケニル基に関する説明は、上記の通りである。アリールアルケニル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。
Functional Group (8): Arylalkenyl Group which May Have a Substituent The arylalkenyl group is as described above. An arylalkenyl group may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β.
 官能基(1)~(8)のそれぞれにおいて、1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。 In each of functional groups (1)-(8), one or more substituents are each independently selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups. is preferably selected from a halogen atom, an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms. More preferably, it is selected from a halogen atom, an alkyl group having 1 to 4 carbon atoms and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n -propyl group, isopropyl group, n-butyl group, t-butyl group, etc.).
 一実施形態において、式(I)におけるWは、置換基を有していてもよいアルキル基、好ましくは、置換基を有していてもよい炭素数1~20のアルキル基、より好ましくは、置換基を有していてもよい炭素数1~16のアルキル基、より一層好ましくは、置換基を有していてもよい炭素数1~12のアルキル基である。 In one embodiment, W 1 in formula (I) is an optionally substituted alkyl group, preferably an optionally substituted alkyl group having 1 to 20 carbon atoms, more preferably , an optionally substituted alkyl group having 1 to 16 carbon atoms, more preferably an optionally substituted alkyl group having 1 to 12 carbon atoms.
 一実施形態において、チオエステル誘導体(I)は、下記式(Ia)で表されるチオエステル誘導体(Ia)である。チオエステル誘導体(Ia)は、n=2であるチオエステル誘導体(I)の一例である。 In one embodiment, the thioester derivative (I) is a thioester derivative (Ia) represented by the following formula (Ia). Thioester derivative (Ia) is an example of thioester derivative (I) where n=2.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 式(Ia)において、R~Rは、それぞれ独立して、式:-CO-Rで表される基を表す。Rは、式(I)と同義である。R~Rは、異なる基であってもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一の基であることが好ましい。一実施形態において、R~Rはすべてアセチル基である。別の実施形態において、R~Rはすべてベンゾイル基である。R~Rがすべてアセチル基である実施形態において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。R~Rがすべてベンゾイル基である実施形態において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In formula (Ia), R 1 to R 4 each independently represent a group represented by the formula: --CO--R. R has the same definition as in formula (I). R 1 to R 4 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: --CO--R, they are preferably the same group. In one embodiment, R 1 -R 4 are all acetyl groups. In another embodiment, R 1 -R 4 are all benzoyl groups. In embodiments in which R 1 -R 4 are all acetyl groups, R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO-- OC( -CH3 ) 3 . In embodiments where R 1 -R 4 are all benzoyl groups, R' is preferably an acetyl group, TBS, TMS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 , more preferably an acetyl group. , TBS, an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 .
 式(Ia)において、Wは、式(I)と同義である。一実施形態において、式(Ia)におけるWは、置換基を有していてもよいアルキル基、好ましくは、置換基を有していてもよい炭素数1~20のアルキル基、より好ましくは、置換基を有していてもよい炭素数1~16のアルキル基、より一層好ましくは、置換基を有していてもよい炭素数1~12のアルキル基である。 In formula (Ia), W1 has the same meaning as in formula (I). In one embodiment, W 1 in formula (Ia) is an optionally substituted alkyl group, preferably an optionally substituted alkyl group having 1 to 20 carbon atoms, more preferably , an optionally substituted alkyl group having 1 to 16 carbon atoms, more preferably an optionally substituted alkyl group having 1 to 12 carbon atoms.
 Wが置換基を有していてもよいアルキル基であるチオエステル誘導体(Ia)としては、例えば、以下の化合物が挙げられる。なお、「Ac」はアセチル基を、「Bz」はベンゾイル基を表す(本明細書を通じて同様である)。 Examples of the thioester derivative (Ia) in which W 1 is an optionally substituted alkyl group include the following compounds. In addition, "Ac" represents an acetyl group, and "Bz" represents a benzoyl group (the same applies throughout the specification).
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 化合物(Iaa)において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。化合物(Iab)において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In compound (Iaa), R′ is preferably TBS, TMS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—O—C( —CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—OC(—CH 3 ) 3 is. In compound (Iab), R′ is preferably an acetyl group, TBS, TMS, an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 , more preferably an acetyl group, TBS, an aldehyde group, —CO— CH 2 —Cl or —CO—CF 3 .
 化合物(Iaa)又は(Iab)において、Wに対応する-C1225は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。 In compound (Iaa) or (Iab), —C 12 H 25 corresponding to W 1 may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 化合物(Iaa)又は(Iab)において、Wに対応する-C1225は、他のアルキル基に変更可能である。他のアルキル基としては、例えば、-C1021、-C1123等が挙げられる。他のアルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。 In compounds (Iaa) or (Iab), —C 12 H 25 corresponding to W 1 can be changed to other alkyl groups. Other alkyl groups include, for example, —C 10 H 21 , —C 11 H 23 and the like. Other alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 別の実施形態において、チオエステル誘導体(I)は、下記式(Ib)で表されるチオエステル誘導体(Ib)である。チオエステル誘導体(Ib)は、n=1であるチオエステル誘導体(I)の一例である。 In another embodiment, thioester derivative (I) is thioester derivative (Ib) represented by formula (Ib) below. Thioester derivative (Ib) is an example of thioester derivative (I) where n=1.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 式(Ib)におけるR~R、R’及びWは、式(Ia)と同義であり、R~R、R’及びWに関する上記説明は、式(Ib)にも適用される。 R 1 to R 3 , R′ and W 1 in formula (Ib) have the same definitions as in formula (Ia), and the above explanations regarding R 1 to R 3 , R′ and W 1 also apply to formula (Ib). be done.
 式(Ib)において、R~Rは、異なる基であってもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一の基であることが好ましい。一実施形態において、R~Rはすべてアセチル基である。別の実施形態において、R~Rはすべてベンゾイル基である。R~Rがすべてアセチル基である実施形態において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。R~Rがすべてベンゾイル基である実施形態において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In formula (Ib), R 1 to R 3 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they should be the same group. is preferred. In one embodiment, R 1 -R 3 are all acetyl groups. In another embodiment, R 1 -R 3 are all benzoyl groups. In embodiments where R 1 -R 3 are all acetyl groups, R' is preferably TBS, TMS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO-- OC( -CH3 ) 3 . In embodiments where R 1 -R 3 are all benzoyl groups, R' is preferably an acetyl group, TBS, TMS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 , more preferably an acetyl group. , TBS, an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 .
≪ケトン誘導体(II)≫
 ケトン誘導体(II)は、下記式(II)で表される。
<<Ketone derivative (II)>>
Ketone derivative (II) is represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 式(II)において、R、R’及びnは、式(I)と同義であり、R、R’及びnに関する上記説明は、式(II)にも適用される。なお、本明細書において、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表すケトン誘導体(II)をケトン誘導体(II-1)といい、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表すケトン誘導体(II)をケトン誘導体(II-2)という場合がある。 In formula (II), R, R' and n have the same definitions as in formula (I), and the above explanations regarding R, R' and n also apply to formula (II). In the present specification, the ketone derivative (II) in which each R independently represents an optionally substituted aryl group is referred to as a ketone derivative (II-1), and each R is independently Therefore, the ketone derivative (II) representing an optionally substituted alkyl group is sometimes referred to as the ketone derivative (II-2).
 式(II)において、n=1の場合、3個のRは、異なっていてもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、3個のRはすべてメチル基である。別の実施形態において、3個のRはすべてフェニル基である。3個のRがすべてメチル基である実施形態において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。3個のRがすべてフェニル基である実施形態において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In formula (II), when n = 1, the three R's may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred. In one embodiment, all three R are methyl groups. In another embodiment, all three R are phenyl groups. In embodiments where all three R are methyl groups, R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O —C(—CH 3 ) 3 . In embodiments where all three R are phenyl groups, R' is preferably an acetyl group, TBS, TMS, an aldehyde group, -CO- CH2 -Cl or -CO- CF3 , more preferably an acetyl group, TBS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 .
 式(II)において、n=2の場合、4個のRは、異なっていてもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、4個のRはすべてメチル基である。別の実施形態において、4個のRはすべてフェニル基である。4個のRがすべてメチル基である実施形態において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。4個のRがすべてフェニル基である実施形態において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In formula (II), when n = 2, the four R may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred. In one embodiment, all four R are methyl groups. In another embodiment, all four R are phenyl groups. In embodiments where all four R are methyl groups, R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O —C(—CH 3 ) 3 . In embodiments where all four R are phenyl groups, R' is preferably an acetyl group, TBS, TMS, an aldehyde group, -CO- CH2 -Cl or -CO- CF3 , more preferably an acetyl group, TBS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 .
 式(II)において、Wは、
(1)置換基を有していてもよいアルキル基、
(2)置換基を有していてもよいアルケニル基、
(3)置換基を有していてもよいシクロアルキル基、
(4)置換基を有していてもよいヘテロシクロアルキル基、
(5)置換基を有していてもよいアリール基、
(6)置換基を有していてもよいヘテロアリール基、
(7)置換基を有していてもよいアリールアルキル基、又は、
(8)置換基を有していてもよいアリールアルケニル基
を表す。
In formula (II), W2 is
(1) an optionally substituted alkyl group,
(2) an alkenyl group optionally having a substituent,
(3) a cycloalkyl group optionally having a substituent,
(4) a heterocycloalkyl group optionally having a substituent,
(5) an aryl group optionally having a substituent,
(6) a heteroaryl group optionally having a substituent,
(7) an optionally substituted arylalkyl group, or
(8) represents an optionally substituted arylalkenyl group;
 官能基(1)~(8)に関する上記説明は、別段規定される場合を除き、式(II)にも適用される。 The above explanations regarding functional groups (1) to (8) also apply to formula (II) unless otherwise specified.
 官能基(5)(すなわち、置換基を有していてもよいアリール基)において、アリール基の結合手を有する炭素原子(すなわち、式(II)において-CO-(-CO-Wにおける-CO-)と結合する炭素原子)の両隣に位置する炭素原子は、置換基を有さないことが好ましい。残りの炭素原子は、置換基を有していてもよい。 In the functional group (5) (that is, an optionally substituted aryl group), a carbon atom having an aryl group bond (that is, -CO- in formula ( II ) (- It is preferred that the carbon atoms located on both sides of the carbon atom bonding to CO—) do not have a substituent. The remaining carbon atoms may have substituents.
 官能基(6)(すなわち、置換基を有していてもよいヘテロアリール基)において、ヘテロアリール基の結合手を有する炭素原子(すなわち、式(II)において-CO-(-CO-Wにおける-CO-)と結合する炭素原子)の両隣に位置する炭素原子又はヘテロ原子は、置換基を有さないことが好ましい。残りの炭素原子又はヘテロ原子は置換基を有していてもよい。 In the functional group (6) (i.e., optionally substituted heteroaryl group), a carbon atom having a heteroaryl group bond (i.e., -CO-(-CO-W 2 It is preferred that the carbon atoms or heteroatoms located on both sides of the carbon atom bonding to -CO-) in have no substituents. The remaining carbon atoms or heteroatoms may have substituents.
 Wは、Wと同一であってもよいし、異なっていてもよい。 W2 may be the same as or different from W1 .
 Wは、下記式(iv)で表されることが好ましい。 W2 is preferably represented by the following formula (iv).
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 式(iv)において、Y10は、置換基を有していてもよいアルキレン基、置換基を有していてもよいアリーレン基、又は置換基を有していてもよいヘテロアリーレン基を表す。アルキレン基の炭素数は、1~10であることが好ましく、1~8であることがより好ましい。アリーレン基又はヘテロアリーレン基の炭素数は、4~14であることが好ましく、6~14であることがより好ましい。 In formula (iv), Y 10 represents an optionally substituted alkylene group, an optionally substituted arylene group, or an optionally substituted heteroarylene group. The number of carbon atoms in the alkylene group is preferably 1-10, more preferably 1-8. The arylene group or heteroarylene group preferably has 4 to 14 carbon atoms, more preferably 6 to 14 carbon atoms.
 Y10で表されるアルキレン基、アリーレン基又はヘテロアリーレン基は、1以上の置換基を有していてもよく、1以上の置換基は、それぞれ独立して、置換基群αから選択することができる。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ基及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~3のアルキル基及び炭素数1~3のアルキルオキシ基から選択することがより好ましい。 The alkylene group, arylene group or heteroarylene group represented by Y 10 may have one or more substituents, and the one or more substituents are each independently selected from the substituent group α. can be done. Preferably, the one or more substituents are each independently selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio groups and haloalkylthio groups. and an alkyloxy group having 1 to 3 carbon atoms.
 Y10は、置換基を有するアリーレン基であることが好ましく、ハロゲン原子又は炭素数1~3のアルキル基を有するアリーレン基であることがより好ましく、フッ素原子、塩素原子又はメチル基を有するフェニレン基であることがより一層好ましい。 Y 10 is preferably an arylene group having a substituent, more preferably an arylene group having a halogen atom or an alkyl group having 1 to 3 carbon atoms, and a phenylene group having a fluorine atom, a chlorine atom or a methyl group. is even more preferable.
 Y10は、-CO-(-CO-Wにおける-CO-)と結合する炭素原子の両隣に位置する炭素原子は置換基を有さず、残りの炭素原子は置換基を有していてもよいアリーレン基、又は、-CO-(-CO-Wにおける-CO-)と結合する炭素原子の両隣に位置する炭素原子若しくはヘテロ原子は置換基を有さず、残りの炭素原子若しくはヘテロ原子は置換基を有していてもよいヘテロアリーレン基であることが好ましい。Y10は、-CO-(-CO-Wにおける-CO-)と結合する炭素原子に対してオルト位には置換基を有さず、メタ位及び/又はパラ位には置換基を有していてもよいフェニレン基であることがより好ましい。 In Y 10 , the carbon atoms located on both sides of the carbon atom bonded to —CO— (—CO— in —CO—W 2 ) have no substituents, and the remaining carbon atoms have substituents. The arylene group, or the carbon atoms or hetero atoms located on both sides of the carbon atom bonded to -CO- (-CO- in -CO-W 2 ) have no substituents, and the remaining carbon atoms or hetero atoms The atom is preferably a heteroarylene group which may have a substituent. Y 10 does not have a substituent at the ortho position relative to the carbon atom bonded to —CO— (—CO— in —CO—W 2 ), and has a substituent at the meta and/or para position. It is more preferably a phenylene group which may be
 式(iv)において、V10、W10、X10、b及びcは、それぞれ、式(ii)と同義である。 In formula (iv), V 10 , W 10 , X 10 , b and c have the same meanings as in formula (ii).
 あるいは、Wは、下記式(vi)で表されることが好ましい。 Alternatively, W2 is preferably represented by the following formula (vi).
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 式(vi)において、R41及びR42は、それぞれ独立して、水素原子又はアミノ基の保護基を表す。アミノ基の保護基としては、カルバメート系、アシル系、アミド系、スルホンアミド系、フタロイル基等、いずれの保護基を用いてもよい。カルバメート系の保護基としては、例えば、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、アリルオキシカルボニル基等が挙げられる。アシル系の保護基としては、例えば、アセチル基、ピバロイル基、ベンゾイル基等が挙げられる。アミド系の保護基としては、例えば、トリフルオロアセチル基等が挙げられる。スルホンアミド系の保護基としては、例えば、p-トルエンスルホニル基、2-ニトロベンゼンスルホニル基等が挙げられる。アミノ基の保護基は、アシル系又はアミド系の保護基であることが好ましい。アミノ基の保護基は、ピバロイル基又はトリフルオロアセチル基であることがより好ましい。R41及びR42は、互いに結合してフタロイル基等のアミノ基の保護基を形成していてもよい。Wが式(vi)の構造を有していると、レムデシビルの中間体として好適に用いることができる。 In formula (vi), R 41 and R 42 each independently represent a hydrogen atom or an amino group-protecting group. As the amino-protecting group, any protecting group such as carbamate, acyl, amide, sulfonamide, and phthaloyl groups may be used. Examples of carbamate-based protective groups include tert-butoxycarbonyl, benzyloxycarbonyl, 9-fluorenylmethyloxycarbonyl, 2,2,2-trichloroethoxycarbonyl, allyloxycarbonyl and the like. . Acyl-based protective groups include, for example, an acetyl group, a pivaloyl group, a benzoyl group and the like. Amide-based protective groups include, for example, a trifluoroacetyl group and the like. Examples of sulfonamide-based protecting groups include p-toluenesulfonyl group and 2-nitrobenzenesulfonyl group. The amino group-protecting group is preferably an acyl-based or amide-based protecting group. More preferably, the amino-protecting group is a pivaloyl group or a trifluoroacetyl group. R 41 and R 42 may combine with each other to form an amino-protecting group such as a phthaloyl group. When W2 has the structure of formula (vi), it can be suitably used as an intermediate for remdesivir.
 一実施形態において、ケトン誘導体(II)は、下記式(IIa)で表されるケトン誘導体(IIa)である。ケトン誘導体(IIa)は、n=2であるケトン誘導体(II)の一例である。 In one embodiment, the ketone derivative (II) is a ketone derivative (IIa) represented by the following formula (IIa). Ketone derivative (IIa) is an example of ketone derivative (II) where n=2.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 式(IIa)において、R~Rは、それぞれ独立して、式:-CO-Rで表される基を表す。Rは、上記と同義である。R~Rは、異なる基であってもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一の基であることが好ましい。一実施形態において、R~Rはすべてアセチル基である。別の実施形態において、R~Rはすべてベンゾイル基である。R~Rがすべてアセチル基である実施形態において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。R~Rがすべてベンゾイル基である実施形態において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In formula (IIa), R 1 to R 4 each independently represent a group represented by the formula: --CO--R. R has the same meaning as above. R 1 to R 4 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: --CO--R, they are preferably the same group. In one embodiment, R 1 -R 4 are all acetyl groups. In another embodiment, R 1 -R 4 are all benzoyl groups. In embodiments where R 1 -R 4 are all acetyl groups, R' is preferably TBS, TMS, a tetrahydropyranyl group, -CO-CH 2 -Cl, -C(-CH 3 ) 2 -O-CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO-- OC( -CH3 ) 3 . In embodiments where R 1 -R 4 are all benzoyl groups, R' is preferably an acetyl group, TBS, TMS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 , more preferably an acetyl group. , TBS, an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 .
 式(IIa)において、Wは、式(II)と同義である。一実施形態において、式(IIa)におけるWは、置換基を有していてもよいアリール基である。 In formula (IIa), W2 has the same definition as in formula (II). In one embodiment, W2 in formula (IIa) is an optionally substituted aryl group.
 Wが置換基を有していてもよいアリール基であるケトン誘導体(IIa)としては、以下の化合物が挙げられる。なお、「Ph」はフェニル基を表す(本明細書を通じて同様である)。 Examples of the ketone derivative (IIa) in which W2 is an optionally substituted aryl group include the following compounds. In addition, "Ph" represents a phenyl group (same throughout the specification).
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 化合物(IIaa)において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。化合物(IIab)において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In compound (IIaa), R′ is preferably TBS, TMS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—O—C( —CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—OC(—CH 3 ) 3 is. In compound (IIab), R′ is preferably an acetyl group, TBS, TMS, an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 , more preferably an acetyl group, TBS, an aldehyde group, —CO— CH 2 —Cl or —CO—CF 3 .
 化合物(IIaa)又は(IIab)において、Wに対応するフェニル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。 In compound (IIaa) or (IIab), the phenyl group corresponding to W2 may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 式(II)又は(IIa)におけるWは、ケトン誘導体(II)又は(IIa)をSGLT-2阻害薬又はその誘導体の製造原料として用いる観点から、SGLT-2阻害薬が有する官能基と同一であるか、SGLT-2阻害薬が有する官能基を誘導化した官能基であることが好ましい。 W 2 in formula (II) or (IIa) is the same as the functional group possessed by the SGLT-2 inhibitor from the viewpoint of using the ketone derivative (II) or (IIa) as a raw material for producing the SGLT-2 inhibitor or its derivative. or a functional group obtained by derivatizing the functional group of the SGLT-2 inhibitor.
 ここで、カナグリフロジン(1-(β-D-グリコピラノシル)-4-メチル-3-[5-(4-フルオロフェニル)-2-チエニルメチル]ベンゼン)、エンパグリフロジン((1S)-1,5-アンヒドロ-1-C-{4-クロロ-3-[(4-{[(3S)-オキソラン-3-イル]オキシ}フェニル)メチル]フェニル}-D-グルシトール)、イプラグリフロジン((1S)-1,5-アンヒドロ-1-C-{3-[(1-ベンゾチオフェン-2-イル)メチル]-4-フルオロフェニル}-D-グルシトール-(2S)-ピロリジン-2-カルボン酸)及びダパグリフロジン((2S,3R,4R,5S,6R)-2-[4-クロロ-3-(4-エチルオキシベンジル)フェニル]-6-(ヒドロキシメチル)テトラヒドロ-2H-ピラン-3,4,5-チオール)をはじめとするSGLT-2阻害剤は、下記式(A)で表される官能基を有する。 Here, canagliflozin (1-(β-D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene), empagliflozin ((1S)-1 , 5-anhydro-1-C-{4-chloro-3-[(4-{[(3S)-oxolan-3-yl]oxy}phenyl)methyl]phenyl}-D-glucitol), ipragliflozin ( (1S)-1,5-anhydro-1-C-{3-[(1-benzothiophen-2-yl)methyl]-4-fluorophenyl}-D-glucitol-(2S)-pyrrolidine-2-carvone acid) and dapagliflozin ((2S,3R,4R,5S,6R)-2-[4-chloro-3-(4-ethyloxybenzyl)phenyl]-6-(hydroxymethyl)tetrahydro-2H-pyran-3, 4,5-thiol) and other SGLT-2 inhibitors have a functional group represented by the following formula (A).
 したがって、式(II)又は(IIa)におけるWは、下記式(A)で表される官能基であることが好ましい。 Therefore, W2 in formula (II) or (IIa) is preferably a functional group represented by formula (A) below.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 式(A)において、dは、0~4の整数を表す。dは、好ましくは1~3、より好ましくは1又は2であり、より一層好ましくは1である。dが2以上である場合、d個のRは、同一であってもよいし、異なっていてもよい。 In formula (A), d represents an integer of 0-4. d is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1. When d is 2 or more, d R a may be the same or different.
 式(A)において、d個のRは、それぞれ独立して、置換基群αから選択することができる。d個のRは、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~3のアルキル基及び炭素数1~3のアルキルオキシ基から選択することがより好ましい。 In formula (A), each of d R a can be independently selected from substituent group α. Each of the d R a is preferably independently selected from a halogen atom, an alkyl group, a haloalkyl group, an alkyloxy group, a haloalkyloxy group, an alkylthio and a haloalkylthio group; It is more preferably selected from an alkyl group and an alkyloxy group having 1 to 3 carbon atoms.
 式(A)において、Ar’は、下記式(v)で表される基である。 In formula (A), Ar' is a group represented by formula (v) below.
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 式(v)において、W10、X10及びcは、それぞれ、式(ii)と同義である。 In formula (v), W 10 , X 10 and c each have the same meaning as in formula (ii).
 式(A)において、Ar’は、以下の式(Ar’-1)、(Ar’-2)又は(Ar’-3)で表される基であることが好ましい。 In formula (A), Ar' is preferably a group represented by the following formula (Ar'-1), (Ar'-2) or (Ar'-3).
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 式(Ar’-1)、(Ar’-2)及び(Ar’-3)において、pは、0~5の整数である。pは、好ましくは0~3の整数、より好ましくは0~2の整数、より一層好ましくは0又は1である。 In formulas (Ar'-1), (Ar'-2) and (Ar'-3), p is an integer of 0 to 5. p is preferably an integer from 0 to 3, more preferably an integer from 0 to 2, even more preferably 0 or 1;
 式(Ar’-1)、(Ar’-2)及び(Ar’-3)において、p個のRは、それぞれ独立して、置換基群α、置換基群αから選択される1以上の置換基を有していてもよいアリール基、及び、置換基群αから選択される1以上の置換基を有していてもよいヘテロアリール基から選択することができる。p個のRは、それぞれ独立して、置換基群α、及び、置換基群αから選択される1以上の置換基を有していてもよいアリール基から選択することが好ましい。置換基群αから選択される1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ基、ハロアルキルチオ基、ヘテロシクロアルキルオキシ基及びヘテロシクロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~3のアルキル基、炭素数1~3のアルキルオキシ基及びヘテロシクロアルキルオキシ基から選択することがより好ましく、フッ素原子、エチルオキシ基及びテトラヒドロフラニルオキシ基から選択することがより一層好ましい。 In formulas (Ar′-1), (Ar′-2) and (Ar′-3), p R b are each independently one or more selected from substituent group α and substituent group α and a heteroaryl group optionally having one or more substituents selected from the substituent group α. Each of the p R b is preferably independently selected from the substituent group α and an aryl group optionally having one or more substituents selected from the substituent group α. One or more substituents selected from the substituent group α are each independently a halogen atom, an alkyl group, a haloalkyl group, an alkyloxy group, a haloalkyloxy group, an alkylthio group, a haloalkylthio group, a heterocycloalkyloxy group and It is preferably selected from a heterocycloalkylthio group, more preferably selected from a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkyloxy group having 1 to 3 carbon atoms and a heterocycloalkyloxy group, a fluorine atom, ethyloxy It is even more preferred to select from radicals and tetrahydrofuranyloxy radicals.
 pが2以上である場合、p個のRは、同一であってもよいし、異なっていてもよい。 When p is 2 or more, p R b may be the same or different.
 式(Ar’-1)において、pは、好ましくは1であり、Rは、好ましくは、置換基を有していてもよいフェニル基であり、より好ましくは、ハロゲン原子を有するフェニル基であり、より一層好ましくは、フッ素原子を有するフェニル基である。非置換又は置換のフェニル基が結合している位置は、好ましくは、チオフェン環の2位である。ハロゲン原子を有するフェニル基において、ハロゲン原子が結合している位置は、好ましくは、ベンゼン環の4位である。 In formula (Ar′-1), p is preferably 1, R b is preferably an optionally substituted phenyl group, more preferably a phenyl group having a halogen atom. and more preferably a phenyl group having a fluorine atom. The position to which the unsubstituted or substituted phenyl group is attached is preferably the 2-position of the thiophene ring. In the phenyl group having a halogen atom, the position to which the halogen atom is bonded is preferably the 4-position of the benzene ring.
 式(Ar’-2)において、pは、好ましくは0である。 In formula (Ar'-2), p is preferably 0.
 式(Ar’-3)において、pは、好ましくは1であり、Rは、好ましくは、置換基を有していてもよいアルキルオキシ基又は置換基を有していてもよいヘテロシクロアルキルオキシ基である。置換基を有していてもよいアルキルオキシ基は、好ましくは、炭素数1~3のアルキルオキシ基であり、より好ましくは、メトキシ基又はエトキシ基である。置換基を有していてもよいヘテロシクロアルキルオキシ基は、好ましくは、テトラヒドロフラニルオキシ基である。置換基を有していてもよいアルキルオキシ基又は置換基を有していてもよいヘテロシクロアルキルオキシ基が結合している位置は、好ましくは、ベンゼン環の4位である。 In formula (Ar′-3), p is preferably 1, and R b is preferably an optionally substituted alkyloxy group or an optionally substituted heterocycloalkyl It is an oxy group. The optionally substituted alkyloxy group is preferably an alkyloxy group having 1 to 3 carbon atoms, more preferably a methoxy group or an ethoxy group. The optionally substituted heterocycloalkyloxy group is preferably a tetrahydrofuranyloxy group. The position to which the optionally substituted alkyloxy group or optionally substituted heterocycloalkyloxy group is preferably bonded is the 4-position of the benzene ring.
 d=1である場合、式(A)で表される官能基は、下記式(B)で表される基であることが好ましい。 When d=1, the functional group represented by formula (A) is preferably a group represented by formula (B) below.
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 式(B)において、R及びAr’は、式(A)と同義である。 In formula (B), Ra and Ar' have the same meanings as in formula (A).
 式(A)又は(B)で表される基は、下記式(Ar-1)、(Ar-2)、(Ar-3)又は(Ar-4)で表される基であることが好ましい。なお、「Et」は、エチル基を表す(本明細書を通じて同様である)。 The group represented by formula (A) or (B) is preferably a group represented by the following formula (Ar-1), (Ar-2), (Ar-3) or (Ar-4) . "Et" represents an ethyl group (same throughout the specification).
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 ケトン誘導体(II)又は(IIa)は、例えば、Wが、式(Ar-1)で表される基である化合物である。このような化合物としては、例えば、以下の化合物が挙げられる。 Ketone derivatives (II) or (IIa) are, for example, compounds in which W 2 is a group represented by formula (Ar-1). Examples of such compounds include the following compounds.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 化合物(IIac)において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。化合物(IIad)において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In compound (IIac), R′ is preferably TBS, TMS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—O—C( —CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, —CO—CH 2 —Cl, —C(—CH 3 ) 2 —O—CH 3 or —CO—O—C(—CH 3 ) 3 is. In compound (IIad), R′ is preferably an acetyl group, TBS, TMS, an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 , more preferably an acetyl group, TBS, an aldehyde group, —CO— CH 2 —Cl or —CO—CF 3 .
 化合物(IIac)及び(IIad)のそれぞれにおいて、Wに対応する式(Ar-1)で表される基は、式(Ar-2)、(Ar-3)又は(Ar-4)で表される基に変更可能である。 In each of compounds (IIac) and (IIad), the group represented by formula (Ar-1) corresponding to W 2 is represented by formula (Ar-2), (Ar-3) or (Ar-4). can be changed based on
 別の実施形態において、ケトン誘導体(II)は、下記式(IIb)で表されるケトン誘導体(IIb)である。ケトン誘導体(IIb)は、n=1であるケトン誘導体(II)の一例である。 In another embodiment, the ketone derivative (II) is a ketone derivative (IIb) represented by the following formula (IIb). Ketone derivative (IIb) is an example of ketone derivative (II) where n=1.
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 式(IIb)において、R~R、R’及びWは、式(IIa)と同義であり、R~R、R’及びWに関する上記説明は、式(IIb)にも適用される。 In formula (IIb), R 1 to R 3 , R' and W 2 have the same definitions as in formula (IIa), and the above explanations regarding R 1 to R 3 , R' and W 2 also apply to formula (IIb). Applies.
 式(IIb)において、R~Rは、異なる基であってもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一の基であることが好ましい。一実施形態において、R~Rはすべてアセチル基である。別の実施形態において、R~Rはすべてベンゾイル基である。R~Rがすべてアセチル基である実施形態において、R’は、好ましくはTBS、TMS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CH、より好ましくはTBS、テトラヒドロピラニル基、-CO-CH-Cl、-C(-CH-O-CH又は-CO-O-C(-CHである。R~Rがすべてベンゾイル基である実施形態において、R’は、好ましくはアセチル基、TBS、TMS、アルデヒド基、-CO-CH-Cl又は-CO-CF、より好ましくはアセチル基、TBS、アルデヒド基、-CO-CH-Cl又は-CO-CFである。 In formula (IIb), R 1 to R 3 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they should be the same group. is preferred. In one embodiment, R 1 -R 3 are all acetyl groups. In another embodiment, R 1 -R 3 are all benzoyl groups. In embodiments where R 1 -R 3 are all acetyl groups, R' is preferably TBS, TMS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO--O--C(--CH 3 ) 3 , more preferably TBS, a tetrahydropyranyl group, --CO--CH 2 --Cl, --C(--CH 3 ) 2 --O--CH 3 or --CO-- OC(—CH 3 ) 3 . In embodiments where R 1 -R 3 are all benzoyl groups, R' is preferably an acetyl group, TBS, TMS, an aldehyde group, --CO--CH 2 --Cl or --CO--CF 3 , more preferably an acetyl group. , TBS, an aldehyde group, —CO—CH 2 —Cl or —CO—CF 3 .
≪ケトン誘導体(II’)≫
 ケトン誘導体(II’)は、下記式(II’)で表される。
<<Ketone derivative (II')>>
The ketone derivative (II') is represented by the following formula (II').
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 式(II’)において、W、R及びnは、式(II)と同義であり、W、R及びnに関する上記説明は、式(II’)にも適用される。なお、本明細書において、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表すケトン誘導体(II’)をケトン誘導体(II’-1)といい、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表すケトン誘導体(II’)をケトン誘導体(II’-2)という場合がある。 In formula (II'), W 2 , R and n have the same definitions as in formula (II), and the above explanations regarding W 2 , R and n also apply to formula (II'). In the present specification, the ketone derivative (II') where each R independently represents an optionally substituted aryl group is referred to as the ketone derivative (II'-1), and each R is The ketone derivative (II') independently representing an optionally substituted alkyl group may be referred to as the ketone derivative (II'-2).
 式(II’)において、n=1の場合、3個のRは、異なっていてもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、3個のRはすべてメチル基である。別の実施形態において、3個のRはすべてフェニル基である。 In formula (II′), when n=1, three R may be different, but from the viewpoint of efficient introduction and removal of the group represented by the formula: —CO—R, they are the same. Preferably. In one embodiment, all three R are methyl groups. In another embodiment, all three R are phenyl groups.
 式(II’)において、n=2の場合、4個のRは、異なっていてもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、4個のRはすべてメチル基である。別の実施形態において、4個のRはすべてフェニル基である。 In formula (II′), when n=2, the four R may be different, but from the viewpoint of efficient introduction and removal of the group represented by the formula: —CO—R, they are the same. Preferably. In one embodiment, all four R are methyl groups. In another embodiment, all four R are phenyl groups.
 一実施形態において、ケトン誘導体(II’)は、下記式(IIa’)で表されるケトン誘導体(IIa’)である。ケトン誘導体(IIa’)は、n=2であるケトン誘導体(II’)の一例である。 In one embodiment, the ketone derivative (II') is a ketone derivative (IIa') represented by the following formula (IIa'). Ketone derivative (IIa') is an example of ketone derivative (II') where n=2.
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 式(IIa’)において、R~R及びWは、式(IIa)と同義であり、R~R及びWに関する上記説明は、式(IIa’)にも適用される。 In formula (IIa'), R 1 to R 4 and W 2 have the same definitions as in formula (IIa), and the above explanations regarding R 1 to R 4 and W 2 also apply to formula (IIa').
 式(IIa’)において、R~Rは、異なる基であってもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一の基であることが好ましい。一実施形態において、R~Rはすべてアセチル基である。別の実施形態において、R~Rはすべてベンゾイル基である。 In formula (IIa'), R 1 to R 4 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they are the same group. is preferred. In one embodiment, R 1 -R 4 are all acetyl groups. In another embodiment, R 1 -R 4 are all benzoyl groups.
 別の実施形態において、ケトン誘導体(II’)は、下記式(IIb’)で表されるケトン誘導体(IIb’)である。ケトン誘導体(IIb’)は、n=1であるケトン誘導体(II’)の一例である。 In another embodiment, the ketone derivative (II') is a ketone derivative (IIb') represented by the following formula (IIb'). Ketone derivative (IIb') is an example of ketone derivative (II') where n=1.
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 式(IIb’)において、R~R及びWは、式(IIb)と同義であり、R~R及びWに関する上記説明は、式(IIb’)にも適用される。 In formula (IIb'), R 1 to R 3 and W 2 have the same definitions as in formula (IIb), and the above explanations regarding R 1 to R 3 and W 2 also apply to formula (IIb').
 式(IIb’)において、R~Rは、異なる基であってもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一の基であることが好ましい。一実施形態において、R~Rはすべてアセチル基である。別の実施形態において、R~Rはすべてベンゾイル基である。 In formula (IIb'), R 1 to R 3 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they are the same group. is preferred. In one embodiment, R 1 -R 3 are all acetyl groups. In another embodiment, R 1 -R 3 are all benzoyl groups.
≪チオエステル誘導体(III)≫
 チオエステル誘導体(III)は、下記式(III)で表される。
<<Thioester derivative (III)>>
Thioester derivative (III) is represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 式(III)において、W、R及びnは、式(I)と同義であり、W、R及びnに関する上記説明は、式(III)にも適用される。なお、本明細書において、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表すチオエステル誘導体(III)をチオエステル誘導体(III-1)といい、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表すチオエステル誘導体(III)をチオエステル誘導体(III-2)という場合がある。 In formula (III), W 1 , R and n have the same definitions as in formula (I), and the above explanations regarding W 1 , R and n also apply to formula (III). In this specification, the thioester derivative (III) in which each R independently represents an optionally substituted aryl group is referred to as a thioester derivative (III-1), and each R is independently Therefore, the thioester derivative (III) representing an optionally substituted alkyl group is sometimes referred to as a thioester derivative (III-2).
 式(III)において、n=1の場合、3個のRは、異なっていてもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、3個のRはすべてメチル基である。別の実施形態において、3個のRはすべてフェニル基である。 In formula (III), when n = 1, the three R's may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred. In one embodiment, all three R are methyl groups. In another embodiment, all three R are phenyl groups.
 式(III)において、n=2の場合、4個のRは、異なっていてもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、4個のRはすべてメチル基である。別の実施形態において、4個のRはすべてフェニル基である。 In formula (III), when n = 2, the four R may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred. In one embodiment, all four R are methyl groups. In another embodiment, all four R are phenyl groups.
 一実施形態において、チオエステル誘導体(III)は、下記式(IIIa)で表されるチオエステル誘導体(IIIa)である。チオエステル誘導体(IIIa)は、n=2であるチオエステル誘導体(III)の一例である。 In one embodiment, the thioester derivative (III) is a thioester derivative (IIIa) represented by the following formula (IIIa). Thioester derivative (IIIa) is an example of thioester derivative (III) where n=2.
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 式(IIIa)において、R~R及びWは、式(Ia)と同義であり、R~R及びWに関する上記説明は、式(IIIa)にも適用される。 In formula (IIIa), R 1 to R 4 and W 1 have the same definitions as in formula (Ia), and the above explanations regarding R 1 to R 4 and W 1 also apply to formula (IIIa).
 式(IIIa)において、R~Rは、異なる基であってもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一の基であることが好ましい。一実施形態において、R~Rはすべてアセチル基である。別の実施形態において、R~Rはすべてベンゾイル基である。 In formula (IIIa), R 1 to R 4 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they should be the same group. is preferred. In one embodiment, R 1 -R 4 are all acetyl groups. In another embodiment, R 1 -R 4 are all benzoyl groups.
 別の実施形態において、チオエステル誘導体(III)は、下記式(IIIb)で表されるチオエステル誘導体(IIIb)である。チオエステル誘導体(IIIb)は、n=1であるチオエステル誘導体(III)の一例である。 In another embodiment, the thioester derivative (III) is a thioester derivative (IIIb) represented by the following formula (IIIb). Thioester derivative (IIIb) is an example of thioester derivative (III) where n=1.
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 式(IIIb)において、R~R及びWは、式(Ib)と同義であり、R~R及びWに関する上記説明は、式(IIIb)にも適用される。 In formula (IIIb), R 1 to R 3 and W 1 have the same definitions as in formula (Ib), and the above explanations regarding R 1 to R 3 and W 1 also apply to formula (IIIb).
 式(IIIb)において、R~Rは、異なる基であってもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一の基であることが好ましい。一実施形態において、R~Rはすべてアセチル基である。別の実施形態において、R~Rはすべてベンゾイル基である。 In formula (IIIb), R 1 to R 3 may be different groups, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R, they should be the same group. is preferred. In one embodiment, R 1 -R 3 are all acetyl groups. In another embodiment, R 1 -R 3 are all benzoyl groups.
≪アシル保護ラクトン誘導体(IV)≫
 アシル保護ラクトン誘導体(IV)は、下記式(IV)で表される。
<<Acyl-protected lactone derivative (IV)>>
Acyl-protected lactone derivative (IV) is represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 式(IV)において、R及びnは、式(I)と同義であり、R及びnに関する上記説明は、式(IV)にも適用される。なお、本明細書において、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表すアシル保護ラクトン誘導体(IV)をアシル保護ラクトン誘導体(IV-1)といい、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表すアシル保護ラクトン誘導体(IV)をアシル保護ラクトン誘導体(IV-2)という場合がある。 In formula (IV), R and n have the same definitions as in formula (I), and the above explanations regarding R and n also apply to formula (IV). In the present specification, the acyl-protected lactone derivative (IV), in which each R independently represents an optionally substituted aryl group, is referred to as an acyl-protected lactone derivative (IV-1). , and the acyl-protected lactone derivative (IV) each independently representing an optionally substituted alkyl group may be referred to as an acyl-protected lactone derivative (IV-2).
 式(IV)において、n=1の場合、3個のRは、異なっていてもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、3個のRはすべてメチル基である。別の実施形態において、3個のRはすべてフェニル基である。 In formula (IV), when n = 1, the three R's may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred. In one embodiment, all three R are methyl groups. In another embodiment, all three R are phenyl groups.
 式(IV)において、n=2の場合、4個のRは、異なっていてもよいが、式:-CO-Rで表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、4個のRはすべてメチル基である。別の実施形態において、4個のRはすべてフェニル基である。 In formula (IV), when n = 2, the four R may be different, but are the same from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R. is preferred. In one embodiment, all four R are methyl groups. In another embodiment, all four R are phenyl groups.
 一実施形態において、アシル保護ラクトン誘導体(IV)は、下記式(IVa)で表されるアシル保護ラクトン誘導体(IVa)である。アシル保護ラクトン誘導体(IVa)は、n=2(すなわち6員環)であるアシル保護ラクトン誘導体(IV)の一例である。 In one embodiment, the acyl-protected lactone derivative (IV) is an acyl-protected lactone derivative (IVa) represented by the following formula (IVa). Acyl-protected lactone derivative (IVa) is an example of acyl-protected lactone derivative (IV) where n=2 (ie, a 6-membered ring).
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 式(IVa)において、Rは、式(IV)と同義であり、Rに関する上記説明は、式(IVa)にも適用される。 In formula (IVa), R has the same definition as in formula (IV), and the above explanation regarding R also applies to formula (IVa).
≪C-アリール-ヒドロキシグリコサイド誘導体(V)≫
 C-アリール-ヒドロキシグリコサイド誘導体(V)は、下記式(V)で表される。
<<C-aryl-hydroxyglycoside derivative (V)>>
C-aryl-hydroxyglycoside derivative (V) is represented by the following formula (V).
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 式(V)において、R、W及びnは、式(II)と同義であり、R、W及びnに関する上説明は、式(V)にも適用される。なお、本明細書において、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表すC-アリール-ヒドロキシグリコサイド誘導体(V)をC-アリール-ヒドロキシグリコサイド誘導体(V-1)といい、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表すC-アリール-ヒドロキシグリコサイド誘導体(V)をC-アリール-ヒドロキシグリコサイド誘導体(V-2)という場合がある。 In formula (V), R, W 2 and n have the same definitions as in formula (II), and the above explanations regarding R, W 2 and n also apply to formula (V). In the present specification, C-aryl-hydroxyglycoside derivative (V) where each R independently represents an aryl group which may have a substituent is referred to as C-aryl-hydroxyglycoside derivative (V -1), wherein each R independently represents an optionally substituted alkyl group (V) is a C-aryl-hydroxyglycoside derivative (V- 2).
 R100は、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルカルボニル基、又は、置換基を有していてもよいアリールカルボニル基を表す。以下、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルカルボニル基及び置換基を有していてもよいアリールカルボニル基について説明する。 R 100 is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkylcarbonyl group, or a substituted represents an arylcarbonyl group which may be substituted. Hereinafter, an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkylcarbonyl group and an optionally substituted arylcarbonyl The group will be explained.
置換基を有していてもよいアルキル基
 アルキル基に関する説明は、上記の通りである。アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよい。アルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3である。アルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。
The alkyl group which may have a substituent is as described above. Alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, still more preferably 1-6, still more preferably 1-4, and still more preferably 1-3. Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
置換基を有していてもよいアリール基
 アリール基に関する説明は、上記の通りである。アリール基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。
The aryl group which may have a substituent is as described above. Aryl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
置換基を有していてもよいアルキルカルボニル基
 アルキルカルボニル基に関する説明は、上記の通りである。アルキルカルボニル基(-CO-アルキル基)に含まれるアルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することが好ましい。
The alkylcarbonyl group optionally having substituent( s) is as described above. The alkyl group contained in the alkylcarbonyl group (-CO-alkyl group) may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
置換基を有していてもよいアリールカルボニル基
 アリールカルボニル基に関する説明は、上記の通りである。アリールカルボニル基(-CO-アリール基)に含まれるアリール基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することが好ましい。
The arylcarbonyl group optionally having substituent( s) is as described above. The aryl group contained in the arylcarbonyl group (-CO-aryl group) may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 R100は、好ましくは水素原子又は炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)、より好ましくは水素原子又はメチル基である。 R 100 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, etc.), more preferably hydrogen an atom or a methyl group.
 一実施形態において、C-アリール-ヒドロキシグリコサイド誘導体(V)は、下記式(V’)で表されるC-アリール-ヒドロキシグリコサイド誘導体(V’)である。C-アリール-ヒドロキシグリコサイド誘導体(V’)は、R100が水素原子であるC-アリール-ヒドロキシグリコサイド誘導体(V)の一例である。式(V’)において、Wは、式(V)と同義である。なお、本明細書において、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表すC-アリール-ヒドロキシグリコサイド誘導体(V’)をC-アリール-ヒドロキシグリコサイド誘導体(V’-1)といい、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表すC-アリール-ヒドロキシグリコサイド誘導体(V’)をC-アリール-ヒドロキシグリコサイド誘導体(V’-2)という場合がある。 In one embodiment, the C-aryl-hydroxyglycoside derivative (V) is a C-aryl-hydroxyglycoside derivative (V') represented by formula (V') below. C-aryl-hydroxyglycoside derivative (V') is an example of C-aryl-hydroxyglycoside derivative (V) in which R 100 is a hydrogen atom. In formula (V'), W2 has the same meaning as in formula (V). In the present specification, C-aryl-hydroxyglycoside derivatives (V′) where each R independently represents an optionally substituted aryl group are referred to as C-aryl-hydroxyglycoside derivatives ( C-aryl-hydroxyglycoside derivative (V′-1), wherein each R independently represents an optionally substituted alkyl group, and C-aryl-hydroxyglycoside derivative (V′) (V'-2) in some cases.
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 一実施形態において、C-アリール-ヒドロキシグリコサイド誘導体(V)は、下記式(Va)で表されるC-アリール-ヒドロキシグリコサイド誘導体(Va)である。C-アリール-ヒドロキシグリコサイド誘導体(Va)は、n=2(すなわち6員環)であって、かつ、R100が水素原子であるC-アリール-ヒドロキシグリコサイド誘導体(V)の一例である。式(Va)において、Wは、式(V)と同義である。 In one embodiment, the C-aryl-hydroxyglycoside derivative (V) is a C-aryl-hydroxyglycoside derivative (Va) represented by formula (Va) below. C-aryl-hydroxyglycoside derivative (Va) is an example of C-aryl-hydroxyglycoside derivative (V) where n=2 (ie a 6-membered ring) and R 100 is a hydrogen atom. . In formula (Va), W2 has the same meaning as in formula (V).
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
 他の実施形態において、C-アリール-ヒドロキシグリコサイド誘導体(V)は、下記式(Vb)で表されるC-アリール-ヒドロキシグリコサイド誘導体(Vb)である。C-アリール-ヒドロキシグリコサイド誘導体(Vb)は、n=2(すなわち6員環)であって、かつ、R100がR101であるC-アリール-ヒドロキシグリコサイド誘導体(V)の一例である。R101は、水素原子以外の基、すなわち、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルカルボニル基、又は、置換基を有していてもよいアリールカルボニル基である。R101は、好ましくは炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)、より好ましくはメチル基である。式(Vb)において、Wは、式(V)と同義である。 In another embodiment, the C-aryl-hydroxyglycoside derivative (V) is a C-aryl-hydroxyglycoside derivative (Vb) represented by formula (Vb) below. C-aryl-hydroxyglycoside derivative (Vb) is an example of C-aryl-hydroxyglycoside derivative (V) where n=2 (ie a 6-membered ring) and R 100 is R 101 . R 101 is a group other than a hydrogen atom, that is, an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkylcarbonyl group, or , is an arylcarbonyl group which may have a substituent. R 101 is preferably an alkyl group having 1 to 4 carbon atoms (eg, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, etc.), more preferably methyl group . In formula (Vb), W2 has the same meaning as in formula (V).
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
≪C-アリールグリコサイド誘導体(VI)≫
 C-アリールグリコサイド誘導体(VI)は、下記式(VI)で表される。
Figure JPOXMLDOC01-appb-C000094
<<C-aryl glycoside derivative (VI)>>
C-aryl glycoside derivative (VI) is represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000094
 式(VI)において、R、W及びnは、式(II)と同義であり、R、W及びnに関する上記説明は、式(VI)にも適用される。なお、本明細書において、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表すC-アリールグリコサイド誘導体(VI)をC-アリールグリコサイド誘導体(VI-1)といい、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表すC-アリールグリコサイド誘導体(VI)をC-アリールグリコサイド誘導体(VI-2)という場合がある。 In formula (VI), R, W 2 and n have the same definitions as in formula (II), and the above explanations regarding R, W 2 and n also apply to formula (VI). In the present specification, C-aryl glycoside derivative (VI), in which each R independently represents an optionally substituted aryl group, is referred to as C-aryl glycoside derivative (VI-1). A C-arylglycoside derivative (VI) in which each R independently represents an optionally substituted alkyl group may be referred to as a C-arylglycoside derivative (VI-2).
 一実施形態において、C-アリールグリコサイド誘導体(VI)は、下記式(VIa)で表されるC-アリールグリコサイド誘導体(VIa)である。C-アリールグリコサイド誘導体(VIa)は、n=2(すなわち6員環)であるC-アリールグリコサイド誘導体(VI)の一例である。式(VIa)において、Wは、式(VII)と同義である。 In one embodiment, the C-aryl glycoside derivative (VI) is a C-aryl glycoside derivative (VIa) represented by formula (VIa) below. C-aryl glycoside derivative (VIa) is an example of C-aryl glycoside derivative (VI) where n=2 (ie a 6-membered ring). In formula (VIa), W2 has the same meaning as in formula (VII).
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
≪ラクトン誘導体(VII)≫
 ラクトン誘導体(VII)は、下記式(VII)で表される。
<<Lactone derivative (VII)>>
Lactone derivative (VII) is represented by the following formula (VII).
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 式(VII)において、nは、式(I)と同義であり、nに関する上記説明は、式(VII)にも適用される。 In formula (VII), n has the same definition as in formula (I), and the above explanation regarding n also applies to formula (VII).
 一実施形態において、ラクトン誘導体(VII)は、下記式(VIIa)で表されるラクトン誘導体(VIIa)である。ラクトン誘導体(VIIa)は、n=2(すなわち6員環)であるラクトン誘導体(VII)の一例である。 In one embodiment, the lactone derivative (VII) is a lactone derivative (VIIa) represented by the following formula (VIIa). Lactone derivative (VIIa) is an example of lactone derivative (VII) where n=2 (ie a 6-membered ring).
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
≪カルボン酸無水物(1)≫
 カルボン酸無水物(1)は、下記式(1)で表される。
<<Carboxylic anhydride (1)>>
Carboxylic anhydride (1) is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 式(1)において、R’’は、それぞれ独立して、置換基を有していてもよいアルキル基を表す。アルキル基に関する説明は、上記の通りである。アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよい。アルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より一層好ましくは1~6、より一層好ましくは1~4、より一層好ましくは1~3である。アルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。 In formula (1), each R'' independently represents an optionally substituted alkyl group. A description of the alkyl group is provided above. Alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, still more preferably 1-6, still more preferably 1-4, and still more preferably 1-3. Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 式(1)において、2個のR’’は、異なっていてもよいが、式:-CO-R’’で表される基の効率的な導入及び除去の観点から、同一であることが好ましい。一実施形態において、2個のR’’はすべてメチル基である。すなわち、一実施形態に係るカルボン酸無水物(1)は、無水酢酸である。なお、式:-CO-R’’で表される基は、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、置換基を有していてよいアルキルカルボニル基を表すチオエステル誘導体(I)においてR’で表される基に相当する。 In formula (1), two R'' may be different, but from the viewpoint of efficient introduction and removal of the group represented by the formula: -CO-R'', they are the same. preferable. In one embodiment, all two R'' are methyl groups. That is, the carboxylic anhydride (1) according to one embodiment is acetic anhydride. In the group represented by the formula: -CO-R'', each R independently represents an optionally substituted aryl group, and R' has a substituent It corresponds to the group represented by R' in the thioester derivative (I) representing a good alkylcarbonyl group.
≪シリル化剤(2)≫
 シリル化剤(2)は、下記式(2)で表される。
<<Silylating agent (2)>>
The silylating agent (2) is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 式(2)において、R、R及びRは、それぞれ独立して、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表すが、R、R及びRのうちの1以上は置換基を有していてもよいアルキル基を表し、Xは、ハロゲン原子又はトリフルオロメタンスルホニル基を表す。 In formula (2), R 1 , R 2 and R 3 each independently represent an optionally substituted alkyl group or an optionally substituted aryl group; , R 2 and R 3 represent an optionally substituted alkyl group, and X represents a halogen atom or a trifluoromethanesulfonyl group.
 式(2)において、式:-Si-R(-R)(-R)で表される基(すなわち、置換基を有していてもよいアルキルシリル基)に関する説明は、上記の通りである。式:-Si-R(-R)(-R)で表される基は、好ましくはアルキルシリル基、より好ましくはトリアルキルシリル基、より一層好ましくはTBS又はTMS、より一層好ましくはTBSである。 In formula (2), the group represented by the formula: —Si—R 1 (—R 2 )(—R 3 ) (that is, the alkylsilyl group optionally having substituent(s)) is described above. Street. A group represented by the formula: -Si-R 1 (-R 2 )(-R 3 ) is preferably an alkylsilyl group, more preferably a trialkylsilyl group, still more preferably TBS or TMS, still more preferably It is TBS.
 式(2)において、Xは、ハロゲン原子を表す。ハロゲン原子は、塩素原子、臭素原子及びヨウ素原子から選択することが好ましく、塩素原子及び臭素原子から選択することがより好ましく、塩素原子であることがより一層好ましい。 In formula (2), X represents a halogen atom. The halogen atom is preferably selected from a chlorine atom, a bromine atom and an iodine atom, more preferably a chlorine atom and a bromine atom, and even more preferably a chlorine atom.
 シリル化剤(2)としては、例えば、tert-ブチルジメチルシリルトリフルオロメタンスルホナート(TBSOTf)、クロロトリメチルシラン(TMSCl)等が挙げられる。 Examples of the silylating agent (2) include tert-butyldimethylsilyltrifluoromethanesulfonate (TBSOTf) and chlorotrimethylsilane (TMSCl).
≪チオール(3)≫
 チオール(3)は、下記式(3)で表される。
<<thiol (3)>>
Thiol (3) is represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 式(3)において、Wは、式(I)と同義であり、Wに関する上記説明は、式(3)にも適用される。 In formula (3), W 1 has the same meaning as in formula (I), and the above description of W 1 also applies to formula (3).
≪グリニャール試薬(4)≫
 グリニャール試薬(4)は、下記式(4)で表される。
<<Grignard reagent (4)>>
The Grignard reagent (4) is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
 式(4)において、Wは、
(1)置換基を有していてもよいアルキル基、
(2)置換基を有していてもよいアルケニル基、
(3)置換基を有していてもよいシクロアルキル基、
(4)置換基を有していてもよいヘテロシクロアルキル基、
(5)置換基を有していてもよいアリール基、
(6)置換基を有していてもよいヘテロアリール基、
(7)置換基を有していてもよいアリールアルキル基、又は、
(8)置換基を有していてもよいアリールアルケニル基
を表す。
In equation (4), W3 is
(1) an optionally substituted alkyl group,
(2) an alkenyl group optionally having a substituent,
(3) a cycloalkyl group optionally having a substituent,
(4) a heterocycloalkyl group optionally having a substituent,
(5) an aryl group optionally having a substituent,
(6) a heteroaryl group optionally having a substituent,
(7) an optionally substituted arylalkyl group, or
(8) represents an optionally substituted arylalkenyl group;
 官能基(1)~(8)に関する上記説明は、別段規定される場合を除き、式(4)にも適用される。 The above explanations regarding functional groups (1) to (8) also apply to formula (4) unless otherwise specified.
 官能基(5)(すなわち、置換基を有していてもよいアリール基)において、アリール基の結合手を有する炭素原子(すなわち、式(4)においてMgと結合する炭素原子)の両隣に位置する炭素原子は、置換基を有さないことが好ましい。残りの炭素原子は、置換基を有していてもよい。 In the functional group (5) (i.e., optionally substituted aryl group), positions on both sides of the carbon atom having an aryl group bond (i.e., the carbon atom bonded to Mg in formula (4)) It is preferred that the carbon atoms having no substituents. The remaining carbon atoms may have substituents.
 官能基(6)(すなわち、置換基を有していてもよいヘテロアリール基)において、ヘテロアリール基の結合手を有する炭素原子(すなわち、式(4)においてMgと結合する炭素原子)の両隣に位置する炭素原子又はヘテロ原子は、置換基を有さないことが好ましい。残りの炭素原子又はヘテロ原子は置換基を有していてもよい。 In the functional group (6) (i.e., optionally substituted heteroaryl group), on both sides of the carbon atom having a heteroaryl group bond (i.e., the carbon atom bonded to Mg in formula (4)) A carbon atom or heteroatom located in preferably has no substituents. The remaining carbon atoms or heteroatoms may have substituents.
 Wは、Wと同一であってもよいし、異なっていてもよい。Wは、Wと同一であってもよいし、異なっていてもよい。 W3 may be the same as or different from W1 . W3 may be the same as or different from W2 .
 式(4)において、Xは、ハロゲン原子を表す。ハロゲン原子は、塩素原子、臭素原子及びヨウ素原子から選択することが好ましく、塩素原子及び臭素原子から選択することがより好ましく、塩素原子であることがより一層好ましい。 In formula (4), X represents a halogen atom. The halogen atom is preferably selected from a chlorine atom, a bromine atom and an iodine atom, more preferably a chlorine atom and a bromine atom, and even more preferably a chlorine atom.
 一実施形態において、式(4)におけるWは、置換基を有していてもよいアルキル基である。アルキル基に関する説明は、上記の通りである。アルキル基は、直鎖状であってもよいし、分岐鎖状であってもよい。アルキル基の炭素数は、好ましくは1~10、より好ましくは1~8、より好ましくは1~6、より好ましくは1~4、より好ましくは1~3である。アルキル基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。 In one embodiment, W3 in formula (4) is an optionally substituted alkyl group. A description of the alkyl group is provided above. Alkyl groups may be linear or branched. The number of carbon atoms in the alkyl group is preferably 1-10, more preferably 1-8, more preferably 1-6, more preferably 1-4, more preferably 1-3. Alkyl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 別の実施形態において、式(4)におけるWは、置換基を有していてもよいアリール基である。アリール基に関する説明は、上記の通りである。アリール基の炭素数は、好ましくは6~14、より好ましくは6~10である。アリール基は、例えば、フェニル基である。アリール基は、1以上の置換基を有していてもよい。置換基の数は、好ましくは1~3、より好ましくは1又は2である。1以上の置換基は、それぞれ独立して、置換基群α及びβから選択することができる。置換基群αから1以上の置換基を選択するとともに、置換基群βから1以上の置換基を選択してもよい。1以上の置換基は、それぞれ独立して、ハロゲン原子、アルキル基、ハロアルキル基、アルキルオキシ基、ハロアルキルオキシ基、アルキルチオ及びハロアルキルチオ基から選択することが好ましく、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のハロアルキル基、炭素数1~4のアルキルオキシ基及び炭素数1~4のハロアルキルオキシ基から選択することがより好ましく、ハロゲン原子、炭素数1~4のアルキル基及び炭素数1~4のアルキルオキシ基から選択することがより一層好ましく、炭素数1~4のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等)から選択することがより一層好ましい。 In another embodiment, W3 in formula (4) is an optionally substituted aryl group. A description of the aryl group is provided above. The number of carbon atoms in the aryl group is preferably 6-14, more preferably 6-10. An aryl group is, for example, a phenyl group. Aryl groups may have one or more substituents. The number of substituents is preferably 1-3, more preferably 1 or 2. One or more substituents may each independently be selected from substituent groups α and β. One or more substituents may be selected from the substituent group α and one or more substituents may be selected from the substituent group β. The one or more substituents are each independently preferably selected from halogen atoms, alkyl groups, haloalkyl groups, alkyloxy groups, haloalkyloxy groups, alkylthio and haloalkylthio groups, halogen atoms, C 1-4 It is more preferably selected from an alkyl group, a haloalkyl group having 1 to 4 carbon atoms, an alkyloxy group having 1 to 4 carbon atoms and a haloalkyloxy group having 1 to 4 carbon atoms, and a halogen atom and an alkyl group having 1 to 4 carbon atoms. and an alkyloxy group having 1 to 4 carbon atoms, and an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t -butyl group, etc.).
 Wがアルキル基であるグリニャール試薬(4)としては、例えば、アルキルマグネシウムブロミド、アルキルマグネシウムクロリド等が挙げられ、これらのうち、アルキルマグネシウムクロリドが好ましい。 Grignard reagents (4) in which W3 is an alkyl group include, for example, alkylmagnesium bromides and alkylmagnesium chlorides, among which alkylmagnesium chlorides are preferred.
 アルキルマグネシウムブロミドとしては、例えば、メチルマグネシウムブロミド、エチルマグネシウムブロミド、n-プロピルマグネシウムブロミド、イソプロピルマグネシウムブロミド、n-ブチルマグネシウムブロミド、イソブチルマグネシウムブロミド等が挙げられる。 Examples of alkylmagnesium bromide include methylmagnesium bromide, ethylmagnesium bromide, n-propylmagnesium bromide, isopropylmagnesium bromide, n-butylmagnesium bromide, and isobutylmagnesium bromide.
 アルキルマグネシウムクロリドとしては、例えば、メチルマグネシウムクロリド、エチルマグネシウムクロリド、n-プロピルマグネシウムクロリド、イソプロピルマグネシウムクロリド、n-ブチルマグネシウムクロリド、イソブチルマグネシウムクロリド等が挙げられる。 Examples of alkylmagnesium chloride include methylmagnesium chloride, ethylmagnesium chloride, n-propylmagnesium chloride, isopropylmagnesium chloride, n-butylmagnesium chloride, and isobutylmagnesium chloride.
 Wがアリール基であるグリニャール試薬(4)としては、例えば、アリールマグネシウムブロミド、アリールマグネシウムクロリド等が挙げられ、これらのうち、アリールマグネシウムクロリドが好ましい。 The Grignard reagent (4) in which W3 is an aryl group includes, for example, arylmagnesium bromide, arylmagnesium chloride, etc. Among these, arylmagnesium chloride is preferred.
 アリールマグネシウムブロミドとしては、例えば、フェニルマグネシウムブロミド等が挙げられる。 The arylmagnesium bromide includes, for example, phenylmagnesium bromide.
 アリールマグネシウムクロリドとしては、例えば、フェニルマグネシウムクロリド等が挙げられる。  Arylmagnesium chloride includes, for example, phenylmagnesium chloride.
≪グリニャール試薬(5)≫
 グリニャール試薬(5)は、下記式(5a)で表されるグリニャール試薬(5a)及び下記式(5b)で表されるグリニャール試薬(5b)から選択される。
<<Grignard reagent (5)>>
The Grignard reagent (5) is selected from a Grignard reagent (5a) represented by the following formula (5a) and a Grignard reagent (5b) represented by the following formula (5b).
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 式(5a)及び(5b)において、Wは、式(II)と同義である。すなわち、式(5a)及び(5b)において、Wは、
(1)置換基を有していてもよいアルキル基、
(2)置換基を有していてもよいアルケニル基、
(3)置換基を有していてもよいシクロアルキル基、
(4)置換基を有していてもよいヘテロシクロアルキル基、
(5)置換基を有していてもよいアリール基、
(6)置換基を有していてもよいヘテロアリール基、
(7)置換基を有していてもよいアリールアルキル基、又は、
(8)置換基を有していてもよいアリールアルケニル基
を表す。Wに関する上記説明は、式(5a)及び(5b)にも適用される。
In formulas (5a) and (5b), W2 has the same meaning as in formula (II). That is, in equations (5a) and (5b), W2 is
(1) an optionally substituted alkyl group,
(2) an alkenyl group optionally having a substituent,
(3) a cycloalkyl group optionally having a substituent,
(4) a heterocycloalkyl group optionally having a substituent,
(5) an aryl group optionally having a substituent,
(6) a heteroaryl group optionally having a substituent,
(7) an optionally substituted arylalkyl group, or
(8) represents an optionally substituted arylalkenyl group; The above discussion of W2 also applies to equations (5a) and (5b).
 官能基(5)(すなわち、置換基を有していてもよいアリール基)において、アリール基の結合手を有する炭素原子(すなわち、式(5a)又は(5b)においてMgと結合する炭素原子)の両隣に位置する炭素原子は、置換基を有さないことが好ましい。残りの炭素原子は、置換基を有していてもよい。 In the functional group (5) (i.e., an optionally substituted aryl group), a carbon atom having an aryl group bond (i.e., a carbon atom that bonds to Mg in formula (5a) or (5b)) It is preferred that the carbon atoms located on both sides of do not have a substituent. The remaining carbon atoms may have substituents.
 官能基(6)(すなわち、置換基を有していてもよいヘテロアリール基)において、ヘテロアリール基の結合手を有する炭素原子(すなわち、式(5a)又は(5b)においてMgと結合する炭素原子)の両隣に位置する炭素原子又はヘテロ原子は、置換基を有さないことが好ましい。残りの炭素原子又はヘテロ原子は置換基を有していてもよい。 In the functional group (6) (i.e., a heteroaryl group optionally having a substituent), a carbon atom having a heteroaryl group bond (i.e., the carbon that binds to Mg in formula (5a) or (5b) It is preferred that the carbon atoms or heteroatoms located on both sides of the atom) have no substituents. The remaining carbon atoms or heteroatoms may have substituents.
 式(5a)及び(5b)において、Xは、ハロゲン原子を表す。ハロゲン原子は、塩素原子、臭素原子及びヨウ素原子から選択することが好ましく、塩素原子及び臭素原子から選択することがより好ましく、臭素原子であることがより好ましい。式(5a)及び(5b)におけるXは、式(4)におけるXと同一であってもよいし、異なっていてもよい。 In formulas (5a) and (5b), X represents a halogen atom. The halogen atom is preferably selected from a chlorine atom, a bromine atom and an iodine atom, more preferably a chlorine atom and a bromine atom, more preferably a bromine atom. X in formulas (5a) and (5b) may be the same as or different from X in formula (4).
≪有機亜鉛化合物(6)≫
 有機亜鉛化合物(6)は、下記式(6a)で表される有機亜鉛化合物(6a)、下記式(6b)で表される有機亜鉛化合物(6b)及び下記式(6c)で表される有機亜鉛化合物(6c)から選択される。
<<organozinc compound (6)>>
The organic zinc compound (6) includes an organic zinc compound (6a) represented by the following formula (6a), an organic zinc compound (6b) represented by the following formula (6b), and an organic zinc compound represented by the following formula (6c). selected from zinc compounds (6c);
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 式(6a)、(6b)及び(6c)において、Wは、式(II)と同義である。すなわち、式(6a)、(6b)及び(6c)において、Wは、
(1)置換基を有していてもよいアルキル基、
(2)置換基を有していてもよいアルケニル基、
(3)置換基を有していてもよいシクロアルキル基、
(4)置換基を有していてもよいヘテロシクロアルキル基、
(5)置換基を有していてもよいアリール基、
(6)置換基を有していてもよいヘテロアリール基、
(7)置換基を有していてもよいアリールアルキル基、又は、
(8)置換基を有していてもよいアリールアルケニル基
を表す。Wに関する上記説明は、式(6a)、(6b)及び(6c)にも適用される。
In formulas (6a), (6b) and (6c), W2 has the same meaning as in formula (II). That is, in equations (6a), (6b) and (6c), W2 is
(1) an optionally substituted alkyl group,
(2) an alkenyl group optionally having a substituent,
(3) a cycloalkyl group optionally having a substituent,
(4) a heterocycloalkyl group optionally having a substituent,
(5) an aryl group optionally having a substituent,
(6) a heteroaryl group optionally having a substituent,
(7) an optionally substituted arylalkyl group, or
(8) represents an optionally substituted arylalkenyl group; The above discussion of W2 also applies to equations (6a), (6b) and (6c).
 官能基(5)(すなわち、置換基を有していてもよいアリール基)において、アリール基の結合手を有する炭素原子(すなわち、式(6a)、(6b)又は(6c)においてZnと結合する炭素原子)の両隣に位置する炭素原子は、置換基を有さないことが好ましい。残りの炭素原子は、置換基を有していてもよい。 In the functional group (5) (i.e., optionally substituted aryl group), a carbon atom having an aryl group bond (i.e., a bond with Zn in formula (6a), (6b) or (6c) It is preferred that the carbon atoms located on both sides of (the carbon atom that The remaining carbon atoms may have substituents.
 官能基(6)(すなわち、置換基を有していてもよいヘテロアリール基)において、ヘテロアリール基の結合手を有する炭素原子(すなわち、式(6a)、(6b)又は(6c)においてZnと結合する炭素原子)の両隣に位置する炭素原子又はヘテロ原子は、置換基を有さないことが好ましい。残りの炭素原子又はヘテロ原子は置換基を有していてもよい。 In the functional group (6) (i.e., optionally substituted heteroaryl group), a carbon atom having a heteroaryl group bond (i.e., Zn in formula (6a), (6b) or (6c) It is preferred that the carbon atoms or heteroatoms located on both sides of the carbon atom that binds to do not have a substituent. The remaining carbon atoms or heteroatoms may have substituents.
 式(6a)、(6b)及び(6c)において、Xは、ハロゲン原子を表す。ハロゲン原子は、塩素原子、臭素原子及びヨウ素原子から選択することが好ましく、塩素原子及び臭素原子から選択することがより好ましく、臭素原子であることがより好ましい。式(6a)、(6b)及び(6c)におけるXは、式(4)におけるXと同一であってもよいし、異なっていてもよい。式(6a)、(6b)及び(6c)におけるXは、式(5a)及び(5b)におけるXと同一であってもよいし、異なっていてもよい。 In formulas (6a), (6b) and (6c), X represents a halogen atom. The halogen atom is preferably selected from a chlorine atom, a bromine atom and an iodine atom, more preferably a chlorine atom and a bromine atom, more preferably a bromine atom. X in formulas (6a), (6b) and (6c) may be the same as or different from X in formula (4). X in formulas (6a), (6b) and (6c) may be the same as or different from X in formulas (5a) and (5b).
 有機亜鉛化合物(6a)としては、例えば、アリール亜鉛ハライド(式(6a)において、Wがアリール基であり、Xがハロゲン原子、好ましくは塩素原子、臭素原子又はヨウ素原子である化合物)、アルキル亜鉛ハライド(式(6a)において、Wがアルキル基であり、Xがハロゲン原子、好ましくは塩素原子、臭素原子又はヨウ素原子である化合物)等が挙げられる。 Examples of the organozinc compound (6a) include arylzinc halides (compounds in which W2 is an aryl group and X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom in the formula (6a)), alkyl and zinc halide (compound in which W2 is an alkyl group and X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom in the formula (6a)).
 有機亜鉛化合物(6b)としては、例えば、ジアリール亜鉛(式(6b)において、Wがアリール基である化合物)、ジアルキル亜鉛(式(6b)において、Wがアルキル基である化合物)等が挙げられる。 Examples of the organic zinc compound (6b) include diarylzinc (compound in which W2 is an aryl group in formula (6b)), dialkylzinc (compound in which W2 is an alkyl group in formula (6b)), and the like. mentioned.
≪チオエステル誘導体(I)を製造する方法≫
 以下、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表すチオエステル誘導体(I)をチオエステル誘導体(I-1)といい、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表すチオエステル誘導体(I)をチオエステル誘導体(I-2)という。
<<Method for producing thioester derivative (I)>>
Hereinafter, the thioester derivative (I) in which R each independently represents an optionally substituted aryl group is referred to as a thioester derivative (I-1), and each R independently represents a substituent. A thioester derivative (I) representing an optionally-containing alkyl group is referred to as a thioester derivative (I-2).
<第1の方法>
 第1の方法は、R’が、置換基を有していてよいアルキルカルボニル基を表すチオエステル誘導体(I-1)(以下「チオエステル誘導体(I-1a)」という。)を製造する方法である。
<First method>
The first method is a method for producing a thioester derivative (I-1) (hereinafter referred to as "thioester derivative (I-1a)") in which R' represents an optionally substituted alkylcarbonyl group. .
 チオエステル誘導体(I-1a)は、塩基又はルイス酸の存在下、チオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させて、チオエステル誘導体(I-1a)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1a) is produced by contacting the thioester derivative (III-1) with the carboxylic anhydride (1) in the presence of a base or Lewis acid to produce the thioester derivative (I-1a). It can be manufactured by a method comprising:
 n=1であるチオエステル誘導体(I-1a)は、塩基又はルイス酸の存在下、n=1であるチオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させて、n=1であるチオエステル誘導体(I-1a)を製造する工程を含む方法により製造することができる。 Thioester derivative (I-1a) where n = 1 is prepared by contacting thioester derivative (III-1) where n = 1 with carboxylic acid anhydride (1) in the presence of a base or Lewis acid to obtain n = It can be produced by a method including the step of producing the thioester derivative (I-1a) of 1.
 n=2であるチオエステル誘導体(I-1a)は、塩基又はルイス酸の存在下、n=2であるチオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させて、n=2であるチオエステル誘導体(I-1a)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1a) where n = 2 is prepared by contacting the thioester derivative (III-1) where n = 2 with carboxylic acid anhydride (1) in the presence of a base or a Lewis acid to obtain n = It can be produced by a method including the step of producing the thioester derivative (I-1a) of 2.
 チオエステル誘導体(III-1)及びカルボン酸無水物(1)は、市販品であってもよいし、常法に従って製造してもよい。 The thioester derivative (III-1) and carboxylic anhydride (1) may be commercially available products or may be produced according to conventional methods.
 塩基又はルイス酸の存在下、チオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させると、チオエステル誘導体(III-1)に含まれるヒドロキシ基が、式:-CO-R’’で表される基で保護され、チオエステル誘導体(I-1a)が得られる。なお、式:-CO-R’’で表される基は、チオエステル誘導体(I-1a)においてR’で表される基に相当する。 When the thioester derivative (III-1) and the carboxylic anhydride (1) are contacted in the presence of a base or Lewis acid, the hydroxy group contained in the thioester derivative (III-1) is represented by the formula: —CO—R′. ' to give a thioester derivative (I-1a). The group represented by the formula: --CO--R'' corresponds to the group represented by R' in the thioester derivative (I-1a).
 チオエステル誘導体(III-1)とカルボン酸無水物(1)との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(III-1)とカルボン酸無水物(1)とを溶媒中で混合することにより、チオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくはTHF、tert-ブチルメチルエーテル、DCM、トルエン又はこれらの混合溶媒である。 The contact between the thioester derivative (III-1) and the carboxylic anhydride (1) is preferably carried out in a solvent. By mixing the thioester derivative (III-1) and the carboxylic anhydride (1) in a solvent, the thioester derivative (III-1) and the carboxylic anhydride (1) can be contacted. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably THF, tert-butyl methyl ether, DCM, toluene or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(III-1) 1gに対して、例えば1~200mL、好ましくは2~100mLである。 The amount of solvent used is, for example, 1 to 200 mL, preferably 2 to 100 mL, per 1 g of thioester derivative (III-1).
 チオエステル誘導体(III-1)とカルボン酸無水物(1)との接触は、塩基又はルイス酸の存在下で行われる。 The contact between the thioester derivative (III-1) and the carboxylic anhydride (1) is carried out in the presence of a base or Lewis acid.
 カルボン酸無水物(1)の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば1~20モル、好ましくは1~10モル、より好ましくは1~5モルである。 The amount of carboxylic anhydride (1) used is, for example, 1 to 20 mol, preferably 1 to 10 mol, more preferably 1 to 5 mol, per 1 mol of thioester derivative (III-1).
 塩基としては、例えば、トリエチルアミン、ピリジン、4-ジメチルアミノピリジン(4-DMAP)、N,N-ジイソプロピルエチルアミン(DIEA)、イミダゾール、ジアザビシクロウンデセン(DBU)、ジエチルアニリン等の有機アミン、酢酸ナトリウム、ショッテンバウマン条件等が挙げられる。また、グリニャール試薬(例えば、グリニャール試薬(4))を塩基として用いてもよい。塩基は、トリエチルアミン、ピリジン及び4-ジメチルアミノピリジン(4-DMAP)から選択することが好ましい。 Examples of bases include triethylamine, pyridine, 4-dimethylaminopyridine (4-DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), organic amines such as diethylaniline, and acetic acid. Sodium, Schottenbaumann conditions, and the like. Alternatively, a Grignard reagent (eg, Grignard reagent (4)) may be used as the base. The base is preferably selected from triethylamine, pyridine and 4-dimethylaminopyridine (4-DMAP).
 塩基の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば0.1~10モル、好ましくは0.2~5モル、より好ましくは0.3~3モルである。 The amount of the base used is, for example, 0.1 to 10 mol, preferably 0.2 to 5 mol, more preferably 0.3 to 3 mol, per 1 mol of the thioester derivative (III-1).
 ルイス酸は、好ましくは、トリフルオロメタンスルホン酸銅(II)(Cu(OTf))である。 The Lewis acid is preferably copper(II) trifluoromethanesulfonate (Cu(OTf) 2 ).
 ルイス酸の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば0.001~1モル、好ましくは0.02~0.5モル、より好ましくは0.03~0.2モルである。 The amount of Lewis acid used is, for example, 0.001 to 1 mol, preferably 0.02 to 0.5 mol, more preferably 0.03 to 0.2 mol, per 1 mol of thioester derivative (III-1). is.
 チオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させる際、接触温度(反応温度)は、例えば-30~100℃、好ましくは-10~80℃、より好ましくは0~50℃であり、接触時間(反応時間)は、例えば0.1~24時間、好ましくは0.5~17時間、より好ましくは0.5~5時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the thioester derivative (III-1) and the carboxylic anhydride (1) are contacted, the contact temperature (reaction temperature) is, for example, −30 to 100° C., preferably −10 to 80° C., more preferably 0 to 50. ° C., and the contact time (reaction time) is, for example, 0.1 to 24 hours, preferably 0.5 to 17 hours, more preferably 0.5 to 5 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
<第2の方法>
 第2の方法は、R’が、置換基を有していてもよいアルキルシリル基を表すチオエステル誘導体(I-1)(以下「チオエステル誘導体(I-1b)」という。)を製造する方法である。
<Second method>
The second method is a method for producing a thioester derivative (I-1) (hereinafter referred to as "thioester derivative (I-1b)") in which R' represents an optionally substituted alkylsilyl group. be.
 チオエステル誘導体(I-1b)は、塩基の存在下、チオエステル誘導体(III-1)とシリル化剤(2)とを接触させて、チオエステル誘導体(I-1b)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1b) is produced by a method comprising the step of contacting the thioester derivative (III-1) with a silylating agent (2) in the presence of a base to produce the thioester derivative (I-1b). can do.
 n=1であるチオエステル誘導体(I-1b)は、塩基の存在下、n=1であるチオエステル誘導体(III-1)とシリル化剤(2)とを接触させて、n=1であるチオエステル誘導体(I-1b)を製造する工程を含む方法により製造することができる。 A thioester derivative (I-1b) where n = 1 is prepared by contacting a thioester derivative (III-1) where n = 1 with a silylating agent (2) in the presence of a base to obtain a thioester derivative where n = 1. It can be produced by a method including the step of producing derivative (I-1b).
 n=2であるチオエステル誘導体(I-1b)は、塩基の存在下、n=2であるチオエステル誘導体(III-1)とシリル化剤(2)とを接触させて、n=2であるチオエステル誘導体(I-1b)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1b) where n = 2 is prepared by contacting the thioester derivative (III-1) where n = 2 with a silylating agent (2) in the presence of a base to give a thioester where n = 2. It can be produced by a method including the step of producing derivative (I-1b).
 チオエステル誘導体(III-1)及びシリル化剤(2)は、市販品であってもよいし、常法に従って製造してもよい。 The thioester derivative (III-1) and silylating agent (2) may be commercially available products or may be produced according to conventional methods.
 塩基の存在下、チオエステル誘導体(III-1)とシリル化剤(2)とを接触させると、チオエステル誘導体(III-1)に含まれるヒドロキシ基が、式:-Si-R(-R)(-R)で表される基で保護され、チオエステル誘導体(I-1b)が得られる。なお、式:-Si-R(-R)(-R)で表される基は、チオエステル誘導体(I-1b)においてR’で表される基に相当する。 When the thioester derivative (III-1) and the silylating agent (2) are brought into contact with each other in the presence of a base, the hydroxy group contained in the thioester derivative (III-1) is converted to the formula: —Si—R 1 (—R 2 ) (--R 3 ) to give a thioester derivative (I-1b). The group represented by the formula: -Si-R 1 (-R 2 )(-R 3 ) corresponds to the group represented by R' in the thioester derivative (I-1b).
 チオエステル誘導体(III-1)とシリル化剤(2)との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(III-1)とシリル化剤(2)とを溶媒中で混合することにより、チオエステル誘導体(III-1)とシリル化剤(2)とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、塩化メチレン、クロロホルム、テトラヒドロフラン(THF)、2-メチル-THF、1,4-ジオキサン、トルエン、N,N-ジメチルホルムアミド(DMF)、アセトニトリル又はこれらの混合溶媒である。 The contact between the thioester derivative (III-1) and the silylating agent (2) is preferably carried out in a solvent. The thioester derivative (III-1) and the silylating agent (2) can be contacted by mixing the thioester derivative (III-1) and the silylating agent (2) in a solvent. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably methylene chloride, chloroform, tetrahydrofuran (THF), 2-methyl-THF, 1,4-dioxane, toluene, N,N-dimethylformamide (DMF), acetonitrile or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(III-1) 1gに対して、例えば1~100mL、好ましくは3~30mLである。 The amount of solvent used is, for example, 1-100 mL, preferably 3-30 mL, per 1 g of thioester derivative (III-1).
 チオエステル誘導体(III-1)とシリル化剤(2)との接触は、塩基の存在下で行われる。 The contact between the thioester derivative (III-1) and the silylating agent (2) is carried out in the presence of a base.
 シリル化剤(2)の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば1~10モル、好ましくは1~5モル、より好ましくは1~3モルである。 The amount of silylating agent (2) used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of thioester derivative (III-1).
 塩基としては、例えば、トリエチルアミン、ピリジン、4-ジメチルアミノピリジン(DMAP)、N,N-ジイソプロピルエチルアミン(DIEA)、イミダゾール、ジアザビシクロウンデセン(DBU)、ジエチルアニリン、2,6-ルチジン等の有機アミン、酢酸ナトリウム、ショッテンバウマン条件等が挙げられる。塩基は、好ましくは、イミダゾールである。 Examples of the base include triethylamine, pyridine, 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), diethylaniline, 2,6-lutidine and the like. organic amines, sodium acetate, Schottenbaumann conditions, and the like. The base is preferably imidazole.
 塩基の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば1~10モル、好ましくは1~5モル、より好ましくは1~3モルである。 The amount of the base used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the thioester derivative (III-1).
 チオエステル誘導体(III-1)とシリル化剤(2)とを接触させる際、接触温度(反応温度)は、例えば-10~80℃、好ましくは-5~60℃、より好ましくは0~40℃であり、接触時間(反応時間)は、例えば0.1~48時間、好ましくは1~24時間、より好ましくは2~17時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the thioester derivative (III-1) and the silylating agent (2) are contacted, the contact temperature (reaction temperature) is, for example, -10 to 80°C, preferably -5 to 60°C, more preferably 0 to 40°C. and the contact time (reaction time) is, for example, 0.1 to 48 hours, preferably 1 to 24 hours, more preferably 2 to 17 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
<第3の方法>
 第3の方法は、R’が、アルデヒド基を表すチオエステル誘導体(I-1)(以下「チオエステル誘導体(I-1c)」という。)を製造する方法である。
<Third method>
A third method is a method for producing a thioester derivative (I-1) (hereinafter referred to as "thioester derivative (I-1c)") in which R' represents an aldehyde group.
 チオエステル誘導体(I-1c)は、塩基及び縮合剤の存在下、チオエステル誘導体(III-1)とギ酸とを接触させて、チオエステル誘導体(I-1c)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1c) is produced by a method comprising the step of producing the thioester derivative (I-1c) by contacting the thioester derivative (III-1) with formic acid in the presence of a base and a condensing agent. can be done.
 n=1であるチオエステル誘導体(I-1c)は、塩基及び縮合剤の存在下、n=1であるチオエステル誘導体(III-1)とギ酸とを接触させて、n=1であるチオエステル誘導体(I-1c)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1c) having n = 1 is obtained by contacting the thioester derivative (III-1) having n = 1 with formic acid in the presence of a base and a condensing agent to obtain a thioester derivative having n = 1 ( It can be produced by a method including the step of producing I-1c).
 n=2であるチオエステル誘導体(I-1c)は、塩基及び縮合剤の存在下、n=2であるチオエステル誘導体(III-1)とギ酸とを接触させて、n=2であるチオエステル誘導体(I-1c)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1c) having n = 2 is prepared by contacting the thioester derivative (III-1) having n = 2 with formic acid in the presence of a base and a condensing agent to obtain the thioester derivative having n = 2 ( It can be produced by a method including the step of producing I-1c).
 チオエステル誘導体(III-1)及びギ酸は、市販品であってもよいし、常法に従って製造してもよい。 The thioester derivative (III-1) and formic acid may be commercially available products or may be produced according to conventional methods.
 塩基及び縮合剤の存在下、チオエステル誘導体(III-1)とギ酸とを接触させると、チオエステル誘導体(III-1)に含まれるヒドロキシ基が、アルデヒド基で保護され、チオエステル誘導体(I-1c)が得られる。なお、アルデヒド基は、チオエステル誘導体(I-1c)においてR’で表される基に相当する。 When the thioester derivative (III-1) is brought into contact with formic acid in the presence of a base and a condensing agent, the hydroxy group contained in the thioester derivative (III-1) is protected with an aldehyde group to give the thioester derivative (I-1c). is obtained. The aldehyde group corresponds to the group represented by R' in the thioester derivative (I-1c).
 チオエステル誘導体(III-1)とギ酸との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(III-1)とギ酸とを溶媒中で混合することにより、チオエステル誘導体(III-1)とギ酸とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、塩化メチレン、THF、2-メチル-THF、トルエン、DMF、1,4-ジオキサン、アセトニトリル又はこれらの混合溶媒である。 The contact between the thioester derivative (III-1) and formic acid is preferably carried out in a solvent. The thioester derivative (III-1) and formic acid can be brought into contact with each other by mixing the thioester derivative (III-1) and formic acid in a solvent. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(III-1) 1gに対して、例えば1~100mL、好ましくは2~50mLである。 The amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, per 1 g of thioester derivative (III-1).
 チオエステル誘導体(III-1)とギ酸との接触は、塩基及び縮合剤の存在下で行われる。 The thioester derivative (III-1) is contacted with formic acid in the presence of a base and a condensing agent.
 ギ酸の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば1~20モル、好ましくは1~10モル、より好ましくは1~5モルである。 The amount of formic acid used is, for example, 1 to 20 mol, preferably 1 to 10 mol, more preferably 1 to 5 mol, per 1 mol of the thioester derivative (III-1).
 塩基としては、例えば、トリエチルアミン、ピリジン、4-ジメチルアミノピリジン(DMAP)、N,N-ジイソプロピルエチルアミン(DIEA)、イミダゾール、ジアザビシクロウンデセン(DBU)、ジエチルアニリン、2,6-ルチジン等の有機アミン、酢酸ナトリウム、ショッテンバウマン条件等が挙げられる。塩基は、DMAP、トリエチルアミン、ジイソプロピルエチルアミン及びピリジンから選択することが好ましい。 Examples of the base include triethylamine, pyridine, 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), diethylaniline, 2,6-lutidine and the like. organic amines, sodium acetate, Schottenbaumann conditions, and the like. The base is preferably selected from DMAP, triethylamine, diisopropylethylamine and pyridine.
 塩基の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば0.001~10モル、好ましくは0.01~5モル、より好ましくは0.02~2モルである。 The amount of the base used is, for example, 0.001 to 10 mol, preferably 0.01 to 5 mol, more preferably 0.02 to 2 mol, per 1 mol of the thioester derivative (III-1).
 縮合剤としては、N,N’-ジシクロヘキシルカルボジイミド(DCC)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)、クロロ炭酸エチル、クロロ炭酸イソブチル、ジフェニルクロロホスフェート等が挙げられる。縮合剤は、好ましくは、EDC・HClである。 Condensing agents include N,N'-dicyclohexylcarbodiimide (DCC), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC/HCl), ethyl chlorocarbonate, isobutyl chlorocarbonate, diphenyl chlorophosphate, and the like. is mentioned. The condensing agent is preferably EDC.HCl.
 縮合剤の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば1~4モル、好ましくは1~3モル、より好ましくは1~2モルである。 The amount of the condensing agent used is, for example, 1-4 mol, preferably 1-3 mol, more preferably 1-2 mol, per 1 mol of the thioester derivative (III-1).
 チオエステル誘導体(III-1)とギ酸とを接触させる際、接触温度(反応温度)は、例えば-20~60℃、好ましくは-15~50℃、より好ましくは-10~40℃であり、接触時間(反応時間)は、例えば0.5~48時間、好ましくは1~24時間、より好ましくは2~17時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the thioester derivative (III-1) and formic acid are contacted, the contact temperature (reaction temperature) is, for example, -20 to 60°C, preferably -15 to 50°C, more preferably -10 to 40°C. The time (reaction time) is, for example, 0.5 to 48 hours, preferably 1 to 24 hours, more preferably 2 to 17 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
<第4の方法>
 第4の方法は、R’が、式:-CO-L-Lで表される基を表すチオエステル誘導体(I-1)(以下「チオエステル誘導体(I-1d)」という。)を製造する方法である。
<Fourth method>
A fourth method is to produce a thioester derivative (I-1) (hereinafter referred to as “thioester derivative (I-1d)”) in which R′ represents a group represented by the formula: —CO—L 1 -L 2 It is a way to
 チオエステル誘導体(I-1d)は、塩基の存在下、チオエステル誘導体(III-1)と、式:J-CO-L-L[式中、L及びLは前記と同義であり、Jはハロゲン原子を表す。]で表される化合物とを接触させて、チオエステル誘導体(I-1d)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1d) is prepared by combining the thioester derivative (III-1) with the formula: J-CO-L 1 -L 2 [wherein L 1 and L 2 are as defined above, J represents a halogen atom. ] to produce the thioester derivative (I-1d).
 n=1であるチオエステル誘導体(I-1d)は、塩基の存在下、n=1であるチオエステル誘導体(III-1)と、式:J-CO-L-Lで表される化合物とを接触させて、n=1であるチオエステル誘導体(I-1d)を製造する工程を含む方法により製造することができる。 A thioester derivative (I-1d) where n = 1 is prepared by combining a thioester derivative (III-1) where n = 1 with a compound represented by the formula: J-CO-L 1 -L 2 in the presence of a base. to produce a thioester derivative (I-1d) where n=1.
 n=2であるチオエステル誘導体(I-1d)は、塩基の存在下、n=2であるチオエステル誘導体(III-1)と、式:J-CO-L-Lで表される化合物とを接触させて、n=2であるチオエステル誘導体(I-1d)を製造する工程を含む方法により製造することができる。 A thioester derivative (I-1d) where n = 2 is prepared by combining a thioester derivative (III-1) where n = 2 with a compound represented by the formula: J-CO-L 1 -L 2 in the presence of a base. to produce a thioester derivative (I-1d) where n=2.
 チオエステル誘導体(III-1)及び式:J-CO-L-Lで表される化合物は、市販品であってもよいし、常法に従って製造してもよい。 The thioester derivative (III-1) and the compound represented by the formula: J—CO—L 1 -L 2 may be commercially available or may be produced according to conventional methods.
 式:J-CO-L-Lにおいて、Jはハロゲン原子を表す。Jは、塩素原子、臭素及びヨウ素から選択することが好ましく、塩素原子であることがより好ましい。 In the formula: J—CO—L 1 -L 2 , J represents a halogen atom. J is preferably selected from chlorine, bromine and iodine, more preferably chlorine.
 式:J-CO-L-Lで表される化合物は、Cl-CO-CHCl(クロロアセチルクロリド)、Cl-CO-CHCl(ジクロロアセチルクロリド)及びCl-CO-CCl(トリクロロアセチルクロリド)から選択することが好ましく、Cl-CO-CHClであることがより好ましい。 The compounds represented by the formula: J—CO—L 1 -L 2 are Cl—CO—CH 2 Cl (chloroacetyl chloride), Cl—CO—CHCl 2 (dichloroacetyl chloride) and Cl—CO—CCl 3 ( trichloroacetyl chloride), more preferably Cl--CO--CH 2 Cl.
 塩基の存在下、チオエステル誘導体(III-1)と、式:J-CO-L-Lで表される化合物とを接触させると、チオエステル誘導体(III-1)に含まれるヒドロキシ基が、式:-CO-L-Lで表される基で保護され、チオエステル誘導体(I-1d)が得られる。なお、式:-CO-L-Lで表される基は、チオエステル誘導体(I-1d)においてR’で表される基に相当する。 When the thioester derivative (III-1) is brought into contact with a compound represented by the formula: J-CO-L 1 -L 2 in the presence of a base, the hydroxy group contained in the thioester derivative (III-1) is A thioester derivative (I-1d) is obtained by protecting with a group represented by the formula: —CO—L 1 -L 2 . The group represented by the formula: -CO-L 1 -L 2 corresponds to the group represented by R' in the thioester derivative (I-1d).
 チオエステル誘導体(III-1)と、式:J-CO-L-Lで表される化合物との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(III-1)と当該化合物とを溶媒中で混合することにより、チオエステル誘導体(III-1)と当該化合物とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、塩化メチレン、THF、2-メチル-THF、トルエン、DMF、1,4-ジオキサン、アセトニトリル又はこれらの混合溶媒である。 The contact between the thioester derivative (III-1) and the compound represented by the formula: J—CO—L 1 -L 2 is preferably carried out in a solvent. The thioester derivative (III-1) and the compound can be contacted by mixing the thioester derivative (III-1) and the compound in a solvent. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(III-1) 1gに対して、例えば1~100mL、好ましくは3~50mLである。 The amount of solvent used is, for example, 1 to 100 mL, preferably 3 to 50 mL, per 1 g of thioester derivative (III-1).
 チオエステル誘導体(III-1)と、式:J-CO-L-Lで表される化合物との接触は、塩基の存在下で行われる。 The contact between the thioester derivative (III-1) and the compound represented by the formula: J—CO—L 1 -L 2 is carried out in the presence of a base.
 式:J-CO-L-Lで表される化合物の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば1~5モル、好ましくは1~3モル、より好ましくは1~2モルである。 The amount of the compound represented by the formula: J—CO—L 1 -L 2 to be used is, for example, 1 to 5 mol, preferably 1 to 3 mol, more preferably 1 to 1 mol, per 1 mol of the thioester derivative (III-1). 1 to 2 mol.
 塩基としては、例えば、トリエチルアミン、ピリジン、4-ジメチルアミノピリジン(DMAP)、N,N-ジイソプロピルエチルアミン(DIEA)、イミダゾール、ジアザビシクロウンデセン(DBU)、ジエチルアニリン、2,6-ルチジン等の有機アミン、酢酸ナトリウム、ショッテンバウマン条件等が挙げられる。塩基は、好ましくは、ピリジンである。 Examples of the base include triethylamine, pyridine, 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), diethylaniline, 2,6-lutidine and the like. organic amines, sodium acetate, Schottenbaumann conditions, and the like. The base is preferably pyridine.
 塩基の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば1~10モル、好ましくは1~5モル、より好ましくは1~3モルである。 The amount of the base used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the thioester derivative (III-1).
 チオエステル誘導体(III-1)と、式:J-CO-L-Lで表される化合物とを接触させる際、接触温度(反応温度)は、例えば-30~50℃、好ましくは-20~40℃、より好ましくは-10~30℃であり、接触時間(反応時間)は、例えば0.1~17時間、好ましくは0.5~8時間、より好ましくは1~4時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the thioester derivative (III-1) is brought into contact with the compound represented by the formula: J—CO—L 1 -L 2 , the contact temperature (reaction temperature) is, for example, −30 to 50° C., preferably −20° C. to 40° C., more preferably −10 to 30° C., and the contact time (reaction time) is, for example, 0.1 to 17 hours, preferably 0.5 to 8 hours, more preferably 1 to 4 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
<第5の方法>
 第5の方法は、R’が、式:-CO-C(-L)(-L10)(-L11)で表される基を表すチオエステル誘導体(I-1)(以下「チオエステル誘導体(I-1e)」という。)を製造する方法である。
<Fifth method>
A fifth method is a thioester derivative (I- 1 ) (hereinafter referred to as "thioester derivative (I-1e)”).
 チオエステル誘導体(I-1e)は、チオエステル誘導体(III-1)と、式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)[式中、L、L10及びL11は前記と同義である。]で表される化合物とを接触させて、チオエステル誘導体(I-1e)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1e) is obtained by combining the thioester derivative (III-1) with the formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )( -L 10 )(-L 11 ) [Wherein, L 9 , L 10 and L 11 are as defined above. ] to produce the thioester derivative (I-1e).
 n=1であるチオエステル誘導体(I-1e)は、n=1であるチオエステル誘導体(III-1)と、式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)で表される化合物とを接触させて、n=1であるチオエステル誘導体(I-1e)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1e) where n = 1 is a thioester derivative (III-1) where n = 1 and the formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O -CO-C(-L 9 )(-L 10 )(-L 11 ) by a method comprising the step of producing a thioester derivative (I-1e) where n=1 can be manufactured.
 n=2であるチオエステル誘導体(I-1e)は、n=2であるチオエステル誘導体(III-1)と、式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)で表される化合物とを接触させて、n=2であるチオエステル誘導体(I-1e)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-1e) where n = 2 is a thioester derivative (III-1) where n = 2 and the formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O -CO-C(-L 9 )(-L 10 )(-L 11 ) by a method comprising the step of producing a thioester derivative (I-le) where n=2 by contacting with a compound represented by can be manufactured.
 チオエステル誘導体(III-1)及び式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)で表される化合物は、市販品であってもよいし、常法に従って製造してもよい。 Thioester derivative (III-1) and formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )(-L 10 )(-L 11 ) The represented compounds may be commercially available products or may be produced according to conventional methods.
 式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)で表される化合物は、好ましくは、CF-CO-O-CO-CF(無水トリフルオロ酢酸)である。 The compound represented by the formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )(-L 10 )(-L 11 ) is preferably , CF 3 —CO—O—CO—CF 3 (trifluoroacetic anhydride).
 チオエステル誘導体(III-1)と、式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)で表される化合物とを接触させると、チオエステル誘導体(III-1)に含まれるヒドロキシ基が、式:-CO-C(-L)(-L10)(-L11)で表される基で保護され、チオエステル誘導体(I-1e)が得られる。なお、式:-CO-C(-L)(-L10)(-L11)で表される基は、チオエステル誘導体(I-1e)においてR’で表される基に相当する。 a thioester derivative (III-1) and a formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )(-L 10 )(-L 11 ) When contacted with a compound represented by, the hydroxy group contained in the thioester derivative (III-1) is represented by the formula: -CO-C (-L 9 ) (-L 10 ) (-L 11 ) group to give the thioester derivative (I-1e). The group represented by the formula: --CO--C(-L 9 )(-L 10 )(-L 11 ) corresponds to the group represented by R' in the thioester derivative (I-1e).
 チオエステル誘導体(III-1)と、式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)で表される化合物との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(III-1)と当該化合物とを溶媒中で混合することにより、チオエステル誘導体(III-1)と当該化合物とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、塩化メチレン、THF、2-メチル-THF、トルエン、DMF、1,4-ジオキサン、アセトニトリル又はこれらの混合溶媒である。 a thioester derivative (III-1) and a formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )(-L 10 )(-L 11 ) The contact with the compound represented by is preferably carried out in a solvent. The thioester derivative (III-1) and the compound can be contacted by mixing the thioester derivative (III-1) and the compound in a solvent. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(III-1) 1gに対して、例えば1~100mL、好ましくは2~50mLである。 The amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, per 1 g of thioester derivative (III-1).
 式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)で表される化合物の使用量は、チオエステル誘導体(III-1) 1モルに対して、例えば1~5モル、好ましくは1~3モル、より好ましくは1~2モルである。 The amount of the compound represented by the formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )(-L 10 )(-L 11 ) is , for example, 1 to 5 mol, preferably 1 to 3 mol, more preferably 1 to 2 mol, per 1 mol of the thioester derivative (III-1).
 チオエステル誘導体(III-1)と、式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)で表される化合物とを接触させる際、接触温度(反応温度)は、例えば-20~40℃、好ましくは-10~30℃、より好ましくは0~20℃であり、接触時間(反応時間)は、例えば0.5~5時間、好ましくは1~4時間、より好ましくは1~3時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 a thioester derivative (III-1) and a formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )(-L 10 )(-L 11 ) When contacting the compound represented by, the contact temperature (reaction temperature) is, for example, -20 to 40 ° C., preferably -10 to 30 ° C., more preferably 0 to 20 ° C., and the contact time (reaction time) is, for example, 0.5 to 5 hours, preferably 1 to 4 hours, more preferably 1 to 3 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
<第6の方法>
 第6の方法は、R’が、置換基を有していてもよいアルキルシリル基を表すチオエステル誘導体(I-2)(以下「チオエステル誘導体(I-2a)」という。)を製造する方法である。
<Sixth method>
A sixth method is a method for producing a thioester derivative (I-2) (hereinafter referred to as "thioester derivative (I-2a)") in which R' represents an optionally substituted alkylsilyl group. be.
 チオエステル誘導体(I-2a)は、塩基の存在下、チオエステル誘導体(III-2)とシリル化剤(2)とを接触させて、チオエステル誘導体(I-2a)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-2a) is produced by a method comprising the step of contacting the thioester derivative (III-2) with a silylating agent (2) in the presence of a base to produce the thioester derivative (I-2a). can do.
 n=1であるチオエステル誘導体(I-2a)は、塩基の存在下、n=1であるチオエステル誘導体(III-2)とシリル化剤(2)とを接触させて、n=1であるチオエステル誘導体(I-2a)を製造する工程を含む方法により製造することができる。 A thioester derivative (I-2a) where n = 1 is prepared by contacting a thioester derivative (III-2) where n = 1 with a silylating agent (2) in the presence of a base to obtain a thioester derivative where n = 1. It can be produced by a method including the step of producing derivative (I-2a).
 n=2であるチオエステル誘導体(I-2a)は、塩基の存在下、n=2であるチオエステル誘導体(III-2)とシリル化剤(2)とを接触させて、n=2であるチオエステル誘導体(I-2a)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-2a) where n = 2 is prepared by contacting the thioester derivative (III-2) where n = 2 with a silylating agent (2) in the presence of a base to give a thioester where n = 2. It can be produced by a method including the step of producing derivative (I-2a).
 チオエステル誘導体(III-2)及びシリル化剤(2)は、市販品であってもよいし、常法に従って製造してもよい。 The thioester derivative (III-2) and silylating agent (2) may be commercially available products or may be produced according to conventional methods.
 塩基の存在下、チオエステル誘導体(III-2)とシリル化剤(2)とを接触させると、チオエステル誘導体(III-2)に含まれるヒドロキシ基が、式:-Si-R(-R)(-R)で表される基で保護され、チオエステル誘導体(I-2a)が得られる。なお、式:-Si-R(-R)(-R)で表される基は、チオエステル誘導体(I-2a)においてR’で表される基に相当する。 When the thioester derivative (III-2) and the silylating agent (2) are brought into contact with each other in the presence of a base, the hydroxy group contained in the thioester derivative (III-2) is converted to the formula: —Si—R 1 (—R 2 ) (--R 3 ) to give a thioester derivative (I-2a). The group represented by the formula: -Si-R 1 (-R 2 )(-R 3 ) corresponds to the group represented by R' in the thioester derivative (I-2a).
 チオエステル誘導体(III-2)とシリル化剤(2)との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(III-2)とシリル化剤(2)とを溶媒中で混合することにより、チオエステル誘導体(III-2)とシリル化剤(2)とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくはTHF、tert-ブチルメチルエーテル、DCM、トルエン又はこれらの混合溶媒である。 The contact between the thioester derivative (III-2) and the silylating agent (2) is preferably carried out in a solvent. The thioester derivative (III-2) and the silylating agent (2) can be brought into contact with each other by mixing the thioester derivative (III-2) and the silylating agent (2) in a solvent. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably THF, tert-butyl methyl ether, DCM, toluene or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(III-2) 1gに対して、例えば1~200mL、好ましくは2~100mLである。 The amount of solvent used is, for example, 1-200 mL, preferably 2-100 mL, per 1 g of thioester derivative (III-2).
 チオエステル誘導体(III-2)とシリル化剤(2)との接触は、塩基の存在下で行われる。 The contact between the thioester derivative (III-2) and the silylating agent (2) is carried out in the presence of a base.
 シリル化剤(2)の使用量は、チオエステル誘導体(III-2) 1モルに対して、例えば1~10モル、好ましくは1~5モル、より好ましくは1~3モルである。 The amount of silylating agent (2) used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of thioester derivative (III-2).
 塩基としては、例えば、トリエチルアミン、ピリジン、4-ジメチルアミノピリジン(DMAP)、N,N-ジイソプロピルエチルアミン(DIEA)、イミダゾール、ジアザビシクロウンデセン(DBU)、ジエチルアニリン、2,6-ルチジン等の有機アミン、酢酸ナトリウム、ショッテンバウマン条件等が挙げられる。塩基は、好ましくは、イミダゾールである。 Examples of the base include triethylamine, pyridine, 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), diethylaniline, 2,6-lutidine and the like. organic amines, sodium acetate, Schottenbaumann conditions, and the like. The base is preferably imidazole.
 塩基の使用量は、チオエステル誘導体(III-2) 1モルに対して、例えば0.1~10モル、好ましくは0.2~5モル、より好ましくは0.3~3モルである。 The amount of the base used is, for example, 0.1 to 10 mol, preferably 0.2 to 5 mol, more preferably 0.3 to 3 mol, per 1 mol of the thioester derivative (III-2).
 チオエステル誘導体(III-2)とシリル化剤(2)とを接触させる際、接触温度(反応温度)は、例えば-30~100℃、好ましくは-10~80℃、より好ましくは0~50℃であり、接触時間(反応時間)は、例えば0.1~24時間、好ましくは0.5~17時間、より好ましくは0.5~5時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the thioester derivative (III-2) and the silylating agent (2) are contacted, the contact temperature (reaction temperature) is, for example, -30 to 100°C, preferably -10 to 80°C, more preferably 0 to 50°C. and the contact time (reaction time) is, for example, 0.1 to 24 hours, preferably 0.5 to 17 hours, more preferably 0.5 to 5 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
<第7の方法>
 第7の方法は、R’が、置換基を有していてもよいテトラヒドロピラニル基を表すチオエステル誘導体(I-2)(以下「チオエステル誘導体(I-2b)」という。)を製造する方法である。
<Seventh method>
A seventh method is a method for producing a thioester derivative (I-2) (hereinafter referred to as "thioester derivative (I-2b)") in which R' represents a tetrahydropyranyl group which may have a substituent. is.
 チオエステル誘導体(I-2b)は、酸の存在下、チオエステル誘導体(III-2)と、置換基を有していてもよい3,4-ジヒドロ-2H-ピランとを接触させて、チオエステル誘導体(I-2b)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-2b) is prepared by contacting the thioester derivative (III-2) with 3,4-dihydro-2H-pyran optionally having a substituent in the presence of an acid to obtain a thioester derivative ( It can be produced by a method including the step of producing I-2b).
 n=1であるチオエステル誘導体(I-2b)は、酸の存在下、n=1であるチオエステル誘導体(III-2)と、置換基を有していてもよい3,4-ジヒドロ-2H-ピランとを接触させて、n=1であるチオエステル誘導体(I-2b)を製造する工程を含む方法により製造することができる。 A thioester derivative (I-2b) having n = 1 is prepared by reacting a thioester derivative (III-2) having n = 1 with 3,4-dihydro-2H-, which may have a substituent, in the presence of an acid. It can be produced by a method comprising the step of producing a thioester derivative (I-2b) in which n=1 by contacting with pyran.
 n=2であるチオエステル誘導体(I-2b)は、酸の存在下、n=2であるチオエステル誘導体(III-2)と、置換基を有していてもよい3,4-ジヒドロ-2H-ピランとを接触させて、n=2であるチオエステル誘導体(I-2b)を製造する工程を含む方法により製造することができる。 A thioester derivative (I-2b) having n = 2 is prepared by reacting a thioester derivative (III-2) having n = 2 with 3,4-dihydro-2H-, which may have a substituent, in the presence of an acid. It can be produced by a method comprising a step of producing a thioester derivative (I-2b) in which n=2 by contacting with pyran.
 チオエステル誘導体(III-2)及び置換基を有していてもよい3,4-ジヒドロ-2H-ピランは、市販品であってもよいし、常法に従って製造してもよい。 The thioester derivative (III-2) and optionally substituted 3,4-dihydro-2H-pyran may be commercially available or may be produced according to a conventional method.
 R’がテトラヒドロピラニル基を表す場合、3,4-ジヒドロ-2H-ピランが使用される。R’が置換基を有するテトラヒドロピラニル基を表す場合、置換基を有する3,4-ジヒドロ-2H-ピランが使用される。3,4-ジヒドロ-2H-ピランが有する置換基の数及び種類は、テトラヒドロピラニル基が有する置換基の数及び種類と同一である。 When R' represents a tetrahydropyranyl group, 3,4-dihydro-2H-pyran is used. When R' represents a substituted tetrahydropyranyl group, substituted 3,4-dihydro-2H-pyran is used. The number and type of substituents possessed by 3,4-dihydro-2H-pyran are the same as the number and type of substituents possessed by the tetrahydropyranyl group.
 酸の存在下、チオエステル誘導体(III-2)と、置換基を有していてもよい3,4-ジヒドロ-2H-ピランとを接触させると、チオエステル誘導体(III-2)に含まれるヒドロキシ基が、置換基を有していてもよいテトラヒドロピラニル基で保護され、チオエステル誘導体(I-2b)が得られる。なお、置換基を有していてもよいテトラヒドロピラニル基は、チオエステル誘導体(I-2b)においてR’で表される基に相当する。 In the presence of an acid, the thioester derivative (III-2) and optionally substituted 3,4-dihydro-2H-pyran are brought into contact with the hydroxy group contained in the thioester derivative (III-2). is protected with an optionally substituted tetrahydropyranyl group to obtain a thioester derivative (I-2b). The tetrahydropyranyl group which may have a substituent corresponds to the group represented by R' in the thioester derivative (I-2b).
 チオエステル誘導体(III-2)と、置換基を有していてもよい3,4-ジヒドロ-2H-ピランとの接触は、溶媒中で行われることが好ましい。チオエステル誘導体(III-2)と、置換基を有していてもよい3,4-ジヒドロ-2H-ピランとを溶媒中で混合することにより、チオエステル誘導体(III-2)と、置換基を有していてもよい3,4-ジヒドロ-2H-ピランとを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、塩化メチレン、THF、2-メチル-THF、トルエン、DMF、1,4-ジオキサン、アセトニトリル又はこれらの混合溶媒である。 The contact between the thioester derivative (III-2) and optionally substituted 3,4-dihydro-2H-pyran is preferably carried out in a solvent. By mixing the thioester derivative (III-2) and optionally substituted 3,4-dihydro-2H-pyran in a solvent, the thioester derivative (III-2) and the substituted thioester derivative (III-2) 3,4-dihydro-2H-pyran, which may be used. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(III-2) 1gに対して、例えば2~100mL、好ましくは3~30mLである。 The amount of solvent used is, for example, 2-100 mL, preferably 3-30 mL, per 1 g of thioester derivative (III-2).
 チオエステル誘導体(III-2)と、置換基を有していてもよい3,4-ジヒドロ-2H-ピランとの接触は、酸の存在下で行われる。 The contact between the thioester derivative (III-2) and 3,4-dihydro-2H-pyran optionally having a substituent is carried out in the presence of an acid.
 置換基を有していてもよい3,4-ジヒドロ-2H-ピランの使用量は、チオエステル誘導体(III-2) 1モルに対して、例えば1~10モル、好ましくは1~5モル、より好ましくは1~3モルである。 The amount of 3,4-dihydro-2H-pyran optionally having a substituent to be used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 1 mol, per 1 mol of the thioester derivative (III-2). It is preferably 1 to 3 mol.
 酸は、好ましくは、p-トルエンスルホン酸一水和物(TsOH・HO)である。 The acid is preferably p-toluenesulfonic acid monohydrate (TsOH.H 2 O).
 酸の使用量は、チオエステル誘導体(III-2) 1モルに対して、例えば0.005~1モル、好ましくは0.01~0.5モル、より好ましくは0.05~0.25モルである。 The amount of acid used is, for example, 0.005 to 1 mol, preferably 0.01 to 0.5 mol, more preferably 0.05 to 0.25 mol, per 1 mol of the thioester derivative (III-2). be.
 チオエステル誘導体(III-2)と、置換基を有していてもよい3,4-ジヒドロ-2H-ピランとを接触させる際、接触温度(反応温度)は、例えば-10~100℃、好ましくは0~80℃、より好ましくは5~60℃であり、接触時間(反応時間)は、例えば0.5~8時間、好ましくは1~6時間、より好ましくは2~4時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the thioester derivative (III-2) and optionally substituted 3,4-dihydro-2H-pyran are contacted, the contact temperature (reaction temperature) is, for example, −10 to 100° C., preferably The temperature is 0 to 80° C., more preferably 5 to 60° C., and the contact time (reaction time) is, for example, 0.5 to 8 hours, preferably 1 to 6 hours, more preferably 2 to 4 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
<第8の方法>
 第8の方法は、R’が、式:-CO-L-Lで表される基を表すチオエステル誘導体(I-2)(以下「チオエステル誘導体(I-2c)」という。)を製造する方法である。
<Eighth method>
The eighth method is to produce a thioester derivative (I-2) (hereinafter referred to as "thioester derivative (I-2c)") in which R' represents a group represented by the formula: -CO-L 1 -L 2 It is a way to
 チオエステル誘導体(I-2c)は、塩基の存在下、チオエステル誘導体(III-2)と、式:J-CO-L-L[式中、L及びLは前記と同義であり、Jはハロゲン原子を表す。]で表される化合物とを接触させて、チオエステル誘導体(I-2c)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-2c) is prepared by combining the thioester derivative (III-2) with the formula: J-CO-L 1 -L 2 [wherein L 1 and L 2 are as defined above, J represents a halogen atom. ] to produce the thioester derivative (I-2c).
 n=1であるチオエステル誘導体(I-2c)は、塩基の存在下、n=1であるチオエステル誘導体(III-2)と、式:J-CO-L-Lで表される化合物とを接触させて、n=1であるチオエステル誘導体(I-2c)を製造する工程を含む方法により製造することができる。 A thioester derivative (I-2c) where n = 1 is prepared by combining a thioester derivative (III-2) where n = 1 with a compound represented by the formula: J-CO-L 1 -L 2 in the presence of a base. to produce a thioester derivative (I-2c) where n=1.
 n=2であるチオエステル誘導体(I-2c)は、塩基の存在下、n=2であるチオエステル誘導体(III-2)と、式:J-CO-L-Lで表される化合物とを接触させて、n=2であるチオエステル誘導体(I-2c)を製造する工程を含む方法により製造することができる。 A thioester derivative (I-2c) where n = 2 is prepared by combining a thioester derivative (III-2) where n = 2 with a compound represented by the formula: J-CO-L 1 -L 2 in the presence of a base. to produce a thioester derivative (I-2c) where n=2.
 チオエステル誘導体(III-2)及び式:J-CO-L-Lで表される化合物は、市販品であってもよいし、常法に従って製造してもよい。 The thioester derivative (III-2) and the compound represented by the formula: J—CO—L 1 -L 2 may be commercially available or may be produced according to conventional methods.
 式:J-CO-L-Lにおいて、Jはハロゲン原子を表す。Jは、塩素原子、臭素及びヨウ素から選択することが好ましく、塩素原子であることがより好ましい。 In the formula: J—CO—L 1 -L 2 , J represents a halogen atom. J is preferably selected from chlorine, bromine and iodine, more preferably chlorine.
 式:J-CO-L-Lで表される化合物は、Cl-CO-CHCl(クロロアセチルクロリド)、、Cl-CO-CHCl(ジクロロアセチルクロリド)及びCl-CO-CCl(トリクロロアセチルクロリド)から選択することが好ましく、Cl-CO-CHClであることがより好ましい。 The compounds represented by the formula: J-CO-L 1 -L 2 are Cl-CO-CH 2 Cl (chloroacetyl chloride), Cl-CO-CHCl 2 (dichloroacetyl chloride) and Cl-CO-CCl 3 (trichloroacetyl chloride), more preferably Cl--CO--CH 2 Cl.
 塩基の存在下、チオエステル誘導体(III-2)と、式:J-CO-L-Lで表される化合物とを接触させると、チオエステル誘導体(III-2)に含まれるヒドロキシ基が、式:-CO-L-Lで表される基で保護され、チオエステル誘導体(I-2c)が得られる。なお、式:-CO-L-Lで表される基は、チオエステル誘導体(I-2c)においてR’で表される基に相当する。 When the thioester derivative (III-2) is brought into contact with the compound represented by the formula: J—CO—L 1 -L 2 in the presence of a base, the hydroxy group contained in the thioester derivative (III-2) is A thioester derivative (I-2c) is obtained by protecting with a group represented by the formula: -CO-L 1 -L 2 . The group represented by the formula: -CO-L 1 -L 2 corresponds to the group represented by R' in the thioester derivative (I-2c).
 チオエステル誘導体(III-2)と、式:J-CO-L-Lで表される化合物との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(III-2)と当該化合物とを溶媒中で混合することにより、チオエステル誘導体(III-2)と当該化合物とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、塩化メチレン、THF、2-メチル-THF、トルエン、DMF、1,4-ジオキサン、アセトニトリル又はこれらの混合溶媒である。 The contact between the thioester derivative (III-2) and the compound represented by the formula: J—CO—L 1 -L 2 is preferably carried out in a solvent. The thioester derivative (III-2) and the compound can be contacted by mixing the thioester derivative (III-2) and the compound in a solvent. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(III-2) 1gに対して、例えば1~100mL、好ましくは2~50mLである。 The amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, per 1 g of thioester derivative (III-2).
 チオエステル誘導体(III-2)と、式:J-CO-L-Lで表される化合物との接触は、塩基の存在下で行われる。 The contact between the thioester derivative (III-2) and the compound represented by the formula: J—CO—L 1 -L 2 is carried out in the presence of a base.
 式:J-CO-L-Lで表される化合物の使用量は、チオエステル誘導体(III-2) 1モルに対して、例えば1~5モル、好ましくは1~3モル、より好ましくは1~2モルである。 The amount of the compound represented by the formula: J—CO—L 1 -L 2 to be used is, for example, 1 to 5 mol, preferably 1 to 3 mol, more preferably 1 to 3 mol, per 1 mol of the thioester derivative (III-2). 1 to 2 mol.
 塩基としては、例えば、トリエチルアミン、ピリジン、4-ジメチルアミノピリジン(DMAP)、N,N-ジイソプロピルエチルアミン(DIEA)、イミダゾール、ジアザビシクロウンデセン(DBU)、ジエチルアニリン、2,6-ルチジン等の有機アミン、酢酸ナトリウム、ショッテンバウマン条件等が挙げられる。塩基は、好ましくは、ピリジンである。 Examples of the base include triethylamine, pyridine, 4-dimethylaminopyridine (DMAP), N,N-diisopropylethylamine (DIEA), imidazole, diazabicycloundecene (DBU), diethylaniline, 2,6-lutidine and the like. organic amines, sodium acetate, Schottenbaumann conditions, and the like. The base is preferably pyridine.
 塩基の使用量は、チオエステル誘導体(III-2) 1モルに対して、例えば1~5モル、好ましくは1~4モル、より好ましくは1~3モルである。 The amount of the base used is, for example, 1-5 mol, preferably 1-4 mol, more preferably 1-3 mol, per 1 mol of the thioester derivative (III-2).
 チオエステル誘導体(III-2)と、式:J-CO-L-Lで表される化合物とを接触させる際、接触温度(反応温度)は、例えば-30~50℃、好ましくは-20~40℃、より好ましくは-10~30℃であり、接触時間(反応時間)は、例えば0.5~17時間、好ましくは1~10時間、より好ましくは2~8時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the thioester derivative (III-2) and the compound represented by the formula: J—CO—L 1 -L 2 are brought into contact, the contact temperature (reaction temperature) is, for example, −30 to 50° C., preferably −20° C. to 40° C., more preferably −10 to 30° C., and the contact time (reaction time) is, for example, 0.5 to 17 hours, preferably 1 to 10 hours, more preferably 2 to 8 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
<第9の方法>
 第9の方法は、R’が、式:-C(-L)(-L)-O-Lで表される基を表すチオエステル誘導体(I-2)(以下「チオエステル誘導体(I-2d)」という。)を製造する方法である。
<Ninth method>
A ninth method is a thioester derivative (I- 2 ) ( hereinafter referred to as "thioester derivative ( I -2d)”).
 チオエステル誘導体(I-2d)は、酸の存在下、チオエステル誘導体(III-2)と、式:L-C(=CH-K)-O-L[式中、L及びLは前記と同義であり、Kは水素原子又は置換基を有していてもよいアルキル基を表す。]で表される化合物とを接触させて、チオエステル誘導体(I-2d)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-2d) is prepared by combining the thioester derivative (III-2) with the formula: L 3 -C(=CH-K)-OL 5 [wherein L 3 and L 5 are As defined above, K represents a hydrogen atom or an optionally substituted alkyl group. ] to produce a thioester derivative (I-2d).
 n=1であるチオエステル誘導体(I-2d)は、酸の存在下、n=1であるチオエステル誘導体(III-2)と、式:L-C(=CH-K)-O-Lで表される化合物とを接触させて、n=1であるチオエステル誘導体(I-2d)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-2d) where n = 1 is prepared by combining the thioester derivative (III-2) where n = 1 with the formula: L 3 -C(=CH-K)-OL 5 in the presence of an acid. It can be produced by a method comprising the step of producing a thioester derivative (I-2d) where n = 1 by contacting with a compound represented by.
 n=2であるチオエステル誘導体(I-2d)は、酸の存在下、n=2であるチオエステル誘導体(III-2)と、式:L-C(=CH-K)-O-Lで表される化合物とを接触させて、n=2であるチオエステル誘導体(I-2d)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-2d) where n = 2 is prepared by combining the thioester derivative (III-2) where n = 2 with the formula: L 3 -C(=CH-K)-OL 5 in the presence of an acid. It can be produced by a method comprising the step of producing a thioester derivative (I-2d) where n=2 by contacting with a compound represented by.
 チオエステル誘導体(III-2)及び式:L-C(=CH-K)-O-Lで表される化合物は、市販品であってもよいし、常法に従って製造してもよい。 The thioester derivative (III-2) and the compound represented by the formula: L 3 -C(=CH-K)-OL 5 may be commercially available or may be produced according to conventional methods.
 式:L-C(=CH-K)-O-Lにおいて、Kは、水素原子又は置換基を有していてもよいアルキル基を表す。式:-C(-L)(-L)-O-Lにおける-Lは、式:L-C(=CH-K)-O-Lにおける=CH-Kから生じる。すなわち、-Lは、-CH-Kに相当する。Kが水素原子又はアルキル基を表す場合、Lはアルキル基を表す。Kが置換基を有するアルキル基を表す場合、Lが置換基を有するアルキル基を表す。Kで表されるアルキル基の炭素数は、Lで表されるアルキル基の炭素数よりも1小さい。Kで表されるアルキル基が有する置換基の数及び種類は、Lで表されるアルキル基が有する置換基の数及び種類と同一である。 In the formula: L 3 -C(=CH-K)-OL 5 , K represents a hydrogen atom or an optionally substituted alkyl group. -L 4 in the formula -C(-L 3 )(-L 4 )-OL 5 results from =CH-K in the formula L 3 -C(=CH-K)-OL 5 . That is, -L 4 corresponds to -CH 2 -K. When K represents a hydrogen atom or an alkyl group, L4 represents an alkyl group. When K represents a substituted alkyl group, L4 represents a substituted alkyl group. The number of carbon atoms in the alkyl group represented by K is one less than the number of carbon atoms in the alkyl group represented by L4 . The number and types of substituents possessed by the alkyl group represented by K are the same as the number and types of substituents possessed by the alkyl group represented by L4 .
 式:L-C(=CH-K)-O-Lで表される化合物は、好ましくは、CH-C(=CH)-O-CH(2-メトキシプロペン)である。 The compound represented by the formula: L 3 -C(=CH-K)-OL 5 is preferably CH 3 -C(=CH 2 )-O-CH 3 (2-methoxypropene).
 酸の存在下、チオエステル誘導体(III-2)と、式:L-C(=CH-K)-O-Lで表される化合物とを接触させると、チオエステル誘導体(III-2)に含まれるヒドロキシ基が、式:-C(-L)(-L)-O-Lで表される基で保護され、チオエステル誘導体(I-2d)が得られる。なお、式:-C(-L)(-L)-O-Lで表される基は、チオエステル誘導体(I-2d)においてR’で表される基に相当する。 When the thioester derivative (III-2) is brought into contact with a compound represented by the formula: L 3 -C(=CH-K) -OL5 in the presence of an acid, the thioester derivative (III-2) is converted to The included hydroxy group is protected with a group represented by the formula: -C(-L 3 )(-L 4 )-OL 5 to give the thioester derivative (I-2d). The group represented by the formula: -C(-L 3 )(-L 4 )-OL 5 corresponds to the group represented by R' in the thioester derivative (I-2d).
 チオエステル誘導体(III-2)と、式:L-C(=CH-K)-O-Lで表される化合物との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(III-2)と当該化合物とを溶媒中で混合することにより、チオエステル誘導体(III-2)と当該化合物とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、塩化メチレン、THF、2-メチル-THF、トルエン、DMF、1,4-ジオキサン、アセトニトリル又はこれらの混合溶媒である。 The contact between the thioester derivative (III-2) and the compound represented by the formula: L 3 -C(=CH-K)-OL 5 is preferably carried out in a solvent. The thioester derivative (III-2) and the compound can be contacted by mixing the thioester derivative (III-2) and the compound in a solvent. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(III-2) 1gに対して、例えば1~100mL、好ましくは3~50mLである。 The amount of solvent used is, for example, 1 to 100 mL, preferably 3 to 50 mL, per 1 g of thioester derivative (III-2).
 チオエステル誘導体(III-2)と、式:L-C(=CH-K)-O-Lで表される化合物との接触は、酸の存在下で行われる。 The contact between the thioester derivative (III-2) and the compound represented by the formula: L 3 -C(=CH-K) -OL5 is carried out in the presence of an acid.
 式:L-C(=CH-K)-O-Lで表される化合物の使用量は、チオエステル誘導体(III-2) 1モルに対して、例えば1~5モル、好ましくは1~4モル、より好ましくは1~3モルである。 The amount of the compound represented by the formula: L 3 -C(=CH-K)-OL 5 to be used is, for example, 1 to 5 mol, preferably 1 to 5 mol, per 1 mol of the thioester derivative (III-2). 4 mol, more preferably 1 to 3 mol.
 酸としては、例えば、p-トルエンスルホン酸、メタンスルホン酸、塩酸、硫酸、リン酸、クエン酸、酢酸、パラトルエンスルホン酸ピリジン塩(PPTS)等が挙げられる。酸は、好ましくは、PPTSである。 Examples of acids include p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid, phosphoric acid, citric acid, acetic acid, pyridine paratoluenesulfonic acid (PPTS), and the like. The acid is preferably PPTS.
 酸の使用量は、チオエステル誘導体(III-2) 1モルに対して、例えば0.001~1モル、好ましくは0.005~0.5モル、より好ましくは0.01~0.2モルである。 The amount of acid used is, for example, 0.001 to 1 mol, preferably 0.005 to 0.5 mol, more preferably 0.01 to 0.2 mol, per 1 mol of the thioester derivative (III-2). be.
 チオエステル誘導体(III-2)と、式:L-C(=CH-K)-O-Lで表される化合物とを接触させる際、接触温度(反応温度)は、例えば0~70℃、好ましくは5~60℃、より好ましくは10~40℃であり、接触時間(反応時間)は、例えば0.5~24時間、好ましくは1~12時間、より好ましくは2~8時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the thioester derivative (III-2) is brought into contact with the compound represented by the formula: L 3 -C(=CH-K) -OL5 , the contact temperature (reaction temperature) is, for example, 0 to 70°C. , preferably 5 to 60° C., more preferably 10 to 40° C., and the contact time (reaction time) is, for example, 0.5 to 24 hours, preferably 1 to 12 hours, more preferably 2 to 8 hours. . The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
<第10の方法>
 第10の方法は、R’が、式:-CO-O-C(-L)(-L)(-L)で表される基を表すチオエステル誘導体(I-2)(以下「チオエステル誘導体(I-2e)」という。)を製造する方法である。
<Tenth method>
A tenth method is a thioester derivative (I- 2 ) (hereinafter " thioester derivative (I-2e)”).
 チオエステル誘導体(I-2e)は、塩基の存在下、チオエステル誘導体(III-2)と、式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)[式中、L、L及びLは前記と同義である。]で表される化合物とを接触させて、チオエステル誘導体(I-2e)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-2e) is prepared by combining the thioester derivative (III-2) with the formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO- in the presence of a base. OC(-L 6 )(-L 7 )(-L 8 ) [wherein L 6 , L 7 and L 8 are as defined above. ] to produce the thioester derivative (I-2e).
 n=1であるチオエステル誘導体(I-2e)は、塩基の存在下、n=1であるチオエステル誘導体(III-2)と、式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)で表される化合物とを接触させて、n=1であるチオエステル誘導体(I-2e)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-2e) where n = 1 is prepared by combining the thioester derivative (III-2) where n = 1 with the formula: C(-L 6 )(-L 7 )(-L 8 in the presence of a base. ) —O—CO—O—CO—O—C(-L 6 )(-L 7 )(-L 8 ) to obtain a thioester derivative (I-2e ) can be produced by a method including the step of producing
 n=2であるチオエステル誘導体(I-2e)は、塩基の存在下、n=2であるチオエステル誘導体(III-2)と、式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)で表される化合物とを接触させて、n=2であるチオエステル誘導体(I-2e)を製造する工程を含む方法により製造することができる。 The thioester derivative (I-2e) where n = 2 is prepared by combining the thioester derivative (III-2) where n = 2 with the formula: C(-L 6 )(-L 7 )(-L 8 in the presence of a base. ) —O—CO—O—CO—O—C(-L 6 )(-L 7 )(-L 8 ) to obtain a thioester derivative (I-2e ) can be produced by a method including the step of producing
 チオエステル誘導体(III-2)及び式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)で表される化合物は、市販品であってもよいし、常法に従って製造してもよい。 Thioester derivative (III-2) and formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-OC(-L 6 )(-L 7 )(- The compound represented by L 8 ) may be a commercial product or may be produced according to a conventional method.
 式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)で表される化合物は、好ましくは、C(-CH-O-CO-O-CO-O-C(-CH(ジ-tert-ブチルジカルボネート)である。 A compound represented by the formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-O-C(-L 6 )(-L 7 )(-L 8 ) is preferably C(--CH 3 ) 3 --O--CO--O--CO--O--C(--CH 3 ) 3 (di-tert-butyl dicarbonate).
 塩基の存在下、チオエステル誘導体(III-2)と、式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)で表される化合物とを接触させると、チオエステル誘導体(III-2)に含まれるヒドロキシ基が、式:-CO-O-C(-L)(-L)(-L)で表される基で保護され、チオエステル誘導体(I-2e)が得られる。なお、式:-CO-O-C(-L)(-L)(-L)で表される基は、チオエステル誘導体(I-2e)においてR’で表される基に相当する。 In the presence of a base, a thioester derivative (III-2) of the formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-OC(-L 6 )( When the compound represented by -L 7 )(-L 8 ) is brought into contact, the hydroxy group contained in the thioester derivative (III- 2 ) is transformed into the 7 ) Protected with a group represented by (-L 8 ) to obtain a thioester derivative (I-2e). The group represented by the formula: -CO-O-C(-L 6 )(-L 7 )(-L 8 ) corresponds to the group represented by R' in the thioester derivative (I-2e). .
 チオエステル誘導体(III-2)と、式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)で表される化合物との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(III-2)と当該化合物とを溶媒中で混合することにより、チオエステル誘導体(III-2)と当該化合物とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、塩化メチレン、THF、2-メチル-THF、トルエン、DMF、1,4-ジオキサン、アセトニトリル又はこれらの混合溶媒である。 Thioester derivative (III-2) and formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-OC(-L 6 )(-L 7 )( -L 8 ) is preferably carried out in a solvent. The thioester derivative (III-2) and the compound can be contacted by mixing the thioester derivative (III-2) and the compound in a solvent. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(III-2) 1gに対して、例えば1~100mL、好ましくは2~50mLである。 The amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, per 1 g of thioester derivative (III-2).
 チオエステル誘導体(III-2)と、式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)で表される化合物との接触は、塩基の存在下で行われる。 Thioester derivative (III-2) and formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-OC(-L 6 )(-L 7 )( -L 8 ) is carried out in the presence of a base.
 式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)で表される化合物の使用量は、チオエステル誘導体(III-2) 1モルに対して、例えば1~10モル、好ましくは1~5モル、より好ましくは1~3モルである。 A compound represented by the formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-O-C(-L 6 )(-L 7 )(-L 8 ) is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the thioester derivative (III-2).
 塩基は、炭酸カリウム(KCO)、4-ジメチルアミノピリジン(DMAP)及びトリエチルアミン(TEA)から選択することが好ましい。 The base is preferably selected from potassium carbonate (K 2 CO 3 ), 4-dimethylaminopyridine (DMAP) and triethylamine (TEA).
 塩基の使用量は、チオエステル誘導体(III-2) 1モルに対して、例えば1~10モル、好ましくは1~5モル、より好ましくは1~3モルである。 The amount of the base used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1 to 3 mol, per 1 mol of the thioester derivative (III-2).
 チオエステル誘導体(III-2)と、式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)で表される化合物とを接触させる際、接触温度(反応温度)は、例えば-10~60℃、好ましくは-5~50℃、より好ましくは0~40℃であり、接触時間(反応時間)は、例えば0.5~48時間、好ましくは1~24時間、より好ましくは2~17時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 Thioester derivative (III-2) and formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-OC(-L 6 )(-L 7 )( -L 8 ), the contact temperature (reaction temperature) is, for example, −10 to 60° C., preferably −5 to 50° C., more preferably 0 to 40° C., and the contact time (Reaction time) is, for example, 0.5 to 48 hours, preferably 1 to 24 hours, more preferably 2 to 17 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
 以下、チオエステル誘導体(I-1a)~(I-1e)をまとめてチオエステル誘導体(I-1)といい、チオエステル誘導体(I-2a)~(I-2e)をまとめてチオエステル誘導体(I-2)という。 Hereinafter, thioester derivatives (I-1a) to (I-1e) are collectively referred to as thioester derivatives (I-1), and thioester derivatives (I-2a) to (I-2e) are collectively referred to as thioester derivatives (I-2 ).
 得られたチオエステル誘導体(I-1)又は(I-2)は、以下の方法で単離することができる。 The obtained thioester derivative (I-1) or (I-2) can be isolated by the following method.
 先ず、反応液にクエンチ液(例えば、水、HCl水溶液等)を加えて、反応を停止させる。クエンチ液を加えた反応液を撹拌して、水層と有機層とに分離させる。有機層を抽出した後、水層に有機溶媒を加えて、有機層と水層とに再び分離させる。有機層を抽出し、先に抽出した有機層と合わせて総有機層を得る。総有機層を、洗浄液(例えば、水、HCl水溶液、飽和NaHCO水溶液、食塩水等)で洗浄した後、硫酸ナトリウム等を用いて乾燥させて、チオエステル誘導体(I-1)又は(I-2)の生成物を含む残渣を得る。 First, a quenching liquid (eg, water, HCl aqueous solution, etc.) is added to the reaction solution to stop the reaction. The reaction solution to which the quench solution has been added is stirred to separate into an aqueous layer and an organic layer. After extracting the organic layer, an organic solvent is added to the aqueous layer to separate the organic layer and the aqueous layer again. The organic layer is extracted and combined with the previously extracted organic layer to obtain a total organic layer. The total organic layer is washed with a washing solution (e.g., water, HCl aqueous solution, saturated NaHCO 3 aqueous solution, brine, etc.) and then dried using sodium sulfate or the like to give thioester derivative (I-1) or (I-2). ) to give a residue containing the product of
 水層に加えられる有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは酢酸エチル、DCM、トルエン、ヘキサン又はこれらの混合溶媒であり、より好ましくは酢酸エチル又はDCMである。 Specific examples of the organic solvent added to the aqueous layer are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably ethyl acetate, DCM, toluene, hexane or a mixed solvent thereof, more preferably ethyl acetate or DCM.
 チオエステル誘導体(I-1)又は(I-2)の構造は、例えば、核磁気共鳴(NMR)分光分析により確認することができる。 The structure of the thioester derivative (I-1) or (I-2) can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
 チオエステル誘導体(I-1)を製造する方法は、チオエステル誘導体(III-1)を製造する工程を含んでいてもよい。この場合、チオエステル誘導体(III-1)を製造する工程の後に、チオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させて、チオエステル誘導体(I-1)を製造する工程が行われる。 The method for producing the thioester derivative (I-1) may include the step of producing the thioester derivative (III-1). In this case, after the step of producing the thioester derivative (III-1), the step of contacting the thioester derivative (III-1) with the carboxylic anhydride (1) to produce the thioester derivative (I-1). done.
 チオエステル誘導体(I-2)を製造する方法は、チオエステル誘導体(III-2)を製造する工程を含んでいてもよい。この場合、チオエステル誘導体(III-2)を製造する工程の後に、チオエステル誘導体(III-2)とシリル化剤(2)とを接触させて、チオエステル誘導体(I-2)を製造する工程が行われる。 The method for producing the thioester derivative (I-2) may include the step of producing the thioester derivative (III-2). In this case, the step of producing the thioester derivative (III-2) is followed by the step of contacting the thioester derivative (III-2) with the silylating agent (2) to produce the thioester derivative (I-2). will be
 チオエステル誘導体(III-1)は、トリアルキルアルミニウムの存在下、チオール(3)とアシル保護ラクトン誘導体(IV-1)とを接触させることにより製造することができる。チオエステル誘導体(III-2)は、トリアルキルアルミニウムの存在下、チオール(3)とアシル保護ラクトン誘導体(IV-2)とを接触させることにより製造することができる。トリアルキルアルミニウムは、反応剤の役割を果たす。トリアルキルアルミニウムとしては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリプロプルアルミニウム等が挙げられる。トリアルキルアルミニウムの存在下で行われるチオール(3)とアシル保護ラクトン誘導体(IV-1)又は(IV-2)との反応条件等については、国際公開第2020/129899号、Tiffany Malinky Gierasch,Zhangjie Shi及びGregory L.Verdine,“Extensively Stereodiversified Scaffolds for Use in Diversity-Oriented Library Synthesis” ORGANIC LETTERS,2003,Vol.5,No.5 621-624等を参照することができる。 Thioester derivative (III-1) can be produced by contacting thiol (3) with acyl-protected lactone derivative (IV-1) in the presence of trialkylaluminum. Thioester derivative (III-2) can be produced by contacting thiol (3) with acyl-protected lactone derivative (IV-2) in the presence of trialkylaluminum. A trialkylaluminum acts as a reactant. Trialkylaluminums include, for example, trimethylaluminum, triethylaluminum, and triple aluminum. For the reaction conditions of thiol (3) and acyl-protected lactone derivative (IV-1) or (IV-2) in the presence of trialkylaluminum, see International Publication No. 2020/129899, Tiffany Malinky Gierasch, Zhangjie Shi and Gregory L.; Verdine, "Extensively Stereodiversified Scaffolds for Use in Diversity-Oriented Library Synthesis" ORGANIC LETTERS, 2003, Vol. 5, No. 5 621-624, etc. can be referred to.
 但し、従来から反応剤として用いられているトリメチルアルミニウム等のトリアルキルアルミニウムは、発火性が高いため、その取り扱いには注意を要する。したがって、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)とを接触させて、チオエステル誘導体(III-1)を製造することが好ましい。また、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-2)とを接触させて、チオエステル誘導体(III-2)を製造することが好ましい。グリニャール試薬(4)は、トリメチルアルミニウム等のトリアルキルアルミニウムと比較して発火性が低いため、使用環境に比較的注意を払う必要がない。したがって、グリニャール試薬(4)を用いる場合、トリメチルアルミニウム等のトリアルキルアルミニウムを用いる場合と比較して、効率的にチオエステル誘導体(III-1)又は(III-2)を製造することができ、ひいては、チオエステル誘導体(III-1)又は(III-2)の大量生産を実現することができる。 However, trialkylaluminum such as trimethylaluminum, which has been conventionally used as a reactant, is highly flammable, so care must be taken when handling it. Therefore, it is preferable to produce thioester derivative (III-1) by contacting thiol (3), Grignard reagent (4) and acyl-protected lactone derivative (IV-1). Moreover, it is preferable to produce the thioester derivative (III-2) by contacting the thiol (3), the Grignard reagent (4) and the acyl-protected lactone derivative (IV-2). Since the Grignard reagent (4) is less flammable than trialkylaluminum such as trimethylaluminum, there is relatively no need to pay attention to the usage environment. Therefore, when Grignard reagent (4) is used, thioester derivative (III-1) or (III-2) can be produced more efficiently than when trialkylaluminum such as trimethylaluminum is used. , large-scale production of thioester derivatives (III-1) or (III-2) can be realized.
 n=1であるチオエステル誘導体(III-1)は、チオール(3)とグリニャール試薬(4)とn=1であるアシル保護ラクトン誘導体(IV-1)とを接触させることにより製造することができる。 Thioester derivative (III-1) where n = 1 can be produced by contacting thiol (3) with Grignard reagent (4) and acyl-protected lactone derivative (IV-1) where n = 1. .
 n=2であるチオエステル誘導体(III-1)は、チオール(3)とグリニャール試薬(4)とn=2であるアシル保護ラクトン誘導体(IV-1)とを接触させることにより製造することができる。 Thioester derivative (III-1) where n = 2 can be produced by contacting thiol (3) with Grignard reagent (4) and acyl-protected lactone derivative (IV-1) where n = 2. .
 n=1であるチオエステル誘導体(III-2)は、チオール(3)とグリニャール試薬(4)とn=1であるアシル保護ラクトン誘導体(IV-2)とを接触させることにより製造することができる。 Thioester derivative (III-2) where n = 1 can be produced by contacting thiol (3) with Grignard reagent (4) and acyl-protected lactone derivative (IV-2) where n = 1. .
 n=2であるチオエステル誘導体(III-2)は、チオール(3)とグリニャール試薬(4)とn=2であるアシル保護ラクトン誘導体(IV-2)とを接触させることにより製造することができる。 Thioester derivative (III-2) where n = 2 can be produced by contacting thiol (3) with Grignard reagent (4) and acyl-protected lactone derivative (IV-2) where n = 2. .
 チオール(3)、グリニャール試薬(4)及びアシル保護ラクトン誘導体(IV-1)又(IV-2)は、市販品であってもよいし、常法に従って製造してもよい。 Thiol (3), Grignard reagent (4), and acyl-protected lactone derivative (IV-1) or (IV-2) may be commercially available products or may be produced according to conventional methods.
 チオール(3)としては、例えば、エタンチオール、t-ブチルメルカプタン、チオフェノール、ベンジルメルカプタン、1-デカンチオール、1-ドデカンチオール等が挙げられる。 Thiol (3) includes, for example, ethanethiol, t-butylmercaptan, thiophenol, benzylmercaptan, 1-decanethiol, 1-dodecanethiol and the like.
 チオール(3)の使用量は、1モルのアシル保護ラクトン誘導体(IV-1)又は(IV-2)に対して、例えば0.5~4モル、好ましくは0.7~3モル、より好ましくは0.9~2モルである。チオール(3)の物質量は、アシル保護ラクトン誘導体(IV-1)又は(IV-2)の物質量より多いことが好ましい。 The amount of thiol (3) used is, for example, 0.5 to 4 mol, preferably 0.7 to 3 mol, more preferably 0.7 to 3 mol, per 1 mol of acyl-protected lactone derivative (IV-1) or (IV-2). is 0.9 to 2 mol. The amount of thiol (3) is preferably larger than the amount of acyl-protected lactone derivative (IV-1) or (IV-2).
 グリニャール試薬(4)は、アシル保護ラクトン誘導体(IV-1)又は(IV-2)を開環させた後、チオール(3)と反応させる反応剤として作用する。1種のグリニャール試薬(4)を単独で用いてもよいし、2種以上のグリニャール試薬(4)を組み合わせて用いてもよい。 The Grignard reagent (4) acts as a reactant that reacts with the thiol (3) after ring-opening the acyl-protected lactone derivative (IV-1) or (IV-2). One type of Grignard reagent (4) may be used alone, or two or more types of Grignard reagents (4) may be used in combination.
 チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)又は(IV-2)とを接触させると、好ましくは、チオール(3)とグリニャール試薬(4)との反応によりマグネシウムチオラートが形成された後、マグネシウムチオラートとアシル保護ラクトン誘導体(IV-1)又は(IV-2)との反応によりチオエステル誘導体(III-1)又は(III-2)が形成される。すなわち、チオール(3)とグリニャール試薬(4)とが反応すると、下記式に示すように、炭化水素(WH)とマグネシウムチオラート(XMgSW)とが生成すると考えられる。そして、生成したマグネシウムチオラートとアシル保護ラクトン誘導体(IV-1)又は(IV-2)とが反応すると、チオエステル誘導体(III-1)又は(III-2)が生成すると考えられる。 Contacting the thiol (3) with the Grignard reagent (4) with the acyl-protected lactone derivative (IV-1) or (IV-2) preferably yields magnesium by reaction of the thiol (3) with the Grignard reagent (4). After the thiolate is formed, reaction of magnesium thiolate with acyl-protected lactone derivative (IV-1) or (IV-2) forms thioester derivative (III-1) or (III-2). That is, when the thiol (3) reacts with the Grignard reagent (4), it is considered that hydrocarbon (W 3 H) and magnesium thiolate (XMgSW 1 ) are produced as shown in the following formula. Then, it is considered that the thioester derivative (III-1) or (III-2) is produced when the produced magnesium thiolate reacts with the acyl-protected lactone derivative (IV-1) or (IV-2).
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
 1モルのチオール(3)に対するグリニャール試薬(4)の使用量は、例えば0.1~1モル、好ましくは0.3~1モル、より好ましくは0.5~1モルである。 The amount of Grignard reagent (4) used per 1 mol of thiol (3) is, for example, 0.1 to 1 mol, preferably 0.3 to 1 mol, more preferably 0.5 to 1 mol.
 1モルのアシル保護ラクトン誘導体(IV-1)又は(IV-2)に対するグリニャール試薬(4)の使用量は、例えば0.1~1モル、好ましくは0.3~1モル、より好ましくは0.5~1モルである。なお、「グリニャール試薬(4)の使用量」は、1種のグリニャール試薬(4)が用いられる場合には当該1種のグリニャール試薬(4)の量を意味し、2種以上のグリニャール試薬(4)が用いられる場合には当該2種以上のグリニャール試薬(4)の合計量を意味する。その他の物質の使用量についても同様である。 The amount of Grignard reagent (4) used per 1 mol of acyl-protected lactone derivative (IV-1) or (IV-2) is, for example, 0.1 to 1 mol, preferably 0.3 to 1 mol, more preferably 0. .5 to 1 mol. The "amount of Grignard reagent (4) used" means the amount of the one Grignard reagent (4) when one Grignard reagent (4) is used, and two or more Grignard reagents ( When 4) is used, it means the total amount of the two or more Grignard reagents (4). The same applies to the amounts of other substances used.
 チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)又は(IV-2)とを接触させる際、接触温度(反応温度)は、例えば-30~50℃、好ましくは-20~40℃、より好ましくは-10~30℃であり、接触時間(反応時間)は、例えば0.1~5時間、好ましくは0.2~4時間、より好ましくは0.5~3時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the thiol (3), the Grignard reagent (4) and the acyl-protected lactone derivative (IV-1) or (IV-2) are contacted, the contact temperature (reaction temperature) is, for example, -30 to 50°C, preferably - The temperature is 20 to 40°C, more preferably -10 to 30°C, and the contact time (reaction time) is, for example, 0.1 to 5 hours, preferably 0.2 to 4 hours, more preferably 0.5 to 3 hours. is. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
 チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)又は(IV-2)との接触は、溶媒中で行われることが好ましい。チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)又は(IV-2)とを溶媒中で混合することにより、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)又は(IV-2)とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。溶媒は、好ましくはTHF、ジブチルエーテル、2-メチルテトラヒドロフラン又はこれらの混合溶媒である。 The contact between thiol (3), Grignard reagent (4), and acyl-protected lactone derivative (IV-1) or (IV-2) is preferably carried out in a solvent. Thiol (3), Grignard reagent (4), and acyl-protected lactone derivative (IV-1) or (IV-2) are mixed in a solvent to give thiol (3), Grignard reagent (4), and acyl-protected lactone. Derivatives (IV-1) or (IV-2) can be contacted. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The solvent is preferably THF, dibutyl ether, 2-methyltetrahydrofuran or a mixed solvent thereof.
 溶媒の使用量は、アシル保護ラクトン誘導体(IV-1)又は(IV-2) 1gに対して、例えば0.5~100mL、好ましくは2~50mLである。 The amount of solvent used is, for example, 0.5 to 100 mL, preferably 2 to 50 mL, per 1 g of acyl-protected lactone derivative (IV-1) or (IV-2).
 チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)又は(IV-2)とを溶媒中で接触させる際、チオール(3)、グリニャール試薬(4)、アシル保護ラクトン誘導体(IV-1)又は(V-2)及び溶媒の添加順序は特に限定されない。例えば、アシル保護ラクトン誘導体(IV-1)又は(IV-2)に、チオール(3)及び溶媒を添加した後、グリニャール試薬(4)を添加することができる。グリニャール試薬(4)の添加は、例えば、滴下により行うことができる。 When the thiol (3), the Grignard reagent (4), and the acyl-protected lactone derivative (IV-1) or (IV-2) are contacted in a solvent, the thiol (3), the Grignard reagent (4), the acyl-protected lactone derivative The order of adding (IV-1) or (V-2) and the solvent is not particularly limited. For example, the Grignard reagent (4) can be added after adding the thiol (3) and solvent to the acyl-protected lactone derivative (IV-1) or (IV-2). Addition of the Grignard reagent (4) can be performed, for example, dropwise.
 チオエステル誘導体(III-1)は、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)とを接触させることにより得られた反応混合物から単離した後にカルボン酸無水物(1)との反応に用いてもよいし、該反応混合物から単離することなくカルボン酸無水物(1)との反応に用いてもよい。 Thioester derivative (III-1) is isolated from the reaction mixture obtained by contacting thiol (3), Grignard reagent (4) and acyl-protected lactone derivative (IV-1) followed by carboxylic anhydride ( It may be used in the reaction with 1) or may be used in the reaction with carboxylic anhydride (1) without isolation from the reaction mixture.
 チオエステル誘導体(III-2)は、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-2)とを接触させることにより得られた反応混合物から単離した後にシリル化剤(2)との反応に用いてもよいし、該反応混合物から単離することなくシリル化剤(2)との反応に用いてもよい。 Thioester derivative (III-2) is isolated from the reaction mixture obtained by contacting thiol (3) with Grignard reagent (4) and acyl-protected lactone derivative (IV-2) followed by silylating agent (2 ) or the silylating agent (2) without isolation from the reaction mixture.
 一実施形態において、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)とを接触させることにより得られた反応混合物からチオエステル誘導体(III-1)を単離することなく、該反応混合物にカルボン酸無水物(1)を添加することにより、チオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させてチオエステル誘導体(I-1)を製造する工程を行う。この実施形態において、カルボン酸無水物(1)の使用量は、アシル保護ラクトン誘導体(IV-1) 1モルに対して、例えば0.5~10モル、好ましくは0.8~5.0モル、より好ましくは1.0~3.0モルである。この実施形態では、反応混合物に含まれるグリニャール試薬(4)が塩基として作用するため、反応混合物に塩基又はルイス酸を添加する必要はない。すなわち、この実施形態によれば、グリニャール試薬(4)の下、チオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させて、チオエステル誘導体(I-1)を製造することができる。 In one embodiment, without isolating the thioester derivative (III-1) from the reaction mixture obtained by contacting the thiol (3) with the Grignard reagent (4) and the acyl-protected lactone derivative (IV-1). , a step of adding carboxylic anhydride (1) to the reaction mixture to bring thioester derivative (III-1) into contact with carboxylic anhydride (1) to produce thioester derivative (I-1) conduct. In this embodiment, the amount of carboxylic anhydride (1) used is, for example, 0.5 to 10 mol, preferably 0.8 to 5.0 mol, per 1 mol of acyl-protected lactone derivative (IV-1). , more preferably 1.0 to 3.0 mol. In this embodiment, it is not necessary to add a base or Lewis acid to the reaction mixture as the Grignard reagent (4) contained in the reaction mixture acts as a base. That is, according to this embodiment, the thioester derivative (I-1) can be produced by contacting the thioester derivative (III-1) with the carboxylic acid anhydride (1) in the presence of a Grignard reagent (4). can.
 得られたチオエステル誘導体(III-1)又は(III-2)の単離は、例えば、以下の方法により行うことができる。 The obtained thioester derivative (III-1) or (III-2) can be isolated, for example, by the following method.
 先ず、反応液にクエンチ液(例えば、水、HCl水溶液等)を加えて、反応を停止させる。クエンチ液はブレンステッド酸を含むことが好ましく、クエンチ液がブレンステッド酸を含まない場合、クエンチ液添加後の反応液にブレンステッド酸を加えることが好ましい。これにより、チオエステル誘導体(III-1)又は(III-2)が、環化してアシル保護ラクトン誘導体(IV-1)又は(IV-2)の構造へと変化することを抑制することができる。特に、5員環の環員数を有するアシル保護ラクトン誘導体(IV-1)又は(IV-2)を基質として得られるチオエステル誘導体(III-1)又は(III-2)は、6員環の環員数を有するアシル保護ラクトン誘導体(IV-1)又は(IV-2)を基質として得られるチオエステル誘導体(III-1)又は(III-2)と比較して、基質の構造へと変化し易い。このような問題に対して、反応液のpHを酸性にすることにより、チオエステル誘導体(III-1)又は(III-2)の環化を抑制し、その収率を高めることができる。 First, a quenching liquid (eg, water, HCl aqueous solution, etc.) is added to the reaction solution to stop the reaction. The quenching liquid preferably contains Bronsted acid, and when the quenching liquid does not contain Bronsted acid, it is preferred to add Bronsted acid to the reaction liquid after addition of the quenching liquid. This can prevent the thioester derivative (III-1) or (III-2) from cyclizing into the structure of the acyl-protected lactone derivative (IV-1) or (IV-2). In particular, the thioester derivative (III-1) or (III-2) obtained by using the acyl-protected lactone derivative (IV-1) or (IV-2) having a five-membered ring as a substrate has a six-membered ring Compared with the thioester derivative (III-1) or (III-2) obtained by using the acyl-protected lactone derivative (IV-1) or (IV-2) having a number of members as the substrate, it is easily transformed into the structure of the substrate. With respect to such problems, by making the pH of the reaction solution acidic, the cyclization of the thioester derivative (III-1) or (III-2) can be suppressed and the yield can be increased.
 ブレンステッド酸の量は、1モルのアシル保護ラクトン誘導体(IV-1)又は(IV-2)に対して、例えば1モル以上、好ましくは3モル以上、より好ましくは5モル以上である。ブレンステッド酸の量の上限は特に限定されないが、一例によると、30モル以下である。 The amount of Bronsted acid is, for example, 1 mol or more, preferably 3 mol or more, more preferably 5 mol or more, relative to 1 mol of acyl-protected lactone derivative (IV-1) or (IV-2). Although the upper limit of the amount of Bronsted acid is not particularly limited, according to one example, it is 30 mol or less.
 ブレンステッド酸としては、例えば、ハロゲン化水素、硫酸(HSO)、炭酸、酢酸、シュウ酸、クエン酸、トリフルオロ酢酸(TFA)、メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸、リン酸等が挙げられる。1種のブレンステッド酸を単独で用いてもよいし、2種以上のブレンステッド酸を組み合わせて用いてもよい。ハロゲン化水素としては、例えば、フッ化水素(HF)、塩化水素(HCl)、臭化水素(HBr)ヨウ化水素(HI)等が挙げられる。ブレンステッド酸としては、例えば、塩化水素、臭化水素、硫酸等が挙げられる。ブレンステッド酸を水に溶解させた酸性溶液を用いてもよい。 Bronsted acids include, for example, hydrogen halide, sulfuric acid (H 2 SO 4 ), carbonic acid, acetic acid, oxalic acid, citric acid, trifluoroacetic acid (TFA), methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfone acid, phosphoric acid, and the like. One Bronsted acid may be used alone, or two or more Bronsted acids may be used in combination. Hydrogen halides include, for example, hydrogen fluoride (HF), hydrogen chloride (HCl), hydrogen bromide (HBr), hydrogen iodide (HI), and the like. Bronsted acids include, for example, hydrogen chloride, hydrogen bromide, sulfuric acid and the like. An acidic solution of Bronsted acid dissolved in water may also be used.
 ブレンステッド酸として1M 塩酸を用いる場合、その量は、1gのアシル保護ラクトン誘導体(IV-1)又は(IV-2)に対して、10~30mLであることが好ましい。 When 1M hydrochloric acid is used as the Bronsted acid, the amount is preferably 10-30 mL with respect to 1 g of acyl-protected lactone derivative (IV-1) or (IV-2).
 次に、ブレンステッド酸を加えた反応液を撹拌して、水層と有機層とに分離させる。有機層を抽出した後、水層に有機溶媒を加えて、有機層と水層とに再び分離させる。有機層を抽出し、先に抽出した有機層と合わせて総有機層を得る。総有機層を、洗浄液(例えば、水、HCl水溶液、飽和NaHCO水溶液、食塩水等)で洗浄した後、硫酸ナトリウム等を用いて乾燥させて、チオエステル誘導体(III-1)又は(III-2)の生成物を含む残渣を得る。 Next, the reaction solution to which the Bronsted acid has been added is stirred to separate into an aqueous layer and an organic layer. After extracting the organic layer, an organic solvent is added to the aqueous layer to separate the organic layer and the aqueous layer again. The organic layer is extracted and combined with the previously extracted organic layer to obtain a total organic layer. The total organic layer is washed with a washing solution (e.g., water, HCl aqueous solution, saturated NaHCO 3 aqueous solution, brine, etc.) and then dried using sodium sulfate or the like to give thioester derivative (III-1) or (III-2). ) to give a residue containing the product of
 水層に加えられる有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは酢酸エチル、DCM、トルエン、ヘキサン又はこれらの混合溶媒であり、より好ましくは酢酸エチル又はDCMである。 Specific examples of the organic solvent added to the aqueous layer are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably ethyl acetate, DCM, toluene, hexane or a mixed solvent thereof, more preferably ethyl acetate or DCM.
 チオエステル誘導体(III-1)又は(III-2)の構造は、例えば、核磁気共鳴(NMR)分光分析により確認することができる。 The structure of the thioester derivative (III-1) or (III-2) can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
 チオエステル誘導体(I-1)を製造する方法が、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)とを接触させて、チオエステル誘導体(III-1)を製造する工程を含む場合、チオエステル誘導体(I-1)を製造する方法は、アシル保護ラクトン誘導体(IV-1)を製造する工程を含んでいてもよい。この場合、アシル保護ラクトン誘導体(IV-1)を製造する工程の後に、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)とを接触させて、チオエステル誘導体(III-1)を製造する工程が行われる。 A method for producing a thioester derivative (I-1) comprises contacting a thiol (3), a Grignard reagent (4) and an acyl-protected lactone derivative (IV-1) to produce a thioester derivative (III-1). , the method for producing the thioester derivative (I-1) may comprise the step of producing the acyl-protected lactone derivative (IV-1). In this case, after the step of producing the acyl-protected lactone derivative (IV-1), the thiol (3), the Grignard reagent (4) and the acyl-protected lactone derivative (IV-1) are brought into contact to obtain the thioester derivative (III- 1) is performed.
 チオエステル誘導体(I-2)を製造する方法が、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-2)とを接触させて、チオエステル誘導体(III-2)を製造する工程を含む場合、チオエステル誘導体(I-2)を製造する方法は、アシル保護ラクトン誘導体(IV-2)を製造する工程を含んでいてもよい。この場合、アシル保護ラクトン誘導体(IV-2)を製造する工程の後に、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-2)とを接触させて、チオエステル誘導体(III-2)を製造する工程が行われる。 A method for producing a thioester derivative (I-2) comprises contacting a thiol (3), a Grignard reagent (4) and an acyl-protected lactone derivative (IV-2) to produce a thioester derivative (III-2). , the method for producing the thioester derivative (I-2) may comprise the step of producing the acyl-protected lactone derivative (IV-2). In this case, after the step of producing the acyl-protected lactone derivative (IV-2), the thiol (3), the Grignard reagent (4) and the acyl-protected lactone derivative (IV-2) are contacted to obtain the thioester derivative (III- 2) is performed.
 アシル保護ラクトン誘導体(IV-1)又は(IV-2)は、ブレンステッド酸の存在下、ラクトン誘導体(VII)と、式:R-CO-O-CO-Rで表されるカルボン酸無水物とを接触させることにより製造することができる。アシル保護ラクトン誘導体(IV-1)を製造する場合、式:R-CO-O-CO-RにおけるRは、それぞれ独立して、置換基を有していてもよいアリール基を表し、アシル保護ラクトン誘導体(IV-2)を製造する場合、式:R-CO-O-CO-RにおけるRは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。 The acyl-protected lactone derivative (IV-1) or (IV-2) is prepared by combining the lactone derivative (VII) with a carboxylic acid anhydride represented by the formula: R—CO—O—CO—R in the presence of a Bronsted acid. It can be manufactured by contacting with. When producing the acyl-protected lactone derivative (IV-1), each R in the formula: R-CO-O-CO-R independently represents an aryl group which may have a substituent, and the acyl-protected When the lactone derivative (IV-2) is produced, each R in the formula: R—CO—O—CO—R independently represents an optionally substituted alkyl group.
 ブレンステッド酸の存在下、ラクトン誘導体(VII)と、式:R-CO-O-CO-Rで表されるカルボン酸無水物とを接触させると、ラクトン誘導体(VII)に含まれるヒドロキシ基が、式:-CO-Rで表される基で保護され、アシル保護ラクトン誘導体(IV-1)又は(IV-2)が得られる。 In the presence of Bronsted acid, the lactone derivative (VII) is brought into contact with a carboxylic acid anhydride represented by the formula: R—CO—O—CO—R, whereby the hydroxy group contained in the lactone derivative (VII) is , protected with a group represented by the formula: -CO-R to obtain an acyl-protected lactone derivative (IV-1) or (IV-2).
 n=1であるアシル保護ラクトン誘導体(IV-1)は、ブレンステッド酸の存在下、n=1であるラクトン誘導体(VII)と、式:R-CO-O-CO-R[式中、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]で表されるカルボン酸無水物とを接触させることにより製造することができる。 The acyl-protected lactone derivative (IV-1) where n = 1 is prepared by combining the lactone derivative (VII) where n = 1 with the formula: R—CO—O—CO—R [wherein, Each R independently represents an optionally substituted aryl group. ] can be produced by contacting with a carboxylic acid anhydride represented by
 n=2であるアシル保護ラクトン誘導体(IV-1)は、ブレンステッド酸の存在下、n=2であるラクトン誘導体(VII)と、式:R-CO-O-CO-R[式中、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]で表されるカルボン酸無水物とを接触させることにより製造することができる。 The acyl-protected lactone derivative (IV-1) where n = 2 is prepared by combining the lactone derivative (VII) where n = 2 with the formula: R—CO—O—CO—R [wherein, Each R independently represents an optionally substituted aryl group. ] can be produced by contacting with a carboxylic acid anhydride represented by
 n=1であるアシル保護ラクトン誘導体(IV-2)は、ブレンステッド酸の存在下、n=1であるラクトン誘導体(VII)と、式:R-CO-O-CO-R[式中、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表されるカルボン酸無水物とを接触させることにより製造することができる。 The acyl-protected lactone derivative (IV-2) where n = 1 is prepared by combining the lactone derivative (VII) where n = 1 with the formula: R—CO—O—CO—R [wherein, Each R independently represents an optionally substituted alkyl group. ] can be produced by contacting with a carboxylic acid anhydride represented by
 n=2であるアシル保護ラクトン誘導体(IV-2)は、ブレンステッド酸の存在下、n=2であるラクトン誘導体(VII)と、式:R-CO-O-CO-R[式中、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表されるカルボン酸無水物とを接触させることにより製造することができる。 The acyl-protected lactone derivative (IV-2) where n = 2 is prepared by combining the lactone derivative (VII) where n = 2 with the formula: R—CO—O—CO—R [wherein, Each R independently represents an optionally substituted alkyl group. ] can be produced by contacting with a carboxylic acid anhydride represented by
 カルボン酸無水物の使用量は、ラクトン誘導体(VII) 1モルに対して、例えば1~200モル、好ましくは1~100モル、より好ましくは1~50モルである。 The amount of the carboxylic anhydride to be used is, for example, 1 to 200 mol, preferably 1 to 100 mol, more preferably 1 to 50 mol, per 1 mol of the lactone derivative (VII).
 ラクトン誘導体(VII)とカルボン酸無水物の接触は、無溶媒で行ってもよいが、溶媒中で行われることが好ましい。ラクトン誘導体(VII)とカルボン酸無水物とを溶媒中で混合することにより、ラクトン誘導体(VII)とカルボン酸無水物とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を単独で用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくはDCM、トルエン又はこれらの混合溶媒である。ブレンステッド酸としては、例えば、トリフルオロ酢酸(TFA)、硫酸、メタンスルホン酸等が挙げられ、好ましくはTFA、硫酸等である。 The contact between the lactone derivative (VII) and the carboxylic anhydride may be carried out without a solvent, but is preferably carried out in a solvent. By mixing the lactone derivative (VII) and the carboxylic anhydride in a solvent, the lactone derivative (VII) and the carboxylic anhydride can be contacted. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used alone, or two or more organic solvents may be used in combination. The organic solvent is preferably DCM, toluene or a mixed solvent thereof. Bronsted acids include, for example, trifluoroacetic acid (TFA), sulfuric acid, methanesulfonic acid and the like, preferably TFA and sulfuric acid.
 溶媒の使用量は、ラクトン誘導体(VII) 1gに対して、例えば0~100mL、好ましくは0~50mL、より好ましくは0~10mLである。 The amount of solvent used is, for example, 0 to 100 mL, preferably 0 to 50 mL, more preferably 0 to 10 mL, relative to 1 g of the lactone derivative (VII).
 ブレンステッド酸の使用量は、ラクトン誘導体(VII) 1gに対して、例えば0.1~100mL、好ましくは0.5~50mL、より好ましくは1~30mLである。 The amount of Bronsted acid used is, for example, 0.1 to 100 mL, preferably 0.5 to 50 mL, more preferably 1 to 30 mL, relative to 1 g of lactone derivative (VII).
 ラクトン誘導体(VII)とカルボン酸無水物との接触は、塩基の存在下で行ってもよい。 The contact between the lactone derivative (VII) and the carboxylic anhydride may be carried out in the presence of a base.
 塩基の具体例は、チオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させる際に用いられる塩基の具体例と同様である。 Specific examples of the base are the same as the specific examples of the base used for contacting the thioester derivative (III-1) and the carboxylic anhydride (1).
 塩基の使用量は、ラクトン誘導体(VII) 1モルに対して、例えば0~10モル、好ましくは0.1~5モル、より好ましくは0.5~3モルである。 The amount of the base used is, for example, 0 to 10 mol, preferably 0.1 to 5 mol, more preferably 0.5 to 3 mol, per 1 mol of the lactone derivative (VII).
 ラクトン誘導体(VII)とカルボン酸無水物とを接触させる際、接触温度(反応温度)は、例えば-10~50℃、好ましくは-5~40℃、より好ましくは0~30℃であり、接触時間(反応時間)は、例えば0.1~10時間、好ましくは1~8時間、より好ましくは2~5時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the lactone derivative (VII) and the carboxylic acid anhydride are contacted, the contact temperature (reaction temperature) is, for example, -10 to 50°C, preferably -5 to 40°C, more preferably 0 to 30°C. The time (reaction time) is, for example, 0.1 to 10 hours, preferably 1 to 8 hours, more preferably 2 to 5 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
 アシル保護ラクトン誘導体(IV-1)又は(IV-2)は、ブレンステッド酸の存在下、ラクトン誘導体(VII)とカルボン酸無水物とを接触させることにより得られた反応混合物から単離した後にチオール(3)及びグリニャール試薬(4)との反応に用いてもよいし、該反応混合物から単離することなくチオール(3)及びグリニャール試薬(4)との反応に用いてもよい。例えば、ブレンステッド酸の存在下、ラクトン誘導体(VII)とカルボン酸無水物とを接触させることにより得られた反応混合物にトルエン等の溶媒を加え、揮発性を有するブレスレット酸及びカルボン酸無水物を蒸発させることにより、アシル保護ラクトン誘導体(IV-1)又は(IV-2)を濃縮してもよい。濃縮物は、そのまま(すなわち、濃縮物からアシル保護ラクトン誘導体(IV-1)又は(IV-2)を単離することなく)、チオール(3)及びグリニャール試薬(4)との反応に用いることができる。 After isolating the acyl-protected lactone derivative (IV-1) or (IV-2) from the reaction mixture obtained by contacting the lactone derivative (VII) with a carboxylic acid anhydride in the presence of Bronsted acid, It may be used to react with thiol (3) and Grignard reagent (4), or it may be used to react with thiol (3) and Grignard reagent (4) without isolation from the reaction mixture. For example, a solvent such as toluene is added to the reaction mixture obtained by contacting the lactone derivative (VII) and a carboxylic anhydride in the presence of a Bronsted acid to obtain a volatile bracelet acid and a carboxylic anhydride. Acyl-protected lactone derivatives (IV-1) or (IV-2) may be concentrated by evaporation. The concentrate is used as is (i.e. without isolating the acyl-protected lactone derivative (IV-1) or (IV-2) from the concentrate) for reaction with thiol (3) and Grignard reagent (4). can be done.
 一実施形態において、ブレンステッド酸の存在下、ラクトン誘導体(VII)とカルボン酸無水物とを接触させることにより得られた反応混合物からアシル保護ラクトン誘導体(IV-1)を単離することなく、該反応混合物にチオール(3)及びグリニャール試薬(4)を添加することにより、チオール(3)とグリニャール試薬(4)とアシル保護ラクトン誘導体(IV-1)とを接触させてチオエステル誘導体(III-1)を製造する工程を行う。そして、得られた反応混合物からチオエステル誘導体(III-1)を単離することなく、該反応混合物にカルボン酸無水物(1)を添加することにより、チオエステル誘導体(III-1)とカルボン酸無水物(1)とを接触させてチオエステル誘導体(I-1)を製造する工程を行う。この実施形態において、カルボン酸無水物の合計使用量(アシル保護ラクトン誘導体(IV)の製造に用いられるカルボン酸無水物の使用量と、チオエステル誘導体(I-1)の製造に用いられるカルボン酸無水物(1)の使用量との合計)は、ラクトン誘導体(VII) 1モルに対して、例えば1~200モル、好ましくは1~100モル、より好ましくは1~50モルである。 In one embodiment, without isolating the acyl-protected lactone derivative (IV-1) from the reaction mixture obtained by contacting the lactone derivative (VII) with a carboxylic acid anhydride in the presence of a Bronsted acid, By adding thiol (3) and Grignard reagent (4) to the reaction mixture, thiol (3), Grignard reagent (4) and acyl-protected lactone derivative (IV-1) are brought into contact to form thioester derivative (III-). 1) is performed. Then, without isolating the thioester derivative (III-1) from the resulting reaction mixture, the carboxylic anhydride (1) is added to the reaction mixture to obtain a thioester derivative (III-1) and a carboxylic anhydride. A step of producing a thioester derivative (I-1) by contacting the substance (1) is carried out. In this embodiment, the total amount of carboxylic anhydride used (the amount of carboxylic anhydride used for producing acyl-protected lactone derivative (IV) and the amount of carboxylic anhydride used for producing thioester derivative (I-1) The total amount of compound (1) used is, for example, 1 to 200 mol, preferably 1 to 100 mol, more preferably 1 to 50 mol, per 1 mol of lactone derivative (VII).
≪ケトン誘導体(II)を製造する方法≫
 以下、Rが、それぞれ独立して、置換基を有していてもよいアリール基を表すケトン誘導体(II)をケトン誘導体(II-1)といい、Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表すケトン誘導体(II)をケトン誘導体(II-2)という。
<<Method for Producing Ketone Derivative (II)>>
Hereinafter, the ketone derivative (II) in which R each independently represents an optionally substituted aryl group is referred to as ketone derivative (II-1), and each R independently represents a substituent. A ketone derivative (II) representing an alkyl group which may be present is referred to as a ketone derivative (II-2).
 ケトン誘導体(II)は、チオエステル誘導体(I)と、グリニャール試薬(5a)及びグリニャール試薬(5b)から選択されるグリニャール試薬(5)と、銅塩とを接触させて、ケトン誘導体(II)を製造する工程を含む方法により製造することができる。 The ketone derivative (II) is obtained by contacting the thioester derivative (I), a Grignard reagent (5) selected from Grignard reagents (5a) and Grignard reagents (5b), and a copper salt to obtain the ketone derivative (II). It can be manufactured by a method including a manufacturing step.
 ケトン誘導体(II-1)は、チオエステル誘導体(I-1)と、グリニャール試薬(5a)及びグリニャール試薬(5b)から選択されるグリニャール試薬(5)と、銅塩とを接触させて、ケトン誘導体(II-1)を製造する工程を含む方法により製造することができる。 The ketone derivative (II-1) is obtained by contacting the thioester derivative (I-1), a Grignard reagent (5) selected from Grignard reagents (5a) and Grignard reagents (5b), and a copper salt to obtain a ketone derivative. It can be produced by a method including the step of producing (II-1).
 n=1であるケトン誘導体(II-1)は、n=1であるチオエステル誘導体(I-1)と、グリニャール試薬(5a)及びグリニャール試薬(5b)から選択されるグリニャール試薬(5)と、銅塩とを接触させて、n=1であるケトン誘導体(II-1)を製造する工程を含む方法により製造することができる。 The ketone derivative (II-1) where n = 1 is a thioester derivative (I-1) where n = 1, a Grignard reagent (5) selected from Grignard reagents (5a) and Grignard reagents (5b), It can be produced by a method comprising a step of producing a ketone derivative (II-1) where n=1 by contacting with a copper salt.
 n=2であるケトン誘導体(II-1)は、n=2であるチオエステル誘導体(I-1)と、グリニャール試薬(5a)及びグリニャール試薬(5b)から選択されるグリニャール試薬(5)と、銅塩とを接触させて、n=2であるケトン誘導体(II-1)を製造する工程を含む方法により製造することができる。 The ketone derivative (II-1) where n = 2 is a thioester derivative (I-1) where n = 2, a Grignard reagent (5) selected from Grignard reagents (5a) and Grignard reagents (5b), It can be produced by a method comprising the step of producing ketone derivative (II-1) where n=2 by contacting with a copper salt.
 ケトン誘導体(II-2)は、チオエステル誘導体(I-2)と、グリニャール試薬(5a)及びグリニャール試薬(5b)から選択されるグリニャール試薬(5)と、銅塩とを接触させて、ケトン誘導体(II-2)を製造する工程を含む方法により製造することができる。 The ketone derivative (II-2) is obtained by contacting a thioester derivative (I-2), a Grignard reagent (5) selected from Grignard reagents (5a) and Grignard reagents (5b), and a copper salt to obtain a ketone derivative. It can be produced by a method including the step of producing (II-2).
 n=1であるケトン誘導体(II-2)は、n=1であるチオエステル誘導体(I-2)と、グリニャール試薬(5a)及びグリニャール試薬(5b)から選択されるグリニャール試薬(5)と、銅塩とを接触させて、n=1であるケトン誘導体(II-2)を製造する工程を含む方法により製造することができる。 The ketone derivative (II-2) with n = 1 is a thioester derivative (I-2) with n = 1, a Grignard reagent (5) selected from Grignard reagents (5a) and Grignard reagents (5b), It can be produced by a method comprising the step of producing a ketone derivative (II-2) where n=1 by contacting with a copper salt.
 n=2であるケトン誘導体(II-2)は、n=2であるチオエステル誘導体(I-2)と、グリニャール試薬(5a)及びグリニャール試薬(5b)から選択されるグリニャール試薬(5)と、銅塩とを接触させて、n=2であるケトン誘導体(II-2)を製造する工程を含む方法により製造することができる。 The ketone derivative (II-2) where n = 2 is a thioester derivative (I-2) where n = 2, a Grignard reagent (5) selected from Grignard reagents (5a) and Grignard reagents (5b), It can be produced by a method comprising a step of producing a ketone derivative (II-2) where n=2 by contacting with a copper salt.
 グリニャール試薬(5)として、グリニャール試薬(5a)及びグリニャール試薬(5b)の一方を選択してもよいし、両方を選択してもよい。両方を選択する場合、両者の混合物を反応系に添加してもよいし、両者を別々に反応系に添加してもよい。 As the Grignard reagent (5), either one of the Grignard reagent (5a) and the Grignard reagent (5b) may be selected, or both may be selected. When selecting both, a mixture of both may be added to the reaction system, or both may be added to the reaction system separately.
 グリニャール試薬(5a)は、市販品であってもよいし、常法に従って製造してもよい。 The Grignard reagent (5a) may be a commercial product or may be produced according to a conventional method.
 グリニャール試薬(5)は、反応速度を向上させる観点から、グリニャール試薬(5b)を含むことが好ましい。なお、グリニャール試薬(5b)は、ターボグリニャール試薬と呼ばれる。 From the viewpoint of improving the reaction rate, the Grignard reagent (5) preferably contains the Grignard reagent (5b). The Grignard reagent (5b) is called turbo Grignard reagent.
 グリニャール試薬(5b)は、市販品であってもよいし、常法に従って製造してもよい。グリニャール試薬(5b)は、例えば、不活性化ガス(例えば、窒素、アルゴン等)に置換した反応容器において、リチウム塩の存在下、マグネシウムと、式:WX[式中、W及びXは、上記と同義である。]で表されるハロゲン有機化合物とを、有機溶媒中で反応させることにより製造することができる。 The Grignard reagent (5b) may be a commercial product or may be produced according to a conventional method. The Grignard reagent (5b) is prepared, for example, in a reaction vessel substituted with an inert gas (e.g., nitrogen, argon, etc.), in the presence of a lithium salt, with magnesium in the formula: W 2 X [wherein W 2 and X has the same meaning as above. ] in an organic solvent.
 また、グリニャール試薬(5b)は、Angew Chem.Int.Ed2006,45,2958等に記載の公知の方法に従って、式:TMPMgX・LiY[式中、TMPは、2,2,6,6-テトラメチルピペリジンを表す。]で表されるノッシェル・ハウザー塩基と、式:W-Hで表される化合物とを反応させることにより製造してもよい。 Further, the Grignard reagent (5b) was prepared according to Angew Chem. Int. According to known methods described in Ed. ] with a compound represented by the formula: W 2 —H.
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 銅塩としては、例えば、塩化銅(I)(CuCl)、塩化銅(II)(CuCl)、臭化銅(I)(CuBr)、臭化銅(II)(CuBr)、シアン化銅(I)(CuCN)、3-メチルサリチル酸銅(I)、メシチレン銅(I)(MesCu)、イソプロポキシ銅(I)(iPrOCu)、ヨウ化銅(I)(CuI)、ヨウ化銅(II)(CuI)、酢酸銅(I)(CuOAc)、酢酸銅(II)(Cu(OAc))、硫酸銅(II)(CuSO)、酸化銅(I)(CuO)、酸化銅(II)(CuO)、ピバル酸銅(I)(CuOPiv)、ピバル酸銅(II)(Cu(OPiv))、硫黄(S)を含む銅塩等が挙げられる。1種の銅塩を単独で用いてもよいし、2種以上の銅塩を組み合わせて用いてもよい。 Copper salts include, for example, copper (I) chloride (CuCl), copper (II) chloride (CuCl 2 ), copper (I) bromide (CuBr), copper (II) bromide (CuBr 2 ), copper cyanide (I) (CuCN), copper (I) 3-methylsalicylate, copper mesitylene (I) (MesCu), copper (I) isopropoxy (iPrOCu), copper (I) iodide (CuI), copper (II) iodide ) (CuI 2 ), copper(I) acetate (CuOAc), copper(II) acetate (Cu(OAc) 2 ), copper(II) sulfate (CuSO 4 ), copper(I) oxide (Cu 2 O), oxidation copper (II) (CuO), copper (I) pivalate (CuOPiv), copper (II) pivalate (Cu(OPiv) 2 ), copper salts containing sulfur (S), and the like. One type of copper salt may be used alone, or two or more types of copper salts may be used in combination.
 硫黄(S)を含む銅塩としては、例えば、チオフェン-2-カルボン酸銅(I)(CuTC)等が挙げられる。Sは、Cuとの親和性が高く、銅塩において、SがCuに配位し易い。この配位により、Cuが活性化され、収率が高まる。 Copper salts containing sulfur (S) include, for example, copper (I) thiophene-2-carboxylate (CuTC). S has a high affinity with Cu, and S easily coordinates with Cu in a copper salt. This coordination activates the Cu and increases the yield.
 銅塩に含まれる銅原子の価数は、通常1価又は2価であるが、好ましくは1価である。銅原子の価数が1価である銅塩は、触媒作用が優れている。銅原子の価数が1価である銅塩のうち、CuCN、CuCl、CuI、CuBr、CuOAc及びCuTCは、触媒作用が特に優れている。したがって、銅塩は、CuCN、CuCl、CuI、CuBr、CuOAc及びCuTCから選択される少なくとも1種を含むことが好ましく、CuCN、CuCl、CuOAc及びCuTCから選択される少なくとも1種を含むことがより好ましく、CuCN及びCuClから選択される少なくとも1種を含むことがより一層好ましい。 The valence of the copper atom contained in the copper salt is usually monovalent or divalent, preferably monovalent. A copper salt in which the valence of the copper atom is monovalent has excellent catalytic activity. Among the copper salts in which the valence of the copper atom is monovalent, CuCN, CuCl, CuI, CuBr, CuOAc and CuTC are particularly excellent in catalytic action. Therefore, the copper salt preferably contains at least one selected from CuCN, CuCl, CuI, CuBr, CuOAc and CuTC, more preferably at least one selected from CuCN, CuCl, CuOAc and CuTC. , CuCN and CuCl.
 チオエステル誘導体(I-1)又は(I-2)と、グリニャール試薬(5)と、銅塩とを接触させることにより、ケトン誘導体(II-1)又は(II-2)を高収率で得ることができる。本発明者らは、この理由を、下記式(10)に表されるアニオン性錯体(10)又は下記式(11)に表されるアニオン性錯体(11)が形成されているためと推測している。すなわち、チオエステル誘導体(I-1)又は(I-2)の炭素-硫黄結合の酸化的付加が、中性ではなくアニオン性である錯体(10)又は(11)に対して促進されるためであると考えられる。 A ketone derivative (II-1) or (II-2) is obtained in high yield by contacting a thioester derivative (I-1) or (I-2) with a Grignard reagent (5) and a copper salt. be able to. The present inventors presume that the reason for this is that an anionic complex (10) represented by the following formula (10) or an anionic complex (11) represented by the following formula (11) is formed. ing. That is, the oxidative addition of the carbon-sulfur bond of the thioester derivative (I-1) or (I-2) is promoted relative to the complex (10) or (11), which is anionic rather than neutral. It is believed that there is.
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
 なお、アニオン性錯体(10)は、CuCN以外の銅塩(例えば、CuCl、CuBr、CuI、CuOAc等)を用いた場合に形成され、アニオン性錯体(11)は、銅塩としてCuCNを用いた場合に形成されると考えられる。 The anionic complex (10) is formed when a copper salt other than CuCN (e.g., CuCl, CuBr, CuI, CuOAc, etc.) is used, and the anionic complex (11) is formed using CuCN as the copper salt. It is considered to be formed when
 銅塩がCuCNである場合、CuCNの使用量は、グリニャール試薬(5) 1モルに対して、好ましくは0.2~1.2モル、より好ましくは0.5~1.1モル、より一層好ましくは0.9~1.1モル、より一層好ましくは1モルである。グリニャール試薬(5)に対するCuCNの使用量を上記範囲とすることにより、アニオン性錯体(10)又は(11)の形成が円滑に進行する傾向にある。 When the copper salt is CuCN, the amount of CuCN used is preferably 0.2 to 1.2 mol, more preferably 0.5 to 1.1 mol, more preferably 0.5 to 1.1 mol, per 1 mol of the Grignard reagent (5). Preferably 0.9 to 1.1 mol, more preferably 1 mol. By setting the amount of CuCN used relative to the Grignard reagent (5) within the above range, the formation of the anionic complex (10) or (11) tends to proceed smoothly.
 銅塩がCuClである場合、CuClの使用量は、グリニャール試薬(5) 1モルに対して、好ましくは1.3~1.5モル、より好ましくは0.4~0.95モル、より一層好ましくは0.5~0.9モル、より一層好ましくは0.6~0.8モルである。グリニャール試薬(5)に対するCuClの使用量を上記範囲とすることにより、アニオン性錯体(10)又は(11)の形成が円滑に進行する傾向にある。 When the copper salt is CuCl, the amount of CuCl used is preferably 1.3 to 1.5 mol, more preferably 0.4 to 0.95 mol, more preferably 0.4 to 0.95 mol, per 1 mol of the Grignard reagent (5). It is preferably 0.5 to 0.9 mol, more preferably 0.6 to 0.8 mol. By setting the amount of CuCl used relative to the Grignard reagent (5) within the above range, the formation of the anionic complex (10) or (11) tends to proceed smoothly.
 CuCN及びCuCl以外の銅塩の使用量は、グリニャール試薬(5) 1モルに対して、好ましくは0.1~1モル、より好ましくは0.3~0.9モル、より好ましくは0.4~0.8モルである。グリニャール試薬(5)に対するCuCN及びCuCl以外の銅塩の使用量を上記範囲とすることにより、アニオン性錯体(10)又は(11)の形成が円滑に進行する傾向にある。CuCN及びCuCl以外の銅塩の使用量は、グリニャール試薬(5) 1モルに対して、一例によると、0.5~0.9モルであり、他の例によると、0.6~0.8モルである。なお、「CuCN及びCuCl以外の銅塩の使用量」は、CuCN及びCuCl以外の1種の銅塩が用いられる場合には当該1種の銅塩の量を意味し、CuCN及びCuCl以外の2種以上の銅塩が用いられる場合には当該2種以上の銅塩の合計量を意味する。 The amount of the copper salt other than CuCN and CuCl used is preferably 0.1 to 1 mol, more preferably 0.3 to 0.9 mol, more preferably 0.4, per 1 mol of the Grignard reagent (5). ~0.8 mol. By setting the amount of the copper salt other than CuCN and CuCl to the Grignard reagent (5) within the above range, the formation of the anionic complex (10) or (11) tends to proceed smoothly. The amount of the copper salt other than CuCN and CuCl used is 0.5 to 0.9 mol in one example, and 0.6 to 0.6 mol in another example, per 1 mol of the Grignard reagent (5). 8 mol. In addition, "amount of copper salt other than CuCN and CuCl used" means the amount of the one copper salt when one copper salt other than CuCN and CuCl is used, and two copper salts other than CuCN and CuCl are used. When more than one copper salt is used, it means the total amount of the two or more copper salts.
 グリニャール試薬(5)の使用量は、チオエステル誘導体(I-1)又は(I-2) 1モルに対して、例えば1~10モル、好ましくは1~5モル、より好ましくは1.5~4モルである。グリニャール試薬(5)の使用量は、チオエステル誘導体(I-1)又は(I-2)の使用量に対して過剰量である必要はない。なお、「グリニャール試薬(5)の使用量」は、1種のグリニャール試薬(5)が用いられる場合には当該1種のグリニャール試薬(5)の量を意味し、2種以上のグリニャール試薬(5)が用いられる場合には当該2種以上のグリニャール試薬(5)の合計量を意味する。 The amount of the Grignard reagent (5) used is, for example, 1 to 10 mol, preferably 1 to 5 mol, more preferably 1.5 to 4 mol, per 1 mol of the thioester derivative (I-1) or (I-2). Mole. The amount of Grignard reagent (5) used does not need to be excessive with respect to the amount of thioester derivative (I-1) or (I-2) used. The "amount of Grignard reagent (5) used" means the amount of the one Grignard reagent (5) when one Grignard reagent (5) is used, and two or more Grignard reagents ( When 5) is used, it means the total amount of the two or more Grignard reagents (5).
 グリニャール試薬(5)として、グリニャール試薬(5a)及びグリニャール試薬(5b)の両方を選択する場合、グリニャール試薬(5b)の量は、例えば、グリニャール試薬(5a)及びグリニャール試薬(5b)の合計質量を基準として、10~90質量%である。 When both the Grignard reagent (5a) and the Grignard reagent (5b) are selected as the Grignard reagent (5), the amount of the Grignard reagent (5b) is, for example, the total mass of the Grignard reagent (5a) and the Grignard reagent (5b) 10 to 90% by mass based on.
 チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを溶媒中で混合することにより、チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、THF、トルエン又はこれらの混合溶媒である。 The contact between the thioester derivative (I-1) or (I-2), the Grignard reagent (5) and the copper salt is preferably carried out in a solvent. The thioester derivative (I-1) or (I-2) and the Grignard reagent (5 ) can be contacted with a copper salt. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used, or two or more organic solvents may be used in combination. The organic solvent is preferably THF, toluene or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(I-1)又は(I-2) 1gに対して、例えば1~100mL、好ましくは2~50mLである。 The amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, per 1 g of thioester derivative (I-1) or (I-2).
 チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させる際、接触温度(反応温度)は、例えば-20~150℃、好ましくは-10~100℃、より好ましくは0~70℃、より一層好ましくは0~50℃である。グリニャール試薬(5)を用いることにより、比較的高い温度条件下でもケトン誘導体(II-1)又は(II-2)を製造することができる。したがって、ケトン誘導体(II-1)又は(II-2)の合成条件に-10℃より低い超低温を必要とする方法と比較して、温度管理に関連した設備コストを抑制し、ケトン誘導体(II-1)又は(II-2)のより安価な工業的生産を実現することができる。また、接触温度(反応温度)が上記温度範囲内であると、ケトン誘導体(II-1)又は(II-2)の収率がより高まる傾向にある。 When the thioester derivative (I-1) or (I-2) is brought into contact with the Grignard reagent (5) and the copper salt, the contact temperature (reaction temperature) is, for example, -20 to 150°C, preferably -10 to 100°C. , more preferably 0 to 70°C, even more preferably 0 to 50°C. By using the Grignard reagent (5), the ketone derivative (II-1) or (II-2) can be produced even under relatively high temperature conditions. Therefore, compared with the method that requires an ultra-low temperature lower than -10 ° C. for the synthesis conditions of the ketone derivative (II-1) or (II-2), the equipment cost related to temperature control is suppressed, and the ketone derivative (II-1) -1) or (II-2) can be industrially produced at a lower cost. Also, when the contact temperature (reaction temperature) is within the above temperature range, the yield of the ketone derivative (II-1) or (II-2) tends to increase.
 チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させる際、接触時間(反応時間)は、例えば0.5~72時間、好ましくは1~48時間である。 When the thioester derivative (I-1) or (I-2) is brought into contact with the Grignard reagent (5) and the copper salt, the contact time (reaction time) is, for example, 0.5 to 72 hours, preferably 1 to 48 hours. is.
 チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させる際、グリニャール試薬(5)と銅塩とを接触させて有機銅試薬を形成させた後、チオエステル誘導体(I-1)又は(I-2)を混合し、有機銅試薬とチオエステル誘導体(I-1)又は(I-2)とを接触させることが好ましい。これにより、ケトン誘導体(II-1)又は(II-2)を高収率で得ることができる。 When the thioester derivative (I-1) or (I-2) is brought into contact with the Grignard reagent (5) and the copper salt, the Grignard reagent (5) is brought into contact with the copper salt to form an organocopper reagent, It is preferable to mix the thioester derivative (I-1) or (I-2) and bring the organocopper reagent and the thioester derivative (I-1) or (I-2) into contact. Thereby, the ketone derivative (II-1) or (II-2) can be obtained in high yield.
 グリニャール試薬(5)と銅塩とを接触させる際、接触温度(反応温度)は、例えば-20~150℃、好ましくは-10~100℃、より好ましくは0~50℃であり、接触時間(反応時間)は、例えば0.1~5時間、好ましくは0.2~2時間、より好ましくは0.5~1時間である。 When the Grignard reagent (5) is brought into contact with the copper salt, the contact temperature (reaction temperature) is, for example, −20 to 150° C., preferably −10 to 100° C., more preferably 0 to 50° C., and the contact time ( reaction time) is, for example, 0.1 to 5 hours, preferably 0.2 to 2 hours, more preferably 0.5 to 1 hour.
 有機銅試薬とチオエステル誘導体(I-1)又は(I-2)とを接触させる際、接触温度(反応温度)は、例えば-20~150℃、好ましくは-10~100℃、より好ましくは0~50℃であり、接触時間(反応時間)は、例えば0.1~5時間、好ましくは0.2~2時間、より好ましくは0.5~1時間である。 When the organocopper reagent and the thioester derivative (I-1) or (I-2) are contacted, the contact temperature (reaction temperature) is, for example, -20 to 150°C, preferably -10 to 100°C, more preferably 0. to 50° C., and the contact time (reaction time) is, for example, 0.1 to 5 hours, preferably 0.2 to 2 hours, more preferably 0.5 to 1 hour.
 チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させる際、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)から選択される有機亜鉛化合物(6)を、グリニャール試薬(5)及び銅塩と併用してもよい。有機亜鉛化合物(6)は、チオエステル誘導体(I-1)又は(I-2)に基Wを導入するための試薬として用いることができる。有機亜鉛化合物(6)として、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)の1種を選択してもよいし、2種以上を選択してもよい。2種以上を選択する場合、2種以上の有機亜鉛化合物の混合物を反応系に添加してもよいし、2種以上の有機亜鉛化合物を別々に反応系に添加してもよい。 When contacting the thioester derivative (I-1) or (I-2) with the Grignard reagent (5) and the copper salt, it is selected from an organic zinc compound (6a), an organic zinc compound (6b) and an organic zinc compound (6c) The organozinc compound (6) obtained may be used in combination with a Grignard reagent (5) and a copper salt. Organozinc compounds (6) can be used as reagents to introduce group W2 into thioester derivatives (I-1) or (I-2). As the organic zinc compound (6), one of the organic zinc compound (6a), the organic zinc compound (6b) and the organic zinc compound (6c) may be selected, or two or more thereof may be selected. When two or more are selected, a mixture of two or more organic zinc compounds may be added to the reaction system, or two or more organic zinc compounds may be added separately to the reaction system.
 チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを混合する際、有機亜鉛化合物(6)をできるだけ用いないことが好ましい。有機亜鉛化合物(6)を用いると、ケトン誘導体(II-1)又は(II-2)の収率が低下する傾向にある。有機亜鉛化合物(6)の使用量は、チオエステル誘導体(I-1)又は(I-2)の質量を基準として、好ましくは10質量%以下、より好ましくは5質量%以下、より好ましくは1質量%以下である。下限値は、ゼロである。 When mixing the thioester derivative (I-1) or (I-2), the Grignard reagent (5) and the copper salt, it is preferable to use the organic zinc compound (6) as little as possible. When the organic zinc compound (6) is used, the yield of the ketone derivative (II-1) or (II-2) tends to decrease. The amount of the organic zinc compound (6) used is preferably 10% by mass or less, more preferably 5% by mass or less, more preferably 1% by mass, based on the mass of the thioester derivative (I-1) or (I-2). % or less. The lower bound is zero.
 有機亜鉛化合物(6)は、市販品であってもよいし、常法に従って製造してもよい。 The organic zinc compound (6) may be a commercial product or may be produced according to a conventional method.
 有機亜鉛化合物(6a)及び/又は有機亜鉛化合物(6b)は、例えば、塩化リチウム等のリチウム塩とともに用いてもよい。有機亜鉛化合物(6a)は、リチウム塩と複合体を形成していてもよい。有機亜鉛化合物(6a)とリチウム塩との複合体は、有機亜鉛化合物(6c)に相当する。 The organic zinc compound (6a) and/or the organic zinc compound (6b) may be used, for example, together with a lithium salt such as lithium chloride. The organozinc compound (6a) may form a complex with a lithium salt. The complex of organozinc compound (6a) and lithium salt corresponds to organozinc compound (6c).
 グリニャール試薬(5)に加えて、その他のグリニャール試薬を用いてもよい。この場合、グリニャール試薬(5)の使用量は、グリニャール試薬(5)及びその他のグリニャール試薬の合計質量を基準として、80質量%以上であることが好ましく、100質量%であってもよい。 In addition to the Grignard reagent (5), other Grignard reagents may be used. In this case, the amount of Grignard reagent (5) used is preferably 80% by mass or more, and may be 100% by mass, based on the total mass of Grignard reagent (5) and other Grignard reagents.
 下記式(5’)で表される化合物は、Wが、アリール基の結合手を有する炭素原子(Mgと結合する炭素原子)の両隣に位置する炭素原子は置換基を有さず、残りの炭素原子は置換基を有していてもよいアリール基、又は、ヘテロアリール基の結合手を有する炭素原子(Mgと結合する炭素原子)の両隣に位置する炭素原子若しくはヘテロ原子は置換基を有さず、残りの炭素原子若しくはヘテロ原子は置換基を有していてもよいヘテロアリール基であるグリニャール試薬(5a)又は(5b)の一例である。 In the compound represented by the following formula (5′), W 2 has no substituents on the carbon atoms located on both sides of the carbon atom having an aryl group bond (the carbon atom bonded to Mg), and the remaining The carbon atom is an aryl group that may have a substituent, or the carbon atom or heteroatom located on both sides of the carbon atom having a bond of a heteroaryl group (the carbon atom that binds to Mg) has a substituent It is an example of a Grignard reagent (5a) or (5b) which is a heteroaryl group which does not have and the remaining carbon atoms or heteroatoms may have a substituent.
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
 式(5’)において、MgXと結合する炭素原子の両隣に位置する炭素原子、すなわち、オルト位は、置換基を有さない。MgXと結合する炭素原子に対するメタ位は、R21及びR23を有する。MgXと結合する炭素原子に対するパラ位は、R22を有する。R21、R22及びR23は、それぞれ独立に、水素原子、又は、置換基群α及びβから選択される置換基である。fは、0又は1である。 In formula (5′), the carbon atoms located on both sides of the carbon atom that bonds to MgX, that is, the ortho positions do not have substituents. The meta positions to the carbon atom bound to MgX have R21 and R23 . The para position to the carbon atom bound to MgX has R22 . R 21 , R 22 and R 23 are each independently a hydrogen atom or a substituent selected from substituent groups α and β. f is 0 or 1;
 チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させて、ケトン誘導体(II-1)又は(II-2)を製造する工程において、パラジウム触媒の存在下、チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させてもよい。パラジウム触媒を用いることは、W基間のカップリング反応等により生じる副生成物の量を低減できる点で有利である。 In the step of producing the ketone derivative (II-1) or (II-2) by contacting the thioester derivative (I-1) or (I-2) with a Grignard reagent (5) and a copper salt, The thioester derivative (I-1) or (I-2), the Grignard reagent (5) and the copper salt may be brought into contact in the presence. The use of a palladium catalyst is advantageous in that it can reduce the amount of by-products produced by coupling reactions between W 2 groups and the like.
 パラジウム触媒としては、例えば、パラジウム(II)ジクロリド、パラジウム(II)ジブロミド、パラジウム(II)ジクロリドビストリフェニルホスフィン錯体、パラジウム(0)テトラキストリフェニルホスフィン錯体、酢酸パラジウム(II)、酸化パラジウム(II)、パラジウム(0)、パラジウム(II)ジクロリド、パラジウム(II)ジブロミド、パラジウム(II)ジクロリドビストリフェニルホスフィン錯体、パラジウム(0)テトラキストリフェニルホスフィン錯体、酢酸パラジウム(II)、酸化パラジウム(II)等の0価又は2価のパラジウム触媒が挙げられるが、好ましくはパラジウム(0)テトラキストリフェニルホスフィン錯体又はパラジウム(0)である。 Examples of palladium catalysts include palladium (II) dichloride, palladium (II) dibromide, palladium (II) dichloride bistriphenylphosphine complex, palladium (0) tetrakistriphenylphosphine complex, palladium (II) acetate, and palladium (II) oxide. , palladium (0), palladium (II) dichloride, palladium (II) dibromide, palladium (II) dichloride bistriphenylphosphine complex, palladium (0) tetrakistriphenylphosphine complex, palladium (II) acetate, palladium (II) oxide, etc. and preferably palladium(0) tetrakistriphenylphosphine complex or palladium(0).
 パラジウム触媒は、担体に担持されていてもよい。担体に担持されたパラジウム触媒を用いることは、反応混合物からパラジウム触媒を容易に分離できる点で有利である。 The palladium catalyst may be supported on a carrier. The use of a carrier-supported palladium catalyst is advantageous in that the palladium catalyst can be easily separated from the reaction mixture.
 担体としては、例えば、活性炭、アルミナ、硫酸バリウム、炭酸カルシウム、ヒドロキシアパタイト、ハイドロタルサイト、酸化アルミニウム、二酸化チタン、二酸化ジルコニウム、二酸化珪素、粘土、珪酸塩、ゼオライト、高分子マトリックス等が挙げられる。高分子マトリックスは、例えば、スチレン-ジビニルベンゼン樹脂又はフェノール-ホルムアルデヒド樹脂であってもよく、樹脂にはキレート配位子(ホスフィン、1,10-フェナントロリン又は2,2’-ビピリジン等)が結合していてもよい。樹脂に結合する配位子はパラジウム触媒との錯体を形成し、パラジウム触媒を不動化し、不均一触媒とすることができる。 Examples of carriers include activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite, hydrotalcite, aluminum oxide, titanium dioxide, zirconium dioxide, silicon dioxide, clay, silicates, zeolites, and polymer matrices. The polymeric matrix may be, for example, a styrene-divinylbenzene resin or a phenol-formaldehyde resin, to which chelating ligands (such as phosphine, 1,10-phenanthroline or 2,2'-bipyridine) are attached. may be A ligand that binds to the resin can form a complex with the palladium catalyst, immobilizing the palladium catalyst and making it a heterogeneous catalyst.
 担体は、好ましくは活性炭、アルミナ、硫酸バリウム、炭酸カルシウム、ヒドロキシアパタイト及びハイドロタルサイト、酸化アルミニウム、二酸化チタン、二酸化ジルコニウムであり、より好ましくは活性炭である。特に好ましい態様によれば、パラジウム触媒は、パラジウムブラック又はパラジウム炭素(Pd/C)である。 The carrier is preferably activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite and hydrotalcite, aluminum oxide, titanium dioxide and zirconium dioxide, more preferably activated carbon. According to a particularly preferred embodiment, the palladium catalyst is palladium black or palladium on carbon (Pd/C).
 パラジウム触媒が担体に担持されている場合、パラジウム触媒の量は、パラジウム触媒及び担体の総重量を基準として、例えば1~25重量%、好ましくは3~20重量%、より好ましくは4~15重量%である。 When the palladium catalyst is supported on a carrier, the amount of the palladium catalyst is, for example, 1 to 25 wt%, preferably 3 to 20 wt%, more preferably 4 to 15 wt%, based on the total weight of the palladium catalyst and carrier. %.
 パラジウム触媒の使用量は、グリニャール試薬(5) 1モルに対して、例えば0.001~1モル、好ましくは0.002~0.5モル、より好ましくは0.03~0.1モルである。 The amount of the palladium catalyst used is, for example, 0.001 to 1 mol, preferably 0.002 to 0.5 mol, more preferably 0.03 to 0.1 mol, per 1 mol of the Grignard reagent (5). .
≪C-アリール-ヒドロキシグリコサイド誘導体(V)を製造する方法≫
 C-アリール-ヒドロキシグリコサイド誘導体(V)は、ケトン誘導体(II)と第1の酸及び/又は塩基とを接触させて、ケトン誘導体(II)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V)を製造する工程を含む方法により製造することができる。
<<Method for producing C-aryl-hydroxyglycoside derivative (V)>>
The C-aryl-hydroxyglycoside derivative (V) is obtained by contacting the ketone derivative (II) with a first acid and/or base to eliminate the group represented by R' from the ketone derivative (II). After that, if necessary, it is further brought into contact with a second acid to produce the C-aryl-hydroxyglycoside derivative (V).
 C-アリール-ヒドロキシグリコサイド誘導体(V-1)は、ケトン誘導体(II-1)と第1の酸及び/又は塩基とを接触させて、ケトン誘導体(II-1)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V-1)を製造する工程を含む方法により製造することができる。 C-aryl-hydroxyglycoside derivative (V-1) is converted from ketone derivative (II-1) to R′ by contacting ketone derivative (II-1) with a first acid and/or base. After eliminating the group, if necessary, further contact with a second acid to produce the C-aryl-hydroxyglycoside derivative (V-1).
 n=1であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)は、n=1であるケトン誘導体(II-1)と第1の酸及び/又は塩基とを接触させて、n=1であるケトン誘導体(II-1)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、n=1であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)を製造する工程を含む方法により製造することができる。 C-aryl-hydroxyglycoside derivative (V-1) where n = 1 is prepared by contacting ketone derivative (II-1) where n = 1 with a first acid and/or base to obtain n = 1 After eliminating the group represented by R' from the ketone derivative (II-1) which is, optionally further contacted with a second acid, C-aryl-hydroxyglycoside where n = 1 It can be produced by a method including the step of producing derivative (V-1).
 n=2であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)は、n=2であるケトン誘導体(II-1)と第1の酸及び/又は塩基とを接触させて、n=2であるケトン誘導体(II-1)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、n=2であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)を製造する工程を含む方法により製造することができる。 A C-aryl-hydroxyglycoside derivative (V-1) where n = 2 is prepared by contacting a ketone derivative (II-1) where n = 2 with a first acid and/or base to obtain n = 2. After removing the group represented by R′ from the ketone derivative (II-1), optionally further contacting with a second acid to obtain a C-aryl-hydroxyglycoside where n=2 It can be produced by a method including the step of producing derivative (V-1).
 C-アリール-ヒドロキシグリコサイド誘導体(V-2)は、ケトン誘導体(II-2)と第1の酸及び/又は塩基とを接触させて、ケトン誘導体(II-2)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V-2)を製造する工程を含む方法により製造することができる。 C-aryl-hydroxyglycoside derivative (V-2) is converted from ketone derivative (II-2) to R′ by contacting ketone derivative (II-2) with a first acid and/or base. After eliminating the group, contacting with a second acid, if necessary, to produce a C-aryl-hydroxyglycoside derivative (V-2).
 n=1であるC-アリール-ヒドロキシグリコサイド誘導体(V-2)は、n=1であるケトン誘導体(II-2)と第1の酸及び/又は塩基とを接触させて、n=1であるケトン誘導体(II-2)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、n=1であるC-アリール-ヒドロキシグリコサイド誘導体(V-2)を製造する工程を含む方法により製造することができる。 C-aryl-hydroxyglycoside derivative (V-2) where n = 1 is prepared by contacting ketone derivative (II-2) where n = 1 with a first acid and/or base to obtain n = 1 After eliminating the group represented by R' from the ketone derivative (II-2) which is, optionally further contacted with a second acid to obtain a C-aryl-hydroxyglycoside where n = 1 It can be produced by a method including the step of producing derivative (V-2).
 n=2であるC-アリール-ヒドロキシグリコサイド誘導体(V-2)は、n=2であるケトン誘導体(II-2)と第1の酸及び/又は塩基とを接触させて、n=2であるケトン誘導体(II-2)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、n=2であるC-アリール-ヒドロキシグリコサイド誘導体(V-2)を製造する工程を含む方法により製造することができる。 A C-aryl-hydroxyglycoside derivative (V-2) where n = 2 is prepared by contacting a ketone derivative (II-2) where n = 2 with a first acid and/or base to obtain n = 2. After eliminating the group represented by R' from the ketone derivative (II-2) which is, optionally further contacted with a second acid, C-aryl-hydroxyglycoside where n = 2 It can be produced by a method including the step of producing derivative (V-2).
 塩基としては、例えば、フッ化物、アルカリ金属アルコキシド、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等が挙げられる。フッ化物としては、例えば、テトラ-n-ブチルアンモニウムフルオリド(TBAF)、アンモニウムフルオリド、アンモニウムバイフルオリド、フッ化水素酸等が挙げられる。アルカリ金属アルコキシドとしては、例えば、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウム-t-ブトキシド、カリウム-t-ブトキシド等が挙げられる。 Examples of bases include fluorides, alkali metal alkoxides, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, and cesium hydroxide. Examples of fluorides include tetra-n-butylammonium fluoride (TBAF), ammonium fluoride, ammonium bifluoride, hydrofluoric acid and the like. Examples of alkali metal alkoxides include sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium-t-butoxide, potassium-t-butoxide and the like.
 ケトン誘導体(II-1)からR’で表される基を脱離させる際に用いられる塩基は、好ましくはアルカリ金属アルコキシド、より好ましくはナトリウム-t-ブトキシド又はカリウム-t-ブトキシドである。 The base used for removing the group represented by R' from the ketone derivative (II-1) is preferably alkali metal alkoxide, more preferably sodium-t-butoxide or potassium-t-butoxide.
 ケトン誘導体(II-2)からR’で表される基を脱離させる際に用いられる塩基は、好ましくはフッ化物、より好ましくはTBAFである。 The base used for removing the group represented by R' from the ketone derivative (II-2) is preferably fluoride, more preferably TBAF.
 塩基の使用量は、ケトン誘導体(II-1)又は(II-2) 1モルに対して、例えば0.01~50、好ましくは0.1~20モル、より好ましくは0.5~10モルである。 The amount of the base used is, for example, 0.01 to 50, preferably 0.1 to 20 mol, more preferably 0.5 to 10 mol, per 1 mol of the ketone derivative (II-1) or (II-2). is.
 ケトン誘導体(II-1)又は(II-2)と塩基との接触は、溶媒中で行われることが好ましい。ケトン誘導体(II-1)又は(II-2)と塩基とを溶媒中で混合することにより、ケトン誘導体(II-1)又は(II-2)と塩基とを接触させることができる。溶媒は、好ましくは水、有機溶媒又はこれらの混合溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、メタノール、エタノール、イソプロパノール(IPA)、t-ブタノール、THF、DCM、クロロホルム、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)、酢酸エチル又はこれらの混合溶媒である。 The contact between the ketone derivative (II-1) or (II-2) and the base is preferably carried out in a solvent. The ketone derivative (II-1) or (II-2) can be brought into contact with the base by mixing the ketone derivative (II-1) or (II-2) and the base in a solvent. The solvent is preferably water, an organic solvent or a mixed solvent thereof. Specific examples of the organic solvent are as described above. One organic solvent may be used, or two or more organic solvents may be used in combination. Organic solvents are preferably methanol, ethanol, isopropanol (IPA), t-butanol, THF, DCM, chloroform, acetonitrile, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), acetic acid Ethyl or a mixed solvent thereof.
 溶媒の使用量は、ケトン誘導体(II-1)又は(II-2) 1gに対して、例えば0.5~100mL、好ましくは1~80mL、より好ましくは2~50mLである。 The amount of solvent used is, for example, 0.5 to 100 mL, preferably 1 to 80 mL, more preferably 2 to 50 mL, relative to 1 g of ketone derivative (II-1) or (II-2).
 ケトン誘導体(II-1)又は(II-2)と塩基とを接触させる際、接触温度(反応温度)は、例えば-20~100℃、好ましくは-10~70℃、より好ましくは0~50℃であり、接触時間(反応時間)は、例えば0.1~24時間、好ましくは0.2~17時間、より好ましくは0.5~8時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the ketone derivative (II-1) or (II-2) is brought into contact with the base, the contact temperature (reaction temperature) is, for example, −20 to 100° C., preferably −10 to 70° C., more preferably 0 to 50. ° C., and the contact time (reaction time) is, for example, 0.1 to 24 hours, preferably 0.2 to 17 hours, more preferably 0.5 to 8 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
 第1の酸としては、例えば、塩酸、硫酸、硝酸、酢酸、臭化水素等の無機酸、トリフルオロ酢酸、トリクロロ酢酸、ギ酸、フタル酸等の有機酸が挙げられる。 Examples of the first acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid and hydrogen bromide, and organic acids such as trifluoroacetic acid, trichloroacetic acid, formic acid and phthalic acid.
 第1の酸の使用量は、ケトン誘導体(II-1)又は(II-2) 1モルに対して、例えば0.01~100モル、好ましくは0.1~50モル、より好ましくは0.5~10モルである。 The amount of the first acid used is, for example, 0.01-100 mol, preferably 0.1-50 mol, more preferably 0.1-50 mol, per 1 mol of the ketone derivative (II-1) or (II-2). 5 to 10 mol.
 ケトン誘導体(II-1)又は(II-2)と第1の酸との接触は、溶媒中で行われることが好ましい。ケトン誘導体(II-1)又は(II-2)と第1の酸とを溶媒中で混合することにより、ケトン誘導体(II-1)又は(II-2)と第1の酸とを接触させることができる。溶媒は、好ましくは水、有機溶媒又はこれらの混合溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール(IPA)、t-ブタノール、テトラヒドロフラン(THF)、塩化メチレン、クロロホルム、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)、酢酸エチル又はこれらの混合溶媒が挙げられる。 The contact between the ketone derivative (II-1) or (II-2) and the first acid is preferably carried out in a solvent. Contacting the ketone derivative (II-1) or (II-2) with the first acid by mixing the ketone derivative (II-1) or (II-2) and the first acid in a solvent be able to. The solvent is preferably water, an organic solvent or a mixed solvent thereof. Specific examples of the organic solvent are as described above. One organic solvent may be used, or two or more organic solvents may be used in combination. Examples of solvents include water, methanol, ethanol, isopropanol (IPA), t-butanol, tetrahydrofuran (THF), methylene chloride, chloroform, acetonitrile, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone. (NMP), ethyl acetate, or a mixed solvent thereof.
 ケトン誘導体(II-1)又は(II-2)と第1の酸と接触させる際、接触温度(反応温度)は、例えば-20~60℃、好ましくは-10~50℃、より好ましくは0~40℃であり、接触時間(反応時間)は、例えば0.5~48時間、好ましくは1~24時間、より好ましくは2~17時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the ketone derivative (II-1) or (II-2) is brought into contact with the first acid, the contact temperature (reaction temperature) is, for example, -20 to 60°C, preferably -10 to 50°C, more preferably 0. to 40° C., and the contact time (reaction time) is, for example, 0.5 to 48 hours, preferably 1 to 24 hours, more preferably 2 to 17 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
 第1の酸と塩基とを併用してもよい。例えば、ケトン誘導体(II-2)からR’で表される基を脱離させる際、第1の酸(例えば、酢酸等の無機酸)と塩基(例えば、TBAF等のフッ化物)とを併用してもよい。 The first acid and base may be used together. For example, when removing the group represented by R' from the ketone derivative (II-2), a first acid (e.g., inorganic acid such as acetic acid) and a base (e.g., fluoride such as TBAF) are used in combination. You may
 ケトン誘導体(II-1)と第1の酸及び/又は塩基と接触させて、ケトン誘導体(II-1)からR’で表される基を脱離させると、脱保護されたケトン誘導体(II-1)が環化され、R100が水素原子であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)、すなわち、C-アリール-ヒドロキシグリコサイド誘導体(V’-1)が製造される。 By contacting the ketone derivative (II-1) with a first acid and/or base to eliminate the group represented by R′ from the ketone derivative (II-1), a deprotected ketone derivative (II -1) is cyclized to produce a C-aryl-hydroxyglycoside derivative (V-1) in which R 100 is a hydrogen atom, ie a C-aryl-hydroxyglycoside derivative (V'-1).
 ケトン誘導体(II-2)と第1の酸及び/又は塩基と接触させて、ケトン誘導体(II-2)からR’で表される基を脱離させると、脱保護されたケトン誘導体(II-2)が環化され、R100が水素原子であるC-アリール-ヒドロキシグリコサイド誘導体(V-2)、すなわち、C-アリール-ヒドロキシグリコサイド誘導体(V’-2)が製造される。 By contacting the ketone derivative (II-2) with a first acid and/or base to remove the group represented by R′ from the ketone derivative (II-2), a deprotected ketone derivative (II -2) is cyclized to produce a C-aryl-hydroxyglycoside derivative (V-2) in which R 100 is a hydrogen atom, ie a C-aryl-hydroxyglycoside derivative (V'-2).
 C-アリール-ヒドロキシグリコサイド誘導体(V’-1)又は(V’-2)と第2の酸とを接触させると、C-アリール-ヒドロキシグリコサイド誘導体(V’-1)又は(V’-2)に含まれるヒドロキシ基が第2の酸と反応して、R100が水素原子以外の基、すなわち、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアルキルカルボニル基、又は、置換基を有していてもよいアリールカルボニル基であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が製造される。 Contacting the C-aryl-hydroxyglycoside derivative (V'-1) or (V'-2) with a second acid results in the C-aryl-hydroxyglycoside derivative (V'-1) or (V' The hydroxy group contained in -2) reacts with the second acid, and R 100 is a group other than a hydrogen atom, that is, an optionally substituted alkyl group, which may have a substituent C-aryl-hydroxyglycoside derivative (V-1) or (V-2) which is an aryl group, an optionally substituted alkylcarbonyl group, or an optionally substituted arylcarbonyl group ) is manufactured.
 第2の酸としては、例えば、メチルスルホン酸等のアルキルスルホン酸、p-トルエンスルホン酸、ベンゼンスルホン酸等のアリールスルホン酸等が挙げられる。第2の酸として、カルボン酸無水物を用いてもよい。カルボン酸無水物としては、例えば、式:R-CO-O-CO-R[式中、Rは、それぞれ独立して、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表す。]で表されるカルボン酸無水物等が挙げられる。なお、本明細書において、第2の酸には、カルボン酸無水物も包含されるものとする。 Examples of the second acid include alkylsulfonic acids such as methylsulfonic acid, and arylsulfonic acids such as p-toluenesulfonic acid and benzenesulfonic acid. A carboxylic acid anhydride may be used as the second acid. Carboxylic anhydrides include, for example, the formula: R—CO—O—CO—R [wherein each R is independently an optionally substituted alkyl group or having a substituent represents an aryl group that may be ] and the like represented by carboxylic acid anhydrides. In addition, in this specification, a carboxylic acid anhydride shall also be included in a 2nd acid.
 第2の酸として、式:R100-SOH(式中、R100は、置換基を有してもよいアルキル基を表す)で表されるアルキルスルホン酸を用いる場合、R100が置換基を有してもよいアルキル基であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が得られる。より具体的には、第2の酸として、メチルスルホン酸を用いる場合、R100がメチル基であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が得られる。 As the second acid, when using an alkylsulfonic acid represented by the formula: R 100 —SO 3 H (wherein R 100 represents an optionally substituted alkyl group), R 100 is substituted A C-aryl-hydroxyglycoside derivative (V-1) or (V-2), which is an alkyl group optionally having a group, is obtained. More specifically, when methylsulfonic acid is used as the second acid, a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) in which R 100 is a methyl group is obtained.
 第2の酸として、式:R100-SOH(式中、R100は、置換基を有してもよいアリール基を表す)で表されるアリールスルホン酸を用いる場合、R100が置換基を有してもよいアリール基であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が得られる。より具体的には、第2の酸として、p-トルエンスルホン酸を用いる場合、R100がメチルフェニル基であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が得られる。また、第2の酸として、ベンゼンスルホン酸を用いる場合、R100がフェニル基であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が得られる。 As the second acid, when using an arylsulfonic acid represented by the formula: R 100 —SO 3 H (wherein R 100 represents an aryl group which may have a substituent), R 100 is substituted A C-aryl-hydroxyglycoside derivative (V-1) or (V-2), which is an aryl group optionally having a group, is obtained. More specifically, when p-toluenesulfonic acid is used as the second acid, a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) in which R 100 is a methylphenyl group is obtained. be done. Also, when benzenesulfonic acid is used as the second acid, a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) in which R 100 is a phenyl group is obtained.
 第2の酸として、式:R-CO-O-CO-R[式中、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表されるカルボン酸無水物を用いてもよい。この場合、R100が置換基を有していてもよいアルキルカルボニル基であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が得られる。なお、C-アリール-ヒドロキシグリコサイド誘導体(V’-1)又は(V’-2)に導入される式:-CO-Rで表される基は、R100で表される基に相当する。より具体的には、第2の酸として、Rがメチル基であるカルボン酸無水物を用いる場合、R100がメチルカルボニル基(アセチル基)であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が得られる。 The second acid has the formula: R—CO—O—CO—R [wherein each R independently represents an optionally substituted alkyl group. ] may be used. In this case, a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) in which R 100 is an optionally substituted alkylcarbonyl group is obtained. The group represented by the formula: —CO—R introduced into the C-aryl-hydroxyglycoside derivative (V′-1) or (V′-2) corresponds to the group represented by R 100 . . More specifically, when a carboxylic acid anhydride in which R is a methyl group is used as the second acid, a C-aryl-hydroxyglycoside derivative in which R 100 is a methylcarbonyl group (acetyl group) (V-1 ) or (V-2) is obtained.
 第2の酸として、式:R-CO-O-CO-R[式中、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]で表されるカルボン酸無水物を用いてもよい。この場合、R100が置換基を有していてもよいアリールカルボニル基であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が得られる。なお、C-アリール-ヒドロキシグリコサイド誘導体(V’-1)又は(V’-2)に導入される式:-CO-Rで表される基は、R100で表される基に相当する。より具体的には、第2の酸として、Rがフェニル基であるカルボン酸無水物を用いる場合、R100がフェニルカルボニル基(ベンゾイル基)であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が得られる。 As the second acid, the formula: R—CO—O—CO—R [wherein each R independently represents an aryl group which may have a substituent. ] may be used. In this case, a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) in which R 100 is an optionally substituted arylcarbonyl group is obtained. The group represented by the formula: —CO—R introduced into the C-aryl-hydroxyglycoside derivative (V′-1) or (V′-2) corresponds to the group represented by R 100 . . More specifically, when a carboxylic acid anhydride in which R is a phenyl group is used as the second acid, a C-aryl-hydroxyglycoside derivative (V-1 ) or (V-2) is obtained.
 第2の酸の使用量は、C-アリール-ヒドロキシグリコサイド誘導体(V’-1)又は(V’-2) 1モルに対して、例えば0.01~100モル、好ましくは0.1~50モル、より好ましくは0.5~10モルである。 The amount of the second acid used is, for example, 0.01 to 100 mol, preferably 0.1 to 100 mol, per 1 mol of the C-aryl-hydroxyglycoside derivative (V'-1) or (V'-2). 50 mol, more preferably 0.5 to 10 mol.
 C-アリール-ヒドロキシグリコサイド誘導体(V’-1)又は(V’-2)と第2の酸との接触は、溶媒中で行われることが好ましい。C-アリール-ヒドロキシグリコサイド誘導体(V’-1)又は(V’-2)と第2の酸とを溶媒中で混合することにより、C-アリール-ヒドロキシグリコサイド誘導体(V’-1)又は(V’-2)と第2の酸とを接触させることができる。溶媒は、好ましくは水、有機溶媒又はこれらの混合溶媒である。溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール(IPA)、t-ブタノール、テトラヒドロフラン(THF)、塩化メチレン、クロロホルム、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)、酢酸エチル又はこれらの混合溶媒が挙げられる。 The contact between the C-aryl-hydroxyglycoside derivative (V'-1) or (V'-2) and the second acid is preferably carried out in a solvent. C-aryl-hydroxyglycoside derivative (V'-1) by mixing C-aryl-hydroxyglycoside derivative (V'-1) or (V'-2) with a second acid in a solvent Alternatively, (V'-2) can be contacted with a second acid. The solvent is preferably water, an organic solvent or a mixed solvent thereof. Examples of solvents include water, methanol, ethanol, isopropanol (IPA), t-butanol, tetrahydrofuran (THF), methylene chloride, chloroform, acetonitrile, N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone. (NMP), ethyl acetate, or a mixed solvent thereof.
 C-アリール-ヒドロキシグリコサイド誘導体(V’-1)又は(V’-2)と第2の酸と接触させる際、接触温度(反応温度)は、例えば-20~60℃、好ましくは-10~50℃、より好ましくは0~40℃であり、接触時間(反応時間)は、例えば0.5~48時間、好ましくは1~24時間、より好ましくは2~17時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the C-aryl-hydroxyglycoside derivative (V'-1) or (V'-2) is brought into contact with the second acid, the contact temperature (reaction temperature) is, for example, -20 to 60°C, preferably -10. to 50° C., more preferably 0 to 40° C., and the contact time (reaction time) is, for example, 0.5 to 48 hours, preferably 1 to 24 hours, more preferably 2 to 17 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
 C-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)のうち、n=2(すなわち6員環)であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)が特に有用である。 Among C-aryl-hydroxyglycoside derivatives (V-1) or (V-2), C-aryl-hydroxyglycoside derivatives (V-1) or (V- 2) is particularly useful.
 得られたC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)は、シリカゲルカラムクロマトグラフィーで単離してもよいし、濃縮残渣として未精製のまま次工程に用いてもよい。 The obtained C-aryl-hydroxyglycoside derivative (V-1) or (V-2) may be isolated by silica gel column chromatography, or may be used in the next step as a concentration residue without being purified. .
 C-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)の構造は、例えば、核磁気共鳴(NMR)分光分析により確認することができる。 The structure of the C-aryl-hydroxyglycoside derivative (V-1) or (V-2) can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
 C-アリール-ヒドロキシグリコサイド誘導体(V-1)を製造する方法は、ケトン誘導体(II-1)を製造する工程を含んでいてもよい。この場合、ケトン誘導体(II-1)を製造する工程の後に、ケトン誘導体(II-1)と第1の酸及び/又は塩基とを接触させて、ケトン誘導体(II-1)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V-1)を製造する工程が行われる。 The method for producing the C-aryl-hydroxyglycoside derivative (V-1) may include the step of producing the ketone derivative (II-1). In this case, after the step of producing the ketone derivative (II-1), the ketone derivative (II-1) is brought into contact with a first acid and/or base to obtain R' from the ketone derivative (II-1). After elimination of the represented group, a step of producing the C-aryl-hydroxyglycoside derivative (V-1) is performed, optionally further contacting with a second acid.
 C-アリール-ヒドロキシグリコサイド誘導体(V-2)を製造する方法は、ケトン誘導体(II-2)を製造する工程を含んでいてもよい。この場合、ケトン誘導体(II-2)を製造する工程の後に、ケトン誘導体(II-2)と第1の酸及び/又は塩基とを接触させて、ケトン誘導体(II-2)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V-2)を製造する工程が行われる。 The method for producing the C-aryl-hydroxyglycoside derivative (V-2) may include the step of producing the ketone derivative (II-2). In this case, after the step of producing the ketone derivative (II-2), the ketone derivative (II-2) is brought into contact with a first acid and/or base to convert the ketone derivative (II-2) to R′. After elimination of the represented group, a step of producing the C-aryl-hydroxyglycoside derivative (V-2) is carried out, optionally further contacting with a second acid.
 ケトン誘導体(II-1)又は(II-2)は、チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させて、ケトン誘導体(II-1)又は(II-2)を製造する工程を含む方法により製造することができる。この方法に関する説明は、上記の通りである。 The ketone derivative (II-1) or (II-2) is obtained by contacting the thioester derivative (I-1) or (I-2) with a Grignard reagent (5) and a copper salt to obtain the ketone derivative (II-1). Alternatively, it can be produced by a method including the step of producing (II-2). A description of this method is provided above.
 C-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)を製造する方法が、チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させてケトン誘導体(II-1)又は(II-2)を製造する工程を含む場合、チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させることにより得られた反応混合物からケトン誘導体(II-1)又は(II-2)を単離した後、第1の酸及び/又は塩基と接触させてもよいし、該反応混合物からケトン誘導体(II-1)又は(II-2)を単離することなく、該反応混合物に第1の酸及び/又は塩基を添加し、第1の酸及び/又は塩基と接触させてもよい。後者の場合、チオエステル誘導体(I-1)又は(I-2)とグリニャール試薬(5)と銅塩とを接触させることにより得られた反応混合物からケトン誘導体(II-1)又は(II-2)を単離する必要がないため、効率よくC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V-2)を製造することができる。 A method for producing a C-aryl-hydroxyglycoside derivative (V-1) or (V-2) comprises contacting a thioester derivative (I-1) or (I-2) with a Grignard reagent (5) and a copper salt. contacting the thioester derivative (I-1) or (I-2) with the Grignard reagent (5) and copper salt After isolating the ketone derivative (II-1) or (II-2) from the reaction mixture obtained by, it may be contacted with a first acid and / or base, or the ketone derivative (II A first acid and/or base may be added to the reaction mixture and contacted with the first acid and/or base without isolating -1) or (II-2). In the latter case, the ketone derivative (II-1) or (II-2) is obtained from the reaction mixture obtained by contacting the thioester derivative (I-1) or (I-2) with a Grignard reagent (5) and a copper salt. ), the C-aryl-hydroxyglycoside derivative (V-1) or (V-2) can be produced efficiently.
≪ケトン誘導体(II’)及び/又はC-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する方法≫
 ケトン誘導体(II’)及び/又はC-アリール-ヒドロキシグリコサイド誘導体(V’)は、パラジウム触媒の存在下、チオエステル誘導体(I)と、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)から選択される有機亜鉛化合物(6)とを接触させて、ケトン誘導体(II’)及び/又はC-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する工程を含む方法により製造することができる。
<<Method for producing ketone derivative (II′) and/or C-aryl-hydroxyglycoside derivative (V′)>>
Ketone derivative (II′) and/or C-aryl-hydroxyglycoside derivative (V′) are reacted with thioester derivative (I) in the presence of a palladium catalyst, organozinc compound (6a), organozinc compound (6b) and contacting with an organozinc compound (6) selected from organozinc compounds (6c) to produce a ketone derivative (II') and/or a C-aryl-hydroxyglycoside derivative (V'). can be manufactured by
 ケトン誘導体(II’-1)及び/又はC-アリール-ヒドロキシグリコサイド誘導体(V’-1)は、パラジウム触媒の存在下、チオエステル誘導体(I-1)と、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)から選択される有機亜鉛化合物(6)とを接触させて、ケトン誘導体(II’-1)及び/又はC-アリール-ヒドロキシグリコサイド誘導体(V’-1)を製造する工程を含む方法により製造することができる。 A ketone derivative (II′-1) and/or a C-aryl-hydroxyglycoside derivative (V′-1) is reacted with a thioester derivative (I-1), an organic zinc compound (6a), an organic ketone derivative (II'-1) and/or C-aryl-hydroxyglycoside derivative (V' -1) can be produced by a method including the step of producing.
 n=1であるケトン誘導体(II’-1)及び/又はn=1であるC-アリール-ヒドロキシグリコサイド誘導体(V’-1)は、パラジウム触媒の存在下、n=1であるチオエステル誘導体(I-1)と、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)から選択される有機亜鉛化合物(6)とを接触させて、n=1であるケトン誘導体(II’-1)及び/又はn=1であるC-アリール-ヒドロキシグリコサイド誘導体(V’-1)を製造する工程を含む方法により製造することができる。 A ketone derivative (II'-1) where n = 1 and/or a C-aryl-hydroxyglycoside derivative (V'-1) where n = 1 was converted to a thioester derivative where n = 1 in the presence of a palladium catalyst. (I-1) is brought into contact with an organic zinc compound (6) selected from organic zinc compounds (6a), organic zinc compounds (6b) and organic zinc compounds (6c) to obtain a ketone derivative where n=1. (II'-1) and/or by a method comprising the step of producing C-aryl-hydroxyglycoside derivative (V'-1) where n=1.
 n=2であるケトン誘導体(II’-1)及び/又はn=2であるC-アリール-ヒドロキシグリコサイド誘導体(V’-1)は、パラジウム触媒の存在下、n=2であるチオエステル誘導体(I-1)と、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)から選択される有機亜鉛化合物(6)とを接触させて、n=2であるケトン誘導体(II’-1)及び/又はn=2であるC-アリール-ヒドロキシグリコサイド誘導体(V’-1)を製造する工程を含む方法により製造することができる。 A ketone derivative (II'-1) where n = 2 and/or a C-aryl-hydroxyglycoside derivative (V'-1) where n = 2 was converted to a thioester derivative where n = 2 in the presence of a palladium catalyst. (I-1) is brought into contact with an organic zinc compound (6) selected from organic zinc compounds (6a), organic zinc compounds (6b) and organic zinc compounds (6c) to obtain a ketone derivative where n=2. (II'-1) and/or by a method comprising the step of producing C-aryl-hydroxyglycoside derivative (V'-1) where n=2.
 ケトン誘導体(II’-2)及び/又はC-アリール-ヒドロキシグリコサイド誘導体(V’-2)は、パラジウム触媒の存在下、チオエステル誘導体(I-2)と、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)から選択される有機亜鉛化合物(6)とを接触させて、ケトン誘導体(II’-2)及び/又はC-アリール-ヒドロキシグリコサイド誘導体(V’-2)を製造する工程を含む方法により製造することができる。 A ketone derivative (II′-2) and/or a C-aryl-hydroxyglycoside derivative (V′-2) is reacted with a thioester derivative (I-2), an organic zinc compound (6a), an organic ketone derivative (II'-2) and/or C-aryl-hydroxyglycoside derivative (V' -2) can be produced by a method including the step of producing.
 n=1であるケトン誘導体(II’-2)及び/又はn=1であるC-アリール-ヒドロキシグリコサイド誘導体(V’-2)は、パラジウム触媒の存在下、n=1であるチオエステル誘導体(I-2)と、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)から選択される有機亜鉛化合物(6)とを接触させて、n=1であるケトン誘導体(II’-2)及び/又はn=1であるC-アリール-ヒドロキシグリコサイド誘導体(V’-2)を製造する工程を含む方法により製造することができる。 A ketone derivative (II'-2) where n = 1 and/or a C-aryl-hydroxyglycoside derivative (V'-2) where n = 1 was converted to a thioester derivative where n = 1 in the presence of a palladium catalyst. (I-2) is brought into contact with an organozinc compound (6) selected from an organozinc compound (6a), an organozinc compound (6b) and an organozinc compound (6c) to obtain a ketone derivative where n=1 (II'-2) and/or by a method comprising the step of producing C-aryl-hydroxyglycoside derivative (V'-2) where n=1.
 n=2であるケトン誘導体(II’-2)及び/又はn=2であるC-アリール-ヒドロキシグリコサイド誘導体(V’-2)は、パラジウム触媒の存在下、n=2であるチオエステル誘導体(I-2)と、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)から選択される有機亜鉛化合物(6)とを接触させて、n=2であるケトン誘導体(II’-2)及び/又はn=2であるC-アリール-ヒドロキシグリコサイド誘導体(V’-2)を製造する工程を含む方法により製造することができる。 A ketone derivative (II'-2) where n = 2 and/or a C-aryl-hydroxyglycoside derivative (V'-2) where n = 2 was converted to a thioester derivative where n = 2 in the presence of a palladium catalyst. (I-2) is brought into contact with an organozinc compound (6) selected from an organozinc compound (6a), an organozinc compound (6b) and an organozinc compound (6c) to obtain a ketone derivative where n=2 (II'-2) and/or by a method comprising the step of producing C-aryl-hydroxyglycoside derivative (V'-2) where n=2.
 チオエステル誘導体(I-1)又は(I-2)と有機亜鉛化合物(6)との接触は、溶媒中で行われることが好ましい。チオエステル誘導体(I-1)又は(I-2)と有機亜鉛化合物(6)とを溶媒中で混合することにより、チオエステル誘導体(I-1)又は(I-2)と有機亜鉛化合物(6)とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、THF、2-メチル-THF、トルエン又はこれらの混合溶媒である。 The contact between the thioester derivative (I-1) or (I-2) and the organozinc compound (6) is preferably carried out in a solvent. The thioester derivative (I-1) or (I-2) and the organic zinc compound (6) are obtained by mixing the thioester derivative (I-1) or (I-2) and the organic zinc compound (6) in a solvent. can be brought into contact with The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used, or two or more organic solvents may be used in combination. The organic solvent is preferably THF, 2-methyl-THF, toluene or a mixed solvent thereof.
 溶媒の使用量は、チオエステル誘導体(I-1)又は(I-2) 1gに対して、例えば1~100mL、好ましくは2~50mL、より好ましくは3~30mLである。 The amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, more preferably 3 to 30 mL, relative to 1 g of thioester derivative (I-1) or (I-2).
 チオエステル誘導体(I-1)又は(I-2)と有機亜鉛化合物(6)とを接触させる際、接触温度(反応温度)は、例えば0~100℃、好ましくは5~80℃、より好ましくは10~60℃であり、接触時間(反応時間)は、例えば0.1~24時間、好ましくは0.3~17時間、より好ましくは0.5~8時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the thioester derivative (I-1) or (I-2) and the organozinc compound (6) are brought into contact with each other, the contact temperature (reaction temperature) is, for example, 0 to 100°C, preferably 5 to 80°C, more preferably The temperature is 10 to 60° C., and the contact time (reaction time) is, for example, 0.1 to 24 hours, preferably 0.3 to 17 hours, more preferably 0.5 to 8 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
 有機亜鉛化合物(6)は、チオエステル誘導体(I-1)又は(I-2)に基Wを導入するための試薬として用いることができる。有機亜鉛化合物(6)として、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)の1種を選択してもよいし、2種以上を選択してもよい。2種以上を選択する場合、2種以上の有機亜鉛化合物の混合物を反応系に添加してもよいし、2種以上の有機亜鉛化合物を別々に反応系に添加してもよい。 Organozinc compounds (6) can be used as reagents to introduce group W2 into thioester derivatives (I-1) or (I-2). As the organic zinc compound (6), one of the organic zinc compound (6a), the organic zinc compound (6b) and the organic zinc compound (6c) may be selected, or two or more thereof may be selected. When two or more are selected, a mixture of two or more organic zinc compounds may be added to the reaction system, or two or more organic zinc compounds may be added separately to the reaction system.
 有機亜鉛化合物(6)は、市販品であってもよいし、常法に従って製造してもよい。 The organic zinc compound (6) may be a commercial product or may be produced according to a conventional method.
 有機亜鉛化合物(6a)及び/又は有機亜鉛化合物(6b)は、例えば、塩化リチウム等のリチウム塩とともに用いてもよい。有機亜鉛化合物(6a)は、リチウム塩と複合体を形成していてもよい。有機亜鉛化合物(6a)とリチウム塩との複合体は、有機亜鉛化合物(6c)に相当する。 The organic zinc compound (6a) and/or the organic zinc compound (6b) may be used, for example, together with a lithium salt such as lithium chloride. The organozinc compound (6a) may form a complex with a lithium salt. The complex of organozinc compound (6a) and lithium salt corresponds to organozinc compound (6c).
 有機亜鉛化合物(6)の使用量は、チオエステル誘導体(I-1)又は(I-2) 1モルに対して、例えば1~5モル、好ましくは1.05~4モル、より好ましくは1.1~3モルである。なお、「有機亜鉛化合物(6)の使用量」は、1種の有機亜鉛化合物(6)が用いられる場合には当該1種の有機亜鉛化合物(6)の量を意味し、2種以上の有機亜鉛化合物(6)が用いられる場合には当該2種以上の有機亜鉛化合物(6)の合計量を意味する。 The amount of the organic zinc compound (6) used is, for example, 1 to 5 mol, preferably 1.05 to 4 mol, more preferably 1.05 to 4 mol, per 1 mol of the thioester derivative (I-1) or (I-2). 1 to 3 mol. In addition, "the amount of the organic zinc compound (6) used" means the amount of the one organic zinc compound (6) when one type of organic zinc compound (6) is used, and two or more types of When the organozinc compound (6) is used, it means the total amount of the two or more organozinc compounds (6).
 パラジウム触媒に関する説明は、上記と同様である。パラジウム触媒を用いることは、W基間のカップリング反応等により生じる副生成物の量を低減できる点で有利である。 The explanation regarding the palladium catalyst is the same as above. The use of a palladium catalyst is advantageous in that it can reduce the amount of by-products produced by coupling reactions between W 2 groups and the like.
 パラジウム触媒は、担体に担持されていてもよい。担体に担持されたパラジウム触媒を用いることは、反応混合物からパラジウム触媒を容易に分離できる点で有利である。担体に関する説明は、上記と同様である。 The palladium catalyst may be supported on a carrier. The use of a carrier-supported palladium catalyst is advantageous in that the palladium catalyst can be easily separated from the reaction mixture. The description regarding the carrier is the same as above.
 パラジウム触媒が担体に担持されている場合、パラジウム触媒の量は、パラジウム触媒及び担体の総重量を基準として、例えば1~25重量%、好ましくは3~20重量%、より好ましくは4~15重量%である。 When the palladium catalyst is supported on a carrier, the amount of the palladium catalyst is, for example, 1 to 25 wt%, preferably 3 to 20 wt%, more preferably 4 to 15 wt%, based on the total weight of the palladium catalyst and carrier. %.
 パラジウム触媒の使用量は、チオエステル誘導体(I-1)又は(I-2) 1モルに対して、例えば0.001~1モル、好ましくは0.002~0.5モル、より好ましくは0.03~0.1モルである。 The amount of the palladium catalyst used is, for example, 0.001 to 1 mol, preferably 0.002 to 0.5 mol, more preferably 0.002 to 0.5 mol, per 1 mol of the thioester derivative (I-1) or (I-2). 03 to 0.1 mol.
 得られたケトン誘導体(II’)及び/又はC-アリール-ヒドロキシグリコサイド誘導体(V’)は、シリカゲルカラムクロマトグラフィーで単離してもよいし、濃縮残渣として未精製のまま次工程に用いてもよい。 The resulting ketone derivative (II') and/or C-aryl-hydroxyglycoside derivative (V') may be isolated by silica gel column chromatography, or used as a concentrated residue in the next step without being purified. good too.
 ケトン誘導体(II’)及び/又はC-アリール-ヒドロキシグリコサイド誘導体(V’)の構造は、例えば、核磁気共鳴(NMR)分光分析により確認することができる。 The structure of the ketone derivative (II') and/or the C-aryl-hydroxyglycoside derivative (V') can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
≪C-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する方法≫
 C-アリール-ヒドロキシグリコサイド誘導体(V’)は、ケトン誘導体(II’)と塩基とを接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する工程を含む方法により製造することができる。ケトン誘導体(II’)と酸とを接触させても、ケトン誘導体(II’)の環化は生じず、C-アリール-ヒドロキシグリコサイド誘導体(V’)を得ることはできないが、ケトン誘導体(II’)と塩基とを接触させると、ケトン誘導体(II’)の環化は生じ、C-アリール-ヒドロキシグリコサイド誘導体(V’)を高収率で得ることができる。
<<Method for producing C-aryl-hydroxyglycoside derivative (V′)>>
The C-aryl-hydroxyglycoside derivative (V') is produced by a method comprising the step of contacting the ketone derivative (II') with a base to produce the C-aryl-hydroxyglycoside derivative (V'). be able to. When the ketone derivative (II′) is brought into contact with an acid, cyclization of the ketone derivative (II′) does not occur and the C-aryl-hydroxyglycoside derivative (V′) cannot be obtained, but the ketone derivative ( Upon contacting II') with a base, cyclization of the ketone derivative (II') can occur to give the C-aryl-hydroxyglycoside derivative (V') in high yield.
 C-アリール-ヒドロキシグリコサイド誘導体(V’-1)は、ケトン誘導体(II’-1)と塩基とを接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V’-1)を製造する工程を含む方法により製造することができる。 C-aryl-hydroxyglycoside derivative (V'-1) is prepared by contacting ketone derivative (II'-1) with a base to produce C-aryl-hydroxyglycoside derivative (V'-1). It can be produced by a method comprising
 n=1であるC-アリール-ヒドロキシグリコサイド誘導体(V’-1)は、n=1であるケトン誘導体(II’-1)と塩基とを接触させて、n=1であるC-アリール-ヒドロキシグリコサイド誘導体(V’-1)を製造する工程を含む方法により製造することができる。 C-aryl-hydroxyglycoside derivative (V'-1) where n = 1 is converted to C-aryl where n = 1 by contacting ketone derivative (II'-1) where n = 1 with a base. - hydroxyglycoside derivative (V'-1) can be produced by a method comprising the step of producing.
 n=2であるC-アリール-ヒドロキシグリコサイド誘導体(V’-1)は、n=2であるケトン誘導体(II’-1)と塩基とを接触させて、n=2であるC-アリール-ヒドロキシグリコサイド誘導体(V’-1)を製造する工程を含む方法により製造することができる。 The C-aryl-hydroxyglycoside derivative (V'-1) where n = 2 is converted to the C-aryl where n = 2 by contacting the ketone derivative (II'-1) where n = 2 with a base. - hydroxyglycoside derivative (V'-1) can be produced by a method comprising the step of producing.
 C-アリール-ヒドロキシグリコサイド誘導体(V’-2)は、ケトン誘導体(II’-2)と塩基とを接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V’-2)を製造する工程を含む方法により製造することができる。 C-aryl-hydroxyglycoside derivative (V'-2) is prepared by contacting ketone derivative (II'-2) with a base to produce C-aryl-hydroxyglycoside derivative (V'-2). It can be produced by a method comprising
 n=1であるC-アリール-ヒドロキシグリコサイド誘導体(V’-2)は、n=1であるケトン誘導体(II’-2)と塩基とを接触させて、n=1であるC-アリール-ヒドロキシグリコサイド誘導体(V’-2)を製造する工程を含む方法により製造することができる。 C-aryl-hydroxyglycoside derivative (V'-2) where n = 1 is converted to C-aryl where n = 1 by contacting ketone derivative (II'-2) where n = 1 with a base. - can be produced by a method comprising the step of producing a hydroxyglycoside derivative (V'-2).
 n=2であるC-アリール-ヒドロキシグリコサイド誘導体(V’-2)は、n=2であるケトン誘導体(II’-2)と塩基とを接触させて、n=2であるC-アリール-ヒドロキシグリコサイド誘導体(V’-2)を製造する工程を含む方法により製造することができる。 The C-aryl-hydroxyglycoside derivative (V'-2) where n = 2 is converted to the C-aryl where n = 2 by contacting the ketone derivative (II'-2) where n = 2 with a base. - can be produced by a method comprising the step of producing a hydroxyglycoside derivative (V'-2).
 C-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する方法は、ケトン誘導体(II’)を製造する工程を含んでいてもよい。この場合、ケトン誘導体(II’)を製造する工程の後に、ケトン誘導体(II’)と塩基とを接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する工程が行われる。 The method for producing the C-aryl-hydroxyglycoside derivative (V') may include the step of producing the ketone derivative (II'). In this case, the step of producing the ketone derivative (II') is followed by the step of contacting the ketone derivative (II') with a base to produce the C-aryl-hydroxyglycoside derivative (V').
 ケトン誘導体(II’)は、パラジウム触媒の存在下、チオエステル誘導体(I)と、有機亜鉛化合物(6a)、有機亜鉛化合物(6b)及び有機亜鉛化合物(6c)から選択される有機亜鉛化合物(6)とを接触させて、ケトン誘導体(II’)を製造する工程を含む方法により製造することができる。この方法に関する説明は、上記の通りである。 The ketone derivative (II′) is prepared by reacting the thioester derivative (I) with an organozinc compound (6a), an organozinc compound (6b) and an organozinc compound (6c) in the presence of a palladium catalyst. ) to produce the ketone derivative (II′). A description of this method is provided above.
 塩基としては、例えば、フッ化物、アルカリ金属アルコキシド、水素化アルカリ金属、有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等が挙げられる。フッ化物としては、例えば、テトラ-n-ブチルアンモニウムフルオリド(TBAF)、アンモニウムフルオリド、アンモニウムバイフルオリド、フッ化水素酸等が挙げられる。アルカリ金属アルコキシドとしては、例えば、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウム-t-ブトキシド、カリウム-t-ブトキシド等が挙げられる。水素化アルカリ金属としては、例えば、水素化ナトリウム、水素化カリウム等が挙げられる。有機塩基としては、例えば、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、ルチジン等が挙げられる。塩基は、好ましくは、アルカリ金属アルコキシド、水素化アルカリ金属及び有機塩基から選択することが好ましく、ナトリウム-t-ブトキシド、カリウム-t-ブトキシド、水素化ナトリウム及びトリエチルアミンから選択することがより好ましい。 Examples of bases include fluorides, alkali metal alkoxides, alkali metal hydrides, organic bases, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, and cesium hydroxide. Examples of fluorides include tetra-n-butylammonium fluoride (TBAF), ammonium fluoride, ammonium bifluoride, hydrofluoric acid and the like. Examples of alkali metal alkoxides include sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium-t-butoxide, potassium-t-butoxide and the like. Alkali metal hydrides include, for example, sodium hydride and potassium hydride. Examples of organic bases include triethylamine, diisopropylethylamine, pyridine, lutidine and the like. The base is preferably selected from alkali metal alkoxides, alkali metal hydrides and organic bases, more preferably from sodium-t-butoxide, potassium-t-butoxide, sodium hydride and triethylamine.
 塩基の使用量は、ケトン誘導体(II’-1)又は(II’-2) 1モルに対して、例えば0.1~2、好ましくは0.3~1.5モル、より好ましくは0.5~1.2モルである。 The amount of the base used is, for example, 0.1 to 2, preferably 0.3 to 1.5 mol, more preferably 0.3 to 1.5 mol, per 1 mol of the ketone derivative (II'-1) or (II'-2). 5 to 1.2 mol.
 ケトン誘導体(II’)と塩基との接触は、溶媒中で行われることが好ましい。ケトン誘導体(II’)と塩基とを溶媒中で混合することにより、ケトン誘導体(II’)と塩基とを接触させることができる。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の有機溶媒を用いてもよいし、2種以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、塩化メチレン、THF、2-メチル-THF、トルエン、DMF、1,4-ジオキサン、アセトニトリル、メタノール、IPA又はこれらの混合溶媒である。 The contact between the ketone derivative (II') and the base is preferably carried out in a solvent. The ketone derivative (II') and the base can be contacted by mixing the ketone derivative (II') and the base in a solvent. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One organic solvent may be used, or two or more organic solvents may be used in combination. The organic solvent is preferably methylene chloride, THF, 2-methyl-THF, toluene, DMF, 1,4-dioxane, acetonitrile, methanol, IPA or a mixed solvent thereof.
 溶媒の使用量は、ケトン誘導体(II’) 1gに対して、例えば1~100mL、好ましくは2~50mL、より好ましくは3~30mLである。 The amount of solvent used is, for example, 1 to 100 mL, preferably 2 to 50 mL, more preferably 3 to 30 mL, relative to 1 g of ketone derivative (II').
 ケトン誘導体(II’)と塩基とを接触させる際、接触温度(反応温度)は、例えば-30~40℃、好ましくは-20~30℃、より好ましくは-10~20℃であり、接触時間(反応時間)は、例えば0.1~8時間、好ましくは0.2~4時間、より好ましくは0.3~3時間である。接触環境は、不活性雰囲気下であることが好ましく、アルゴン雰囲気下又は窒素雰囲気下であることがより好ましい。 When the ketone derivative (II′) and the base are contacted, the contact temperature (reaction temperature) is, for example, −30 to 40° C., preferably −20 to 30° C., more preferably −10 to 20° C., and the contact time is (Reaction time) is, for example, 0.1 to 8 hours, preferably 0.2 to 4 hours, and more preferably 0.3 to 3 hours. The contact environment is preferably an inert atmosphere, more preferably an argon atmosphere or a nitrogen atmosphere.
 得られたC-アリール-ヒドロキシグリコサイド誘導体(V’)は、シリカゲルカラムクロマトグラフィーで単離してもよいし、濃縮残渣として未精製のまま次工程に用いてもよい。 The obtained C-aryl-hydroxyglycoside derivative (V') may be isolated by silica gel column chromatography, or may be used as a concentrated residue in the next step without being purified.
 C-アリール-ヒドロキシグリコサイド誘導体(V’)の構造は、例えば、核磁気共鳴(NMR)分光分析により確認することができる。 The structure of the C-aryl-hydroxyglycoside derivative (V') can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
≪C-アリールグリコサイド誘導体(VI)を製造する方法≫
 C-アリールグリコサイド誘導体(VI)は、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’)とシラン化合物とを接触させて、C-アリールグリコサイド誘導体(VI)を製造する工程を含む方法により製造することができる。
<<Method for Producing C-aryl Glycoside Derivative (VI)>>
The C-aryl glycoside derivative (VI) is produced by contacting the C-aryl-hydroxyglycoside derivative (V) or (V') with a silane compound to produce the C-aryl glycoside derivative (VI). It can be manufactured by a method comprising:
 C-アリールグリコサイド誘導体(VI-1)は、C-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V’-1)とシラン化合物とを接触させて、C-アリールグリコサイド誘導体(VI-1)を製造する工程を含む方法により製造することができる。 C-aryl glycoside derivative (VI-1) is prepared by contacting C-aryl-hydroxyglycoside derivative (V-1) or (V'-1) with a silane compound to obtain C-aryl glycoside derivative (VI -1) can be produced by a method including the step of producing.
 n=1であるC-アリールグリコサイド誘導体(VI-1)は、n=1であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V’-1)とシラン化合物とを接触させて、n=1であるC-アリールグリコサイド誘導体(VI-1)を製造する工程を含む方法により製造することができる。 The C-aryl glycoside derivative (VI-1) where n = 1 is prepared by contacting the C-aryl-hydroxyglycoside derivative (V-1) or (V'-1) where n = 1 with a silane compound. can be produced by a method comprising the step of producing a C-aryl glycoside derivative (VI-1) in which n=1.
 n=2であるC-アリールグリコサイド誘導体(VI-1)は、n=2であるC-アリール-ヒドロキシグリコサイド誘導体(V-1)又は(V’-1)とシラン化合物とを接触させて、n=2であるC-アリールグリコサイド誘導体(VI-1)を製造する工程を含む方法により製造することができる。 The C-aryl glycoside derivative (VI-1) where n = 2 is obtained by contacting the C-aryl-hydroxyglycoside derivative (V-1) or (V'-1) where n = 2 with a silane compound. can be produced by a method comprising the step of producing a C-aryl glycoside derivative (VI-1) in which n=2.
 C-アリールグリコサイド誘導体(VI-2)は、C-アリール-ヒドロキシグリコサイド誘導体(V-2)又は(V’-2)とシラン化合物とを接触させて、C-アリールグリコサイド誘導体(VI-2)を製造する工程を含む方法により製造することができる。 The C-aryl glycoside derivative (VI-2) is obtained by contacting the C-aryl-hydroxyglycoside derivative (V-2) or (V'-2) with a silane compound to obtain the C-aryl glycoside derivative (VI -2) can be produced by a method including the step of producing.
 n=1であるC-アリールグリコサイド誘導体(VI-2)は、n=1であるC-アリール-ヒドロキシグリコサイド誘導体(V-2)又は(V’-2)とシラン化合物とを接触させて、n=1であるC-アリールグリコサイド誘導体(VI-2)を製造する工程を含む方法により製造することができる。 The C-aryl glycoside derivative (VI-2) where n = 1 is prepared by contacting the C-aryl-hydroxyglycoside derivative (V-2) or (V'-2) where n = 1 with a silane compound. can be produced by a method comprising the step of producing a C-aryl glycoside derivative (VI-2) in which n=1.
 n=2であるC-アリールグリコサイド誘導体(VI-2)は、n=2であるC-アリール-ヒドロキシグリコサイド誘導体(V-2)又は(V’-2)とシラン化合物とを接触させて、n=2であるC-アリールグリコサイド誘導体(VI-2)を製造する工程を含む方法により製造することができる。 The C-aryl glycoside derivative (VI-2) where n = 2 is prepared by contacting the C-aryl-hydroxyglycoside derivative (V-2) or (V'-2) where n = 2 with a silane compound. can be produced by a method comprising the step of producing a C-aryl glycoside derivative (VI-2) in which n=2.
 C-アリールグリコサイド誘導体(VI)を製造する方法は、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’)を製造する工程を含んでいてもよい。この場合、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’)を製造する工程の後に、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’)とシラン化合物とを接触させて、C-アリールグリコサイド誘導体(VI)を製造する工程が行われる。 The method for producing the C-aryl glycoside derivative (VI) may include the step of producing the C-aryl-hydroxyglycoside derivative (V) or (V'). In this case, after the step of producing the C-aryl-hydroxyglycoside derivative (V) or (V'), the C-aryl-hydroxyglycoside derivative (V) or (V') is brought into contact with the silane compound. , a step of producing a C-aryl glycoside derivative (VI).
 C-アリール-ヒドロキシグリコサイド誘導体(V)は、ケトン誘導体(II)と第1の酸及び/又は塩基とを接触させて、ケトン誘導体(II)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V)を製造する工程を含む方法により製造することができる。この方法に関する説明は、上記の通りである。 The C-aryl-hydroxyglycoside derivative (V) is obtained by contacting the ketone derivative (II) with a first acid and/or base to eliminate the group represented by R' from the ketone derivative (II). After that, if necessary, it is further brought into contact with a second acid to produce the C-aryl-hydroxyglycoside derivative (V). A description of this method is provided above.
 C-アリール-ヒドロキシグリコサイド誘導体(V’)は、パラジウム触媒の存在下、チオエステル誘導体(I)と有機亜鉛化合物(6)とを接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する工程を含む方法により製造することができる。また、C-アリール-ヒドロキシグリコサイド誘導体(V’)は、ケトン誘導体(II’)と塩基とを接触させて、C-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する工程を含む方法により製造することができる。これらの方法に関する説明は、上記の通りである。 C-aryl-hydroxyglycoside derivative (V') is prepared by contacting thioester derivative (I) with organozinc compound (6) in the presence of a palladium catalyst to obtain C-aryl-hydroxyglycoside derivative (V'). can be produced by a method comprising the step of producing Also, the C-aryl-hydroxyglycoside derivative (V') can be prepared by a method comprising the step of contacting the ketone derivative (II') with a base to produce the C-aryl-hydroxyglycoside derivative (V'). can be manufactured. Descriptions of these methods are provided above.
 シラン化合物は、還元剤として作用する。したがって、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’)とシラン化合物と接触させると、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’)の還元反応が進行し、C-アリールグリコサイド誘導体(VI)が得られる。 The silane compound acts as a reducing agent. Therefore, when the C-aryl-hydroxyglycoside derivative (V) or (V') is brought into contact with the silane compound, the reduction reaction of the C-aryl-hydroxyglycoside derivative (V) or (V') proceeds, and C - aryl glycoside derivatives (VI) are obtained.
 シラン化合物としては、例えば、トリエチルシラン、トリイソプロピルシラン、フェニルシラン、ジメチルフェニルシラン、tert-ブチルジメチルシラン、トリイソブチルシラン、トリクロロシラン、トリメトキシヒドロシラン、トリエトキシヒドロシラン、テトラメチルジシロキサン等が挙げられる。反応性や価格の点から、シラン化合物は、好ましくは、トリメトキシヒドロシラン、トリエトキシヒドロシラン、テトラメチルジシロキサン等であり、より好ましくは、テトラメチルジシロキサンである。 Examples of silane compounds include triethylsilane, triisopropylsilane, phenylsilane, dimethylphenylsilane, tert-butyldimethylsilane, triisobutylsilane, trichlorosilane, trimethoxyhydrosilane, triethoxyhydrosilane, tetramethyldisiloxane, and the like. . In terms of reactivity and cost, the silane compound is preferably trimethoxyhydrosilane, triethoxyhydrosilane, tetramethyldisiloxane, etc., and more preferably tetramethyldisiloxane.
 シラン化合物の使用量は、反応を充分進行させる点から、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’) 1モルに対して、好ましくは1~10モル、より好ましくは1~5モル、より好ましくは1~3モルである。 The amount of the silane compound used is preferably 1 to 10 mol, more preferably 1 to 5 mol, per 1 mol of the C-aryl-hydroxyglycoside derivative (V) or (V'), from the viewpoint of sufficiently advancing the reaction. mol, more preferably 1 to 3 mol.
 C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’)とシラン化合物との接触は、ルイス酸の存在下で行うことが好ましい。 The contact between the C-aryl-hydroxyglycoside derivative (V) or (V') and the silane compound is preferably carried out in the presence of a Lewis acid.
 ルイス酸としては、BF・EtO(三フッ化ホウ素ジエチルエーテル錯体)、BF・THF(三フッ化ホウ素テトラヒドロフラン)、AlCl、ZnCl、FeCl、チタン化合物等が挙げられる。これらのうち、チタン化合物が好ましい。チタン化合物を用いることにより、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’)の還元反応を低温で速やかに進行させることができ、目的とするC-アリールグリコサイド誘導体(VI)を高選択的かつ高収率で得ることができる。 Examples of Lewis acids include BF 3 .Et 2 O (boron trifluoride diethyl ether complex), BF 3 .THF (boron trifluoride tetrahydrofuran), AlCl 3 , ZnCl 2 , FeCl 3 and titanium compounds. Among these, titanium compounds are preferred. By using a titanium compound, the reduction reaction of the C-aryl-hydroxyglycoside derivative (V) or (V') can proceed rapidly at a low temperature, and the target C-arylglycoside derivative (VI) can be obtained. It can be obtained with high selectivity and high yield.
 チタン化合物としては、例えば、チタンが0価であるもの、チタンが2価であるもの、3価であるもの、4価であるもの等が知られているが、いずれのチタン化合物であってもよい。チタン化合物としては、トリイソプロポキシ一塩化チタン(IV)、ジイソプロポキシ二塩化チタン(IV)、モノイソプロポキシ三塩化チタン(IV)、塩化チタン(IV)、臭化チタン(IV)、ヨウ化チタン(IV)、酸化チタン(IV)等の4価のチタン塩又はその溶媒和物;塩化チタン(III)、臭化チタン(III)等の3価のチタン塩又はその溶媒和物;塩化チタン(II)等の2価のチタン塩又はその溶媒和物;金属Ti等の0価のチタン又はその溶媒和物が挙げられる。溶媒和物としては、例えば、水、テトラヒドロフラン等の溶媒が配位したものが挙げられる。 As titanium compounds, for example, those in which titanium has a valence of zero, those in which titanium has a valence of 2, those in which titanium has a valence of 3, and those in which titanium has a valence of 4 are known. good. Titanium compounds include triisopropoxy titanium (IV) monochloride, diisopropoxy titanium (IV) dichloride, monoisopropoxy titanium (IV) trichloride, titanium (IV) chloride, titanium (IV) bromide, iodide. tetravalent titanium salts such as titanium (IV) and titanium oxide (IV) or solvates thereof; trivalent titanium salts such as titanium (III) chloride and titanium (III) bromide or solvates thereof; titanium chloride divalent titanium salts such as (II) or solvates thereof; and zerovalent titanium such as metal Ti or solvates thereof. Examples of solvates include those coordinated with solvents such as water and tetrahydrofuran.
 チタン化合物は、式:TiR (OR[式中、Rは、ハロゲン原子であり、Rは、置換又は非置換のアルキル基であり、r及びsは、r+s=3又は4を満たす0~4の整数である。]で表される3価又は4価のチタン塩又はその溶媒和物であることが好ましい。Rは、塩素原子、臭素原子又はヨウ素原子であることが好ましく、Rは、炭素数1~6のアルキル基であることが好ましく、炭素数1~3のアルキル基であることがより好ましい。 Titanium compounds have the formula: TiR cr (OR d ) s [wherein R c is a halogen atom, R d is a substituted or unsubstituted alkyl group, and r and s are r+s=3 or An integer from 0 to 4 that satisfies 4. ] is preferably a trivalent or tetravalent titanium salt or a solvate thereof. R c is preferably a chlorine atom, a bromine atom or an iodine atom, and R d is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms. .
 チタン化合物は、好ましくは、トリイソプロポキシ一塩化チタン(IV)、ジイソプロポキシ二塩化チタン(IV)、モノイソプロポキシ三塩化チタン(IV)、塩化チタン(IV)、塩化チタン(III)等であり、より好ましくは、塩化チタン(IV)である。塩化チタン(IV)は、融点が低く、常温で液体であるため、ハンドリングが容易である点、安価である点等で好ましい。 Titanium compounds are preferably triisopropoxy titanium (IV) monochloride, diisopropoxy titanium (IV) dichloride, monoisopropoxy titanium (IV) trichloride, titanium (IV) chloride, titanium (III) chloride, and the like. and more preferably titanium (IV) chloride. Titanium chloride (IV) has a low melting point and is liquid at room temperature, and is therefore preferable in terms of ease of handling, low cost, and the like.
 ルイス酸の使用量は、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’) 1モルに対して、例えば0.1~3モル、好ましくは0.5~2モル、より好ましくは1~1.5モルある。チタン化合物を用いる場合、チタン化合物の使用量は、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’) 1モルに対して、例えば0.05~10モル、好ましくは0.1~7モル、より好ましくは1~5モルである。 The amount of Lewis acid used is, for example, 0.1 to 3 mol, preferably 0.5 to 2 mol, more preferably 1 mol, per 1 mol of the C-aryl-hydroxyglycoside derivative (V) or (V'). ~1.5 moles. When a titanium compound is used, the amount of the titanium compound used is, for example, 0.05 to 10 mol, preferably 0.1 to 7 mol, per 1 mol of the C-aryl-hydroxyglycoside derivative (V) or (V'). mol, more preferably 1 to 5 mol.
 C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’)とシラン化合物との接触は、溶媒中で行われることが好ましい。溶媒は、好ましくは有機溶媒である。有機溶媒の具体例は、上記の通りである。1種の溶媒を単独で用いてもよいし、2種以上の溶媒を組み合わせて用いてもよい。有機溶媒は、好ましくは、アセトニトリル、DCM又はこれらの混合溶媒である。これらは、非プロトン性極性溶媒であり、シラン還元を受けにくい点で好ましい。 The contact between the C-aryl-hydroxyglycoside derivative (V) or (V') and the silane compound is preferably carried out in a solvent. The solvent is preferably an organic solvent. Specific examples of the organic solvent are as described above. One solvent may be used alone, or two or more solvents may be used in combination. The organic solvent is preferably acetonitrile, DCM or a mixed solvent thereof. These are preferred because they are aprotic polar solvents and are less susceptible to silane reduction.
 溶媒の使用量は、C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’) 1gに対して、例えば1~100mL、好ましくは1~50mL、より好ましくは2~20mLである。 The amount of solvent used is, for example, 1 to 100 mL, preferably 1 to 50 mL, more preferably 2 to 20 mL, per 1 g of C-aryl-hydroxyglycoside derivative (V) or (V').
 C-アリール-ヒドロキシグリコサイド誘導体(V)又は(V’)とシラン化合物とを接触させる際、接触温度(反応温度)は、例えば-100℃~100℃の範囲、より好ましくは-78℃~50℃、より好ましくは-60℃~10℃であり、接触時間(反応時間)は、例えば10分~48時間、好ましくは0.5~24時間、より好ましくは1~17時間である。 When the C-aryl-hydroxyglycoside derivative (V) or (V') is brought into contact with the silane compound, the contact temperature (reaction temperature) is, for example, in the range of -100°C to 100°C, more preferably -78°C to -78°C. The temperature is 50° C., more preferably −60° C. to 10° C., and the contact time (reaction time) is, for example, 10 minutes to 48 hours, preferably 0.5 to 24 hours, more preferably 1 to 17 hours.
 反応雰囲気は、特に限定されないが、水分の混入を抑制するため、不活性ガス雰囲気下又は空気雰囲気下であることが好ましい。 Although the reaction atmosphere is not particularly limited, it is preferably an inert gas atmosphere or an air atmosphere in order to suppress the contamination of moisture.
 反応系内は、大気圧下、加圧下、減圧下のいずれであってよいが、これらのうち、大気圧下で反応を実施することが好ましい。 The inside of the reaction system may be under atmospheric pressure, under pressure, or under reduced pressure, but among these, it is preferable to carry out the reaction under atmospheric pressure.
 還元反応により、C-アリールグリコサイド誘導体(VI-1)又は(VI-2)を得ることができる。還元反応によって得られる生成物は、β-C-アリールグリコシド誘導体(以下「β体」という場合がある。)と、α-C-アリールグリコシド誘導体(以下「α体」という場合がある。)との混合物であり得る。ルイス酸としてチタン化合物を使用する場合、β-C-アリールグリコシド誘導体を高選択的かつ高収率で製造することができるので、生成物におけるβ体の比率が高い。 A C-aryl glycoside derivative (VI-1) or (VI-2) can be obtained by a reduction reaction. The products obtained by the reduction reaction are β-C-arylglycoside derivatives (hereinafter sometimes referred to as “β forms”) and α-C-arylglycoside derivatives (hereinafter sometimes referred to as “α forms”). can be a mixture of When a titanium compound is used as the Lewis acid, the β-C-arylglycoside derivative can be produced with high selectivity and high yield, resulting in a high proportion of the β form in the product.
 得られたC-アリールグリコサイド誘導体(VI-1)又は(VI-2)は、反応系内から取り出すことが好ましい。C-アリールグリコサイド誘導体(VI-1)又は(VI-2)は、例えば、反応液に水を加えた後、酢酸エチル、トルエン、tert-ブチルメチルエーテル、塩化メチレン等の難水溶性有機溶媒と接触させ、C-アリールグリコサイド誘導体(VI-1)又は(VI-2)を該難水溶性有機溶媒で抽出することにより、反応系内から取り出すことができる。 The obtained C-aryl glycoside derivative (VI-1) or (VI-2) is preferably removed from the reaction system. The C-aryl glycoside derivative (VI-1) or (VI-2) can be prepared, for example, by adding water to the reaction solution, followed by addition of slightly water-soluble organic solvents such as ethyl acetate, toluene, tert-butyl methyl ether and methylene chloride. and extracting the C-aryl glycoside derivative (VI-1) or (VI-2) with the sparingly water-soluble organic solvent, so that it can be removed from the reaction system.
 得られたC-アリールグリコサイド誘導体(VI-1)又は(VI-2)は、カラム分離、再結晶等の公知の方法を使用して、より高純度化することもできる。但し、シリカゲルカラム等のカラム精製によって、β体とα体とを分離することは困難である。したがって、β-C-アリールグリコシド誘導体を高選択的かつ高収率で製造することができる本発明の有用性は非常に高い。 The obtained C-aryl glycoside derivative (VI-1) or (VI-2) can be further purified using known methods such as column separation and recrystallization. However, it is difficult to separate the β form and the α form by column purification using a silica gel column or the like. Therefore, the usefulness of the present invention for producing β-C-arylglycoside derivatives with high selectivity and high yield is extremely high.
 得られたC-アリールグリコサイド誘導体(VI-1)又は(VI-2)は、抗糖尿病薬として有用なSGLT2阻害剤又はその合成中間体として、好適に使用することができる。 The resulting C-aryl glycoside derivative (VI-1) or (VI-2) can be suitably used as an SGLT2 inhibitor useful as an antidiabetic agent or a synthetic intermediate thereof.
 C-アリールグリコサイド誘導体(VI-1)又は(VI-2)の構造は、例えば、核磁気共鳴(NMR)分光分析により確認することができる。 The structure of the C-aryl glycoside derivative (VI-1) or (VI-2) can be confirmed, for example, by nuclear magnetic resonance (NMR) spectroscopy.
〔実施例1〕
 下記式で示される反応を行い、化合物1(D-(+)-グルコノ-1,5-ラクトン)から化合物2を製造した。なお、「Ac」はアセチル基を、「iPr」はイソプロピル基を表す(以下同様)。
[Example 1]
Compound 2 was produced from compound 1 (D-(+)-glucono-1,5-lactone) by the reaction represented by the following formula. In addition, "Ac" represents an acetyl group, and "iPr" represents an isopropyl group (same below).
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
 化合物1(1.78g,10.0mmol,1.00当量)に、無水酢酸(AcO)(10.0mL,106mmol,10.6当量)及びトリフルオロ酢酸(TFA)(1.00mL,13.1mmol,1.31当量)を加え、次いで、反応混合物を室温で3時間撹拌した。トルエン(10mL×5)を用いてすべての揮発性物質を留去した後、1-ドデカンチオール(3.00mL,12.6mmol,1.26当量)及びテトラヒドロフラン(THF)(50.0mL)を残渣に加えた。得られた混合物に、iPrMgClのTHF溶液(2M,6.30mL,12.6mmol,1.26当量)を0℃で5分間かけて滴下した。1M HCl水溶液(10mL)を0℃で加えて反応をクエンチした後、酢酸エチル(50mL)を加え、有機層を1M HCl水溶液(50mL)、飽和NaHCO水溶液(50mL)及び食塩水(50mL)で洗浄した。NaSOを用いて有機層を乾燥させ、次いで、溶媒を真空引きすることにより除去した。100mLの酢酸エチル/n-ヘキサン(1/10)を用いた再結晶により残渣を精製することにより、化合物2を白色粉末として収率53%(2.92g)で得た。 To compound 1 (1.78 g, 10.0 mmol, 1.00 eq) was added acetic anhydride ( Ac2O ) (10.0 mL, 106 mmol, 10.6 eq) and trifluoroacetic acid (TFA) (1.00 mL, 13 .1 mmol, 1.31 eq.) was added and the reaction mixture was then stirred at room temperature for 3 hours. After all volatiles were distilled off with toluene (10 mL×5), 1-dodecanethiol (3.00 mL, 12.6 mmol, 1.26 eq) and tetrahydrofuran (THF) (50.0 mL) were left. Added to To the resulting mixture, iPrMgCl in THF (2M, 6.30 mL, 12.6 mmol, 1.26 eq) was added dropwise at 0° C. over 5 minutes. 1M HCl aqueous solution (10 mL) was added at 0° C. to quench the reaction, then ethyl acetate (50 mL) was added and the organic layer was washed with 1M HCl aqueous solution (50 mL), saturated NaHCO 3 aqueous solution (50 mL) and brine (50 mL). washed. The organic layer was dried with Na 2 SO 4 and then the solvent was removed by applying vacuum. The residue was purified by recrystallization with 100 mL of ethyl acetate/n-hexane (1/10) to give compound 2 as a white powder in 53% yield (2.92 g).
 化合物2の分析結果は下記の通りであった。
H NMR(400MHz,CDCl,30℃) δ 5.55(dd,J=7.6,3.9Hz,1H),5.50(dd,J=3.7,2.6Hz,1H),5.16(ddd,J=7.7,4.7,3.1Hz,1H),4.45(dd,J=8.7,2.2,Hz,1H),4.30(dd,J=12.5,3.0Hz,1H),4.16(dd,J=12.5,5.0Hz,1H),3.11(d,J=8.8Hz,1H),2.89(dt,J=7.4,2.7Hz,2H),2.09(s,3H),2.07(s,9H),1.55-1.52(m,2H),1.36-1.25(m,18H),0.88(t,J=6.7Hz,3H)
13C{H} NMR(100MHz,CDCl,30℃) δ 200.7,170.7,170.1,169.4,70.3,69.9,68.6,61.8,32.1,29.8,29.7,29.7,29.6,29.5,29.3,29.2,29.0,28.9,22.8,21.0,20.9,20.8,20.8,20.5,14.2
The analytical results of compound 2 were as follows.
1 H NMR (400 MHz, CDCl 3 , 30° C.) δ 5.55 (dd, J=7.6, 3.9 Hz, 1 H), 5.50 (dd, J=3.7, 2.6 Hz, 1 H) , 5.16 (ddd, J = 7.7, 4.7, 3.1 Hz, 1H), 4.45 (dd, J = 8.7, 2.2, Hz, 1H), 4.30 (dd , J=12.5, 3.0 Hz, 1 H), 4.16 (dd, J=12.5, 5.0 Hz, 1 H), 3.11 (d, J=8.8 Hz, 1 H), 2. 89 (dt, J=7.4, 2.7 Hz, 2H), 2.09 (s, 3H), 2.07 (s, 9H), 1.55-1.52 (m, 2H), 1. 36-1.25 (m, 18H), 0.88 (t, J=6.7Hz, 3H)
13 C{ 1 H} NMR (100 MHz, CDCl 3 , 30° C.) δ 200.7, 170.7, 170.1, 169.4, 70.3, 69.9, 68.6, 61.8, 32 .1, 29.8, 29.7 6 , 29.7, 29.6, 29.5, 29.3, 29.2, 29.0, 28.9 5 , 22.8, 21.0, 20 .9, 20.8, 20.8 0 , 20.5, 14.2
〔実施例2〕
 下記式で示される反応を行い、化合物2から化合物3を製造した。なお、「TBS」は、tert-ブチルジメチルシリル基を表す(以下同様)。
[Example 2]
Compound 3 was produced from compound 2 by performing the reaction represented by the following formula. "TBS" represents a tert-butyldimethylsilyl group (same below).
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
 化合物2(549mg,1.00mmol,1.00当量)のジクロロメタン(DCM)溶液(5mL)に、2,6-ルチジン(0.466mL,4.00mmol,4.00当量)、次いで、tert-ブチルジメチルシリルトリフルオロメタンスルホナート(TBSOTf)(0.460mL,2.00mmol,2.00当量)を0℃で加え、次いで、反応混合物を室温で3時間撹拌した。飽和NaHCO水溶液(1mL)で反応をクエンチした後、DCM(10mL)を加え、有機層を食塩水(5mL)で洗浄した。NaSOを用いて有機層を乾燥させ、次いで、溶媒を真空引きすることにより除去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/5-1/3)で精製することにより、化合物3を無色油状物として収率68%(452mg)で得た。 To a dichloromethane (DCM) solution (5 mL) of compound 2 (549 mg, 1.00 mmol, 1.00 eq) was added 2,6-lutidine (0.466 mL, 4.00 mmol, 4.00 eq) followed by tert-butyl. Dimethylsilyltrifluoromethanesulfonate (TBSOTf) (0.460 mL, 2.00 mmol, 2.00 eq) was added at 0° C., then the reaction mixture was stirred at room temperature for 3 hours. After quenching the reaction with saturated aqueous NaHCO 3 (1 mL), DCM (10 mL) was added and the organic layer was washed with brine (5 mL). The organic layer was dried with Na 2 SO 4 and then the solvent was removed by applying vacuum. The residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/5-1/3) to obtain compound 3 as a colorless oil with a yield of 68% (452 mg).
 化合物3の分析結果は下記の通りであった。
H NMR(400MHz,CDCl,30℃) δ 5.35(dd,J=7.4,2.7Hz,1H),5.29-5.25(m,1H),4.62(dd,J=5.4,2.8,Hz,1H),4.38-4.33(m,2H),4.21(dd,J=12.5,5.1Hz,1H),2.94-2.78(m,2H),2.12(s,3H),2.08(s,3H),2.06(s,3H),1.68(s,3H),1.59-1.53(m,2H),1.37-1.26(m,18H),0.88(t,J=6.9Hz,3H),0.85(s,9H),0.13(s,3H),0.03(s,3H)
13C{H} NMR(100MHz,CDCl,30℃) δ 201.1,170.8,170.1,169.8,121.9,81.7,76.8,76.3,70.0,69.8,61.7,32.1,29.8,29.7,29.7,29.6,29.5,29.3,29.2,29.1,28.6,25.8,25.7,25.6,22.8,21.0,20.9,20.8,17.9,14.3,-3.7,-3.7
The analysis results of compound 3 were as follows.
1 H NMR (400 MHz, CDCl 3 , 30° C.) δ 5.35 (dd, J=7.4, 2.7 Hz, 1 H), 5.29-5.25 (m, 1 H), 4.62 (dd , J=5.4, 2.8, Hz, 1H), 4.38-4.33 (m, 2H), 4.21 (dd, J=12.5, 5.1 Hz, 1H), 2. 94-2.78 (m, 2H), 2.12 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 1.68 (s, 3H), 1.59 -1.53 (m, 2H), 1.37-1.26 (m, 18H), 0.88 (t, J = 6.9Hz, 3H), 0.85 (s, 9H), 0.13 (s, 3H), 0.03 (s, 3H)
13 C{ 1 H} NMR (100 MHz, CDCl 3 , 30° C.) δ 201.1, 170.8, 170.1, 169.8, 121.9, 81.7, 76.8, 76.3, 70 .0, 69.8, 61.7, 32.1 , 29.8, 29.76, 29.7, 29.6, 29.5, 29.3 , 29.27, 29.1, 28 .6, 25.8, 25.7, 25.6 5 , 22.8, 21.0, 20.9, 20.8, 17.9, 14.3, -3.7, -3.7 3 .
〔実施例3〕
 下記式で示される反応を行い、化合物3から化合物4を製造した。
[Example 3]
Compound 4 was produced from compound 3 by the reaction represented by the following formula.
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
有機銅アート試薬(organocuprate reagent)の調製
 切削片状マグネシウム(24.3mg,1.00mmol,2.00当量)に、THF(0.5mL)及び1,2-ジブロモエタン(0.05mL)を加え、次いで、2-(5-ブロモ-2-メチルベンジル)-5-(4-フルオロフェニル)チオフェン(181mg,0.500mmol,1.00当量)のTHF溶液(1.5mL)を加え、反応混合物を80℃で3時間還流した。反応混合物を、CuCN(44.8mg,0.500mmol,1.00当量)のTHF懸濁液(1.5mL)に室温で加えた。混合物を室温でさらに10分間撹拌し、次工程(化合物3のケトン化)に用いた。
Preparation of organocuprate reagent To magnesium shavings (24.3 mg, 1.00 mmol, 2.00 equiv.) was added THF (0.5 mL) and 1,2-dibromoethane (0.05 mL). Then a solution of 2-(5-bromo-2-methylbenzyl)-5-(4-fluorophenyl)thiophene (181 mg, 0.500 mmol, 1.00 eq) in THF (1.5 mL) was added and the reaction mixture was refluxed at 80° C. for 3 hours. The reaction mixture was added to a THF suspension (1.5 mL) of CuCN (44.8 mg, 0.500 mmol, 1.00 eq) at room temperature. The mixture was stirred at room temperature for an additional 10 minutes and used in the next step (ketonization of compound 3).
化合物3のケトン化
 上記で調製した有機銅アート試薬に、化合物3(166mg,0.250mmol,1.00当量)のTHF溶液(1.5mL)を加えた。反応混合物を40℃で20時間撹拌し、次いで、水(1mL)で反応をクエンチした。酢酸エチル(10mL×3)を用いて、セライトパッドを通じて、反応混合物をろ過し、無水NaSOを用いてろ液を乾燥させた。デカンテーション及びエバポレーションの後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/5-1/3)で精製することにより、化合物4を黄色の油状物(102mg,0.137mmol,収率55%)として、及び、化合物3を黄色がかった(yellow-wish)油状物(55.0mg,0.0830mmol,回収率33%)として得た。
Ketonization of compound 3 To the organocopperate reagent prepared above was added compound 3 (166 mg, 0.250 mmol, 1.00 equiv) in THF (1.5 mL). The reaction mixture was stirred at 40° C. for 20 hours, then water (1 mL) was added to quench the reaction. The reaction mixture was filtered through a celite pad with ethyl acetate (10 mL x 3) and the filtrate was dried with anhydrous Na2SO4 . After decantation and evaporation, the residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/5-1/3) to give compound 4 as a yellow oil (102 mg, 0.137 mmol, yield 55%) and compound 3 as a yellow-wish oil (55.0 mg, 0.0830 mmol, 33% recovery).
 化合物4の分析結果は下記の通りであった。
H NMR (400MHz,CDCl,30℃) δ 7.97(d,J=1.6Hz,1H),7.93(dd,J=7.9,1.8Hz,1H),7.46(dd,J=8.8,5.2Hz,2H),7.25(d,J=8.3Hz,1H),7.04-6.99(m,3H),6.65(d,J=3.6Hz,1H),5.34(dd,J=7.3,3.2Hz,1H),5.29(dd,J=5.0,2.4Hz,1H),5.15(dd,J=4.3,3.2Hz,1H),4.87(d,J=4.3Hz,1H),4.40(dd,J=12.5,2.4Hz,1H),4.26(dd,J=12.5,3.8Hz,1H),4.17(s,2H),2.37(s,3H),2.13(s,3H),2.07(s,3H),2.05(s,3H),1.63(s,3H),0.62(s,9H),-0.03(s,3H),-0.04(s,3H)
13C{H} NMR (100MHz,CDCl,30℃) δ 196.0,170.8,170.4,169.9,143.0,142.8,141.9,138.4,133.5,131.2,130.6,129.0,127.3,127.2,126.2,122.8,121.0,116.0,115.7,79.9,74.7,70.6,70.2,61.9,34.3,25.5,25.4,21.0,20.9,20.8,20.0,17.7,-3.8,-3.8
19F{H} NMR (376MHz,CDCl,30℃) δ -116.3
The analysis results of compound 4 were as follows.
1 H NMR (400 MHz, CDCl 3 , 30° C.) δ 7.97 (d, J=1.6 Hz, 1 H), 7.93 (dd, J=7.9, 1.8 Hz, 1 H), 7.46 (dd, J = 8.8, 5.2 Hz, 2H), 7.25 (d, J = 8.3 Hz, 1H), 7.04-6.99 (m, 3H), 6.65 (d, J = 3.6Hz, 1H), 5.34 (dd, J = 7.3, 3.2Hz, 1H), 5.29 (dd, J = 5.0, 2.4Hz, 1H), 5.15 (dd, J = 4.3, 3.2 Hz, 1 H), 4.87 (d, J = 4.3 Hz, 1 H), 4.40 (dd, J = 12.5, 2.4 Hz, 1 H), 4.26 (dd, J = 12.5, 3.8 Hz, 1H), 4.17 (s, 2H), 2.37 (s, 3H), 2.13 (s, 3H), 2.07 ( s, 3H), 2.05 (s, 3H), 1.63 (s, 3H), 0.62 (s, 9H), −0.03 (s, 3H), −0.04 (s, 3H )
13 C{ 1 H} NMR (100 MHz, CDCl 3 , 30° C.) δ 196.0, 170.8, 170.4, 169.9, 143.0, 142.8, 141.9, 138.4, 133 .5, 131.2, 130.6, 129.0, 127.3, 127.2, 126.2, 122.8, 121.0, 116.0, 115.7, 79.9, 74.7 , 70.6, 70.2, 61.9, 34.3, 25.5, 25.4, 21.0, 20.9, 20.8 6 , 20.0, 17.7, -3.8 , -3.8 2
19 F{ 1 H} NMR (376 MHz, CDCl 3 , 30° C.) δ −116.3
〔実施例4〕
 下記式で示される反応を行い、化合物4から化合物5を製造した。
[Example 4]
Compound 5 was produced from compound 4 by the reaction represented by the following formula.
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
 化合物4(92.9mg,0.125mmol,1.00当量)のN,N-ジメチルホルムアミド(DMF)/N-メチル-2-ピロリドン(NMP)溶液(DMF 1.5mL,NMP 0.5mL,合計 2mL)に、フッ化テトラ-n-ブチルアンモニウム(TBAF)(1M THF溶液,0.500mL,0.500mmol,4.00当量)及び酢酸(AcOH)(約30μL,0.500mmol,4.00当量)のDMF/NMP混合液(DMF 1.5mL,NMP 0.5mL,合計 2mL)を加えた。反応混合物を室温で20時間撹拌し、次いで、水(5mL)で反応をクエンチした。混合物を酢酸エチル(10mL)で抽出し、有機層を食塩水(5mL)で洗浄し、無水NaSOを用いて乾燥させた。エバポレーションの後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/3-1/1)で精製することにより、化合物5を茶色のガム状物(31.1mg,収率39%,少量の不純物を含有)として得た。 Compound 4 (92.9 mg, 0.125 mmol, 1.00 equivalents) in N,N-dimethylformamide (DMF)/N-methyl-2-pyrrolidone (NMP) solution (DMF 1.5 mL, NMP 0.5 mL, total 2 mL), tetra-n-butylammonium fluoride (TBAF) (1 M THF solution, 0.500 mL, 0.500 mmol, 4.00 equiv.) and acetic acid (AcOH) (about 30 μL, 0.500 mmol, 4.00 equiv.) ) was added (DMF 1.5 mL, NMP 0.5 mL, total 2 mL). The reaction mixture was stirred at room temperature for 20 hours and then quenched with water (5 mL). The mixture was extracted with ethyl acetate (10 mL) and the organic layer was washed with brine (5 mL) and dried over anhydrous Na2SO4 . After evaporation, the residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/3-1/1) to give compound 5 as a brown gum (31.1 mg, yield 39%). , containing a small amount of impurities).
 化合物5の分析結果は下記の通りであった。
H NMR (400MHz,CDCl,30℃) δ 7.88-7.75(m,2H),7.49-7.45(m,2H),7.30(dd,J=7.9,2.6Hz,1H),7.04-7.00(m,3H),6.67-6.66(m,1H),6.19(d,J=7.4Hz,0.5H),6.00(d,J=3.8Hz,0.5H),5.54(dd,J=7.4,2.1Hz,0.5H),5.33(dd,J=5.9,4.0Hz,0.5H),5.24(dt,J=6.0,2.7Hz,0.5H),4.92(ddd,J=9.1,4.3,2.7Hz,0.5H),4.71-4.66(m,0.5H),4.40-4.35(m,1H),4.30-4.26(m,1H),4.17(s,2H),4.16-4.11(m,1H),3.95-3.93(m,0.5H),2.40-2.39(m,3H),2.15-1.99(m,12H)
19F{H} NMR (376MHz,CDCl,30℃) δ -116.0,-116.0
The analysis results of compound 5 were as follows.
1 H NMR (400 MHz, CDCl 3 , 30° C.) δ 7.88-7.75 (m, 2H), 7.49-7.45 (m, 2H), 7.30 (dd, J=7.9 , 2.6Hz, 1H), 7.04-7.00 (m, 3H), 6.67-6.66 (m, 1H), 6.19 (d, J = 7.4Hz, 0.5H) , 6.00 (d, J=3.8 Hz, 0.5 H), 5.54 (dd, J=7.4, 2.1 Hz, 0.5 H), 5.33 (dd, J=5.9 , 4.0Hz, 0.5H), 5.24 (dt, J = 6.0, 2.7Hz, 0.5H), 4.92 (ddd, J = 9.1, 4.3, 2.7Hz , 0.5H), 4.71-4.66 (m, 0.5H), 4.40-4.35 (m, 1H), 4.30-4.26 (m, 1H), 4.17 (s, 2H), 4.16-4.11 (m, 1H), 3.95-3.93 (m, 0.5H), 2.40-2.39 (m, 3H), 2.15 -1.99 (m, 12H)
19 F{ 1 H} NMR (376 MHz, CDCl 3 , 30° C.) δ −116.0 7 , −116.0 9
〔実施例5〕
 下記式で示される反応を行い、化合物3から化合物6及び化合物7を製造した。なお、「Ar」は実施例3及び4と同義である。
[Example 5]
Compounds 6 and 7 were produced from compound 3 by the reaction represented by the following formula. "Ar" has the same meaning as in Examples 3 and 4.
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
0.25M ArZnBr・LiClの調製
 切削片状マグネシウム(36.5mg,1.50mmol,2.00当量)に、THF(0.5mL)及び1,2-ジブロモエタン(0.05mL)を加え、次いで、2-(5-ブロモ-2-メチルベンジル)-5-(4-フルオロフェニル)チオフェン(271mg,0.750mmol,1.00当量)のTHF溶液(2mL)を加え、反応混合物を80℃で3時間還流した。反応混合物を、ZnBr(169mg,0.750mmol,1.00当量)及びLiCl(31.8mg,0.750mmol,1.00当量)のTHF溶液(0.5mL)に室温で加えた。混合物を室温でさらに1時間撹拌し、次工程(福山カップリング反応)に用いた。
Preparation of 0.25 M ArZnBr.LiCl To magnesium shavings (36.5 mg, 1.50 mmol, 2.00 eq) was added THF (0.5 mL) and 1,2-dibromoethane (0.05 mL) followed by , 2-(5-bromo-2-methylbenzyl)-5-(4-fluorophenyl)thiophene (271 mg, 0.750 mmol, 1.00 equiv.) in THF (2 mL) was added and the reaction mixture was stirred at 80°C. Reflux for 3 hours. The reaction mixture was added to a THF solution (0.5 mL) of ZnBr2 (169 mg, 0.750 mmol, 1.00 eq) and LiCl (31.8 mg, 0.750 mmol, 1.00 eq) at room temperature. The mixture was stirred at room temperature for an additional hour and used in the next step (Fukuyama coupling reaction).
福山カップリング反応
 化合物3(166mg,0.250mmol,1.00当量)及び10wt% Pd/C(13.3mg,0.0125mmol,5mol%)のTHF溶液(2mL)に、上記で調製したArZnBr・LiCl溶液(2.00mL,0.500mmol,2.00当量)を加えた。反応混合物を40℃で18時間撹拌し、次いで、1M HCl水溶液(1mL)で反応をクエンチした。酢酸エチル(10mL×3)を用いて、セライトパッドを通じて、反応混合物をろ過した。ろ液を1M HCl水溶液(5mL)及び食塩水(5mL)で洗浄し、NaSOを用いて乾燥させた。デカンテーション及びエバポレーションの後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/5-1/1)で精製することにより、化合物6を黄色の油状物(48.1mg,0.0765mmol,収率31%)として、及び、化合物7を黄色の油状物(35.0mg,0.0557mmol,収率22%)として得た。
To a THF solution (2 mL) of Fukuyama coupling reaction compound 3 (166 mg, 0.250 mmol, 1.00 equivalents) and 10 wt% Pd/C (13.3 mg, 0.0125 mmol, 5 mol%) was added the ArZnBr prepared above. LiCl solution (2.00 mL, 0.500 mmol, 2.00 eq) was added. The reaction mixture was stirred at 40° C. for 18 hours, then the reaction was quenched with 1M aqueous HCl (1 mL). The reaction mixture was filtered through a celite pad with ethyl acetate (10 mL x 3). The filtrate was washed with 1M HCl aqueous solution (5 mL) and brine (5 mL) and dried with Na 2 SO 4 . After decantation and evaporation, the residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/5-1/1) to give compound 6 as a yellow oil (48.1 mg, 0.1 mg). 0765 mmol, 31% yield) and compound 7 as a yellow oil (35.0 mg, 0.0557 mmol, 22% yield).
 化合物6の分析結果は下記の通りであった。
H NMR (400MHz,CDCl,30℃) δ 7.77(d,J=1.6Hz,1H),7.69(dd,J=7.9,1.8Hz,1H),7.49-7.46(m,2H),7.32(d,J=7.8Hz,1H),7.04-7.00(m,3H),6.66(m,1H),5.64(dd,J=6.7,4.7Hz,1H),5.41(dd,J=4.7,2.6Hz,1H),5.32-5.26(m,2H),4.36(dd,J=12.4,2.6Hz,1H),4.19(s,2H),4.09(dd,J=12.4,6.2Hz,1H),3.79(d,J=7.5Hz,1H),2.40(s,3H),2.06(s,3H),2.05(s,3H),1.98(s,3H),1.90(s,3H)
19F{H} NMR (376MHz,CDCl,30℃) δ -116.0
The analysis results of compound 6 were as follows.
1 H NMR (400 MHz, CDCl 3 , 30° C.) δ 7.77 (d, J=1.6 Hz, 1 H), 7.69 (dd, J=7.9, 1.8 Hz, 1 H), 7.49 -7.46 (m, 2H), 7.32 (d, J=7.8Hz, 1H), 7.04-7.00 (m, 3H), 6.66 (m, 1H), 5.64 (dd, J=6.7, 4.7 Hz, 1H), 5.41 (dd, J=4.7, 2.6 Hz, 1H), 5.32-5.26 (m, 2H), 4. 36 (dd, J = 12.4, 2.6Hz, 1H), 4.19 (s, 2H), 4.09 (dd, J = 12.4, 6.2Hz, 1H), 3.79 (d , J=7.5Hz, 1H), 2.40(s, 3H), 2.06(s, 3H), 2.05(s, 3H), 1.98(s, 3H), 1.90( s, 3H)
19 F{ 1 H} NMR (376 MHz, CDCl 3 , 30° C.) δ −116.0
 化合物7の分析結果は下記の通りであった。
H NMR (400MHz,CDCl,30℃) δ 7.88-7.75(m,2H),7.49-7.44(m,2H),7.30(dd,J=7.9,2.9Hz,1H),7.04-7.00(m,3H),6.67-6.66(m,1H),6.19(d,J=7.4Hz,0.5H),6.00(d,J=3.8Hz,0.5H),5.54(dd,J=7.4,2.2Hz,0.5H),5.33(dd,J=6.0,3.9Hz,0.5H),5.24(dt,J=6.1,2.8Hz,0.5H),4.91(ddd,J=9.1,4.3,2.7Hz,0.5H),4.71-4.63(m,0.5H),4.40-4.35(m,1H),4.30-4.25(m,1H),4.18(s,2H),4.16-4.11(m,1H),3.93(ddd,J=9.2,6.9,2.2Hz,0.5H),2.40-2.39(m,3H),2.17-1.99(m,12H)
19F{H} NMR (376MHz,CDCl,30℃) δ -116.0,-116.0
The analysis results of compound 7 were as follows.
1 H NMR (400 MHz, CDCl 3 , 30° C.) δ 7.88-7.75 (m, 2H), 7.49-7.44 (m, 2H), 7.30 (dd, J=7.9 , 2.9Hz, 1H), 7.04-7.00 (m, 3H), 6.67-6.66 (m, 1H), 6.19 (d, J = 7.4Hz, 0.5H) , 6.00 (d, J=3.8 Hz, 0.5 H), 5.54 (dd, J=7.4, 2.2 Hz, 0.5 H), 5.33 (dd, J=6.0 , 3.9Hz, 0.5H), 5.24 (dt, J = 6.1, 2.8Hz, 0.5H), 4.91 (ddd, J = 9.1, 4.3, 2.7Hz , 0.5H), 4.71-4.63 (m, 0.5H), 4.40-4.35 (m, 1H), 4.30-4.25 (m, 1H), 4.18 (s, 2H), 4.16-4.11 (m, 1H), 3.93 (ddd, J = 9.2, 6.9, 2.2Hz, 0.5H), 2.40-2. 39 (m, 3H), 2.17-1.99 (m, 12H)
19 F{ 1 H} NMR (376 MHz, CDCl 3 , 30° C.) δ −116.0 7 , −116.0 9
〔実施例6〕
 下記式で示される反応を行い、化合物8から化合物9を製造した。なお、「Bz」はベンゾイル基を表す(以下同様)。
[Example 6]
Compound 9 was produced from compound 8 by the reaction represented by the following formula. "Bz" represents a benzoyl group (same below).
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
 1-ドデカンチオール(0.587mL,2.45mmol,1.26当量)のTHF溶液(約4mL)に、化合物8(1g,1.84mmol)を加えた。次いで、混合物を0℃に冷却した後、混合物に2MのiPrMgClのTHF溶液(1.23mL,2.45mmol,1.26当量)を約5~10分間かけて滴下した。反応混合物を0℃で1時間撹拌した後、無水酢酸(0.272mL,2.87mmol,1.48当量)を0℃で加え、反応混合物を室温でさらに1時間撹拌した。次いで、1M HCl溶液で反応をクエンチし、50mLの酢酸エチルを加え、次いで、有機層を1M HCl、飽和NaHCO水溶液及び食塩水で洗浄した。次いで、NaSOを用いて乾燥させ、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 9.5/0.5→7.5/2.5)で精製することにより、化合物9(1.557g,収率78%)を得た。 Compound 8 (1 g, 1.84 mmol) was added to a THF solution (approximately 4 mL) of 1-dodecanethiol (0.587 mL, 2.45 mmol, 1.26 eq). The mixture was then cooled to 0° C. and then 2M iPrMgCl in THF (1.23 mL, 2.45 mmol, 1.26 eq) was added dropwise to the mixture over about 5-10 minutes. After stirring the reaction mixture at 0° C. for 1 hour, acetic anhydride (0.272 mL, 2.87 mmol, 1.48 eq) was added at 0° C. and the reaction mixture was stirred at room temperature for another hour. The reaction was then quenched with 1M HCl solution and 50 mL of ethyl acetate was added, then the organic layer was washed with 1M HCl, saturated aqueous NaHCO 3 and brine. It was then dried with Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate 9.5/0.5→7.5/2.5) to obtain compound 9 (1.557 g, yield 78%).
 化合物9の分析結果は下記の通りであった。
H NMR (400MHz,CDCl) δ 8.08-7.91(m,8H),7.52(dddd,J=12.8,10.9,5.2,3.4Hz,4H),7.45-7.31(m,8H),6.20(dd,J=5.4,3.6Hz,1H),6.16-6.07(m,1H),5.80(d,J=3.6Hz,1H),5.72(td,J=5.7,4.0Hz,1H),4.86(dd,J=12.2,4.0Hz,1H),4.60(dd,J=12.2,5.9Hz,1H),2.73(td,J=7.3,2.5Hz,2H),2.14(s,3H),1.39-1.04(m,20H),0.88(t,J=6.9Hz,3H)
13C NMR (101MHz,CDCl) δ 196.14,169.96,166.21,165.48,165.06,133.70,133.49,133.43,133.35,130.12,130.07,130.00,129.99,129.51,129.41,129.11,129.00,128.69,128.56,128.51,128.49,76.45,70.36,70.21,69.83,62.49,32.06,29.76,29.69,29.51,29.48,29.12,29.03,28.83
Rf=0.45(2.5/7.5 酢酸エチル/ヘキサン)
The analysis results of compound 9 were as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 8.08-7.91 (m, 8H), 7.52 (dddd, J=12.8, 10.9, 5.2, 3.4 Hz, 4H), 7.45-7.31 (m, 8H), 6.20 (dd, J = 5.4, 3.6Hz, 1H), 6.16-6.07 (m, 1H), 5.80 (d , J=3.6 Hz, 1 H), 5.72 (td, J=5.7, 4.0 Hz, 1 H), 4.86 (dd, J=12.2, 4.0 Hz, 1 H), 4. 60 (dd, J = 12.2, 5.9Hz, 1H), 2.73 (td, J = 7.3, 2.5Hz, 2H), 2.14 (s, 3H), 1.39-1 .04 (m, 20H), 0.88 (t, J=6.9Hz, 3H)
13 C NMR (101 MHz, CDCl 3 ) δ 196.14, 169.96, 166.21, 165.48, 165.06, 133.70, 133.49, 133.43, 133.35, 130.12, 130.07, 130.00, 129.99, 129.51, 129.41, 129.11, 129.00, 128.69, 128.56, 128.51, 128.49, 76.45, 70. 36, 70.21, 69.83, 62.49, 32.06, 29.76, 29.69, 29.51, 29.48, 29.12, 29.03, 28.83
Rf = 0.45 (2.5/7.5 ethyl acetate/hexane)
〔実施例7〕
 下記式で示される反応を行い、化合物8から化合物10を製造した。
[Example 7]
Compound 10 was produced from compound 8 by the reaction represented by the following formula.
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
 オーブン乾燥させたシュレンク管に、1-ドデカンチオール(0.587mL,2.45mmol,1.26当量)のTHF溶液(約6mL)を封入し、次いで、2M iPrMgClのTHF溶液(1.23mL,2.45mmol,1.26当量)を0℃で滴下し、混合し、室温に上昇させ、チオラート溶液を調製した(シュレンク管を洗浄しながら作製したチオラート全量を移す)。調製したチオラート溶液を、化合物8(1.1g,1.856mmol,1当量)のTHF溶液(4mL)に、キャニュラーを用いて加え、化合物8が溶解するまで0℃で撹拌し続けた。1時間後、1M HCl溶液で反応をクエンチし、50mLの酢酸エチルを加え、有機層を1M HCl、飽和NaHCO水溶液及び食塩水で洗浄した。次いで、NaSOを用いて乾燥させ、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 9.5/0.5→7/3)で精製することにより、化合物10(1.478g,収率91%)を得た。 An oven-dried Schlenk tube was filled with a solution of 1-dodecanethiol (0.587 mL, 2.45 mmol, 1.26 eq) in THF (approximately 6 mL), followed by a solution of 2 M iPrMgCl in THF (1.23 mL, 2 .45 mmol, 1.26 eq.) was added dropwise at 0° C., mixed and allowed to warm to room temperature to prepare a thiolate solution (transfer the entire amount of thiolate made while washing the Schlenk tube). The prepared thiolate solution was added to a THF solution (4 mL) of compound 8 (1.1 g, 1.856 mmol, 1 eq) using a cannula and stirring continued at 0° C. until compound 8 dissolved. After 1 hour, the reaction was quenched with 1M HCl solution, 50 mL of ethyl acetate was added, and the organic layer was washed with 1M HCl, saturated aqueous NaHCO 3 and brine. It was then dried with Na 2 SO 4 and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate 9.5/0.5→7/3) to obtain compound 10 (1.478 g, yield 91%).
 化合物10の分析結果は下記の通りであった。
H NMR (400MHz,CDCl) δ 8.04-7.87(m,8H),7.51(dt,J=19.1,7.4Hz,4H),7.44-7.32(m,8H),6.18(t,J=5.6Hz,1H),6.02(dd,J=5.8,2.9Hz,1H),5.91(td,J=5.9,3.4Hz,1H),4.92(dd,J=12.3,3.5Hz,1H),4.80(d,J=3.1Hz,1H),4.63(dd,J=12.3,6.1Hz,1H),3.62(s,1H),2.75(t,J=7.3Hz,2H),1.35-1.08(m,20H),0.88(t,J=6.9Hz,3H)
13C NMR (101MHz,CDCl) δ 200.36,166.30,165.69,165.47,165.18,133.61,133.50,133.48,133.31,130.03,129.97,129.61,129.38,129.19,129.00,128.61,128.55,128.54,128.48,76.69,71.92,70.61,70.54,62.78,32.05,29.75,29.69,29.51,29.47,29.15,29.12,28.96,28.81,22.82,14.24
Rf=0.25(2/8 酢酸エチル/ヘキサン)
The analysis results of compound 10 were as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 8.04-7.87 (m, 8H), 7.51 (dt, J=19.1, 7.4 Hz, 4H), 7.44-7.32 ( m, 8H), 6.18 (t, J = 5.6Hz, 1H), 6.02 (dd, J = 5.8, 2.9Hz, 1H), 5.91 (td, J = 5.9 , 3.4 Hz, 1 H), 4.92 (dd, J = 12.3, 3.5 Hz, 1 H), 4.80 (d, J = 3.1 Hz, 1 H), 4.63 (dd, J = 12.3, 6.1 Hz, 1H), 3.62 (s, 1H), 2.75 (t, J = 7.3 Hz, 2H), 1.35-1.08 (m, 20H), 0. 88 (t, J = 6.9Hz, 3H)
13 C NMR (101 MHz, CDCl 3 ) δ 200.36, 166.30, 165.69, 165.47, 165.18, 133.61, 133.50, 133.48, 133.31, 130.03, 129.97, 129.61, 129.38, 129.19, 129.00, 128.61, 128.55, 128.54, 128.48, 76.69, 71.92, 70.61, 70. 54, 62.78, 32.05, 29.75, 29.69, 29.51, 29.47, 29.15, 29.12, 28.96, 28.81, 22.82, 14.24
Rf = 0.25 (2/8 ethyl acetate/hexane)
〔実施例8〕
 下記式で示される反応を行い、化合物10から化合物11を製造した。
[Example 8]
Compound 11 was produced from compound 10 by the reaction represented by the following formula.
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
 オーブン乾燥させたシュレンク管に、化合物10(509.6mg,0.6324mmol,1当量)を装入し、不活性雰囲気下でジクロロメタン(DCM)に溶解させ、2.5mol%のトリフルオロメタンスルホン酸銅(II)(Cu(OTf))(5.7mg,0.031mmol)を加えた。次いで、混合物を冷却し、0℃で撹拌し、無水酢酸(AcO)(135μL,1.2788mmol,2当量)を0℃で滴下した。反応混合物を室温にし、2時間後、1M HCl溶液でクエンチした。水層をDCMで溶出し、飽和NaHCO溶液で洗浄し、減圧濃縮した。次いで、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル 9.5/0.5→7.5/2.5)で精製することにより、化合物11(0.4222g,収率80%)を得た。 An oven-dried Schlenk tube was charged with compound 10 (509.6 mg, 0.6324 mmol, 1 eq), dissolved in dichloromethane (DCM) under inert atmosphere, and treated with 2.5 mol % copper trifluoromethanesulfonate. (II) (Cu(OTf) 2 ) (5.7 mg, 0.031 mmol) was added. The mixture was then cooled, stirred at 0°C and acetic anhydride (Ac 2 O) (135 μL, 1.2788 mmol, 2 eq) was added dropwise at 0°C. The reaction mixture was brought to room temperature and after 2 hours was quenched with 1M HCl solution. The aqueous layer was eluted with DCM, washed with saturated NaHCO3 solution and concentrated under reduced pressure. The resulting residue was then purified by silica gel chromatography (hexane/ethyl acetate 9.5/0.5→7.5/2.5) to give compound 11 (0.4222 g, yield 80%). Obtained.
 化合物11の分析結果は下記の通りであった。
H NMR (400MHz,CDCl) δ 7.99(dt,J=24.3,7.6Hz,8H),7.59-7.46(m,4H),7.45-7.29(m,8H),6.21(dd,J=5.4,3.5Hz,1H),6.17-6.08(m,1H),5.81(d,J=3.5Hz,1H),5.73(q,J=5.2Hz,1H),4.86(td,J=12.3,3.7Hz,1H),4.61(dd,J=12.2,5.8Hz,1H),2.81-2.68(m,2H),2.15(s,3H),1.39-1.05(m,20H),0.89(t,J=6.8Hz,3H)
13C NMR (101MHz,CDCl) δ 196.09,169.91,166.18,165.45,165.25,165.04,133.67,133.46,133.40,133.32,130.10,130.05,129.98(d,J=1.9Hz),129.52,129.42,129.11,129.01,128.67,128.54,128.48,76.44,70.36,70.23,69.84,62.48,32.03,29.73,29.67,29.48,29.46,29.10,29.02,28.81,22.80,20.67,14.23
Rf=0.45(2.5/7.5 酢酸エチル/ヘキサン)
The analysis results of compound 11 were as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.99 (dt, J = 24.3, 7.6 Hz, 8H), 7.59-7.46 (m, 4H), 7.45-7.29 ( m, 8H), 6.21 (dd, J = 5.4, 3.5Hz, 1H), 6.17-6.08 (m, 1H), 5.81 (d, J = 3.5Hz, 1H) ), 5.73 (q, J=5.2 Hz, 1 H), 4.86 (td, J=12.3, 3.7 Hz, 1 H), 4.61 (dd, J=12.2, 5. 8Hz, 1H), 2.81-2.68 (m, 2H), 2.15 (s, 3H), 1.39-1.05 (m, 20H), 0.89 (t, J=6. 8Hz, 3H)
13 C NMR (101 MHz, CDCl 3 ) δ 196.09, 169.91, 166.18, 165.45, 165.25, 165.04, 133.67, 133.46, 133.40, 133.32, 130.10, 130.05, 129.98 (d, J = 1.9 Hz), 129.52, 129.42, 129.11, 129.01, 128.67, 128.54, 128.48, 76 .44, 70.36, 70.23, 69.84, 62.48, 32.03, 29.73, 29.67, 29.48, 29.46, 29.10, 29.02, 28.81 , 22.80, 20.67, 14.23
Rf = 0.45 (2.5/7.5 ethyl acetate/hexane)
〔実施例9〕
 下記式で示される反応を行い、化合物11から化合物12を製造した。
[Example 9]
Compound 12 was produced from compound 11 by the reaction represented by the following formula.
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
 CuCN(1.16mmol,104.8mg,2.5当量)のTHF溶液(2mL)に、0.25M ArMgBrのTHF溶液(1.16mmol,406.1mg,2.5当量)を加え、反応混合物を10分間撹拌した。得られた有機銅試薬(cuprate agent)の混合物に、チオエステル(0.46mmol,366.3mg,1当量)のTHF溶液(2mL)を加え、反応を40℃で20時間行った。次いで、飽和NaHCO溶液(10mL)及び酢酸エチル(約20mL)を加えて反応をクエンチした。水層をさらに除き、40mLの酢酸エチル(4×10mL)を用いて残りの溶液をセライトパッドでろ過した。次いで、有機層を食塩水で洗浄し、NaSOを用いて乾燥させた。混合物を減圧濃縮した後、混合物をシリカゲルクロマトグラフィー(酢酸エチル/n-ヘキサン 1/9~3/7)で精製することにより、化合物12を薄黄色の固体として(277.1mg,収率65%)得た。化合物11の回収率は19%であった。 To a solution of CuCN (1.16 mmol, 104.8 mg, 2.5 eq.) in THF (2 mL) was added a solution of 0.25 M ArMgBr in THF (1.16 mmol, 406.1 mg, 2.5 eq.) and the reaction mixture was Stir for 10 minutes. To the resulting mixture of organocuprate agents was added a THF solution (2 mL) of thioester (0.46 mmol, 366.3 mg, 1 eq) and the reaction was carried out at 40° C. for 20 hours. Saturated NaHCO 3 solution (10 mL) and ethyl acetate (approximately 20 mL) were then added to quench the reaction. The aqueous layer was further removed and the remaining solution was filtered through a celite pad using 40 mL of ethyl acetate (4 x 10 mL). The organic layer was then washed with brine and dried with Na2SO4 . After the mixture was concentrated under reduced pressure, the mixture was purified by silica gel chromatography (ethyl acetate/n-hexane 1/9 to 3/7) to give compound 12 as a pale yellow solid (277.1 mg, yield 65%). )Obtained. The recovery of compound 11 was 19%.
 化合物12の分析結果は下記の通りであった。
H NMR (400MHz,CDCl) δ 7.97(ddd,J=8.5,4.6,2.6Hz,6H),7.89-7.80(m,2H),7.77(d,J=1.9Hz,1H),7.69(dd,J=7.9,1.9Hz,1H),7.60-7.27(m,10H),7.13(d,J=8.0Hz,1H),7.05-6.93(m,3H),6.56(d,J=3.7Hz,1H),6.45(d,J=5.0Hz,1H),6.30(t,J=4.7Hz,1H),6.14(dd,J=6.0,4.4Hz,1H),5.82(td,J=6.1,3.2Hz,1H),4.92(dd,J=12.3,3.2Hz,1H),4.55(dd,J=12.3,6.3Hz,1H),(s,2H),2.31(s,3H),2.01(s,3H)
19F NMR (376MHz,CDCl) δ -115.10,-115.13
13C NMR (101MHz,CDCl) δ 192.73,169.96,166.33,165.50,165.31,143.46,142.45,141.80,138.96,133.70,133.51,133.39,133.32,133.29,131.11,130.00(dd,J=6.2,3.4Hz),129.52(d,J=6.9Hz),129.00(d,J=15.4Hz),128.76-128.54(m),128.66-128.39(m),127.41,127.32,127.24,126.25,122.88,115.94,115.73,72.78,70.51,70.34,69.80,62.88,34.04,20.51,19.90
HRMS (FAB) m/z:[M+H] C5443FO11Sに関する計算値 918,2510;実測値 919.2575.
融点:65.4~67.1℃
Rf=0.4(4/6 酢酸エチル/ヘキサン)
The analysis results of compound 12 were as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 7.97 (ddd, J = 8.5, 4.6, 2.6 Hz, 6H), 7.89-7.80 (m, 2H), 7.77 ( d, J = 1.9 Hz, 1 H), 7.69 (dd, J = 7.9, 1.9 Hz, 1 H), 7.60-7.27 (m, 10 H), 7.13 (d, J = 8.0Hz, 1H), 7.05-6.93 (m, 3H), 6.56 (d, J = 3.7Hz, 1H), 6.45 (d, J = 5.0Hz, 1H) , 6.30 (t, J=4.7 Hz, 1 H), 6.14 (dd, J=6.0, 4.4 Hz, 1 H), 5.82 (t, J=6.1, 3.2 Hz , 1 H), 4.92 (dd, J=12.3, 3.2 Hz, 1 H), 4.55 (dd, J=12.3, 6.3 Hz, 1 H), (s, 2 H), 2. 31 (s, 3H), 2.01 (s, 3H)
19 F NMR (376 MHz, CDCl 3 ) δ −115.10, −115.13
13C NMR (101MHz, CDCl3 ) ? 133.51, 133.39, 133.32, 133.29, 131.11, 130.00 (dd, J = 6.2, 3.4 Hz), 129.52 (d, J = 6.9 Hz), 129.00 (d, J = 15.4 Hz), 128.76-128.54 (m), 128.66-128.39 (m), 127.41, 127.32, 127.24, 126.25 , 122.88, 115.94, 115.73, 72.78, 70.51, 70.34, 69.80, 62.88, 34.04, 20.51, 19.90
HRMS ( FAB <+ >) m/z: [ M +H] <+ >calc'd for C54H43FO11S 918, 2510; found 919.2575.
Melting point: 65.4-67.1°C
Rf = 0.4 (4/6 ethyl acetate/hexane)
〔実施例10〕
 下記式で示される反応を行い、化合物11から化合物12を製造した。
[Example 10]
Compound 12 was produced from compound 11 by the reaction represented by the following formula.
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
 オーブン乾燥させたシュレンク管に、LiCl(1.13mmol,47.9mg,2.5当量)を装入し、次いで、0.25MのArMgBrのTHF溶液(1.16mmol,406.1mg=4.5mL,2.5当量)を加え、次いで、混合物をCuCN(1.13mmol,101.4mg,2.5当量)のTHF溶液(2mL)に加え、反応混合物を10分間撹拌した。得られた有機銅試薬を、別のシュレンク管で調製された、化合物11(0.46mmol,366.3mg,1当量)及びPd/C 10wt%(9.9mg,2mol%)のTHF懸濁液(2mL)に加えた。反応を40℃で20時間行った。20時間後、セライトを薄く乗せたシリカゲルパッドを用いて、反応物をろ過した。次いで、ろ液を飽和NaHCO溶液(10mL)で洗浄して反応をクエンチし、酢酸エチル(約20mL)で溶出した。40mLの酢酸エチル(4×10mL)で溶出後、水層を除去した。次いで、有機層を食塩水で洗浄し、NaSOを用いて乾燥させた。混合物を減圧濃縮した後、得られた残渣をシリカゲルクロマトグラフィーカラム(酢酸エチル/n-ヘキサン1/9~3/7)で精製することにより、化合物12をオフホワイト(white-off)の固体(332.7mg,収率80%)で得た。 An oven-dried Schlenk tube was charged with LiCl (1.13 mmol, 47.9 mg, 2.5 eq) followed by 0.25 M ArMgBr in THF (1.16 mmol, 406.1 mg = 4.5 mL). , 2.5 eq) was added, then the mixture was added to CuCN (1.13 mmol, 101.4 mg, 2.5 eq) in THF (2 mL) and the reaction mixture was stirred for 10 min. The resulting organocopper reagent was added to a THF suspension of compound 11 (0.46 mmol, 366.3 mg, 1 eq) and Pd/C 10 wt % (9.9 mg, 2 mol %) prepared in another Schlenk tube. (2 mL). The reaction was carried out at 40°C for 20 hours. After 20 hours, the reaction was filtered using a silica gel pad with a thin layer of celite. The filtrate was then washed with saturated NaHCO 3 solution (10 mL) to quench the reaction and eluted with ethyl acetate (approximately 20 mL). After eluting with 40 mL of ethyl acetate (4 x 10 mL), the aqueous layer was removed. The organic layer was then washed with brine and dried with Na2SO4 . After the mixture was concentrated under reduced pressure, the resulting residue was purified with a silica gel chromatography column (ethyl acetate/n-hexane 1/9 to 3/7) to give compound 12 as a white-off solid ( 332.7 mg, yield 80%).
〔実施例11〕
 下記式で示される反応を行い、化合物12から化合物13を製造した。
[Example 11]
Compound 13 was produced from compound 12 by the reaction represented by the following formula.
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
 オーブン乾燥させたシュレンク管に、不活性雰囲気下で、化合物12(50.0mg,0.054mmol,1当量)を装入し、約2mLの酢酸エチルに溶解させ、均一な溶液を0℃に冷却した。次いで、カリウムtert-ブトキシド(t-BuOK)(13.9mg,0.112mmol,2.08当量)を加えた。次いで、混合物を室温になるまで放置した。2時間後、1M HCl溶液で反応をクエンチした。次いで、水溶液を除去し、有機層を減圧濃縮し、得られた残渣をシリカゲルで精製することにより、化合物13をガム状生成物(18.5mg,収率39%)として得た。 An oven-dried Schlenk tube was charged with compound 12 (50.0 mg, 0.054 mmol, 1 eq) under an inert atmosphere, dissolved in approximately 2 mL of ethyl acetate, and the homogeneous solution was cooled to 0°C. bottom. Potassium tert-butoxide (t-BuOK) (13.9 mg, 0.112 mmol, 2.08 eq) was then added. The mixture was then allowed to reach room temperature. After 2 hours, the reaction was quenched with 1M HCl solution. The aqueous solution was then removed, the organic layer was concentrated under reduced pressure, and the resulting residue was purified with silica gel to obtain compound 13 as a gummy product (18.5 mg, yield 39%).
 化合物13の分析結果は下記の通りであった。
H NMR (400MHz,CDCl) δ 8.15-7.90(m,8H),7.90-7.80(m,1H),7.75(t,J=2.0Hz,1H),7.68(dd,J=7.8,1.9Hz,1H),7.62-7.48(m,5H),7.47-7.36(m,10H),7.32(d,J=7.8Hz,1H),7.24(d,J=7.8Hz,1H),7.09-6.92(m,4H),6.63(d,J=3.5Hz,1H),6.45(dd,J=8.2,4.3Hz,1H),6.20(d,J=8.2Hz,1H),5.89(dt,J=6.6,4.6Hz,1H),4.78(ddd,J=12.0,4.8,2.4Hz,1H),4.69(ddd,J=11.9,6.3,3.2Hz,1H),4.14(d,J=4.7Hz,2H),2.38(s,3H),2.21(s,3H)
19F NMR (376MHz,CDCl) δ -115.09,-115.15
DEPT 135 NMR (101MHz,CDCl) δ 133.52,133.29,130.80,130.68,129.86,129.82,129.75,129.68,128.52,128.50,128.47,128.42,127.17,127.09,126.06,123.15,122.72,115.81,115.59,71.94,68.22,62.25,33.99,20.19,19.76
13C NMR (101MHz, CDCl) δ 188.62,168.51,166.12,165.61,165.25,148.34,142.76,142.55,141.87,138.77,134.11,133.66(d,J=2.1Hz),133.45,130.96,130.84(d,J=2.4Hz),130.63,130.06,130.02,129.98,129.90,129.84,129.55,129.45,129.31,128.72,128.68,128.66,128.62,128.58,128.53,127.33,127.25,126.22,123.30,122.87,115.97,115.75,72.10,68.38,62.41,34.15,29.85,20.35,19.92
Rf=0.34(3/7 酢酸エチル/ヘキサン)
The analysis results of compound 13 were as follows.
1 H NMR (400 MHz, CDCl 3 ) δ 8.15-7.90 (m, 8H), 7.90-7.80 (m, 1H), 7.75 (t, J=2.0Hz, 1H) , 7.68 (dd, J = 7.8, 1.9 Hz, 1H), 7.62-7.48 (m, 5H), 7.47-7.36 (m, 10H), 7.32 ( d, J = 7.8Hz, 1H), 7.24 (d, J = 7.8Hz, 1H), 7.09-6.92 (m, 4H), 6.63 (d, J = 3.5Hz , 1H), 6.45 (dd, J = 8.2, 4.3 Hz, 1H), 6.20 (d, J = 8.2 Hz, 1H), 5.89 (dt, J = 6.6, 4.6Hz, 1H), 4.78 (ddd, J = 12.0, 4.8, 2.4Hz, 1H), 4.69 (ddd, J = 11.9, 6.3, 3.2Hz, 1H), 4.14 (d, J = 4.7Hz, 2H), 2.38 (s, 3H), 2.21 (s, 3H)
19 F NMR (376 MHz, CDCl 3 ) δ −115.09, −115.15
DEPT135 NMR (101 MHz, CDCl3 ) ? 128.47, 128.42, 127.17, 127.09, 126.06, 123.15, 122.72, 115.81, 115.59, 71.94, 68.22, 62.25, 33. 99, 20.19, 19.76
13C NMR (101 MHz, CDCl3 ) ? 134.11, 133.66 (d, J = 2.1 Hz), 133.45, 130.96, 130.84 (d, J = 2.4 Hz), 130.63, 130.06, 130.02, 129.98, 129.90, 129.84, 129.55, 129.45, 129.31, 128.72, 128.68, 128.66, 128.62, 128.58, 128.53, 127. 33, 127.25, 126.22, 123.30, 122.87, 115.97, 115.75, 72.10, 68.38, 62.41, 34.15, 29.85, 20.35, 19.92
Rf = 0.34 (3/7 ethyl acetate/hexane)
〔実施例12〕
 化合物12とt-BuOK(7.35mg,0.0592mmol,1.1当量)との反応を、ジクロロメタン(DCM)中、室温で4時間行った点を除き、実施例11と同様にして、化合物13(7.1mg,収率15%)を得た。
[Example 12]
In analogy to Example 11, compound 13 (7.1 mg, 15% yield) was obtained.
〔実施例13〕
 化合物12とt-BuOK(12.1mg,0.112mmol,2.08当量)との反応を、ジクロロメタン(DCM)中、室温で24時間行った点を除き、実施例11と同様にして、化合物13(15.2mg,収率32%)を得た。
[Example 13]
Compound 12 was prepared in the same manner as in Example 11, except that the reaction of compound 12 with t-BuOK (12.1 mg, 0.112 mmol, 2.08 eq) was carried out in dichloromethane (DCM) at room temperature for 24 hours. 13 (15.2 mg, 32% yield) was obtained.
〔実施例14〕
 t-BuOKに代えて、20% ナトリウムエトキシド(EtONa)のエタノール溶液(21μL,0.06017mmol,1.1当量)を用いて、化合物12とEtONaとの反応を、酢酸エチル(EtOAc)中、室温で30時間行った点を除き、実施例11と同様にして、化合物13(13.8mg,収率29%)を得た。
[Example 14]
Using 20% sodium ethoxide (EtONa) in ethanol (21 μL, 0.06017 mmol, 1.1 equiv) instead of t-BuOK, the reaction of compound 12 with EtONa was carried out in ethyl acetate (EtOAc). Compound 13 (13.8 mg, yield 29%) was obtained in the same manner as in Example 11, except that the reaction was carried out at room temperature for 30 hours.
〔実施例15〕
 下記式で示される反応を行い、化合物1から化合物14を製造した。
[Example 15]
Compounds 1 to 14 were produced by the reaction represented by the following formula.
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
 化合物1(1.78g,10.0mmol,1.00当量)に、無水酢酸(10.0mL,106mmol,10.6当量)及びTFA(1.00mL,13.1mmol,1.31当量)を加え、次いで、反応混合物を室温で3時間撹拌した。トルエン(10mL×3)を用いてすべての揮発性物質を留去した後、1-ドデカンチオール(3.00mL,12.6mmol,1.26当量)及びTHF(50.0mL)を残渣に加えた。混合物に、iPrMgClのTHF溶液(2M,6.30mL,12.6mmol,1.26当量)を0℃で5分間かけて滴下した。1時間撹拌した後、クロロトリメチルシラン(TMSCl)(1.90mL,15.0mmol,1.50当量)及び4-ジメチルアミノピリジン(DMAP)(61.1mg,0.500mmol,5mol%)を0℃で加え、反応混合物を室温でさらに2時間撹拌した。水(10mL)で反応をクエンチした後、酢酸エチル(50mL)を加え、有機層を水(50mL×3)及び食塩水(50mL)で洗浄した。硫酸ナトリウムを用いて有機層を乾燥させ、次いで、溶媒を真空引きすることにより除去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/5-1/3)で精製することにより、化合物14を黄色の油状物(1.46g,収率24%)として得た。 Acetic anhydride (10.0 mL, 106 mmol, 10.6 equivalents) and TFA (1.00 mL, 13.1 mmol, 1.31 equivalents) were added to compound 1 (1.78 g, 10.0 mmol, 1.00 equivalents). The reaction mixture was then stirred at room temperature for 3 hours. After distilling off all volatiles with toluene (10 mL×3), 1-dodecanethiol (3.00 mL, 12.6 mmol, 1.26 eq) and THF (50.0 mL) were added to the residue. . To the mixture was added a solution of iPrMgCl in THF (2M, 6.30 mL, 12.6 mmol, 1.26 eq) dropwise at 0° C. over 5 minutes. After stirring for 1 hour, chlorotrimethylsilane (TMSCl) (1.90 mL, 15.0 mmol, 1.50 eq) and 4-dimethylaminopyridine (DMAP) (61.1 mg, 0.500 mmol, 5 mol%) were added at 0°C. was added and the reaction mixture was stirred at room temperature for an additional 2 hours. After quenching the reaction with water (10 mL), ethyl acetate (50 mL) was added and the organic layer was washed with water (50 mL x 3) and brine (50 mL). The organic layer was dried with sodium sulfate and then the solvent was removed by pulling a vacuum. The residue was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/5-1/3) to give compound 14 as a yellow oil (1.46 g, yield 24%).
 化合物14の分析結果は下記の通りであった。
H NMR (400MHz,CDCl,30℃) δ 5.44(dd,J=7.1,3.6Hz,1H),5.25(dd,J=6.4,3.7Hz,1H),5.18(dt,J=6.5,3.3Hz,1H),4.32(d,J=6.5Hz,1H),4.29(dd,J=12.4,6.8Hz,1H),4.05(dd,J=12.3,6.4Hz,1H),2.91-2.75(m,2H),2.10(s,3H),2.08(s,3H),2.05(s,3H),2.04(s,3H),1.61-1.51(m,2H),1.34-1.26(m,18H),0.88(t,J=6.8Hz,3H),0.19(s,9H)
13C{H} NMR (100MHz,CDCl,30℃) δ 201.0,170.7,169.9,169.8,169.5,76.0,71.4,69.1,68.6,62.3,32.0,29.8,29.7,29.7,29.6,29.5,29.3,29.2,29.2,29.1,28.6,22.8,20.9,20.8,20.8,14.2,-0.1
The analysis results of compound 14 were as follows.
1 H NMR (400 MHz, CDCl 3 , 30° C.) δ 5.44 (dd, J=7.1, 3.6 Hz, 1 H), 5.25 (dd, J=6.4, 3.7 Hz, 1 H) , 5.18 (dt, J=6.5, 3.3 Hz, 1 H), 4.32 (d, J=6.5 Hz, 1 H), 4.29 (dd, J=12.4, 6.8 Hz , 1H), 4.05 (dd, J = 12.3, 6.4 Hz, 1H), 2.91-2.75 (m, 2H), 2.10 (s, 3H), 2.08 (s , 3H), 2.05 (s, 3H), 2.04 (s, 3H), 1.61-1.51 (m, 2H), 1.34-1.26 (m, 18H), 0. 88 (t, J = 6.8Hz, 3H), 0.19 (s, 9H)
13 C{ 1 H} NMR (100 MHz, CDCl 3 , 30° C.) δ 201.0, 170.7, 169.9, 169.8 9 , 169.5, 76.0, 71.4, 69.1, 68.6, 62.3, 32.0, 29.8, 29.7 , 29.70, 29.6, 29.5, 29.3, 29.25 , 29.2, 29.1, 28.6, 22.8, 20.9, 20.8 8 , 20.8, 14.2, -0.1
〔実施例16〕
 下記式で示される反応を行い、化合物11から化合物12aを製造した。なお、「Ac」はアセチル基を、「Bz」はベンゾイル基を表す。
[Example 16]
Compound 12a was produced from compound 11 by the reaction represented by the following formula. In addition, "Ac" represents an acetyl group, and "Bz" represents a benzoyl group.
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
有機銅アート試薬(organocuprate reagent)の調製
 切削片状マグネシウム(24.3mg,1.00mmol)のTHF溶液(0.5mL)に、2-(5-ブロモ-2-メチルベンジル)-5-(4-フルオロフェニル)チオフェン(162mg,0.50mmol)のTHF溶液(1.5mL)を加え、次いで、1,2-ジブロモエタン(0.03mL)を加え、反応混合物を80℃で3時間還流させた。反応混合物をCuCN(44.8mg,0.50mmol)のTHF懸濁液(1.5mL)に室温で加えた。混合物を室温でさらに10分間撹拌し、次の工程に使用した。
Preparation of organocuprate reagent To a solution of magnesium flakes (24.3 mg, 1.00 mmol) in THF (0.5 mL) was added 2-(5-bromo-2-methylbenzyl)-5-(4). -fluorophenyl)thiophene (162 mg, 0.50 mmol) in THF (1.5 mL) was added followed by 1,2-dibromoethane (0.03 mL) and the reaction mixture was refluxed at 80° C. for 3 hours. . The reaction mixture was added to a THF suspension (1.5 mL) of CuCN (44.8 mg, 0.50 mmol) at room temperature. The mixture was stirred at room temperature for another 10 minutes and used in the next step.
化合物11のケトン化
 上記で調製した有機銅アート試薬に、化合物11(214mg,0.250mmol)のTHF溶液(1.5mL)を加えた。反応混合物を40℃で20時間撹拌し、次いで、水(1mL)を加えて反応をクエンチした。次いで、反応混合物を、セライトパッドを通じてろ過し、酢酸エチル(10mL×3)で洗浄し、NaSOで乾燥させ、濃縮して、黄色の残渣を得た。これをシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=3/7)により精製して、白色固体として化合物12a(128mg,化合物11からの収率58%)を得た。
Ketonization of compound 11 To the organocopperate reagent prepared above was added compound 11 (214 mg, 0.250 mmol) in THF (1.5 mL). The reaction mixture was stirred at 40° C. for 20 hours, then water (1 mL) was added to quench the reaction. The reaction mixture was then filtered through a celite pad, washed with ethyl acetate (10 mL x 3), dried over Na2SO4 and concentrated to give a yellow residue . This was purified by silica gel column chromatography (ethyl acetate/n-hexane=3/7) to obtain compound 12a (128 mg, 58% yield from compound 11) as a white solid.
 化合物12aの分析結果は下記の通りであった。
 Rf:0.3
 融点(Mp):75-76℃
 H NMR(500MHz) δ 7.99-7.93(m,6H),7.82(dd,J=8.3,1.2Hz,2H),7.72(d,J=2.2Hz,1H),7.64(dd,J=8.3,2.2Hz,1H),7.59-7.49(m,4H),7.43-7.40(m,2H),7.40-7.36(m,3H),7.36-7.33(m,3H),7.29(d,J=8.3Hz,1H),7.00-6.96(m,2H),6.77-6.73(m,2H),6.34(d,J=5.1Hz,1H),6.24-6.20(m,1H),6.09(dd,J=6.1,4.3Hz,1H),5.77(d,J=3.1Hz,1H),4.87(dd,J=12.4,3.2Hz,1H),4.52(dd,J=12.4,6.2Hz,1H),3.96(q,J=7.0Hz,2H),3.91(s,2H),1.95(s,3H),1.36(d,J=7.0Hz,3H).
 13C NMR(126MHz) δ 192.4,169.9,166.3,165.4,165.1,157.6,140.3,140.1,133.8,133.43,131.2,130.5,130.0,129.4,128.9,128.7,128.5,127.7,114.6,77.4,77.13,76.9,72.7,70.5,70.2,69.6,63.4,62.8,38.3,20.4,15.0.
 質量分析(HRMS):[M +Na] 計算値 C5143ClO12Na 905.2335,実測値 905.2335.
The analysis results of compound 12a were as follows.
Rf: 0.3
Melting point (Mp): 75-76°C
1 H NMR (500MHz) δ 7.99-7.93 (m, 6H), 7.82 (dd, J = 8.3, 1.2Hz, 2H), 7.72 (d, J = 2.2Hz , 1H), 7.64 (dd, J = 8.3, 2.2Hz, 1H), 7.59-7.49 (m, 4H), 7.43-7.40 (m, 2H), 7 .40-7.36 (m, 3H), 7.36-7.33 (m, 3H), 7.29 (d, J=8.3Hz, 1H), 7.00-6.96 (m, 2H), 6.77-6.73 (m, 2H), 6.34 (d, J = 5.1Hz, 1H), 6.24-6.20 (m, 1H), 6.09 (dd, J = 6.1, 4.3 Hz, 1H), 5.77 (d, J = 3.1 Hz, 1H), 4.87 (dd, J = 12.4, 3.2 Hz, 1H), 4.52 (dd, J = 12.4, 6.2 Hz, 1H), 3.96 (q, J = 7.0 Hz, 2H), 3.91 (s, 2H), 1.95 (s, 3H), 1 .36 (d, J=7.0 Hz, 3H).
13 C NMR (126 MHz) δ 192.4, 169.9, 166.3, 165.4, 165.1, 157.6, 140.3, 140.1, 133.8, 133.43, 131.2 , 130.5, 130.0, 129.4, 128.9, 128.7, 128.5, 127.7, 114.6, 77.4, 77.13, 76.9, 72.7, 70 .5, 70.2, 69.6, 63.4, 62.8, 38.3, 20.4, 15.0.
Mass spectroscopy ( HRMS ): [M+Na] + calcd for C51H43ClO12Na 905.2335, found 905.2335 .
〔実施例17〕
 下記式で示される反応を行い、化合物11から化合物12aa((2R,3R,4S,5R)-2-アセトキシ-6-(4-クロロ-3-(4-(((R)-テトラヒドロフラン-3-イル)オキシ)ベンジル)フェニル)-6-オキソヘキサン-1,3,4,5-テトライルテトラベンゾエート)を製造した。なお、「Ac」はアセチル基を、「Bz」はベンゾイル基を表す。
[Example 17]
The reaction represented by the following formula is performed to convert compound 11 to compound 12aa ((2R,3R,4S,5R)-2-acetoxy-6-(4-chloro-3-(4-(((R)-tetrahydrofuran-3 -yl)oxy)benzyl)phenyl)-6-oxohexane-1,3,4,5-tetrayltetrabenzoate)). In addition, "Ac" represents an acetyl group, and "Bz" represents a benzoyl group.
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
有機銅アート試薬(organocuprate reagent)の調製
 オーブン乾燥させたシュレンク管中、アルゴン雰囲気下、1,2-ジブロモエタン(0.050mL:1~2滴)を、切削片状マグネシウム(47mg,2.04mmol,4当量)及びTHF(3.5mL,7倍容量)を含む混合物に加えた。次いで、(R)-3-(4-(5-ブロモ-2-クロロベンジル)フェノキシ)テトラヒドロフラン(375mg,1.02mmol,2当量)をアルゴン雰囲気下で加え、反応混合物を75~80℃で3時間環流した。室温に冷却した後、THF(1mL×2)を用いて、反応混合物を、CuCN(91mg,1.02mmol,2当量)及びTHF(1mL,2倍容量)の懸濁液の入った別のシュレンク管に移し、室温で10分間維持し、次の工程に使用した。
Preparation of organocuprate reagent In an oven-dried Schlenk tube, 1,2-dibromoethane (0.050 mL: 1-2 drops) was added to magnesium cuttings (47 mg, 2.04 mmol) under an argon atmosphere. , 4 eq) and THF (3.5 mL, 7 vol). (R)-3-(4-(5-bromo-2-chlorobenzyl)phenoxy)tetrahydrofuran (375 mg, 1.02 mmol, 2 eq) was then added under an argon atmosphere and the reaction mixture was stirred at 75-80° C. for 3 hours. Time circulated. After cooling to room temperature, the reaction mixture was quenched with THF (1 mL x 2) through another Schlenk column containing a suspension of CuCN (91 mg, 1.02 mmol, 2 eq) and THF (1 mL, 2 volumes). Transferred to a tube, kept at room temperature for 10 minutes and used in the next step.
化合物11のケトン化
 化合物11((2R,3R,4S,5R)-2-アセトキシ-6-(ドデシルチオ)-6-オキソヘキサン-1,3,4,5-テトライルテトラベンゾエート)(0.428g,0.510mmol,1.00当量)を、THF(1.5mL×2)とともに、上記で調製した有機銅アート試薬に加え、40~50℃に加温した。反応混合物を40~50℃で20時間撹拌した。反応の完了をTLCで確認した後、水(1mL,2倍容量)を加えて反応をクエンチした。反応混合物を、セライトパッドを通じてろ過し、ベッドを酢酸エチル(10mL×3)で洗浄した。ろ液を無水硫酸ナトリウムで乾燥し、ろ過した。溶媒を真空引きすることにより除去して、粗化合物を得た。得られた粗化合物をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/9~4/6)により精製して、オフホワイトの固体として0.27gの化合物12aa(収率57%)を得た。また、0.12gの化合物11を回収した(回収率28%)。
Ketonization of Compound 11 Compound 11 ((2R,3R,4S,5R)-2-acetoxy-6-(dodecylthio)-6-oxohexane-1,3,4,5-tetrayltetrabenzoate) (0.428 g) , 0.510 mmol, 1.00 equiv) was added along with THF (1.5 mL x 2) to the organocopperate reagent prepared above and warmed to 40-50°C. The reaction mixture was stirred at 40-50° C. for 20 hours. After completion of the reaction was confirmed by TLC, water (1 mL, 2 volumes) was added to quench the reaction. The reaction mixture was filtered through a celite pad and the bed was washed with ethyl acetate (10 mL x 3). The filtrate was dried over anhydrous sodium sulfate and filtered. The solvent was removed by pulling a vacuum to give the crude compound. The resulting crude compound was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/9-4/6) to give 0.27 g of compound 12aa (57% yield) as an off-white solid. rice field. Also, 0.12 g of compound 11 was recovered (28% recovery).
 化合物12aaの分析結果は下記の通りであった。
 H NMR(500MHz,CDCl,30℃) δ 8.02-7.87(m,6H),7.85-7.78(m,2H),7.73(dd,J=12.8,4.2Hz,1H),7.65(dd,J=8.3,2.2Hz,1H),7.61-7.48(m,4H),7.45-7.28(m,9H),6.99(d,J=8.7Hz,2H),6.72(d,J=8.7Hz,2H),6.41-6.32(m,1H),6.29-6.21(m,1H),6.08(dd,J=6.1,4.3Hz,1H),5.85-5.74(m,1H),4.91-4.77(m,2H),4.49(ddd,J=32.2,12.4,6.1Hz,1H),4.00-3.91(m,6H),3.89-3.72(m,1H),2.20-2.03(m,3H),1.95(s,3H);
 質量分析(HRMS):[M+Na] 計算値 C5345NaO13Cl 947.2446,実測値 947.2441.
The analysis results of compound 12aa were as follows.
1 H NMR (500 MHz, CDCl 3 , 30° C.) δ 8.02-7.87 (m, 6H), 7.85-7.78 (m, 2H), 7.73 (dd, J=12.8 , 4.2 Hz, 1 H), 7.65 (dd, J = 8.3, 2.2 Hz, 1 H), 7.61-7.48 (m, 4 H), 7.45-7.28 (m, 9H), 6.99 (d, J = 8.7Hz, 2H), 6.72 (d, J = 8.7Hz, 2H), 6.41-6.32 (m, 1H), 6.29- 6.21 (m, 1H), 6.08 (dd, J=6.1, 4.3Hz, 1H), 5.85-5.74 (m, 1H), 4.91-4.77 (m , 2H), 4.49 (ddd, J = 32.2, 12.4, 6.1 Hz, 1H), 4.00-3.91 (m, 6H), 3.89-3.72 (m, 1H), 2.20-2.03 (m, 3H), 1.95 (s, 3H);
Mass spectroscopy (HRMS): [ M +Na] + calcd for C53H45NaO13Cl 947.2446, found 947.2441 .
〔実施例18〕
 下記式で示される反応を行い、化合物10から化合物11bを製造した。なお、「Bz」はベンゾイル基を、「TBS」はtert-ブチルジメチルシリル基を表す。
[Example 18]
Compound 11b was produced from compound 10 by the reaction represented by the following formula. "Bz" represents a benzoyl group, and "TBS" represents a tert-butyldimethylsilyl group.
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
 オーブン乾燥させたシュレンク管中、N下、化合物10(500mg,0.63mmol)をN,N-ジメチルホルムアミド(DMF)(2mL)に溶解した。次いで、イミダゾール(135mg,1.56mmol)を加え、室温で10分間撹拌した。次いで、0℃に冷却し、tert-ブチルジメチルクロロシラン(TBSCl)(190mg,1.26mmol)を加え、室温で16時間撹拌した。反応の完了をTLCで確認した後、20mLの酢酸エチルで希釈し、飽和NHCl水溶液(10mL)を加えて反応をクエンチした。次いで、有機層を塩水(10mL)で洗浄し、硫酸ナトリウムで乾燥し、減圧濃縮して、無色の油状物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/4)により精製して、無色の油状物として化合物11b(137mg,化合物10からの収率27%)を得た。 Compound 10 (500 mg, 0.63 mmol) was dissolved in N,N-dimethylformamide (DMF) (2 mL) under N 2 in an oven-dried Schlenk tube. Imidazole (135 mg, 1.56 mmol) was then added and stirred at room temperature for 10 minutes. After cooling to 0° C., tert-butyldimethylchlorosilane (TBSCl) (190 mg, 1.26 mmol) was added and stirred at room temperature for 16 hours. After completion of the reaction was confirmed by TLC, it was diluted with 20 mL of ethyl acetate and saturated aqueous NH 4 Cl (10 mL) was added to quench the reaction. The organic layer was then washed with brine (10 mL), dried over sodium sulfate and concentrated under reduced pressure to give a colorless oil. The resulting crude product was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/4) to give compound 11b (137 mg, 27% yield from compound 10) as a colorless oil. .
 化合物11bの分析結果は下記の通りであった。
 Rf:0.6
 H NMR(301MHz,) δ 8.11-8.04(m,4H),8.01-7.96(m,2H),7.91-7.86(m,2H),7.60-7.49(m,3H),7.48-7.41(m,5H),7.39(dt,J=3.1,1.5Hz,1H),7.36(s,1H),7.32-7.26(m,2H),6.19(dd,J=6.4,2.3Hz,1H),5.89(d,J=3.7Hz,1H),5.64(dd,J=6.1,2.3Hz,1H),4.75(dd,J=12.2,3.7Hz,1H),4.62(d,J=6.1Hz,1H),4.56(dd,J=12.2,6.3Hz,1H),2.49(dd,J=13.2,7.9Hz,1H),2.07-1.95(m,1H),1.29-1.05(m,20H),0.98-0.93(m,9H),0.87(t,J=6.7Hz,3H),0.13(d,J=2.9Hz,6H).
The analysis results of compound 11b were as follows.
Rf: 0.6
1 H NMR (301 MHz,) δ 8.11-8.04 (m, 4H), 8.01-7.96 (m, 2H), 7.91-7.86 (m, 2H), 7.60 -7.49 (m, 3H), 7.48-7.41 (m, 5H), 7.39 (dt, J = 3.1, 1.5Hz, 1H), 7.36 (s, 1H) , 7.32-7.26 (m, 2H), 6.19 (dd, J=6.4, 2.3Hz, 1H), 5.89 (d, J=3.7Hz, 1H), 5. 64 (dd, J = 6.1, 2.3Hz, 1H), 4.75 (dd, J = 12.2, 3.7Hz, 1H), 4.62 (d, J = 6.1Hz, 1H) , 4.56 (dd, J = 12.2, 6.3 Hz, 1H), 2.49 (dd, J = 13.2, 7.9 Hz, 1H), 2.07-1.95 (m, 1H ), 1.29-1.05 (m, 20H), 0.98-0.93 (m, 9H), 0.87 (t, J = 6.7Hz, 3H), 0.13 (d, J = 2.9Hz, 6H).
〔実施例19〕
 下記式で示される反応を行い、化合物10から化合物11cを製造した。なお、「Bz」はベンゾイル基を表す。
[Example 19]
Compound 11c was produced from compound 10 by the reaction represented by the following formula. "Bz" represents a benzoyl group.
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
 洗浄した丸底フラスコに、化合物10(500mg,0.63mmol)のCHCl溶液(1.2mL)を0℃で加え、ギ酸(0.14mL,0.75mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)(117mg,0.75mmol)及び4-ジメチルアミノピリジン(DMAP)(4mg,0.03mmol)を加え、室温で12時間撹拌した。次いで、反応混合物を酢酸エチルで希釈し、飽和NaHCO水溶液(10mL)及び塩水(10mL)で洗浄し、NaSOで乾燥し、ろ過し、真空引きすることにより濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/4)により精製して、無色の油状物として化合物11c(125mg,化合物10からの収率30%)を得た。 A solution of compound 10 (500 mg, 0.63 mmol) in CH 2 Cl 2 (1.2 mL) was added to a washed round bottom flask at 0° C., formic acid (0.14 mL, 0.75 mmol), 1-(3-dimethyl Aminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl) (117 mg, 0.75 mmol) and 4-dimethylaminopyridine (DMAP) (4 mg, 0.03 mmol) were added and stirred at room temperature for 12 hours. The reaction mixture was then diluted with ethyl acetate, washed with saturated aqueous NaHCO 3 (10 mL) and brine (10 mL), dried over Na 2 SO 4 , filtered and concentrated by applying vacuum. The resulting crude product was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/4) to give compound 11c (125 mg, 30% yield from compound 10) as a colorless oil. .
 化合物11cの分析結果は下記の通りであった。
Rf:0.6
H NMR(500MHz) δ 8.17(s,1H),8.00(dt,J=7.2,4.1Hz,4H),7.98-7.92(m,4H),7.57-7.48(m,4H),7.41(ddd,J=7.7,3.7,1.8Hz,4H),7.36(td,J=7.8,4.2Hz,4H),6.24-6.19(m,1H),6.13(t,J=5.5Hz,1H),5.90(d,J=3.5Hz,1H),5.74(td,J=5.8,4.1Hz,1H),4.88(dd,J=12.3,3.8Hz,1H),4.58(dd,J=12.3,5.8Hz,1H),2.74(t,J=7.3Hz,2H),1.65(d,J=3.6Hz,1H),1.34(ddd,J=9.9,9.4,4.8Hz,2H),1.26(dd,J=10.8,6.7Hz,11H),1.18-1.14(m,2H),1.12(d,J=9.4Hz,4H),0.87(dd,J=8.4,5.4Hz,3H).
 質量分析(HRMS):[M+Na] 計算値 C475211S 847.3128,実測値 847.31225
The analysis results of compound 11c were as follows.
Rf: 0.6
1 H NMR (500 MHz) δ 8.17 (s, 1H), 8.00 (dt, J=7.2, 4.1 Hz, 4H), 7.98-7.92 (m, 4H), 7. 57-7.48 (m, 4H), 7.41 (ddd, J = 7.7, 3.7, 1.8Hz, 4H), 7.36 (td, J = 7.8, 4.2Hz, 4H), 6.24-6.19 (m, 1H), 6.13 (t, J = 5.5Hz, 1H), 5.90 (d, J = 3.5Hz, 1H), 5.74 ( td, J = 5.8, 4.1 Hz, 1H), 4.88 (dd, J = 12.3, 3.8 Hz, 1H), 4.58 (dd, J = 12.3, 5.8 Hz, 1H), 2.74 (t, J = 7.3 Hz, 2H), 1.65 (d, J = 3.6 Hz, 1H), 1.34 (ddd, J = 9.9, 9.4, 4 .8Hz, 2H), 1.26 (dd, J = 10.8, 6.7Hz, 11H), 1.18-1.14 (m, 2H), 1.12 (d, J = 9.4Hz, 4H), 0.87 (dd, J=8.4, 5.4 Hz, 3H).
Mass spectroscopy (HRMS ) : [M+Na] + calcd for C47H52O11S 847.3128 , found 847.31225.
〔実施例20〕
 下記式で示される反応を行い、化合物11cから化合物12cを製造した。なお、「Bz」はベンゾイル基を表す。
[Example 20]
Compound 12c was produced from compound 11c by the reaction represented by the following formula. "Bz" represents a benzoyl group.
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
有機銅アート試薬(organocuprate reagent)の調製
 切削片状マグネシウム(41mg,1.70mmol)のTHF溶液(0.5mL)に、2-(5-ブロモ-2-メチルベンジル)-5-(4-フルオロフェニル)チオフェン(96mg,0.85mmol)のTHF溶液(1.5mL)を加え、次いで、1,2-ジブロモエタン(0.025mL)を加え、反応混合物を80℃で3時間還流させた。反応混合物を、CuCN(76mg,0.8495mmol)のTHF懸濁液(1.5mL)に室温で加えた。混合物を室温でさらに10分間撹拌し、次の工程に使用した。
Preparation of organocuprate reagent To a solution of magnesium flakes (41 mg, 1.70 mmol) in THF (0.5 mL) was added 2-(5-bromo-2-methylbenzyl)-5-(4-fluoro). A THF solution (1.5 mL) of phenyl)thiophene (96 mg, 0.85 mmol) was added followed by 1,2-dibromoethane (0.025 mL) and the reaction mixture was refluxed at 80° C. for 3 hours. The reaction mixture was added to a THF suspension (1.5 mL) of CuCN (76 mg, 0.8495 mmol) at room temperature. The mixture was stirred at room temperature for another 10 minutes and used in the next step.
化合物11cのケトン化
 上記で調製した有機銅アート試薬に、化合物11c(350mg,0.43mmol)のTHF溶液(1.5mL)を加えた。反応混合物を40℃で20時間撹拌した後、水(1mL)を加えて反応をクエンチした。次いで、反応混合物を、セライトパッドを通じてろ過し、酢酸エチル(10mL×3)で洗浄し、NaSOで乾燥し、濃縮して、黄色の残渣を得た。これをシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=3/7)により精製して、無色の油状物として化合物12c(87mg,化合物11cからの収率24%)を得た。
Ketonization of Compound 11c To the organocopperate reagent prepared above was added compound 11c (350 mg, 0.43 mmol) in THF (1.5 mL). After the reaction mixture was stirred at 40° C. for 20 hours, water (1 mL) was added to quench the reaction. The reaction mixture was then filtered through a celite pad, washed with ethyl acetate (10 mL x 3), dried over Na2SO4 and concentrated to give a yellow residue . This was purified by silica gel column chromatography (ethyl acetate/n-hexane=3/7) to obtain compound 12c (87 mg, 24% yield from compound 11c) as a colorless oil.
 化合物12cの分析結果は下記の通りであった。
 Rf:0.3
 H NMR(300MHz,CDCl 30℃) δ 8.10(s,1H),8.04-7.25(m,7H),7.02-6.97(m,2H),6.77-6.71(m,2H),6.51(dd,J=5.3,3.6Hz,1H)6.29(dd,J=5.3,3.6Hz,1H),6.11(t,J=5.5Hz,1H),5.79(t,J=2.8Hz,1H),4.81(dd,J=12.2,4.0Hz,1H),4.48(dd,J=12.2,5.9Hz,1H),3.99-3.91(m,4H),1.37(t,J=12.5Hz,3H).
 質量分析(HRMS):[M+Na] 計算値 C5041ClO12 Na 891.2185,実測値 891.21788
The analytical results of compound 12c were as follows.
Rf: 0.3
1 H NMR (300 MHz, CDCl 3 30° C.) δ 8.10 (s, 1H), 8.04-7.25 (m, 7H), 7.02-6.97 (m, 2H), 6.77 -6.71 (m, 2H), 6.51 (dd, J = 5.3, 3.6Hz, 1H) 6.29 (dd, J = 5.3, 3.6Hz, 1H), 6.11 (t, J = 5.5 Hz, 1 H), 5.79 (t, J = 2.8 Hz, 1 H), 4.81 (dd, J = 12.2, 4.0 Hz, 1 H), 4.48 ( dd, J=12.2, 5.9 Hz, 1 H), 3.99-3.91 (m, 4 H), 1.37 (t, J=12.5 Hz, 3 H).
Mass spectroscopy (HRMS ) : [M+Na] + calcd for C50H41ClO12Na 891.2185, found 891.21788 .
〔実施例21〕
 下記式で示される反応を行い、化合物1bから化合物2を製造した。なお、「Ac」はアセチル基を、「iPr」はイソプロピル基を表す。
[Example 21]
Compound 2 was produced from compound 1b by the reaction represented by the following formula. In addition, "Ac" represents an acetyl group, and "iPr" represents an isopropyl group.
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
 真空状態にした後、窒素を充填した丸底フラスコに、化合物1b(20g,56mmol)を加えた後、乾燥THF(100mL)を加えた、次いで、0℃に冷却し、C1225SH(16.7mL,70mmol)を加え、次いで、PrMgCl(35.0mL,70mmol)をゆっくりと加えた。1時間後、反応の完了をTLCで確認し、酢酸エチルで希釈し、1N HCl(50mL)を加えて反応をクエンチした。次いで、有機層を飽和NaHCO水溶液(50mL)及び塩水(50mL)で洗浄して、薄黄色の固体を得た。この粗固体を150mLのヘキサンに70℃で溶解し、次いで、0℃までゆっくりと冷却し、白色の固体として化合物2(21.4g,化合物1bからの収率68%)を得た。 After applying vacuum, compound 1b (20 g, 56 mmol) was added to a nitrogen-filled round-bottomed flask followed by dry THF (100 mL), then cooled to 0° C. and treated with C 12 H 25 SH ( 16.7 mL, 70 mmol) was added followed by the slow addition of 1 PrMgCl (35.0 mL, 70 mmol). After 1 hour, the reaction was confirmed complete by TLC, diluted with ethyl acetate and quenched by adding 1N HCl (50 mL). The organic layer was then washed with saturated aqueous NaHCO 3 (50 mL) and brine (50 mL) to give a pale yellow solid. This crude solid was dissolved in 150 mL of hexane at 70° C. and then slowly cooled to 0° C. to give compound 2 (21.4 g, 68% yield from compound 1b) as a white solid.
 化合物2の分析結果は下記の通りであった。
 H NMR(500MHz) δ 5.54(dd,J=7.8,3.9Hz,1H),5.49(dd,J=3.8,2.5Hz,1H),5.14(d,J=2.9Hz,1H),4.44(dd,J=8.5,2.3Hz,1H),4.28(dd,J=12.4,3.0Hz,1H),4.15(dd,J=12.4,4.9Hz,1H),2.87(dd,J=7.3,5.8Hz,2H),2.07(d,J=8.2Hz,12H),1.53(dt,J=13.7,4.7Hz,2H),1.24(s,19H),0.86(d,J=7.1Hz,3H).
The analytical results of compound 2 were as follows.
1 H NMR (500 MHz) δ 5.54 (dd, J=7.8, 3.9 Hz, 1 H), 5.49 (dd, J=3.8, 2.5 Hz, 1 H), 5.14 (d , J=2.9 Hz, 1 H), 4.44 (dd, J=8.5, 2.3 Hz, 1 H), 4.28 (dd, J=12.4, 3.0 Hz, 1 H), 4. 15 (dd, J = 12.4, 4.9Hz, 1H), 2.87 (dd, J = 7.3, 5.8Hz, 2H), 2.07 (d, J = 8.2Hz, 12H) , 1.53 (dt, J=13.7, 4.7 Hz, 2H), 1.24 (s, 19H), 0.86 (d, J=7.1 Hz, 3H).
〔実施例22〕
 下記式で示される反応を行い、化合物2から化合物3bを製造した。なお、「Ac」はアセチル基を、「THP」は、テトラヒドロピラニル基を表す。
[Example 22]
Compound 3b was produced from compound 2 by the reaction represented by the following formula. In addition, "Ac" represents an acetyl group, and "THP" represents a tetrahydropyranyl group.
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
 0℃の化合物2(3g,5.4719mmol)のCHCl溶液(11mL)に、p-トルエンスルホン酸一水和物(TsOH・HO)(17mg,0.0912mmol)を加え、次いで、3,4-ジヒドロ-2H-ピラン(1.5mL,16.4157mmol)を加えた。0℃で5分間撹拌した後、反応混合物を23℃に加温し、3時間撹拌した。飽和NaHCO水溶液(5mL)を加えて反応をクエンチし、相分離した。有機層をNaSOで乾燥し、減圧濃縮して、黄色の残渣を得た。これをシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=3/7)により精製して、無色の油状物として化合物3b(3g,化合物2からの収率85%)を得た(Ref.J.Am.Chem.Soc.2013,135,46,pp.17266-17269)。 To a CH 2 Cl 2 solution (11 mL) of compound 2 (3 g, 5.4719 mmol) at 0° C. was added p-toluenesulfonic acid monohydrate (TsOH.H 2 O) (17 mg, 0.0912 mmol) followed by , 3,4-dihydro-2H-pyran (1.5 mL, 16.4157 mmol) was added. After stirring for 5 minutes at 0° C., the reaction mixture was warmed to 23° C. and stirred for 3 hours. Saturated aqueous NaHCO 3 (5 mL) was added to quench the reaction and the phases were separated. The organic layer was dried over Na 2 SO 4 and concentrated under reduced pressure to give a yellow residue. This was purified by silica gel column chromatography (ethyl acetate/n-hexane=3/7) to give compound 3b (3 g, 85% yield from compound 2) as a colorless oil (Ref. J. Mol. Am. Chem. Soc. 2013, 135, 46, pp. 17266-17269).
 化合物3bの分析結果は下記の通りであった。
 Rf:0.6
 H NMR(500MHz,) δ 5.46-5.34(m,2H),5.28-5.12(m,1H),4.64(dd,J=44.2,42.1Hz,1H),4.48-4.44(m,1H),4.28-4.21(m,1H),4.06-3.99(m,1H),3.89-3.79(m,1H),3.51-3.42(m,1H),2.86-2.78(m,2H),2.10-1.99(m,12H),1.79-1.73(m,2H),1.57-1.47(m,6H),1.35-1.18(m,18H),0.85(ddd,J=7.0,4.9,1.9Hz,3H).
 13C NMR(126MHz) δ 199.8,199.3,170.6,169.9,169.7,99.3,98.8,78.8,77.4,77.1,76.9,70.5,70.3,69.2,68.6,63.2,62.5,62.1,32.0,30.1,29.7,29.4,29.1,28.6,25.2,22.8,20.8,19.5,18.5,14.2.
The analysis results of compound 3b were as follows.
Rf: 0.6
1 H NMR (500 MHz,) δ 5.46-5.34 (m, 2H), 5.28-5.12 (m, 1H), 4.64 (dd, J = 44.2, 42.1 Hz, 1H), 4.48-4.44 (m, 1H), 4.28-4.21 (m, 1H), 4.06-3.99 (m, 1H), 3.89-3.79 ( m, 1H), 3.51-3.42 (m, 1H), 2.86-2.78 (m, 2H), 2.10-1.99 (m, 12H), 1.79-1. 73 (m, 2H), 1.57-1.47 (m, 6H), 1.35-1.18 (m, 18H), 0.85 (ddd, J = 7.0, 4.9, 1 .9Hz, 3H).
13 C NMR (126 MHz) δ 199.8, 199.3, 170.6, 169.9, 169.7, 99.3, 98.8, 78.8, 77.4, 77.1, 76.9 , 70.5, 70.3, 69.2, 68.6, 63.2, 62.5, 62.1, 32.0, 30.1, 29.7, 29.4, 29.1, 28 .6, 25.2, 22.8, 20.8, 19.5, 18.5, 14.2.
〔実施例23〕
 下記式で示される反応を行い、化合物3bから化合物4bを製造した。なお、「Ac」はアセチル基を、「THP」は、テトラヒドロピラニル基を表す。
[Example 23]
Compound 4b was produced from compound 3b by the reaction represented by the following formula. In addition, "Ac" represents an acetyl group, and "THP" represents a tetrahydropyranyl group.
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
有機銅アート試薬(organocuprate reagent)の調製
 切削片状マグネシウム(456mg,19mmol)のTHF溶液(0.5mL)に、2-(5-ブロモ-2-メチルベンジル)-5-(4-フルオロフェニル)チオフェン(2.75g,9.5mmol)のTHF溶液(1.5mL)を加え、次いで、1,2-ジブロモエタン(0.023mL)を加え、反応混合物を80℃で3時間還流させた。反応混合物を、CuCN(855mg,9.5mmol)のTHF懸濁液(1.5mL)に室温で加えた。混合物を室温でさらに10分間撹拌し、次の工程に使用した。
Preparation of organocuprate reagent To a solution of magnesium flakes (456 mg, 19 mmol) in THF (0.5 mL) was added 2-(5-bromo-2-methylbenzyl)-5-(4-fluorophenyl). A solution of thiophene (2.75 g, 9.5 mmol) in THF (1.5 mL) was added followed by 1,2-dibromoethane (0.023 mL) and the reaction mixture was refluxed at 80° C. for 3 hours. The reaction mixture was added to a THF suspension (1.5 mL) of CuCN (855 mg, 9.5 mmol) at room temperature. The mixture was stirred at room temperature for another 10 minutes and used in the next step.
化合物3bのケトン化
 上記で調製した有機銅アート試薬に、化合物3b(3g,4.75mmol)のTHF溶液(1.5mL)を加えた。反応混合物を40℃で20時間撹拌した後、水(1mL)を加えて反応をクエンチした。次いで、反応混合物を、セライトパッドを通じてろ過し、酢酸エチル(10mL×3)で洗浄し、NaSOで乾燥し、濃縮して、黄色の残渣を得た。これをシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=3/7)により精製して、無色の油状物として化合物4b(87mg,化合物3bからの収率24%)を得た。
Ketonization of Compound 3b To the organocopperate reagent prepared above was added compound 3b (3 g, 4.75 mmol) in THF (1.5 mL). After the reaction mixture was stirred at 40° C. for 20 hours, water (1 mL) was added to quench the reaction. The reaction mixture was then filtered through a celite pad, washed with ethyl acetate (10 mL x 3), dried over Na2SO4 and concentrated to give a yellow residue . This was purified by silica gel column chromatography (ethyl acetate/n-hexane=3/7) to obtain compound 4b (87 mg, 24% yield from compound 3b) as a colorless oil.
 化合物4bの分析結果は下記の通りであった。
 Rf:0.4
 H NMR(500MHz) δ 7.85(d,J=2.1Hz,1H),7.80(dd,J=8.4,2.1Hz,1H),7.44(d,J=8.3Hz,1H),7.09(dd,J=9.2,2.3Hz,2H),6.83-6.75(m,2H),5.66(dd,J=7.1,3.5Hz,1H),5.30(dd,J=7.5,3.5Hz,1H),5.21(ddd,J=7.6,6.0,3.1Hz,1H),5.02(d,J=7.1Hz,1H),4.47(t,J=3.4Hz,1H),4.21(dd,J=12.3,3.2Hz,1H),4.11-3.94(m,5H),3.80-3.71(m,1H),3.46-3.39(m,1H),2.03-1.92(m,12H),1.72-1.65(m,1H),1.56-1.42(m,5H),1.36(d,J=7.0Hz,3H).
 13C NMR (126MHz) δ 192.4,169.9,166.3,165.4,165.1,157.6,140.3,140.1,133.8,133.4,131.2,130.5,130.0,129.4,128.9,128.7,128.5,127.7,114.6,77.4,77.1,76.9,72.6,70.5,70.2,69.6,63.4,62.8,38.3,20.4,15.0.
The analysis results of compound 4b were as follows.
Rf: 0.4
1 H NMR (500 MHz) δ 7.85 (d, J=2.1 Hz, 1 H), 7.80 (dd, J=8.4, 2.1 Hz, 1 H), 7.44 (d, J=8 .3Hz, 1H), 7.09 (dd, J = 9.2, 2.3Hz, 2H), 6.83-6.75 (m, 2H), 5.66 (dd, J = 7.1, 3.5Hz, 1H), 5.30 (dd, J = 7.5, 3.5Hz, 1H), 5.21 (ddd, J = 7.6, 6.0, 3.1Hz, 1H), 5 .02 (d, J=7.1 Hz, 1 H), 4.47 (t, J=3.4 Hz, 1 H), 4.21 (dd, J=12.3, 3.2 Hz, 1 H), 4. 11-3.94 (m, 5H), 3.80-3.71 (m, 1H), 3.46-3.39 (m, 1H), 2.03-1.92 (m, 12H), 1.72-1.65 (m, 1H), 1.56-1.42 (m, 5H), 1.36 (d, J=7.0Hz, 3H).
13 C NMR (126 MHz) δ 192.4, 169.9, 166.3, 165.4, 165.1, 157.6, 140.3, 140.1, 133.8, 133.4, 131.2 , 130.5, 130.0, 129.4, 128.9, 128.7, 128.5, 127.7, 114.6, 77.4, 77.1, 76.9, 72.6, 70 .5, 70.2, 69.6, 63.4, 62.8, 38.3, 20.4, 15.0.
〔実施例24〕
 下記式で示される反応を行い、化合物4bから化合物6bを製造した。なお、「Ac」はアセチル基を、「THP」は、テトラヒドロピラニル基を表す。
[Example 24]
Compound 6b was produced from compound 4b by the reaction represented by the following formula. In addition, "Ac" represents an acetyl group, and "THP" represents a tetrahydropyranyl group.
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
 丸底フラスコ中、窒素下、化合物4b(250mg,0.3165mmol)をメタノール(約0.5mL)に溶解し、0℃に冷却した。この溶液にアセチルクロリド(AcCl)(45μL,0.633mmol)をゆっくりと加えた。完全に加えた後、同温度で5分間撹拌した。出発原料が消費されたことをTLCで確認した後、メチルtert-ブチルエーテル(MTBE)で希釈し、飽和NaHCO水溶液(10mL)を加えて反応をクエンチし、室温まで加温し、MTBE層を分離し、塩水(10mL)で洗浄した。次いで、MTBE層を、NaSOで乾燥し、濃縮して、230mgの薄黄色の半固体状の粗化合物として化合物6b(化合物4bからの収率:定量的収率)で得た。この粗化合物をさらに精製することなく次工程に直接使用した。 In a round bottom flask under nitrogen, compound 4b (250 mg, 0.3165 mmol) was dissolved in methanol (~0.5 mL) and cooled to 0°C. Acetyl chloride (AcCl) (45 μL, 0.633 mmol) was slowly added to this solution. After complete addition, the mixture was stirred at the same temperature for 5 minutes. After confirming the consumption of the starting material by TLC, dilute with methyl tert-butyl ether (MTBE), add saturated aqueous NaHCO 3 (10 mL) to quench the reaction, warm to room temperature and separate the MTBE layer. and washed with brine (10 mL). The MTBE layer was then dried over Na 2 SO 4 and concentrated to give compound 6b (yield from compound 4b: quantitative yield) as 230 mg of light yellow semi-solid crude compound. This crude compound was used directly for the next step without further purification.
 化合物6bの分析結果は下記の通りであった。
 Rf:0.3(酢酸エチル/n-ヘキサン=3/7)
 H NMR(500MHz) δ 7.64(d,J=7.3Hz,2H),7.49-7.46(m,1H),7.07(d,J=8.1Hz,2H),6.83-6.80(m,2H),5.58-5.54(m,1H),5.30(dd,J=3.6,1.9Hz,1H),5.23-5.19(m,2H),4.29(dd,J=12.4,1.1Hz,1H),4.09(d,J=6.2Hz,1H),4.06(s,2H),4.00-3.96(m,2H),3.73(d,J=7.6Hz,1H),2.03(dd,J=13.8,1.0Hz,6H),1.97(d,J=1.0Hz,3H),1.87(d,J=1.0Hz,3H),1.37(td,J=6.9,1.0Hz,3H).
 13C NMR(126MHz) δ 197.6,170.9,170.0,169.8,157.8,140.8,140.5,132.6,130.8,130.3,130.0,127.4,114.7,77.4,77.2,76.9,71.8,70.5,69.9,68.7,63.5,62.2,38.4,29.8,27.1,20.9,20.3,14.9.
The analytical results of compound 6b were as follows.
Rf: 0.3 (ethyl acetate/n-hexane=3/7)
1 H NMR (500 MHz) δ 7.64 (d, J=7.3 Hz, 2 H), 7.49-7.46 (m, 1 H), 7.07 (d, J=8.1 Hz, 2 H), 6.83-6.80 (m, 2H), 5.58-5.54 (m, 1H), 5.30 (dd, J=3.6, 1.9Hz, 1H), 5.23-5 .19 (m, 2H), 4.29 (dd, J = 12.4, 1.1Hz, 1H), 4.09 (d, J = 6.2Hz, 1H), 4.06 (s, 2H) , 4.00-3.96 (m, 2H), 3.73 (d, J=7.6Hz, 1H), 2.03 (dd, J=13.8, 1.0Hz, 6H), 1. 97 (d, J=1.0 Hz, 3H), 1.87 (d, J=1.0 Hz, 3H), 1.37 (td, J=6.9, 1.0 Hz, 3H).
13 C NMR (126 MHz) δ 197.6, 170.9, 170.0, 169.8, 157.8, 140.8, 140.5, 132.6, 130.8, 130.3, 130.0 , 127.4, 114.7, 77.4, 77.2, 76.9, 71.8, 70.5, 69.9, 68.7, 63.5, 62.2, 38.4, 29 .8, 27.1, 20.9, 20.3, 14.9.
〔実施例25〕
 下記式で示される反応を行い、化合物2から化合物3c((2R,3R,4S,5R)-2-(2-クロロアセトキシ)-6-(ドデシルチオ)-6-オキソヘキサン-1,3,4,5-テトライルテトラアセテート)を製造した。なお、「Ac」はアセチル基を表す。
[Example 25]
The reaction represented by the following formula is carried out to convert compound 2 to compound 3c ((2R,3R,4S,5R)-2-(2-chloroacetoxy)-6-(dodecylthio)-6-oxohexane-1,3,4 , 5-tetrayltetraacetate) was prepared. "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000133
 窒素雰囲気下、化合物2(50mg,0.091mmol,1当量)のジクロロメタン溶液(2mL)に、ピリジン(21.6mg,0.273mmol,3当量)を加え、次いで、クロロアセチルクロリド(20.5mg,0.182mmol,2当量)を10~15℃で滴下した。完全に加えた後、反応混合物を室温まで加温し、6時間維持した。TLCにより反応の進行をモニターした。反応混合物をエバポレーションにより乾燥した。得られた粗化合物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 9.5/0.5→8/2)により精製して、無色の油状物として46mgの化合物3cを(収率82%)を得た。 Under a nitrogen atmosphere, pyridine (21.6 mg, 0.273 mmol, 3 eq) was added to a dichloromethane solution (2 mL) of compound 2 (50 mg, 0.091 mmol, 1 eq), followed by chloroacetyl chloride (20.5 mg, 0.182 mmol, 2 eq.) was added dropwise at 10-15°C. After complete addition, the reaction mixture was warmed to room temperature and maintained for 6 hours. The progress of the reaction was monitored by TLC. The reaction mixture was dried by evaporation. The resulting crude compound was purified by silica gel column chromatography (hexane/ethyl acetate 9.5/0.5→8/2) to give 46 mg of compound 3c (yield 82%) as a colorless oil. rice field.
 化合物3cの分析結果は下記の通りであった。
 H NMR(500MHz,CDCl,30℃) δ 5.68(dd,J=5.9,3.8Hz,1H),5.54(d,J=3.8Hz,1H),5.42(t,J=5.7Hz,1H),4.96(dd,J=10.3,5.5Hz,1H),4.35-4.27(m,2H),4.24(d,J=15.4Hz,1H),4.10(dd,J=12.1,5.6Hz,1H),2.86(td,J=7.3,4.6Hz,2H),2.08(s,3H),2.07(s,3H),2.02(s,6H),1.55-1.44(m,2H),1.37-1.16(m,18H),0.85(t,J=7.0Hz,3H);
 13C{H} NMR(126MHz,CDCl,30℃) δ 194.82,170.39,169.87,169.57,169.10,166.44,76.68,69.41,68.82,68.68,61.19,40.44,31.84,29.57,29.56,29.54,29.49,29.38,29.27,28.97,28.82,28.71,22.62,20.67,20.64,20.57,20.27,14.06.
The analytical results of compound 3c were as follows.
1 H NMR (500 MHz, CDCl 3 , 30° C.) δ 5.68 (dd, J=5.9, 3.8 Hz, 1 H), 5.54 (d, J=3.8 Hz, 1 H), 5.42 (t, J = 5.7Hz, 1H), 4.96 (dd, J = 10.3, 5.5Hz, 1H), 4.35-4.27 (m, 2H), 4.24 (d, J = 15.4Hz, 1H), 4.10 (dd, J = 12.1, 5.6Hz, 1H), 2.86 (td, J = 7.3, 4.6Hz, 2H), 2.08 (s, 3H), 2.07 (s, 3H), 2.02 (s, 6H), 1.55-1.44 (m, 2H), 1.37-1.16 (m, 18H), 0.85 (t, J = 7.0 Hz, 3H);
13 C{ 1 H} NMR (126 MHz, CDCl 3 , 30° C.) δ 194.82, 170.39, 169.87, 169.57, 169.10, 166.44, 76.68, 69.41, 68 .82, 68.68, 61.19, 40.44, 31.84, 29.57, 29.56, 29.54, 29.49, 29.38, 29.27, 28.97, 28.82 , 28.71, 22.62, 20.67, 20.64, 20.57, 20.27, 14.06.
〔実施例26〕
 下記式で示される反応を行い、化合物2から化合物3d((2R,3R,4S,5R)-6-(ドデシルチオ)-2-((2-メトキシプロパン-2-イル)オキシ)-6-オキソヘキサン-1,3,4,5-テトライルテトラアセテート)を製造した。なお、「Ac」はアセチル基を表す。
[Example 26]
The reaction represented by the following formula is carried out to convert compound 2 to compound 3d ((2R,3R,4S,5R)-6-(dodecylthio)-2-((2-methoxypropan-2-yl)oxy)-6-oxo hexane-1,3,4,5-tetrayltetraacetate) was prepared. "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000134
 オーブン乾燥させたシュレンク管中、2-メトキシプロペン(1.05mL,10.94mmol,2当量)を、化合物2(3g,5.47mmol,1当量)、パラトルエンスルホン酸ピリジン塩(PPTS)(137mg,0.547mmol,0.1当量)及びジクロロメタン(DCM)(30mL,3倍容量)を含む氷冷溶液に0~5℃で加えた。反応混合物を0~5℃で4時間撹拌した。TLCにより反応の進行をモニターした。次いで、水(30mL)及びトリエチルアミン(3mL)を加えて反応をクエンチした。有機層を水(20mL)で洗浄し、硫酸ナトリウムで乾燥し、ろ過した。溶媒を真空引きにより除去して、粗化合物を得た。得られた粗化合物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 9.5/0.5→8/2)により精製して、薄黄色の油状物として3.3gの化合物3d(収率97%)を得た。 In an oven-dried Schlenk tube, 2-methoxypropene (1.05 mL, 10.94 mmol, 2 eq) was added to compound 2 (3 g, 5.47 mmol, 1 eq), paratoluenesulfonic acid pyridine salt (PPTS) (137 mg). , 0.547 mmol, 0.1 equiv) and dichloromethane (DCM) (30 mL, 3 volumes) at 0-5°C. The reaction mixture was stirred at 0-5° C. for 4 hours. The progress of the reaction was monitored by TLC. Water (30 mL) and triethylamine (3 mL) were then added to quench the reaction. The organic layer was washed with water (20 mL), dried over sodium sulfate and filtered. Solvent was removed by vacuum to give the crude compound. The resulting crude compound was purified by silica gel column chromatography (hexane/ethyl acetate 9.5/0.5→8/2) to give 3.3 g of compound 3d (97% yield) as a pale yellow oil. got
 化合物3dの分析結果は下記の通りであった。
 H NMR(500MHz,CDCl,30℃) δ 5.37(dd,J=7.3,3.0Hz,1H),5.26(dd,J=7.1,3.0Hz,1H),5.19(td,J=6.7,3.2Hz,1H),4.43(d,J=7.1Hz,1H),4.25(dd,J=12.3,3.2Hz,1H),4.01(dd,J=12.3,6.5Hz,1H),3.21(s,3H),2.94-2.73(m,2H),2.10(s,3H),2.07(s,3H),2.02(s,6H),1.59-1.47(m,2H),1.39(s,3H),1.33(s,3H),1.31-1.16(m,18H),0.85(t,J=6.7Hz,3H);
 13C{H} NMR(126MHz,CDCl,30℃) δ 199.47,170.52,169.76,169.72,169.49,102.68,74.36,70.49,68.78,68.17,62.21,49.89,31.85,29.57,29.56,29.51,29.43,29.28,29.16,29.05,28.84,28.53,24.62,24.60,22.62,20.77,20.74,20.74,20.64,14.06.
The analysis results of compound 3d were as follows.
1 H NMR (500 MHz, CDCl 3 , 30° C.) δ 5.37 (dd, J=7.3, 3.0 Hz, 1 H), 5.26 (dd, J=7.1, 3.0 Hz, 1 H) , 5.19 (td, J=6.7, 3.2 Hz, 1 H), 4.43 (d, J=7.1 Hz, 1 H), 4.25 (dd, J=12.3, 3.2 Hz , 1H), 4.01 (dd, J = 12.3, 6.5Hz, 1H), 3.21 (s, 3H), 2.94-2.73 (m, 2H), 2.10 (s , 3H), 2.07 (s, 3H), 2.02 (s, 6H), 1.59-1.47 (m, 2H), 1.39 (s, 3H), 1.33 (s, 3H), 1.31-1.16 (m, 18H), 0.85 (t, J=6.7Hz, 3H);
13 C{ 1 H} NMR (126 MHz, CDCl 3 , 30° C.) δ 199.47, 170.52, 169.76, 169.72, 169.49, 102.68, 74.36, 70.49, 68 .78, 68.17, 62.21, 49.89, 31.85, 29.57, 29.56, 29.51, 29.43, 29.28, 29.16, 29.05, 28.84 , 28.53, 24.62, 24.60, 22.62, 20.77, 20.74, 20.74, 20.64, 14.06.
〔実施例27〕
 下記式で示される反応を行い、化合物2から化合物3e((2R,3R,4S,5R)-2-((tert-ブトキシカルボニル)オキシ)-6-(ドデシルチオ)-6-オキソヘキサン-1,3,4,5-テトライルテトラアセテート)を製造した。なお、「Ac」はアセチル基を表す。
[Example 27]
The reaction represented by the following formula is carried out to convert compound 2 to compound 3e ((2R,3R,4S,5R)-2-((tert-butoxycarbonyl)oxy)-6-(dodecylthio)-6-oxohexane-1, 3,4,5-tetrayl tetraacetate) was prepared. "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000135
 窒素雰囲気下、化合物2(250mg,0.46mmol,1当量)、炭酸カリウム(KCO)(126mg,0.91mmol,2当量)及びTHF(2.5mL,10倍容量)の懸濁液に、ジ-tert-ブチルジカルボネート(201mg,0.91mmol,2当量)を室温で加えた。完全に加えた後、反応混合物を6時間撹拌した。TLCにより反応の進行をモニターした。ろ過後の反応生成物をTHF(5mL)で洗浄した。ろ液をエバポレーションにより乾燥させた。得られた粗化合物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 9.5/0.5→8/2)により精製して、無色の油状物として240mgの化合物3e(収率80%)得た。 Suspension of compound 2 (250 mg, 0.46 mmol, 1 eq.), potassium carbonate ( K2CO3 ) (126 mg, 0.91 mmol, 2 eq.) and THF (2.5 mL , 10 vol.) under nitrogen atmosphere. To was added di-tert-butyl dicarbonate (201 mg, 0.91 mmol, 2 eq) at room temperature. After complete addition, the reaction mixture was stirred for 6 hours. The progress of the reaction was monitored by TLC. The filtered reaction product was washed with THF (5 mL). The filtrate was dried by evaporation. The resulting crude compound was purified by silica gel column chromatography (hexane/ethyl acetate 9.5/0.5→8/2) to give 240 mg of compound 3e (80% yield) as a colorless oil.
 化合物3eの分析結果は下記の通りであった。
 H NMR(500MHz,CDCl,30℃) δ 5.63(dd,J=4.1,1.6Hz,1H),5.45(dd,J=8.3,3.1Hz,1H),5.16(d,J=2.6Hz,1H),5.05-4.98(m,1H),4.23(dd,J=12.4,3.1Hz,1H),4.14(dd,J=12.4,4.3Hz,1H),2.90-2.75(m,2H),2.10(s,3H),2.04(s,9H),1.54-1.46(m,11H),1.34-1.16(m,18H),0.85(t,J=6.9Hz,3H);
 13C{1H} NMR(126MHz,CDCl,30℃) δ 196.59,170.46,169.85,169.70,169.34,152.01,84.00,79.77,69.39,68.06,67.80,61.27,31.84,29.63,29.55,29.54,29.49,29.41,29.27,28.98,28.95,28.68,28.58,27.60,22.61,20.75,20.71,20.61,20.28,20.28,14.05.
The analysis results of compound 3e were as follows.
1 H NMR (500 MHz, CDCl 3 , 30° C.) δ 5.63 (dd, J=4.1, 1.6 Hz, 1 H), 5.45 (dd, J=8.3, 3.1 Hz, 1 H) , 5.16 (d, J=2.6 Hz, 1 H), 5.05-4.98 (m, 1 H), 4.23 (dd, J=12.4, 3.1 Hz, 1 H), 4. 14 (dd, J=12.4, 4.3 Hz, 1H), 2.90-2.75 (m, 2H), 2.10 (s, 3H), 2.04 (s, 9H), 1. 54-1.46 (m, 11H), 1.34-1.16 (m, 18H), 0.85 (t, J=6.9Hz, 3H);
13 C{1H} NMR (126 MHz, CDCl3 , 30° C.) δ 196.59, 170.46, 169.85, 169.70, 169.34, 152.01, 84.00, 79.77, 69. 39, 68.06, 67.80, 61.27, 31.84, 29.63, 29.55, 29.54, 29.49, 29.41, 29.27, 28.98, 28.95, 28.68, 28.58, 27.60, 22.61, 20.75, 20.71, 20.61, 20.28, 20.28, 14.05.
〔実施例28〕
 下記式で示される反応を行い、化合物2から化合物3e((2R,3R,4S,5R)-2-((tert-ブトキシカルボニル)オキシ)-6-(ドデシルチオ)-6-オキソヘキサン-1,3,4,5-テトライルテトラアセテート)を製造した。なお、「Ac」はアセチル基を表す。
[Example 28]
The reaction represented by the following formula is carried out to convert compound 2 to compound 3e ((2R,3R,4S,5R)-2-((tert-butoxycarbonyl)oxy)-6-(dodecylthio)-6-oxohexane-1, 3,4,5-tetrayl tetraacetate) was prepared. "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000136
 窒素雰囲気下、化合物2(4g,7.29mmol,1当量)、トリエチルアミン(TEA)(1.1g,10.93mmol,1.5当量)、4-ジメチルアミノピリジン(DMAP)(44mg,0.36mmol,1.5当量)及びTHF(28mL,7倍容量)の懸濁液に、ジ-tert-ブチルジカルボネート(2.07g,9.47mmol,1.3当量)を室温で加えた。完全に加えた後、反応混合物を30分間撹拌した。TLCにより反応の進行をモニターした。水(20mL)を加えて反応をクエンチした。有機層を水(20mL)で洗浄し、硫酸ナトリウムで乾燥し、ろ過した。溶媒を真空引きにより除去して、粗化合物を得た。得られた粗化合物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 9.5/0.5→8/2)により精製して、薄黄色の固体として3.91gの化合物3e(収率83%)を得た。 Under nitrogen atmosphere, compound 2 (4 g, 7.29 mmol, 1 equivalent), triethylamine (TEA) (1.1 g, 10.93 mmol, 1.5 equivalent), 4-dimethylaminopyridine (DMAP) (44 mg, 0.36 mmol) , 1.5 eq) and THF (28 mL, 7 volumes) was added di-tert-butyl dicarbonate (2.07 g, 9.47 mmol, 1.3 eq) at room temperature. After complete addition, the reaction mixture was stirred for 30 minutes. The progress of the reaction was monitored by TLC. Water (20 mL) was added to quench the reaction. The organic layer was washed with water (20 mL), dried over sodium sulfate and filtered. Solvent was removed by vacuum to give the crude compound. The resulting crude compound was purified by silica gel column chromatography (hexane/ethyl acetate 9.5/0.5→8/2) to give 3.91 g of compound 3e (83% yield) as a pale yellow solid. Obtained.
 化合物3eの分析結果は、実施例27に記載の通りであった。 The analytical results of compound 3e were as described in Example 27.
〔実施例29〕
 下記式で示される反応を行い、化合物10から化合物11d((2R,3R,4S,5R)-2-(2-クロロアセトキシ)-6-(ドデシルチオ)-6-オキソヘキサン-1,3,4,5-テトライルテトラベンゾエート)を製造した。なお、「Bz」はベンゾイル基を表す。
[Example 29]
The reaction represented by the following formula is carried out to convert compound 10 to compound 11d ((2R,3R,4S,5R)-2-(2-chloroacetoxy)-6-(dodecylthio)-6-oxohexane-1,3,4 , 5-tetrayltetrabenzoate) was prepared. "Bz" represents a benzoyl group.
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000137
 窒素雰囲気下、化合物10(1.84g,2.31mmol,1当量)及びジクロロメタン(18.4mL)の溶液に、ピリジン(548mg,6.93mmol,3当量)を加え、次いで、クロロアセチルクロリド(521mg,4.62mmol,2当量)を10~15℃で滴下した。完全に加えた後、反応混合物を室温まで加温し、6時間維持した。TLCにより反応の進行をモニターした。反応混合物をエバポレーションにより乾燥した。得られた粗化合物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 9.5/0.5→8/2)により精製して、薄黄色の油状物として1.80gの化合物11d(収率89%)を得た。 Under a nitrogen atmosphere, to a solution of compound 10 (1.84 g, 2.31 mmol, 1 eq) and dichloromethane (18.4 mL) was added pyridine (548 mg, 6.93 mmol, 3 eq) followed by chloroacetyl chloride (521 mg , 4.62 mmol, 2 eq.) was added dropwise at 10-15°C. After complete addition, the reaction mixture was warmed to room temperature and maintained for 6 hours. The progress of the reaction was monitored by TLC. The reaction mixture was dried by evaporation. The resulting crude compound was purified by silica gel column chromatography (hexane/ethyl acetate 9.5/0.5→8/2) to give 1.80 g of compound 11d (89% yield) as a pale yellow oil. got
 化合物11dの分析結果は下記の通りであった。
 H NMR(500MHz,CDCl,30℃) δ 8.06-7.90(m,8H),7.59-7.47(m,4H),7.46-7.31(m,8H),6.25(dd,J=5.7,3.5Hz,1H),6.13(t,J=5.6Hz,1H),5.91(d,J=3.4Hz,1H),5.67(dd,J=9.6,5.6Hz,1H),4.89(dd,J=12.3,4.0Hz,1H),4.60(dd,J=12.3,5.8Hz,1H),4.26(d,J=15.5Hz,1H),4.21(d,J=15.5Hz,1H),2.82-2.64(m,2H),1.49-1.07(m,20H),0.88(t,J=7.0Hz,3H);
 13C{H} NMR(126MHz,CDCl,30℃) δ 194.93,166.57,166.06,165.46,165.06,164.78,133.66,133.44,133.38,133.26,129.91,129.85,129.81,129.18,129.03,128.63,128.56,128.42,128.37,128.33,77.56,70.13,69.99,69.52,62.18,40.54,31.87,29.57,29.50,29.30,28.91,28.81,28.77,28.59,22.65,14.10.
The analysis results of compound 11d were as follows.
1 H NMR (500 MHz, CDCl 3 , 30° C.) δ 8.06-7.90 (m, 8H), 7.59-7.47 (m, 4H), 7.46-7.31 (m, 8H ), 6.25 (dd, J = 5.7, 3.5 Hz, 1 H), 6.13 (t, J = 5.6 Hz, 1 H), 5.91 (d, J = 3.4 Hz, 1 H) , 5.67 (dd, J=9.6, 5.6 Hz, 1H), 4.89 (dd, J=12.3, 4.0 Hz, 1H), 4.60 (dd, J=12.3 , 5.8 Hz, 1 H), 4.26 (d, J = 15.5 Hz, 1 H), 4.21 (d, J = 15.5 Hz, 1 H), 2.82-2.64 (m, 2 H) , 1.49-1.07 (m, 20H), 0.88 (t, J=7.0Hz, 3H);
13 C{ 1 H} NMR (126 MHz, CDCl 3 , 30° C.) δ 194.93, 166.57, 166.06, 165.46, 165.06, 164.78, 133.66, 133.44, 133 .38, 133.26, 129.91, 129.85, 129.81, 129.18, 129.03, 128.63, 128.56, 128.42, 128.37, 128.33, 77.56 , 70.13, 69.99, 69.52, 62.18, 40.54, 31.87, 29.57, 29.50, 29.30, 28.91, 28.81, 28.77, 28 .59, 22.65, 14.10.
〔実施例30〕
 下記式で示される反応を行い、化合物10から化合物11e((2R,3R,4S,5R)-6-(ドデシルチオ)-6-オキソ-2-(2,2,2-トリフルオロアセトキシ)ヘキサン-1,3,4,5-テトライルテトラベンゾエート)を製造した。なお、「Bz」はベンゾイル基を表す。
[Example 30]
The reaction represented by the following formula is performed to convert compound 10 to compound 11e ((2R,3R,4S,5R)-6-(dodecylthio)-6-oxo-2-(2,2,2-trifluoroacetoxy)hexane- 1,3,4,5-tetrayl tetrabenzoate) was prepared. "Bz" represents a benzoyl group.
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000138
 オーブン乾燥させたシュレンク管中、無水トリフルオロ酢酸(131mg,1.25mmol,2当量)を、化合物10(0.5g,0.627mmol,1当量)を含む氷冷DCM溶液(10mL,20倍容量)に10~15℃で加えた。反応混合物を室温で1時間撹拌した。TLCにより反応の進行をモニターした。溶媒を真空引きにより除去して、黄色の油状物として0.45gの化合物11e(収率80%)を得た。 Trifluoroacetic anhydride (131 mg, 1.25 mmol, 2 eq) was added to an ice-cold DCM solution (10 mL, 20 volumes) containing compound 10 (0.5 g, 0.627 mmol, 1 eq) in an oven dried Schlenk tube. ) at 10-15°C. The reaction mixture was stirred at room temperature for 1 hour. The progress of the reaction was monitored by TLC. Solvent was removed by vacuum to give 0.45 g of compound 11e (80% yield) as a yellow oil.
 化合物11eの分析結果は下記の通りであった。
 H NMR(500MHz,CDCl,30℃) δ 8.03-7.87(m,8H),7.58-7.46(m,4H),7.43-7.30(m,8H),6.18(t,J=5.7Hz,1H),6.01(dd,J=5.7,2.9Hz,1H),5.98-5.87(m,1H),4.91(dd,J=12.3,3.4Hz,1H),4.79(d,J=2.9Hz,1H),4.62(dd,J=12.3,6.2Hz,1H),2.73(t,J=7.3Hz,2H),1.41-1.05(m,20H),0.87(t,J=7.0Hz,3H).
The analysis results of compound 11e were as follows.
1 H NMR (500 MHz, CDCl 3 , 30° C.) δ 8.03-7.87 (m, 8H), 7.58-7.46 (m, 4H), 7.43-7.30 (m, 8H ), 6.18 (t, J = 5.7 Hz, 1H), 6.01 (dd, J = 5.7, 2.9 Hz, 1H), 5.98-5.87 (m, 1H), 4 .91 (dd, J=12.3, 3.4 Hz, 1 H), 4.79 (d, J=2.9 Hz, 1 H), 4.62 (dd, J=12.3, 6.2 Hz, 1 H ), 2.73 (t, J=7.3 Hz, 2H), 1.41-1.05 (m, 20H), 0.87 (t, J=7.0 Hz, 3H).
〔実施例31〕
 下記式で示される反応を行い、化合物3cから化合物4c((2R,3R,4S,5R)-2-(2-クロロアセトキシ)-6-(3-((5-(4-フルオロフェニル)チオフェン-2-イル)メチル)-4-メチルフェニル)-6-オキソヘキサン-1,3,4,5-テトライルテトラアセテート)を製造した。なお、「Ac」はアセチル基を表す。
[Example 31]
The reaction represented by the following formula is performed to convert compound 3c to compound 4c ((2R,3R,4S,5R)-2-(2-chloroacetoxy)-6-(3-((5-(4-fluorophenyl)thiophene). -2-yl)methyl)-4-methylphenyl)-6-oxohexane-1,3,4,5-tetrayltetraacetate). "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000139
有機銅アート試薬(organocuprate reagent)の調製
 オーブン乾燥させたシュレンク管中、1,2-ジブロモエタン(0.050mL,1~2滴)を、切削片状マグネシウム(176mg,7.23mmol,4当量)及びTHF(8mL,7倍容量)を含む混合物に、アルゴン雰囲気下で加えた。次いで、2-(5-ブロモ-2-メチルベンジル)-5-(4-フルオロフェニル)チオフェン(1.30g,3.61mmol,2当量)をアルゴン雰囲気下で加え、反応混合物を75~80℃で3時間還流させた。室温に冷却後、THF(2.3mL×2)を用いて、反応混合物を、CuCN(323mg,3.61mmol,2当量)及びTHF(2.3mL,2倍容量)の懸濁液の入った別のシュレンク管に室温で移し、10分間維持し、次の工程に使用した。
Preparation of organocuprate reagent In an oven-dried Schlenk tube, 1,2-dibromoethane (0.050 mL, 1-2 drops) was added to magnesium chipping (176 mg, 7.23 mmol, 4 eq). and THF (8 mL, 7 volumes) under an argon atmosphere. Then 2-(5-bromo-2-methylbenzyl)-5-(4-fluorophenyl)thiophene (1.30 g, 3.61 mmol, 2 eq) was added under an argon atmosphere and the reaction mixture was heated to 75-80°C. and refluxed for 3 hours. After cooling to room temperature, THF (2.3 mL x 2) was used to quench the reaction mixture into a suspension of CuCN (323 mg, 3.61 mmol, 2 eq) and THF (2.3 mL, 2 volumes). Transfer to another Schlenk tube at room temperature, keep for 10 minutes and use in next step.
化合物3cのケトン化
 化合物3c(1.13g,1.80mmol,1.00当量)を、THF(3.4mL×2)とともに、上記で調製した有機銅アート試薬に加え、40~50℃に加温した。反応混合物を40~50℃で20時間撹拌した。反応の完了をTLCで確認した後、水(2.4mL,2倍容量)を加えて反応をクエンチした。反応混合物を、セライトパッドを通じてろ過し、ベッドを酢酸エチル(24mL×3)で洗浄した。ろ液を無水硫酸ナトリウムで乾燥し、ろ過した。溶媒を真空引きにより除去して、粗化合物を得た。得られた粗化合物をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/9~4/6)により精製して、黄色の固体として0.38gの化合物4c(収率30%)を得た。また、0.29gの化合物3c(回収率26%)を回収した。
Ketonization of Compound 3c Compound 3c (1.13 g, 1.80 mmol, 1.00 equiv) was added to the organocopperate reagent prepared above along with THF (3.4 mL x 2) and heated to 40-50°C. I warmed up. The reaction mixture was stirred at 40-50° C. for 20 hours. After completion of the reaction was confirmed by TLC, water (2.4 mL, 2 volumes) was added to quench the reaction. The reaction mixture was filtered through a celite pad and the bed was washed with ethyl acetate (24 mL x 3). The filtrate was dried over anhydrous sodium sulfate and filtered. Solvent was removed by vacuum to give the crude compound. The resulting crude compound was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/9-4/6) to give 0.38 g of compound 4c (yield 30%) as a yellow solid. . Also, 0.29 g of compound 3c (26% recovery) was recovered.
 化合物4cの分析結果は下記の通りであった。
 H NMR(300MHz,CDCl,30℃) δ 7.81(d,J=1.9Hz,1H),7.73(dd,J=7.9,1.9Hz,1H),7.53-7.43(m,2H),7.29(d,J=8.0Hz,1H),7.08-6.98(m,3H),6.66(d,J=3.6Hz,1H),6.20(d,J=5.0Hz,1H),5.81-5.73(m,1H),5.47(ddd,J=7.9,4.7,3.1Hz,1H),5.09(td,J=6.1,2.9Hz,1H),4.34(dd,J=12.5,3.0Hz,1H),4.27-3.86(m,5H),2.39(s,3H),2.05(s,3H),2.04(s,3H),2.03(s,3H),1.94(s,3H);
 13C{H} NMR(76MHz,CDCl,30℃) δ 191.61,170.67,169.90,169.54,169.34,166.39,162.11(d,C-F=248.5Hz),143.75,142.10,141.83,139.11,132.71,131.07,130.62(d,C-F=3.4Hz),129.59,127.09(d,C-F=8.36Hz),127.08,126.26,122.72,115.71(d,C-F=22.04Hz),73.74,69.33,68.89,68.85,61.66,40.35,33.89,29.65,20.64,20.46,20.26,19.85.
The analytical results of compound 4c were as follows.
1 H NMR (300 MHz, CDCl 3 , 30° C.) δ 7.81 (d, J=1.9 Hz, 1 H), 7.73 (dd, J=7.9, 1.9 Hz, 1 H), 7.53 -7.43 (m, 2H), 7.29 (d, J = 8.0Hz, 1H), 7.08-6.98 (m, 3H), 6.66 (d, J = 3.6Hz, 1H), 6.20 (d, J=5.0Hz, 1H), 5.81-5.73 (m, 1H), 5.47 (ddd, J=7.9, 4.7, 3.1Hz , 1H), 5.09 (td, J = 6.1, 2.9Hz, 1H), 4.34 (dd, J = 12.5, 3.0Hz, 1H), 4.27-3.86 ( m, 5H), 2.39 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.94 (s, 3H);
13 C{ 1 H} NMR (76 MHz, CDCl 3 , 30° C.) δ 191.61, 170.67, 169.90, 169.54, 169.34, 166.39, 162.11 (d, 1 J C -F = 248.5Hz), 143.75, 142.10, 141.83, 139.11, 132.71 , 131.07, 130.62 (d, 4JCF = 3.4Hz), 129 .59, 127.09 (d, 3 J C-F = 8.36 Hz), 127.08, 126.26, 122.72, 115.71 (d, 2 J C-F = 22.04 Hz), 73 .74, 69.33, 68.89, 68.85, 61.66, 40.35, 33.89, 29.65, 20.64, 20.46, 20.26, 19.85.
〔実施例32〕
 下記式で示される反応を行い、化合物3dから化合物4d((2R,3R,4S,5R)-6-(3-((5-(4-フルオロフェニル)チオフェン-2-イル)メチル)-4-メチルフェニル)-2-((2-メトキシプロパン-2-イル)オキシ)-6-オキソヘキサン-1,3,4,5-テトライルテトラアセテート)を製造した。なお、「Ac」はアセチル基を表す。
[Example 32]
The reaction represented by the following formula is carried out to convert compound 3d to compound 4d ((2R,3R,4S,5R)-6-(3-((5-(4-fluorophenyl)thiophen-2-yl)methyl)-4 -methylphenyl)-2-((2-methoxypropan-2-yl)oxy)-6-oxohexane-1,3,4,5-tetrayltetraacetate). "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000140
有機銅アート試薬(organocuprate reagent)の調製
 オーブン乾燥させたシュレンク管中、1,2-ジブロモエタン(0.050mL,1~2滴)を、切削片状マグネシウム(157mg,6.44mmol,4当量)及びTHF(7mL,7倍容量)を含む混合物に、アルゴン雰囲気下で加えた。次いで、2-(5-ブロモ-2-メチルベンジル)-5-(4-フルオロフェニル)チオフェン(1.16g,3.22mmol,2当量)をアルゴン雰囲気下で加え、反応混合物を75~80℃で3時間還流させた。室温に冷却後、THF(2mL×2)を用いて、反応混合物を、CuCN(288mg,3.22mmol,2当量)及びTHF(2mL,2倍容量)の懸濁液の入った別のシュレンク管に室温で移し、10分間維持し、次の工程に使用した。
Preparation of Organocuprate Reagent In an oven-dried Schlenk tube, 1,2-dibromoethane (0.050 mL, 1-2 drops) was added to magnesium flakes (157 mg, 6.44 mmol, 4 eq.). and THF (7 mL, 7 volumes) under an argon atmosphere. Then 2-(5-bromo-2-methylbenzyl)-5-(4-fluorophenyl)thiophene (1.16 g, 3.22 mmol, 2 eq) was added under an argon atmosphere and the reaction mixture was heated to 75-80°C. and refluxed for 3 hours. After cooling to room temperature, the reaction mixture was quenched with THF (2 mL x 2) into another Schlenk tube containing a suspension of CuCN (288 mg, 3.22 mmol, 2 eq) and THF (2 mL, 2 volumes). at room temperature, kept for 10 minutes and used in the next step.
化合物3dのケトン化
 化合物3d(1g,1.61mmol,1.00当量)を、THF(3mL×2)とともに、上記で調製した有機銅アート試薬に加え、40~50℃に加温した。反応混合物を40~50℃で20時間撹拌した。反応の完了をTLCで確認した後、水(2mL,2倍容量)を加えて反応をクエンチした。反応混合物を、セライトパッドを通じてろ過し、ベッドを酢酸エチル(20mL×3)で洗浄した。ろ液を無水硫酸ナトリウムで乾燥し、ろ過した。溶媒を真空引きにより除去して、粗化合物を得た。得られた粗化合物をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/9~4/6)により精製して、薄黄色の固体として0.30gの化合物4d(収率27%)を得た。また、0.56gの化合物3d(回収率56%)を回収した。
Ketonization of compound 3d Compound 3d (1 g, 1.61 mmol, 1.00 eq) was added along with THF (3 mL x 2) to the organocopperate reagent prepared above and warmed to 40-50°C. The reaction mixture was stirred at 40-50° C. for 20 hours. After completion of the reaction was confirmed by TLC, water (2 mL, 2 volumes) was added to quench the reaction. The reaction mixture was filtered through a celite pad and the bed was washed with ethyl acetate (20 mL x 3). The filtrate was dried over anhydrous sodium sulfate and filtered. Solvent was removed by vacuum to give the crude compound. The resulting crude compound was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/9-4/6) to give 0.30 g of compound 4d (yield 27%) as a pale yellow solid. rice field. Also, 0.56 g of compound 3d (56% recovery) was recovered.
 化合物4dの分析結果は下記の通りであった。
 H NMR(500MHz,CDCl,30℃) δ 7.94(s,1H),7.86(d,J=7.9Hz,1H),7.49-7.42(m,2H),7.28(d,J=8.0Hz,1H),7.07-6.98(m,3H),6.72-6.64(m,1H),5.52(dd,J=7.8,2.6Hz,1H),5.29-5.24(m,1H),5.20(td,J=6.7,2.8Hz,1H),5.06(d,J=7.8Hz,1H),4.21(dd,J=12.3,3.0Hz,1H),4.18(s,2H),3.96(dd,J=12.3,6.5Hz,1H),3.05(s,3H),2.39(s,3H),2.01(s,3H),2.00(s,3H),1.98(s,3H),1.95(s,3H),1.25(s,3H),1.21(s,3H);
 13C{H} NMR(126MHz,CDCl,30℃) δ 197.80,170.57,169.86,169.78,169.34,162.09(d,C-F=247Hz),142.97,142.23,141.74,138.80,134.36,130.73,130.67(d,C-F=3.78Hz),130.12,127.73,127.08(d,C-F=7.9Hz),126.23,122.75,115.81(d,C-F=21.4Hz),102.18,71.74,70.58,68.64,68.15,62.27,49.50,34.07,29.67,24.61,20.76,20.66,20.62,20.50,19.82.
The analysis results of compound 4d were as follows.
1 H NMR (500 MHz, CDCl 3 , 30° C.) δ 7.94 (s, 1 H), 7.86 (d, J=7.9 Hz, 1 H), 7.49-7.42 (m, 2 H), 7.28 (d, J = 8.0Hz, 1H), 7.07-6.98 (m, 3H), 6.72-6.64 (m, 1H), 5.52 (dd, J = 7 .8, 2.6Hz, 1H), 5.29-5.24 (m, 1H), 5.20 (td, J = 6.7, 2.8Hz, 1H), 5.06 (d, J = 7.8Hz, 1H), 4.21 (dd, J = 12.3, 3.0Hz, 1H), 4.18 (s, 2H), 3.96 (dd, J = 12.3, 6.5Hz , 1H), 3.05 (s, 3H), 2.39 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.98 (s, 3H), 1 .95 (s, 3H), 1.25 (s, 3H), 1.21 (s, 3H);
13 C{ 1 H} NMR (126 MHz, CDCl 3 , 30° C.) δ 197.80, 170.57, 169.86, 169.78, 169.34, 162.09 (d, 1 J C−F =247 Hz ), 142.97, 142.23, 141.74, 138.80, 134.36, 130.73, 130.67 (d, 4 JCF = 3.78 Hz), 130.12, 127.73 , 127.08 (d, 3 J C-F =7.9 Hz), 126.23, 122.75, 115.81 (d, 2 J C-F =21.4 Hz), 102.18, 71.74 , 70.58, 68.64, 68.15, 62.27, 49.50, 34.07, 29.67, 24.61, 20.76, 20.66, 20.62, 20.50, 19 .82.
〔実施例33〕
 下記式で示される反応を行い、化合物11dから化合物12d((2R,3R,4S,5R)-2-(2-クロロアセトキシ)-6-(3-((5-(4-フルオロフェニル)チオフェン-2-イル)メチル)-4-メチルフェニル)-6-オキソヘキサン-1,3,4,5-テトライルテトラベンゾエート)を製造した。なお、「Bz」はベンゾイル基を表す。
[Example 33]
A reaction represented by the following formula is performed to convert compound 11d to compound 12d ((2R,3R,4S,5R)-2-(2-chloroacetoxy)-6-(3-((5-(4-fluorophenyl)thiophene). -2-yl)methyl)-4-methylphenyl)-6-oxohexane-1,3,4,5-tetrayltetrabenzoate)). "Bz" represents a benzoyl group.
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000141
有機銅アート試薬(organocuprate reagent)の調製
 オーブン乾燥させたシュレンク管中、1,2-ジブロモエタン(0.050mL,1~2滴)を、切削片状マグネシウム(200mg,8.24mmol,2当量)及びTHF(12.6mL,7倍容量)を含む混合物に、アルゴン雰囲気下で加えた。次いで、2-(5-ブロモ-2-メチルベンジル)-5-(4-フルオロフェニル)チオフェン(1.45g,4.12mmol,2当量)をアルゴン雰囲気下で加え、反応混合物を75~80℃で3時間還流させた。室温に冷却後、THF(3.6mL×2)を用いて、反応混合物を、CuCN(369mg,4.12mmol,2当量)及びTHF(3.6mL,2倍容量)の懸濁液の入った別のシュレンク管に室温で移し、10分間維持し、次の工程に使用した。
Preparation of organocuprate reagent In an oven-dried Schlenk tube, 1,2-dibromoethane (0.050 mL, 1-2 drops) was added to magnesium chipping (200 mg, 8.24 mmol, 2 eq). and THF (12.6 mL, 7 volumes) under an argon atmosphere. Then 2-(5-bromo-2-methylbenzyl)-5-(4-fluorophenyl)thiophene (1.45 g, 4.12 mmol, 2 eq) was added under an argon atmosphere and the reaction mixture was heated to 75-80°C. and refluxed for 3 hours. After cooling to room temperature, the reaction mixture was quenched with THF (3.6 mL x 2) into a suspension of CuCN (369 mg, 4.12 mmol, 2 eq) and THF (3.6 mL, 2 volumes). Transfer to another Schlenk tube at room temperature, keep for 10 minutes and use in next step.
化合物11dのケトン化
 化合物11d(1.80g,2.06mmol,1.00当量)を、THF(5.4mL×2)とともに、上記で調製した有機銅アート試薬に加え、40~50℃に加温した。反応混合物を40~50℃で20時間撹拌した。反応の完了をTLCで確認した後、水(3.6mL,2倍容量)を加えて反応をクエンチした。反応混合物を、セライトパッドを通じてろ過し、ベッドを酢酸エチル(36mL×3)で洗浄した。ろ液を無水硫酸ナトリウムで乾燥し、ろ過した。溶媒を真空引きにより除去して、粗化合物を得た。得られた粗化合物をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/9~4/6)により精製して、黄色の固体として0.85gの化合物12d(収率42%)を得た。また、0.50gの化合物11d(回収率28%)を回収した。
Ketonization of Compound 11d Compound 11d (1.80 g, 2.06 mmol, 1.00 equiv.) was added to the organocopperate reagent prepared above along with THF (5.4 mL×2) and heated to 40-50° C. I warmed up. The reaction mixture was stirred at 40-50° C. for 20 hours. After completion of the reaction was confirmed by TLC, water (3.6 mL, 2 volumes) was added to quench the reaction. The reaction mixture was filtered through a celite pad and the bed was washed with ethyl acetate (36 mL x 3). The filtrate was dried over anhydrous sodium sulfate and filtered. Solvent was removed by vacuum to give the crude compound. The resulting crude compound was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/9-4/6) to give 0.85 g of compound 12d (yield 42%) as a yellow solid. . Also, 0.50 g of compound 11d (28% recovery) was recovered.
 化合物12dの分析結果は下記の通りであった。
 H NMR(300MHz,CDCl,30℃) δ 8.00-7.88(m,6H),7.79(ddd,J=5.3,3.3,1.6Hz,3H),7.68(dd,J=7.9,1.9Hz,1H),7.59-7.25(m,15H),7.13(d,J=8.0Hz,1H),7.04-6.93(m,3H),6.54(dd,J=4.0,2.8Hz,2H),6.33-6.20(m,1H),6.15-6.01(m,1H),5.75(td,J=6.1,2.9Hz,1H),4.93(dd,J=12.4,3.0Hz,1H),4.50(dd,J=12.4,6.3Hz,1H),4.16-3.80(m,4H),2.30(s,3H);
 質量分析(HRMS):[M+Na] 計算値 C5442ClFNaO11S 975.2018,実測値 975.2013.
The analysis results of compound 12d were as follows.
1 H NMR (300 MHz, CDCl 3 , 30° C.) δ 8.00-7.88 (m, 6H), 7.79 (ddd, J=5.3, 3.3, 1.6 Hz, 3H), 7 .68 (dd, J = 7.9, 1.9Hz, 1H), 7.59-7.25 (m, 15H), 7.13 (d, J = 8.0Hz, 1H), 7.04- 6.93 (m, 3H), 6.54 (dd, J=4.0, 2.8Hz, 2H), 6.33-6.20 (m, 1H), 6.15-6.01 (m , 1H), 5.75 (td, J = 6.1, 2.9Hz, 1H), 4.93 (dd, J = 12.4, 3.0Hz, 1H), 4.50 (dd, J = 12.4, 6.3Hz, 1H), 4.16-3.80 (m, 4H), 2.30 (s, 3H);
Mass spectroscopy ( HRMS): [M+Na] + calcd for C54H42ClFNaO11S 975.2018, found 975.2013.
〔実施例34〕
 下記式で示される反応を行い、化合物3eから化合物4e((2R,3R,4S,5R)-2-((tert-ブトキシカルボニル)オキシ)-6-(3-((5-(4-フルオロフェニル)チオフェン-2-イル)メチル)-4-メチルフェニル)-6-オキソヘキサン-1,3,4,5-テトライルテトラアセテート)を製造した。なお、「Ac」はアセチル基を表す。
[Example 34]
The reaction represented by the following formula is carried out to convert compound 3e to compound 4e ((2R,3R,4S,5R)-2-((tert-butoxycarbonyl)oxy)-6-(3-((5-(4-fluoro phenyl)thiophen-2-yl)methyl)-4-methylphenyl)-6-oxohexane-1,3,4,5-tetrayltetraacetate). "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000142
有機銅アート試薬(organocuprate reagent)の調製
 オーブン乾燥させたシュレンク管中、1,2-ジブロモエタン(0.10mL,5~6滴)を、切削片状マグネシウム(444mg,18.48mmol,4当量)及びTHF(21mL,7倍容量)を含む混合物に、アルゴン雰囲気下で加えた。次いで、2-(5-ブロモ-2-メチルベンジル)-5-(4-フルオロフェニル)チオフェン(3.34g,9.24mmol,2当量)をアルゴン雰囲気下で加え、反応混合物を75~80℃で3時間還流させた。室温に冷却後、THF(6mL×2)を用いて、反応混合物を、CuCN(829mg,9.24mmol,2当量)及びTHF(6mL,2倍容量)の懸濁液の入った別のシュレンク管に室温で移し、10分間維持し、次の工程に使用した。
Preparation of organocuprate reagent In an oven-dried Schlenk tube, 1,2-dibromoethane (0.10 mL, 5-6 drops) was added to magnesium chipping (444 mg, 18.48 mmol, 4 eq). and THF (21 mL, 7 volumes) under an argon atmosphere. Then 2-(5-bromo-2-methylbenzyl)-5-(4-fluorophenyl)thiophene (3.34 g, 9.24 mmol, 2 eq) was added under an argon atmosphere and the reaction mixture was heated to 75-80°C. and refluxed for 3 hours. After cooling to room temperature, the reaction mixture was quenched with THF (6 mL x 2) into another Schlenk tube containing a suspension of CuCN (829 mg, 9.24 mmol, 2 eq) and THF (6 mL, 2 volumes). at room temperature, kept for 10 minutes and used in the next step.
化合物3eのケトン化
 化合物3e(3g,4.62mmol,1.00当量)を、THF(9mL×2)とともに、上記で調製した有機銅アート試薬に加え、40~50℃に加温した。反応混合物を40~50℃で20時間撹拌した。反応の完了をTLCで確認した後、水(6mL,2倍容量)を加えて反応をクエンチした。反応混合物を、セライトパッドを通じてろ過し、ベッドを酢酸エチル(60mL×3)で洗浄した。ろ液を無水硫酸ナトリウムで乾燥し、ろ過した。溶媒を真空引きにより除去して、粗化合物を得た。得られた粗化合物をシリカゲルカラムクロマトグラフィー(酢酸エチル/n-ヘキサン=1/9~4/6)により精製して、オフホワイトの固体として1.71gの化合物4e(収率51%)を得た。また、0.73gの化合物3e(回収率25%)回収した。
Ketonization of Compound 3e Compound 3e (3 g, 4.62 mmol, 1.00 eq) was added along with THF (9 mL x 2) to the organocopperate reagent prepared above and warmed to 40-50°C. The reaction mixture was stirred at 40-50° C. for 20 hours. After completion of the reaction was confirmed by TLC, water (6 mL, 2 volumes) was added to quench the reaction. The reaction mixture was filtered through a celite pad and the bed was washed with ethyl acetate (60 mL x 3). The filtrate was dried over anhydrous sodium sulfate and filtered. Solvent was removed by vacuum to give the crude compound. The resulting crude compound was purified by silica gel column chromatography (ethyl acetate/n-hexane=1/9-4/6) to give 1.71 g of compound 4e (51% yield) as an off-white solid. rice field. Also, 0.73 g of compound 3e (25% recovery) was recovered.
 化合物4eの分析結果は下記の通りであった。
 H NMR(500MHz,CDCl,30℃) δ 7.80(d,J=1.6Hz,1H),7.74(dd,J=8.0,1.8Hz,1H),7.50-7.43(m,3H),7.28(dd,J=8.0,2.4Hz,1H),7.05-6.99(m,4H),6.64(d,J=3.6Hz,1H),5.84(d,J=3.9Hz,1H),5.70-5.67(m,1H),5.52(dd,J=8.4,2.8Hz,1H),5.11(ddd,J=7.8,4.8,2.7Hz,1H),4.25(dd,J=12.5,2.6Hz,1H),4.19-4.10(m,4H),2.37(s,3H),2.10(s,3H),2.04(s,3H),1.99(s,6H),1.42(s,9H).
The analysis results of compound 4e were as follows.
1 H NMR (500 MHz, CDCl 3 , 30° C.) δ 7.80 (d, J=1.6 Hz, 1 H), 7.74 (dd, J=8.0, 1.8 Hz, 1 H), 7.50 -7.43 (m, 3H), 7.28 (dd, J = 8.0, 2.4Hz, 1H), 7.05-6.99 (m, 4H), 6.64 (d, J = 3.6Hz, 1H), 5.84 (d, J = 3.9Hz, 1H), 5.70-5.67 (m, 1H), 5.52 (dd, J = 8.4, 2.8Hz , 1H), 5.11 (ddd, J = 7.8, 4.8, 2.7Hz, 1H), 4.25 (dd, J = 12.5, 2.6Hz, 1H), 4.19- 4.10 (m, 4H), 2.37 (s, 3H), 2.10 (s, 3H), 2.04 (s, 3H), 1.99 (s, 6H), 1.42 (s , 9H).
〔実施例35〕
 下記式で示される反応を行い、化合物4dから化合物6((2R,3R,4S,5R)-6-(3-((5-(4-フルオロフェニル)チオフェン-2-イル)メチル)-4-メチルフェニル)-2-ヒドロキシ-6-オキソヘキサン-1,3,4,5-テトライルテトラアセテート)を製造した。なお、「Ac」はアセチル基を表す。
[Example 35]
The reaction represented by the following formula is carried out to give compound 6 ((2R,3R,4S,5R)-6-(3-((5-(4-fluorophenyl)thiophen-2-yl)methyl)-4 from compound 4d. -methylphenyl)-2-hydroxy-6-oxohexane-1,3,4,5-tetrayltetraacetate). "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
 2MのHCl水溶液(1mL)を、化合物4d(50mg,0.0713mmol,1当量)のTHF(1mL)溶液に室温で加えた。反応混合物を10分間撹拌した。TLCにより反応の進行をモニターした。酢酸エチル(10mL)を加えて反応をクエンチし、有機層を飽和NaHCO水溶液(5mL)及び塩水(5mL)で洗浄した。有機層を硫酸ナトリウムで乾燥し、ろ過した。溶媒を真空引きにより除去して、オフホワイトの固体として41mgの化合物6(収率91%)を得た。 2M aqueous HCl (1 mL) was added to a solution of compound 4d (50 mg, 0.0713 mmol, 1 eq) in THF (1 mL) at room temperature. The reaction mixture was stirred for 10 minutes. The progress of the reaction was monitored by TLC. Ethyl acetate (10 mL) was added to quench the reaction and the organic layer was washed with saturated aqueous NaHCO 3 (5 mL) and brine (5 mL). The organic layer was dried over sodium sulfate and filtered. The solvent was removed by vacuum to give 41 mg of compound 6 (91% yield) as an off-white solid.
 化合物6の分析結果は下記の通りであった。
 H NMR(300MHz,CDCl,30℃) δ 7.77(d,J=1.8Hz,1H),7.69(dd,J=7.9,2.0Hz,1H),7.52-7.44(m,2H),7.32(d,J=7.9Hz,1H),7.06-6.98(m,3H),6.68-6.65(m,1H),5.64(dd,J=6.8,4.6Hz,1H),5.41(dd,J=4.6,2.5Hz,1H),5.35-5.23(m,2H),4.35(dd,J=12.5,2.6Hz,1H),4.19(s,2H),4.13-4.03(m,1H),3.84(bs,1H),2.40(s,3H),2.06(s,6H),1.98(s,3H),1.91(s,3H);
 13C{H} NMR (76MHz,CDCl,30℃) δ 197.82,170.82,169.95,169.78,169.60,162.18(d,C-F=248.5Hz),144.02,142.04,141.90,139.16,132.03,131.12,130.60(d,C-F=3.04Hz),129.46,127.13(d,C-F=8.36Hz),127.06,126.27,122.74,115.75(d,C-F=22.04Hz),71.61,70.64,69.96,68.75,62.09,33.94,29.68,20.73,20.69,20.29,19.91.
The analysis results of compound 6 were as follows.
1 H NMR (300 MHz, CDCl 3 , 30° C.) δ 7.77 (d, J=1.8 Hz, 1 H), 7.69 (dd, J=7.9, 2.0 Hz, 1 H), 7.52 -7.44 (m, 2H), 7.32 (d, J = 7.9Hz, 1H), 7.06-6.98 (m, 3H), 6.68-6.65 (m, 1H) , 5.64 (dd, J = 6.8, 4.6 Hz, 1H), 5.41 (dd, J = 4.6, 2.5 Hz, 1H), 5.35-5.23 (m, 2H ), 4.35 (dd, J = 12.5, 2.6 Hz, 1H), 4.19 (s, 2H), 4.13-4.03 (m, 1H), 3.84 (bs, 1H ), 2.40 (s, 3H), 2.06 (s, 6H), 1.98 (s, 3H), 1.91 (s, 3H);
13 C{ 1 H} NMR (76 MHz, CDCl 3 , 30° C.) δ 197.82, 170.82, 169.95, 169.78, 169.60, 162.18 (d, 1 J C−F =248 .5Hz), 144.02, 142.04, 141.90, 139.16, 132.03, 131.12 , 130.60 (d, 4JCF = 3.04Hz), 129.46, 127 .13 (d, 3 J C-F =8.36 Hz), 127.06, 126.27, 122.74, 115.75 (d, 2 J C-F =22.04 Hz), 71.61, 70 .64, 69.96, 68.75, 62.09, 33.94, 29.68, 20.73, 20.69, 20.29, 19.91.
〔実施例36〕
 下記式で示される反応を行い、化合物4eから化合物6((2R,3R,4S,5R)-6-(3-((5-(4-フルオロフェニル)チオフェン-2-イル)メチル)-4-メチルフェニル)-2-ヒドロキシ-6-オキソヘキサン-1,3,4,5-テトライルテトラアセテート)を製造した。なお、「Ac」はアセチル基を表す。
[Example 36]
The reaction represented by the following formula is carried out to convert compound 4e to compound 6 ((2R,3R,4S,5R)-6-(3-((5-(4-fluorophenyl)thiophen-2-yl)methyl)-4 -methylphenyl)-2-hydroxy-6-oxohexane-1,3,4,5-tetrayltetraacetate). "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000144
 三フッ化ホウ素ジエチルエーテル錯体(BF・EtO)(77mg,0.54mmol,4当量)を、化合物4e(100mg,0.14mmol,1当量)のジクロロメタン(DCM)(1mL)溶液に0℃で加えた。反応混合物を10分間撹拌した。TLCにより反応の進行をモニターした。DCM(5mL)を加えて反応をクエンチし、有機層を飽和NaHCO水溶液(5mL)及び塩水(5mL)で洗浄した。有機層を硫酸ナトリウムで乾燥し、ろ過した。溶媒を真空引きにより除去して、粗化合物を得た。得られた粗化合物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 9.5/0.5→6/4)により精製して、薄黄色のシロップとして68mgの化合物6(収率79%)を得た。化合物6の分析結果は、実施例35と同様であった。 Boron trifluoride diethyl etherate ( BF3.Et2O ) (77 mg, 0.54 mmol, 4 eq.) was added to a solution of compound 4e (100 mg, 0.14 mmol, 1 eq.) in dichloromethane (DCM) (1 mL) at 0° C . °C. The reaction mixture was stirred for 10 minutes. The progress of the reaction was monitored by TLC. DCM (5 mL) was added to quench the reaction and the organic layer was washed with saturated aqueous NaHCO 3 (5 mL) and brine (5 mL). The organic layer was dried over sodium sulfate and filtered. Solvent was removed by vacuum to give the crude compound. The resulting crude compound was purified by silica gel column chromatography (hexane/ethyl acetate 9.5/0.5→6/4) to give 68 mg of compound 6 (79% yield) as a pale yellow syrup. . The analysis results of compound 6 were similar to those of Example 35.
〔実施例37〕
 下記式で示される反応を行い、化合物6から化合物5((3R,4S,5R,6R)-6-(アセトキシメチル)-2-(3-((5-(4-フルオロフェニル)チオフェン-2-イル)メチル)-4-メチルフェニル)-2-ヒドロキシテトラヒドロ-2H-ピラン-3,4,5-トリイルトリアセテート)を製造した。なお、「Ac」はアセチル基を表す。
[Example 37]
The reaction represented by the following formula is performed to convert compound 6 to compound 5 ((3R,4S,5R,6R)-6-(acetoxymethyl)-2-(3-((5-(4-fluorophenyl)thiophene-2 -yl)methyl)-4-methylphenyl)-2-hydroxytetrahydro-2H-pyran-3,4,5-triyltriacetate). "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
 オーブン乾燥させたシュレンク管を室温まで冷却し、化合物6(40mg,0.0636mmol,1当量)のTHF溶液(1mL)を室温で加えた。得られた溶液に、窒素雰囲気下、カリウムtert-ブトキシド(t-BuOK)(7.13mg,0.0636mmol,1当量)を0~5℃で加え、反応混合物を0~5℃で10分間撹拌した。TLCにより反応の進行をモニターした。2M HCl(5mL)及び酢酸エチル(10mL)を加えて反応をクエンチした。有機層を水(5mL)で洗浄し、硫酸ナトリウムで乾燥し、ろ過した。溶媒を真空引きにより除去して、粗化合物を得た。得られた粗化合物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 9.5/0.5→6/4)により精製して、シロップとして30mgの化合物5(収率75%)を得た。 The oven-dried Schlenk tube was cooled to room temperature, and a THF solution (1 mL) of compound 6 (40 mg, 0.0636 mmol, 1 equivalent) was added at room temperature. To the resulting solution, under nitrogen atmosphere, potassium tert-butoxide (t-BuOK) (7.13 mg, 0.0636 mmol, 1 eq.) was added at 0-5°C and the reaction mixture was stirred at 0-5°C for 10 minutes. bottom. The progress of the reaction was monitored by TLC. 2M HCl (5 mL) and ethyl acetate (10 mL) were added to quench the reaction. The organic layer was washed with water (5 mL), dried over sodium sulfate and filtered. Solvent was removed by vacuum to give the crude compound. The resulting crude compound was purified by silica gel column chromatography (hexane/ethyl acetate 9.5/0.5→6/4) to give 30 mg of compound 5 (yield 75%) as a syrup.
 化合物5の分析結果は下記の通りであった。
 H NMR(300MHz,CDCl,30℃) δ 7.88-7.75(m,2H),7.49-7.45(m,2H),7.30(dd,J=7.9,2.6Hz,1H),7.04-7.00(m,3H),6.67-6.66(m,1H),6.19(d,J=7.4Hz,0.6H),6.00(d,J=3.8Hz,0.3H),5.54(dd,J=7.4,2.1Hz,0.6H),5.33(dd,J=5.9,4.0Hz,0.5H),5.24(dt,J=6.0,2.7Hz,0.5H),4.92(ddd,J=9.1,4.3,2.7Hz,0.5H),4.71-4.66(m,0.5H),4.40-4.35(m,1H),4.30-4.26(m,1H),4.17(s,2H),4.16-4.11(m,1H),3.95-3.93(m,0.5H),2.40-2.39(m,3H),2.15-1.99(m,12H).
The analysis results of compound 5 were as follows.
1 H NMR (300 MHz, CDCl 3 , 30° C.) δ 7.88-7.75 (m, 2H), 7.49-7.45 (m, 2H), 7.30 (dd, J=7.9 , 2.6Hz, 1H), 7.04-7.00 (m, 3H), 6.67-6.66 (m, 1H), 6.19 (d, J = 7.4Hz, 0.6H) , 6.00 (d, J=3.8 Hz, 0.3 H), 5.54 (dd, J=7.4, 2.1 Hz, 0.6 H), 5.33 (dd, J=5.9 , 4.0Hz, 0.5H), 5.24 (dt, J = 6.0, 2.7Hz, 0.5H), 4.92 (ddd, J = 9.1, 4.3, 2.7Hz , 0.5H), 4.71-4.66 (m, 0.5H), 4.40-4.35 (m, 1H), 4.30-4.26 (m, 1H), 4.17 (s, 2H), 4.16-4.11 (m, 1H), 3.95-3.93 (m, 0.5H), 2.40-2.39 (m, 3H), 2.15 -1.99 (m, 12H).
〔比較例1〕
 下記式で示される反応(化合物15→化合物16→化合物17)を試みた。なお、「Bn」はベンジル基を表す。
[Comparative Example 1]
A reaction represented by the following formula (compound 15→compound 16→compound 17) was attempted. "Bn" represents a benzyl group.
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
 0℃に冷却されたデカンチオール(0.72g,4.1mmol)の無水CHCl溶液(10mL)に、トリメチルアルミニウム(AlMe)(4.1mL,4.1mmol,1M トルエン溶液)を10分間かけて滴下し、混合物をさらに20分間撹拌した。化合物15(2g,3.71mmol)の無水CHCl溶液(12mL)を10分間かけてゆっくりと加えた。1時間後、反応混合物をCHCl(20mL)で希釈し、氷冷水(20mL)の入った250mLビーカーに、氷冷水を撹拌しながらゆっくりと注ぎ、1N HCl水溶液(10mL)を加え、層を分離した。水層を冷CHCl(3×30mL)で抽出した。有機層を合わせ、水及び食塩水で洗浄し、NaSOを用いて乾燥させ、ろ過した。ろ液に、N-メチルモルホリン(563mg,5.57mmol)、次いで、クロロトリメチルシラン(TMSCl)(605mg,5.57mmol)を-5℃で加えた。混合物を-5℃で3時間撹拌し、次いで、25℃で4時間撹拌した。化合物16は生成したが、化合物17は生成しなかったことが、TLC(ヘキサン/酢酸エチル=4:1)によって確認された。 To an anhydrous CH 2 Cl 2 solution (10 mL) of decanethiol (0.72 g, 4.1 mmol) cooled to 0° C. was added trimethylaluminum (AlMe 3 ) (4.1 mL, 4.1 mmol, 1 M toluene solution). It was added dropwise over a period of minutes and the mixture was stirred for an additional 20 minutes. A solution of compound 15 (2 g, 3.71 mmol) in anhydrous CH 2 Cl 2 (12 mL) was added slowly over 10 minutes. After 1 hour, the reaction mixture was diluted with CH 2 Cl 2 (20 mL), poured slowly into a 250 mL beaker containing ice-cold water (20 mL) with stirring, added 1N HCl aqueous solution (10 mL), and layered. separated. The aqueous layer was extracted with cold CH2Cl2 (3 x 30 mL). The organic layers were combined, washed with water and brine, dried over Na2SO4 and filtered. To the filtrate was added N-methylmorpholine (563 mg, 5.57 mmol) followed by chlorotrimethylsilane (TMSCl) (605 mg, 5.57 mmol) at -5°C. The mixture was stirred at -5°C for 3 hours and then at 25°C for 4 hours. The formation of compound 16 but not of compound 17 was confirmed by TLC (hexane/ethyl acetate=4:1).
〔比較例2〕
 下記式で示される反応(化合物18→化合物19)を試みた。なお、「Piv」はピバロイル基を表す。
[Comparative Example 2]
A reaction represented by the following formula (compound 18→compound 19) was attempted. "Piv" represents a pivaloyl group.
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
 1-ドデカンチオール(0.587mL,2.45mmol,1.26当量)のTHF溶液(約4mL)に、化合物18(1g,1.9454mmol)を加えた。次いで、混合物を0℃に冷却した後、混合物に2MのiPrMgClのTHF溶液(1.23mL,2.45mmol,1.26当量)を約5~10分間かけて滴下した。反応混合物を-20℃で1時間撹拌した後、無水酢酸(0.272mL,2.87mmol,1.48当量)を-20℃で加え、反応混合物を室温でさらに1時間撹拌した。化合物19が生成しなかったことは、TLC(ヘキサン/酢酸エチル=4:1)によって確認された。 Compound 18 (1 g, 1.9454 mmol) was added to a THF solution (about 4 mL) of 1-dodecanethiol (0.587 mL, 2.45 mmol, 1.26 equivalents). The mixture was then cooled to 0° C. and then 2M iPrMgCl in THF (1.23 mL, 2.45 mmol, 1.26 eq) was added dropwise to the mixture over about 5-10 minutes. After stirring the reaction mixture at −20° C. for 1 hour, acetic anhydride (0.272 mL, 2.87 mmol, 1.48 eq) was added at −20° C. and the reaction mixture was stirred at room temperature for another hour. No formation of compound 19 was confirmed by TLC (hexane/ethyl acetate=4:1).

Claims (24)

  1.  下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
     Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表し、
     Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表す場合、R’は、
     置換基を有していてもよいアルキルシリル基、
     置換基を有していてもよいテトラヒドロピラニル基、
     式:-CO-L-L[式中、Lは、置換基を有していてもよいアルキレン基又は置換基を有していてもよいハロアルキレン基を表し、Lは、ハロゲン原子を表す。]で表される基、
     式:-C(-L)(-L)-O-L[式中、Lは、水素原子又は置換基を有していてもよいアルキル基を表し、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表される基、又は、
     式:-CO-O-C(-L)(-L)(-L)[式中、L、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表される基
    を表し、
     Rが、それぞれ独立して、置換基を有していてもよいアリール基を表す場合、R’は、
     置換基を有していてよいアルキルカルボニル基、
     置換基を有していてもよいアルキルシリル基、
     アルデヒド基、
     式:-CO-L-L[式中、L及びLは、前記と同義である。]で表される基、又は、
     式:-CO-C(-L)(-L10)(-L11)[式中、L、L10及びL11は、それぞれ独立して、ハロゲン原子を表す。]で表される基
    を表し、
     nは、1又は2を表す。]
    で表されるチオエステル誘導体(I)。
    Formula (I) below:
    Figure JPOXMLDOC01-appb-C000001
    [In the formula,
    W 1 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
    R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group,
    When R each independently represents an optionally substituted alkyl group, R' is
    an optionally substituted alkylsilyl group,
    a tetrahydropyranyl group optionally having a substituent,
    Formula: -CO-L 1 -L 2 [In the formula, L 1 represents an optionally substituted alkylene group or an optionally substituted haloalkylene group, and L 2 is a halogen represents an atom. ] A group represented by
    Formula: -C(-L 3 )(-L 4 )-OL 5 [In the formula, L 3 represents a hydrogen atom or an optionally substituted alkyl group, and L 4 and L 5 , each independently represents an optionally substituted alkyl group. ] A group represented by, or
    Formula: -CO-O-C(-L 6 )(-L 7 )(-L 8 ) [wherein L 6 , L 7 and L 8 each independently have a substituent represents a good alkyl group. ] Represents a group represented by
    When each R independently represents an optionally substituted aryl group, R' is
    an optionally substituted alkylcarbonyl group,
    an optionally substituted alkylsilyl group,
    aldehyde group,
    Formula: -CO-L 1 -L 2 [In the formula, L 1 and L 2 have the same definitions as above. ] A group represented by, or
    Formula: -CO-C(-L 9 )(-L 10 )(-L 11 ) [wherein L 9 , L 10 and L 11 each independently represent a halogen atom. ] Represents a group represented by
    n represents 1 or 2; ]
    A thioester derivative (I) represented by
  2.  下記式(II):
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
     Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表し、
     Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表す場合、R’は、
     置換基を有していてもよいアルキルシリル基、
     置換基を有していてもよいテトラヒドロピラニル基、
     式:-CO-L-L[式中、Lは、置換基を有していてもよいアルキレン基又は置換基を有していてもよいハロアルキレン基を表し、Lは、ハロゲン原子を表す。]で表される基、
     式:-C(-L)(-L)-O-L[式中、Lは、水素原子又は置換基を有していてもよいアルキル基を表し、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表される基、又は、
     式:-CO-O-C(-L)(-L)(-L)[式中、L、L及びLは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]で表される基
    を表し、
     Rが、それぞれ独立して、置換基を有していてもよいアリール基を表す場合、R’は、
     置換基を有していてよいアルキルカルボニル基、
     置換基を有していてもよいアルキルシリル基、
     アルデヒド基、
     式:-CO-L-L[式中、L及びLは、前記と同義である。]で表される基、又は、
     式:-CO-C(-L)(-L10)(-L11)[式中、L、L10及びL11は、それぞれ独立して、ハロゲン原子を表す。]で表される基
    を表し、
     nは、1又は2を表す。]
    で表されるケトン誘導体(II)。
    Formula (II) below:
    Figure JPOXMLDOC01-appb-C000002
    [In the formula,
    W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
    R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group,
    When R each independently represents an optionally substituted alkyl group, R' is
    an optionally substituted alkylsilyl group,
    a tetrahydropyranyl group optionally having a substituent,
    Formula: -CO-L 1 -L 2 [In the formula, L 1 represents an optionally substituted alkylene group or an optionally substituted haloalkylene group, and L 2 is a halogen represents an atom. ] A group represented by
    Formula: -C(-L 3 )(-L 4 )-OL 5 [In the formula, L 3 represents a hydrogen atom or an optionally substituted alkyl group, and L 4 and L 5 , each independently represents an optionally substituted alkyl group. ] A group represented by, or
    Formula: -CO-O-C(-L 6 )(-L 7 )(-L 8 ) [wherein L 6 , L 7 and L 8 each independently have a substituent represents a good alkyl group. ] Represents a group represented by
    When each R independently represents an optionally substituted aryl group, R' is
    an optionally substituted alkylcarbonyl group,
    an optionally substituted alkylsilyl group,
    aldehyde group,
    Formula: -CO-L 1 -L 2 [In the formula, L 1 and L 2 have the same definitions as above. ] A group represented by, or
    Formula: -CO-C(-L 9 )(-L 10 )(-L 11 ) [wherein L 9 , L 10 and L 11 each independently represent a halogen atom. ] Represents a group represented by
    n represents 1 or 2; ]
    A ketone derivative (II) represented by
  3.  Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、置換基を有していてよいアルキルカルボニル基を表す、請求項1に記載のチオエステル誘導体(I)を製造する方法であって、
     塩基又はルイス酸の存在下、
     下記式(III):
    Figure JPOXMLDOC01-appb-C000003
    [式中、W及びnは、請求項1と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]
    で表されるチオエステル誘導体(III)と、
     下記式(1):
    Figure JPOXMLDOC01-appb-C000004
    [式中、R’’は、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
    で表されるカルボン酸無水物(1)と、
    を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
    2. The thioester derivative (I ), comprising:
    in the presence of a base or Lewis acid,
    Formula (III) below:
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, W 1 and n are as defined in claim 1, and R each independently represents an aryl group which may have a substituent. ]
    A thioester derivative (III) represented by
    Formula (1) below:
    Figure JPOXMLDOC01-appb-C000004
    [In the formula, each R'' independently represents an optionally substituted alkyl group. ]
    A carboxylic anhydride (1) represented by
    to produce the thioester derivative (I).
  4.  Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、置換基を有していてもよいアルキルシリル基を表す、請求項1に記載のチオエステル誘導体(I)を製造する方法であって、
     塩基の存在下、
     下記式(III):
    Figure JPOXMLDOC01-appb-C000005
    [式中、W及びnは、請求項1と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]
    で表されるチオエステル誘導体(III)と、
     下記式(2):
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     R、R及びRは、それぞれ独立して、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表すが、R、R及びRのうちの1以上は置換基を有していてもよいアルキル基を表し、
     Xは、ハロゲン原子又はトリフルオロメタンスルホニル基を表す。]
    で表されるシリル化剤(2)と、
    を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
    The thioester derivative according to claim 1, wherein each R independently represents an optionally substituted aryl group, and R' represents an optionally substituted alkylsilyl group ( A method of manufacturing I), comprising:
    in the presence of a base,
    Formula (III) below:
    Figure JPOXMLDOC01-appb-C000005
    [Wherein, W 1 and n are as defined in claim 1, and R each independently represents an aryl group which may have a substituent. ]
    A thioester derivative (III) represented by
    Formula (2) below:
    Figure JPOXMLDOC01-appb-C000006
    [In the formula,
    R 1 , R 2 and R 3 each independently represent an optionally substituted alkyl group or an optionally substituted aryl group, and R 1 , R 2 and R 3 one or more of represents an optionally substituted alkyl group,
    X represents a halogen atom or a trifluoromethanesulfonyl group. ]
    A silylating agent (2) represented by
    to produce the thioester derivative (I).
  5.  Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、アルデヒド基を表す、請求項1に記載のチオエステル誘導体(I)を製造する方法であって、
     塩基及び縮合剤の存在下、
     下記式(III):
    Figure JPOXMLDOC01-appb-C000007
    [式中、W及びnは、請求項1と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]
    で表されるチオエステル誘導体(III)と、
     ギ酸と、
    を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
    Each R independently represents an aryl group which may have a substituent, R 'represents an aldehyde group, a method for producing a thioester derivative (I) according to claim 1,
    in the presence of a base and a condensing agent,
    Formula (III) below:
    Figure JPOXMLDOC01-appb-C000007
    [Wherein, W 1 and n are as defined in claim 1, and R each independently represents an aryl group which may have a substituent. ]
    A thioester derivative (III) represented by
    formic acid;
    to produce the thioester derivative (I).
  6.  Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、式:-CO-L-Lで表される基を表す、請求項1に記載のチオエステル誘導体(I)を製造する方法であって、
     塩基の存在下、
     下記式(III):
    Figure JPOXMLDOC01-appb-C000008
    [式中、W及びnは、請求項1と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]
    で表されるチオエステル誘導体(III)と、
     式:J-CO-L-L[式中、L及びLは前記と同義であり、Jはハロゲン原子を表す。]で表される化合物と、
    を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
    The R according to claim 1, wherein each R independently represents an optionally substituted aryl group, and R' represents a group represented by the formula: -CO-L 1 -L 2 A method for producing a thioester derivative (I), comprising:
    in the presence of a base,
    Formula (III) below:
    Figure JPOXMLDOC01-appb-C000008
    [Wherein, W 1 and n are as defined in claim 1, and R each independently represents an aryl group which may have a substituent. ]
    A thioester derivative (III) represented by
    Formula: J—CO—L 1 -L 2 [In the formula, L 1 and L 2 are as defined above, and J represents a halogen atom. ] and a compound represented by
    to produce the thioester derivative (I).
  7.  Rが、それぞれ独立して、置換基を有していてもよいアリール基を表し、R’が、式:-CO-C(-L)(-L10)(-L11)で表される基を表す、請求項1に記載のチオエステル誘導体(I)を製造する方法であって、
     下記式(III):
    Figure JPOXMLDOC01-appb-C000009
    [式中、W及びnは、請求項1と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアリール基を表す。]
    で表されるチオエステル誘導体(III)と、
     式:C(-L)(-L10)(-L11)-CO-O-CO-C(-L)(-L10)(-L11)[式中、L、L10及びL11は前記と同義である。]で表される化合物と、
    を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
    Each R independently represents an optionally substituted aryl group, and R′ is represented by the formula: —CO—C(—L 9 )(—L 10 )(—L 11 ) A method for producing the thioester derivative (I) according to claim 1, wherein
    Formula (III) below:
    Figure JPOXMLDOC01-appb-C000009
    [Wherein, W 1 and n are as defined in claim 1, and R each independently represents an aryl group which may have a substituent. ]
    A thioester derivative (III) represented by
    Formula: C(-L 9 )(-L 10 )(-L 11 )-CO-O-CO-C(-L 9 )(-L 10 )(-L 11 ) [wherein L 9 , L 10 and L 11 are as defined above. ] and a compound represented by
    to produce the thioester derivative (I).
  8.  Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’が、置換基を有していてもよいアルキルシリル基を表す、請求項1に記載のチオエステル誘導体(I)を製造する方法であって、
     塩基の存在下、
     下記式(III):
    Figure JPOXMLDOC01-appb-C000010
    [式中、W及びnは、請求項1と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
    で表されるチオエステル誘導体(III)と、
     下記式(2):
    Figure JPOXMLDOC01-appb-C000011
    [式中、
     R、R及びRは、それぞれ独立して、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表すが、R、R及びRのうちの1以上は置換基を有していてもよいアルキル基を表し、
     Xは、ハロゲン原子又はトリフルオロメタンスルホニル基を表す。]
    で表されるシリル化剤(2)と、
    を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
    The thioester derivative according to claim 1, wherein each R independently represents an optionally substituted alkyl group, and R' represents an optionally substituted alkylsilyl group ( A method of manufacturing I), comprising:
    in the presence of a base,
    Formula (III) below:
    Figure JPOXMLDOC01-appb-C000010
    [Wherein, W 1 and n are as defined in claim 1, and R each independently represents an optionally substituted alkyl group. ]
    A thioester derivative (III) represented by
    Formula (2) below:
    Figure JPOXMLDOC01-appb-C000011
    [In the formula,
    R 1 , R 2 and R 3 each independently represent an optionally substituted alkyl group or an optionally substituted aryl group, and R 1 , R 2 and R 3 one or more of represents an optionally substituted alkyl group,
    X represents a halogen atom or a trifluoromethanesulfonyl group. ]
    A silylating agent (2) represented by
    to produce the thioester derivative (I).
  9.  Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’が、置換基を有していてもよいテトラヒドロピラニル基を表す、請求項1に記載のチオエステル誘導体(I)を製造する方法であって、
     酸の存在下、
     下記式(III):
    Figure JPOXMLDOC01-appb-C000012
    [式中、W及びnは、請求項1と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
    で表されるチオエステル誘導体(III)と、
     置換基を有していてもよい3,4-ジヒドロ-2H-ピランと、
    を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
    2. The thioester derivative according to claim 1, wherein each R independently represents an alkyl group which may have a substituent, and R' represents a tetrahydropyranyl group which may have a substituent. A method of producing (I), comprising:
    in the presence of acid,
    Formula (III) below:
    Figure JPOXMLDOC01-appb-C000012
    [Wherein, W 1 and n are as defined in claim 1, and R each independently represents an optionally substituted alkyl group. ]
    A thioester derivative (III) represented by
    3,4-dihydro-2H-pyran optionally having a substituent;
    to produce the thioester derivative (I).
  10.  Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’が、式:-CO-L-Lで表される基を表す、請求項1に記載のチオエステル誘導体(I)を製造する方法であって、
     塩基の存在下、
     下記式(III):
    Figure JPOXMLDOC01-appb-C000013
    [式中、W及びnは、請求項1と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
    で表されるチオエステル誘導体(III)と、
     式:J-CO-L-L[式中、L及びLは前記と同義であり、Jはハロゲン原子を表す。]で表される化合物と、
    を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
    The R according to claim 1, wherein each R independently represents an optionally substituted alkyl group, and R' represents a group represented by the formula: -CO-L 1 -L 2 A method for producing a thioester derivative (I), comprising:
    in the presence of a base,
    Formula (III) below:
    Figure JPOXMLDOC01-appb-C000013
    [Wherein, W 1 and n are as defined in claim 1, and R each independently represents an optionally substituted alkyl group. ]
    A thioester derivative (III) represented by
    Formula: J—CO—L 1 -L 2 [In the formula, L 1 and L 2 are as defined above, and J represents a halogen atom. ] and a compound represented by
    to produce the thioester derivative (I).
  11.  Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’が、式:-C(-L)(-L)-O-Lで表される基を表す、請求項1に記載のチオエステル誘導体(I)を製造する方法であって、
     酸の存在下、
     下記式(III):
    Figure JPOXMLDOC01-appb-C000014
    [式中、W及びnは、請求項1と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
    で表されるチオエステル誘導体(III)と、
     式:L-C(=CH-K)-O-L[式中、L及びLは前記と同義であり、Kは水素原子又は置換基を有していてもよいアルキル基を表す。]で表される化合物と、
    を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
    R each independently represents an optionally substituted alkyl group, and R' is a group represented by the formula: -C(-L 3 )(-L 4 )-OL 5 A method for producing the thioester derivative (I) according to claim 1, which represents
    in the presence of acid,
    Formula (III) below:
    Figure JPOXMLDOC01-appb-C000014
    [Wherein, W 1 and n are as defined in claim 1, and R each independently represents an optionally substituted alkyl group. ]
    A thioester derivative (III) represented by
    Formula: L 3 -C(=CH-K)-OL 5 [In the formula, L 3 and L 5 are as defined above, and K is a hydrogen atom or an optionally substituted alkyl group. show. ] and a compound represented by
    to produce the thioester derivative (I).
  12.  Rが、それぞれ独立して、置換基を有していてもよいアルキル基を表し、R’が、式:-CO-O-C(-L)(-L)(-L)で表される基を表す、請求項1に記載のチオエステル誘導体(I)を製造する方法であって、
     塩基の存在下、
     下記式(III):
    Figure JPOXMLDOC01-appb-C000015
    [式中、W及びnは、請求項1と同義であり、Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表す。]
    で表されるチオエステル誘導体(III)と、
     式:C(-L)(-L)(-L)-O-CO-O-CO-O-C(-L)(-L)(-L)[式中、L、L及びLは前記と同義である。]で表される化合物と、
    を接触させて、前記チオエステル誘導体(I)を製造する工程を含む、前記方法。
    Each R independently represents an optionally substituted alkyl group, and R' is represented by the formula: -CO-O-C(-L 6 )(-L 7 )(-L 8 ) A method for producing a thioester derivative (I) according to claim 1, which represents a group represented by
    in the presence of a base,
    Formula (III) below:
    Figure JPOXMLDOC01-appb-C000015
    [Wherein, W 1 and n are as defined in claim 1, and R each independently represents an optionally substituted alkyl group. ]
    A thioester derivative (III) represented by
    Formula: C(-L 6 )(-L 7 )(-L 8 )-O-CO-O-CO-O-C(-L 6 )(-L 7 )(-L 8 ) [wherein L 6 , L7 and L8 are as defined above. ] and a compound represented by
    to produce the thioester derivative (I).
  13.  下記式(3):
    Figure JPOXMLDOC01-appb-C000016
    [式中、Wは、前記と同義である。]
    で表されるチオール(3)と、
     下記式(4):
    Figure JPOXMLDOC01-appb-C000017
    [式中、
     Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
     Xは、ハロゲン原子を表す。]
    で表されるグリニャール試薬(4)と、
     下記式(IV):
    Figure JPOXMLDOC01-appb-C000018
    [式中、R及びnは、前記と同義である。]
    で表されるアシル保護ラクトン誘導体(IV)と、
    を接触させて、前記チオエステル誘導体(III)を製造する工程を含む、請求項3~12のいずれか一項に記載の方法。
    Formula (3) below:
    Figure JPOXMLDOC01-appb-C000016
    [In the formula, W 1 has the same definition as above. ]
    A thiol (3) represented by
    Formula (4) below:
    Figure JPOXMLDOC01-appb-C000017
    [In the formula,
    W3 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
    X represents a halogen atom. ]
    A Grignard reagent (4) represented by
    Formula (IV) below:
    Figure JPOXMLDOC01-appb-C000018
    [In the formula, R and n are as defined above. ]
    An acyl-protected lactone derivative (IV) represented by
    to produce the thioester derivative (III). The method according to any one of claims 3 to 12.
  14.  前記工程において、前記チオール(3)と前記グリニャール試薬(4)との反応によりマグネシウムチオラートが形成された後、前記マグネシウムチオラートと前記アシル保護ラクトン誘導体(IV)との反応により前記チオエステル誘導体(III)が形成される、請求項13に記載の方法。 In said step, after the magnesium thiolate is formed by reaction of said thiol (3) with said Grignard reagent (4), said thioester derivative (III) is formed by reaction of said magnesium thiolate with said acyl-protected lactone derivative (IV). 14. The method of claim 13, wherein is formed.
  15.  請求項2に記載のケトン誘導体(II)を製造する方法であって、
     請求項1に記載のチオエステル誘導体(I)と、
     下記式(5a):
    Figure JPOXMLDOC01-appb-C000019
    [式中、Wは、請求項2と同義であり、Xは、ハロゲン原子を表す。]
    で表されるグリニャール試薬(5a)、及び、
     下記式(5b):
    Figure JPOXMLDOC01-appb-C000020
    [式中、W及びXは、前記と同義である。]
    で表されるグリニャール試薬(5b)
    から選択されるグリニャール試薬(5)と、
     銅塩と、
    を接触させて、前記ケトン誘導体(II)を製造する工程を含む、前記方法。
    A method for producing the ketone derivative (II) according to claim 2,
    The thioester derivative (I) according to claim 1;
    Formula (5a) below:
    Figure JPOXMLDOC01-appb-C000019
    [Wherein, W2 has the same meaning as in claim 2, and X represents a halogen atom. ]
    A Grignard reagent (5a) represented by
    Formula (5b) below:
    Figure JPOXMLDOC01-appb-C000020
    [In the formula, W 2 and X are as defined above. ]
    Grignard reagent (5b) represented by
    a Grignard reagent (5) selected from
    a copper salt;
    to produce the ketone derivative (II).
  16.  前記工程において、パラジウム触媒の存在下、前記チオエステル誘導体(I)と前記グリニャール試薬(5)と前記銅塩とを接触させる、請求項15に記載の方法。 The method according to claim 15, wherein in the step, the thioester derivative (I), the Grignard reagent (5) and the copper salt are brought into contact in the presence of a palladium catalyst.
  17.  前記工程において、前記グリニャール試薬(5)と前記銅塩とを接触させて有機銅試薬を形成させた後、前記有機銅試薬と前記チオエステル誘導体(I)とを接触させて前記ケトン誘導体(II)を製造する、請求項15又は16に記載の方法。 In the above step, the Grignard reagent (5) is contacted with the copper salt to form an organic copper reagent, and then the organic copper reagent is contacted with the thioester derivative (I) to form the ketone derivative (II). 17. A method according to claim 15 or 16 for producing
  18.  前記銅塩が、シアン化銅(I)及び塩化銅(I)からなる群から選択される少なくとも1種を含む、請求項15又は16に記載の方法。 The method according to claim 15 or 16, wherein the copper salt contains at least one selected from the group consisting of copper (I) cyanide and copper (I) chloride.
  19.  前記グリニャール試薬(5) 1モルに対して、0.2~1.2モルのシアン化銅(I)又は1.3~1.5モルの塩化銅(I)を用いる、請求項18に記載の方法。 Claim 18, wherein 0.2 to 1.2 mol of copper (I) cyanide or 1.3 to 1.5 mol of copper (I) chloride is used per 1 mol of the Grignard reagent (5). the method of.
  20.  前記工程において、-10℃以上100℃以下の温度範囲で、前記チオエステル誘導体(I)と前記グリニャール試薬(5)と前記銅塩とを接触させる、請求項15又は16に記載の方法。 The method according to claim 15 or 16, wherein in said step, said thioester derivative (I), said Grignard reagent (5) and said copper salt are brought into contact at a temperature range of -10°C or higher and 100°C or lower.
  21.  下記式(V):
    Figure JPOXMLDOC01-appb-C000021
    [式中、
     Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表し、
     Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
     R100は、水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルキルカルボニル基、又は、置換基を有していてもよいアリールカルボニル基を表し、
     nは、1又は2を表す。]
    で表されるC-アリール-ヒドロキシグリコサイド誘導体(V)を製造する方法であって、
     請求項2に記載のケトン誘導体(II)と第1の酸及び/又は塩基とを接触させて、前記ケトン誘導体(II)からR’で表される基を脱離させた後、必要に応じて第2の酸をさらに接触させて、前記C-アリール-ヒドロキシグリコサイド誘導体(V)を製造する工程を含む、前記方法。
    Formula (V) below:
    Figure JPOXMLDOC01-appb-C000021
    [In the formula,
    R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group,
    W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
    R 100 is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aryl group, an optionally substituted alkylcarbonyl group, or a substituted represents a good arylcarbonyl group,
    n represents 1 or 2; ]
    A method for producing a C-aryl-hydroxyglycoside derivative (V) represented by
    The ketone derivative (II) according to claim 2 is contacted with a first acid and/or base to remove the group represented by R' from the ketone derivative (II), and optionally further contacting with a second acid to produce said C-aryl-hydroxyglycoside derivative (V).
  22.  下記式(II’):
    Figure JPOXMLDOC01-appb-C000022
    [式中、
     Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
     Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表し、
     nは、1又は2を表す。]
    で表されるケトン誘導体(II’)、及び/又は、
     下記式(V’):
    Figure JPOXMLDOC01-appb-C000023
    [式中、R、W及びnは、前記式(II’)と同義である。]
    で表されるC-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する方法であって、
     パラジウム触媒の存在下、
     請求項1に記載のチオエステル誘導体(I)と、
     下記式(6a):
    Figure JPOXMLDOC01-appb-C000024
    [式中、Wは、前記と同義であり、Xは、ハロゲン原子を表す。]
    で表される有機亜鉛化合物(6a)、
     下記式(6b):
    Figure JPOXMLDOC01-appb-C000025
    [式中、Wは、前記と同義である。]
    で表される有機亜鉛化合物(6b)、及び、
     下記式(6c):
    Figure JPOXMLDOC01-appb-C000026
    [式中、W及びXは、前記と同義である。]
    で表される有機亜鉛化合物(6c)
    から選択される有機亜鉛化合物(6)と、
    を接触させて、前記ケトン誘導体(II’)及び/又は前記C-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する工程を含む、前記方法。
    Formula (II′) below:
    Figure JPOXMLDOC01-appb-C000022
    [In the formula,
    W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
    R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group,
    n represents 1 or 2; ]
    A ketone derivative (II') represented by and/or
    Formula (V′) below:
    Figure JPOXMLDOC01-appb-C000023
    [In the formula, R, W 2 and n have the same definitions as in formula (II′) above. ]
    A method for producing a C-aryl-hydroxyglycoside derivative (V′) represented by
    in the presence of a palladium catalyst,
    The thioester derivative (I) according to claim 1;
    Formula (6a) below:
    Figure JPOXMLDOC01-appb-C000024
    [In the formula, W 2 has the same definition as above, and X represents a halogen atom. ]
    Organozinc compound (6a) represented by
    Formula (6b) below:
    Figure JPOXMLDOC01-appb-C000025
    [In the formula, W2 has the same definition as above. ]
    Organozinc compound (6b) represented by, and
    Formula (6c) below:
    Figure JPOXMLDOC01-appb-C000026
    [In the formula, W 2 and X are as defined above. ]
    Organozinc compound (6c) represented by
    an organozinc compound (6) selected from
    to produce the ketone derivative (II') and/or the C-aryl-hydroxyglycoside derivative (V').
  23.  下記式(V’):
    Figure JPOXMLDOC01-appb-C000027
    [式中、
     Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
     Rは、それぞれ独立して、置換基を有していてもよいアルキル基を表すか、又は、それぞれ独立して、置換基を有していてもよいアリール基を表し、
     nは、1又は2を表す。]
    で表されるC-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する方法であって、
     下記式(II’):
    Figure JPOXMLDOC01-appb-C000028
    [式中、R、W及びnは、前記式(V’)と同義である。]
    で表されるケトン誘導体(II’)と塩基とを接触させて、前記C-アリール-ヒドロキシグリコサイド誘導体(V’)を製造する工程を含む、前記方法。
    Formula (V′) below:
    Figure JPOXMLDOC01-appb-C000027
    [In the formula,
    W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
    R each independently represents an optionally substituted alkyl group, or each independently represents an optionally substituted aryl group,
    n represents 1 or 2; ]
    A method for producing a C-aryl-hydroxyglycoside derivative (V′) represented by
    Formula (II′) below:
    Figure JPOXMLDOC01-appb-C000028
    [In the formula, R, W 2 and n have the same meanings as in the above formula (V′). ]
    and a base to produce the C-aryl-hydroxyglycoside derivative (V').
  24.  下記式(VI):
    Figure JPOXMLDOC01-appb-C000029
    [式中、
     Wは、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいヘテロシクロアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリールアルキル基、又は、置換基を有していてもよいアリールアルケニル基を表し、
     nは、1又は2を表す。]
    で表されるC-アリールグリコサイド誘導体(VI)を製造する方法であって、
     請求項21に記載の方法によりC-アリール-ヒドロキシグリコサイド誘導体(V)を製造した後、又は、請求項22又は23に記載の方法によりC-アリール-ヒドロキシグリコサイド誘導体(V’)を製造した後、得られたC-アリール-ヒドロキシグリコサイド誘導体(V)又はC-アリール-ヒドロキシグリコサイド誘導体(V’)とシラン化合物とを接触させて、前記C-アリールグリコサイド誘導体(VI)を製造する工程を含む、前記方法。
    Formula (VI) below:
    Figure JPOXMLDOC01-appb-C000029
    [In the formula,
    W2 is an optionally substituted alkyl group, an optionally substituted alkenyl group, an optionally substituted cycloalkyl group, or an optionally substituted heterocycloalkyl group, optionally substituted aryl group, optionally substituted heteroaryl group, optionally substituted arylalkyl group, or substituted represents an arylalkenyl group that may be
    n represents 1 or 2; ]
    A method for producing a C-aryl glycoside derivative (VI) represented by
    After producing the C-aryl-hydroxyglycoside derivative (V) by the method according to claim 21, or producing the C-aryl-hydroxyglycoside derivative (V') by the method according to claim 22 or 23. After that, the resulting C-aryl-hydroxyglycoside derivative (V) or C-aryl-hydroxyglycoside derivative (V′) is brought into contact with a silane compound to convert the C-arylglycoside derivative (VI). The above method, comprising the step of manufacturing.
PCT/JP2022/041429 2021-11-08 2022-11-07 Method for producing c-arylglucoside derivative WO2023080243A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-182050 2021-11-08
JP2021182050 2021-11-08
JP2022081925 2022-05-18
JP2022-081925 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023080243A1 true WO2023080243A1 (en) 2023-05-11

Family

ID=86241611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041429 WO2023080243A1 (en) 2021-11-08 2022-11-07 Method for producing c-arylglucoside derivative

Country Status (1)

Country Link
WO (1) WO2023080243A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505858A (en) * 2008-10-17 2012-03-08 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Process for preparing compounds useful as inhibitors of SGLT
WO2020129901A1 (en) * 2018-12-17 2020-06-25 株式会社トクヤマ Method for preparing ketone compound
WO2020129899A1 (en) * 2018-12-17 2020-06-25 株式会社トクヤマ Method for producing c-aryl hydroxy glycoxide derivatives
WO2022107463A1 (en) * 2020-11-18 2022-05-27 株式会社トクヤマ Method for producing ketone derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505858A (en) * 2008-10-17 2012-03-08 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Process for preparing compounds useful as inhibitors of SGLT
WO2020129901A1 (en) * 2018-12-17 2020-06-25 株式会社トクヤマ Method for preparing ketone compound
WO2020129899A1 (en) * 2018-12-17 2020-06-25 株式会社トクヤマ Method for producing c-aryl hydroxy glycoxide derivatives
WO2022107463A1 (en) * 2020-11-18 2022-05-27 株式会社トクヤマ Method for producing ketone derivative

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AMOAH EMMANUEL, DIETER R. KARL: "Regioselective 1,4-Conjugate Addition of Grignard Reagents to α,β–γ,δ-Dienones and α,β–γ,δ-Dienyl Thiol Esters", THE JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 82, no. 6, 17 March 2017 (2017-03-17), pages 2870 - 2888, XP093063448, ISSN: 0022-3263, DOI: 10.1021/acs.joc.6b02769 *
ANDERSON R. J., HENRICK C.A., ROSENBLUM L.D.: "A General ketone synthesis. Reaction of organocopper reagents with S-alkyl and S-aryl thioesters", J. AM. CHEM. SOC., vol. 96, no. 11, 1 May 1974 (1974-05-01), pages 3654 - 3655, XP093063455, DOI: 10.1021/ja00818a053 *
THEODORA W. GREENE , PETER G. M. WUTS: "PROTECTIVE GROUPS IN ORGANIC SYNTHESIS", vol. 3rd edition, 1 January 1999, JOHN WILEY & SONS, INC. , New York, NY [u.a.] , ISBN: 978-0-471-16019-9, article THEODORA W. GREENE, PETER G. M. WUTS: "CHAPTER 2: PROTECTION FOR THE HYDROXYLGROUP, INCLUDING 1,2- AND 1,3-DIOLS", pages: 17 - 245, XP009107105, DOI: 10.1002/0471220574 *

Similar Documents

Publication Publication Date Title
US7553989B2 (en) Malonic acid monoesters and process for producing the same
US4510086A (en) 2(4-Allylthioazetidin-2-on-1-yl)acetic acid ester compounds
JP3840662B2 (en) 2-silyloxy-tetrahydrothienopyridines, salts thereof and process for producing the same
US4585767A (en) Antibacterial penem derivatives
WO2023080243A1 (en) Method for producing c-arylglucoside derivative
US5068232A (en) Novel 2-substituted alkyl-3-carboxy carbapenems as antibiotics and a method of producing them
EP0099059B1 (en) Antibacterial penem derivatives
WO2022107463A1 (en) Method for producing ketone derivative
US4895941A (en) Process for preparing 2α-methyl-2β-(1,2,3-triazol-1-yl)methylpenam-3α-carboxylic acid derivatives
CA1273008A (en) 6-(substituted) methylenepenicillanic and 6- (substituted) hydroxymethylpenicillanic acids and derivatives thereof
US4560508A (en) 4-Cyano-2-azetidinones and production thereof
KR20090040333A (en) Method for producing 1-methylcarbapenem production intermediate
EP1282619B1 (en) Processes for the preparation of thiazolidinedione derivatives and intermediates
US4837349A (en) Tertiary-butyldimethylsilyl carbamate derivative and process for producing the same
US5821362A (en) Method of desilylating silylether compounds
US6037478A (en) Synthesis of 3-carbomethoxy-4,5-dimethylthiophene
JP2005194190A (en) Process for preparing 19-nor-vitamin d derivative
FI83654B (en) FRAMSTAELLNINGSFOERFARANDE FOER 2- (1-OXO-3-THIOLANYL) -2-PENEM ANTIBIOTICS.
JP4126555B2 (en) Optically active dioxycyclohexane compound and method for producing optically active hydroxyethylenedioxycyclohexane compound
RU2320652C2 (en) Derivatives of taxane functioned by position 14 and method for their preparing
JP3761097B2 (en) Method for producing 2-vinyl-substituted carbapenem derivative
JPS60255763A (en) Method of producing carbon-carbon bond in position of c-4 of3-acylaminoazetidinone
JP2023070184A (en) Method for producing c-arylglucoside derivative
JP3655939B2 (en) Novel process for the preparation of 13-alkyl milbemycin intermediates
JP4591778B2 (en) Process for producing α, β, γ-substituted cyclopentanone derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890063

Country of ref document: EP

Kind code of ref document: A1