WO2020129899A1 - Method for producing c-aryl hydroxy glycoxide derivatives - Google Patents

Method for producing c-aryl hydroxy glycoxide derivatives Download PDF

Info

Publication number
WO2020129899A1
WO2020129899A1 PCT/JP2019/049174 JP2019049174W WO2020129899A1 WO 2020129899 A1 WO2020129899 A1 WO 2020129899A1 JP 2019049174 W JP2019049174 W JP 2019049174W WO 2020129899 A1 WO2020129899 A1 WO 2020129899A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
represented
substituents
formula
Prior art date
Application number
PCT/JP2019/049174
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 関
真島 和志
隼人 劒
ジャリンダ バウサヘブ タルデ
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2020129899A1 publication Critical patent/WO2020129899A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/20Esters of monothiocarboxylic acids
    • C07C327/28Esters of monothiocarboxylic acids having sulfur atoms of esterified thiocarboxyl groups bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/08Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/10Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a C-arylhydroxyglycoxide derivative, and more particularly to a method for producing a C-arylhydroxyglycoxide derivative useful as an intermediate for an SGLT-2 inhibitor.
  • antidiabetic agents including sulfonylurea drugs, glinide drugs, biguanide drugs, thiazolidine drugs, ⁇ -glucosidase inhibitors, dipeptidyl peptidase 4 (DPP-4) inhibitors, glucose-like peptides. 1 (GLP-1) passive agonists are known.
  • DPP-4 dipeptidyl peptidase 4
  • GLP-1 glucose-like peptides. 1
  • GLP-1 glucose-like peptides. 1
  • SGLT-2 sodium-glucose cotransporter-2
  • Examples of SGLT-2 inhibitors include canagliflozin (1-( ⁇ -D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene) and the like.
  • canagliflozin (1-( ⁇ -D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene) and the like.
  • the oxygen protecting group of the 1-( ⁇ -D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene precursor is deprotected. It has been proposed to synthesize canagliflozin (Patent Document 1).
  • This 1-( ⁇ -D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene precursor is also referred to as a C-aryl hydroxyglycoxide derivative, and SGLT-2 It has been drawing attention as an intermediate for producing an inhibitor (see Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, Patent Document 1 and Patent Document 2).
  • Non-Patent Documents 1 and 3 a method in which aryllithium is allowed to act on a D-gluconolactone derivative at an ultralow temperature of ⁇ 78° C. to cause an addition reaction of an aryl group.
  • an aryl group is added to a D-gluconolactone derivative at a low temperature of ⁇ 20 to ⁇ 10° C. by using a turbo-Grignard reagent such as ArMgBr ⁇ LiCl (Ar is an aryl group).
  • Non-Patent Document 2 A reaction method (Non-Patent Document 2), and further, using a magnesium ate complex obtained from lithium tri-n-butylmagnesate (nBu 3 MgLi), D-gluconolactone under a temperature environment of about ⁇ 15° C.
  • a method of adding an aryl group to a derivative (Patent Document 2) and the like are known.
  • Non-Patent Documents 4 and 5 it has been reported that a ketone derivative can be obtained by reacting an organic zinc reagent with a thioester derivative in the presence of a nickel catalyst to obtain a ketone derivative.
  • one object of the present invention is to provide a method for industrially inexpensively and efficiently producing a C-aryl hydroxyglycoxide derivative.
  • the present inventors have recently conducted a cross-coupling reaction with a specific raw material in the presence of a nickel catalyst or a palladium catalyst, and further carried out a cyclization reaction, so that the C-aryl hydroxyglycoxide derivative is industrially inexpensive and efficient. It has been found that a compound (I) represented by the following formula (I) can be produced, and the present invention has been completed.
  • R 1 and R 2 each independently represent a hydroxyl-protecting group
  • R 3 and R 4 each independently represent a hydroxyl group-protecting group or a hydrogen atom
  • Ar contains an aromatic hydrocarbon ring group or an aromatic heterocyclic group as a functional group that bonds to the oxane ring in the formula. It represents an organic group, and the aromatic hydrocarbon ring group and the aromatic heterocyclic group each may have one or more substituents.
  • R 1 to R 4 are as defined above, R 5 represents a hydroxyl protecting group (however, the same hydroxyl protecting group as the hydroxyl protecting group represented by R 1 and the same hydroxyl protecting group as the hydroxyl protecting group represented by R 2 are excluded); Q represents an organic group containing an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group or an aromatic heterocyclic group as a functional group bonding to the sulfur atom in the formula, and the aliphatic carbon group Each of the hydrogen group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group may have one or more substituents.
  • the supported catalyst has at least one carrier selected from the group consisting of activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite, and hydrotalcite, and a palladium catalyst supported on the carrier.
  • the at least one organozinc compound contains the compound (III-I),
  • the compound (III-I) has the following formula: [In the formula, Ar and X are as defined above. ]
  • [5] The method according to any one of [1] to [4], wherein R 3 and R 4 represent a hydroxyl-protecting group.
  • R 5 represent a hydroxyl-protecting group.
  • the hydroxyl group-protecting groups represented by R 1 to R 5 are each independently an ester-type protecting group, an arylalkyl-type protecting group, an alkyl-type protecting group, an arylalkyloxyalkyl-type protecting group, an alkyloxyalkyl-type protecting group.
  • the organic group represented by Q contains an alkyl group, an alkenyl group, an alkynyl group or an aryl group as a functional group that bonds to a sulfur atom in the formula, and the alkyl group, the alkenyl group, the alkynyl group and The method according to any one of [1] to [7], wherein each of the aryl groups may have one or more substituents.
  • the 1 which the aliphatic hydrocarbon group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group or the aromatic heterocyclic group contained in the organic group represented by Q may have.
  • substituents each independently, a halogen atom, a hydroxyl group which may be protected, a thiol group which may be protected, an amino group which may be protected, a formyl group which may be protected,
  • the organic group represented by Ar contains an aromatic hydrocarbon ring group having 6 to 14 carbon atoms or an aromatic heterocyclic group having 3 to 12 carbon atoms as a functional group that bonds to the oxane ring in the formula.
  • the organic group represented by Ar has the following formula (V): [In the formula, R a is each independently a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an arylalkenyl group, an arylalkynyl group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, or aryloxy.
  • the organic group represented by Ar has the following formula (Va): [In the formula, Ra is as defined above, Ar' is represented by the following formulas (Va-I), (Va-II) and (Va-III): [Wherein each R b independently represents a functional group selected from the group consisting of an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group, The aliphatic hydrocarbon group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocycle each may have one or more substituents, and p is an integer of 0 to 5 Represents.
  • R b Represents a functional group selected from the group consisting of: ]
  • the functional groups represented by R b are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and a carbon number of 6 to 14
  • Each of the one or more substituents optionally contained in the aromatic hydrocarbon ring group or the aromatic heterocyclic group contained in the organic group represented by Ar is independently a halogen atom.
  • Optionally protected hydroxyl group, optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected The method according to any one of [1] to [14], which is selected from the group consisting of a good sulfonyl group, an alkyl group, an alkenyl group and an alkynyl group.
  • the method described in crab. [17] The method according to [16], wherein the reaction between the compound (VI) and the compound (VII) is performed at -30 to 40°C.
  • R c and R d each independently represent a functional group selected from the group consisting of a halogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group.
  • compound (I) can be industrially manufactured at low cost and efficiently. According to the present invention, equipment costs and running costs can be significantly reduced, which is advantageous in industrial production.
  • alkyl group also applies to functional groups containing "alkyl” or “alkyl groups” (eg, alkylaryl groups, arylalkyl groups, etc.).
  • Organic group means a functional group containing one or more carbon atoms.
  • the organic group can contain one or more heteroatoms.
  • Heteroatom means atoms other than hydrogen and carbon atoms. Examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a halogen atom, a silicon atom and the like.
  • Healogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the bond of the organic group is preferably formed of a bond of a carbon atom contained in the organic group.
  • the organic group is an aliphatic hydrocarbon group which may have one or more substituents, or an aliphatic hydrocarbon group which may have one or more substituents. Including a group.
  • the bond of the organic group is preferably formed of the bond of an aliphatic hydrocarbon group.
  • the organic group is an aromatic hydrocarbon ring group which may have one or more substituents, or an aromatic hydrocarbon ring which may have one or more substituents.
  • the bond of the organic group is preferably formed of the bond of the aromatic hydrocarbon ring group.
  • the organic group is an aliphatic heterocyclic group which may have one or more substituents, or an aliphatic heterocyclic group which may have one or more substituents. Including a ring group.
  • the bond of the organic group is preferably formed of the bond of the aliphatic heterocyclic group.
  • the organic group is an aromatic heterocyclic group optionally having one or more substituents, or an aromatic heterocyclic group optionally having one or more substituents. Including a ring group.
  • the bond of the organic group is preferably formed of the bond of the aromatic heterocyclic group.
  • the organic group is an aliphatic hydrocarbon group which may have one or more substituents, an aromatic hydrocarbon ring group which may have one or more substituents, Which is formed by combining two or more kinds selected from an aliphatic heterocyclic group which may have one or more substituents and an aromatic heterocyclic group which may have one or more substituents Including a group.
  • the bond of the organic group is preferably formed of a bond of an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group or an aromatic heterocyclic group.
  • “Aliphatic hydrocarbon group” means a functional group (hydrocarbon group having no aromaticity) produced by removing a hydrogen atom from an aliphatic hydrocarbon.
  • “Aliphatic hydrocarbon group” may mean a monovalent or divalent functional group depending on the context.
  • the monovalent aliphatic hydrocarbon group may be referred to as "-aliphatic hydrocarbon group” and the divalent aliphatic hydrocarbon group may be referred to as "-aliphatic hydrocarbon group-”.
  • the aliphatic hydrocarbon group may be linear, cyclic or a combination thereof.
  • the chain may be a straight chain or a branched chain.
  • the aliphatic hydrocarbon group is preferably linear or branched.
  • the aliphatic hydrocarbon group may be saturated or unsaturated.
  • the unsaturated bond may be a carbon-carbon double bond or a carbon-carbon triple bond.
  • Examples of the monovalent aliphatic hydrocarbon group include an alkyl group, an alkenyl group and an alkynyl group.
  • Examples of the divalent aliphatic hydrocarbon group include an alkylene group, an alkenylene group, an alkynylene group and the like.
  • Alkyl group means a monovalent functional group generated by removing one hydrogen atom from an alkane.
  • the alkyl group may be linear, cyclic or a combination thereof.
  • the cyclic alkyl group has the same meaning as the "cycloalkyl group”.
  • the chain may be a straight chain or a branched chain.
  • the alkyl group is preferably linear or branched.
  • the carbon number of the linear alkyl group is usually 1 to 20, preferably 1 to 10, more preferably 1 to 8, even more preferably 1 to 6, and even more preferably 1 to 4, More preferably, it is 1 to 3.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 20, preferably 3 to 10, more preferably 3 to 8, even more preferably 3 to 6, and even more preferably 3 to 4. is there.
  • the carbon number of the cyclic alkyl group is usually 3 to 20, preferably 3 to 10, more preferably 3 to 8, and even more preferably 3 to 6.
  • the number of carbon atoms of the alkyl group having a linear or branched portion and a cyclic portion is usually 4 to 20, preferably 4 to 10, more preferably 4 to 8, and even more preferably 4 to 6. Is.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, isohexyl group, heptyl group, 4 , 4-Dimethylpentyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group, decyl group and other linear or branched alkyl groups; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group , A cycloalkyl group such as a cycloheptyl group and a cyclooctyl group; having a linear or branched chain portion such as a cyclopentylmethyl group, a cyclopentylethyl group, a cyclopentyl
  • Alkenyl group means a monovalent functional group formed by removing one hydrogen atom from an alkene.
  • An alkenyl group has at least one carbon-carbon double bond.
  • the alkenyl group may be linear, cyclic or a combination thereof.
  • the cyclic alkenyl group has the same meaning as "cycloalkenyl group”.
  • the chain may be a straight chain or a branched chain.
  • the alkenyl group is preferably linear or branched.
  • the number of carbon atoms of the linear alkenyl group is usually 2 to 20, preferably 2 to 10, more preferably 2 to 8, even more preferably 2 to 6, and even more preferably 2 to 4. is there.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 20, preferably 3 to 10, more preferably 3 to 8, even more preferably 3 to 6, and even more preferably 3 to 4. is there.
  • the carbon number of the cyclic alkenyl group is usually 3 to 20, preferably 3 to 10, more preferably 3 to 8, and even more preferably 3 to 6.
  • the number of carbon atoms of the alkenyl group having a linear or branched portion and a cyclic portion is usually 4 to 20, preferably 4 to 10, more preferably 4 to 8, and even more preferably 4 to 6. Is.
  • the number of double bonds in the alkenyl group is usually 1 to 9, preferably 1 to 7, more preferably 1 to 4, and even more preferably 1 to 3.
  • alkenyl group examples include a vinyl group, 2-propenyl group, 3-butenyl group, 2-butenyl group, 4-pentenyl group, 3-pentenyl group, 2-hexenyl group, 3-hexenyl group, 2-heptenyl group, Linear or branched alkenyl groups such as 3-heptenyl group, 4-heptenyl group, 3-octenyl group, 3-nonenyl group, 4-decenyl group; cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group Cyclic alkenyl groups such as groups, cycloheptenyl groups, cyclooctenyl groups; linear or branched moieties such as cyclopentenylmethyl groups, cyclopentenylethyl groups, cyclopentenylpropyl groups, cyclohexenylmethyl groups, cyclohexenylethy
  • Alkynyl group means a monovalent functional group generated by removing one hydrogen atom from an alkyne.
  • An alkynyl group has at least one carbon-carbon triple bond.
  • the alkynyl group may be linear, cyclic or a combination thereof.
  • the cyclic alkynyl group has the same meaning as the "cycloalkynyl group”.
  • the chain may be a straight chain or a branched chain.
  • the alkynyl group is preferably linear or branched.
  • the number of carbon atoms of the linear alkynyl group is usually 2 to 20, preferably 2 to 10, more preferably 2 to 8, even more preferably 2 to 6, and even more preferably 2 to 4. is there.
  • the branched alkynyl group has usually 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms.
  • the carbon number of the cyclic alkynyl group is usually 4 to 20, preferably 4 to 10, more preferably 4 to 8, and even more preferably 4 to 6.
  • the number of carbon atoms of the alkynyl group having a linear or branched portion and a cyclic portion is usually 5 to 20, preferably 5 to 10, more preferably 5 to 8, and even more preferably 5 to 6. Is.
  • the number of triple bonds in the alkynyl group is usually 1 to 9, preferably 1 to 7, more preferably 1 to 4, and even more preferably 1 to 3.
  • alkynyl group examples include 2-propynyl group, 3-butynyl group, 2-butynyl group, 4-pentynyl group, 3-pentynyl group, 2-hexynyl group, 3-hexynyl group, 2-heptynyl group, 3-heptynyl group.
  • alkynyl group such as 4-heptynyl group, 3-octynyl group, 3-nonynyl group and 4-decynyl group; cyclic such as cyclobutynyl group, cyclopentynyl group, cycloheptynyl group and cyclooctynyl group
  • alkynyl group having a linear or branched portion such as a cyclopentynylmethyl group, a cyclopentenylethyl group, a cyclopentynylpropyl group, a cyclopentynylmethyl group, a cyclopentynylethyl group and a cyclic portion.
  • Alkylene group means a divalent functional group formed by removing one hydrogen atom from an alkyl group. The description on the alkyl group is the same as above.
  • Alkenylene group means a divalent functional group formed by removing one hydrogen atom from an alkenyl group. The description on the alkenyl group is the same as above.
  • Alkynylene group means a divalent functional group formed by removing one hydrogen atom from an alkynyl group. The description on the alkynyl group is the same as above.
  • “Aromatic hydrocarbon ring group” means a functional group formed by removing a hydrogen atom from an aromatic hydrocarbon ring. “Aromatic hydrocarbon ring group” may mean a monovalent or divalent functional group, depending on the context. Hereinafter, the monovalent aromatic hydrocarbon ring group may be referred to as "-aromatic hydrocarbon ring group” and the divalent aromatic hydrocarbon ring group may be referred to as "-aromatic hydrocarbon ring group-”. The monovalent aromatic hydrocarbon ring group has the same meaning as the "aryl group”, and the divalent aromatic hydrocarbon ring group has the same meaning as the "arylene group”.
  • the aromatic hydrocarbon ring group includes, for example, a monocyclic or polycyclic (eg, bicyclic or tricyclic) aromatic carbohydrogen ring group.
  • the aromatic hydrocarbon ring group is usually 1 to 4 ring type, preferably 1 to 3 ring type, and more preferably 1 or 2 ring type.
  • the number of ring-constituting carbon atoms in the aromatic hydrocarbon ring group is usually 6 to 18, preferably 6 to 14, and more preferably 6 to 10.
  • Examples of the monocyclic aromatic carbon-hydrogen ring group include a phenyl group.
  • the aromatic hydrocarbon ring group also includes a condensed polycyclic aromatic hydrocarbon ring group and a partially saturated condensed polycyclic aromatic hydrocarbon ring group.
  • the partially saturated fused polycyclic aromatic hydrocarbon ring group is a fused polycyclic aromatic hydrocarbon ring group in which some of the bonds constituting the ring are hydrogenated.
  • Examples of the condensed polycyclic aromatic hydrocarbon ring group include, for example, naphthenyl group, anthryl group, phenanthrenyl group, tetracenyl group, pyrenyl group, and other 2- to 4-cyclic aromatic carbon-hydrogen ring groups, and fluorenyl group. , Indenyl group, acenaphthylenyl and the like.
  • Examples of the partially saturated fused polycyclic aromatic hydrocarbon ring group include a dihydronaphthyl group, an indanyl group, an acenaphthenyl group and the like.
  • the divalent aromatic hydrocarbon ring group is a divalent functional group produced by removing one hydrogen atom from the monovalent aromatic hydrocarbon ring group.
  • the description on the monovalent aromatic hydrocarbon ring group is the same as above.
  • Examples of the divalent aromatic hydrocarbon ring group include a 1,3-phenylene group and a 1,4-phenylene group.
  • “Aliphatic heterocyclic group” means, as a ring-constituting atom, a monocyclic group containing, in addition to a carbon atom, one or more heteroatoms independently selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom, or It means a functional group formed by removing a hydrogen atom from a polycyclic (eg, bicyclic or tricyclic) aliphatic heterocycle (non-aromatic heterocycle).
  • the “aliphatic heterocyclic group” may mean a monovalent or divalent functional group depending on the context.
  • the monovalent aliphatic heterocyclic group may be referred to as "-aliphatic heterocyclic group”
  • the divalent aliphatic heterocyclic group may be referred to as "-aliphatic heterocycle-”.
  • the “aliphatic heterocycle” in the functional group containing “aliphatic heterocycle” eg, aliphatic heterocyclic thio group, aliphatic heterocyclic oxy group, etc.
  • aliphatic heterocycle in the functional group containing “aliphatic heterocycle” (eg, aliphatic heterocyclic thio group, aliphatic heterocyclic oxy group, etc.) means an aliphatic heterocyclic group.
  • the number of heteroatoms contained in the aliphatic heterocyclic group is usually 1 to 4, preferably 1 to 3, and more preferably 1 or 2.
  • the number of members of the aliphatic heterocyclic group is usually 3 to 16 members, preferably 4 to 10 members, more preferably 5 to 8 members, still more preferably 5 to 7 members, still more preferably 5 or 6 members.
  • the aliphatic heterocyclic group is, for example, monocyclic, bicyclic or tricyclic, preferably monocyclic or bicyclic.
  • the number of ring-constituting carbon atoms in the aliphatic heterocyclic group is appropriately selected according to the number of heteroatoms and the number of members of the aliphatic heterocyclic group.
  • the number of ring-constituting carbon atoms in the aliphatic heterocyclic group is usually 2 to 12, preferably 2 to 8, and more preferably 2 to 5.
  • the monocyclic aliphatic heterocyclic group is, for example, a monocyclic saturated aliphatic heterocyclic group.
  • the monocyclic saturated aliphatic heterocyclic group is a monocyclic aliphatic heterocyclic group in which the ring is composed of only saturated bonds.
  • the monocyclic saturated aliphatic heterocyclic group contains 1-2 oxygen atoms.
  • the monocyclic saturated aliphatic heterocyclic group contains 1-2 sulfur atoms.
  • the monocyclic saturated aliphatic heterocyclic group contains 1-2 oxygen atoms and 1-2 sulfur atoms.
  • the monocyclic saturated aliphatic heterocyclic group contains 1-4 nitrogen atoms.
  • the monocyclic saturated aliphatic heterocyclic group contains 1-3 nitrogen atoms, 1-2 sulfur atoms and/or 1-2 oxygen atoms.
  • two carbon atoms constituting the ring may be bridged with an alkylene group.
  • two adjacent carbon atoms among the carbon atoms constituting the ring may form a double bond.
  • two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group.
  • the number of oxo groups that the monocyclic saturated aliphatic heterocyclic group can have is preferably 1 or 2.
  • the monocyclic saturated aliphatic heterocyclic group may be a dioxide.
  • Examples of the monocyclic aliphatic heterocyclic group include an aziridinyl group, an oxiranyl group, a thiylanyl group, an azetidinyl group, an oxetanyl group, a thietanyl group, a tetrahydrothienyl group, a tetrahydrofuranyl group, a pyrrolinyl group, a pyrrolidinyl group, an imidazolinyl group, and an imidazolidinyl group.
  • the monocyclic aliphatic heterocyclic group also includes a partially saturated monocyclic aromatic heterocyclic group.
  • the partially saturated monocyclic aromatic heterocyclic group is a monocyclic aromatic heterocyclic group in which some of the bonds constituting the ring are hydrogenated.
  • Examples of the partially saturated monocyclic aromatic heterocyclic group include, for example, 4,5-dihydro-1H-imidazolyl group, 1,2,3,6-tetrahydropyridyl group, 4H-1,3-oxazinyl group. Group, 5,6-dihydro-4H-1,3-oxazinyl group and the like.
  • a partially saturated monocyclic aromatic heterocyclic group two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group.
  • the number of oxo groups which the partially saturated monocyclic aromatic heterocyclic group may have is preferably 1 or 2.
  • the polycyclic aliphatic heterocyclic group is, for example, a condensed polycyclic aliphatic heterocyclic group.
  • the condensed polycyclic aliphatic heterocyclic group is, for example, a condensed polycyclic saturated aliphatic heterocyclic ring.
  • the condensed polycyclic saturated aliphatic heterocyclic ring is a condensed polycyclic aliphatic heterocyclic group in which the ring is composed of only saturated bonds.
  • the fused polycyclic saturated aliphatic heterocyclic group contains 1-3 oxygen atoms.
  • the fused polycyclic saturated aliphatic heterocyclic group contains 1-3 sulfur atoms.
  • the fused polycyclic saturated aliphatic heterocyclic group contains 1-3 oxygen atoms and 1-3 sulfur atoms. In another embodiment, the fused polycyclic saturated aliphatic heterocyclic group contains 1-5 nitrogen atoms. In another embodiment, the fused polycyclic saturated aliphatic heterocyclic group contains 1 to 4 nitrogen atoms and 1 to 3 sulfur atoms and/or 1 to 3 oxygen atoms. In the fused polycyclic saturated aliphatic heterocyclic group, two carbon atoms constituting the ring may be bridged with an alkylene group. In the fused polycyclic saturated aliphatic heterocyclic group, two adjacent carbon atoms among the carbon atoms constituting the ring may form a double bond.
  • the fused polycyclic saturated aliphatic heterocyclic group two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group.
  • the number of oxo groups that the fused polycyclic aliphatic heterocyclic group may have is preferably 1, 2 or 3.
  • the condensed polycyclic saturated aliphatic heterocyclic group may be a dioxide.
  • condensed polycyclic aliphatic heterocyclic group examples include octahydro-1H-isoindolyl group, decahydroquinolyl group, decahydroisoquinolyl group, hexahydro-2H-[1,4]dioxino[2,3-c ] Pyrrolyl group, 3-azabicyclo[3.1.0]hex-3-yl group and the like.
  • the aliphatic heterocyclic group also includes a spiro cyclic heterocyclic group.
  • a spirocyclic heterocyclic group is a heterocyclic group formed by two rings sharing one spiro carbon atom. Examples of the combination of two rings include a combination of a monocyclic aliphatic heterocyclic group and a monocyclic aliphatic hydrocarbon ring group (eg, cycloalkyl group, cycloalkenyl group, etc.), monocyclic And the like, and a combination of the aliphatic heterocyclic group and the monocyclic aliphatic heterocyclic group.
  • the spiro cyclic heterocyclic group In the spiro cyclic heterocyclic group, two adjacent carbon atoms of the ring-constituting carbon atoms may form a double bond. In the spiro cyclic heterocyclic group, two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group.
  • the number of oxo groups that the spirocyclic heterocyclic group may have is preferably 1, 2 or 3.
  • the heteroatom contained in the spiro cyclic heterocyclic group is a sulfur atom
  • the spiro cyclic heterocyclic group may be in a dioxide form.
  • spiro cyclic heterocyclic group examples include, for example, 2-oxa-6-azaspiro[3.3]heptanyl group, 1-oxa-6-azaspiro[3.3]heptanyl group, 6-oxa-1-azaspiro[3 .3]heptanyl group, 1-oxo-2,8-diazaspiro[4.5]decanyl group, 1,4-dioxa-8-azaspiro[4.5]decanyl group, 2-azaspiro[3.3]heptyl group , 7-oxa-2-azaspiro[3.5]nonyl group, 5,8-oxa-2-azaspiro[3.4]octyl group, 1,4-dioxa-8-azaspiro[4.5]decanyl group, Examples thereof include a 1-oxaspiro[4.5]decanyl group.
  • the "aromatic heterocyclic group” is, as a ring-constituting atom, a monocyclic group containing, in addition to a carbon atom, one or more heteroatoms independently selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom, or It means a functional group formed by removing a hydrogen atom from a polycyclic aromatic heterocycle.
  • the "aromatic heterocyclic group” may mean a monovalent or divalent functional group depending on the context.
  • the monovalent aromatic heterocyclic group may be referred to as "-aromatic heterocyclic group” and the divalent aromatic heterocyclic group may be referred to as "-aromatic heterocyclic group-”.
  • the monovalent aromatic heterocyclic group has the same meaning as the “heteroaryl group”, and the divalent aromatic heterocyclic group has the same meaning as the “heteroarylene group”.
  • Examples of the aromatic heterocyclic group include a monocyclic or polycyclic aromatic heterocyclic group.
  • the aromatic heterocyclic group is usually 1 to 4 ring type, preferably 1 to 3 ring type, and more preferably 1 or 2 ring type.
  • the number of heteroatoms contained in the aromatic heterocyclic group is usually 1 to 4, preferably 1 to 3, and more preferably 1 or 2.
  • the number of members of the aromatic heterocyclic group is preferably 5 to 14 members, more preferably 5 to 10 members.
  • the number of ring-constituting carbon atoms in the aromatic heterocyclic group is appropriately determined according to the number of heteroatoms and the number of members.
  • the number of ring-constituting carbon atoms in the aromatic heterocyclic group is usually 3 to 12, preferably 3 to 8, and even more preferably 3 to 5.
  • two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group.
  • the aromatic heterocyclic group is a 5-7 membered monocyclic aromatic heterocyclic group.
  • the aromatic heterocyclic group is an 8-14 membered bicyclic or tricyclic aromatic heterocyclic group.
  • the aromatic heterocyclic group is, for example, a monocyclic aromatic heterocyclic group.
  • the monocyclic aromatic heterocyclic group contains 1-2 oxygen atoms.
  • the monocyclic aromatic heterocyclic group contains 1-2 sulfur atoms.
  • the monocyclic aromatic heterocyclic group contains 1-2 oxygen atoms and 1-2 sulfur atoms.
  • a monocyclic aromatic heterocyclic group contains 1 to 4 nitrogen atoms.
  • the monocyclic aromatic heterocyclic group contains 1-3 nitrogen atoms, 1-2 sulfur atoms and/or 1-2 oxygen atoms.
  • Examples of the monocyclic aromatic heterocyclic group include a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a thienyl group, a pyrrolyl group, a thiazolyl group, an isothiazolyl group, a pyrazolyl group, an imidazolyl group, a furyl group, an oxazolyl group, Isoxazolyl group, oxadiazolyl group (eg, 1,2,4-oxadiazolyl group, 1,3,4-oxadiazolyl group, etc.), thiadiazolyl group (eg, 1,2,4-thiadiazolyl group, 1,3,4-thiadiazolyl group) Etc.), a triazolyl group (eg, 1,2,3-triazolyl group, 1,2,4-triazolyl group, etc.), a tetrazolyl group, a
  • the aromatic heterocyclic group is, for example, a polycyclic aromatic heterocyclic group.
  • the polycyclic aromatic heterocyclic group is, for example, a condensed polycyclic aromatic heterocyclic group.
  • the fused polycyclic aromatic heterocyclic group contains 1-3 oxygen atoms.
  • the fused polycyclic aromatic heterocyclic group contains 1-3 sulfur atoms.
  • the fused polycyclic aromatic heterocyclic group contains 1-3 oxygen atoms and 1-3 sulfur atoms.
  • the fused polycyclic aromatic heterocyclic group contains 1-5 nitrogen atoms.
  • the fused polycyclic aromatic heterocyclic group contains 1 to 4 nitrogen atoms and 1 to 3 sulfur atoms and/or 1 to 3 oxygen atoms.
  • Examples of the condensed polycyclic aromatic heterocyclic group include a benzothiophenyl group, a benzofuranyl group, a benzimidazolyl group, a benzoxazolyl group, a benzisoxazolyl group, a benzothiazolyl group, a benzoisothiazolyl group, and benzotria.
  • the aromatic heterocyclic group is a fused polycyclic aromatic group having a partially saturated monocycle (eg, a monocyclic aromatic hydrocarbon ring group, a monocyclic aromatic heterocyclic group, etc.)
  • a heterocyclic group (for example, a cyclic group in which an aliphatic heterocycle is condensed with an aromatic ring) is also included.
  • a fused polycyclic aromatic heterocyclic group having a partially saturated monocycle is a fused polycyclic aromatic heterocyclic group having a monocycle in which some of the bonds constituting the ring are hydrogenated. is there.
  • fused polycyclic aromatic heterocyclic group having a partially saturated monocycle examples include dihydrobenzofuranyl group, dihydrobenzimidazolyl group, dihydrobenzoxazolyl group, dihydrobenzothiazolyl group, dihydro Benzisothiazolyl group, dihydronaphtho[2,3-b]thienyl group, tetrahydroisoquinolyl group, tetrahydroquinolyl group, 4H-quinolizinyl group, indolinyl group, isoindolinyl group, tetrahydrothieno[2,3-c]pyridinyl group Group, tetrahydrobenzazepinyl group, tetrahydroquinoxalinyl group, tetrahydrophenanthridinyl group, hexahydrophenothiazinyl group, hexahydrophenoxazinyl group, tetrahydrophthalazinyl group,
  • fused polycyclic aromatic heterocyclic group having a partially saturated monocycle two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group.
  • the number of oxo groups that the fused polycyclic aromatic heterocyclic group having a partially saturated monocycle may have is 1, 2 or 3.
  • the aromatic heterocyclic group also includes a partially saturated fused polycyclic aromatic heterocyclic group.
  • the partially saturated fused polycyclic aromatic heterocyclic group is a fused polycyclic aromatic heterocyclic group having a monocycle in which some of the bonds constituting the ring are hydrogenated.
  • Examples of the partially saturated fused polycyclic aromatic heterocyclic group include, for example, 1,3-dihydrobenzimidazole-2-onyl group, 2-benzoxazolinonyl group, octahydroisoindolyl group, 2H -Pyrido[3,2-b]-1,4-oxazin-3(4H)-on-yl group, 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4 ] Oxazin-6-yl group, [1,3]dioxolo[4,5-b]pyridyl group, 2,3-dihydrobenzo[b]thienyl group, 2,3-dihydro-1-benzofuran-5-yl group 2,3-dihydro-1-benzofuran-6-yl group, 1,3-dihydro-2-benzofuran-5-yl group, 2,3-dihydro-1H-indol-5-yl group
  • the divalent aromatic heterocyclic group means a divalent functional group produced by removing one hydrogen atom from the monovalent aromatic heterocyclic group.
  • the description regarding the monovalent aromatic heterocyclic group is the same as above.
  • Examples of the functional group formed by combining two or more kinds selected from an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group include, for example, an aliphatic hydrocarbon group and Functional group formed by combining an aromatic hydrocarbon ring group, functional group formed by combining an aliphatic hydrocarbon group and an aliphatic heterocyclic group, formed by combining an aliphatic hydrocarbon group and an aromatic heterocyclic group And functional groups to be mentioned.
  • the functional group formed by combining the aliphatic hydrocarbon group and the aromatic hydrocarbon ring group is represented by the formula: (*)-aliphatic hydrocarbon group-aromatic hydrocarbon ring group, or the formula: (*)-aromatic It is represented by an aromatic hydrocarbon ring group-aliphatic hydrocarbon group.
  • (*) represents a bond of an organic group containing a functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group.
  • Each of the aliphatic hydrocarbon group and the aromatic hydrocarbon ring group in the formula may have one or more substituents.
  • the aliphatic hydrocarbon group in the formula may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group.
  • the aromatic hydrocarbon ring group in the formula has, for example, one or more substituents selected from an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. May be
  • the aliphatic hydrocarbon group selected as a substituent may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. ..
  • the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group selected as the substituent are, for example, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic group, respectively. It may have one or more substituents selected from a heterocyclic group.
  • Examples of the functional group represented by the formula: (*)-aromatic hydrocarbon ring group-aliphatic hydrocarbon group include an alkylaryl group, an alkenylaryl group, an alkynylaryl group, and the like.
  • the description of the alkyl group, alkenyl group, alkynyl group and aryl group in the “alkylaryl group”, “alkenylaryl group” and “alkynylaryl group” is the same as above.
  • the number of alkyl groups in the alkylaryl group, the number of alkenyl groups in the alkenylaryl group, and the number of alkynyl groups in the alkynylaryl group are usually 1 to 4, preferably 1 to 3, and more preferably 1 to 2. ..
  • the number of carbon atoms of the alkylaryl group is usually 7 to 30, preferably 7 to 20, more preferably 7 to 18, even more preferably 7 to 15, and even more preferably 7 to 11.
  • the number of carbon atoms of the alkenylaryl group and the number of carbon atoms of the alkynylaryl group are generally 8 to 30, preferably 8 to 20, more preferably 8 to 18, even more preferably 8 to 16, and even more preferably 8. It is up to 12.
  • alkylaryl group examples include o-toluyl, m-toluyl, p-toluyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3, 4-dimethylphenyl, 3,5-dimethylphenyl, 2,4,6-trimethylphenyl, o-ethylphenyl, m-ethylphenyl, p-ethylphenyl and the like can be mentioned.
  • alkenylaryl group examples include alkenylaryl groups such as o-styryl, m-styryl, p-styryl and the like.
  • alkynylaryl group examples include alkynylaryl groups such as 2-ethynyl-2-phenyl.
  • Examples of the functional group represented by the formula: (*)-aliphatic hydrocarbon group-aromatic hydrocarbon ring group include arylalkyl groups, arylalkenyl groups, arylalkynyl groups, and the like.
  • the description of the alkyl group, alkenyl group, alkynyl group and aryl group in the “arylalkyl group”, “arylalkenyl group” and “arylalkynyl group” is the same as above.
  • the carbon number of the arylalkyl group is usually 7 to 30, preferably 7 to 20, more preferably 7 to 18, even more preferably 7 to 15, and even more preferably 7 to 11.
  • Examples of the arylalkyl group include a benzyl group and a 2-phenethyl group.
  • the carbon number of the arylalkenyl group is usually 8 to 30, preferably 8 to 20, more preferably 8 to 18, even more preferably 8 to 16, and even more preferably 8 to 12.
  • Examples of the arylalkenyl group include a 2-phenethenyl group and a 2-nephtylethenyl group.
  • the carbon number of the arylalkynyl group is usually 8 to 30, preferably 8 to 20, more preferably 8 to 18, even more preferably 8 to 16, and even more preferably 8 to 12.
  • Examples of the arylalkynyl group include a phenylethynyl group and the like.
  • the functional group formed by combining the aliphatic hydrocarbon group and the aliphatic heterocyclic group is represented by the formula: (*)-aliphatic hydrocarbon group-aliphatic heterocyclic group, or the formula: (*)-aliphatic heterocyclic group. It is represented by a ring group-aliphatic hydrocarbon group. (*) represents a bond of an organic group containing a functional group formed by combining an aliphatic hydrocarbon group and an aliphatic heterocyclic group. Each of the aliphatic hydrocarbon group and the aliphatic heterocyclic group in the formula may have one or more substituents.
  • the aliphatic hydrocarbon group in the formula may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group.
  • the aliphatic heterocyclic group in the formula has, for example, one or more substituents selected from an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. May be.
  • the aliphatic hydrocarbon group selected as a substituent may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. ..
  • the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group selected as the substituent are, for example, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic group, respectively. It may have one or more substituents selected from a heterocyclic group.
  • Examples of the functional group represented by the formula: (*)-aliphatic heterocyclic group-aliphatic hydrocarbon group include alkylaliphatic heterocyclic groups, alkenylaliphatic heterocyclic groups, alkynylaliphatic heterocyclic groups and the like. Can be mentioned. The description of the alkyl group, alkenyl group, alkynyl group and aliphatic heterocyclic group in the “alkyl aliphatic heterocyclic group”, “alkenyl aliphatic heterocyclic group” and “alkynyl aliphatic heterocyclic group” is the same as above. ..
  • Examples of the functional group represented by the formula: (*)-aliphatic hydrocarbon group-aliphatic heterocyclic group include an aliphatic heterocyclic alkyl group, an aliphatic heterocyclic alkenyl group, an aliphatic heterocyclic alkynyl group and the like. Can be mentioned. The description of the alkyl group, alkenyl group, alkynyl group and aliphatic heterocyclic group in the "aliphatic heterocyclic alkyl group", "aliphatic heterocyclic alkenyl group” and “aliphatic heterocyclic alkynyl group” is the same as above. ..
  • the functional group formed by combining the aliphatic hydrocarbon group and the aromatic heterocyclic group is represented by the formula: (*)-aliphatic hydrocarbon group-aromatic heterocyclic group, or the formula: (*)-aromatic heterocyclic group. It is represented by a ring group-aliphatic hydrocarbon group. (*) represents a bond of an organic group containing a functional group formed by combining an aliphatic hydrocarbon group and an aromatic heterocyclic group. Each of the aliphatic hydrocarbon group and the aromatic heterocyclic group in the formula may have one or more substituents.
  • the aliphatic hydrocarbon group in the formula may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group.
  • the aromatic heterocyclic group in the formula has, for example, one or more substituents selected from an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. May be.
  • the aliphatic hydrocarbon group selected as a substituent may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. ..
  • the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group selected as the substituent are, for example, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic group, respectively. It may have one or more substituents selected from a heterocyclic group.
  • Examples of the functional group represented by the formula: (*)-aromatic heterocyclic group-aliphatic hydrocarbon group include an alkylheteroaryl group, an alkenylheteroaryl group, an alkynylheteroaryl group, and the like.
  • the description of the alkyl group, alkenyl group, alkynyl group and heteroaryl group in the “alkylheteroaryl group”, “alkenylheteroaryl group” and “alkynylheteroaryl group” is the same as above.
  • the number of alkyl groups in the alkylheteroaryl group, the number of alkenyl groups in the alkenylheteroaryl group, and the number of alkynyl groups in the alkynylheteroaryl group are usually 1 to 4, preferably 1 to 3, and more preferably 1 to 2. It is an individual.
  • the number of carbon atoms of the alkylheteroaryl group is usually 3 to 30, preferably 3 to 20, more preferably 3 to 18, even more preferably 3 to 15, and even more preferably 3 to 11.
  • the number of carbon atoms of the alkenylheteroaryl group and the number of carbon atoms of the alkynylheteroaryl group are usually 4 to 30, preferably 4 to 20, more preferably 4 to 18, even more preferably 4 to 15, and even more preferably Is 4 to 11.
  • Examples of the functional group represented by the formula: (*)-aliphatic hydrocarbon group-aromatic heterocyclic group include a heteroarylalkyl group, a heteroarylalkenyl group, a heteroarylalkynyl group and the like.
  • the description of the alkyl group, alkenyl group, alkynyl group and heteroaryl group in the “heteroarylalkyl group”, “heteroarylalkenyl group” and “heteroarylalkynyl group” is the same as above.
  • the carbon number of the heteroarylalkyl group is usually 3 to 30, preferably 3 to 20, more preferably 3 to 18, even more preferably 3 to 15, and even more preferably 3 to 11.
  • Examples of the heteroarylalkyl group include a furylethyl group, a thienylmethyl group, a benzothiophenylmethyl group and the like.
  • the carbon number of the heteroarylalkenyl group is usually 4 to 30, preferably 4 to 20, more preferably 4 to 18, even more preferably 4 to 15, and even more preferably 4 to 11.
  • Examples of the heteroarylalkenyl group include a pyridylethenyl group, a thienylethenyl group, a benzothiophenylethenyl group and the like.
  • the carbon number of the heteroarylalkynyl group is usually 4 to 30, preferably 4 to 20, more preferably 4 to 18, even more preferably 4 to 15, and even more preferably 4 to 11.
  • Examples of the heteroarylalkynyl group include an imidazoylethynyl group, a thienylethynyl group, a benzothiophenylethynyl group and the like.
  • the number of substituents that the aliphatic hydrocarbon group can have can be appropriately determined according to the number of carbon atoms in the aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group can have, for example, 1 to 6, preferably 1 to 3, more preferably 1 or 2 substituents at substitutable positions.
  • the hydrocarbon group has two or more substituents, the two or more substituents may be the same or different.
  • the number of substituents that the alkyl group may have is usually 1 to 3, preferably 1 or 2, and more preferably 1.
  • the number of substituents that the alkyl group may have is usually 1 to 6, preferably 1 to 5, more preferably 1 to 4, and even more preferably Is 1 or 2.
  • the number of substituents that the alkyl group may have is usually 1 to 9, preferably 1 to 5, more preferably 1 to 4, and even more preferably Is 1 or 2.
  • the number of substituents that the alkenyl group may have is usually 1 to 3, preferably 1 or 2, and more preferably 1.
  • the number of substituents that the alkenyl group can have is usually 1 to 5, preferably 1 to 4, more preferably 1 to 3, It is more preferably 1 or 2.
  • the number of substituents that the alkenyl group can have is usually 1 to 8, preferably 1 to 4, and more preferably 1 to 3 It is more preferably 1 or 2.
  • the number of substituents that the alkynyl group can have is usually 1 to 3, preferably 1 or 2, and more preferably 1.
  • the number of substituents that the alkynyl group may have is usually 1 to 5, preferably 1 to 4, more preferably 1 to 3, and even more. It is preferably 1 or 2.
  • the number of substituents that the alkynyl group may have is usually 1 to 8, preferably 1 to 4, more preferably 1 to 3, and even more preferably Is 1 or 2.
  • the number of substituents that the aromatic hydrocarbon ring group can have can be appropriately determined according to the number of carbon atoms and the number of members of the aromatic hydrocarbon ring group.
  • the aromatic hydrocarbon ring group can have, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3 and even more preferably 1 or 2 substituents at substitutable positions. ..
  • the aromatic hydrocarbon ring group has two or more substituents, the two or more substituents may be the same or different.
  • the number of substituents that the aliphatic heterocyclic group can have can be appropriately determined according to the number of carbon atoms and the number of members of the aliphatic heterocyclic group.
  • the aliphatic heterocyclic group can have, for example, 1 to 4, preferably 1 to 3, and more preferably 1 or 2 substituents at substitutable positions. When the aliphatic heterocyclic group has two or more substituents, the two or more substituents may be the same or different.
  • the number of substituents that the aromatic heterocyclic group can have can be appropriately determined according to the number of carbon atoms and the number of members of the aromatic heterocyclic group.
  • the aromatic heterocyclic group can have, for example, 1 to 4, preferably 1 to 3, and more preferably 1 or 2 substituents at substitutable positions. When the aromatic heterocyclic group has two or more substituents, the two or more substituents may be the same or different.
  • the number of substituents that the arylalkyl group or the alkylaryl group can have is usually 1 to 5, preferably 1 to 4 It is preferably 1 to 2.
  • the number of substituents that the arylalkyl group or the alkylaryl group can have is usually 1 to 6, preferably 1 to 4 It is preferably 1 to 2.
  • the number of substituents that the arylalkyl group or the alkylaryl group can have is usually 1 to 8, preferably 1 to 6 and more preferably Is 1 to 4, and more preferably 1 to 2.
  • the number of substituents that the arylalkenyl group or the alkenylaryl group can have is usually 1 to 5, preferably 1 to 4 It is preferably 1 to 2.
  • the number of substituents that the arylalkenyl group or alkenylaryl group may have is usually 1 to 6, preferably 1 to 4 It is preferably 1 to 2.
  • the number of substituents that the arylalkenyl group or alkenylaryl group can have is usually 1 to 8, preferably 1 to 6 and more preferably Is 1 to 4, and more preferably 1 to 2.
  • the number of substituents that the arylalkynyl group or alkynylaryl group may have is usually 1 to 5, preferably 1 to 4 It is preferably 1 to 2.
  • the number of substituents that the arylalkynyl group or alkynylaryl group may have is usually 1 to 6, preferably 1 to 4 It is preferably 1 to 2.
  • the number of substituents that the arylalkynyl group or alkynylaryl group can have is usually 1 to 8, preferably 1 to 6 and more preferably Is 1 to 4, and more preferably 1 to 2.
  • One or more substituents that the aliphatic hydrocarbon group (including monovalent and divalent) contained in the organic group may have, and the aromatic hydrocarbon ring group (including monovalent and divalent) contained in the organic group
  • the one or more substituents that the heterocyclic group (including monovalent and divalent) may have can be independently selected from the following substituent groups A to M.
  • the one or more substituents which the aliphatic hydrocarbon group (including monovalent and divalent) contained in the organic group may have, are each independently, for example, a halogen atom, a nitro group, a cyano group, an oxo group, Optionally protected hydroxyl group, optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected Carbamoyl group, optionally protected sulfonyl group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkylaliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl Group, heteroarylalkyl group, alkyloxy group, aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryloxy group, alkylaliphatic heterocyclic oxy group, alky
  • the linear or branched aliphatic hydrocarbon group is cyclic. May have an aliphatic hydrocarbon group (for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.)
  • an aromatic hydrocarbon ring group (including monovalent and divalent) contained in the organic group may have, and an aliphatic heterocyclic group (including monovalent and divalent) contained in the organic group
  • substituents that the aromatic heterocyclic group (including monovalent and divalent) contained in the organic group can have, each independently, for example, , Halogen atom, nitro group, cyano group, oxo group, optionally protected hydroxyl group, optionally protected thiol group, optionally protected amino group, optionally protected formyl group, protected Optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl group, alkyl group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkylaliphatic heterocycle Group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy
  • the term “may be protected” with respect to a certain functional group means that the functional group is unsubstituted or the functional group is protected by a commonly used protecting group.
  • the “protecting group” means that a target functional group can be converted into a functional group that is inactive in a target reaction, and as long as it can be removed from the target functional group after completion of the target reaction. It is not particularly limited and can be appropriately selected depending on the intended functional group, the intended reaction and the like.
  • the “optionally protected hydroxyl group” is a hydroxyl group or a hydroxyl group protected by a hydroxyl protecting group, for example, formula: —OP 1 (wherein, P 1 represents a hydrogen atom or a hydroxyl protecting group).
  • P 1 represents a hydrogen atom or a hydroxyl protecting group
  • Examples of the hydroxyl group protecting group include ester type protecting group, arylalkyl type protecting group, alkyl type protecting group, arylalkyloxyalkyl type protecting group, alkyloxyalkyl type protecting group, silyl type protecting group, oxycarbonyl type protecting group, etc. Is mentioned.
  • ester type protecting group examples include an alkylcarbonyl group having 2 to 10 carbon atoms which may have one or more substituents, and 7 to carbon atoms which may have one or more substituents.
  • Examples include 10 arylcarbonyl groups.
  • the one or more substituents can be selected, for example, from the substituent groups AM.
  • the substituent that the alkylcarbonyl group may have is the same as the substituent for the aliphatic hydrocarbon group.
  • the substituent that the arylcarbonyl group may have is the same as the substituent for the aromatic hydrocarbon ring group.
  • alkylcarbonyl group which may have one or more substituents include, for example, an acetyl group, a propanoyl group, a butanoyl group, an isopropanoyl group and a pivaloyl group.
  • arylcarbonyl group which may have one or more substituents include, for example, benzoyl group, 4-nitrobenzoyl group, 4-methyloxybenzoyl group, 4-methylbenzoyl group, 4-tert-butylbenzoyl group.
  • the ester type protecting group is preferably an alkylcarbonyl group having 2 to 10 carbon atoms, more preferably an alkylcarbonyl group having 2 to 5 carbon atoms, still more preferably an acetyl group or a pivaloyl group.
  • Examples of the arylalkyl type protecting group include an arylalkyl group having 7 to 11 carbon atoms which may have one or more substituents.
  • the one or more substituents can be selected, for example, from the substituent groups AM.
  • the substituent that “alkyl” in the arylalkyl group may have is the same as the substituent for the aliphatic hydrocarbon group.
  • the substituent which "aryl" in the arylalkyl group may have is the same as the substituent for the aromatic hydrocarbon ring group.
  • the one or more substituents are preferably selected from halogen atoms, nitro groups, cyano groups, methyl groups, methyloxy groups, phenyl groups and naphthyl groups.
  • arylalkyl group having 7 to 11 carbon atoms which may have one or more substituents include, for example, benzyl group, 1-phenylethyl group, diphenylmethyl group, 1,1-diphenylethyl group and naphthyl. Examples thereof include a methyl group.
  • alkyl type protecting group examples include an alkyl group having 1 to 10 carbon atoms which may have one or more substituents.
  • the one or more substituents can be selected, for example, from the substituent groups AM.
  • the substituent that the alkyl group may have is the same as the substituent for the aliphatic hydrocarbon group.
  • the one or more substituents are preferably selected from halogen atoms, nitro groups and cyano groups.
  • the alkyl type protecting group is preferably an alkyl group having 1 to 5 carbon atoms which may be substituted with one or more substituents, more preferably a methyl group, an ethyl group, a tert-butyl group or the like. ..
  • Examples of the arylalkyloxyalkyl type protecting group include an arylalkyloxymethyl group having 8 to 11 carbon atoms which may have one or more substituents, and one or more substituents. Examples thereof include arylalkyloxyethyl groups having 9 to 11 carbon atoms and arylalkyloxyalkyl groups having 10 to 11 carbon atoms which may have one or more substituents.
  • the one or more substituents can be selected, for example, from the substituent groups AM.
  • the substituent which "alkyl" in the arylalkyloxyalkyl group may have is the same as the substituent for the aliphatic hydrocarbon group.
  • the substituent that “aryl” in the arylalkyloxyalkyl group may have is the same as the substituent for the aromatic hydrocarbon ring group.
  • the one or more substituents are preferably selected from halogen atoms, nitro groups, cyano groups, methyl groups and methyloxy groups.
  • the arylalkyloxyalkyl-type protecting group is, for example, substituted with a benzyloxymethyl group which may have one or more substituents, preferably a halogen atom, a nitro group, a cyano group, a methyl group or a methyloxy group.
  • a benzyloxymethyl group more preferably a benzyloxymethyl group.
  • alkyloxyalkyl-type protecting group examples include an alkyloxymethyl group having 2 to 10 carbon atoms which may have one or more substituents, and a carbon which may have one or more substituents.
  • examples thereof include an alkyloxyethyl group having a number of 3 to 10 and an alkyloxyalkyl group such as an alkyloxypropyl group having a carbon number of 4 to 10 which may have one or more substituents.
  • the one or more substituents can be selected, for example, from the substituent groups AM.
  • the substituent that “alkyl” in the alkyloxyalkyl group may have is the same as the substituent for the aliphatic hydrocarbon group.
  • the one or more substituents are preferably selected from halogen atoms, nitro groups, cyano groups, methyl groups and methyloxy groups.
  • the alkyloxyalkyl type protecting group is preferably an alkyloxymethyl group having 2 to 10 carbon atoms which may have one or more substituents, more preferably a halogen atom, a nitro group, a cyano group or methyl.
  • An alkyloxymethyl group having 2 to 5 carbon atoms which may have an oxy group or an ethyloxy group, and more preferably a methyloxymethyl group.
  • Examples of the silyl-type protecting group include an alkyl group having 1 to 10 carbon atoms which may have one or more substituents, and 7 to 10 carbon atoms which may have one or more substituents.
  • the one or more substituents can be selected, for example, from the substituent groups AM.
  • the substituent that “alkyl” in the alkyl group and arylalkyl group may have is the same as the substituent for the aliphatic hydrocarbon group.
  • the substituent that “aryl” in the aryl group and arylalkyl group may have is the same as the substituent for the aromatic hydrocarbon ring group.
  • the silyl type protecting group is preferably a silyl group having a functional group selected from an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • Examples of the oxycarbonyl-type protecting group include an alkyloxycarbonyl group having 2 to 10 carbon atoms which may have one or more substituents, and a carbon number which may have one or more substituents. Examples thereof include an alkenyloxycarbonyl group having 3 to 10 carbon atoms and an arylalkyloxycarbonyl group having 8 to 11 carbon atoms which may have one or more substituents.
  • the one or more substituents can be selected, for example, from the substituent groups AM.
  • the substituent which "alkyl” in the alkyloxycarbonyl group, “alkenyl” in the alkenyloxycarbonyl group and “alkyl” in the arylalkyloxycarbonyl group may have is the same as the substituent for the aliphatic hydrocarbon group.
  • the substituent that “aryl” in the arylalkyloxycarbonyl group may have is the same as the substituent for the aromatic hydrocarbon ring group.
  • the oxycarbonyl-type protecting group is preferably an alkyloxycarbonyl group having 2 to 5 carbon atoms, an alkenyloxycarbonyl group having 3 to 5 carbon atoms or a benzyloxycarbonyl group, more preferably a methyloxymethyl group, allyloxy.
  • the “optionally protected thiol group” is a thiol group or a thiol group protected with a thiol group-protecting group, and has, for example, the formula: —SP 2 (wherein P 2 is a hydrogen atom or a thiol group-protecting group). Can be represented by.).
  • Examples of the thiol group-protecting group include ester-type protecting groups, arylalkyl-type protecting groups, alkyl-type protecting groups, arylalkyloxyalkyl-type protecting groups, alkyloxyalkyl-type protecting groups, silyl-type protecting groups, oxycarbonyl-type protecting groups. Etc. The description of these protecting groups is the same as above.
  • amino group-protecting group examples include an alkyloxycarbonyl group having 2 to 10 carbon atoms (eg, methyloxycarbonyl group, tert-butyloxycarbonyl group, etc.), an arylalkyloxycarbonyl group having 8 to 11 carbon atoms (eg, Benzyloxycarbonyl group), 9-fluorenylmethyloxycarbonyl group, benzhydryl group, trityl group, 2,2,2-trichloroethyloxycarbonyl group, allyloxycarbonyl group and the like.
  • the amino group also includes an alicyclic amino group and a heterocyclic amino group.
  • the “optionally protected carboxyl group” is a carboxyl group or a carboxyl group protected with a carboxyl group-protecting group, and is represented by, for example, the formula —C( ⁇ O)(—OP 5 ), where P 5 is A hydrogen atom or a carboxyl group-protecting group).
  • the carboxyl-protecting group include an alkyl group having 1 to 10 carbon atoms (eg, methyl group, ethyl group, propyl group, etc.), an arylalkyl group having 7 to 11 carbon atoms (eg, benzyl group), etc.
  • the “optionally protected formyl group” is a formyl group or a formyl group protected by a formyl group-protecting group, and has, for example, the formula —C(Y a P 6 )(Y a P 7 ), in which Y a represents a hetero atom, P 6 and P 7 each independently represent a hydroxyl group-protecting group, or P 6 and P 7 may together form an alkylene). It can.
  • the heteroatoms are preferably oxygen or sulfur atoms.
  • the hydroxyl-protecting group include an alkyl group having 1 to 5 carbon atoms, preferably a methyl group, an ethyl group, a propyl group, a butyl group and the like.
  • P 6 and P 7 together form an alkylene having preferably 2 to 10 carbon atoms, preferably 2 to 5 carbon atoms, and more preferably 2 or 3 carbon atoms.
  • the “optionally protected carbamoyl group” is preferably represented by the formula —O—C( ⁇ O)—NH(—P 8 ), where P 8 represents an amino group-protecting group. ..
  • the amino group-protecting group include an alkyloxycarbonyl group having 2 to 10 carbon atoms (eg, methyloxycarbonyl group, tert-butyloxycarbonyl group, etc.), an arylalkyloxycarbonyl group having 8 to 11 carbon atoms (eg, Benzyloxycarbonyl group), 9-fluorenylmethyloxycarbonyl group, benzhydryl group, trityl group, 2,2,2-trichloroethyloxycarbonyl group, allyloxycarbonyl group and the like.
  • the “sulfonyl group which may be protected” is a sulfonyl group or a sulfonyl group which is protected by a sulfonyl group protecting group, for example, an alkylsulfonyl group which may be substituted with one or more substituents, one or more. And an arylsulfonyl group which may be substituted with the substituent.
  • the one or more substituents can be selected, for example, from the substituent groups AM.
  • the substituent which "alkyl" in the alkylsulfonyl group may have is the same as the substituent for the aliphatic hydrocarbon group.
  • the substituent that “aryl” in the arylsulfonyl group may have is the same as the substituent related to the aromatic hydrocarbon ring group.
  • the number of carbon atoms of the alkyl group in the alkylsulfonyl group is usually 1 to 10, preferably 1 to 5, and more preferably 1 to 3.
  • the alkylsulfonyl group which may be substituted with one or more substituents is, for example, an alkylsulfonyl group which may be substituted with a halogen atom (eg, methylsulfonyl group, trifluoromethylsulfonyl group, etc.).
  • the aryl group in the arylsulfonyl group has usually 6 to 14, preferably 6 to 10 carbon atoms.
  • the arylsulfonyl group which may be substituted with one or more substituents is, for example, an alkylsulfonyl group which may be substituted with a halogen atom (eg, phenylsulfonyl group, p-toluenesulfonyl group, etc.).
  • alkyl “alkenyl”, “alkynyl”, “aryl”, “heteroaryl” and “aliphatic heterocycle” contained in the substituents in the substituent groups A to M are each selected from the substituent group A. It may be substituted with one or more substituents.
  • substituents selected from Substituent group A for further substituting "alkyl”, “alkenyl”, “alkynyl”, “aryl”, “heteroaryl” or “aliphatic heterocycle” included in the substituent Substituents are each independently preferably a halogen atom, a hydroxyl group which may be protected, a thiol group which may be protected, an amino group which may be protected, a formyl group which may be protected, It is more preferably selected from an optionally protected carboxyl group, an optionally protected carbamoyl group and an optionally substituted sulfonyl group, and is more preferably a halogen atom, an optionally protected hydroxyl group, or an optionally protected group. It is selected from an amino group, an optionally protected formyl group and an optionally protected carboxyl group, and even more preferably a halogen atom.
  • the compound (I) of the present invention has the following formula (I): It is represented by.
  • the compound (I) is also referred to as a C-aryl hydroxyglycoxide derivative and is preferably used as an intermediate of an SGLT-2 inhibitor.
  • R 1 and R 2 each independently represent a hydroxyl group-protecting group
  • R 3 and R 4 each independently represent a hydroxyl group-protecting group or a hydrogen atom.
  • the hydroxyl-protecting groups represented by R 1 and R 2 may be the same or different, but are preferably the same in consideration of efficient introduction and removal of the hydroxyl-protecting group.
  • the hydroxyl-protecting group represented by R 1 and R 2 is not particularly limited, and examples thereof include ester-type protecting groups, arylalkyl-type protecting groups, alkyl-type protecting groups, arylalkyloxyalkyl-type protecting groups, alkyloxyalkyl-type protecting groups. Group, a silyl type protecting group, an oxycarbonyl type protecting group and the like. These protecting groups are as defined above.
  • the hydroxyl-protecting group represented by R 1 and R 2 is preferably methyloxymethyl group, benzyloxymethyl group, acetyl group, propanoyl group, butanoyl group, isopropanoyl group, pivaloyl group, benzoyl group, 4-nitro.
  • Benzoyl group 4-methyloxybenzoyl group, 4-methylbenzoyl group, 4-tert-butylbenzoyl group, 4-fluorobenzoyl group, 4-chlorobenzoyl group, 4-bromobenzoyl group, 4-phenylbenzoyl group, 4- Methyloxycarbonylbenzoyl group, benzyl group, 1-phenylethyl group, diphenylmethyl group, 1,1-diphenylethyl group, naphthylmethyl group, methyl group, tert-butyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethyl group Silyl group, tert-butyldiphenylsilyl group, tert-butyloxycarbonyloxy group or benzyloxycarbonyl group, more preferably benzyl group, acetyl group, pivaloyl group, trimethylsilyl group, tert-buty
  • the functional groups represented by R 3 and R 4 may be hydrogen atoms. However, from the viewpoint of efficiently forming the 6-membered ring of the formula (I), the functional groups represented by R 3 and R 4 are preferably hydroxyl group-protecting groups.
  • the hydroxyl protecting group represented by R 3 and R 4 may be the same as or different from the hydroxyl protecting group represented by R 1 or the hydroxyl protecting group represented by R 2 , but is an effective protective group. From the viewpoint of introducing and removing a group, it is preferably the same as the hydroxyl protecting group represented by R 1 and R 2 .
  • the organic group represented by Ar is an aromatic hydrocarbon ring group which may have one or more substituents or an aromatic heterocyclic group which may have one or more substituents. There is no particular limitation as long as it is contained as a functional group that bonds to the oxane ring in (I).
  • the organic group represented by Ar is an aromatic hydrocarbon ring group which may have one or more substituents, or has one or more substituents.
  • the aromatic hydrocarbon ring group may be contained as a functional group bonded to the carbon atom of the oxane ring in the formula (I).
  • the organic group represented by Ar is an aromatic heterocyclic group which may have one or more substituents, or has one or more substituents.
  • the aromatic hydrocarbon ring group may be contained as a functional group bonded to the carbon atom of the oxane ring in the formula (I).
  • the organic group containing an aromatic hydrocarbon ring group which may have one or more substituents as a functional group bonded to the carbon atom of the oxane ring in the formula (I) is represented by the following formula, for example. it can.
  • J 1 represents an aromatic hydrocarbon ring group which may have one or more substituents
  • J 2 represents an aliphatic hydrocarbon group which may have one or more substituents
  • J 3 is an aromatic hydrocarbon ring group optionally having one or more substituents
  • an aliphatic heterocyclic group optionally having one or more substituents or one The aromatic heterocyclic group which may have the above substituents is represented
  • (*) represents a bond which is bonded to the carbon atom of the oxane ring in the formula (I).
  • J 1 is an unsubstituted aromatic hydrocarbon ring group and J 2 is an unsubstituted aliphatic hydrocarbon group.
  • J 1 is an unsubstituted aromatic hydrocarbon ring group and J 2 is an aliphatic hydrocarbon group having one or more substituents.
  • J 1 is an aromatic hydrocarbon ring group having one or more substituents and J 2 is an unsubstituted aliphatic hydrocarbon group.
  • J 1 is an aromatic hydrocarbon ring group having one or more substituents and J 2 is an aliphatic hydrocarbon group having one or more substituents.
  • J 3 is an unsubstituted aromatic hydrocarbon ring group. This embodiment can be combined with the above embodiments for J 1 and J 2 .
  • J 3 is an aromatic hydrocarbon ring group having one or more substituents. This embodiment can be combined with the above embodiments for J 1 and J 2 .
  • J 3 is an unsubstituted aliphatic heterocyclic group. This embodiment can be combined with the above embodiments for J 1 and J 2 .
  • J 3 is an aliphatic heterocyclic group having one or more substituents. This embodiment can be combined with the above embodiments for J 1 and J 2 .
  • J 3 is an unsubstituted aromatic heterocyclic group. This embodiment can be combined with the above embodiments for J 1 and J 2 .
  • J 3 is an aromatic heterocyclic group having one or more substituents. This embodiment can be combined with the above embodiments for J 1 and J 2 .
  • the one or more substituents may be independently selected from, for example, the substituent groups A to M. it can.
  • the one or more substituents contained in the aliphatic hydrocarbon group represented by J 2 are each independently, for example, a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, or a protected group.
  • Optionally protected thiol group optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl Group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkylaliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group , Aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryloxy group, alkylaliphatic heterocyclic oxy group, alkylheteroaryloxy group, arylalkyloxy group, aliphatic heterocyclic alkyloxy group, hetero Arylalkyloxy group, alkylthio group, arylthio group, aliphatic heterocyclic thio group, heteroarylthio group, alkylaryl
  • the one or more substituents are each independently a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, an optionally protected thiol group, or an optionally protected amino group.
  • the linear or branched aliphatic hydrocarbon group represented by J 2 is a linear or branched aliphatic hydrocarbon group
  • the linear or branched aliphatic hydrocarbon group is a cyclic aliphatic group. It may have a hydrocarbon group (for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.) as a substituent.
  • the aromatic hydrocarbon ring group represented by J 1 and/or the aromatic hydrocarbon ring group represented by J 3 has one or more substituents.
  • the one or more substituents can be independently selected, for example, from the substituent groups A to M.
  • the aromatic hydrocarbon ring group represented by J 1 and/or the aromatic hydrocarbon ring group represented by J 3 has one or more substituents, respectively, Independently, for example, a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, an optionally protected thiol group, an optionally protected amino group, or an optionally protected Formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl group, alkyl group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, Alkyl aliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group, aryloxy group, aliphatic heterocyclic oxy group
  • the organic group containing an aromatic heterocyclic group which may have one or more substituents as a functional group bonding to the carbon atom of the oxane ring in the formula (I) can be represented by, for example, the following formula. ..
  • K 1 represents an aromatic heterocyclic group which may have one or more substituents
  • K 2 represents an aliphatic hydrocarbon which may have one or more substituents.
  • K 3 is an aromatic hydrocarbon ring group optionally having one or more substituents
  • an aliphatic heterocyclic group optionally having one or more substituents or one or more Represents an optionally substituted aromatic heterocyclic group
  • (*) represents a bond that bonds to the carbon atom of the carbonyl group in formula (I).
  • K 1 is an unsubstituted aromatic heterocyclic group and K 2 is an unsubstituted aliphatic hydrocarbon group.
  • K 1 is an unsubstituted aromatic heterocyclic group and K 2 is an aliphatic hydrocarbon group having one or more substituents.
  • K 1 is an aromatic heterocyclic group having one or more substituents and K 2 is an unsubstituted aliphatic hydrocarbon group.
  • K 1 is an aromatic heterocyclic group having one or more substituents and K 2 is an aliphatic hydrocarbon group having one or more substituents.
  • K 3 is an unsubstituted aromatic hydrocarbon ring group. This embodiment can be combined with the above embodiments for K 1 and K 2 .
  • K 3 is an aromatic hydrocarbon ring group having one or more substituents. This embodiment can be combined with the above embodiments for K 1 and K 2 .
  • K 3 is an unsubstituted aliphatic heterocyclic group. This embodiment can be combined with the above embodiments for K 1 and K 2 .
  • K 3 is an aliphatic heterocyclic group having one or more substituents. This embodiment can be combined with the above embodiments for K 1 and K 2 .
  • K 3 is an unsubstituted aromatic heterocyclic group. This embodiment can be combined with the above embodiments for K 1 and K 2 .
  • K 3 is an aromatic heterocyclic group having one or more substituents. This embodiment can be combined with the above embodiments for K 1 and K 2 .
  • the one or more substituents may be independently selected from, for example, the substituent groups A to M. it can.
  • the one or more substituents contained in the aliphatic hydrocarbon group represented by K 2 are each independently, for example, a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, or a protected group.
  • Optionally protected thiol group optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl Group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkylaliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group , Aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryloxy group, alkylaliphatic heterocyclic oxy group, alkylheteroaryloxy group, arylalkyloxy group, aliphatic heterocyclic alkyloxy group, hetero Arylalkyloxy group, alkylthio group, arylthio group, aliphatic heterocyclic thio group, heteroarylthio group, alkylaryl
  • the one or more substituents are each independently a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, an optionally protected thiol group, or an optionally protected amino group.
  • the linear or branched aliphatic hydrocarbon group represented by K 2 is a linear or branched aliphatic hydrocarbon group
  • the linear or branched aliphatic hydrocarbon group is a cyclic aliphatic hydrocarbon group. It may have a hydrocarbon group (for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.) as a substituent.
  • the aliphatic heterocyclic group or the aromatic heterocyclic group has one or more substituents.
  • the one or more substituents can each be independently selected, for example, from the substituent groups A to M.
  • the aromatic heterocyclic group represented by K 1 and/or the aromatic hydrocarbon ring group represented by K 3 , the aliphatic heterocyclic group, or the one or more substituents possessed by the aromatic heterocyclic group are each independently Then, for example, a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, an optionally protected thiol group, an optionally protected amino group, an optionally protected formyl Group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl group, alkyl group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkyl Aliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group, aryloxy group, aliphatic heterocyclic
  • the aromatic hydrocarbon ring group or aromatic heterocyclic group bonded to the oxane ring in the formula (I) contained in the organic group represented by Ar is preferably an aromatic hydrocarbon ring having 6 to 14 carbon atoms.
  • the organic group represented by Ar is the same as the aromatic hydrocarbon ring group or aromatic heterocyclic group contained in the SGLT-2 inhibitor, or It is preferably a group derived from an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • canagliflozin (1-( ⁇ -D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene
  • empagliflozin ((1S)-1 ,5-anhydro-1-C- ⁇ 4-chloro-3-[(4- ⁇ [(3S)-oxolan-3-yl]oxy ⁇ phenyl)methyl]phenyl ⁇ -D-glucitol)
  • ipragliflozin (1S)-1,5-Anhydro-1-C- ⁇ 3-[(1-benzothiophen-2-yl)methyl]-4-fluorophenyl ⁇ -D-glucitol-(2S)-pyrrolidine-2-carvone Acid
  • dapagliflozin ((2S,3R,4R,5S,6R)-2-[4-chloro-3-(4-ethyloxybenzyl)phenyl]-6
  • the organic group represented by Ar has the following formula (V): It is represented by.
  • R a is each independently a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an arylalkenyl group, an arylalkynyl group, an alkyloxy group, an alkenyloxy group, It represents a functional group selected from the group consisting of an alkynyloxy group, an aryloxy group, an arylalkyloxy group, an arylalkenyloxy group and an arylalkynyloxy group, and is an alkyl group, an alkenyl group, an alkynyl group or an aryl group included in the group.
  • the functional groups represented by R a are preferably each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 14 carbon atoms, or 7 to 15 carbon atoms. Is selected from the group consisting of an arylalkyl group having 1 to 20 carbon atoms, an alkyloxy group having 1 to 20 carbon atoms and an arylalkyloxy group having 7 to 15 carbon atoms, and more preferably a halogen atom and an alkyl group having 1 to 10 carbon atoms.
  • n represents an integer of 0-4.
  • the integer represented by n is preferably 1 to 3, and more preferably 1 or 2.
  • n R a s may be the same or different.
  • Ar′ represents an aromatic hydrocarbon ring group which may have one or more substituents, an aliphatic heterocyclic group which may have one or more substituents, or 1 Represents an aromatic heterocyclic group which may have one or more substituents.
  • Ar' preferably represents an aromatic hydrocarbon ring group which may have one or more substituents or an aromatic heterocyclic group which may have one or more substituents.
  • the functional group represented by Ar′ preferably has an aromatic hydrocarbon ring group having 6 to 14 carbon atoms which may have one or more substituents, or one or more substituents.
  • an aromatic heterocycle having 3 to 12 carbon atoms more preferably an aromatic hydrocarbon ring group having 6 to 14 carbon atoms which may have one or more substituents, or one or more substituents.
  • An aromatic heterocycle having 3 to 12 carbon atoms which may have a group, more preferably a phenyl group which may have one or more substituents, and one or more substituents.
  • a thienyl group, an optionally substituted benzothiophenyl group, an optionally substituted furyl group, an optionally substituted one or more substituents A pyrrolyl group which may have one or more, an imidazolyl group which may have one or more substituents, or a pyridyl group which may have one or more substituents, and more preferably one or more A phenyl group which may have a substituent, a thienyl group which may have one or more substituents, or a benzothiophenyl group which may have one or more substituents.
  • the one or more substituents contained in the functional group represented by Ar′ are preferably a phenyl group which may be substituted with a halogen atom, an alkyloxy group having 1 to 5 carbon atoms, an aliphatic heterocyclic oxy group ( For example, a tetrahydrofuranyloxy group etc.) and the like.
  • the organic group represented by Ar is represented by the following formula (Va).
  • the functional group represented by Ra is as defined above.
  • Ar′ is preferably a functional group represented by the following formulas (Va-I), (Va-II) and (Va-III). It is represented by.
  • R b is each independently an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group or an aromatic group.
  • the functional groups represented by R b are each independently an alkyl group having 1 to 20 carbon atoms, which may have one or more substituents, and one or more substituents.
  • An alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have one or more substituents, and an alkynyl group having 6 to 14 carbon atoms which may have one or more substituents Aromatic hydrocarbon ring group, aliphatic heterocyclic group having 2 to 12 carbon atoms which may have one or more substituents, and 3 to 12 carbon atoms which may have one or more substituents
  • it is selected from the aromatic heterocyclic groups of, and an alkyl group having 1 to 10 carbon atoms which may have one or more substituents, and a carbon which may have one or more substituents.
  • the one or more substituents contained in the functional group represented by R b can be independently selected from, for example, the substituent groups A to M.
  • the one or more substituents contained in the functional group represented by R b are each independently, for example, a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, or an optionally protected group.
  • Good thiol group optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl group, alkyl Group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkylaliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group , Aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryloxy group, alkylaliphatic heterocyclic oxy group, alkylheteroaryloxy group, arylalkyloxy group, aliphatic heterocyclic alkyloxy group, hetero Arylalkyloxy group, alkylthio group, arylthio group, aliphatic heterocyclic thio group, heteroarylthio group, al
  • the one or more substituents are each independently a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, an optionally protected thiol group, an optionally protected amino group.
  • Optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl group, alkyl group, alkyloxy group, alkylthio group, alkylcarbonyl group And alkyloxycarbonyl groups are preferred.
  • the one or more substituents are each independently a halogen atom, a nitro group, an optionally protected hydroxyl group, an optionally protected thiol group, an optionally protected formyl group, or an optionally protected formyl group. More preferably selected from a good amino group, an optionally protected carboxyl group, an optionally protected sulfonyl group and an alkyloxycarbonyl group having 1 to 10 carbon atoms, a halogen atom, an amino group, a nitro group, Even more preferably, it is selected from an alkyloxy group having 1 to 10 carbon atoms and an alkyloxycarbonyl group having 1 to 10 carbon atoms.
  • p represents an integer of 0-5.
  • the integer represented by p is preferably 0 to 3, more preferably 0 to 2, and even more preferably 0 or 1.
  • the integer represented by p is preferably 0 to 5, more preferably 0 to 3, and even more preferably 0 to 2.
  • p R b s may be the same or different.
  • R b is preferably a phenyl group optionally having one or more substituents, and more preferably has a halogen atom. It is a phenyl group, and more preferably a phenyl group having a fluorine atom.
  • the position to which the phenyl group, which may have one or more substituents, is bonded is preferably the 2-position of the thiophene ring.
  • the position to which the halogen atom is bonded is preferably the 4-position of the benzene ring.
  • p is preferably 0.
  • R b is preferably an alkyl group optionally having one or more substituents or one or more substituents. It may be an aliphatic heterocyclic group.
  • the alkyl group which may have one or more substituents is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group or an ethyl group.
  • the aliphatic heterocyclic group which may have one or more substituents is preferably a tetrahydrofuranyl group.
  • the position at which the alkyl group which may have one or more substituents or the aliphatic heterocyclic group which may have one or more substituents is bonded is preferably the 4-position of the benzene ring. Is.
  • the organic group represented by Ar is the following (VI-I), (V-II-I), (V-III-I) or (V-III-I) V-III-II).
  • step (a) the following formula (II): A compound (II) represented by is prepared. Details of the preparation step of compound (II) will be described later as step (a-1).
  • the hydroxyl protecting group represented by R 5 is the same as the hydroxyl protecting group represented by R 1 or R 2 from the viewpoint of efficiently forming the 6-membered ring of formula (I). Excluding items.
  • a hydroxyl group is generated and can react with a carbonyl group in the same molecule to form a ring of formula (I).
  • the hydroxyl group-protecting group represented by R 5 is not particularly limited, and examples thereof include ester type protecting groups, arylalkyl type protecting groups, alkyl type protecting groups, arylalkyloxyalkyl type protecting groups, arylalkylalkyloxyalkyl type protecting groups, There are silyl type protecting groups and oxycarbonyl type protecting groups, and more preferred are ester type protecting groups, arylalkyloxyalkyl type protecting groups, alkyloxyalkyl type protecting groups, silyl type protecting groups, and oxycarbonyl type protecting groups.
  • the hydroxyl-protecting group represented by R 5 is preferably a methyloxymethyl group, a benzyloxymethyl group, an acetyl group, a propanoyl group, a butanoyl group, an isopropanoyl group, a pivaloyl group, a benzoyl group, 4 -Nitrobenzoyl group, 4-methyloxybenzoyl group, 4-methylbenzoyl group, 4-tert-butylbenzoyl group, 4-fluorobenzoyl group, 4-chlorobenzoyl group, 4-bromobenzoyl group, 4-phenylbenzoyl group, 4-methyloxycarbonylbenzoyl group, benzyl group, 1-phenylethyl group, diphenylmethyl group, 1,1-diphenylethyl group, naphthylmethyl group, methyl group, tert-butyl group, trimethylsilyl group, triethylsilyl group, tert-
  • the hydroxyl protecting group represented by R 5 is an ester protecting group
  • the hydroxyl protecting group represented by R 1 and the hydroxyl protecting group represented by R 2 are each independently , An arylalkyl protecting group, an alkyl protecting group, an arylalkyloxyalkyl protecting group, an alkyloxyalkyl protecting group, a silyl protecting group, and an oxycarbonyl protecting group arylalkyl.
  • the hydroxyl group protecting group represented by R 5 is an acetyl group or a pivaloyl group
  • the hydroxyl group protecting group represented by R 1 and the hydroxyl group protecting group represented by R 2 are each independently And a methyl group, a benzyl group, a trimethylsilyl group, a tert-butyldimethylsilyl group, and a tert-butyldiphenylsilyl group.
  • the hydroxyl protecting group represented by R 5 is a silyl type protecting group
  • the hydroxyl protecting group represented by R 1 and the hydroxyl protecting group represented by R 2 are , Each independently consisting of an ester type protecting group, an arylalkyl type protecting group, an alkyl type protecting group, an arylalkyloxyalkyl type protecting group an alkyloxyalkyl type protecting group, a silyl type protecting group and an oxycarbonyl type protecting group arylalkyl. Is selected from the group.
  • the hydroxyl group-protecting group represented by R 5 is a trimethylsilyl group, a tert-butyldimethylsilyl group or a tert-butyldiphenylsilyl group, and the hydroxyl-protecting group represented by R 1 and
  • the hydroxyl protecting groups represented by R 2 are each independently a methyl group, a benzyl group, an acetyl group or a pivaloyl group.
  • the hydroxyl-protecting group represented by R 5 is a hydroxyl-protecting group represented by R 1 , R 2 , R 3 and R 4. Is preferred.
  • the hydroxyl protecting group represented by R 5 is an ester protecting group
  • the hydroxyl protecting groups represented by R 1 , R 2 , R 3 and R 4 are each independently arylalkyl.
  • an alkyl-type protecting group, an arylalkyloxyalkyl-type protecting group, an alkyloxyalkyl-type protecting group, a silyl-type protecting group, and an oxycarbonyl-type protecting group are independently arylalkyl.
  • the hydroxyl-protecting group represented by R 5 is an acetyl group or a pivaloyl group
  • the hydroxyl-protecting groups represented by R 1 , R 2 , R 3 and R 4 are each independently And is selected from the group consisting of a methyl group, a benzyl group, a trimethylsilyl group, a tert-butyldimethylsilyl group, and a tert-butyldiphenylsilyl group.
  • the hydroxyl protecting group represented by R 5 is a silyl type protecting group
  • the hydroxyl protecting group represented by R 1 , R 2 , R 3 and R 4 is Each of them is independently selected from the group consisting of an arylalkyloxyalkyl type protecting group, an alkyloxyalkyl type protecting group and an oxycarbonyl type protecting group arylalkyl.
  • the hydroxyl-protecting group represented by R 5 is a trimethylsilyl group, a tert-butyldimethylsilyl group or a tert-butyldiphenylsilyl group, and R 1 , R 2 , R 3 and R 3
  • the hydroxyl protecting group represented by 4 is independently selected from the group consisting of a methyl group, a benzyl group, an acetyl group and a pivaloyl group.
  • Q is an aliphatic hydrocarbon group optionally having one or more substituents, an aromatic hydrocarbon ring group optionally having one or more substituents, one A functional group for bonding the above-mentioned aliphatic heterocyclic group optionally having substituents or aromatic heterocyclic group optionally having one or more substituents to the sulfur atom in the formula (II).
  • the organic group represented by Q is an aliphatic hydrocarbon group which may have one or more substituents, or has one or more substituents. It contains a good aliphatic hydrocarbon group as a functional group bonded to the sulfur atom in the formula (II).
  • the organic group represented by Q is an aromatic hydrocarbon ring group which may have one or more substituents, or has one or more substituents. And optionally contains an aromatic hydrocarbon ring group as a functional group bonded to the sulfur atom in the formula (II).
  • the organic group represented by Q is an aliphatic heterocyclic group which may have one or more substituents, or has one or more substituents. And an aliphatic heterocyclic group as a functional group bonded to the sulfur atom in the formula (II).
  • the organic group represented by Q is an aromatic heterocyclic group which may have one or more substituents, or may have one or more substituents.
  • An aromatic heterocyclic group is included as a functional group bonded to the sulfur atom in the formula (II).
  • Examples of the organic group containing an aliphatic hydrocarbon group which may have one or more substituents as a functional group bonding to the sulfur atom in the formula (II) include compounds represented by the following formula: [In the formula, L 1 represents an aliphatic hydrocarbon group which may have one or more substituents, and L 2 represents an aromatic hydrocarbon group which may have one or more substituents. Represents a cyclic group, an aliphatic heterocyclic group which may have one or more substituents, or an aromatic heterocyclic group which may have one or more substituents, and (*) represents the formula (II ) Represents a bond to be bonded to the sulfur atom. ] Can be expressed as
  • an organic group containing an aliphatic hydrocarbon group which may have one or more substituents as a functional group bonding to the sulfur atom in the formula (II) is, for example, the following formula: [In the formula, L 1 and L 2 have the same meanings as described above, L 3 represents an aliphatic hydrocarbon group which may have one or more substituents, and (*) represents formula (II). Represents a bond that bonds to the sulfur atom in. ] Can be expressed as
  • an organic group containing an aliphatic hydrocarbon group which may have one or more substituents as a functional group bonding to the sulfur atom in the formula (II) is, for example, the following formula: [In the formula, L 1 , L 2 and L 3 have the same meanings as described above, and L 4 is an aromatic hydrocarbon ring group which may have one or more substituents, and one or more substituents. Represents an aliphatic heterocyclic group which may have or an aromatic heterocyclic group which may have one or more substituents, and (*) is a bond which is bonded to the sulfur atom in the formula (II). Represents a hand. ] Can be expressed as
  • the one or more substituents which the aliphatic hydrocarbon group represented by L 1 or L 3 may have may be independently selected from, for example, the substituent groups A to M, preferably the substituent group A. it can.
  • the one or more substituents that the aliphatic hydrocarbon group represented by L 1 or L 3 may have are each independently a halogen atom, an optionally protected hydroxyl group, or an optionally protected thiol group. Selected from an optionally protected amino group, an optionally protected formyl group, an optionally protected carboxyl group, an optionally protected carbamoyl group and an optionally protected sulfonyl group. Is preferred.
  • the aliphatic hydrocarbon group represented by L 1 or L 3 may be unsubstituted.
  • a linear or branched aliphatic hydrocarbon group is It may have a cyclic aliphatic hydrocarbon group (for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.) as a substituent.
  • a cyclic aliphatic hydrocarbon group for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.
  • the one or more substituents which the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by L 2 or L 4 may have are, for example, Substituent groups A to M, preferably substituted It can be selected from the groups A to D and G, more preferably the groups A, B and G of substituents.
  • One or more substituents that the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by L 2 or L 4 may have are independently a halogen atom or a protected group.
  • the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by L 2 or L 4 may be unsubstituted.
  • an aromatic hydrocarbon ring group which may have one or more substituents an aliphatic heterocyclic group which may have one or more substituents, or one or more substituents
  • the organic group containing an optionally substituted aromatic heterocyclic group as a functional group bonding to the sulfur atom in the formula (II) include compounds represented by the following formula: [Wherein, M 1 is an aromatic hydrocarbon ring group which may have one or more substituents, an aliphatic heterocyclic group which may have one or more substituents, or 1 Represents an aromatic heterocyclic group which may have one or more substituents, M 2 represents an aliphatic hydrocarbon group which may have one or more substituents, and (*) is a formula It represents a bond that bonds to the sulfur atom in (II). ] Can be expressed as
  • an organic group containing an aromatic hydrocarbon ring group which may have one or more substituents as a functional group bonding to the sulfur atom in the formula (II) is, for example, the following formula: [Wherein, M 1 and M 2 have the same meanings as described above, and M 3 has an aromatic hydrocarbon ring group which may have one or more substituents, and one or more substituents. Represents an optionally substituted aliphatic heterocyclic group or an aromatic heterocyclic group which may have one or more substituents, and (*) represents a bond which bonds to the sulfur atom in the formula (II). Represent ] Can be expressed as
  • an organic group containing an aromatic hydrocarbon ring group which may have one or more substituents as a functional group bonding to the sulfur atom in the formula (II) is, for example, the following formula: [Wherein M 1 , M 2 and M 3 have the same meanings as defined above, M 4 represents an aliphatic hydrocarbon group which may have one or more substituents, and (*) represents It represents a bond that bonds to the sulfur atom in (II). ] Can be expressed as
  • one or more substituents are each independently For example, it can be selected from the substituent groups A to M.
  • the one or more substituents contained in the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by M 1 are each independently a halogen atom, an optionally protected hydroxyl group, Optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected It is preferably selected from good sulfonyl groups, alkyl groups, alkenyl groups and alkynyl groups.
  • the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by M 1 may be unsubstituted.
  • each of the one or more substituents independently represents, for example, the substituent group A to M. You can choose from.
  • the one or more substituents contained in the aliphatic hydrocarbon group represented by M 2 and/or M 4 are each independently a halogen atom, an optionally protected hydroxyl group, or an optionally protected thiol group. Selected from an optionally protected amino group, an optionally protected formyl group, an optionally protected carboxyl group, an optionally protected carbamoyl group and an optionally protected sulfonyl group. Is preferred.
  • the aliphatic hydrocarbon group represented by M 2 or M 4 may be unsubstituted.
  • the linear or branched aliphatic hydrocarbon group is It may have a cyclic aliphatic hydrocarbon group (for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.) as a substituent.
  • the aromatic hydrocarbon ring group, the aliphatic heterocyclic group or the aromatic heterocyclic group represented by M 3 has one or more substituents, one or more substituents are each independently, For example, it can be selected from the substituent groups A to M.
  • One or more substituents contained in the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by M 3 are each independently a halogen atom, an optionally protected hydroxyl group, Optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected Good sulfonyl group, alkyl group, alkyloxy group, aryloxy group, arylalkyloxy group, alkylarylalkyloxy group, heteroaryloxy group, heteroarylalkyloxy group, alkylheteroarylalkyloxy group, aliphatic heterocyclic oxy group It is preferably selected from an aliphatic heterocyclic alkyloxy group and an alkylaliphatic heterocyclic alkyloxy group.
  • the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by M 3 may be unsubstitute
  • the organic group represented by Q is preferably an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an arylalkenyl group, an arylalkynyl group, a heteroaryl group, a heteroarylalkyl group, a heteroarylalkenyl group or a heteroaryl group.
  • An arylalkynyl group is contained as a functional group that bonds to the sulfur atom in the formula (II), and more preferably an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an arylalkenyl group or an arylalkynyl group. ) As a functional group which is bonded to the sulfur atom.
  • the carbon number of the alkyl group is, for example, 1 to 20, preferably 1 to 10
  • the carbon number of the arylalkyl group is, for example, 7 to 20, preferably 7 to 15, and the carbon number of the aryl group is, for example, 6
  • the number of carbon atoms in the heteroaryl group is, for example, 5 to 20, preferably 5 to 9.
  • step (a) compound (II) and the following formula (III-I):
  • Compound (III-II) represented by At least one organozinc compound selected from the group consisting of: a nickel catalyst and a palladium catalyst; one or more transition metal catalysts; or one or more transition metal catalysts The reaction is carried out in the presence of a supported catalyst having a carrier supporting a metal catalyst to give the following formula (IV):
  • the organozinc compound is used as a reagent for introducing an Ar group into compound (II).
  • the organozinc compound either the compound (III-I) or the compound (III-II) may be used alone, but the compound (III-I) and the compound (III-II) can be used in the step (a)
  • the reaction system the following formula: It is preferable to use both the compound (III-I) and the compound (III-II) because the equilibrium state represented by According to a preferred embodiment, at least one organozinc compound comprises said compound (III-I), compound (III-I) being in said equilibrium state.
  • the halogen atom represented by X is not particularly limited, but is preferably a chlorine atom, a bromine atom, or an iodine atom.
  • organozinc compounds of the compound (III-I) and the compound (III-II) commercially available products may be used, or they may be produced according to a known method as described in Non-Patent Document 5 and the like.
  • the organozinc compound of compound (III-I) is prepared by reacting a Grignard reagent ArMgX with a zinc halide ZnX 2 in an organic solvent.
  • the amount of zinc halide used is usually about 0.9 to 1.5 equivalents, preferably about 1 to 1.2 equivalents, more preferably 1 to 1 equivalent of the Grignard reagent. It is about 1.1 equivalents.
  • the organic solvent used in the production of the compound (III-I) is preferably an ether solvent, more preferably 2-methyltetrahydrofuran, tetrahydrofuran, etc., and even more preferably Tetrahydrofuran.
  • reaction temperature in the production of compound (III-I) is usually -50 to 50°C, preferably 0 to 30°C.
  • the compound (III-I) may be used as a complex with a lithium salt (wherein Y is a halogen atom).
  • the lithium salt complex of the compound (III-I) has the following formula (III-Ia): [In the formula, X and Y each independently represent a halogen atom. ] It is represented by.
  • the lithium salt complex (III-Ia) can be suitably obtained by carrying out the production of the compound (III-I) in the presence of a lithium salt.
  • the lithium salt complex (III-Ia) may be a lithium salt complex of the compound (III-I).
  • step (a) it is preferable to use the lithium salt complex (III-Ia) in order to improve the reaction rate of the organozinc compound.
  • lithium salt examples include lithium chloride, lithium bromide, lithium iodide, and the like, with lithium chloride being preferred. Therefore, in the lithium salt complex (III-Ia) of the organozinc compound, X and Y are preferably chlorine, bromine or iodine, and more preferably chlorine or bromine.
  • the lithium salt complex (III-Ia) of the organozinc compound a commercially available product may be used, or a known method may be used.
  • a turbo-Grignard reagent ArMgXa.LiY [wherein, Ar has the same meaning as described above, and Xa is a halogen atom. ]
  • zinc halide ZnX 2 [In formula, X is a halogen atom and may be the same as or different from Y. ] With the reaction in an organic solvent.
  • the turbo-Grignard reagent is magnesium and a halogen organic compound ArXa in the presence of a lithium salt in a reaction vessel in which an inert gas (nitrogen, argon, etc.) is substituted [wherein Ar and Xa are as defined above]. ] Can be obtained by reacting with an organic solvent.
  • Magnesium is preferably used as a pulverized product or shavings from the viewpoint of improving reactivity.
  • a reducing agent such as diisobutylaluminum hydride (DIBAL-H) in a catalytic amount of about 0.05 to 0.2 equivalents relative to 1 equivalent of magnesium is used as an organic solvent. It may be added in.
  • the amount of the lithium salt used is usually about 0.5 to 5.0 equivalents, preferably about 0.5 to 3.0 equivalents, and more preferably 0, relative to 1 equivalent of magnesium. It may be about 0.5 to 2.0 equivalents.
  • the amount of the halogen organic compound ArXa used is usually about 0.5 to 3.0 equivalents, preferably about 0.5 to 2.0 equivalents, and more preferably 0, relative to 1 equivalent of magnesium. It may be about 0.5 to 1.5 equivalents.
  • the organic solvent used for producing the turbo-Grignard reagent is preferably an ether solvent, more preferably diethyl ether, tetrahydrofuran, etc., and even more preferably tetrahydrofuran.
  • the amount of the solvent used is usually 1 to 1000 times, preferably 1 to 100 times the volume of the halogen organic compound ArXa.
  • the reaction temperature in the production of the turbo-Grignard reagent is usually -50 to 50°C, preferably -20 to 20°C.
  • the reaction time is usually 0.5 to 5 hours, preferably 1 to 3 hours.
  • the turbo-Grignard reagent ArMgXa.LiY was prepared as described in Angew Chem. Int. According to the known method described in Ed 2006, 45, 2958, etc., the following formula: As shown in, the compound may be produced by reacting Noschel-Hauser base TMPMgXa.LiY (TMP is 2,2,6,6-tetramethylpiperidine) with a compound Ar—H. Is also included.
  • a lithium salt complex of an organozinc compound can be produced by mixing a turbo Grignard reagent and zinc halide in a solvent.
  • the reaction between the turbo-Grignard reagent and zinc halide is preferably carried out in an ether solvent (tetrahydrofuran or the like) as in the production of the turbo-Grignard reagent.
  • the reaction between the turbo-Grignard reagent and zinc halide can be usually performed at a temperature of about -30 to 30°C.
  • the reaction time is usually 0.1 to 1 hour.
  • the amount of the organozinc compound or its lithium salt complex used can be appropriately set according to the amount of the compound (II).
  • the amount of the organic zinc compound used can be usually 1 to 5 equivalents, preferably 1 to 3 equivalents, relative to 1 equivalent of the compound (II).
  • the organozinc compound or its lithium salt complex may be added to the reaction system after mixing the transition catalyst and the compound (II), or may be mixed with the transition catalyst and the compound (II) at the same time. It is preferable that the transition catalyst and the compound (II) are mixed and then added to the reaction system.
  • step (a) zinc halide ZnX 2 is added to the reaction system of the step (a) together with the organozinc compound or its lithium salt complex from the viewpoint of activating the organozinc compound and improving the yield. May be.
  • the amount of zinc halide added to the reaction system together with the organozinc compound or its lithium salt complex is usually about 0.05 to 1.0 equivalent with respect to 1 equivalent of the organozinc compound or its lithium salt complex. , Preferably about 0.05 to 0.3 equivalents, more preferably about 0.05 to 0.2 equivalents.
  • the zinc halide may be added to the reaction system of step (a) separately from the organozinc compound or the lithium salt complex thereof, or may be added simultaneously with the organozinc compound or the lithium salt complex thereof. It is preferable to add zinc oxide and an organozinc compound or a lithium salt complex thereof in a state of being premixed to the reaction system of step (a).
  • the reaction atmosphere is preferably an atmosphere of an inert gas such as argon or nitrogen in consideration of the activity of the transition catalyst. Further, it may be under pressure, normal pressure, or reduced pressure.
  • the nickel catalyst is a nickel salt or solvate.
  • the valence of the nickel atom contained in the nickel salt is usually divalent.
  • the nickel salt include nickel (II) dichloride, nickel (II) dibromide, nickel (II) difluoride, nickel (II) iodide (NiI 2 ), nickel (II) sulfate, nickel (II) carbonate, nickel (II) dimethyl.
  • Ni(acac) 2 Glyoxime, nickel (II) hydroxide, nickel (II) hydroxyacetate, nickel (II) oxalate, nickel (II) 2-ethylhexanoate, nickel (II) acetate, nickel (II) trifluoroacetate, nickel Examples thereof include (II) triflate and nickel(II) acetylacetonate (Ni(acac) 2 ).
  • the nickel catalyst is a nickel complex catalyst.
  • the nickel complex catalyst comprises a nickel atom and a ligand chelating to the nickel atom.
  • the nickel complex catalyst can be advantageously used from the viewpoint of improving the reaction yield or reducing the by-products.
  • the valence of the nickel atom in the nickel complex catalyst is preferably 0 or divalent, and more preferably divalent.
  • the nickel atom contained in the nickel complex catalyst is derived from, for example, a nickel salt or a solvate added to the reaction system.
  • a preformed nickel complex catalyst may be added to the reaction system, or a nickel salt or solvate and a ligand may be added to the reaction system.
  • a nickel complex catalyst may be formed therein.
  • the amount of the ligand may be, for example, usually 1 to 3 equivalents, preferably 1 to 2 equivalents, relative to 1 equivalent of the nickel salt.
  • the ligand contained in the nickel complex catalyst is a molecule or ion bonded to the nickel atom by a coordinate bond.
  • the ligand may be a monodentate ligand or a polydentate ligand.
  • a monodentate ligand is a monodentate ligand.
  • the polydentate ligand is a bidentate or higher-dentate ligand.
  • the bidentate ligand is a ligand having two coordination atoms
  • the tridentate ligand is a ligand having three coordination atoms
  • the tetradentate ligand is a coordination ligand. It is a ligand having four atoms.
  • a coordinating atom is an atom that is directly involved in the coordination bond.
  • the ratio of the ligand to the nickel atom is not particularly limited, but when the ligand is a monodentate ligand, the number of ligands per nickel atom is usually 2 to 4 And preferably two. Further, when the ligand is a polydentate ligand, it is preferable that one or more nickel atoms coordinate with each ligand. The number of nickel atoms per ligand is, for example, 1 to 3. Preferred ligands are phosphine ligands or nitrogen ligands.
  • Phosphine ligand is a ligand containing a phosphorus atom as a coordinating atom.
  • the phosphine ligand may be a monodentate ligand or a polydentate ligand, but is preferably a polydentate phosphine ligand.
  • phosphine ligand examples include trimethylphosphine, tri-n-butylphosphine (P n Bu 3 ), tricyclopentylphosphine, tricyclohexylphosphine (PCy 3 ), trioctylphosphine (P(Oct) 3 ), triphenyl Monodentate coordination phosphines such as phosphine (PPh 3 ); 1,1′-bis(diphenylphosphino)ferrocene (dppf), 1,2-bis(diphenylphosphino)ethane (dppe), 1,2-bis( Diphenylphosphino)butane (dppb), 1,2-bis(dicyclohexylphosphino)ethane (dcype), 1,2-bis(dimethylphosphino)ethane (dmpe), 3,4-bis(dicyclohexylphosphino)thiophene (Dcypt), 1,3-bis(
  • tridentate phosphine such as tris(2-diphenylphosphinoethyl)phosphine
  • tridentate phosphine such as tris(2-diphenylphosphinoethyl)phosphine.
  • Preferred is 3,4-bis(dicyclohexylphosphino)thiophene.
  • the phosphine ligand also includes derivatives of the above phosphine ligand.
  • Examples of derivatization of the phosphine ligand include introduction of one or more substituents.
  • Examples of the one or more substituents introduced into the phosphine ligand include an alkyl group, an aryl group, an arylalkyl group, an alkylaryl group, an alkyloxy group, an alkyloxyalkyl group, an aryloxy group, an aryloxyalkyl group. , Halogen atoms, dialkyl groups, nitro groups, oxycarbonyl groups and the like.
  • a nitrogen ligand is a ligand containing a nitrogen atom as a coordinating atom.
  • Nitrogen ligands are usually basic.
  • the nitrogen ligand is, for example, an amine-based or imine-based polydentate ligand.
  • nitrogen ligand examples include 2,2-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (bmbpy), 4,4′-di-tert-butyl-2,2′ -Bipyridine (BBBPY), 4,4'-di-(5-nonyl)-2,2'-bipyridine, 1,10-phenanthroline, N-(n-propyl)pyridylmethanimine, N-(n-octyl) Bidentate polydentate amines such as pyridylmethanimine, N,N,N′,N′-tetramethylethylenediamine (TMDTA); N,N,N′,N′′,N′′-pentamethyldiethylenetriamine( PMDTA), tridentate polydentate amines such as N-propyl-N,N-di(2-pyridylmethyl)amine; hexamethyltris(2-aminoethyl
  • the nitrogen ligand also includes derivatives of the above nitrogen ligand.
  • Examples of derivatization of the nitrogen ligand include introduction of one or more substituents.
  • the one or more substituents introduced into the nitrogen ligand include, for example, an alkyl group, an aryl group, an arylalkyl group, an alkylaryl group, an alkyloxy group, an alkyloxyalkyl group, an aryloxy group, an aryloxyalkyl group. , Halogen atoms, dialkyl groups, nitro groups, oxycarbonyl groups and the like.
  • ligands contained in the nickel complex catalyst include cyclooctadiene (COD), tetrahydrofuran (thf), dimethoxyethane (dme) and the like.
  • nickel catalyst used in the present invention examples include nickel (0) cyclooctadiene complex (Ni(COD) 2 ), nickel (II) acetylacetonate, nickel (II) dichloride or its dimethoxyethane adduct, nickel.
  • nickel (II) dibromide nickel (II) dichloride bistriphenylphosphine complex, nickel (II) dibromide bistriphenylphosphine complex, nickel (II) dichloride tri-n-butylphosphine complex, nickel (II) dichloride 1,2-diphenylphosphine
  • the divalent nickel catalyst include a complex, nickel(II) dichloride 1,3-diphenylphosphinopropane complex, and bis(tetrahydrofuran) nickel(II) dichloride complex (NiCl 2 (thf) 2 ), but nickel is preferable.
  • step (II) dichloride or its dimethoxyethane adduct nickel(II) dichloride 1,2-diphenylphosphinoethane complex, nickel(II) acetylacetonate or bis(tetrahydrofuran) nickel(II) dichloride complex, more preferably Nickel(II) dichloride 1,2-diphenylphosphinoethane complex, nickel(II) acetylacetonate or bis(tetrahydrofuran) nickel(II) dichloride complex, and more preferably bis(tetrahydrofuran) nickel(II) dichloride complex.
  • nickel catalyst in step (a) is particularly advantageous in that the reaction proceeds rapidly.
  • Examples of the palladium catalyst used in the present invention include palladium(II) dichloride, palladium(II) dibromide, palladium(II) dichloride bistriphenylphosphine complex, palladium(0) tetrakistriphenylphosphine complex, and palladium(II) acetate.
  • Palladium(II) oxide Palladium(0), palladium(II) dichloride, palladium(II) dibromide, palladium(II) dichloride bistriphenylphosphine complex, palladium(0) tetrakistriphenylphosphine complex, palladium(II) acetate
  • the catalyst include zero-valent or divalent palladium catalysts such as palladium(II) oxide, and palladium(0) tetrakistriphenylphosphine complex and palladium(0) are preferable.
  • the use of a palladium catalyst is advantageous in reducing the amount of by-products generated by the coupling reaction between Ar groups and the like.
  • the transition catalyst used in the present invention may be a homogeneous catalyst or a heterogeneous catalyst.
  • the transition metal catalyst used in the present invention is a homogeneous catalyst
  • the transition metal catalyst is preferably a zero-valent or divalent nickel complex or a zero-valent or divalent palladium complex.
  • the nickel complex is preferably nickel(II) acetylacetonate, a dimethoxyethane adduct of nickel(II) dichloride, or a bis(tetrahydrofuran) nickel(II) dichloride complex.
  • the palladium complex is preferably palladium(0) tetrakistriphenylphosphine complex or bis(tetrahydrofuran) nickel(II) dichloride complex.
  • the transition metal catalyst used in the present invention is a heterogeneous catalyst
  • the transition metal catalyst carries one or more transition metal catalysts selected from nickel catalysts and palladium catalysts, and one or more transition metal catalysts.
  • a supported catalyst having a carrier for Supported catalysts are advantageous because they facilitate the separation of the transition metal catalyst from the reaction mixture.
  • the carrier that the supported catalyst has include activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite, hydrotalcite, aluminum oxide, titanium dioxide, zirconium dioxide, silicon dioxide, clay, silicates, zeolites, polymer matrices, and the like.
  • the polymeric matrix may be, for example, a styrene-divinylbenzene resin or a phenol-formaldehyde resin, said resin having a chelating ligand (phosphine, 1,10-phenanthroline or 2,2'-bipyridine) attached thereto. May be The ligand bound to the resin forms a complex with a palladium catalyst or a nickel catalyst, and these transition catalysts can be immobilized to give a heterogeneous catalyst.
  • the transition metal catalyst in the supported catalyst is preferably a zero-valent or divalent palladium catalyst, more preferably palladium (0).
  • the carrier in the supported catalyst is preferably activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite and hydrotalcite, aluminum oxide, titanium dioxide, zirconium dioxide. Yes, and more preferably activated carbon.
  • the supported catalyst is palladium black, palladium carbon (Pd/C).
  • the amount of the transition metal catalyst in the supported catalyst is, for example, 0.05 to 10% by weight, preferably 0.1 to 7% by weight, more preferably 4 to 7% by weight, based on the total weight of the supported catalyst.
  • the amount of the transition metal catalyst used is usually about 0.001 to 2 mol, preferably about 0.01 to 1 mol, based on 1 mol of the organozinc compound.
  • the solvent used in step (a) is preferably an organic solvent such as N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,2-dimethoxyethane, tetrahydrofuran (THF), 2
  • a polar aprotic solvent such as -methyl-tetrahydrofuran, cyclopentyl methyl ether (CPME), tert-butyl methyl ether, diisopropyl ether, N,N-dimethylacetamide (DMA), diglyme, methyl-tetrahydrofuran, 1,4-dioxane;
  • Nonpolar solvents such as toluene, methylene chloride, hexane, heptane, xylene, 1,4-dioxane, dibutyl ether, mesitylene, p-cymene, and the like, or a combination thereof can be mentioned, with preference given to THF, 2-methyl-THF and di
  • the amount of the solvent used in the step (a) is not particularly limited, but can be, for example, 1 to 100 times the volume of the compound (II).
  • the reaction temperature may be carried out at about 0 to 100°C, but is usually 0 to 60°C, preferably 0 to 50°C, more preferably 10 to 50°C. Is. Obtaining the compound (a) by adopting such a mild temperature condition is preferable from the viewpoint of suppressing the facility cost related to temperature control and implementing industrial production.
  • the reaction temperature is preferably 0 to 50° C., more preferably 10 to 50° C., more preferably 20 to 30° C., and even more preferably Is about 25°C.
  • the reaction temperature in step (a) is preferably 45 to 90°C, more preferably 45 to 80°C, more preferably 50 to 70°C, and even more preferably Is about 60°C.
  • the reaction time may be appropriately determined according to the amount of the substrate used, the amount of the catalyst, the reaction temperature, etc., and is usually 0.5 to 48 hours, preferably 1 to 24 hours.
  • Step (b)> the hydroxyl protecting group represented by R 5 in the compound (IV) obtained in the step (a) is removed to obtain the compound (I).
  • R 5 The method for removing R 5 is described in Peter G. M. It can be removed by a known method described in Wuts, "Protective Group in Organic Synthesis, 5th Edition” (published by JOHN WILEY & SONS) and the like.
  • a typical method is a method of reacting compound (II) with an acidic reagent or a basic reagent in an inert solvent to remove R 5 .
  • the acidic reagent examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid and hydrogen bromide, and organic acids such as trifluoroacetic acid, trichloroacetic acid, p-toluenesulfonic acid, formic acid and phthalic acid.
  • the basic reagent is not particularly limited, but tetra-n-butylammonium fluoride, ammonium fluoride, ammonium bifluoride, fluorides such as hydrofluoric acid, potassium carbonate, lithium hydroxide, sodium hydroxide. , Potassium hydroxide, sodium methyl oxide, sodium ethyl oxide, aqueous ammonia and the like.
  • the amount of the acidic reagent used is usually 0.1 to 1000 equivalents, preferably 1 to 5 equivalents, relative to 1 equivalent of compound (II).
  • the amount of the basic reagent used is usually 0.001 to 10 equivalents, preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound (II).
  • the solvent used in step (b) is preferably an organic solvent, and examples thereof include polar protic solvents such as methanol, ethanol, isopropanol, butanol; acetonitrile, propionitrile, THF, 2-methyl-tetrahydrofuran, 1 , 4-Dioxane, tert-butyl methyl ether, diisopropyl ether, dimethyloxyethane, diglyme, acetone, methyl ethyl ketone, diethyl ketone, methyl acetate, ethyl acetate, butyl acetate and other polar aprotic solvents: methylene chloride, chloroform, tetrachloride Examples thereof include nonpolar solvents such as carbon, 1,2-dichloroethane, chlorobenzene, toluene, xylene, hexane, heptane, and combinations thereof, with preference given to methanol, ethanol, iso
  • the amount of the solvent used in the step (b) is usually 1 to 1000 times the volume of the compound (II), preferably 1 to 100 times the volume.
  • the reaction temperature is usually ⁇ 30 to 100° C., preferably 0 to 100° C., more preferably 0 to 40° C., and even more preferably 0 to 50° C. Obtaining the compound (I) by adopting such a mild temperature condition is preferable in order to suppress the facility cost related to temperature control and to carry out industrial production.
  • Step (a-1) Production of Compound (II)>
  • compound (II) used as a starting material may be purchased or produced, but it is preferably produced according to step (a-1).
  • the step (a-1) can be carried out separately in the following step (a-1-1) and step (a-1-2).
  • Step (a-1-1) The following formula (VI): A compound (VI) represented by The following formula (VII): And a compound (VII) represented by After reaction, the following formula (VIII): A step of obtaining a compound (VIII) represented by: and a step (a-1-2): protecting the hydroxyl group in the compound (VIII) with a hydroxyl-protecting group represented by R 5 to obtain the compound (II) Process.
  • Step (a-1-1) Production of Compound (VIII)>
  • step (a-1-1) the step of reacting compound (VI) with compound (VII) to give compound (VIII) is carried out.
  • the compound (VI) used as a starting material in the step (a-1-1) is not particularly limited, and examples thereof include known methods described in Non-Patent Document 1 and Non-Patent Document 2 and Example 1 described later. It may be produced by the method described or a commercially available product may be used.
  • the compound (VII) may also be produced by a known method, or a commercially available organic thiol compound may be used.
  • the amount of the compound (VII) to be used is not particularly limited, but is, for example, usually 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to 1 equivalent of the compound (VI).
  • reaction conditions of the compound (VI) and the compound (VII) are not particularly limited as long as the compound (VIII) can be obtained, but the following formula (IX): It is preferable to carry out in the presence of a compound (IX) represented by
  • the method for obtaining the compound (IX) is not particularly limited, and the compound (IX) may be produced by a known method, or a commercially available aluminum catalyst may be used.
  • R c and R d each independently represent a functional group selected from the group consisting of a halogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group.
  • the aliphatic hydrocarbon group, aromatic hydrocarbon ring group, aliphatic heterocyclic group and aromatic heterocyclic group included in the above group may each have one or more substituents.
  • the functional groups represented by R c and R d are each independently preferably an alkyl group, an aryl group or an arylalkyl group, more preferably an alkyl group having 1 to 20 carbon atoms or a carbon atom having 6 to 20 carbon atoms.
  • the functional group represented by R c and the functional group represented by R d may be the same or different, but are preferably the same. Moreover, according to a preferable aspect, one of q and r represents 0, and the other represents 3.
  • the amount of the compound (IX) used is usually 1 to 5 equivalents, preferably 3 to 5 equivalents, relative to 1 equivalent of the compound (VI).
  • the solvent used in step (a-1-1) is preferably an organic solvent, for example, acetonitrile, propionitrile, THF, 2-methyl-tetrahydrofuran, 1,4-dioxane, tert-butyl methyl ether.
  • the amount of the solvent used in the step (a-1-1) is not particularly limited, but is usually 1 to 1000 times the volume of the compound (VI), preferably 1 to 100 times the volume.
  • the reaction temperature is not particularly limited, but is usually ⁇ 30 to 80° C., preferably ⁇ 10 to 40° C., more preferably 0 to 40° C. It is preferable to adopt a relatively mild temperature condition in this step from the viewpoint of suppressing the equipment cost related to temperature management.
  • step (a-1-1) water, HCl aqueous solution, ammonium chloride aqueous solution or the like can be used to terminate the reaction of the aluminum catalyst and the catalyst can be easily removed.
  • step (a-1) after the compound (VIII) is obtained, the production step of the next step (a-1-2) is preferably carried out as quickly as possible. ) And step (a-1-2) are more preferably carried out in the same reaction system. Promptly shifting from step (a-1-1) to step (a-1-2) is advantageous in preventing compound (VI) from being regenerated due to the ring closure reaction of compound (VIII). ..
  • R 5 group to the hydroxyl group in the compound (VIII) is not particularly limited, and depending on the kind of the hydroxyl group-protecting group represented by R 5 , Peter G. M. It can be carried out by a known method described in Wuts, "Protective Group in Organic Synthesis, 5th Edition" (published by JOHN WILEY & SONS) and the like. As a typical method, a method of introducing R 5 by reacting compound (VIII) with a protecting group introducing reagent in the presence of an acid or a basic reagent in an inert solvent can be mentioned.
  • the protective group-introducing reagent can be appropriately determined according to the type of R 5 , and examples thereof include ester-type protective group-introducing agents such as acetic anhydride, pivalic anhydride, acetyl chloride, pivaloyl chloride; benzyl bromide and the like.
  • Arylalkyl ether type protecting group introducing agent alkyl ether type protecting group introducing agent such as iodomethane; silyl type protecting group introducing agent such as trimethylsilyl chloride, triisopropylsilyl chloride, tert-butyldimethylsilyl chloride, tert-butyldiphenylsilyl chloride
  • Examples thereof include oxycarbonyl-type protecting groups such as bis(tert-butyloxycarbonyloxy)oxide, etc., preferably acetic anhydride, pivalic anhydride, acetyl chloride, pivaloyl chloride and other ester-type protecting group introducing agents, More preferably, it is acetic anhydride.
  • acidic reagents include inorganic acids such as acetic acid and hydrogen bromide, and organic acids such as p-toluenesulfonic acid and phthalic acid.
  • the basic reagent include, but are not limited to, triethylamine, 4-dimethylaminopyridine (DMAP), diazabicycloundecene (DBU), organic amines such as diethylaniline, and the like, with preference given to triethylamine and 4-dimethyl.
  • DMAP 4-dimethylaminopyridine
  • DBU diazabicycloundecene
  • organic amines such as diethylaniline, and the like, with preference given to triethylamine and 4-dimethyl.
  • the amount of the acidic reagent used is not particularly limited, but is usually 0.1 to 1000 equivalents, preferably 1 to 5 equivalents, relative to 1 equivalent of the compound (VIII).
  • the amount of the basic reagent used is not particularly limited, but is usually 0.001 to 10 equivalents, preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound (VIII).
  • the solvent used in step (a-1-2) is preferably an organic solvent, for example, acetonitrile, propionitrile, THF, 2-methyl-tetrahydrofuran, 1,4-dioxane, tert-butyl methyl ether.
  • the amount of the solvent used in the step (a-1-2) is not particularly limited, but is usually 1 to 1000 times the volume of the compound (VIII), preferably 1 to 100 times the volume.
  • the reaction temperature is not particularly limited, but is usually ⁇ 30 to 100° C., preferably ⁇ 30 to 40° C., more preferably ⁇ 10 to 40° C., further preferably 0 to 30. °C. It is advantageous to employ a relatively mild temperature condition also in this step, in order to suppress the reaction of the return of the compound (VIII) to the compound (VI). Further, it is preferable to adopt a relatively mild temperature condition also in this step, in order to suppress the facility cost related to temperature management and to carry out industrial production.
  • the compound (I) in the present invention has the following formula (XI): It can be advantageously used as a starting material for the production of the compound (XI) represented by, that is, a ⁇ -C-arylglycoside derivative.
  • a known reduction reaction can be used for the reaction from compound (I) to compound (XI).
  • the reduction method a method of reducing the compound (I) using triethylsilane in the presence of a boron trifluoride diethyl ether complex (BF 3 ⁇ OEt 2 ), triethylsilane, triisopropylsilane, Examples include a method of reacting a compound (I) with a Lewis acid such as BF 3 ⁇ OEt 2 , boron trifluoride tetrahydrofuran (BF 3 ⁇ THF), and aluminum chloride in the presence of a silane compound such as tetramethyldisiloxane. ..
  • the obtained compound (XI) was used as it is, or when R 1 ′, R 2 ′, R 3 ′ or R 4 ′ was a hydroxyl-protecting group, if desired, Peter G. M. Deprotection by a known method described in Wuts, "Protective Group in Organic Synthesis, 5th Edition” (published by JOHN WILEY & SONS) and the like, and ⁇ -C-arylglycoside. It can be used as a derivative.
  • compound (II) can be used as a production intermediate to produce compound (I), which can be further converted to compound (XI) which is the SGLT2 inhibitor itself or a synthetic intermediate thereof. it can. That is, according to the present invention, compound (II) can be preferably applied as a reagent or an intermediate for the production of compound (XI).
  • the following formula (II) A compound represented by the following formula (XI): A reagent for producing the compound (XI) represented by Further, according to a preferred aspect of the present invention, in the reagent, Ar in the formula (XI) is represented by the formula (V) or (Va).
  • a compound of the following formula (XI) As an intermediate for the production of the compound (XI) represented by Formula (II) below:
  • reaction mixture was diluted with toluene (100 mL), and 1N HCl aqueous solution (120 mL) was added to the obtained diluted solution to quench excess acetic anhydride.
  • the resulting reaction mixture was stirred at 20-25°C for 20 minutes and then phase separated.
  • the resulting organic phase was washed with 1M aqueous NaHCO 3 solution (3 x 50 mL).
  • the organic phase was further washed with water (15 mL) and brine (15 mL), then dried over anhydrous Na 2 SO 4 , filtered and concentrated under reduced pressure.
  • reaction mixture was diluted with CH 2 Cl 2 (20 mL) and added to a 250 mL beaker containing ice-cold water (20 mL), and 1N HCl aqueous solution (10 mL) was slowly poured into the beaker while stirring to perform phase separation. It was The resulting aqueous phase was extracted with cold CH 2 Cl 2 (3 ⁇ 30mL ).
  • Example 4 Nickel (II) acetylacetonate (Ni(acac) Two Compound) (5) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl acetate)
  • Example 5 Nickel (II) dichloride (NiCl Two Of compound (5) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-ylacetate)
  • Example 6 Nickel (II) dichloride (dimethoxyethane adduct) (NiCl Two (Dme)) (5) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-ylacetate) Manufacturing of
  • Example 6 except that PhZnCl ⁇ LiCl in Example 6 was changed to PhZnBr and NiCl 2 (dme) was changed to the nickel catalyst (Ni cat.) or the combination of nickel catalyst and ligand shown in Table 1.
  • Compound (5) was synthesized in THF (3 mL) by the same operation.
  • the yield of the by-product biphenyl Ph-Ph in Test No. 6 was 20%, which was lower than the yields of the by-product biphenyl Ph-Ph in Test Nos. 1 to 5 and 7.
  • Example 8 Examination of Ligands in Nickel Catalyst In Test Nos. 7 to 11 shown in Table 2, the same operation as Test No. 6 in Example 7 was performed except that the ligands were changed to those shown in Table 2. Then, the compound (5) was synthesized. Further, in Test No. 12, except for changing the nickel catalyst NiCl 2 (thf) 2 in Ni (COD) 2, was synthesized compound (5) in the same operation as test No. 11.
  • the yields of the by-product biphenyl Ph-Ph in Test Nos. 8, 9, 10, 11 and 12 using the bidentate phosphine ligand were 18%, 10%, 16%, 9% and 14%, respectively. And the yield was lower than 20% in the test number 6 using the monodentate phosphine ligand.
  • Example 9 Examination of reaction temperature in reaction system using nickel catalyst In Test Nos. 13 and 14 shown in Table 3, the same as Test No. 11 in Example 8 except that the reaction temperature was changed to that shown in Table 3.
  • Compound (5) was synthesized by the operation of. In Test Nos. 15 and 16, compound (5) was synthesized in the same manner as in Test Nos. 11 and 14, except that the ligand dcype was changed to dcypt. The results are shown in Table 3.
  • Example 10 Examination of Ligands in Nickel Catalysts Test Nos. 17 to 19 shown in Table 4 were conducted in the same manner as Test No. 11 of Example 8 except that the ligands were changed to those shown in Table 4. Then, the compound (5) was synthesized.
  • Example 11 Compound (5) using Pd/C ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl Production of acetate)
  • Example 12 Compound (5) using Pd/C ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl Production of acetate)
  • Example 13 Examination of reaction conditions of a reaction system using Pd/C
  • Test Nos. 20 to 25 shown in Table 5 below the compounds were prepared in the same manner as in Example 12 except that the organozinc compound, the presence or absence of an additive, the reaction temperature and the reaction time were changed as shown in Table 5. (5) was synthesized.
  • an additive DMF
  • ZnBr 2 an additive (ZnBr 2 ) was added to the reaction mixture using a THE solution containing PhZnBr and ZnBr 2 described in Example 20 described later in place of the THF solution of PhZnCl ⁇ LiCl.
  • Test number 25 in which PhZnBr was used as the organozinc compound and ZnBr 2 was added showed a higher yield of compound (5) compared to test numbers 20 to 24 in which PhZnCl.LiCl was used as the organozinc compound.
  • Test Nos. 24 and 25 conducted at the reaction temperature of 60° C. showed higher yields of the compound (5) compared with Test Nos. 20 to 23 conducted at the reaction temperature of 40 to 50. Moreover, the test number 25 using 2 equivalents of PhZnBr had a higher yield of the compound (5) than the test number 24 using 1 equivalent of PhZnBr.
  • Example 15 Compound (5) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy) using a palladium(0) tetrakistriphenylphosphine complex (Pd(PPh 3 ) 4 ). )-6-Oxo-6-phenylhexan-2-yl acetate)
  • Triethylsilane (76 mg, 0.65 mmol) was added to an acetonitrile solution (3 mL) of the compound (6) (200 mg, 0.32 mmol) obtained in Example 1.
  • the resulting solution was cooled to ⁇ 40° C. with a dry ice/acetone bath, and a solution of boron trifluoride/ether complex (70 mg, 0.49 mmol) in methylene chloride (1 mL) was added to the solution at ⁇ 40 to ⁇ 30° C. Stir for hours.
  • Scrap metal Mg (372 mg, 15.3 mmol, 1.5 eq) and lithium chloride (LiCl; 540 mg, 12.75 mmol, 1.25 eq) are put into a 50 mL dry Schlenk tube containing a magnetic stir bar and gloved. It was placed in a box and dried with a hot gun. Next, after injecting argon 3 times into a warm flask, dry THF (8 mL) and diisobutylaluminum hydride (DIBAL-H; 0.1 M THF solution 0.1 mL, 1 mol%) were added at room temperature, and the mixture was heated at 5-10%. Stir for minutes. The Schlenk tube was then cooled to 0° C.
  • DIBAL-H diisobutylaluminum hydride
  • the resulting solution containing the complex of Grignard reagent and lithium chloride was added to a dry THF solution containing ZnCl 2 (1 equivalent to the Grignard reagent) at room temperature and stirred for 15 minutes to give 0.125M A solution containing the target complex PhZnCl.LiCl was obtained.
  • the solution concentration was adjusted based on the titration concentration of the corresponding Grignard reagent and the dilution rate after transmetallation.
  • Phenylmagnesium bromide (Grignard reagent) was diluted with dry THF and titrated with LiCl and iodine to prepare a THF solution of Grignard reagent having a concentration of about 0.5M.
  • the THF solution of the obtained Grignard reagent was added to a dry THF solution containing ZnBr 2 (1 equivalent to the Grignard reagent) at 25° C. and stirred for 1 hour to carry out transmetallation to obtain a 0.25 M solution.
  • a THF solution containing PhZnBr was obtained. The solution concentration was adjusted based on the titration concentration of the corresponding Grignard reagent and the dilution rate after transmetallation.
  • Example 20 A THF solution of phenyl zinc bromide (PhZnBr) and phenyl magnesium bromide prepared 0.5M concentration of THF solution containing zinc bromide (ZnBr 2) (Grignard reagent), in dry THF solution containing ZnBr 2 A THF solution containing 0.25M PhZnBr and ZnBr 2 (0.1 equivalent excess with respect to PhZnBr) was obtained by performing transmetallation by adding at 25° C. and stirring for 1 hour. The solution concentration was adjusted based on the titration concentration of the corresponding Grignard reagent and the dilution rate after transmetallation.
  • Example 22 Compound (10)((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzyloxy)-6-(3-((5-(4-fluorophenyl)thiophene-2 -Yl)methyl)-4-methylphenyl)-6-oxohexan-2-ylacetate)
  • Example 24 Compound (12)((2R,3R,4R,5S,6S)-3,4,5-Tris(benzyloxy)-2-(benzyloxymethyl)-6-(3-((5-( Preparation of 4-fluorophenyl)thiophen-2-yl)methyl)-4-methylphenyl)tetrahydro-2H-pyran)
  • Example 25 Compound (13) ((2S,3R,4R,5S,6R)-2-(3-((5-(4-fluorophenyl)thiophen-2-yl)methyl-4-methylphenyl)-6 -(Hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; canagliflozin)
  • Example 27 Compound (10) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzyloxy)-6-(4-chloro-3-(4-ethoxybenzyl)phenyl)- 6-oxohexan-2-yl acetate)
  • Example 30 Compound (19) ((2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(hydroxymethyl)tetrahydro-2H-pyran- Production of 3,4,5-triol: Dapagliflozin)

Abstract

In order to provide a method for the economical and efficient industrial production of C-aryl hydroxy glycoxide derivatives, the present invention provides a method for producing a C-aryl hydroxy glycoxide derivative represented by formula (I), the method comprising: a step for reacting a compound (II), which is represented by formula (II), with an organic zinc compound in the presence of a nickel catalyst or a palladium catalyst in order to obtain a reaction product; and a step for removing R5 from the reaction product to obtain the C-aryl hydroxy glycoxide derivative.

Description

C-アリールヒドロキシグリコキシド誘導体の製造方法Process for producing C-aryl hydroxyglycoxide derivative 関連出願の参照Reference to related applications
 本特許出願は、2018年12月17日に出願された日本国特許出願2018-235903号及び2019年2月27日に出願された日本国特許出願2019-34357号に基づく優先権の主張を伴うものであり、かかる先の特許出願における全開示内容は、引用することにより本明細書の一部とされる。 This patent application is accompanied by a priority claim based on Japanese Patent Application 2018-235903 filed on December 17, 2018 and Japanese Patent Application 2019-34357 filed on February 27, 2019. The entire disclosure of the above patent application is incorporated herein by reference.
 本発明は、C-アリールヒドロキシグリコキシド誘導体の製造方法に関し、より詳細には、SGLT-2阻害薬の中間体として有用であるC-アリールヒドロキシグリコキシド誘導体を製造する方法に関する。 The present invention relates to a method for producing a C-arylhydroxyglycoxide derivative, and more particularly to a method for producing a C-arylhydroxyglycoxide derivative useful as an intermediate for an SGLT-2 inhibitor.
 現在、糖尿病治療薬として様々な治療薬が市販されており、スルホニル尿素薬、グリニド薬、ビグアナイド薬、チアゾリジン薬、α-グルコシダーゼ阻害剤、ジペプチジルペプチダーゼ4(DPP-4)阻害剤、グルコース様ペプチド1(GLP-1)受動態作動薬が知られている。また、近年では、新たな機序の糖尿病治療薬としてナトリウム-グルコース共輸送担体-2(以下、SGLT-2ともいう。)阻害剤も開発され、注目されている。 Currently, various therapeutic agents are marketed as antidiabetic agents, including sulfonylurea drugs, glinide drugs, biguanide drugs, thiazolidine drugs, α-glucosidase inhibitors, dipeptidyl peptidase 4 (DPP-4) inhibitors, glucose-like peptides. 1 (GLP-1) passive agonists are known. Further, in recent years, a sodium-glucose cotransporter-2 (hereinafter, also referred to as SGLT-2) inhibitor has been developed and attracted attention as a novel therapeutic drug for diabetes.
 SGLT-2阻害薬の一例として、カナグリフロジン(1-(β-D-グリコピラノシル)-4-メチル-3-[5-(4-フルオロフェニル)-2-チエニルメチル]ベンゼン)等が挙げられ、これら化合物の製造方法として、1-(β-D-グリコピラノシル)-4-メチル-3-[5-(4-フルオロフェニル)-2-チエニルメチル]ベンゼン前駆体の酸素保護基を脱保護してカナグリフロジンを合成することが提案されている(特許文献1)。この1-(β-D-グリコピラノシル)-4-メチル-3-[5-(4-フルオロフェニル)-2-チエニルメチル]ベンゼン前駆体はC-アリールヒドロキシグリコキシド誘導体とも称され、SGLT-2阻害薬を製造するための中間体として注目されている(非特許文献1、非特許文献2、非特許文献3、特許文献1及び特許文献2参照)。 Examples of SGLT-2 inhibitors include canagliflozin (1-(β-D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene) and the like. As a method for producing these compounds, the oxygen protecting group of the 1-(β-D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene precursor is deprotected. It has been proposed to synthesize canagliflozin (Patent Document 1). This 1-(β-D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene precursor is also referred to as a C-aryl hydroxyglycoxide derivative, and SGLT-2 It has been drawing attention as an intermediate for producing an inhibitor (see Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, Patent Document 1 and Patent Document 2).
 上述したC-アリールヒドロキシグリコキシド誘導体の製造方法として種々の提案がなされており、例えば、-78℃の超低温下においてD-グルコノラクトン誘導体にアリールリチウムを作用させてアリール基を付加反応させる方法(非特許文献1、非特許文献3)、-20~-10℃の低温下においてD-グルコノラクトン誘導体にArMgBr・LiCl(Arはアリール基)等のターボグリニャール試薬を用いてアリール基を付加反応させる方法(非特許文献2)、更には、リチウムトリn-ブチルマグネサート(nBuMgLi)から得られたマグネシウムアート錯体を用いて、-15℃程度の温度環境下でD-グルコノラクトン誘導体にアリール基を付加反応させる方法(特許文献2)等が知られている。 Various proposals have been made as a method for producing the above-mentioned C-arylhydroxyglycoxide derivative, for example, a method in which aryllithium is allowed to act on a D-gluconolactone derivative at an ultralow temperature of −78° C. to cause an addition reaction of an aryl group. (Non-Patent Documents 1 and 3), an aryl group is added to a D-gluconolactone derivative at a low temperature of −20 to −10° C. by using a turbo-Grignard reagent such as ArMgBr·LiCl (Ar is an aryl group). A reaction method (Non-Patent Document 2), and further, using a magnesium ate complex obtained from lithium tri-n-butylmagnesate (nBu 3 MgLi), D-gluconolactone under a temperature environment of about −15° C. A method of adding an aryl group to a derivative (Patent Document 2) and the like are known.
 ところで、ニッケル触媒存在下でチオエステル誘導体に有機亜鉛試薬を反応させることによりカップリングが起こり、ケトン誘導体が得られることが報告されている(非特許文献4、非特許文献5)。 By the way, it has been reported that a ketone derivative can be obtained by reacting an organic zinc reagent with a thioester derivative in the presence of a nickel catalyst to obtain a ketone derivative (Non-Patent Documents 4 and 5).
WO2010/043682号公報WO2010/043682 WO2015/012110号公報WO2015/012110
 C-アリールヒドロキシグリコキシド誘導体の製造に従前使用されていた手法はいずれも、厳しい低温条件下で高価な試薬を用いて実施する必要があり、設備コストやランニングコストが極めて高価となり、最終原薬を安価に量産することが困難となっていた。 All of the methods used before in the production of C-aryl hydroxyglycoxide derivatives require the use of expensive reagents under severe low temperature conditions, resulting in extremely high equipment costs and running costs, and the final drug substance. It was difficult to mass-produce them at low cost.
 したがって、本発明は、C-アリールヒドロキシグリコキシド誘導体を工業的に安価で効率的に製造する方法を提供することを一つの目的としている。 Therefore, one object of the present invention is to provide a method for industrially inexpensively and efficiently producing a C-aryl hydroxyglycoxide derivative.
 本発明者らは、今般、ニッケル触媒又はパラジウム触媒の存在下で特定原料によるクロスカップリング反応を行い、さらに環化反応を実施すると、工業的に安価で効率的にC-アリールヒドロキシグリコキシド誘導体(以下、下記式(I)で表される化合物(I)ともいう。)を製造しうることを見出し、本発明を完成させるに至った。 The present inventors have recently conducted a cross-coupling reaction with a specific raw material in the presence of a nickel catalyst or a palladium catalyst, and further carried out a cyclization reaction, so that the C-aryl hydroxyglycoxide derivative is industrially inexpensive and efficient. It has been found that a compound (I) represented by the following formula (I) can be produced, and the present invention has been completed.
 本発明によれば、以下の発明が提供される。
[1]下記式(I):
Figure JPOXMLDOC01-appb-C000018
[式中、
 R及びRは、それぞれ独立して、水酸基保護基を表し、
 R及びRは、それぞれ独立して、水酸基保護基又は水素原子を表し、 Arは、芳香族炭化水素環基又は芳香族複素環基を、式中のオキサン環と結合する官能基として含む有機基を表し、前記芳香族炭化水素環基及び前記芳香族複素環基は各々、1個以上の置換基を有していてもよい。]
で表される化合物(I)を製造する方法であって、
 下記式(II):
Figure JPOXMLDOC01-appb-C000019
[式中、
 R~Rは、前記と同義であり、
 Rは、水酸基保護基(ただし、Rで表される水酸基保護基と同一の水酸基保護基及びRで表される水酸基保護基と同一の水酸基保護基を除く。)を表し、
 Qは、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基を、式中の硫黄原子と結合する官能基として含む有機基を表し、前記脂肪族炭化水素基、前記芳香族炭化水素環基、前記脂肪族複素環基及び前記芳香族複素環基は各々、1個以上の置換基を有していてもよい。]
で表される化合物(II)と、
 下記式(III-I):
Figure JPOXMLDOC01-appb-C000020
[式中、Arは、前記と同義であり、Xは、ハロゲン原子を表す。]
で表される化合物(III-I)、及び、
 下記式(III-II):
Figure JPOXMLDOC01-appb-C000021
[式中、Arは、前記と同義である。]
で表される化合物(III-II)
からなる群から選択される少なくとも1種の有機亜鉛化合物とを、
 ニッケル触媒及びパラジウム触媒から選択される1種以上の遷移金属触媒、又は、前記1種以上の遷移金属触媒と、前記1種以上の遷移金属触媒を担持する担体とを有する担持触媒の存在下で反応させて、下記式(IV):
Figure JPOXMLDOC01-appb-C000022
[式中、R~R及びArは、前記と同義である。]
で表される化合物(IV)を得る工程、及び
 前記化合物(IV)からRで表される水酸基保護基を除去して、前記化合物(I)を得る工程
を含んでなる、方法。
[2]前記化合物(II)と前記少なくとも1種の有機亜鉛化合物との反応が、0~60℃で行われる、[1]に記載の方法。
[3]前記担持触媒が、活性炭、アルミナ、硫酸バリウム、炭酸カルシウム、ヒドロキシアパタイト及びハイドロタルサイトからなる群から選択される少なくとも1種の担体と、前記担体に担持されたパラジウム触媒とを有する、[1]又は[2]に記載の方法。
[4]前記少なくとも1種の有機亜鉛化合物が前記化合物(III-I)を含み、
 前記化合物(III-I)が、下記式:
Figure JPOXMLDOC01-appb-C000023
[式中、Ar及びXは、前記と同義である。]
で表されるシュレンク平衡状態にある、[1]~[3]のいずれかに記載の方法。
[5]R及びRが水酸基保護基を表す、[1]~[4]のいずれかに記載の方法。
[6]Rで表される水酸基保護基が、R~Rで表される水酸基保護基と異なる、[1]~[5]のいずれかに記載の方法。
[7]R~Rで表される水酸基保護基が、それぞれ独立して、エステル型保護基、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基、アルキルオキシアルキル型保護基、シリル型保護基及びオキシカルボニル型保護基からなる群から選択される、[1]~[6]のいずれかに記載の方法。
[8]Qで表される有機基が、アルキル基、アルケニル基、アルキニル基又はアリール基を、式中の硫黄原子と結合する官能基として含み、前記アルキル基、前記アルケニル基、前記アルキニル基及び前記アリール基が各々、1個以上の置換基を有していてもよい、[1]~[7]のいずれかに記載の方法。
[9]Qで表される有機基に含まれる前記脂肪族炭化水素基、前記芳香族炭化水素環基、前記脂肪族複素環基又は前記芳香族複素環基が有していてもよい前記1個以上の置換基が、それぞれ独立して、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基及び保護されていてもよいスルホニル基からなる群から選択される、[1]~[8]のいずれかに記載の方法。
[10]Arで表される有機基が、炭素数6~14の芳香族炭化水素環基又は炭素数3~12の芳香族複素環基を、式中のオキサン環と結合する官能基として含む有機基であり、前記炭素数6~14の芳香族炭化水素環基及び炭素数3~12の芳香族複素環基が各々、1個以上の置換基を有していてもよい、[1]~[9]のいずれかに記載の方法。
[11]Arで表される有機基が、下記式(V):
Figure JPOXMLDOC01-appb-C000024
[式中、
 Rは、それぞれ独立して、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、アリールアルキルオキシ基、アリールアルケニルオキシ基及びアリールアルキニルオキシ基からなる群から選択される官能基を表し、前記アルキル基、前記アルケニル基、前記アルキニル基、前記アリール基、前記アリールアルキル基、前記アリールアルケニル基、前記アリールアルキニル基、前記アルキルオキシ基、前記アルケニルオキシ基、前記アルキニルオキシ基、前記アリールオキシ基、前記アリールアルキルオキシ基、前記アリールアルケニルオキシ基及び前記アリールアルキニルオキシ基は各々、1個以上の置換基を有していてもよく、
 nは、0~4の整数であり、
 Ar’は、芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基を表し、前記芳香族炭化水素環基、脂肪族複素環基及び前記芳香族複素環基は各々、1個以上の置換基を有していてもよい。]
で表される、[1]~[10]のいずれかに記載の方法。
[12]Rで表される官能基が、それぞれ独立して、アルキル基及びハロゲン原子から選択され、前記アルキル基が、1個以上の置換基を有していてもよい、[11]に記載の方法。
[13]Arで表される有機基が、下記式(Va):
Figure JPOXMLDOC01-appb-C000025
[式中、
 Rは、前記と同義であり、
 Ar’は、下記式(Va-I)、(Va-II)及び(Va-III):
Figure JPOXMLDOC01-appb-C000026
[式中、Rは、それぞれ独立して、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基からなる群から選択される官能基を表し、前記脂肪族炭化水素基、前記芳香族炭化水素環基、前記脂肪族複素環基及び前記芳香族複素環は各々、1個以上の置換基を有していてもよく、pは0~5の整数を表す。]
からなる群から選択される官能基を表す。]
で表される、[11]又は[12]に記載の方法。
[14]Rで表される官能基が、それぞれ独立して、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~14の芳香族炭化水素環基、炭素数2~12の脂肪族複素環基及び炭素数3~12の芳香族複素環基からなる群から選択され、前記アルキル基、前記アルケニル基、前記アルキニル基、前記芳香族炭化水素環基、前記脂肪族複素環基及び前記芳香族複素環基が各々、1個以上の置換基を有していてもよい、[13]に記載の方法。
[15]Arで表される有機基に含まれる前記芳香族炭化水素環基又は前記芳香族複素環基が有していてもよい前記1個以上の置換基が、それぞれ独立して、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいスルホニル基、アルキル基、アルケニル基及びアルキニル基からなる群から選択される、[1]~[14]のいずれかに記載の方法。
[16]下記式(VI):
Figure JPOXMLDOC01-appb-C000027
[式中、R~Rは、前記と同義である。]
で表される化合物(VI)と、
 下記式(VII):
Figure JPOXMLDOC01-appb-C000028
[式中、Qは、前記と同義である。]
で表される化合物(VII)とを反応させて、下記式(VIII):
Figure JPOXMLDOC01-appb-C000029
[式中、R~Rは、前記と同義である。]
で表される化合物(VIII)を得る工程、及び
 前記化合物(VIII)における水酸基をRで保護して前記化合物(II)を得る工程
をさらに含んでなる、[1]~[15]のいずれかに記載の方法。
[17]前記化合物(VI)と前記化合物(VII)との反応が、-30~40℃で行われる、[16]に記載の方法。
[18]前記化合物(VI)と前記化合物(VII)との反応が、下記式(IX):
Figure JPOXMLDOC01-appb-C000030
[式中、
 R及びRは、それぞれ独立して、ハロゲン原子、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基からなる群から選択される官能基を表し、前記脂肪族炭化水素基、前記芳香族炭化水素環基、前記脂肪族複素環基及び前記芳香族複素環基は各々、1個以上の置換基を有していてもよく、
 qは0~3の整数を表し、
 rは0~3の整数を表し、ただし、q+r=3である。]
で表される化合物(IX)の存在下で行われる、[16]又は[17]に記載の方法。
[19]R及びRで表される官能基が、それぞれ独立して、アルキル基、アリール基及びアリールアルキル基からなる群から選択され、前記アルキル基、前記アリール基及び前記アリールアルキル基が各々、1個以上の置換基を有していてもよい、[18]に記載の方法。
[20]下記式(II):
Figure JPOXMLDOC01-appb-C000031
[式中、R~R及びQは、前記と同義である。]
で表される化合物(II)を含んでなる、下記式(XI):
Figure JPOXMLDOC01-appb-C000032
[式中、Arは、前記と同義であり、R’~R’は、それぞれ独立して、水素原子又は水酸基保護基を表す。]
で表される化合物(XI)を製造するための試薬。
[21]下記式化合物(XI):
Figure JPOXMLDOC01-appb-C000033
[式中、Ar及びR’~R’は、前記と同義である。]
で表される化合物(XI)の製造中間体としての、
 下記式(II):
Figure JPOXMLDOC01-appb-C000034
[式中、R~R及びQは、前記と同義である。]
で表される化合物(II)の使用。
According to the present invention, the following inventions are provided.
[1] The following formula (I):
Figure JPOXMLDOC01-appb-C000018
[In the formula,
R 1 and R 2 each independently represent a hydroxyl-protecting group,
R 3 and R 4 each independently represent a hydroxyl group-protecting group or a hydrogen atom, and Ar contains an aromatic hydrocarbon ring group or an aromatic heterocyclic group as a functional group that bonds to the oxane ring in the formula. It represents an organic group, and the aromatic hydrocarbon ring group and the aromatic heterocyclic group each may have one or more substituents. ]
A method for producing a compound (I) represented by
Formula (II) below:
Figure JPOXMLDOC01-appb-C000019
[In the formula,
R 1 to R 4 are as defined above,
R 5 represents a hydroxyl protecting group (however, the same hydroxyl protecting group as the hydroxyl protecting group represented by R 1 and the same hydroxyl protecting group as the hydroxyl protecting group represented by R 2 are excluded);
Q represents an organic group containing an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group or an aromatic heterocyclic group as a functional group bonding to the sulfur atom in the formula, and the aliphatic carbon group Each of the hydrogen group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group may have one or more substituents. ]
A compound (II) represented by
The following formula (III-I):
Figure JPOXMLDOC01-appb-C000020
[In the formula, Ar has the same meaning as described above, and X represents a halogen atom. ]
A compound (III-I) represented by
Formula (III-II) below:
Figure JPOXMLDOC01-appb-C000021
[In the formula, Ar has the same meaning as described above. ]
Compound (III-II) represented by
At least one organozinc compound selected from the group consisting of:
In the presence of one or more transition metal catalysts selected from nickel catalysts and palladium catalysts, or a supported catalyst having the one or more transition metal catalysts and a carrier carrying the one or more transition metal catalysts. After reaction, the following formula (IV):
Figure JPOXMLDOC01-appb-C000022
[In the formula, R 1 to R 5 and Ar have the same meanings as described above. ]
And a step of removing the hydroxyl-protecting group represented by R 5 from the compound (IV) to obtain the compound (I).
[2] The method according to [1], wherein the reaction of the compound (II) with the at least one organozinc compound is performed at 0 to 60°C.
[3] The supported catalyst has at least one carrier selected from the group consisting of activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite, and hydrotalcite, and a palladium catalyst supported on the carrier. The method according to [1] or [2].
[4] The at least one organozinc compound contains the compound (III-I),
The compound (III-I) has the following formula:
Figure JPOXMLDOC01-appb-C000023
[In the formula, Ar and X are as defined above. ]
The method according to any one of [1] to [3], which is in a Schlenk equilibrium state represented by.
[5] The method according to any one of [1] to [4], wherein R 3 and R 4 represent a hydroxyl-protecting group.
[6] The method according to any one of [1] to [5], wherein the hydroxyl group-protecting group represented by R 5 is different from the hydroxyl group-protecting group represented by R 1 to R 4 .
[7] The hydroxyl group-protecting groups represented by R 1 to R 5 are each independently an ester-type protecting group, an arylalkyl-type protecting group, an alkyl-type protecting group, an arylalkyloxyalkyl-type protecting group, an alkyloxyalkyl-type protecting group. The method according to any one of [1] to [6], which is selected from the group consisting of a protecting group, a silyl type protecting group and an oxycarbonyl type protecting group.
[8] The organic group represented by Q contains an alkyl group, an alkenyl group, an alkynyl group or an aryl group as a functional group that bonds to a sulfur atom in the formula, and the alkyl group, the alkenyl group, the alkynyl group and The method according to any one of [1] to [7], wherein each of the aryl groups may have one or more substituents.
[9] The 1 which the aliphatic hydrocarbon group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group or the aromatic heterocyclic group contained in the organic group represented by Q may have. Or more substituents, each independently, a halogen atom, a hydroxyl group which may be protected, a thiol group which may be protected, an amino group which may be protected, a formyl group which may be protected, The method according to any one of [1] to [8], which is selected from the group consisting of an optionally protected carboxyl group and an optionally protected sulfonyl group.
[10] The organic group represented by Ar contains an aromatic hydrocarbon ring group having 6 to 14 carbon atoms or an aromatic heterocyclic group having 3 to 12 carbon atoms as a functional group that bonds to the oxane ring in the formula. An organic group, wherein the aromatic hydrocarbon ring group having 6 to 14 carbon atoms and the aromatic heterocyclic group having 3 to 12 carbon atoms each may have one or more substituents, [1] ~ The method according to any one of [9].
[11] The organic group represented by Ar has the following formula (V):
Figure JPOXMLDOC01-appb-C000024
[In the formula,
R a is each independently a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an arylalkenyl group, an arylalkynyl group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, or aryloxy. Group, an arylalkyloxy group, an arylalkenyloxy group and a functional group selected from the group consisting of an arylalkynyloxy group, the alkyl group, the alkenyl group, the alkynyl group, the aryl group, the arylalkyl group, the The arylalkenyl group, the arylalkynyl group, the alkyloxy group, the alkenyloxy group, the alkynyloxy group, the aryloxy group, the arylalkyloxy group, the arylalkenyloxy group and the arylalkynyloxy group are each 1 May have one or more substituents,
n is an integer of 0 to 4,
Ar′ represents an aromatic hydrocarbon ring group, an aliphatic heterocyclic group or an aromatic heterocyclic group, wherein the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group are each 1 It may have the above substituents. ]
The method according to any one of [1] to [10], which is represented by:
[12] In [11], the functional group represented by Ra is independently selected from an alkyl group and a halogen atom, and the alkyl group may have one or more substituents. The method described.
[13] The organic group represented by Ar has the following formula (Va):
Figure JPOXMLDOC01-appb-C000025
[In the formula,
Ra is as defined above,
Ar' is represented by the following formulas (Va-I), (Va-II) and (Va-III):
Figure JPOXMLDOC01-appb-C000026
[Wherein each R b independently represents a functional group selected from the group consisting of an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group, The aliphatic hydrocarbon group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocycle each may have one or more substituents, and p is an integer of 0 to 5 Represents. ]
Represents a functional group selected from the group consisting of: ]
The method according to [11] or [12], which is represented by:
[14] The functional groups represented by R b are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and a carbon number of 6 to 14 An aromatic hydrocarbon ring group, an aliphatic heterocyclic group having 2 to 12 carbon atoms, and an aromatic heterocyclic group having 3 to 12 carbon atoms, the alkyl group, the alkenyl group, the alkynyl group, The method according to [13], wherein each of the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group may have one or more substituents.
[15] Each of the one or more substituents optionally contained in the aromatic hydrocarbon ring group or the aromatic heterocyclic group contained in the organic group represented by Ar is independently a halogen atom. , Optionally protected hydroxyl group, optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected The method according to any one of [1] to [14], which is selected from the group consisting of a good sulfonyl group, an alkyl group, an alkenyl group and an alkynyl group.
[16] The following formula (VI):
Figure JPOXMLDOC01-appb-C000027
[In the formula, R 1 to R 4 have the same meanings as described above. ]
A compound (VI) represented by
The following formula (VII):
Figure JPOXMLDOC01-appb-C000028
[In the formula, Q has the same meaning as described above. ]
By reacting with a compound (VII) represented by the following formula (VIII):
Figure JPOXMLDOC01-appb-C000029
[In the formula, R 1 to R 4 have the same meanings as described above. ]
Any of [1] to [15], further comprising a step of obtaining a compound (VIII) represented by: and a step of protecting the hydroxyl group in the compound (VIII) with R 5 to obtain the compound (II). The method described in crab.
[17] The method according to [16], wherein the reaction between the compound (VI) and the compound (VII) is performed at -30 to 40°C.
[18] The reaction of the compound (VI) with the compound (VII) can be carried out by the following formula (IX):
Figure JPOXMLDOC01-appb-C000030
[In the formula,
R c and R d each independently represent a functional group selected from the group consisting of a halogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. The aliphatic hydrocarbon group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group each may have one or more substituents,
q represents an integer of 0 to 3,
r represents an integer of 0 to 3, provided that q+r=3. ]
The method according to [16] or [17], which is performed in the presence of the compound (IX) represented by:
[19] The functional groups represented by R c and R d are each independently selected from the group consisting of an alkyl group, an aryl group and an arylalkyl group, and the alkyl group, the aryl group and the arylalkyl group are each The method according to [18], each of which may have one or more substituents.
[20] The following formula (II):
Figure JPOXMLDOC01-appb-C000031
[In the formula, R 1 to R 5 and Q have the same meanings as described above. ]
A compound represented by the following formula (XI):
Figure JPOXMLDOC01-appb-C000032
[In the formula, Ar has the same meaning as described above, and R 1 ′ to R 4 ′ each independently represent a hydrogen atom or a hydroxyl group-protecting group. ]
A reagent for producing a compound (XI) represented by:
[21] The following compound (XI):
Figure JPOXMLDOC01-appb-C000033
[In the formula, Ar and R 1 ′ to R 4 ′ have the same meanings as described above. ]
As an intermediate for the production of compound (XI) represented by
Formula (II) below:
Figure JPOXMLDOC01-appb-C000034
[In the formula, R 1 to R 5 and Q have the same meanings as described above. ]
Use of the compound (II) represented by:
 本発明によれば、工業的に安価で効率的に化合物(I)を製造することができる。本発明によれば、設備コストやランニングコストを大幅に抑制しうることから、工業生産上有利である。 According to the present invention, compound (I) can be industrially manufactured at low cost and efficiently. According to the present invention, equipment costs and running costs can be significantly reduced, which is advantageous in industrial production.
 以下、本発明について説明する。なお、本明細書に記載される実施形態のうち、2以上の実施形態を組み合わせることができる場合、本発明には、当該組み合わせも包含される。 The present invention will be described below. When two or more embodiments among the embodiments described in the present specification can be combined, the present invention also includes the combination.
<定義>
 以下、本明細書で用いられる用語及び表現について説明する。以下の定義は、別段規定される場合を除き、本明細書を通じて適用される。例えば、「アルキル基」の定義は、「アルキル」又は「アルキル基」を含む官能基(例えば、アルキルアリール基、アリールアルキル基等)に関しても適用される。
<Definition>
Hereinafter, terms and expressions used in this specification will be described. The following definitions apply throughout the specification, unless otherwise specified. For example, the definition of "alkyl group" also applies to functional groups containing "alkyl" or "alkyl groups" (eg, alkylaryl groups, arylalkyl groups, etc.).
 「有機基」は、1個以上の炭素原子を含む官能基を意味する。有機基は、1種又は2種以上のヘテロ原子を含むことができる。「ヘテロ原子」は、水素原子及び炭素原子以外の原子を意味する。ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子、ハロゲン原子、珪素原子等が挙げられる。「ハロゲン原子」は、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。有機基の結合手は、有機基に含まれる炭素原子の結合手で形成されていることが好ましい。 “Organic group” means a functional group containing one or more carbon atoms. The organic group can contain one or more heteroatoms. "Heteroatom" means atoms other than hydrogen and carbon atoms. Examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a halogen atom, a silicon atom and the like. “Halogen atom” means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. The bond of the organic group is preferably formed of a bond of a carbon atom contained in the organic group.
 一実施形態において、有機基は、1個以上の置換基を有していてもよい脂肪族炭化水素基であるか、又は、1個以上の置換基を有していてもよい脂肪族炭化水素基を含む。この実施形態において、有機基の結合手は、脂肪族炭化水素基の結合手で形成されていることが好ましい。 In one embodiment, the organic group is an aliphatic hydrocarbon group which may have one or more substituents, or an aliphatic hydrocarbon group which may have one or more substituents. Including a group. In this embodiment, the bond of the organic group is preferably formed of the bond of an aliphatic hydrocarbon group.
 別の実施形態において、有機基は、1個以上の置換基を有していてもよい芳香族炭化水素環基であるか、又は、1個以上の置換基を有していてもよい芳香族炭化水素環基を含む。この実施形態において、有機基の結合手は、芳香族炭化水素環基の結合手で形成されていることが好ましい。 In another embodiment, the organic group is an aromatic hydrocarbon ring group which may have one or more substituents, or an aromatic hydrocarbon ring which may have one or more substituents. Contains a hydrocarbon ring group. In this embodiment, the bond of the organic group is preferably formed of the bond of the aromatic hydrocarbon ring group.
 別の実施形態において、有機基は、1個以上の置換基を有していてもよい脂肪族複素環基であるか、又は、1個以上の置換基を有していてもよい脂肪族複素環基を含む。この実施形態において、有機基の結合手は、脂肪族複素環基の結合手で形成されていることが好ましい。 In another embodiment, the organic group is an aliphatic heterocyclic group which may have one or more substituents, or an aliphatic heterocyclic group which may have one or more substituents. Including a ring group. In this embodiment, the bond of the organic group is preferably formed of the bond of the aliphatic heterocyclic group.
 別の実施形態において、有機基は、1個以上の置換基を有していてもよい芳香族複素環基であるか、又は、1個以上の置換基を有していてもよい芳香族複素環基を含む。この実施形態において、有機基の結合手は、芳香族複素環基の結合手で形成されていることが好ましい。 In another embodiment, the organic group is an aromatic heterocyclic group optionally having one or more substituents, or an aromatic heterocyclic group optionally having one or more substituents. Including a ring group. In this embodiment, the bond of the organic group is preferably formed of the bond of the aromatic heterocyclic group.
 別の実施形態において、有機基は、1個以上の置換基を有していてもよい脂肪族炭化水素基、1個以上の置換基を有していてもよい芳香族炭化水素環基、1個以上の置換基を有していてもよい脂肪族複素環基及び1個以上の置換基を有していてもよい芳香族複素環基から選択される2種以上を組み合わせて形成される官能基を含む。この実施形態において、有機基の結合手は、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基の結合手で形成されていることが好ましい。 In another embodiment, the organic group is an aliphatic hydrocarbon group which may have one or more substituents, an aromatic hydrocarbon ring group which may have one or more substituents, Which is formed by combining two or more kinds selected from an aliphatic heterocyclic group which may have one or more substituents and an aromatic heterocyclic group which may have one or more substituents Including a group. In this embodiment, the bond of the organic group is preferably formed of a bond of an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group or an aromatic heterocyclic group.
 「脂肪族炭化水素基」は、脂肪族炭化水素から水素原子を除去することにより生成される官能基(芳香族性を有しない炭化水素基)を意味する。「脂肪族炭化水素基」は、文脈に応じて、1価又は2価の官能基を意味し得る。以下、1価の脂肪族炭化水素基を「-脂肪族炭化水素基」、2価の脂肪族炭化水素基を「-脂肪族炭化水素基-」と表す場合がある。脂肪族炭化水素基は、鎖状、環状及びこれらの組み合わせのいずれであってもよい。鎖状は、直鎖状であってもよいし、分岐鎖状であってもよい。脂肪族炭化水素基は、好ましくは、直鎖状又は分岐鎖状である。脂肪族炭化水素基は、飽和であってもよいし、不飽和であってもよい。不飽和結合は、炭素-炭素二重結合であってもよいし、炭素-炭素三重結合であってもよい。 “Aliphatic hydrocarbon group” means a functional group (hydrocarbon group having no aromaticity) produced by removing a hydrogen atom from an aliphatic hydrocarbon. "Aliphatic hydrocarbon group" may mean a monovalent or divalent functional group depending on the context. Hereinafter, the monovalent aliphatic hydrocarbon group may be referred to as "-aliphatic hydrocarbon group" and the divalent aliphatic hydrocarbon group may be referred to as "-aliphatic hydrocarbon group-". The aliphatic hydrocarbon group may be linear, cyclic or a combination thereof. The chain may be a straight chain or a branched chain. The aliphatic hydrocarbon group is preferably linear or branched. The aliphatic hydrocarbon group may be saturated or unsaturated. The unsaturated bond may be a carbon-carbon double bond or a carbon-carbon triple bond.
 1価の脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。2価の脂肪族炭化水素基としては、例えば、アルキレン基、アルケニレン基、アルキニレン基等が挙げられる。 Examples of the monovalent aliphatic hydrocarbon group include an alkyl group, an alkenyl group and an alkynyl group. Examples of the divalent aliphatic hydrocarbon group include an alkylene group, an alkenylene group, an alkynylene group and the like.
 「アルキル基」は、アルカンから1個の水素原子を除去することにより生成される1価の官能基を意味する。アルキル基は、鎖状、環状及びこれらの組み合わせのいずれであってもよい。なお、環状のアルキル基は「シクロアルキル基」と同義である。鎖状は、直鎖状であってもよいし、分岐鎖状であってもよい。アルキル基は、好ましくは、直鎖状又は分岐鎖状である。直鎖状のアルキル基の炭素数は、通常1~20個、好ましくは1~10個、より好ましくは1~8個、より一層好ましくは1~6個、より一層好ましくは1~4個、より一層好ましくは1~3個である。分岐鎖状のアルキル基の炭素数は、通常3~20個、好ましくは3~10個、より好ましくは3~8個、より一層好ましくは3~6個、より一層好ましくは3~4個である。環状のアルキル基の炭素数は、通常3~20個、好ましくは3~10個、より好ましくは3~8個、より一層好ましくは3~6個である。直鎖状又は分岐鎖状部分と環状部分とを有するアルキル基の炭素数は、通常4~20個、好ましくは4~10個、より好ましくは4~8個、より一層好ましくは4~6個である。 “Alkyl group” means a monovalent functional group generated by removing one hydrogen atom from an alkane. The alkyl group may be linear, cyclic or a combination thereof. The cyclic alkyl group has the same meaning as the "cycloalkyl group". The chain may be a straight chain or a branched chain. The alkyl group is preferably linear or branched. The carbon number of the linear alkyl group is usually 1 to 20, preferably 1 to 10, more preferably 1 to 8, even more preferably 1 to 6, and even more preferably 1 to 4, More preferably, it is 1 to 3. The number of carbon atoms of the branched alkyl group is usually 3 to 20, preferably 3 to 10, more preferably 3 to 8, even more preferably 3 to 6, and even more preferably 3 to 4. is there. The carbon number of the cyclic alkyl group is usually 3 to 20, preferably 3 to 10, more preferably 3 to 8, and even more preferably 3 to 6. The number of carbon atoms of the alkyl group having a linear or branched portion and a cyclic portion is usually 4 to 20, preferably 4 to 10, more preferably 4 to 8, and even more preferably 4 to 6. Is.
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、4,4-ジメチルペンチル基、オクチル基、2,2,4-トリメチルペンチル基、ノニル基、デシル基等の直鎖状又は分岐鎖状のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の環状のアルキル基;シクロペンチルメチル基、シクロペンチルエチル基、シクロペンチルプロピル基、シクロヘキシルメチル基、シクロヘキシルエチル基等の直鎖状又は分岐鎖状部分と環状部分とを有するアルキル基等が挙げられる。 Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, isohexyl group, heptyl group, 4 , 4-Dimethylpentyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group, decyl group and other linear or branched alkyl groups; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group , A cycloalkyl group such as a cycloheptyl group and a cyclooctyl group; having a linear or branched chain portion such as a cyclopentylmethyl group, a cyclopentylethyl group, a cyclopentylpropyl group, a cyclohexylmethyl group, and a cyclohexylethyl group, and a cyclic portion An alkyl group etc. are mentioned.
 「アルケニル基」は、アルケンから1個の水素原子を除去することにより生成される1価の官能基を意味する。アルケニル基は、少なくとも1個の炭素-炭素二重結合を有する。アルケニル基は、鎖状、環状及びこれらの組み合わせのいずれであってもよい。なお、環状のアルケニル基は「シクロアルケニル基」と同義である。鎖状は、直鎖状であってもよいし、分岐鎖状であってもよい。アルケニル基は、好ましくは、直鎖状又は分岐鎖状である。直鎖状のアルケニル基の炭素数は、通常2~20個、好ましくは2~10個、より好ましくは2~8個、より一層好ましくは2~6個、より一層好ましくは2~4個である。分岐鎖状のアルケニル基の炭素数は、通常3~20個、好ましくは3~10個、より好ましくは3~8個、より一層好ましくは3~6個、より一層好ましくは3~4個である。環状のアルケニル基の炭素数は、通常3~20個、好ましくは3~10個、より好ましくは3~8個、より一層好ましくは3~6個である。直鎖状又は分岐鎖状部分と環状部分とを有するアルケニル基の炭素数は、通常4~20個、好ましくは4~10個、より好ましくは4~8個、より一層好ましくは4~6個である。アルケニル基における二重結合の数は、通常1~9個、好ましくは1~7個、より好ましくは1~4個、より一層好ましくは1~3個である。 “Alkenyl group” means a monovalent functional group formed by removing one hydrogen atom from an alkene. An alkenyl group has at least one carbon-carbon double bond. The alkenyl group may be linear, cyclic or a combination thereof. The cyclic alkenyl group has the same meaning as "cycloalkenyl group". The chain may be a straight chain or a branched chain. The alkenyl group is preferably linear or branched. The number of carbon atoms of the linear alkenyl group is usually 2 to 20, preferably 2 to 10, more preferably 2 to 8, even more preferably 2 to 6, and even more preferably 2 to 4. is there. The number of carbon atoms of the branched alkenyl group is usually 3 to 20, preferably 3 to 10, more preferably 3 to 8, even more preferably 3 to 6, and even more preferably 3 to 4. is there. The carbon number of the cyclic alkenyl group is usually 3 to 20, preferably 3 to 10, more preferably 3 to 8, and even more preferably 3 to 6. The number of carbon atoms of the alkenyl group having a linear or branched portion and a cyclic portion is usually 4 to 20, preferably 4 to 10, more preferably 4 to 8, and even more preferably 4 to 6. Is. The number of double bonds in the alkenyl group is usually 1 to 9, preferably 1 to 7, more preferably 1 to 4, and even more preferably 1 to 3.
 アルケニル基としては、例えば、ビニル基、2-プロペニル基、3-ブテニル基、2-ブテニル基、4-ペンテニル基、3-ペンテニル基、2-ヘキセニル基、3-ヘキセニル基、2-ヘプテニル基、3-ヘプテニル基、4-ヘプテニル基、3-オクテニル基、3-ノネニル基、4-デセニル基等の直鎖状又は分岐鎖状のアルケニル基;シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基等の環状のアルケニル基;シクロペンテニルメチル基、シクロペンテニルエチル基、シクロペンテニルプロピル基、シクロヘキセニルメチル基、シクロヘキセニルエチル基等の直鎖状又は分岐鎖状部分と環状部分とを有するアルケニル基等が挙げられる。 Examples of the alkenyl group include a vinyl group, 2-propenyl group, 3-butenyl group, 2-butenyl group, 4-pentenyl group, 3-pentenyl group, 2-hexenyl group, 3-hexenyl group, 2-heptenyl group, Linear or branched alkenyl groups such as 3-heptenyl group, 4-heptenyl group, 3-octenyl group, 3-nonenyl group, 4-decenyl group; cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group Cyclic alkenyl groups such as groups, cycloheptenyl groups, cyclooctenyl groups; linear or branched moieties such as cyclopentenylmethyl groups, cyclopentenylethyl groups, cyclopentenylpropyl groups, cyclohexenylmethyl groups, cyclohexenylethyl groups and cyclic groups And an alkenyl group having a moiety.
 「アルキニル基」は、アルキンから1個の水素原子を除去することにより生成される1価の官能基を意味する。アルキニル基は、少なくとも1個の炭素-炭素三重結合を有する。アルキニル基は、鎖状、環状及びこれらの組み合わせのいずれであってもよい。なお、環状のアルキニル基は「シクロアルキニル基」と同義である。鎖状は、直鎖状であってもよいし、分岐鎖状であってもよい。アルキニル基は、好ましくは、直鎖状又は分岐鎖状である。直鎖状のアルキニル基の炭素数は、通常2~20個、好ましくは2~10個、より好ましくは2~8個、より一層好ましくは2~6個、より一層好ましくは2~4個である。分岐鎖状のアルキニル基の炭素数は、通常4~20個、好ましくは4~10個、より好ましくは4~8個、より一層好ましくは4~6個である。環状のアルキニル基の炭素数は、通常4~20個、好ましくは4~10個、より好ましくは4~8個、より一層好ましくは4~6個である。直鎖状又は分岐鎖状部分と環状部分とを有するアルキニル基の炭素数は、通常5~20個、好ましくは5~10個、より好ましくは5~8個、より一層好ましくは5~6個である。アルキニル基における三重結合の数は、通常1~9個、好ましくは1~7個、より好ましくは1~4個、より一層好ましくは1~3個である。 “Alkynyl group” means a monovalent functional group generated by removing one hydrogen atom from an alkyne. An alkynyl group has at least one carbon-carbon triple bond. The alkynyl group may be linear, cyclic or a combination thereof. The cyclic alkynyl group has the same meaning as the "cycloalkynyl group". The chain may be a straight chain or a branched chain. The alkynyl group is preferably linear or branched. The number of carbon atoms of the linear alkynyl group is usually 2 to 20, preferably 2 to 10, more preferably 2 to 8, even more preferably 2 to 6, and even more preferably 2 to 4. is there. The branched alkynyl group has usually 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms. The carbon number of the cyclic alkynyl group is usually 4 to 20, preferably 4 to 10, more preferably 4 to 8, and even more preferably 4 to 6. The number of carbon atoms of the alkynyl group having a linear or branched portion and a cyclic portion is usually 5 to 20, preferably 5 to 10, more preferably 5 to 8, and even more preferably 5 to 6. Is. The number of triple bonds in the alkynyl group is usually 1 to 9, preferably 1 to 7, more preferably 1 to 4, and even more preferably 1 to 3.
 アルキニル基としては、例えば、2-プロピニル基、3-ブチニル基、2-ブチニル基、4-ペンチニル基、3-ペンチニル基、2-ヘキシニル基、3-ヘキシニル基、2-ヘプチニル基、3-ヘプチニル基、4-ヘプチニル基、3-オクチニル基、3-ノニニル基、4-デシニル基等の直鎖状又は分岐鎖状のアルキニル基;シクロブチニル基、シクロペンチニル基、シクロヘプチニル基、シクロオクチニル基等の環状のアルキニル基;シクロペンチニルメチル基、シクロペンテニルエチル基、シクロペンチニルプロピル基、シクロペンチニルメチル基、シクロペンチニルエチル基等の直鎖状又は分岐鎖状部分と環状部分とを有するアルキニル基等が挙げられる。 Examples of the alkynyl group include 2-propynyl group, 3-butynyl group, 2-butynyl group, 4-pentynyl group, 3-pentynyl group, 2-hexynyl group, 3-hexynyl group, 2-heptynyl group, 3-heptynyl group. Group, linear or branched alkynyl group such as 4-heptynyl group, 3-octynyl group, 3-nonynyl group and 4-decynyl group; cyclic such as cyclobutynyl group, cyclopentynyl group, cycloheptynyl group and cyclooctynyl group An alkynyl group having a linear or branched portion such as a cyclopentynylmethyl group, a cyclopentenylethyl group, a cyclopentynylpropyl group, a cyclopentynylmethyl group, a cyclopentynylethyl group and a cyclic portion. Etc.
 「アルキレン基」は、アルキル基から1個の水素原子を除去することにより生成される2価の官能基を意味する。アルキル基に関する説明は、上記と同様である。 “Alkylene group” means a divalent functional group formed by removing one hydrogen atom from an alkyl group. The description on the alkyl group is the same as above.
 「アルケニレン基」は、アルケニル基から1個の水素原子を除去することにより生成される2価の官能基を意味する。アルケニル基に関する説明は、上記と同様である。 “Alkenylene group” means a divalent functional group formed by removing one hydrogen atom from an alkenyl group. The description on the alkenyl group is the same as above.
 「アルキニレン基」は、アルキニル基から1個の水素原子を除去することにより生成される2価の官能基を意味する。アルキニル基に関する説明は、上記と同様である。 “Alkynylene group” means a divalent functional group formed by removing one hydrogen atom from an alkynyl group. The description on the alkynyl group is the same as above.
 「芳香族炭化水素環基」は、芳香族炭化水素環から水素原子を除去することにより生成される官能基を意味する。「芳香族炭化水素環基」は、文脈に応じて、1価又は2価の官能基を意味し得る。以下、1価の芳香族炭化水素環基を「-芳香族炭化水素環基」、2価の芳香族炭化水素環基を「-芳香族炭化水素環基-」と表す場合がある。1価の芳香族炭化水素環基は「アリール基」と同義であり、2価の芳香族炭化水素環基は「アリーレン基」と同義である。 “Aromatic hydrocarbon ring group” means a functional group formed by removing a hydrogen atom from an aromatic hydrocarbon ring. “Aromatic hydrocarbon ring group” may mean a monovalent or divalent functional group, depending on the context. Hereinafter, the monovalent aromatic hydrocarbon ring group may be referred to as "-aromatic hydrocarbon ring group" and the divalent aromatic hydrocarbon ring group may be referred to as "-aromatic hydrocarbon ring group-". The monovalent aromatic hydrocarbon ring group has the same meaning as the "aryl group", and the divalent aromatic hydrocarbon ring group has the same meaning as the "arylene group".
 芳香族炭化水素環基としては、例えば、単環式又は多環式(例えば、2環式又は3環式)の芳香族炭素水素環基が挙げられる。芳香族炭化水素環基は、通常1~4環式、好ましくは1~3環式、より好ましくは1又は2環式である。芳香族炭化水素環基における環構成炭素原子の数は、通常6~18個、好ましくは6~14個、より好ましくは6~10個である。 The aromatic hydrocarbon ring group includes, for example, a monocyclic or polycyclic (eg, bicyclic or tricyclic) aromatic carbohydrogen ring group. The aromatic hydrocarbon ring group is usually 1 to 4 ring type, preferably 1 to 3 ring type, and more preferably 1 or 2 ring type. The number of ring-constituting carbon atoms in the aromatic hydrocarbon ring group is usually 6 to 18, preferably 6 to 14, and more preferably 6 to 10.
 単環式の芳香族炭素水素環基としては、例えば、フェニル基が挙げられる。 Examples of the monocyclic aromatic carbon-hydrogen ring group include a phenyl group.
 芳香族炭化水素環基には、縮合多環式の芳香族炭化水素環基及び部分的に飽和された縮合多環式の芳香族炭化水素環基も包含される。部分的に飽和された縮合多環式の芳香族炭化水素環基は、環を構成する結合の一部が水素化された縮合多環式の芳香族炭化水素環基である。縮合多環式の芳香族炭化水素環基としては、例えば、ナフチル基、アントリル基、フェナントレニル基、テトラセニル基、ピレニル基等の2~4環式の芳香族炭素水素環基に加えて、フルオレニル基、インデニル基、アセナフチレニル等が挙げられる。部分的に飽和された縮合多環式の芳香族炭化水素環基としては、例えば、ジヒドロナフチル基、インダニル基、アセナフテニル基等が挙げられる。 The aromatic hydrocarbon ring group also includes a condensed polycyclic aromatic hydrocarbon ring group and a partially saturated condensed polycyclic aromatic hydrocarbon ring group. The partially saturated fused polycyclic aromatic hydrocarbon ring group is a fused polycyclic aromatic hydrocarbon ring group in which some of the bonds constituting the ring are hydrogenated. Examples of the condensed polycyclic aromatic hydrocarbon ring group include, for example, naphthenyl group, anthryl group, phenanthrenyl group, tetracenyl group, pyrenyl group, and other 2- to 4-cyclic aromatic carbon-hydrogen ring groups, and fluorenyl group. , Indenyl group, acenaphthylenyl and the like. Examples of the partially saturated fused polycyclic aromatic hydrocarbon ring group include a dihydronaphthyl group, an indanyl group, an acenaphthenyl group and the like.
 2価の芳香族炭化水素環基は、1価の芳香族炭化水素環基から1個の水素原子を除去することにより生成される2価の官能基である。1価の芳香族炭化水素環基に関する説明は、上記と同様である。2価の芳香族炭化水素環基としては、例えば、1,3-フェニレン基、1,4-フェニレン基等が挙げられる。 The divalent aromatic hydrocarbon ring group is a divalent functional group produced by removing one hydrogen atom from the monovalent aromatic hydrocarbon ring group. The description on the monovalent aromatic hydrocarbon ring group is the same as above. Examples of the divalent aromatic hydrocarbon ring group include a 1,3-phenylene group and a 1,4-phenylene group.
 「脂肪族複素環基」は、環構成原子として、炭素原子に加えて、酸素原子、硫黄原子及び窒素原子からなる群から独立して選択される1個以上のヘテロ原子を含む単環式又は多環式(例えば、2環式又は3環式)の脂肪族複素環(非芳香族複素環)から水素原子を除去することにより生成される官能基を意味する。「脂肪族複素環基」は、文脈に応じて、1価又は2価の官能基を意味し得る。以下、1価の脂肪族複素環基を「-脂肪族複素環基」、2価の脂肪族複素環基を「-脂肪族複素環-」と表す場合がある。なお、「脂肪族複素環」を含む官能基(例えば、脂肪族複素環チオ基、脂肪族複素環オキシ基等)における「脂肪族複素環」は、脂肪族複素環基を意味する。 “Aliphatic heterocyclic group” means, as a ring-constituting atom, a monocyclic group containing, in addition to a carbon atom, one or more heteroatoms independently selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom, or It means a functional group formed by removing a hydrogen atom from a polycyclic (eg, bicyclic or tricyclic) aliphatic heterocycle (non-aromatic heterocycle). The “aliphatic heterocyclic group” may mean a monovalent or divalent functional group depending on the context. Hereinafter, the monovalent aliphatic heterocyclic group may be referred to as "-aliphatic heterocyclic group", and the divalent aliphatic heterocyclic group may be referred to as "-aliphatic heterocycle-". The “aliphatic heterocycle” in the functional group containing “aliphatic heterocycle” (eg, aliphatic heterocyclic thio group, aliphatic heterocyclic oxy group, etc.) means an aliphatic heterocyclic group.
 脂肪族複素環基に含まれるヘテロ原子の数は、通常1~4個、好ましくは1~3個、より好ましくは1又は2個である。脂肪族複素環基の員数は、通常3~16員、好ましくは4~10員、より好ましくは5~8員、より一層好ましくは5~7員、より一層好ましくは5又は6員である。脂肪族複素環基は、例えば、単環式、2環式又は3環式であり、好ましくは単環式又は2環式である。脂肪族複素環基における環構成炭素原子の数は、脂肪族複素環基のヘテロ原子数及び員数に応じて適宜選択される。脂肪族複素環基における環構成炭素原子の数は、通常2~12個、好ましくは2~8個、より好ましくは2~5個である。 The number of heteroatoms contained in the aliphatic heterocyclic group is usually 1 to 4, preferably 1 to 3, and more preferably 1 or 2. The number of members of the aliphatic heterocyclic group is usually 3 to 16 members, preferably 4 to 10 members, more preferably 5 to 8 members, still more preferably 5 to 7 members, still more preferably 5 or 6 members. The aliphatic heterocyclic group is, for example, monocyclic, bicyclic or tricyclic, preferably monocyclic or bicyclic. The number of ring-constituting carbon atoms in the aliphatic heterocyclic group is appropriately selected according to the number of heteroatoms and the number of members of the aliphatic heterocyclic group. The number of ring-constituting carbon atoms in the aliphatic heterocyclic group is usually 2 to 12, preferably 2 to 8, and more preferably 2 to 5.
 単環式の脂肪族複素環基は、例えば、単環式の飽和脂肪族複素環基である。単環式の飽和脂肪族複素環基は、飽和結合のみによって環が構成された単環式の脂肪族複素環基である。一実施形態において、単環式の飽和脂肪族複素環基は、1~2個の酸素原子を含む。別の実施形態において、単環式の飽和脂肪族複素環基は、1~2個の硫黄原子を含む。別の実施形態において、単環式の飽和脂肪族複素環基は、1~2個の酸素原子及び1~2個の硫黄原子を含む。別の実施形態において、単環式の飽和脂肪族複素環基は、1~4個の窒素原子を含む。別の実施形態において、単環式の飽和脂肪族複素環基は、1~3個の窒素原子と、1~2個の硫黄原子及び/又は1~2個の酸素原子とを含む。単環式の飽和脂肪族複素環基において、環を構成する2個の炭素原子がアルキレン基で架橋されていてもよい。単環式の飽和脂肪族複素環基において、環を構成する炭素原子のうち隣接する2個の炭素原子が二重結合を形成していてもよい。単環式の飽和脂肪族複素環基において、同一炭素原子に結合する2個の水素原子が、オキソ基で置換されていてもよい。単環式の飽和脂肪族複素環基が有し得るオキソ基の数は、好ましくは1又は2個である。単環式の飽和脂肪族複素環基に含まれるヘテロ原子が硫黄原子である場合、単環式の飽和脂肪族複素環基は、ジオキシド体であってもよい。 The monocyclic aliphatic heterocyclic group is, for example, a monocyclic saturated aliphatic heterocyclic group. The monocyclic saturated aliphatic heterocyclic group is a monocyclic aliphatic heterocyclic group in which the ring is composed of only saturated bonds. In one embodiment, the monocyclic saturated aliphatic heterocyclic group contains 1-2 oxygen atoms. In another embodiment, the monocyclic saturated aliphatic heterocyclic group contains 1-2 sulfur atoms. In another embodiment, the monocyclic saturated aliphatic heterocyclic group contains 1-2 oxygen atoms and 1-2 sulfur atoms. In another embodiment, the monocyclic saturated aliphatic heterocyclic group contains 1-4 nitrogen atoms. In another embodiment, the monocyclic saturated aliphatic heterocyclic group contains 1-3 nitrogen atoms, 1-2 sulfur atoms and/or 1-2 oxygen atoms. In the monocyclic saturated aliphatic heterocyclic group, two carbon atoms constituting the ring may be bridged with an alkylene group. In the monocyclic saturated aliphatic heterocyclic group, two adjacent carbon atoms among the carbon atoms constituting the ring may form a double bond. In the monocyclic saturated aliphatic heterocyclic group, two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group. The number of oxo groups that the monocyclic saturated aliphatic heterocyclic group can have is preferably 1 or 2. When the heteroatom contained in the monocyclic saturated aliphatic heterocyclic group is a sulfur atom, the monocyclic saturated aliphatic heterocyclic group may be a dioxide.
 単環式の脂肪族複素環基としては、例えば、アジリジニル基、オキシラニル基、チイラニル基、アゼチジニル基、オキセタニル基、チエタニル基、テトラヒドロチエニル基、テトラヒドロフラニル基、ピロリニル基、ピロリジニル基、イミダゾリニル基、イミダゾリジニル基、オキサゾリニル基、オキサゾリジニル基、ピラゾリニル基、ピラゾリジニル基、チアゾリニル基、チアゾリジニル基、テトラヒドロイソチアゾリル基、テトラヒドロオキサゾリル基、テトラヒドロイソオキサゾリル基、ピペリジニル基、ピペラジニル基、テトラヒドロピリジニル基、ジヒドロピリジニル基、ジヒドロチオピラニル基、テトラヒドロピリミジニル基、テトラヒドロピリダジニル基、ジヒドロピラニル基、テトラヒドロピラニル基、テトラヒドロチオピラニル基、モルホリニル基、チオモルホリニル基(環上の硫黄原子は酸化されてもよい)、アゼパニル基、ジアゼパニル基、アゼピニル基、オキセパニル基、アゾカニル基、ジアゾカニル基等の3~8員の単環式の脂肪族複素環基が挙げられる。 Examples of the monocyclic aliphatic heterocyclic group include an aziridinyl group, an oxiranyl group, a thiylanyl group, an azetidinyl group, an oxetanyl group, a thietanyl group, a tetrahydrothienyl group, a tetrahydrofuranyl group, a pyrrolinyl group, a pyrrolidinyl group, an imidazolinyl group, and an imidazolidinyl group. Group, oxazolinyl group, oxazolidinyl group, pyrazolinyl group, pyrazolidinyl group, thiazolinyl group, thiazolidinyl group, tetrahydroisothiazolyl group, tetrahydrooxazolyl group, tetrahydroisoxazolyl group, piperidinyl group, piperazinyl group, tetrahydropyridinyl group , Dihydropyridinyl group, dihydrothiopyranyl group, tetrahydropyrimidinyl group, tetrahydropyridazinyl group, dihydropyranyl group, tetrahydropyranyl group, tetrahydrothiopyranyl group, morpholinyl group, thiomorpholinyl group (sulfur on the ring Atom may be oxidized), a azepanyl group, a diazepanyl group, an azepinyl group, an oxepanyl group, an azocanyl group, a diazocanyl group and the like, and a 3- to 8-membered monocyclic aliphatic heterocyclic group.
 単環式の脂肪族複素環基には、部分的に飽和された単環式の芳香族複素環基も包含される。部分的に飽和された単環式の芳香族複素環基は、環を構成する結合の一部が水素化された単環式の芳香族複素環基である。部分的に飽和された単環式の芳香族複素環基としては、例えば、4,5-ジヒドロ-1H-イミダゾリル基、1,2,3,6-テトラヒドロピリジル基、4H-1,3-オキサジニル基、5,6-ジヒドロ-4H-1,3-オキサジニル基等が挙げられる。部分的に飽和された単環式の芳香族複素環基において、同一炭素原子に結合する2個の水素原子が、オキソ基で置換されていてもよい。部分的に飽和された単環式の芳香族複素環基が有し得るオキソ基の数は、好ましくは1又は2個である。 The monocyclic aliphatic heterocyclic group also includes a partially saturated monocyclic aromatic heterocyclic group. The partially saturated monocyclic aromatic heterocyclic group is a monocyclic aromatic heterocyclic group in which some of the bonds constituting the ring are hydrogenated. Examples of the partially saturated monocyclic aromatic heterocyclic group include, for example, 4,5-dihydro-1H-imidazolyl group, 1,2,3,6-tetrahydropyridyl group, 4H-1,3-oxazinyl group. Group, 5,6-dihydro-4H-1,3-oxazinyl group and the like. In a partially saturated monocyclic aromatic heterocyclic group, two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group. The number of oxo groups which the partially saturated monocyclic aromatic heterocyclic group may have is preferably 1 or 2.
 多環式の脂肪族複素環基は、例えば、縮合多環式の脂肪族複素環基である。縮合多環式の脂肪族複素環基は、例えば、縮合多環式の飽和脂肪族複素環である。縮合多環式の飽和脂肪族複素環は、飽和結合のみによって環が構成された縮合多環式の脂肪族複素環基である。一実施形態において、縮合多環式の飽和脂肪族複素環基は、1~3個の酸素原子を含む。別の実施形態において、縮合多環式の飽和脂肪族複素環基は、1~3個の硫黄原子を含む。別の実施形態において、縮合多環式の飽和脂肪族複素環基は、1~3個の酸素原子及び1~3個の硫黄原子を含む。別の実施形態において、縮合多環式の飽和脂肪族複素環基は、1~5個の窒素原子を含む。別の実施形態において、縮合多環式の飽和脂肪族複素環基は、1~4個の窒素原子と、1~3個の硫黄原子及び/又は1~3個の酸素原子とを含む。縮合多環式の飽和脂肪族複素環基において、環を構成する2個の炭素原子がアルキレン基で架橋されていてもよい。縮合多環式の飽和脂肪族複素環基において、環を構成する炭素原子のうち隣接する2個の炭素原子が二重結合を形成していてもよい。縮合多環式の飽和脂肪族複素環基において、同一炭素原子に結合する2個の水素原子が、オキソ基で置換されていてもよい。縮合多環式の脂肪族複素環基が有し得るオキソ基の数は、好ましくは1、2又は3個である。縮合多環式の飽和脂肪族複素環基に含まれるヘテロ原子が硫黄原子である場合、縮合多環式の飽和脂肪族複素環基は、ジオキシド体であってもよい。 The polycyclic aliphatic heterocyclic group is, for example, a condensed polycyclic aliphatic heterocyclic group. The condensed polycyclic aliphatic heterocyclic group is, for example, a condensed polycyclic saturated aliphatic heterocyclic ring. The condensed polycyclic saturated aliphatic heterocyclic ring is a condensed polycyclic aliphatic heterocyclic group in which the ring is composed of only saturated bonds. In one embodiment, the fused polycyclic saturated aliphatic heterocyclic group contains 1-3 oxygen atoms. In another embodiment, the fused polycyclic saturated aliphatic heterocyclic group contains 1-3 sulfur atoms. In another embodiment, the fused polycyclic saturated aliphatic heterocyclic group contains 1-3 oxygen atoms and 1-3 sulfur atoms. In another embodiment, the fused polycyclic saturated aliphatic heterocyclic group contains 1-5 nitrogen atoms. In another embodiment, the fused polycyclic saturated aliphatic heterocyclic group contains 1 to 4 nitrogen atoms and 1 to 3 sulfur atoms and/or 1 to 3 oxygen atoms. In the fused polycyclic saturated aliphatic heterocyclic group, two carbon atoms constituting the ring may be bridged with an alkylene group. In the fused polycyclic saturated aliphatic heterocyclic group, two adjacent carbon atoms among the carbon atoms constituting the ring may form a double bond. In the fused polycyclic saturated aliphatic heterocyclic group, two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group. The number of oxo groups that the fused polycyclic aliphatic heterocyclic group may have is preferably 1, 2 or 3. When the heteroatom contained in the condensed polycyclic saturated aliphatic heterocyclic group is a sulfur atom, the condensed polycyclic saturated aliphatic heterocyclic group may be a dioxide.
 縮合多環式の脂肪族複素環基としては、例えば、オクタヒドロ-1H-イソインドリル基、デカヒドロキノリル基、デカヒドロイソキノリル基、ヘキサヒドロ-2H-[1,4]ジオキシノ[2,3-c]ピロリル基、3-アザビシクロ[3.1.0]ヘキサ-3-イル基等が挙げられる。 Examples of the condensed polycyclic aliphatic heterocyclic group include octahydro-1H-isoindolyl group, decahydroquinolyl group, decahydroisoquinolyl group, hexahydro-2H-[1,4]dioxino[2,3-c ] Pyrrolyl group, 3-azabicyclo[3.1.0]hex-3-yl group and the like.
 脂肪族複素環基には、スピロ環式複素環基も包含される。スピロ環式複素環基は、2個の環が1個のスピロ炭素原子を共有して形成された複素環基である。2個の環の組み合わせとしては、例えば、単環式の脂肪族複素環基と単環式の脂肪族炭化水素環基(例えば、シクロアルキル基、シクロアルケニル基等)との組み合わせ、単環式の脂肪族複素環基と単環式の脂肪族複素環基との組み合わせ等が挙げられる。スピロ環式複素環基において、環を構成する炭素原子のうち隣接する2個の炭素原子が二重結合を形成していてもよい。スピロ環式複素環基において、同一炭素原子に結合する2個の水素原子が、オキソ基で置換されていてもよい。スピロ環式複素環基が有し得るオキソ基の数は、好ましくは1、2又は3個である。スピロ環式複素環基に含まれるヘテロ原子が硫黄原子である場合、スピロ環式複素環基は、ジオキシド体であってもよい。 The aliphatic heterocyclic group also includes a spiro cyclic heterocyclic group. A spirocyclic heterocyclic group is a heterocyclic group formed by two rings sharing one spiro carbon atom. Examples of the combination of two rings include a combination of a monocyclic aliphatic heterocyclic group and a monocyclic aliphatic hydrocarbon ring group (eg, cycloalkyl group, cycloalkenyl group, etc.), monocyclic And the like, and a combination of the aliphatic heterocyclic group and the monocyclic aliphatic heterocyclic group. In the spiro cyclic heterocyclic group, two adjacent carbon atoms of the ring-constituting carbon atoms may form a double bond. In the spiro cyclic heterocyclic group, two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group. The number of oxo groups that the spirocyclic heterocyclic group may have is preferably 1, 2 or 3. When the heteroatom contained in the spiro cyclic heterocyclic group is a sulfur atom, the spiro cyclic heterocyclic group may be in a dioxide form.
 スピロ環式複素環基としては、例えば、2-オキサ-6-アザスピロ[3.3]ヘプタニル基、1-オキサ-6-アザスピロ[3.3]ヘプタニル基、6-オキサ-1-アザスピロ[3.3]ヘプタニル基、1-オキソ-2,8-ジアザスピロ[4.5]デカニル基、1,4-ジオキサ-8-アザスピロ[4.5]デカニル基、2-アザスピロ[3.3]ヘプチル基、7-オキサ-2-アザスピロ[3.5]ノニル基、5,8-オキサ-2-アザスピロ[3.4]オクチル基、1,4-ジオキサ-8-アザスピロ[4.5]デカニル基、1-オキサスピロ[4.5]デカニル基等が挙げられる。 Examples of the spiro cyclic heterocyclic group include, for example, 2-oxa-6-azaspiro[3.3]heptanyl group, 1-oxa-6-azaspiro[3.3]heptanyl group, 6-oxa-1-azaspiro[3 .3]heptanyl group, 1-oxo-2,8-diazaspiro[4.5]decanyl group, 1,4-dioxa-8-azaspiro[4.5]decanyl group, 2-azaspiro[3.3]heptyl group , 7-oxa-2-azaspiro[3.5]nonyl group, 5,8-oxa-2-azaspiro[3.4]octyl group, 1,4-dioxa-8-azaspiro[4.5]decanyl group, Examples thereof include a 1-oxaspiro[4.5]decanyl group.
 「芳香族複素環基」は、環構成原子として、炭素原子に加えて、酸素原子、硫黄原子及び窒素原子からなる群から独立して選択される1個以上のヘテロ原子を含む単環式又は多環式の芳香族複素環から水素原子を除去することにより生成される官能基を意味する。「芳香族複素環基」は、文脈に応じて、1価又は2価の官能基を意味し得る。以下、1価の芳香族複素環基を「-芳香族複素環基」、2価の芳香族複素環基を「-芳香族複素環基-」と表す場合がある。1価の芳香族複素環基は「ヘテロアリール基」と同義であり、2価の芳香族複素環基は「ヘテロアリーレン基」と同義である。 The "aromatic heterocyclic group" is, as a ring-constituting atom, a monocyclic group containing, in addition to a carbon atom, one or more heteroatoms independently selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom, or It means a functional group formed by removing a hydrogen atom from a polycyclic aromatic heterocycle. The "aromatic heterocyclic group" may mean a monovalent or divalent functional group depending on the context. Hereinafter, the monovalent aromatic heterocyclic group may be referred to as "-aromatic heterocyclic group" and the divalent aromatic heterocyclic group may be referred to as "-aromatic heterocyclic group-". The monovalent aromatic heterocyclic group has the same meaning as the “heteroaryl group”, and the divalent aromatic heterocyclic group has the same meaning as the “heteroarylene group”.
 芳香族複素環基としては、例えば、単環式又は多環式の芳香族複素環基が挙げられる。芳香族複素環基は、通常1~4環式、好ましくは1~3環式、より好ましくは1又は2環式である。芳香族複素環基に含まれるヘテロ原子の数は、通常1~4個、好ましくは1~3個、より一層好ましくは1又は2個である。芳香族複素環基の員数は、好ましくは5~14員、より好ましくは5~10員である。芳香族複素環基における環構成炭素原子の数は、ヘテロ原子数及び員数に応じて適宜決定される。芳香族複素環基における環構成炭素原子の数は、通常3~12個、好ましくは3~8個、より一層好ましくは3~5個である。芳香族複素環基において、同一炭素原子に結合する2個の水素原子が、オキソ基で置換されていてもよい。一実施形態において、芳香族複素環基は、5~7員の単環式の芳香族複素環基である。別の実施形態において、芳香族複素環基は、8~14員の2環式又は3環式の芳香族複素環基である。 Examples of the aromatic heterocyclic group include a monocyclic or polycyclic aromatic heterocyclic group. The aromatic heterocyclic group is usually 1 to 4 ring type, preferably 1 to 3 ring type, and more preferably 1 or 2 ring type. The number of heteroatoms contained in the aromatic heterocyclic group is usually 1 to 4, preferably 1 to 3, and more preferably 1 or 2. The number of members of the aromatic heterocyclic group is preferably 5 to 14 members, more preferably 5 to 10 members. The number of ring-constituting carbon atoms in the aromatic heterocyclic group is appropriately determined according to the number of heteroatoms and the number of members. The number of ring-constituting carbon atoms in the aromatic heterocyclic group is usually 3 to 12, preferably 3 to 8, and even more preferably 3 to 5. In the aromatic heterocyclic group, two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group. In one embodiment, the aromatic heterocyclic group is a 5-7 membered monocyclic aromatic heterocyclic group. In another embodiment, the aromatic heterocyclic group is an 8-14 membered bicyclic or tricyclic aromatic heterocyclic group.
 芳香族複素環基は、例えば、単環式の芳香族複素環基である。一実施形態において、単環式の芳香族複素環基は、1~2個の酸素原子を含む。別の実施形態において、単環式の芳香族複素環基は、1~2個の硫黄原子を含む。別の実施形態において、単環式の芳香族複素環基は、1~2個の酸素原子及び1~2個の硫黄原子を含む。別の実施形態において、単環式の芳香族複素環基は、1~4個の窒素原子を含む。別の実施形態において、単環式の芳香族複素環基は、1~3個の窒素原子と、1~2個の硫黄原子及び/又は1~2個の酸素原子とを含む。 The aromatic heterocyclic group is, for example, a monocyclic aromatic heterocyclic group. In one embodiment, the monocyclic aromatic heterocyclic group contains 1-2 oxygen atoms. In another embodiment, the monocyclic aromatic heterocyclic group contains 1-2 sulfur atoms. In another embodiment, the monocyclic aromatic heterocyclic group contains 1-2 oxygen atoms and 1-2 sulfur atoms. In another embodiment, a monocyclic aromatic heterocyclic group contains 1 to 4 nitrogen atoms. In another embodiment, the monocyclic aromatic heterocyclic group contains 1-3 nitrogen atoms, 1-2 sulfur atoms and/or 1-2 oxygen atoms.
 単環式の芳香族複素環基としては、例えば、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、チエニル基、ピロリル基、チアゾリル基、イソチアゾリル基、ピラゾリル基、イミダゾリル基、フリル基、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基(例えば、1,2,4-オキサジアゾリル基、1,3,4-オキサジアゾリル基等)、チアジアゾリル基(例えば、1,2,4-チアジアゾリル基、1,3,4-チアジアゾリル基等)、トリアゾリル基(例えば、1,2,3-トリアゾリル基、1,2,4-トリアゾリル基等)、テトラゾリル基、トリアジニル基等の5~7員の単環式の芳香族複素環基が挙げられる。単環式の芳香族複素環基において、同一炭素原子に結合する2個の水素原子が、オキソ基で置換されていてもよい。単環式の芳香族複素環基が有し得るオキソ基の数は、好ましくは1又は2個である。 Examples of the monocyclic aromatic heterocyclic group include a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a thienyl group, a pyrrolyl group, a thiazolyl group, an isothiazolyl group, a pyrazolyl group, an imidazolyl group, a furyl group, an oxazolyl group, Isoxazolyl group, oxadiazolyl group (eg, 1,2,4-oxadiazolyl group, 1,3,4-oxadiazolyl group, etc.), thiadiazolyl group (eg, 1,2,4-thiadiazolyl group, 1,3,4-thiadiazolyl group) Etc.), a triazolyl group (eg, 1,2,3-triazolyl group, 1,2,4-triazolyl group, etc.), a tetrazolyl group, a triazinyl group, and other 5- to 7-membered monocyclic aromatic heterocyclic groups Can be mentioned. In the monocyclic aromatic heterocyclic group, two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group. The number of oxo groups which the monocyclic aromatic heterocyclic group may have is preferably 1 or 2.
 芳香族複素環基は、例えば、多環式の芳香族複素環基である。多環式の芳香族複素環基は、例えば、縮合多環式の芳香族複素環基である。一実施形態において、縮合多環式の芳香族複素環基は、1~3個の酸素原子を含む。別の実施形態において、縮合多環式の芳香族複素環基は、1~3個の硫黄原子を含む。別の実施形態において、縮合多環式の芳香族複素環基は、1~3個の酸素原子及び1~3個の硫黄原子を含む。別の実施形態において、縮合多環式の芳香族複素環基は、1~5個の窒素原子を含む。別の実施形態において、縮合多環式の芳香族複素環基は、1~4個の窒素原子と、1~3個の硫黄原子及び/又は1~3個の酸素原子とを含む。 The aromatic heterocyclic group is, for example, a polycyclic aromatic heterocyclic group. The polycyclic aromatic heterocyclic group is, for example, a condensed polycyclic aromatic heterocyclic group. In one embodiment, the fused polycyclic aromatic heterocyclic group contains 1-3 oxygen atoms. In another embodiment, the fused polycyclic aromatic heterocyclic group contains 1-3 sulfur atoms. In another embodiment, the fused polycyclic aromatic heterocyclic group contains 1-3 oxygen atoms and 1-3 sulfur atoms. In another embodiment, the fused polycyclic aromatic heterocyclic group contains 1-5 nitrogen atoms. In another embodiment, the fused polycyclic aromatic heterocyclic group contains 1 to 4 nitrogen atoms and 1 to 3 sulfur atoms and/or 1 to 3 oxygen atoms.
 縮合多環式の芳香族複素環基としては、例えば、ベンゾチオフェニル基、ベンゾフラニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、ベンゾチアゾリル基、ベンゾイソチアゾリル基、ベンゾトリアゾリル基、イミダゾピリジニル基、チエノピリジニル基、フロピリジニル基、ピロロピリジニル基、ピラゾロピリジニル基、オキサゾロピリジニル基、チアゾロピリジニル基、イミダゾピラジニル基、イミダゾピリミジニル基、チエノピリミジニル基、フロピリミジニル基、ピロロピリミジニル基、ピラゾロピリミジニル基、オキサゾロピリミジニル基、チアゾロピリミジニル基、ピラゾロトリアジニル基、ナフト[2,3-b]チエニル基、フェノキサチイニル基、インドリル基、イソインドリル基、1H-インダゾリル基、プリニル基、イソキノリル基、キノリル基、フタラジニル基、ナフチリジニル基、キノキサリニル基、キナゾリニル基、シンノリニル基、カルバゾリル基、β-カルボリニル基、フェナントリジニル基、アクリジニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基等の8~14員の縮合多環式(好ましくは2環式又は3環式)の芳香族複素環基等が挙げられる。多環式の芳香族複素環基において、同一炭素原子に結合する2個の水素原子が、オキソ基で置換されていてもよい。多環式の芳香族複素環基が有し得るオキソ基の数は、好ましくは1、2又は3個である。 Examples of the condensed polycyclic aromatic heterocyclic group include a benzothiophenyl group, a benzofuranyl group, a benzimidazolyl group, a benzoxazolyl group, a benzisoxazolyl group, a benzothiazolyl group, a benzoisothiazolyl group, and benzotria. Zolyl group, imidazopyridinyl group, thienopyridinyl group, furopyridinyl group, pyrrolopyridinyl group, pyrazolopyridinyl group, oxazolopyridinyl group, thiazolopyridinyl group, imidazopyrazinyl group, imidazopyrimidinyl group, Thienopyrimidinyl group, furopyrimidinyl group, pyrrolopyrimidinyl group, pyrazolopyrimidinyl group, oxazolopyrimidinyl group, thiazolopyrimidinyl group, pyrazolotriazinyl group, naphtho[2,3-b]thienyl group, phenoxathiynyl group , Indolyl group, isoindolyl group, 1H-indazolyl group, purinyl group, isoquinolyl group, quinolyl group, phthalazinyl group, naphthyridinyl group, quinoxalinyl group, quinazolinyl group, cinnolinyl group, carbazolyl group, β-carbolinyl group, phenanthridinyl group, Examples thereof include an 8- to 14-membered condensed polycyclic (preferably bicyclic or tricyclic) aromatic heterocyclic group such as an acridinyl group, a phenazinyl group, a phenothiazinyl group and a phenoxazinyl group. In the polycyclic aromatic heterocyclic group, two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group. The number of oxo groups which the polycyclic aromatic heterocyclic group may have is preferably 1, 2 or 3.
 芳香族複素環基には、部分的に飽和された単環(例えば、単環式の芳香族炭化水素環基、単環式の芳香族複素環基等)を有する縮合多環式の芳香族複素環基(例えば、芳香族環に脂肪族複素環が縮合した環式基等)も包含される。部分的に飽和された単環を有する縮合多環式の芳香族複素環基は、環を構成する結合の一部が水素化された単環を有する縮合多環式の芳香族複素環基である。部分的に飽和された単環を有する縮合多環式の芳香族複素環基としては、例えば、ジヒドロベンゾフラニル基、ジヒドロベンゾイミダゾリル基、ジヒドロベンゾオキサゾリル基、ジヒドロベンゾチアゾリル基、ジヒドロベンゾイソチアゾリル基、ジヒドロナフト[2,3-b]チエニル基、テトラヒドロイソキノリル基、テトラヒドロキノリル基、4H-キノリジニル基、インドリニル基、イソインドリニル基、テトラヒドロチエノ[2,3-c]ピリジニル基、テトラヒドロベンゾアゼピニル基、テトラヒドロキノキサリニル基、テトラヒドロフェナントリジニル基、ヘキサヒドロフェノチアジニル基、ヘキサヒドロフェノキサジニル基、テトラヒドロフタラジニル基、テトラヒドロナフチリジニル基、テトラヒドロキナゾリニル基、テトラヒドロシンノリニル基、テトラヒドロカルバゾリル基、テトラヒドロ-β-カルボリニル基、テトラヒドロアクリジニル基、テトラヒドロフェナジニル基、テトラヒドロチオキサンテニル基、オクタヒドロイソキノリル基等の9~14員の縮合多環式(好ましくは2環式又は3環式)の芳香族複素環基等が挙げられる。部分的に飽和された単環を有する縮合多環式の芳香族複素環基において、同一炭素原子に結合する2個の水素原子が、オキソ基で置換されていてもよい。部分的に飽和された単環を有する縮合多環式の芳香族複素環基が有し得るオキソ基の数は、好ましくは1、2又は3個である。 The aromatic heterocyclic group is a fused polycyclic aromatic group having a partially saturated monocycle (eg, a monocyclic aromatic hydrocarbon ring group, a monocyclic aromatic heterocyclic group, etc.) A heterocyclic group (for example, a cyclic group in which an aliphatic heterocycle is condensed with an aromatic ring) is also included. A fused polycyclic aromatic heterocyclic group having a partially saturated monocycle is a fused polycyclic aromatic heterocyclic group having a monocycle in which some of the bonds constituting the ring are hydrogenated. is there. Examples of the fused polycyclic aromatic heterocyclic group having a partially saturated monocycle include dihydrobenzofuranyl group, dihydrobenzimidazolyl group, dihydrobenzoxazolyl group, dihydrobenzothiazolyl group, dihydro Benzisothiazolyl group, dihydronaphtho[2,3-b]thienyl group, tetrahydroisoquinolyl group, tetrahydroquinolyl group, 4H-quinolizinyl group, indolinyl group, isoindolinyl group, tetrahydrothieno[2,3-c]pyridinyl group Group, tetrahydrobenzazepinyl group, tetrahydroquinoxalinyl group, tetrahydrophenanthridinyl group, hexahydrophenothiazinyl group, hexahydrophenoxazinyl group, tetrahydrophthalazinyl group, tetrahydronaphthyridinyl group, tetrahydroquina 9 such as zolinyl group, tetrahydrocinnolinyl group, tetrahydrocarbazolyl group, tetrahydro-β-carbolinyl group, tetrahydroacridinyl group, tetrahydrophenazinyl group, tetrahydrothioxanthenyl group, octahydroisoquinolyl group Examples thereof include condensed polycyclic (preferably bicyclic or tricyclic) aromatic heterocyclic groups having 14 to 14 members. In a fused polycyclic aromatic heterocyclic group having a partially saturated monocycle, two hydrogen atoms bonded to the same carbon atom may be substituted with an oxo group. The number of oxo groups that the fused polycyclic aromatic heterocyclic group having a partially saturated monocycle may have is 1, 2 or 3.
 芳香族複素環基には、部分的に飽和された縮合多環式の芳香族複素環基も包含される。部分的に飽和された縮合多環式の芳香族複素環基は、環を構成する結合の一部が水素化された単環を有する縮合多環式の芳香族複素環基である。部分的に飽和された縮合多環式の芳香族複素環基としては、例えば、1,3-ジヒドロベンゾイミダゾール-2-オニル基、2-ベンゾオキサゾリノニル基、オクタヒドロイソインドリル基、2H-ピリド[3,2-b]-1,4-オキサジン-3(4H)-オン-イル基、3-オキソ-3,4-ジヒドロ-2H-ピリド[3,2-b][1,4]オキサジン-6-イル基、[1,3]ジオキソロ[4,5-b]ピリジル基、2,3-ジヒドロベンゾ[b]チエニル基、2,3-ジヒドロ-1-ベンゾフラン-5-イル基、2,3-ジヒドロ-1-ベンゾフラン-6-イル基、1,3-ジヒドロ-2-ベンゾフラン-5-イル基、2,3-ジヒドロ-1H-インドール-5-イル基、1,3-ベンゾジオキソール-5-イル基、2,3-ジヒドロ-1,4-ベンゾジオキシン-2-イル基、2,3-ジヒドロ-1,4-ベンゾジオキシン-6-イル基、3-オキソ-3,4-ジヒドロ-2H-1,4-ベンゾオキサジン-6-イル基、1,4-ベンゾジオキサニル基、2H-ベンゾ[b][1,4]オキサジン-3(4H)-オン-イル基、3,4-ジヒドロ-2H-ベンゾ[b][1,4]ジオキセピニル基、インドリニル基、2H-イソインドリニル基、クロマニル基、クロモニル基、イソクロマニル基、1,2,3,4-テトラヒドロイソキノリル基等が挙げられる。 The aromatic heterocyclic group also includes a partially saturated fused polycyclic aromatic heterocyclic group. The partially saturated fused polycyclic aromatic heterocyclic group is a fused polycyclic aromatic heterocyclic group having a monocycle in which some of the bonds constituting the ring are hydrogenated. Examples of the partially saturated fused polycyclic aromatic heterocyclic group include, for example, 1,3-dihydrobenzimidazole-2-onyl group, 2-benzoxazolinonyl group, octahydroisoindolyl group, 2H -Pyrido[3,2-b]-1,4-oxazin-3(4H)-on-yl group, 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4 ] Oxazin-6-yl group, [1,3]dioxolo[4,5-b]pyridyl group, 2,3-dihydrobenzo[b]thienyl group, 2,3-dihydro-1-benzofuran-5-yl group 2,3-dihydro-1-benzofuran-6-yl group, 1,3-dihydro-2-benzofuran-5-yl group, 2,3-dihydro-1H-indol-5-yl group, 1,3- Benzodioxol-5-yl group, 2,3-dihydro-1,4-benzodioxin-2-yl group, 2,3-dihydro-1,4-benzodioxin-6-yl group, 3-oxo- 3,4-dihydro-2H-1,4-benzoxazin-6-yl group, 1,4-benzodioxanyl group, 2H-benzo[b][1,4]oxazin-3(4H)-one- Group, 3,4-dihydro-2H-benzo[b][1,4]dioxepinyl group, indolinyl group, 2H-isoindolinyl group, chromanyl group, chromonyl group, isochromanyl group, 1,2,3,4-tetrahydroiso Examples thereof include a quinolyl group.
 2価の芳香族複素環基は、1価の芳香族複素環基から1個の水素原子を除去することにより生成される2価の官能基を意味する。1価の芳香族複素環基に関する説明は、上記と同様である。 The divalent aromatic heterocyclic group means a divalent functional group produced by removing one hydrogen atom from the monovalent aromatic heterocyclic group. The description regarding the monovalent aromatic heterocyclic group is the same as above.
 脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される2種以上を組み合わせて形成される官能基としては、例えば、脂肪族炭化水素基及び芳香族炭化水素環基を組み合わせて形成される官能基、脂肪族炭化水素基及び脂肪族複素環基を組み合わせて形成される官能基、脂肪族炭化水素基及び芳香族複素環基を組み合わせて形成される官能基等が挙げられる。 Examples of the functional group formed by combining two or more kinds selected from an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group include, for example, an aliphatic hydrocarbon group and Functional group formed by combining an aromatic hydrocarbon ring group, functional group formed by combining an aliphatic hydrocarbon group and an aliphatic heterocyclic group, formed by combining an aliphatic hydrocarbon group and an aromatic heterocyclic group And functional groups to be mentioned.
 脂肪族炭化水素基及び芳香族炭化水素環基を組み合わせて形成される官能基は、式:(*)-脂肪族炭化水素基-芳香族炭化水素環基、又は、式:(*)-芳香族炭化水素環基-脂肪族炭化水素基で表される。(*)は、脂肪族炭化水素基及び芳香族炭化水素環基を組み合わせて形成される官能基を含む有機基の結合手を表す。式中の脂肪族炭化水素基及び芳香族炭化水素環基は各々、1個以上の置換基を有していてもよい。式中の脂肪族炭化水素基は、例えば、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。式中の芳香族炭化水素環基は、例えば、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。置換基として選択される脂肪族炭化水素基は、例えば、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。置換基として選択される芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基は各々、例えば、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。 The functional group formed by combining the aliphatic hydrocarbon group and the aromatic hydrocarbon ring group is represented by the formula: (*)-aliphatic hydrocarbon group-aromatic hydrocarbon ring group, or the formula: (*)-aromatic It is represented by an aromatic hydrocarbon ring group-aliphatic hydrocarbon group. (*) represents a bond of an organic group containing a functional group formed by combining an aliphatic hydrocarbon group and an aromatic hydrocarbon ring group. Each of the aliphatic hydrocarbon group and the aromatic hydrocarbon ring group in the formula may have one or more substituents. The aliphatic hydrocarbon group in the formula may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. The aromatic hydrocarbon ring group in the formula has, for example, one or more substituents selected from an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. May be The aliphatic hydrocarbon group selected as a substituent may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. .. The aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group selected as the substituent are, for example, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic group, respectively. It may have one or more substituents selected from a heterocyclic group.
 式:(*)-芳香族炭化水素環基-脂肪族炭化水素基で表される官能基としては、例えば、アルキルアリール基、アルケニルアリール基、アルキニルアリール基等が挙げられる。「アルキルアリール基」、「アルケニルアリール基」及び「アルキニルアリール基」におけるアルキル基、アルケニル基、アルキニル基及びアリール基に関する説明は、上記と同様である。 Examples of the functional group represented by the formula: (*)-aromatic hydrocarbon ring group-aliphatic hydrocarbon group include an alkylaryl group, an alkenylaryl group, an alkynylaryl group, and the like. The description of the alkyl group, alkenyl group, alkynyl group and aryl group in the “alkylaryl group”, “alkenylaryl group” and “alkynylaryl group” is the same as above.
 アルキルアリール基におけるアルキル基の数、アルケニルアリール基におけるアルケニル基の数及びアルキニルアリール基におけるアルキニル基の数は、通常1~4個、好ましくは1~3個、より好ましくは1~2個である。アルキルアリール基の炭素数は、通常7~30個、好ましくは7~20個、より好ましくは7~18個、より一層好ましくは7~15個、より一層好ましくは7~11個である。アルケニルアリール基の炭素数及びアルキニルアリール基の炭素数は、通常8~30個、好ましくは8~20個、より好ましくは8~18個、より一層好ましくは8~16個、より一層好ましくは8~12個である。アルキルアリール基としては、例えば、o-トルイル、m-トルイル、p-トルイル、2,3-ジメチルフェニル、2,4-ジメチルフェニル、2,5-ジメチルフェニル、2,6-ジメチルフェニル、3,4-ジメチルフェニル、3,5-ジメチルフェニル、2,4,6-トリメチルフェニル、o-エチルフェニル、m-エチルフェニル、p-エチルフェニル等が挙げられる。アルケニルアリール基としては、例えば、o-スチリル,m-スチリル,p-スチリル等のアルケニルアリール基が挙げられる。アルキニルアリール基としては、例えば、2-エチニル-2-フェニル等のアルキニルアリール基等が挙げられる。 The number of alkyl groups in the alkylaryl group, the number of alkenyl groups in the alkenylaryl group, and the number of alkynyl groups in the alkynylaryl group are usually 1 to 4, preferably 1 to 3, and more preferably 1 to 2. .. The number of carbon atoms of the alkylaryl group is usually 7 to 30, preferably 7 to 20, more preferably 7 to 18, even more preferably 7 to 15, and even more preferably 7 to 11. The number of carbon atoms of the alkenylaryl group and the number of carbon atoms of the alkynylaryl group are generally 8 to 30, preferably 8 to 20, more preferably 8 to 18, even more preferably 8 to 16, and even more preferably 8. It is up to 12. Examples of the alkylaryl group include o-toluyl, m-toluyl, p-toluyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3, 4-dimethylphenyl, 3,5-dimethylphenyl, 2,4,6-trimethylphenyl, o-ethylphenyl, m-ethylphenyl, p-ethylphenyl and the like can be mentioned. Examples of the alkenylaryl group include alkenylaryl groups such as o-styryl, m-styryl, p-styryl and the like. Examples of the alkynylaryl group include alkynylaryl groups such as 2-ethynyl-2-phenyl.
 式:(*)-脂肪族炭化水素基-芳香族炭化水素環基で表される官能基としては、例えば、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等が挙げられる。「アリールアルキル基」、「アリールアルケニル基」及び「アリールアルキニル基」におけるアルキル基、アルケニル基、アルキニル基及びアリール基に関する説明は、上記と同様である。 Examples of the functional group represented by the formula: (*)-aliphatic hydrocarbon group-aromatic hydrocarbon ring group include arylalkyl groups, arylalkenyl groups, arylalkynyl groups, and the like. The description of the alkyl group, alkenyl group, alkynyl group and aryl group in the “arylalkyl group”, “arylalkenyl group” and “arylalkynyl group” is the same as above.
 アリールアルキル基の炭素数は、通常7~30個、好ましくは7~20個、より好ましくは7~18個、より一層好ましくは7~15個、より一層好ましくは7~11個である。アリールアルキル基としては、例えば、ベンジル基、2-フェネチル基等が挙げられる。アリールアルケニル基の炭素数は、通常8~30個、好ましくは8~20個、より好ましくは8~18個、より一層好ましくは8~16個、より一層好ましくは8~12個である。アリールアルケニル基としては、例えば、2-フェネテニル基、2-ネフチルエテニル基等が挙げられる。アリールアルキニル基の炭素数は、通常8~30個、好ましくは8~20個、より好ましくは8~18個、より一層好ましくは8~16個、より一層好ましくは8~12個である。アリールアルキニル基としては、例えば、フェニルエチニル基等が挙げられる。 The carbon number of the arylalkyl group is usually 7 to 30, preferably 7 to 20, more preferably 7 to 18, even more preferably 7 to 15, and even more preferably 7 to 11. Examples of the arylalkyl group include a benzyl group and a 2-phenethyl group. The carbon number of the arylalkenyl group is usually 8 to 30, preferably 8 to 20, more preferably 8 to 18, even more preferably 8 to 16, and even more preferably 8 to 12. Examples of the arylalkenyl group include a 2-phenethenyl group and a 2-nephtylethenyl group. The carbon number of the arylalkynyl group is usually 8 to 30, preferably 8 to 20, more preferably 8 to 18, even more preferably 8 to 16, and even more preferably 8 to 12. Examples of the arylalkynyl group include a phenylethynyl group and the like.
 脂肪族炭化水素基及び脂肪族複素環基を組み合わせて形成される官能基は、式:(*)-脂肪族炭化水素基-脂肪族複素環基、又は、式:(*)-脂肪族複素環基-脂肪族炭化水素基で表される。(*)は、脂肪族炭化水素基及び脂肪族複素環基を組み合わせて形成される官能基を含む有機基の結合手を表す。式中の脂肪族炭化水素基及び脂肪族複素環基は各々、1個以上の置換基を有していてもよい。式中の脂肪族炭化水素基は、例えば、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。式中の脂肪族複素環基は、例えば、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。置換基として選択される脂肪族炭化水素基は、例えば、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。置換基として選択される芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基は各々、例えば、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。 The functional group formed by combining the aliphatic hydrocarbon group and the aliphatic heterocyclic group is represented by the formula: (*)-aliphatic hydrocarbon group-aliphatic heterocyclic group, or the formula: (*)-aliphatic heterocyclic group. It is represented by a ring group-aliphatic hydrocarbon group. (*) represents a bond of an organic group containing a functional group formed by combining an aliphatic hydrocarbon group and an aliphatic heterocyclic group. Each of the aliphatic hydrocarbon group and the aliphatic heterocyclic group in the formula may have one or more substituents. The aliphatic hydrocarbon group in the formula may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. The aliphatic heterocyclic group in the formula has, for example, one or more substituents selected from an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. May be. The aliphatic hydrocarbon group selected as a substituent may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. .. The aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group selected as the substituent are, for example, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic group, respectively. It may have one or more substituents selected from a heterocyclic group.
 式:(*)-脂肪族複素環基-脂肪族炭化水素基で表される官能基としては、例えば、アルキル脂肪族複素環基、アルケニル脂肪族複素環基、アルキニル脂肪族複素環基等が挙げられる。「アルキル脂肪族複素環基」、「アルケニル脂肪族複素環基」及び「アルキニル脂肪族複素環基」におけるアルキル基、アルケニル基、アルキニル基及び脂肪族複素環基に関する説明は、上記と同様である。 Examples of the functional group represented by the formula: (*)-aliphatic heterocyclic group-aliphatic hydrocarbon group include alkylaliphatic heterocyclic groups, alkenylaliphatic heterocyclic groups, alkynylaliphatic heterocyclic groups and the like. Can be mentioned. The description of the alkyl group, alkenyl group, alkynyl group and aliphatic heterocyclic group in the “alkyl aliphatic heterocyclic group”, “alkenyl aliphatic heterocyclic group” and “alkynyl aliphatic heterocyclic group” is the same as above. ..
 式:(*)-脂肪族炭化水素基-脂肪族複素環基で表される官能基としては、例えば、脂肪族複素環アルキル基、脂肪族複素環アルケニル基、脂肪族複素環アルキニル基等が挙げられる。「脂肪族複素環アルキル基」、「脂肪族複素環アルケニル基」及び「脂肪族複素環アルキニル基」におけるアルキル基、アルケニル基、アルキニル基及び脂肪族複素環基に関する説明は、上記と同様である。 Examples of the functional group represented by the formula: (*)-aliphatic hydrocarbon group-aliphatic heterocyclic group include an aliphatic heterocyclic alkyl group, an aliphatic heterocyclic alkenyl group, an aliphatic heterocyclic alkynyl group and the like. Can be mentioned. The description of the alkyl group, alkenyl group, alkynyl group and aliphatic heterocyclic group in the "aliphatic heterocyclic alkyl group", "aliphatic heterocyclic alkenyl group" and "aliphatic heterocyclic alkynyl group" is the same as above. ..
 脂肪族炭化水素基及び芳香族複素環基を組み合わせて形成される官能基は、式:(*)-脂肪族炭化水素基-芳香族複素環基、又は、式:(*)-芳香族複素環基-脂肪族炭化水素基で表される。(*)は、脂肪族炭化水素基及び芳香族複素環基を組み合わせて形成される官能基を含む有機基の結合手を表す。式中の脂肪族炭化水素基及び芳香族複素環基は各々、1個以上の置換基を有していてもよい。式中の脂肪族炭化水素基は、例えば、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。式中の芳香族複素環基は、例えば、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。置換基として選択される脂肪族炭化水素基は、例えば、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。置換基として選択される芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基は各々、例えば、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基から選択される1個以上の置換基を有していてもよい。 The functional group formed by combining the aliphatic hydrocarbon group and the aromatic heterocyclic group is represented by the formula: (*)-aliphatic hydrocarbon group-aromatic heterocyclic group, or the formula: (*)-aromatic heterocyclic group. It is represented by a ring group-aliphatic hydrocarbon group. (*) represents a bond of an organic group containing a functional group formed by combining an aliphatic hydrocarbon group and an aromatic heterocyclic group. Each of the aliphatic hydrocarbon group and the aromatic heterocyclic group in the formula may have one or more substituents. The aliphatic hydrocarbon group in the formula may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. The aromatic heterocyclic group in the formula has, for example, one or more substituents selected from an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. May be. The aliphatic hydrocarbon group selected as a substituent may have, for example, one or more substituents selected from an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. .. The aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group selected as the substituent are, for example, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic group, respectively. It may have one or more substituents selected from a heterocyclic group.
 式:(*)-芳香族複素環基-脂肪族炭化水素基で表される官能基としては、例えば、アルキルヘテロアリール基、アルケニルヘテロアリール基、アルキニルヘテロアリール基等が挙げられる。「アルキルヘテロアリール基」、「アルケニルヘテロアリール基」及び「アルキニルヘテロアリール基」におけるアルキル基、アルケニル基、アルキニル基及びヘテロアリール基に関する説明は、上記と同様である。 Examples of the functional group represented by the formula: (*)-aromatic heterocyclic group-aliphatic hydrocarbon group include an alkylheteroaryl group, an alkenylheteroaryl group, an alkynylheteroaryl group, and the like. The description of the alkyl group, alkenyl group, alkynyl group and heteroaryl group in the “alkylheteroaryl group”, “alkenylheteroaryl group” and “alkynylheteroaryl group” is the same as above.
 アルキルヘテロアリール基におけるアルキル基の数、アルケニルヘテロアリール基におけるアルケニル基の数及びアルキニルヘテロアリール基におけるアルキニル基の数は、通常1~4個、好ましくは1~3個、より好ましくは1~2個である。アルキルヘテロアリール基の炭素数は、通常3~30個、好ましくは3~20個、より好ましくは3~18個、より一層好ましくは3~15個、より一層好ましくは3~11個である。アルケニルヘテロアリール基の炭素数及びアルキニルヘテロアリール基の炭素数は、通常4~30個、好ましくは4~20個、より好ましくは4~18個、より一層好ましくは4~15個、より一層好ましくは4~11個である。 The number of alkyl groups in the alkylheteroaryl group, the number of alkenyl groups in the alkenylheteroaryl group, and the number of alkynyl groups in the alkynylheteroaryl group are usually 1 to 4, preferably 1 to 3, and more preferably 1 to 2. It is an individual. The number of carbon atoms of the alkylheteroaryl group is usually 3 to 30, preferably 3 to 20, more preferably 3 to 18, even more preferably 3 to 15, and even more preferably 3 to 11. The number of carbon atoms of the alkenylheteroaryl group and the number of carbon atoms of the alkynylheteroaryl group are usually 4 to 30, preferably 4 to 20, more preferably 4 to 18, even more preferably 4 to 15, and even more preferably Is 4 to 11.
 式:(*)-脂肪族炭化水素基-芳香族複素環基で表される官能基としては、例えば、ヘテロアリールアルキル基、ヘテロアリールアルケニル基、ヘテロアリールアルキニル基等が挙げられる。「ヘテロアリールアルキル基」、「ヘテロアリールアルケニル基」及び「ヘテロアリールアルキニル基」におけるアルキル基、アルケニル基、アルキニル基及びヘテロアリール基に関する説明は、上記と同様である。 Examples of the functional group represented by the formula: (*)-aliphatic hydrocarbon group-aromatic heterocyclic group include a heteroarylalkyl group, a heteroarylalkenyl group, a heteroarylalkynyl group and the like. The description of the alkyl group, alkenyl group, alkynyl group and heteroaryl group in the “heteroarylalkyl group”, “heteroarylalkenyl group” and “heteroarylalkynyl group” is the same as above.
 ヘテロアリールアルキル基の炭素数は、通常3~30個、好ましくは3~20個、より好ましくは3~18個、より一層好ましくは3~15個、より一層好ましくは3~11個である。ヘテロアリールアルキル基としては、例えば、フリルエチル基、チエニルメチル基、ベンソチオフェニルメチル基等が挙げられる。ヘテロアリールアルケニル基の炭素数は、通常4~30個、好ましくは4~20個、より好ましくは4~18個、より一層好ましくは4~15個、より一層好ましくは4~11個である。ヘテロアリールアルケニル基としては、例えば、ピリジルエテニル基、チエニルエテニル基、ベンソチオフェニルエテニル基等が挙げられる。ヘテロアリールアルキニル基の炭素数は、通常4~30個、好ましくは4~20個、より好ましくは4~18個、より一層好ましくは4~15個、より一層好ましくは4~11個である。ヘテロアリールアルキニル基としては、例えば、イミダゾイルエチニル基、チエニルエチニル基、ベンソチオフェニルエチニル基等が挙げられる。 The carbon number of the heteroarylalkyl group is usually 3 to 30, preferably 3 to 20, more preferably 3 to 18, even more preferably 3 to 15, and even more preferably 3 to 11. Examples of the heteroarylalkyl group include a furylethyl group, a thienylmethyl group, a benzothiophenylmethyl group and the like. The carbon number of the heteroarylalkenyl group is usually 4 to 30, preferably 4 to 20, more preferably 4 to 18, even more preferably 4 to 15, and even more preferably 4 to 11. Examples of the heteroarylalkenyl group include a pyridylethenyl group, a thienylethenyl group, a benzothiophenylethenyl group and the like. The carbon number of the heteroarylalkynyl group is usually 4 to 30, preferably 4 to 20, more preferably 4 to 18, even more preferably 4 to 15, and even more preferably 4 to 11. Examples of the heteroarylalkynyl group include an imidazoylethynyl group, a thienylethynyl group, a benzothiophenylethynyl group and the like.
 ある官能基に関して「1個以上の置換基を有していてもよい」という表現は、当該官能基の1個以上の水素原子が、それぞれ独立して、他の原子又は原子団で置き換えられていてもよいことを意味する。「置換されていてもよい」という表現は、「1個以上の置換基を有していてもよい」という表現と同義である。 The expression “which may have one or more substituents” with respect to a functional group means that one or more hydrogen atoms of the functional group are independently replaced with other atoms or atomic groups. Means that you may. The expression "which may be substituted" is synonymous with the expression "which may have one or more substituents".
 脂肪族炭化水素基が有し得る置換基の数は、脂肪族炭化水素基の炭素数等に応じて適宜決定することができる。脂肪族炭化水素基は、置換可能位置に、例えば1~6個、好ましくは1~3個、より好ましくは1又は2個の置換基を有することができる。炭化水素基が2個以上の置換基を有する場合、2個以上の置換基は同一であってもよいし、異なっていてもよい。 The number of substituents that the aliphatic hydrocarbon group can have can be appropriately determined according to the number of carbon atoms in the aliphatic hydrocarbon group. The aliphatic hydrocarbon group can have, for example, 1 to 6, preferably 1 to 3, more preferably 1 or 2 substituents at substitutable positions. When the hydrocarbon group has two or more substituents, the two or more substituents may be the same or different.
 アルキル基の炭素数が1~4個である場合、アルキル基が有し得る置換基の数は、通常1~3個、好ましくは1又は2個、より好ましくは1個である。アルキル基の炭素数が5~9個である場合、アルキル基が有し得る置換基の数は、通常1~6個、好ましくは1~5個、より好ましくは1~4個、より一層好ましくは1又は2個である。アルキル基の炭素数が10個以上である場合、アルキル基が有し得る置換基の数は、通常1~9個、好ましくは1~5個、より一層好ましくは1~4個、より一層好ましくは1又は2個である。 When the alkyl group has 1 to 4 carbon atoms, the number of substituents that the alkyl group may have is usually 1 to 3, preferably 1 or 2, and more preferably 1. When the alkyl group has 5 to 9 carbon atoms, the number of substituents that the alkyl group may have is usually 1 to 6, preferably 1 to 5, more preferably 1 to 4, and even more preferably Is 1 or 2. When the alkyl group has 10 or more carbon atoms, the number of substituents that the alkyl group may have is usually 1 to 9, preferably 1 to 5, more preferably 1 to 4, and even more preferably Is 1 or 2.
 アルケニル基の炭素数が2~4個である場合、アルケニル基が有し得る置換基の数は、通常1~3個、好ましくは1又は2個、より好ましくは1個である。また、アルケニル基の炭素数が5~9個である場合、アルケニル基が有し得る置換基の数は、通常1~5個、好ましくは1~4個、より好ましくは1~3個、より一層好ましくは1又は2個である。また、アルケニル基の炭素数が10個以上である場合、アルケニル基が有し得る置換基の数は、通常1~8個、好ましくは1~4個、より一層好ましくは1~3個、より一層好ましくは1又は2個である。 When the alkenyl group has 2 to 4 carbon atoms, the number of substituents that the alkenyl group may have is usually 1 to 3, preferably 1 or 2, and more preferably 1. When the alkenyl group has 5 to 9 carbon atoms, the number of substituents that the alkenyl group can have is usually 1 to 5, preferably 1 to 4, more preferably 1 to 3, It is more preferably 1 or 2. When the alkenyl group has 10 or more carbon atoms, the number of substituents that the alkenyl group can have is usually 1 to 8, preferably 1 to 4, and more preferably 1 to 3 It is more preferably 1 or 2.
 アルキニル基の炭素数が2~4個である場合、アルキニル基が有し得る置換基の数は、通常1~3個、好ましくは1又は2個、より好ましくは1個である。アルキニル基の炭素数が5~9個である場合は、アルキニル基が有し得る置換基の数は、通常1~5個、好ましくは1~4個、より好ましくは1~3個、より一層好ましくは1又は2個である。アルキニル基の炭素数が10個以上である場合、アルキニル基が有し得る置換基の数は、通常1~8個、好ましくは1~4個、より一層好ましくは1~3個、より一層好ましくは1又は2個である。 When the alkynyl group has 2 to 4 carbon atoms, the number of substituents that the alkynyl group can have is usually 1 to 3, preferably 1 or 2, and more preferably 1. When the alkynyl group has 5 to 9 carbon atoms, the number of substituents that the alkynyl group may have is usually 1 to 5, preferably 1 to 4, more preferably 1 to 3, and even more. It is preferably 1 or 2. When the alkynyl group has 10 or more carbon atoms, the number of substituents that the alkynyl group may have is usually 1 to 8, preferably 1 to 4, more preferably 1 to 3, and even more preferably Is 1 or 2.
 芳香族炭化水素環基が有し得る置換基の数は、芳香族炭化水素環基の炭素数、員数等に応じて適宜決定することができる。芳香族炭化水素環基は、置換可能位置に、例えば1~5個、好ましくは1~4個、より好ましくは1~3個、より一層好ましくは1又は2個の置換基を有することができる。芳香族炭化水素環基が2個以上の置換基を有する場合、2個以上の置換基は同一であってもよいし、異なっていてもよい。 The number of substituents that the aromatic hydrocarbon ring group can have can be appropriately determined according to the number of carbon atoms and the number of members of the aromatic hydrocarbon ring group. The aromatic hydrocarbon ring group can have, for example, 1 to 5, preferably 1 to 4, more preferably 1 to 3 and even more preferably 1 or 2 substituents at substitutable positions. .. When the aromatic hydrocarbon ring group has two or more substituents, the two or more substituents may be the same or different.
 脂肪族複素環基が有し得る置換基の数は、脂肪族複素環基の炭素数、員数等に応じて適宜決定することができる。脂肪族複素環基は、置換可能位置に、例えば1~4個、好ましくは1~3個、より好ましくは1又は2個の置換基を有することができる。脂肪族複素環基が2個以上の置換基を有する場合、2個以上の置換基は同一であってもよいし、異なっていてもよい。 The number of substituents that the aliphatic heterocyclic group can have can be appropriately determined according to the number of carbon atoms and the number of members of the aliphatic heterocyclic group. The aliphatic heterocyclic group can have, for example, 1 to 4, preferably 1 to 3, and more preferably 1 or 2 substituents at substitutable positions. When the aliphatic heterocyclic group has two or more substituents, the two or more substituents may be the same or different.
 芳香族複素環基が有し得る置換基の数は、芳香族複素環基の炭素数、員数等に応じて適宜決定することができる。芳香族複素環基は、置換可能位置に、例えば1~4個、好ましくは1~3個、より好ましくは1又は2個の置換基を有することができる。芳香族複素環基が2個以上の置換基を有する場合、2個以上の置換基は同一であってもよいし、異なっていてもよい。 The number of substituents that the aromatic heterocyclic group can have can be appropriately determined according to the number of carbon atoms and the number of members of the aromatic heterocyclic group. The aromatic heterocyclic group can have, for example, 1 to 4, preferably 1 to 3, and more preferably 1 or 2 substituents at substitutable positions. When the aromatic heterocyclic group has two or more substituents, the two or more substituents may be the same or different.
 アリールアルキル基又はアルキルアリール基の炭素数が7~11個である場合、アリールアルキル基又はアルキルアリール基が有し得る置換基の数は、通常1~5個、好ましくは1~4個、より好ましくは1~2個である。アリールアルキル基又はアルキルアリール基の炭素数が12~15個である場合、アリールアルキル基又はアルキルアリール基が有し得る置換基の数は、通常1~6個、好ましくは1~4個、より好ましくは1~2個である。アリールアルキル基又はアルキルアリール基の炭素数が16個以上である場合、アリールアルキル基又はアルキルアリール基が有し得る置換基の数は、通常1~8個、好ましくは1~6個、より好ましくは1~4個であり、より一層好ましくは1~2個である。 When the arylalkyl group or the alkylaryl group has 7 to 11 carbon atoms, the number of substituents that the arylalkyl group or the alkylaryl group can have is usually 1 to 5, preferably 1 to 4 It is preferably 1 to 2. When the arylalkyl group or the alkylaryl group has 12 to 15 carbon atoms, the number of substituents that the arylalkyl group or the alkylaryl group can have is usually 1 to 6, preferably 1 to 4 It is preferably 1 to 2. When the arylalkyl group or the alkylaryl group has 16 or more carbon atoms, the number of substituents that the arylalkyl group or the alkylaryl group can have is usually 1 to 8, preferably 1 to 6 and more preferably Is 1 to 4, and more preferably 1 to 2.
 アリールアルケニル基又はアルケニルアリール基の炭素数が8~11個である場合、アリールアルケニル基又はアルケニルアリール基が有し得る置換基の数は、通常1~5個、好ましくは1~4個、より好ましくは1~2個である。アリールアルケニル基又はアルケニルアリール基の炭素数が12~15個である場合、アリールアルケニル基又はアルケニルアリール基が有し得る置換基の数は、通常1~6個、好ましくは1~4個、より好ましくは1~2個である。アリールアルケニル基又はアルケニルアリール基の炭素数が16個以上である場合、アリールアルケニル基又はアルケニルアリール基が有し得る置換基の数は、通常1~8個、好ましくは1~6個、より好ましくは1~4個であり、より一層好ましくは1~2個である。 When the arylalkenyl group or the alkenylaryl group has 8 to 11 carbon atoms, the number of substituents that the arylalkenyl group or the alkenylaryl group can have is usually 1 to 5, preferably 1 to 4 It is preferably 1 to 2. When the arylalkenyl group or alkenylaryl group has 12 to 15 carbon atoms, the number of substituents that the arylalkenyl group or alkenylaryl group may have is usually 1 to 6, preferably 1 to 4 It is preferably 1 to 2. When the arylalkenyl group or alkenylaryl group has 16 or more carbon atoms, the number of substituents that the arylalkenyl group or alkenylaryl group can have is usually 1 to 8, preferably 1 to 6 and more preferably Is 1 to 4, and more preferably 1 to 2.
 アリールアルキニル基又はアルキニルアリール基の炭素数が8~11個である場合、アリールアルキニル基又はアルキニルアリール基が有し得る置換基の数は、通常1~5個、好ましくは1~4個、より好ましくは1~2個である。アリールアルキニル基又はアルキニルアリール基の炭素数が12~15個である場合、アリールアルキニル基又はアルキニルアリール基が有し得る置換基の数は、通常1~6個、好ましくは1~4個、より好ましくは1~2個である。アリールアルキニル基又はアルキニルアリール基の炭素数が16個以上である場合、アリールアルキニル基又はアルキニルアリール基が有し得る置換基の数は、通常1~8個、好ましくは1~6個、より好ましくは1~4個であり、より一層好ましくは1~2個である。 When the arylalkynyl group or alkynylaryl group has 8 to 11 carbon atoms, the number of substituents that the arylalkynyl group or alkynylaryl group may have is usually 1 to 5, preferably 1 to 4 It is preferably 1 to 2. When the arylalkynyl group or alkynylaryl group has 12 to 15 carbon atoms, the number of substituents that the arylalkynyl group or alkynylaryl group may have is usually 1 to 6, preferably 1 to 4 It is preferably 1 to 2. When the arylalkynyl group or alkynylaryl group has 16 or more carbon atoms, the number of substituents that the arylalkynyl group or alkynylaryl group can have is usually 1 to 8, preferably 1 to 6 and more preferably Is 1 to 4, and more preferably 1 to 2.
 有機基に含まれる脂肪族炭化水素基(1価及び2価を含む)が有し得る1個以上の置換基、有機基に含まれる芳香族炭化水素環基(1価及び2価を含む)が有し得る1個以上の置換基、有機基に含まれる脂肪族複素環基(1価及び2価を含む)が有し得る1個以上の置換基、及び、有機基に含まれる芳香族複素環基(1価及び2価を含む)が有し得る1個以上の置換基は、それぞれ独立して、以下の置換基群A~Mから選択することができる。 One or more substituents that the aliphatic hydrocarbon group (including monovalent and divalent) contained in the organic group may have, and the aromatic hydrocarbon ring group (including monovalent and divalent) contained in the organic group One or more substituents that can be present, one or more substituents that the aliphatic heterocyclic group (including monovalent and divalent) included in the organic group can have, and an aromatic group included in the organic group The one or more substituents that the heterocyclic group (including monovalent and divalent) may have can be independently selected from the following substituent groups A to M.
[置換基群A]
(A-1)ハロゲン原子
(A-2)ニトロ基
(A-3)シアノ基
(A-4)オキソ基
(A-5)保護されていてもよい水酸基
(A-6)保護されていてもよいチオール基
(A-7)保護されていてもよいアミノ基
(A-8)保護されていてもよいホルミル基
(A-9)保護されていてもよいカルボキシル基
(A-10)保護されていてもよいカルバモイル基
(A-11)保護されていてもよいスルホニル基
[Substituent Group A]
(A-1) Halogen atom (A-2) Nitro group (A-3) Cyano group (A-4) Oxo group (A-5) May be protected Hydroxyl group (A-6) May be protected Good thiol group (A-7) optionally protected amino group (A-8) optionally protected formyl group (A-9) optionally protected carboxyl group (A-10) protected Optionally carbamoyl group (A-11) optionally protected sulfonyl group
[置換基群B]
(B-1)アルキル基
(B-2)アルキルチオ基
(B-3)アルキルオキシ基
(B-4)アルキルカルボニルオキシ基
(B-5)アルキルカルバモイルオキシ基
(B-6)アルキルスルホニルオキシ基
(B-7)アルキルオキシカルボニルオキシ基
(B-8)アルキルカルボニル基
(B-9)アルキルオキシカルボニル基
(B-10)アルキルアミノカルボニル基
(B-11)アルキルカルバモイル基
(B-12)アルキルスルホニル基
(B-13)アルキルスルフィニル基
(B-14)モノ-又はジ-アルキルアミノ基
(B-15)アルキルカルボニルアミノ基
(B-16)アルキルスルホニルアミノ基
(B-17)アルキルオキシカルボニルアミノ基
(B-18)アルキルオキシアルキルオキシ基
[Substituent Group B]
(B-1) Alkyl group (B-2) Alkylthio group (B-3) Alkyloxy group (B-4) Alkylcarbonyloxy group (B-5) Alkylcarbamoyloxy group (B-6) Alkylsulfonyloxy group ( B-7) Alkyloxycarbonyloxy group (B-8) Alkylcarbonyl group (B-9) Alkyloxycarbonyl group (B-10) Alkylaminocarbonyl group (B-11) Alkylcarbamoyl group (B-12) Alkylsulfonyl Group (B-13) alkylsulfinyl group (B-14) mono- or di-alkylamino group (B-15) alkylcarbonylamino group (B-16) alkylsulfonylamino group (B-17) alkyloxycarbonylamino group (B-18) alkyloxyalkyloxy group
[置換基群C]
(C-1)アルケニル基
(C-2)アルケニルチオ基
(C-3)アルケニルオキシ基
(C-4)アルケニルカルボニルオキシ基
(C-5)アルケニルカルバモイルオキシ基
(C-6)アルケニルスルホニルオキシ基
(C-7)アルケニルオキシカルボニルオキシ基
(C-8)アルケニルカルボニル基
(C-9)アルケニルオキシカルボニル基
(C-10)アルケニルアミノカルボニル基
(C-11)アルケニルカルバモイル基
(C-12)アルケニルスルホニル基
(C-13)アルケニルスルフィニル基
(C-14)モノ-又はジ-アルケニルアミノ基
(C-15)アルケニルカルボニルアミノ基
(C-16)アルケニルスルホニルアミノ基
(C-17)アルケニルオキシカルボニルアミノ基
(C-18)アルケニルオキシアルキルオキシ基
[Substituent Group C]
(C-1) alkenyl group (C-2) alkenylthio group (C-3) alkenyloxy group (C-4) alkenylcarbonyloxy group (C-5) alkenylcarbamoyloxy group (C-6) alkenylsulfonyloxy group (C-7) alkenyloxycarbonyloxy group (C-8) alkenylcarbonyl group (C-9) alkenyloxycarbonyl group (C-10) alkenylaminocarbonyl group (C-11) alkenylcarbamoyl group (C-12) alkenyl Sulfonyl group (C-13) alkenylsulfinyl group (C-14) mono- or di-alkenylamino group (C-15) alkenylcarbonylamino group (C-16) alkenylsulfonylamino group (C-17) alkenyloxycarbonylamino Group (C-18) alkenyloxyalkyloxy group
[置換基群D]
(D-1)アルキニル基
(D-2)アルキニルチオ基
(D-3)アルキニルオキシ基
(D-4)アルキニルカルボニルオキシ基
(D-5)アルキニルカルバモイルオキシ基
(D-6)アルキニルスルホニルオキシ基
(D-7)アルキニルオキシカルボニルオキシ基
(D-8)アルキニルカルボニル基
(D-9)アルキニルオキシカルボニル基
(D-10)アルキニルアミノカルボニル基
(D-11)アルキニルカルバモイル基
(D-12)アルキニルスルホニル基
(D-13)アルキニルスルフィニル基
(D-14)モノ-又はジ-アルキニルアミノ基
(D-15)アルキニルカルボニルアミノ基
(D-16)アルキニルスルホニルアミノ基
(D-17)アルキニルオキシカルボニルアミノ基
(D-18)アルキニルオキシアルキルオキシ基
[Substituent Group D]
(D-1) alkynyl group (D-2) alkynylthio group (D-3) alkynyloxy group (D-4) alkynylcarbonyloxy group (D-5) alkynylcarbamoyloxy group (D-6) alkynylsulfonyloxy group (D-7) alkynyloxycarbonyloxy group (D-8) alkynylcarbonyl group (D-9) alkynyloxycarbonyl group (D-10) alkynylaminocarbonyl group (D-11) alkynylcarbamoyl group (D-12) alkynyl Sulfonyl group (D-13) alkynylsulfinyl group (D-14) mono- or di-alkynylamino group (D-15) alkynylcarbonylamino group (D-16) alkynylsulfonylamino group (D-17) alkynyloxycarbonylamino Group (D-18) alkynyloxyalkyloxy group
[置換基群E]
(E-1)アリール基
(E-2)アリールチオ基
(E-3)アリールオキシ基
(E-4)アリールカルボニルオキシ基
(E-5)アリールカルバモイルオキシ基
(E-6)アリールスルホニルオキシ基
(E-7)アリールオキシカルボニルオキシ基
(E-8)アリールカルボニル基
(E-9)アリールオキシカルボニル基
(E-10)アリールアミノカルボニル基
(E-11)アリールカルバモイル基
(E-12)アリールスルホニル基
(E-13)アリールスルフィニル基
(E-14)モノ-又はジ-アリールアミノ基
(E-15)アリールカルボニルアミノ基
(E-16)アリールスルホニルアミノ基
(E-17)アリールオキシカルボニルアミノ基
(E-18)アリールオキシアルキルオキシ基
[Substituent Group E]
(E-1) Aryl group (E-2) Arylthio group (E-3) Aryloxy group (E-4) Arylcarbonyloxy group (E-5) Arylcarbamoyloxy group (E-6) Arylsulfonyloxy group ( E-7) Aryloxycarbonyloxy group (E-8) Arylcarbonyl group (E-9) Aryloxycarbonyl group (E-10) Arylaminocarbonyl group (E-11) Arylcarbamoyl group (E-12) Arylsulfonyl Group (E-13) Arylsulfinyl group (E-14) Mono- or di-arylamino group (E-15) Arylcarbonylamino group (E-16) Arylsulfonylamino group (E-17) Aryloxycarbonylamino group (E-18) Aryloxyalkyloxy group
[置換基群F]
(F-1)ヘテロアリール基
(F-2)ヘテロアリールチオ基
(F-3)ヘテロアリールオキシ基
(F-4)ヘテロアリールカルボニルオキシ基
(F-5)ヘテロアリールカルバモイルオキシ基
(F-6)ヘテロアリールスルホニルオキシ基
(F-7)ヘテロアリールオキシカルボニルオキシ基
(F-8)ヘテロアリールカルボニル基
(F-9)ヘテロアリールオキシカルボニル基
(F-10)ヘテロアリールアミノカルボニル基
(F-11)ヘテロアリールカルバモイル基
(F-12)ヘテロアリールスルホニル基
(F-13)ヘテロアリールスルフィニル基
(F-14)モノ-又はジ-ヘテロアリールアミノ基
(F-15)ヘテロアリールカルボニルアミノ基
(F-16)ヘテロアリールスルホニルアミノ基
(F-17)ヘテロアリールオキシカルボニルアミノ基
(F-18)ヘテロアリールオキシアルキルオキシ基
[Substituent Group F]
(F-1) Heteroaryl group (F-2) Heteroarylthio group (F-3) Heteroaryloxy group (F-4) Heteroarylcarbonyloxy group (F-5) Heteroarylcarbamoyloxy group (F-6 ) Heteroarylsulfonyloxy group (F-7) Heteroaryloxycarbonyloxy group (F-8) Heteroarylcarbonyl group (F-9) Heteroaryloxycarbonyl group (F-10) Heteroarylaminocarbonyl group (F-11) ) Heteroarylcarbamoyl group (F-12) Heteroarylsulfonyl group (F-13) Heteroarylsulfinyl group (F-14) Mono- or di-heteroarylamino group (F-15) Heteroarylcarbonylamino group (F- 16) Heteroarylsulfonylamino group (F-17) Heteroaryloxycarbonylamino group (F-18) Heteroaryloxyalkyloxy group
[置換基群G]
(G-1)脂肪族複素環基
(G-2)脂肪族複素環チオ基
(G-3)脂肪族複素環オキシ基
(G-4)脂肪族複素環カルボニルオキシ基
(G-5)脂肪族複素環カルバモイルオキシ基
(G-6)脂肪族複素環スルホニルオキシ基
(G-7)脂肪族複素環オキシカルボニルオキシ基
(G-8)脂肪族複素環カルボニル基
(G-9)脂肪族複素環オキシカルボニル基
(G-10)脂肪族複素環アミノカルボニル基
(G-11)脂肪族複素環カルバモイル基
(G-12)脂肪族複素環スルホニル基
(G-13)脂肪族複素環スルフィニル基
(G-14)モノ-又はジ-脂肪族複素環アミノ基
(G-15)脂肪族複素環カルボニルアミノ基
(G-16)脂肪族複素環スルホニルアミノ基
(G-17)脂肪族複素環オキシカルボニルアミノ基
(G-18)脂肪族複素環アルキルオキシアルキルオキシ基
[Substituent Group G]
(G-1) Aliphatic heterocyclic group (G-2) Aliphatic heterocyclic thio group (G-3) Aliphatic heterocyclic oxy group (G-4) Aliphatic heterocyclic carbonyloxy group (G-5) Fat Group heterocyclic carbamoyloxy group (G-6) aliphatic heterocyclic sulfonyloxy group (G-7) aliphatic heterocyclic oxycarbonyloxy group (G-8) aliphatic heterocyclic carbonyl group (G-9) aliphatic heterocyclic Ring oxycarbonyl group (G-10) Aliphatic heterocyclic aminocarbonyl group (G-11) Aliphatic heterocyclic carbamoyl group (G-12) Aliphatic heterocyclic sulfonyl group (G-13) Aliphatic heterocyclic sulfinyl group ( G-14) Mono- or di-aliphatic heterocyclic amino group (G-15) Aliphatic heterocyclic carbonylamino group (G-16) Aliphatic heterocyclic sulfonylamino group (G-17) Aliphatic heterocyclic oxycarbonyl Amino group (G-18) Aliphatic heterocyclic alkyloxyalkyloxy group
[置換基群H]
(H-1)アリールアルキル基
(H-2)アリールアルキルチオ基
(H-3)アリールアルキルオキシ基
(H-4)アリールアルキルカルボニルオキシ基
(H-5)アリールアルキルカルバモイルオキシ基
(H-6)アリールアルキルスルホニルオキシ基
(H-7)アリールアルキルオキシカルボニルオキシ基
(H-8)アリールアルキルカルボニル基
(H-9)アリールアルキルオキシカルボニル基
(H-10)アリールアルキルアミノカルボニル基
(H-11)アリールアルキルカルバモイル基
(H-12)アリールアルキルスルホニル基
(H-13)アリールアルキルスルフィニル基
(H-14)モノ-又はジ-アリールアルキルアミノ基
(H-15)アリールアルキルカルボニルアミノ基
(H-16)アリールアルキルスルホニルアミノ基
(H-17)アリールアルキルオキシカルボニルアミノ基
(H-18)アリールアルキルオキシアルキルオキシ基
[Substituent Group H]
(H-1) Arylalkyl group (H-2) Arylalkylthio group (H-3) Arylalkyloxy group (H-4) Arylalkylcarbonyloxy group (H-5) Arylalkylcarbamoyloxy group (H-6) Arylalkylsulfonyloxy group (H-7) Arylalkyloxycarbonyloxy group (H-8) Arylalkylcarbonyl group (H-9) Arylalkyloxycarbonyl group (H-10) Arylalkylaminocarbonyl group (H-11) Arylalkylcarbamoyl group (H-12) Arylalkylsulfonyl group (H-13) Arylalkylsulfinyl group (H-14) Mono- or di-arylalkylamino group (H-15) Arylalkylcarbonylamino group (H-16) ) Arylalkylsulfonylamino group (H-17) Arylalkyloxycarbonylamino group (H-18) Arylalkyloxyalkyloxy group
[置換基群I]
(I-1)アリールアルケニル基
(I-2)アリールアルケニルチオ基
(I-3)アリールアルケニルオキシ基
(I-4)アリールアルケニルカルボニルオキシ基
(I-5)アリールアルケニルカルバモイルオキシ基
(I-6)アリールアルケニルスルホニルオキシ基
(I-7)アリールアルケニルオキシカルボニルオキシ基
(I-8)アリールアルケニルカルボニル基
(I-9)アリールアルケニルオキシカルボニル基
(I-10)アリールアルケニルアミノカルボニル基
(I-11)アリールアルケニルカルバモイル基
(I-12)アリールアルケニルスルホニル基
(I-13)アリールアルケニルスルフィニル基
(I-14)モノ-又はジ-アリールアルケニルアミノ基
(I-15)アリールアルケニルカルボニルアミノ基
(I-16)アリールアルケニルスルホニルアミノ基
(I-17)アリールアルケニルオキシカルボニルアミノ基
(I-18)アリールアルケニルオキシアルキルオキシ基
[Substituent Group I]
(I-1) Arylalkenyl group (I-2) Arylalkenylthio group (I-3) Arylalkenyloxy group (I-4) Arylalkenylcarbonyloxy group (I-5) Arylalkenylcarbamoyloxy group (I-6 ) Arylalkenylsulfonyloxy group (I-7) Arylalkenyloxycarbonyloxy group (I-8) Arylalkenylcarbonyl group (I-9) Arylalkenyloxycarbonyl group (I-10) Arylalkenylaminocarbonyl group (I-11 ) Arylalkenylcarbamoyl group (I-12) Arylalkenylsulfonyl group (I-13) Arylalkenylsulfinyl group (I-14) Mono- or di-arylalkenylamino group (I-15) Arylalkenylcarbonylamino group (I- 16) Arylalkenylsulfonylamino group (I-17) Arylalkenyloxycarbonylamino group (I-18) Arylalkenyloxyalkyloxy group
[置換基群J]
(J-1)アリールアルキニル基
(J-2)アリールアルキニルチオ基
(J-3)アリールアルキニルオキシ基
(J-4)アリールアルキニルカルボニルオキシ基
(J-5)アリールアルキニルカルバモイルオキシ基
(J-6)アリールアルキニルスルホニルオキシ基
(J-7)アリールアルキニルオキシカルボニルオキシ基
(J-8)アリールアルキニルカルボニル基
(J-9)アリールアルキニルオキシカルボニル基
(J-10)アリールアルキニルアミノカルボニル基
(J-11)アリールアルキニルカルバモイル基
(J-12)アリールアルキニルスルホニル基
(J-13)アリールアルキニルスルフィニル基
(J-14)モノ-又はジ-アリールアルキニルアミノ基
(J-15)アリールアルキニルカルボニルアミノ基
(J-16)アリールアルキニルスルホニルアミノ基
(J-17)アリールアルキニルオキシカルボニルアミノ基
(J-18)アリールアルキニルオキシアルキルオキシ基
[Substituent Group J]
(J-1) Arylalkynyl group (J-2) Arylalkynylthio group (J-3) Arylalkynyloxy group (J-4) Arylalkynylcarbonyloxy group (J-5) Arylalkynylcarbamoyloxy group (J-6 ) Arylalkynylsulfonyloxy group (J-7) Arylalkynyloxycarbonyloxy group (J-8) Arylalkynylcarbonyl group (J-9) Arylalkynyloxycarbonyl group (J-10) Arylalkynylaminocarbonyl group (J-11) ) Arylalkynylcarbamoyl group (J-12) Arylalkynylsulfonyl group (J-13) Arylalkynylsulfinyl group (J-14) Mono- or di-arylalkynylamino group (J-15) Arylalkynylcarbonylamino group (J-) 16) Arylalkynylsulfonylamino group (J-17) Arylalkynyloxycarbonylamino group (J-18) Arylalkynyloxyalkyloxy group
[置換基群K]
(K-1)ヘテロアリールアルキル基
(K-2)ヘテロアリールアルキルチオ基
(K-3)ヘテロアリールアルキルオキシ基
(K-4)ヘテロアリールアルキルカルボニルオキシ基
(K-5)ヘテロアリールアルキルカルバモイルオキシ基
(K-6)ヘテロアリールアルキルスルホニルオキシ基
(K-7)ヘテロアリールアルキルオキシカルボニルオキシ基
(K-8)ヘテロアリールアルキルカルボニル基
(K-9)ヘテロアリールアルキルオキシカルボニル基
(K-10)ヘテロアリールアルキルアミノカルボニル基
(K-11)ヘテロアリールアルキルカルバモイル基
(K-12)ヘテロアリールアルキルスルホニル基
(K-13)ヘテロアリールアルキルスルフィニル基
(K-14)モノ-又はジ-ヘテロアリールアルキルアミノ基
(K-15)ヘテロアリールアルキルカルボニルアミノ基
(K-16)ヘテロアリールアルキルスルホニルアミノ基
(K-17)ヘテロアリールアルキルオキシカルボニルアミノ基
(K-18)ヘテロアリールアルキニルオキシアルキルオキシ基
[Substituent group K]
(K-1) Heteroarylalkyl group (K-2) Heteroarylalkylthio group (K-3) Heteroarylalkyloxy group (K-4) Heteroarylalkylcarbonyloxy group (K-5) Heteroarylalkylcarbamoyloxy group (K-6) Heteroarylalkylsulfonyloxy group (K-7) Heteroarylalkyloxycarbonyloxy group (K-8) Heteroarylalkylcarbonyl group (K-9) Heteroarylalkyloxycarbonyl group (K-10) Hetero Arylalkylaminocarbonyl group (K-11) Heteroarylalkylcarbamoyl group (K-12) Heteroarylalkylsulfonyl group (K-13) Heteroarylalkylsulfinyl group (K-14) Mono- or di-heteroarylalkylamino group (K-15) Heteroarylalkylcarbonylamino group (K-16) Heteroarylalkylsulfonylamino group (K-17) Heteroarylalkyloxycarbonylamino group (K-18) Heteroarylalkynyloxyalkyloxy group
[置換基群L]
(L-1)ヘテロアリールアルケニル基
(L-2)ヘテロアリールアルケニルチオ基
(L-3)ヘテロアリールアルケニルオキシ基
(L-4)ヘテロアリールアルケニルカルボニルオキシ基
(L-5)ヘテロアリールアルケニルカルバモイルオキシ基
(L-6)ヘテロアリールアルケニルスルホニルオキシ基
(L-7)ヘテロアリールアルケニルオキシカルボニルオキシ基
(L-8)ヘテロアリールアルケニルカルボニル基
(L-9)ヘテロアリールアルケニルオキシカルボニル基
(L-10)ヘテロアリールアルケニルアミノカルボニル基
(L-11)ヘテロアリールアルケニルカルバモイル基
(L-12)ヘテロアリールアルケニルスルホニル基
(L-13)ヘテロアリールアルケニルスルフィニル基
(L-14)モノ-又はジ-ヘテロアリールアルケニルアミノ基
(L-15)ヘテロアリールアルケニルカルボニルアミノ基
(L-16)ヘテロアリールアルケニルスルホニルアミノ基
(L-17)ヘテロアリールアルケニルオキシカルボニルアミノ基
(L-18)ヘテロアリールアルケニルオキシアルキルオキシ基
[Substituent group L]
(L-1) Heteroarylalkenyl group (L-2) Heteroarylalkenylthio group (L-3) Heteroarylalkenyloxy group (L-4) Heteroarylalkenylcarbonyloxy group (L-5) Heteroarylalkenylcarbamoyloxy Group (L-6) Heteroarylalkenylsulfonyloxy group (L-7) Heteroarylalkenyloxycarbonyloxy group (L-8) Heteroarylalkenylcarbonyl group (L-9) Heteroarylalkenyloxycarbonyl group (L-10) Heteroarylalkenylaminocarbonyl group (L-11) Heteroarylalkenylcarbamoyl group (L-12) Heteroarylalkenylsulfonyl group (L-13) Heteroarylalkenylsulfinyl group (L-14) Mono- or di-heteroarylalkenylamino Group (L-15) Heteroarylalkenylcarbonylamino group (L-16) Heteroarylalkenylsulfonylamino group (L-17) Heteroarylalkenyloxycarbonylamino group (L-18) Heteroarylalkenyloxyalkyloxy group
[置換基群M]
(M-1)ヘテロアリールアルキニル基
(M-2)ヘテロアリールアルキニルチオ基
(M-3)ヘテロアリールアルキニルオキシ基
(M-4)ヘテロアリールアルキニルカルボニルオキシ基
(M-5)ヘテロアリールアルキニルカルバモイルオキシ基
(M-6)ヘテロアリールアルキニルスルホニルオキシ基
(M-7)ヘテロアリールアルキニルオキシカルボニルオキシ基
(M-8)ヘテロアリールアルキニルカルボニル基
(M-9)ヘテロアリールアルキニルオキシカルボニル基
(M-10)ヘテロアリールアルキニルアミノカルボニル基
(M-11)ヘテロアリールアルキニルカルバモイル基
(M-12)ヘテロアリールアルキニルスルホニル基
(M-13)ヘテロアリールアルキニルスルフィニル基
(M-14)モノ-又はジ-ヘテロアリールアルキニルアミノ基
(M-15)ヘテロアリールアルキニルカルボニルアミノ基
(M-16)ヘテロアリールアルキニルスルホニルアミノ基
(M-17)ヘテロアリールアルキニルオキシカルボニルアミノ基
(M-18)ヘテロアリールアルキニルオキシアルキルオキシ基
[Substituent group M]
(M-1) Heteroarylalkynyl group (M-2) Heteroarylalkynylthio group (M-3) Heteroarylalkynyloxy group (M-4) Heteroarylalkynylcarbonyloxy group (M-5) Heteroarylalkynylcarbamoyloxy Group (M-6) Heteroarylalkynylsulfonyloxy group (M-7) Heteroarylalkynyloxycarbonyloxy group (M-8) Heteroarylalkynylcarbonyl group (M-9) Heteroarylalkynyloxycarbonyl group (M-10) Heteroarylalkynylaminocarbonyl group (M-11) Heteroarylalkynylcarbamoyl group (M-12) Heteroarylalkynylsulfonyl group (M-13) Heteroarylalkynylsulfinyl group (M-14) Mono- or di-heteroarylalkynylamino Group (M-15) Heteroarylalkynylcarbonylamino group (M-16) Heteroarylalkynylsulfonylamino group (M-17) Heteroarylalkynyloxycarbonylamino group (M-18) Heteroarylalkynyloxyalkyloxy group
 有機基に含まれる脂肪族炭化水素基(1価及び2価を含む)が有し得る1個以上の置換基は、それぞれ独立して、例えば、ハロゲン原子、ニトロ基、シアノ基、オキソ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アリール基、脂肪族複素環基、ヘテロアリール基、アルキルアリール基、アルキル脂肪族複素環基、アルキルヘテロアリール基、アリールアルキル基、脂肪族複素環アルキル基、ヘテロアリールアルキル基、アルキルオキシ基、アリールオキシ基、脂肪族複素環オキシ基、ヘテロアリールオキシ基、アルキルアリールオキシ基、アルキル脂肪族複素環オキシ基、アルキルヘテロアリールオキシ基、アリールアルキルオキシ基、脂肪族複素環アルキルオキシ基、ヘテロアリールアルキルオキシ基、アルキルチオ基、アリールチオ基、脂肪族複素環チオ基、ヘテロアリールチオ基、アルキルアリールチオ基、アルキル脂肪族複素環チオ基、アルキルヘテロアリールチオ基、アリールアルキルチオ基、脂肪族複素環アルキルチオ基、ヘテロアリールアルキルチオ基、アルキルカルボニル基、アリールカルボニル基、脂肪族複素環カルボニル基、ヘテロアリールカルボニル基、アルキルアリールカルボニル基、アルキル脂肪族複素環カルボニル基、アルキルヘテロアリールカルボニル基、アリールアルキルカルボニル基、脂肪族複素環アルキルカルボニル基、ヘテロアリールアルキルカルボニル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、脂肪族複素環オキシカルボニル基、ヘテロアリールオキシカルボニル基、アルキルアリールオキシカルボニル基、アルキル脂肪族複素環オキシカルボニル基、アルキルヘテロアリールオキシカルボニル基、アリールアルキルオキシカルボニル基、脂肪族複素環アルキルオキシカルボニル基及びヘテロアリールアルキルオキシカルボニル基から選択することができる。なお、脂肪族炭化水素基(1価及び2価を含む)が直鎖状又は分岐鎖状の脂肪族炭化水素基である場合、直鎖状又は分岐鎖状の脂肪族炭化水素基は、環状の脂肪族炭化水素基(例えば、シクロアルキル基、シクロアルケニル基、シクロアルキニル基等)を置換基として有し得る。 The one or more substituents which the aliphatic hydrocarbon group (including monovalent and divalent) contained in the organic group may have, are each independently, for example, a halogen atom, a nitro group, a cyano group, an oxo group, Optionally protected hydroxyl group, optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected Carbamoyl group, optionally protected sulfonyl group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkylaliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl Group, heteroarylalkyl group, alkyloxy group, aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryloxy group, alkylaliphatic heterocyclic oxy group, alkylheteroaryloxy group, arylalkyloxy group , Aliphatic heterocyclic alkyloxy group, heteroarylalkyloxy group, alkylthio group, arylthio group, aliphatic heterocyclic thio group, heteroarylthio group, alkylarylthio group, alkylaliphatic heterocyclic thio group, alkylheteroarylthio group Group, arylalkylthio group, aliphatic heterocyclic alkylthio group, heteroarylalkylthio group, alkylcarbonyl group, arylcarbonyl group, aliphatic heterocyclic carbonyl group, heteroarylcarbonyl group, alkylarylcarbonyl group, alkylaliphatic heterocyclic carbonyl group , An alkylheteroarylcarbonyl group, an arylalkylcarbonyl group, an aliphatic heterocyclic alkylcarbonyl group, a heteroarylalkylcarbonyl group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an aliphatic heterocyclic oxycarbonyl group, a heteroaryloxycarbonyl group, It can be selected from an alkylaryloxycarbonyl group, an alkylaliphatic heterocyclic oxycarbonyl group, an alkylheteroaryloxycarbonyl group, an arylalkyloxycarbonyl group, an aliphatic heterocyclic alkyloxycarbonyl group and a heteroarylalkyloxycarbonyl group. When the aliphatic hydrocarbon group (including monovalent and divalent) is a linear or branched aliphatic hydrocarbon group, the linear or branched aliphatic hydrocarbon group is cyclic. May have an aliphatic hydrocarbon group (for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.)
 有機基に含まれる芳香族炭化水素環基(1価及び2価を含む)が有し得る1個以上の置換基、有機基に含まれる脂肪族複素環基(1価及び2価を含む)が有し得る1個以上の置換基、及び、有機基に含まれる芳香族複素環基(1価及び2価を含む)が有し得る1個以上の置換基は、それぞれ独立して、例えば、ハロゲン原子、ニトロ基、シアノ基、オキソ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アルキル基、アリール基、脂肪族複素環基、ヘテロアリール基、アルキルアリール基、アルキル脂肪族複素環基、アルキルヘテロアリール基、アリールアルキル基、脂肪族複素環アルキル基、ヘテロアリールアルキル基、アルキルオキシ基、アリールオキシ基、脂肪族複素環オキシ基、ヘテロアリールオキシ基、アルキルアリールオキシ基、アルキル脂肪族複素環オキシ基、アルキルヘテロアリールオキシ基、アリールアルキルオキシ基、脂肪族複素環アルキルオキシ基、ヘテロアリールアルキルオキシ基、アルキルチオ基、アリールチオ基、脂肪族複素環チオ基、ヘテロアリールチオ基、アルキルアリールチオ基、アルキル脂肪族複素環チオ基、アルキルヘテロアリールチオ基、アリールアルキルチオ基、脂肪族複素環アルキルチオ基、ヘテロアリールアルキルチオ基、アルキルカルボニル基、アリールカルボニル基、脂肪族複素環カルボニル基、ヘテロアリールカルボニル基、アルキルアリールカルボニル基、アルキル脂肪族複素環カルボニル基、アルキルヘテロアリールカルボニル基、アリールアルキルカルボニル基、脂肪族複素環アルキルカルボニル基、ヘテロアリールアルキルカルボニル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、脂肪族複素環オキシカルボニル基、ヘテロアリールオキシカルボニル基、アルキルアリールオキシカルボニル基、アルキル脂肪族複素環オキシカルボニル基、アルキルヘテロアリールオキシカルボニル基、アリールアルキルオキシカルボニル基、脂肪族複素環アルキルオキシカルボニル基及びヘテロアリールアルキルオキシカルボニル基から選択することができる。 One or more substituents that an aromatic hydrocarbon ring group (including monovalent and divalent) contained in the organic group may have, and an aliphatic heterocyclic group (including monovalent and divalent) contained in the organic group And one or more substituents that the aromatic heterocyclic group (including monovalent and divalent) contained in the organic group can have, each independently, for example, , Halogen atom, nitro group, cyano group, oxo group, optionally protected hydroxyl group, optionally protected thiol group, optionally protected amino group, optionally protected formyl group, protected Optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl group, alkyl group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkylaliphatic heterocycle Group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group, aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryloxy group, alkyl fat Group heterocyclic oxy group, alkylheteroaryloxy group, arylalkyloxy group, aliphatic heterocyclic alkyloxy group, heteroarylalkyloxy group, alkylthio group, arylthio group, aliphatic heterocyclic thio group, heteroarylthio group, alkyl Arylthio group, alkylaliphatic heterocyclic thio group, alkylheteroarylthio group, arylalkylthio group, aliphatic heterocyclic alkylthio group, heteroarylalkylthio group, alkylcarbonyl group, arylcarbonyl group, aliphatic heterocyclic carbonyl group, hetero Arylcarbonyl group, alkylarylcarbonyl group, alkylaliphatic heterocyclic carbonyl group, alkylheteroarylcarbonyl group, arylalkylcarbonyl group, aliphatic heterocyclic alkylcarbonyl group, heteroarylalkylcarbonyl group, alkyloxycarbonyl group, aryloxycarbonyl Group, aliphatic heterocyclic oxycarbonyl group, heteroaryloxycarbonyl group, alkylaryloxycarbonyl group, alkylaliphatic heterocyclic oxycarbonyl group, alkylheteroaryloxycarbonyl group, arylalkyloxycarbonyl group, aliphatic heterocyclic alkyloxy group It can be selected from carbonyl groups and heteroarylalkyloxycarbonyl groups.
 ある官能基に関して「保護されていてもよい」とは、当該官能基が無置換であること、又は、当該官能基が、一般的に用いられる保護基で保護されていることを意味する。 The term “may be protected” with respect to a certain functional group means that the functional group is unsubstituted or the functional group is protected by a commonly used protecting group.
 「保護基」とは、目的の官能基を目的の反応において不活性である官能基に変換することができ、目的の反応後が終了した後、目的の官能基から脱離することができる限り特に限定されず、目的の官能基、目的の反応等に応じて適宜選択することができる。 The “protecting group” means that a target functional group can be converted into a functional group that is inactive in a target reaction, and as long as it can be removed from the target functional group after completion of the target reaction. It is not particularly limited and can be appropriately selected depending on the intended functional group, the intended reaction and the like.
 「保護されていてもよい水酸基」は、水酸基又は水酸基保護基で保護された水酸基であり、例えば、式:-OP(式中、Pは、水素原子又は水酸基保護基を表す。)で表すことができる。水酸基保護基としては、例えば、エステル型保護基、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基、アルキルオキシアルキル型保護基、シリル型保護基、オキシカルボニル型保護基等が挙げられる。 The “optionally protected hydroxyl group” is a hydroxyl group or a hydroxyl group protected by a hydroxyl protecting group, for example, formula: —OP 1 (wherein, P 1 represents a hydrogen atom or a hydroxyl protecting group). Can be represented. Examples of the hydroxyl group protecting group include ester type protecting group, arylalkyl type protecting group, alkyl type protecting group, arylalkyloxyalkyl type protecting group, alkyloxyalkyl type protecting group, silyl type protecting group, oxycarbonyl type protecting group, etc. Is mentioned.
 エステル型保護基としては、例えば、1個以上の置換基を有していてもよい炭素数2~10個のアルキルカルボニル基、1個以上の置換基を有していてもよい炭素数7~10個のアリールカルボニル基等が挙げられる。1個以上の置換基は、例えば、置換基群A~Mから選択することができる。アルキルカルボニル基が有し得る置換基は、脂肪族炭化水素基に関する置換基と同様である。アリールカルボニル基が有し得る置換基は、芳香族炭化水素環基に関する置換基と同様である。1個以上の置換基を有していてもよいアルキルカルボニル基としては、例えば、例えば、アセチル基、プロパノイル基、ブタノイル基、イソプロパノイル基、ピバロイル基等が挙げられる。1個以上の置換基を有していてもよいアリールカルボニル基としては、例えば、ベンゾイル基、4-ニトロベンゾイル基、4-メチルオキシベンゾイル基、4-メチルベンゾイル基、4-tert-ブチルベンゾイル基、4-フルオロベンゾイル基、4-クロロベンゾイル基、4-ブロモベンゾイル基、4-フェニルベンゾイル基、4-メチルオキシカルボニルベンゾイル基等が挙げられる。エステル型保護基は、好ましくは、炭素数2~10個のアルキルカルボニル基、より好ましくは、炭素数2~5個のアルキルカルボニル基、より一層好ましくは、アセチル基又はピバロイル基である。 Examples of the ester type protecting group include an alkylcarbonyl group having 2 to 10 carbon atoms which may have one or more substituents, and 7 to carbon atoms which may have one or more substituents. Examples include 10 arylcarbonyl groups. The one or more substituents can be selected, for example, from the substituent groups AM. The substituent that the alkylcarbonyl group may have is the same as the substituent for the aliphatic hydrocarbon group. The substituent that the arylcarbonyl group may have is the same as the substituent for the aromatic hydrocarbon ring group. Examples of the alkylcarbonyl group which may have one or more substituents include, for example, an acetyl group, a propanoyl group, a butanoyl group, an isopropanoyl group and a pivaloyl group. Examples of the arylcarbonyl group which may have one or more substituents include, for example, benzoyl group, 4-nitrobenzoyl group, 4-methyloxybenzoyl group, 4-methylbenzoyl group, 4-tert-butylbenzoyl group. , 4-fluorobenzoyl group, 4-chlorobenzoyl group, 4-bromobenzoyl group, 4-phenylbenzoyl group, 4-methyloxycarbonylbenzoyl group and the like. The ester type protecting group is preferably an alkylcarbonyl group having 2 to 10 carbon atoms, more preferably an alkylcarbonyl group having 2 to 5 carbon atoms, still more preferably an acetyl group or a pivaloyl group.
 アリールアルキル型保護基としては、例えば、1個以上の置換基を有していてもよい炭素数7~11個のアリールアルキル基等が挙げられる。1個以上の置換基は、例えば、置換基群A~Mから選択することができる。アリールアルキル基における「アルキル」が有し得る置換基は、脂肪族炭化水素基に関する置換基と同様である。アリールアルキル基における「アリール」が有し得る置換基は、芳香族炭化水素環基に関する置換基と同様である。1個以上の置換基は、好ましくは、ハロゲン原子、ニトロ基、シアノ基、メチル基、メチルオキシ基、フェニル基及びナフチル基から選択される。1個以上の置換基を有していてもよい炭素数7~11個のアリールアルキル基としては、例えば、ベンジル基、1-フェニルエチル基、ジフェニルメチル基、1,1-ジフェニルエチル基、ナフチルメチル基等が挙げられる。 Examples of the arylalkyl type protecting group include an arylalkyl group having 7 to 11 carbon atoms which may have one or more substituents. The one or more substituents can be selected, for example, from the substituent groups AM. The substituent that “alkyl” in the arylalkyl group may have is the same as the substituent for the aliphatic hydrocarbon group. The substituent which "aryl" in the arylalkyl group may have is the same as the substituent for the aromatic hydrocarbon ring group. The one or more substituents are preferably selected from halogen atoms, nitro groups, cyano groups, methyl groups, methyloxy groups, phenyl groups and naphthyl groups. Examples of the arylalkyl group having 7 to 11 carbon atoms which may have one or more substituents include, for example, benzyl group, 1-phenylethyl group, diphenylmethyl group, 1,1-diphenylethyl group and naphthyl. Examples thereof include a methyl group.
 アルキル型保護基としては、例えば、1個以上の置換基を有していてもよい炭素数1~10個のアルキル基等が挙げられる。1個以上の置換基は、例えば、置換基群A~Mから選択することができる。アルキル基が有し得る置換基は、脂肪族炭化水素基に関する置換基と同様である。1個以上の置換基は、好ましくは、ハロゲン原子、ニトロ基及びシアノ基から選択される。アルキル型保護基は、好ましくは、1個以上の置換基で置換されていてもよい炭素数1~5個のアルキル基であり、より好ましくはメチル基、エチル基、tert-ブチル基等である。 Examples of the alkyl type protecting group include an alkyl group having 1 to 10 carbon atoms which may have one or more substituents. The one or more substituents can be selected, for example, from the substituent groups AM. The substituent that the alkyl group may have is the same as the substituent for the aliphatic hydrocarbon group. The one or more substituents are preferably selected from halogen atoms, nitro groups and cyano groups. The alkyl type protecting group is preferably an alkyl group having 1 to 5 carbon atoms which may be substituted with one or more substituents, more preferably a methyl group, an ethyl group, a tert-butyl group or the like. ..
 アリールアルキルオキシアルキル型保護基としては、例えば、1個以上の置換基を有していてもよい炭素数8~11個のアリールアルキルオキシメチル基、1個以上の置換基を有していてもよい炭素数9~11個のアリールアルキルオキシエチル基、1個以上の置換基を有していてもよい炭素数10~11個のアリールアルキルオキシプロピル基等のアリールアルキルオキシアルキル基が挙げられる。1個以上の置換基は、例えば、置換基群A~Mから選択することができる。アリールアルキルオキシアルキル基における「アルキル」が有し得る置換基は、脂肪族炭化水素基に関する置換基と同様である。アリールアルキルオキシアルキル基における「アリール」が有し得る置換基は、芳香族炭化水素環基に関する置換基と同様である。1個以上の置換基は、好ましくは、ハロゲン原子、ニトロ基、シアノ基、メチル基及びメチルオキシ基から選択される。アリールアルキルオキシアルキル型保護基は、例えば、1個以上の置換基を有していてもよいベンジルオキシメチル基、好ましくは、ハロゲン原子、ニトロ基、シアノ基、メチル基又はメチルオキシ基で置換されていてもよいベンジルオキシメチル基、より好ましくはベンジルオキシメチル基である。 Examples of the arylalkyloxyalkyl type protecting group include an arylalkyloxymethyl group having 8 to 11 carbon atoms which may have one or more substituents, and one or more substituents. Examples thereof include arylalkyloxyethyl groups having 9 to 11 carbon atoms and arylalkyloxyalkyl groups having 10 to 11 carbon atoms which may have one or more substituents. The one or more substituents can be selected, for example, from the substituent groups AM. The substituent which "alkyl" in the arylalkyloxyalkyl group may have is the same as the substituent for the aliphatic hydrocarbon group. The substituent that “aryl” in the arylalkyloxyalkyl group may have is the same as the substituent for the aromatic hydrocarbon ring group. The one or more substituents are preferably selected from halogen atoms, nitro groups, cyano groups, methyl groups and methyloxy groups. The arylalkyloxyalkyl-type protecting group is, for example, substituted with a benzyloxymethyl group which may have one or more substituents, preferably a halogen atom, a nitro group, a cyano group, a methyl group or a methyloxy group. Optionally a benzyloxymethyl group, more preferably a benzyloxymethyl group.
 アルキルオキシアルキル型保護基としては、例えば、1個以上の置換基を有していてもよい炭素数2~10個のアルキルオキシメチル基、1個以上の置換基を有していてもよい炭素数3~10個のアルキルオキシエチル基、1個以上の置換基を有していてもよい炭素数4~10個のアルキルオキシプロピル基等のアルキルオキシアルキル基が挙げられる。1個以上の置換基は、例えば、置換基群A~Mから選択することができる。アルキルオキシアルキル基における「アルキル」が有し得る置換基は、脂肪族炭化水素基に関する置換基と同様である。1個以上の置換基は、好ましくは、ハロゲン原子、ニトロ基、シアノ基、メチル基及びメチルオキシ基から選択される。アルキルオキシアルキル型保護基は、好ましくは、1個以上の置換基を有していてもよい炭素数2~10個のアルキルオキシメチル基、より好ましくは、ハロゲン原子、ニトロ基、シアノ基、メチルオキシ基又はエチルオキシ基を有していてもよい炭素数2~5個のアルキルオキシメチル基、より一層好ましくは、メチルオキシメチル基である。 Examples of the alkyloxyalkyl-type protecting group include an alkyloxymethyl group having 2 to 10 carbon atoms which may have one or more substituents, and a carbon which may have one or more substituents. Examples thereof include an alkyloxyethyl group having a number of 3 to 10 and an alkyloxyalkyl group such as an alkyloxypropyl group having a carbon number of 4 to 10 which may have one or more substituents. The one or more substituents can be selected, for example, from the substituent groups AM. The substituent that “alkyl” in the alkyloxyalkyl group may have is the same as the substituent for the aliphatic hydrocarbon group. The one or more substituents are preferably selected from halogen atoms, nitro groups, cyano groups, methyl groups and methyloxy groups. The alkyloxyalkyl type protecting group is preferably an alkyloxymethyl group having 2 to 10 carbon atoms which may have one or more substituents, more preferably a halogen atom, a nitro group, a cyano group or methyl. An alkyloxymethyl group having 2 to 5 carbon atoms which may have an oxy group or an ethyloxy group, and more preferably a methyloxymethyl group.
 シリル型保護基としては、例えば、1個以上の置換基を有していてもよい炭素数1~10個のアルキル基、1個以上の置換基を有していてもよい炭素数7~10個のアリールアルキル基及び1個以上の置換基を有していてもよい炭素数6~10個のアリール基から選択される官能基を有するシリル基が挙げられる。1個以上の置換基は、例えば、置換基群A~Mから選択することができる。アルキル基及びアリールアルキル基における「アルキル」が有し得る置換基は、脂肪族炭化水素基に関する置換基と同様である。アリール基及びアリールアルキル基における「アリール」が有し得る置換基は、芳香族炭化水素環基に関する置換基と同様である。シリル型保護基は、好ましくは、炭素数1~10個のアルキル基及び炭素数6~10個のアリール基から選択される官能基を有するシリル基、より好ましくは、炭素数1~5個のアルキル基及びフェニル基から選択される官能基を有するシリル基、より一層好ましくは、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基又はtert-ブチルジフェニルシリル基である。 Examples of the silyl-type protecting group include an alkyl group having 1 to 10 carbon atoms which may have one or more substituents, and 7 to 10 carbon atoms which may have one or more substituents. Silyl groups having a functional group selected from aryl groups having 6 to 10 carbon atoms and optionally having 1 or more substituents. The one or more substituents can be selected, for example, from the substituent groups AM. The substituent that “alkyl” in the alkyl group and arylalkyl group may have is the same as the substituent for the aliphatic hydrocarbon group. The substituent that “aryl” in the aryl group and arylalkyl group may have is the same as the substituent for the aromatic hydrocarbon ring group. The silyl type protecting group is preferably a silyl group having a functional group selected from an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms. A silyl group having a functional group selected from an alkyl group and a phenyl group, and more preferably a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group or a tert-butyldiphenylsilyl group.
 オキシカルボニル型保護基としては、例えば、1個以上の置換基を有していてもよい炭素数2~10個のアルキルオキシカルボニル基、1個以上の置換基を有していてもよい炭素数3~10個のアルケニルオキシカルボニル基、1個以上の置換基を有していてもよい炭素数8~11個アリールアルキルオキシカルボニル基等が挙げられる。1個以上の置換基は、例えば、置換基群A~Mから選択することができる。アルキルオキシカルボニル基における「アルキル」、アルケニルオキシカルボニル基における「アルケニル」及びアリールアルキルオキシカルボニル基における「アルキル」が有し得る置換基は、脂肪族炭化水素基に関する置換基と同様である。アリールアルキルオキシカルボニル基における「アリール」が有し得る置換基は、芳香族炭化水素環基に関する置換基と同様である。オキシカルボニル型保護基は、好ましくは、炭素数2~5個のアルキルオキシカルボニル基、炭素数3~5個のアルケニルオキシカルボニル基又はベンジルオキシカルボニル基、より好ましくは、メチルオキシメチル基、アリルオキシカルボニル基又はベンジルオキシカルボニル基である。 Examples of the oxycarbonyl-type protecting group include an alkyloxycarbonyl group having 2 to 10 carbon atoms which may have one or more substituents, and a carbon number which may have one or more substituents. Examples thereof include an alkenyloxycarbonyl group having 3 to 10 carbon atoms and an arylalkyloxycarbonyl group having 8 to 11 carbon atoms which may have one or more substituents. The one or more substituents can be selected, for example, from the substituent groups AM. The substituent which "alkyl" in the alkyloxycarbonyl group, "alkenyl" in the alkenyloxycarbonyl group and "alkyl" in the arylalkyloxycarbonyl group may have is the same as the substituent for the aliphatic hydrocarbon group. The substituent that “aryl” in the arylalkyloxycarbonyl group may have is the same as the substituent for the aromatic hydrocarbon ring group. The oxycarbonyl-type protecting group is preferably an alkyloxycarbonyl group having 2 to 5 carbon atoms, an alkenyloxycarbonyl group having 3 to 5 carbon atoms or a benzyloxycarbonyl group, more preferably a methyloxymethyl group, allyloxy. A carbonyl group or a benzyloxycarbonyl group.
 「保護されていてもよいチオール基」は、チオール基又はチオール基保護基で保護されたチオール基であり、例えば、式:-SP(式中、Pは、水素原子又はチオール基保護基を表す。)で表すことができる。チオール基保護基としては、例えば、エステル型保護基、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基、アルキルオキシアルキル型保護基、シリル型保護基、オキシカルボニル型保護基等が挙げられる。これらの保護基に関する説明は、上記と同様である。 The “optionally protected thiol group” is a thiol group or a thiol group protected with a thiol group-protecting group, and has, for example, the formula: —SP 2 (wherein P 2 is a hydrogen atom or a thiol group-protecting group). Can be represented by.). Examples of the thiol group-protecting group include ester-type protecting groups, arylalkyl-type protecting groups, alkyl-type protecting groups, arylalkyloxyalkyl-type protecting groups, alkyloxyalkyl-type protecting groups, silyl-type protecting groups, oxycarbonyl-type protecting groups. Etc. The description of these protecting groups is the same as above.
 「保護されていてもよいアミノ基」は、アミノ基又はアミノ基保護基で保護されたアミノ基であり、例えば、式-NH-P、式-N(-P)(-P)、又は式=N(-P)(式中、P及びPは、それぞれ独立して、アミノ基保護基を表す。)で表すことができる。アミノ基保護基としては、例えば、炭素数2~10のアルキルオキシカルボニル基(例えば、メチルオキシカルボニル基、tert-ブチルオキシカルボニル基等)、炭素数8~11のアリールアルキルオキシカルボニル基(例えば、ベンジルオキシカルボニル基等)、9-フルオレニルメチルオキシカルボニル基、ベンズヒドリル基、トリチル基、2,2,2-トリクロロエチルオキシカルボニル基、アリルオキシカルボニル基等が挙げられる。なお、アミノ基には、脂環式アミノ基及び複素環式アミノ基も包含される。  The “optionally protected amino group” is an amino group or an amino group protected by an amino group-protecting group, and is represented by, for example, the formula —NH—P 3 , the formula —N(—P 3 )(—P 4 ). Or the formula =N(-P 3 ) (in the formula, P 3 and P 4 each independently represents an amino group-protecting group). Examples of the amino group-protecting group include an alkyloxycarbonyl group having 2 to 10 carbon atoms (eg, methyloxycarbonyl group, tert-butyloxycarbonyl group, etc.), an arylalkyloxycarbonyl group having 8 to 11 carbon atoms (eg, Benzyloxycarbonyl group), 9-fluorenylmethyloxycarbonyl group, benzhydryl group, trityl group, 2,2,2-trichloroethyloxycarbonyl group, allyloxycarbonyl group and the like. The amino group also includes an alicyclic amino group and a heterocyclic amino group.
 「保護されていてもよいカルボキシル基」は、カルボキシル基又はカルボキシル基保護基で保護されたカルボキシル基であり、例えば、式-C(=O)(-OP)(式中、Pは、水素原子又はカルボキシル基保護基を表す。)で表すことができる。カルボキシル基保護基としては、例えば、炭素数1~10のアルキル基(例えば、メチル基、エチル基、プロピル基等)、炭素数7~11のアリールアルキル基(例えば、ベンジル基等)等が挙げられる。 The “optionally protected carboxyl group” is a carboxyl group or a carboxyl group protected with a carboxyl group-protecting group, and is represented by, for example, the formula —C(═O)(—OP 5 ), where P 5 is A hydrogen atom or a carboxyl group-protecting group). Examples of the carboxyl-protecting group include an alkyl group having 1 to 10 carbon atoms (eg, methyl group, ethyl group, propyl group, etc.), an arylalkyl group having 7 to 11 carbon atoms (eg, benzyl group), etc. To be
 「保護されていてもよいホルミル基」は、ホルミル基又はホルミル基保護基で保護されたホルミル基であり、例えば、式-C(Y)(Y)(式中、Yはヘテロ原子を表し、P及びPは、それぞれ独立して水酸基保護基を表すか、又は、P及びPは一緒になってアルキレンを形成してもよい。)で表すことができる。ヘテロ原子は、好ましくは酸素原子又は硫黄原子である。水酸基保護基は、例えば、炭素数1~5のアルキル基、好ましくはメチル基、エチル基、プロピル基、ブチル基等が挙げられる。また、P及びPは一緒になって形成するアルキレンの炭素数は、好ましくは2~10個であり、好ましくは2~5個であり、より好ましくは2又は3個である。 The “optionally protected formyl group” is a formyl group or a formyl group protected by a formyl group-protecting group, and has, for example, the formula —C(Y a P 6 )(Y a P 7 ), in which Y a represents a hetero atom, P 6 and P 7 each independently represent a hydroxyl group-protecting group, or P 6 and P 7 may together form an alkylene). it can. The heteroatoms are preferably oxygen or sulfur atoms. Examples of the hydroxyl-protecting group include an alkyl group having 1 to 5 carbon atoms, preferably a methyl group, an ethyl group, a propyl group, a butyl group and the like. Further, P 6 and P 7 together form an alkylene having preferably 2 to 10 carbon atoms, preferably 2 to 5 carbon atoms, and more preferably 2 or 3 carbon atoms.
 「保護されていてもよいカルバモイル基」は、好ましくは式-O-C(=O)-NH(-P)(式中、Pは、アミノ基保護基を表す。)で表される。アミノ基保護基としては、例えば、炭素数2~10のアルキルオキシカルボニル基(例えば、メチルオキシカルボニル基、tert-ブチルオキシカルボニル基等)、炭素数8~11のアリールアルキルオキシカルボニル基(例えば、ベンジルオキシカルボニル基等)、9-フルオレニルメチルオキシカルボニル基、ベンズヒドリル基、トリチル基、2,2,2-トリクロロエチルオキシカルボニル基、アリルオキシカルボニル基等が挙げられる。 The “optionally protected carbamoyl group” is preferably represented by the formula —O—C(═O)—NH(—P 8 ), where P 8 represents an amino group-protecting group. .. Examples of the amino group-protecting group include an alkyloxycarbonyl group having 2 to 10 carbon atoms (eg, methyloxycarbonyl group, tert-butyloxycarbonyl group, etc.), an arylalkyloxycarbonyl group having 8 to 11 carbon atoms (eg, Benzyloxycarbonyl group), 9-fluorenylmethyloxycarbonyl group, benzhydryl group, trityl group, 2,2,2-trichloroethyloxycarbonyl group, allyloxycarbonyl group and the like.
 「保護されていてもよいスルホニル基」は、スルホニル基又はスルホニル基保護基で保護されたスルホニル基であり、例えば、1個以上の置換基で置換されていてもよいアルキルスルホニル基、1個以上の置換基で置換されていてもよいアリールスルホニル基等である。1個以上の置換基は、例えば、置換基群A~Mから選択することができる。アルキルスルホニル基における「アルキル」が有し得る置換基は、脂肪族炭化水素基に関する置換基と同様である。アリールスルホニル基における「アリール」が有し得る置換基は、芳香族炭化水素環基に関する置換基と同様である。アルキルスルホニル基におけるアルキル基の炭素数は、通常1~10、好ましくは1~5、より好ましくは1~3である。1個以上の置換基で置換されていてもよいアルキルスルホニル基は、例えば、ハロゲン原子で置換されていてもよいアルキルスルホニル基(例えば、メチルスルホニル基、トリフルオロメチルスルホニル基等)である。アリールスルホニル基におけるアリ-ル基の炭素数は、通常6~14、好ましくは6~10である。1個以上の置換基で置換されていてもよいアリールスルホニル基は、例えば、ハロゲン原子で置換されていてもよいアルキルスルホニル基(例えば、フェニルスルホニル基、p-トルエンスルホニル基等)である。 The “sulfonyl group which may be protected” is a sulfonyl group or a sulfonyl group which is protected by a sulfonyl group protecting group, for example, an alkylsulfonyl group which may be substituted with one or more substituents, one or more. And an arylsulfonyl group which may be substituted with the substituent. The one or more substituents can be selected, for example, from the substituent groups AM. The substituent which "alkyl" in the alkylsulfonyl group may have is the same as the substituent for the aliphatic hydrocarbon group. The substituent that “aryl” in the arylsulfonyl group may have is the same as the substituent related to the aromatic hydrocarbon ring group. The number of carbon atoms of the alkyl group in the alkylsulfonyl group is usually 1 to 10, preferably 1 to 5, and more preferably 1 to 3. The alkylsulfonyl group which may be substituted with one or more substituents is, for example, an alkylsulfonyl group which may be substituted with a halogen atom (eg, methylsulfonyl group, trifluoromethylsulfonyl group, etc.). The aryl group in the arylsulfonyl group has usually 6 to 14, preferably 6 to 10 carbon atoms. The arylsulfonyl group which may be substituted with one or more substituents is, for example, an alkylsulfonyl group which may be substituted with a halogen atom (eg, phenylsulfonyl group, p-toluenesulfonyl group, etc.).
 置換基群A~Mにおける置換基に含まれる「アルキル」、「アルケニル」、「アルキニル」、「アリール」、「ヘテロアリール」及び「脂肪族複素環」は、それぞれ、置換基群Aから選択される1個以上の置換基で置換されていてもよい。置換基に含まれる「アルキル」、「アルケニル」、「アルキニル」、「アリール」、「ヘテロアリール」又は「脂肪族複素環」をさらに置換するために置換基群Aから選択される1個以上の置換基は、それぞれ独立して、好ましくは、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基及び置換されていてもよいスルホニル基から選択され、より好ましく、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいアミノ基、保護されていてもよいホルミル基及び保護されていてもよいカルボキシル基から選択され、より一層好ましくは、ハロゲン原子である。 The “alkyl”, “alkenyl”, “alkynyl”, “aryl”, “heteroaryl” and “aliphatic heterocycle” contained in the substituents in the substituent groups A to M are each selected from the substituent group A. It may be substituted with one or more substituents. One or more substituents selected from Substituent group A for further substituting "alkyl", "alkenyl", "alkynyl", "aryl", "heteroaryl" or "aliphatic heterocycle" included in the substituent Substituents are each independently preferably a halogen atom, a hydroxyl group which may be protected, a thiol group which may be protected, an amino group which may be protected, a formyl group which may be protected, It is more preferably selected from an optionally protected carboxyl group, an optionally protected carbamoyl group and an optionally substituted sulfonyl group, and is more preferably a halogen atom, an optionally protected hydroxyl group, or an optionally protected group. It is selected from an amino group, an optionally protected formyl group and an optionally protected carboxyl group, and even more preferably a halogen atom.
<化合物(I)>
 本発明の化合物(I)は、下記式(I):
Figure JPOXMLDOC01-appb-C000035
で表される。化合物(I)は、上述の通り、C-アリールヒドロキシグリコキシド誘導体とも称され、SGLT-2阻害薬の中間体として好適に使用される。
<Compound (I)>
The compound (I) of the present invention has the following formula (I):
Figure JPOXMLDOC01-appb-C000035
It is represented by. As mentioned above, the compound (I) is also referred to as a C-aryl hydroxyglycoxide derivative and is preferably used as an intermediate of an SGLT-2 inhibitor.
 式(I)において、R及びRは、それぞれ独立して、水酸基保護基を表し、R及びRは、それぞれ独立して、水酸基保護基又は水素原子を表す。 In formula (I), R 1 and R 2 each independently represent a hydroxyl group-protecting group, and R 3 and R 4 each independently represent a hydroxyl group-protecting group or a hydrogen atom.
 R及びRで表される水酸基保護基は、同一であっても異なってもよいが、水酸基保護基の効率的な導入及び除去を勘案すれば、同一であることが好ましい。 The hydroxyl-protecting groups represented by R 1 and R 2 may be the same or different, but are preferably the same in consideration of efficient introduction and removal of the hydroxyl-protecting group.
 R及びRで表される水酸基保護基は、特に限定されないが、例えば、エステル型保護基、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基、アルキルオキシアルキル型保護基、シリル型保護基、オキシカルボニル型保護基等が挙げられる。これらの保護基は前記と同義である。 The hydroxyl-protecting group represented by R 1 and R 2 is not particularly limited, and examples thereof include ester-type protecting groups, arylalkyl-type protecting groups, alkyl-type protecting groups, arylalkyloxyalkyl-type protecting groups, alkyloxyalkyl-type protecting groups. Group, a silyl type protecting group, an oxycarbonyl type protecting group and the like. These protecting groups are as defined above.
 R及びRで表される水酸基保護基は、好ましくは、メチルオキシメチル基、ベンジルオキシメチル基、アセチル基、プロパノイル基、ブタノイル基、イソプロパノイル基、ピバロイル基、ベンゾイル基、4-ニトロベンゾイル基、4-メチルオキシベンゾイル基、4-メチルベンゾイル基、4-tert-ブチルベンゾイル基、4-フルオロベンゾイル基、4-クロロベンゾイル基、4-ブロモベンゾイル基、4-フェニルベンゾイル基、4-メチルオキシカルボニルベンゾイル基、ベンジル基、1-フェニルエチル基、ジフェニルメチル基、1,1-ジフェニルエチル基、ナフチルメチル基、メチル基、tert-ブチル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基、tert-ブチルオキシカルボニルオキシ基又はベンジルオキシカルボニル基、より好ましくはベンジル基、アセチル基、ピバロイル基、トリメチルシリル基、tert-ブチルジメチルシリル基又はtert-ブチルジフェニルシリル基である。 The hydroxyl-protecting group represented by R 1 and R 2 is preferably methyloxymethyl group, benzyloxymethyl group, acetyl group, propanoyl group, butanoyl group, isopropanoyl group, pivaloyl group, benzoyl group, 4-nitro. Benzoyl group, 4-methyloxybenzoyl group, 4-methylbenzoyl group, 4-tert-butylbenzoyl group, 4-fluorobenzoyl group, 4-chlorobenzoyl group, 4-bromobenzoyl group, 4-phenylbenzoyl group, 4- Methyloxycarbonylbenzoyl group, benzyl group, 1-phenylethyl group, diphenylmethyl group, 1,1-diphenylethyl group, naphthylmethyl group, methyl group, tert-butyl group, trimethylsilyl group, triethylsilyl group, tert-butyldimethyl group Silyl group, tert-butyldiphenylsilyl group, tert-butyloxycarbonyloxy group or benzyloxycarbonyl group, more preferably benzyl group, acetyl group, pivaloyl group, trimethylsilyl group, tert-butyldimethylsilyl group or tert-butyldiphenylsilyl It is a base.
 式(I)において、R及びRで表される官能基は、水素原子であってもよい。しかしながら、式(I)の6員環を効率的に形成する観点からは、R及びRで表される官能基は、水酸基保護基であることが好ましい。 In the formula (I), the functional groups represented by R 3 and R 4 may be hydrogen atoms. However, from the viewpoint of efficiently forming the 6-membered ring of the formula (I), the functional groups represented by R 3 and R 4 are preferably hydroxyl group-protecting groups.
 R及びRで表される水酸基保護基は、Rで表される水酸基保護基又はRで表される水酸基保護基と同一であっても異なっていてもよいが、効率的な保護基の導入及び除去の観点からは、R及びRで表される水酸基保護基と同一であることが好ましい。 The hydroxyl protecting group represented by R 3 and R 4 may be the same as or different from the hydroxyl protecting group represented by R 1 or the hydroxyl protecting group represented by R 2 , but is an effective protective group. From the viewpoint of introducing and removing a group, it is preferably the same as the hydroxyl protecting group represented by R 1 and R 2 .
 Arで表される有機基は、1個以上の置換基を有していてもよい芳香族炭化水素環基又は1個以上の置換基を有していてもよい芳香族複素環基を、式(I)中のオキサン環と結合する官能基として含む限り特に限定されない。 The organic group represented by Ar is an aromatic hydrocarbon ring group which may have one or more substituents or an aromatic heterocyclic group which may have one or more substituents. There is no particular limitation as long as it is contained as a functional group that bonds to the oxane ring in (I).
 一実施形態において、Arで表される有機基は、1個以上の置換基を有していてもよい芳香族炭化水素環基であるか、又は、1個以上の置換基を有していてもよい芳香族炭化水素環基を式(I)中のオキサン環の炭素原子と結合する官能基として含む。 In one embodiment, the organic group represented by Ar is an aromatic hydrocarbon ring group which may have one or more substituents, or has one or more substituents. The aromatic hydrocarbon ring group may be contained as a functional group bonded to the carbon atom of the oxane ring in the formula (I).
 別の実施形態において、Arで表される有機基は、1個以上の置換基を有していてもよい芳香族複素環基であるか、又は、1個以上の置換基を有していてもよい芳香族炭化水素環基を式(I)中のオキサン環の炭素原子と結合する官能基として含む。 In another embodiment, the organic group represented by Ar is an aromatic heterocyclic group which may have one or more substituents, or has one or more substituents. The aromatic hydrocarbon ring group may be contained as a functional group bonded to the carbon atom of the oxane ring in the formula (I).
 1個以上の置換基を有していてもよい芳香族炭化水素環基を式(I)中のオキサン環の炭素原子と結合する官能基として含む有機基は、例えば、下記式で表すことができる。
Figure JPOXMLDOC01-appb-C000036
The organic group containing an aromatic hydrocarbon ring group which may have one or more substituents as a functional group bonded to the carbon atom of the oxane ring in the formula (I) is represented by the following formula, for example. it can.
Figure JPOXMLDOC01-appb-C000036
 上記式において、Jは、1個以上の置換基を有していてもよい芳香族炭化水素環基を表し、Jは、1個以上の置換基を有していてもよい脂肪族炭化水素基を表し、Jは、1個以上の置換基を有していてもよい芳香族炭化水素環基、1個以上の置換基を有していてもよい脂肪族複素環基又は1個以上の置換基を有していてもよい芳香族複素環基を表し、(*)は式(I)中のオキサン環の炭素原子と結合する結合手を表す。 In the above formula, J 1 represents an aromatic hydrocarbon ring group which may have one or more substituents, and J 2 represents an aliphatic hydrocarbon group which may have one or more substituents. Represents a hydrogen group, J 3 is an aromatic hydrocarbon ring group optionally having one or more substituents, an aliphatic heterocyclic group optionally having one or more substituents, or one The aromatic heterocyclic group which may have the above substituents is represented, and (*) represents a bond which is bonded to the carbon atom of the oxane ring in the formula (I).
 一実施形態において、Jは、無置換の芳香族炭化水素環基であり、Jは、無置換の脂肪族炭化水素基である。 In one embodiment, J 1 is an unsubstituted aromatic hydrocarbon ring group and J 2 is an unsubstituted aliphatic hydrocarbon group.
 別の実施形態において、Jは、無置換の芳香族炭化水素環基であり、Jは、1個以上の置換基を有する脂肪族炭化水素基である。 In another embodiment, J 1 is an unsubstituted aromatic hydrocarbon ring group and J 2 is an aliphatic hydrocarbon group having one or more substituents.
 別の実施形態において、Jは、1個以上の置換基を有する芳香族炭化水素環基であり、Jは、無置換の脂肪族炭化水素基である。 In another embodiment, J 1 is an aromatic hydrocarbon ring group having one or more substituents and J 2 is an unsubstituted aliphatic hydrocarbon group.
 別の実施形態において、Jは、1個以上の置換基を有する芳香族炭化水素環基であり、Jは、1個以上の置換基を有する脂肪族炭化水素基である。 In another embodiment, J 1 is an aromatic hydrocarbon ring group having one or more substituents and J 2 is an aliphatic hydrocarbon group having one or more substituents.
 一実施形態において、Jは、無置換の芳香族炭化水素環基である。この実施形態は、J及びJに関する上記実施形態と組み合わせることができる。 In one embodiment, J 3 is an unsubstituted aromatic hydrocarbon ring group. This embodiment can be combined with the above embodiments for J 1 and J 2 .
 別の実施形態において、Jは、1個以上の置換基を有する芳香族炭化水素環基である。この実施形態は、J及びJに関する上記実施形態と組み合わせることができる。 In another embodiment, J 3 is an aromatic hydrocarbon ring group having one or more substituents. This embodiment can be combined with the above embodiments for J 1 and J 2 .
 別の実施形態において、Jは、無置換の脂肪族複素環基である。この実施形態は、J及びJに関する上記実施形態と組み合わせることができる。 In another embodiment, J 3 is an unsubstituted aliphatic heterocyclic group. This embodiment can be combined with the above embodiments for J 1 and J 2 .
 別の実施形態において、Jは、1個以上の置換基を有する脂肪族複素環基である。この実施形態は、J及びJに関する上記実施形態と組み合わせることができる。 In another embodiment, J 3 is an aliphatic heterocyclic group having one or more substituents. This embodiment can be combined with the above embodiments for J 1 and J 2 .
 別の実施形態において、Jは、無置換の芳香族複素環基である。この実施形態は、J及びJに関する上記実施形態と組み合わせることができる。 In another embodiment, J 3 is an unsubstituted aromatic heterocyclic group. This embodiment can be combined with the above embodiments for J 1 and J 2 .
 別の実施形態において、Jは、1個以上の置換基を有する芳香族複素環基である。この実施形態は、J及びJに関する上記実施形態と組み合わせることができる。 In another embodiment, J 3 is an aromatic heterocyclic group having one or more substituents. This embodiment can be combined with the above embodiments for J 1 and J 2 .
 Jで表される脂肪族炭化水素基が1個以上の置換基を有する実施形態において、1個以上の置換基は、それぞれ独立して、例えば、置換基群A~Mから選択することができる。Jで表される脂肪族炭化水素基が有する1個以上の置換基は、それぞれ独立して、例えば、ハロゲン原子、ニトロ基、シアノ基、オキソ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アリール基、脂肪族複素環基、ヘテロアリール基、アルキルアリール基、アルキル脂肪族複素環基、アルキルヘテロアリール基、アリールアルキル基、脂肪族複素環アルキル基、ヘテロアリールアルキル基、アルキルオキシ基、アリールオキシ基、脂肪族複素環オキシ基、ヘテロアリールオキシ基、アルキルアリールオキシ基、アルキル脂肪族複素環オキシ基、アルキルヘテロアリールオキシ基、アリールアルキルオキシ基、脂肪族複素環アルキルオキシ基、ヘテロアリールアルキルオキシ基、アルキルチオ基、アリールチオ基、脂肪族複素環チオ基、ヘテロアリールチオ基、アルキルアリールチオ基、アルキル脂肪族複素環チオ基、アルキルヘテロアリールチオ基、アリールアルキルチオ基、脂肪族複素環アルキルチオ基、ヘテロアリールアルキルチオ基、アルキルカルボニル基、アリールカルボニル基、脂肪族複素環カルボニル基、ヘテロアリールカルボニル基、アルキルアリールカルボニル基、アルキル脂肪族複素環カルボニル基、アルキルヘテロアリールカルボニル基、アリールアルキルカルボニル基、脂肪族複素環アルキルカルボニル基、ヘテロアリールアルキルカルボニル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、脂肪族複素環オキシカルボニル基、ヘテロアリールオキシカルボニル基、アルキルアリールオキシカルボニル基、アルキル脂肪族複素環オキシカルボニル基、アルキルヘテロアリールオキシカルボニル基、アリールアルキルオキシカルボニル基、脂肪族複素環アルキルオキシカルボニル基及びヘテロアリールアルキルオキシカルボニル基から選択することができる。1個以上の置換基は、それぞれ独立して、ハロゲン原子、ニトロ基、シアノ基、オキソ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アルキルオキシ基、アルキルチオ基、アルキルカルボニル基及びアルキルオキシカルボニル基から選択されることが好ましい。なお、Jで表される脂肪族炭化水素基が直鎖状又は分岐鎖状の脂肪族炭化水素基である場合、直鎖状又は分岐鎖状の脂肪族炭化水素基は、環状の脂肪族炭化水素基(例えば、シクロアルキル基、シクロアルケニル基、シクロアルキニル基等)を置換基として有し得る。 In the embodiment where the aliphatic hydrocarbon group represented by J 2 has one or more substituents, the one or more substituents may be independently selected from, for example, the substituent groups A to M. it can. The one or more substituents contained in the aliphatic hydrocarbon group represented by J 2 are each independently, for example, a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, or a protected group. Optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl Group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkylaliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group , Aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryloxy group, alkylaliphatic heterocyclic oxy group, alkylheteroaryloxy group, arylalkyloxy group, aliphatic heterocyclic alkyloxy group, hetero Arylalkyloxy group, alkylthio group, arylthio group, aliphatic heterocyclic thio group, heteroarylthio group, alkylarylthio group, alkylaliphatic heterocyclic thio group, alkylheteroarylthio group, arylalkylthio group, aliphatic heterocycle Alkylthio group, heteroarylalkylthio group, alkylcarbonyl group, arylcarbonyl group, aliphatic heterocyclic carbonyl group, heteroarylcarbonyl group, alkylarylcarbonyl group, alkylaliphatic heterocyclic carbonyl group, alkylheteroarylcarbonyl group, arylalkylcarbonyl Group, aliphatic heterocyclic alkylcarbonyl group, heteroarylalkylcarbonyl group, alkyloxycarbonyl group, aryloxycarbonyl group, aliphatic heterocyclic oxycarbonyl group, heteroaryloxycarbonyl group, alkylaryloxycarbonyl group, alkylaliphatic heterocycle It can be selected from a ring oxycarbonyl group, an alkylheteroaryloxycarbonyl group, an arylalkyloxycarbonyl group, an aliphatic heterocyclic alkyloxycarbonyl group and a heteroarylalkyloxycarbonyl group. The one or more substituents are each independently a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, an optionally protected thiol group, or an optionally protected amino group. An optionally protected formyl group, an optionally protected carboxyl group, an optionally protected carbamoyl group, an optionally protected sulfonyl group, an alkyloxy group, an alkylthio group, an alkylcarbonyl group and an alkyloxy group. It is preferably selected from carbonyl groups. In addition, when the aliphatic hydrocarbon group represented by J 2 is a linear or branched aliphatic hydrocarbon group, the linear or branched aliphatic hydrocarbon group is a cyclic aliphatic group. It may have a hydrocarbon group (for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.) as a substituent.
 Jで表される芳香族炭化水素環基及び/又はJで表される芳香族炭化水素環基、脂肪族複素環基もしくは芳香族複素環基が1個以上の置換基を有する実施形態において、1個以上の置換基は、それぞれ独立して、例えば、置換基群A~Mから選択することができる。Jで表される芳香族炭化水素環基及び/又はJで表される芳香族炭化水素環基、脂肪族複素環基もしくは芳香族複素環基が有する1個以上の置換基は、それぞれ独立して、例えば、ハロゲン原子、ニトロ基、シアノ基、オキソ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アルキル基、アリール基、脂肪族複素環基、ヘテロアリール基、アルキルアリール基、アルキル脂肪族複素環基、アルキルヘテロアリール基、アリールアルキル基、脂肪族複素環アルキル基、ヘテロアリールアルキル基、アルキルオキシ基、アリールオキシ基、脂肪族複素環オキシ基、ヘテロアリールオキシ基、アルキルアリールオキシ基、アルキル脂肪族複素環オキシ基、アルキルヘテロアリールオキシ基、アリールアルキルオキシ基、脂肪族複素環アルキルオキシ基、ヘテロアリールアルキルオキシ基、アルキルチオ基、アリールチオ基、脂肪族複素環チオ基、ヘテロアリールチオ基、アルキルアリールチオ基、アルキル脂肪族複素環チオ基、アルキルヘテロアリールチオ基、アリールアルキルチオ基、脂肪族複素環アルキルチオ基、ヘテロアリールアルキルチオ基、アルキルカルボニル基、アリールカルボニル基、脂肪族複素環カルボニル基、ヘテロアリールカルボニル基、アルキルアリールカルボニル基、アルキル脂肪族複素環カルボニル基、アルキルヘテロアリールカルボニル基、アリールアルキルカルボニル基、脂肪族複素環アルキルカルボニル基、ヘテロアリールアルキルカルボニル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、脂肪族複素環オキシカルボニル基、ヘテロアリールオキシカルボニル基、アルキルアリールオキシカルボニル基、アルキル脂肪族複素環オキシカルボニル基、アルキルヘテロアリールオキシカルボニル基、アリールアルキルオキシカルボニル基、脂肪族複素環アルキルオキシカルボニル基及びヘテロアリールアルキルオキシカルボニル基から選択することができる。 An embodiment in which the aromatic hydrocarbon ring group represented by J 1 and/or the aromatic hydrocarbon ring group represented by J 3 , the aliphatic heterocyclic group or the aromatic heterocyclic group has one or more substituents. In, the one or more substituents can be independently selected, for example, from the substituent groups A to M. The aromatic hydrocarbon ring group represented by J 1 and/or the aromatic hydrocarbon ring group represented by J 3 , the aliphatic heterocyclic group or the aromatic heterocyclic group has one or more substituents, respectively, Independently, for example, a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, an optionally protected thiol group, an optionally protected amino group, or an optionally protected Formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl group, alkyl group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, Alkyl aliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group, aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryl Oxy group, alkylaliphatic heterocyclic oxy group, alkylheteroaryloxy group, arylalkyloxy group, aliphatic heterocyclic alkyloxy group, heteroarylalkyloxy group, alkylthio group, arylthio group, aliphatic heterocyclic thio group, hetero Arylthio group, alkylarylthio group, alkylaliphatic heterocyclic thio group, alkylheteroarylthio group, arylalkylthio group, aliphatic heterocyclic alkylthio group, heteroarylalkylthio group, alkylcarbonyl group, arylcarbonyl group, aliphatic heterocycle Ring carbonyl group, heteroarylcarbonyl group, alkylarylcarbonyl group, alkylaliphatic heterocyclic carbonyl group, alkylheteroarylcarbonyl group, arylalkylcarbonyl group, aliphatic heterocyclic alkylcarbonyl group, heteroarylalkylcarbonyl group, alkyloxycarbonyl Group, aryloxycarbonyl group, aliphatic heterocyclic oxycarbonyl group, heteroaryloxycarbonyl group, alkylaryloxycarbonyl group, alkylaliphatic heterocyclic oxycarbonyl group, alkylheteroaryloxycarbonyl group, arylalkyloxycarbonyl group, fat It can be selected from group heterocyclic alkyloxycarbonyl groups and heteroarylalkyloxycarbonyl groups.
 1個以上の置換基を有していてもよい芳香族複素環基を式(I)中のオキサン環の炭素原子と結合する官能基として含む有機基は、例えば、下記式で表すことができる。
Figure JPOXMLDOC01-appb-C000037
The organic group containing an aromatic heterocyclic group which may have one or more substituents as a functional group bonding to the carbon atom of the oxane ring in the formula (I) can be represented by, for example, the following formula. ..
Figure JPOXMLDOC01-appb-C000037
 上記式において、Kは、1個以上の置換基を有していてもよい芳香族複素環基を表し、Kは、1個以上の置換基を有していてもよい脂肪族炭化水素基を表し、Kは、1個以上の置換基を有していてもよい芳香族炭化水素環基、1個以上の置換基を有していてもよい脂肪族複素環基又は1個以上の置換基を有していてもよい芳香族複素環基を表し、(*)は式(I)中のカルボニル基の炭素原子と結合する結合手を表す。 In the above formula, K 1 represents an aromatic heterocyclic group which may have one or more substituents, and K 2 represents an aliphatic hydrocarbon which may have one or more substituents. Represents a group, K 3 is an aromatic hydrocarbon ring group optionally having one or more substituents, an aliphatic heterocyclic group optionally having one or more substituents, or one or more Represents an optionally substituted aromatic heterocyclic group, and (*) represents a bond that bonds to the carbon atom of the carbonyl group in formula (I).
 一実施形態において、Kは、無置換の芳香族複素環基であり、Kは、無置換の脂肪族炭化水素基である。 In one embodiment, K 1 is an unsubstituted aromatic heterocyclic group and K 2 is an unsubstituted aliphatic hydrocarbon group.
 別の実施形態において、Kは、無置換の芳香族複素環基であり、Kは、1個以上の置換基を有する脂肪族炭化水素基である。 In another embodiment, K 1 is an unsubstituted aromatic heterocyclic group and K 2 is an aliphatic hydrocarbon group having one or more substituents.
 別の実施形態において、Kは、1個以上の置換基を有する芳香族複素環基であり、Kは、無置換の脂肪族炭化水素基である。 In another embodiment, K 1 is an aromatic heterocyclic group having one or more substituents and K 2 is an unsubstituted aliphatic hydrocarbon group.
 別の実施形態において、Kは、1個以上の置換基を有する芳香族複素環基であり、Kは、1個以上の置換基を有する脂肪族炭化水素基である。 In another embodiment, K 1 is an aromatic heterocyclic group having one or more substituents and K 2 is an aliphatic hydrocarbon group having one or more substituents.
 一実施形態において、Kは、無置換の芳香族炭化水素環基である。この実施形態は、K及びKに関する上記実施形態と組み合わせることができる。 In one embodiment, K 3 is an unsubstituted aromatic hydrocarbon ring group. This embodiment can be combined with the above embodiments for K 1 and K 2 .
 別の実施形態において、Kは、1個以上の置換基を有する芳香族炭化水素環基である。この実施形態は、K及びKに関する上記実施形態と組み合わせることができる。 In another embodiment, K 3 is an aromatic hydrocarbon ring group having one or more substituents. This embodiment can be combined with the above embodiments for K 1 and K 2 .
 別の実施形態において、Kは、無置換の脂肪族複素環基である。この実施形態は、K及びKに関する上記実施形態と組み合わせることができる。 In another embodiment, K 3 is an unsubstituted aliphatic heterocyclic group. This embodiment can be combined with the above embodiments for K 1 and K 2 .
 別の実施形態において、Kは、1個以上の置換基を有する脂肪族複素環基である。この実施形態は、K及びKに関する上記実施形態と組み合わせることができる。 In another embodiment, K 3 is an aliphatic heterocyclic group having one or more substituents. This embodiment can be combined with the above embodiments for K 1 and K 2 .
 別の実施形態において、Kは、無置換の芳香族複素環基である。この実施形態は、K及びKに関する上記実施形態と組み合わせることができる。 In another embodiment, K 3 is an unsubstituted aromatic heterocyclic group. This embodiment can be combined with the above embodiments for K 1 and K 2 .
 別の実施形態において、Kは、1個以上の置換基を有する芳香族複素環基である。この実施形態は、K及びKに関する上記実施形態と組み合わせることができる。 In another embodiment, K 3 is an aromatic heterocyclic group having one or more substituents. This embodiment can be combined with the above embodiments for K 1 and K 2 .
 Kで表される脂肪族炭化水素基が1個以上の置換基を有する実施形態において、1個以上の置換基は、それぞれ独立して、例えば、置換基群A~Mから選択することができる。Kで表される脂肪族炭化水素基が有する1個以上の置換基は、それぞれ独立して、例えば、ハロゲン原子、ニトロ基、シアノ基、オキソ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アリール基、脂肪族複素環基、ヘテロアリール基、アルキルアリール基、アルキル脂肪族複素環基、アルキルヘテロアリール基、アリールアルキル基、脂肪族複素環アルキル基、ヘテロアリールアルキル基、アルキルオキシ基、アリールオキシ基、脂肪族複素環オキシ基、ヘテロアリールオキシ基、アルキルアリールオキシ基、アルキル脂肪族複素環オキシ基、アルキルヘテロアリールオキシ基、アリールアルキルオキシ基、脂肪族複素環アルキルオキシ基、ヘテロアリールアルキルオキシ基、アルキルチオ基、アリールチオ基、脂肪族複素環チオ基、ヘテロアリールチオ基、アルキルアリールチオ基、アルキル脂肪族複素環チオ基、アルキルヘテロアリールチオ基、アリールアルキルチオ基、脂肪族複素環アルキルチオ基、ヘテロアリールアルキルチオ基、アルキルカルボニル基、アリールカルボニル基、脂肪族複素環カルボニル基、ヘテロアリールカルボニル基、アルキルアリールカルボニル基、アルキル脂肪族複素環カルボニル基、アルキルヘテロアリールカルボニル基、アリールアルキルカルボニル基、脂肪族複素環アルキルカルボニル基、ヘテロアリールアルキルカルボニル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、脂肪族複素環オキシカルボニル基、ヘテロアリールオキシカルボニル基、アルキルアリールオキシカルボニル基、アルキル脂肪族複素環オキシカルボニル基、アルキルヘテロアリールオキシカルボニル基、アリールアルキルオキシカルボニル基、脂肪族複素環アルキルオキシカルボニル基及びヘテロアリールアルキルオキシカルボニル基から選択することができる。1個以上の置換基は、それぞれ独立して、ハロゲン原子、ニトロ基、シアノ基、オキソ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アルキルオキシ基、アルキルチオ基、アルキルカルボニル基及びアルキルオキシカルボニル基から選択されることが好ましい。なお、Kで表される脂肪族炭化水素基が直鎖状又は分岐鎖状の脂肪族炭化水素基である場合、直鎖状又は分岐鎖状の脂肪族炭化水素基は、環状の脂肪族炭化水素基(例えば、シクロアルキル基、シクロアルケニル基、シクロアルキニル基等)を置換基として有し得る。 In the embodiment where the aliphatic hydrocarbon group represented by K 2 has one or more substituents, the one or more substituents may be independently selected from, for example, the substituent groups A to M. it can. The one or more substituents contained in the aliphatic hydrocarbon group represented by K 2 are each independently, for example, a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, or a protected group. Optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl Group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkylaliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group , Aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryloxy group, alkylaliphatic heterocyclic oxy group, alkylheteroaryloxy group, arylalkyloxy group, aliphatic heterocyclic alkyloxy group, hetero Arylalkyloxy group, alkylthio group, arylthio group, aliphatic heterocyclic thio group, heteroarylthio group, alkylarylthio group, alkylaliphatic heterocyclic thio group, alkylheteroarylthio group, arylalkylthio group, aliphatic heterocycle Alkylthio group, heteroarylalkylthio group, alkylcarbonyl group, arylcarbonyl group, aliphatic heterocyclic carbonyl group, heteroarylcarbonyl group, alkylarylcarbonyl group, alkylaliphatic heterocyclic carbonyl group, alkylheteroarylcarbonyl group, arylalkylcarbonyl Group, aliphatic heterocyclic alkylcarbonyl group, heteroarylalkylcarbonyl group, alkyloxycarbonyl group, aryloxycarbonyl group, aliphatic heterocyclic oxycarbonyl group, heteroaryloxycarbonyl group, alkylaryloxycarbonyl group, alkylaliphatic heterocycle It can be selected from a ring oxycarbonyl group, an alkylheteroaryloxycarbonyl group, an arylalkyloxycarbonyl group, an aliphatic heterocyclic alkyloxycarbonyl group and a heteroarylalkyloxycarbonyl group. The one or more substituents are each independently a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, an optionally protected thiol group, or an optionally protected amino group. An optionally protected formyl group, an optionally protected carboxyl group, an optionally protected carbamoyl group, an optionally protected sulfonyl group, an alkyloxy group, an alkylthio group, an alkylcarbonyl group and an alkyloxy group. It is preferably selected from carbonyl groups. In addition, when the aliphatic hydrocarbon group represented by K 2 is a linear or branched aliphatic hydrocarbon group, the linear or branched aliphatic hydrocarbon group is a cyclic aliphatic hydrocarbon group. It may have a hydrocarbon group (for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.) as a substituent.
 Kで表される芳香族複素環基及び/又はKで表される芳香族炭化水素環基、脂肪族複素環基もしくは芳香族複素環基が1個以上の置換基を有する実施形態において、1個以上の置換基は、それぞれ独立して、例えば、置換基群A~Mから選択することができる。Kで表される芳香族複素環基及び/又はKで表される芳香族炭化水素環基、脂肪族複素環基もしくは芳香族複素環基が有する1個以上の置換基は、それぞれ独立して、例えば、ハロゲン原子、ニトロ基、シアノ基、オキソ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アルキル基、アリール基、脂肪族複素環基、ヘテロアリール基、アルキルアリール基、アルキル脂肪族複素環基、アルキルヘテロアリール基、アリールアルキル基、脂肪族複素環アルキル基、ヘテロアリールアルキル基、アルキルオキシ基、アリールオキシ基、脂肪族複素環オキシ基、ヘテロアリールオキシ基、アルキルアリールオキシ基、アルキル脂肪族複素環オキシ基、アルキルヘテロアリールオキシ基、アリールアルキルオキシ基、脂肪族複素環アルキルオキシ基、ヘテロアリールアルキルオキシ基、アルキルチオ基、アリールチオ基、脂肪族複素環チオ基、ヘテロアリールチオ基、アルキルアリールチオ基、アルキル脂肪族複素環チオ基、アルキルヘテロアリールチオ基、アリールアルキルチオ基、脂肪族複素環アルキルチオ基、ヘテロアリールアルキルチオ基、アルキルカルボニル基、アリールカルボニル基、脂肪族複素環カルボニル基、ヘテロアリールカルボニル基、アルキルアリールカルボニル基、アルキル脂肪族複素環カルボニル基、アルキルヘテロアリールカルボニル基、アリールアルキルカルボニル基、脂肪族複素環アルキルカルボニル基、ヘテロアリールアルキルカルボニル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、脂肪族複素環オキシカルボニル基、ヘテロアリールオキシカルボニル基、アルキルアリールオキシカルボニル基、アルキル脂肪族複素環オキシカルボニル基、アルキルヘテロアリールオキシカルボニル基、アリールアルキルオキシカルボニル基、脂肪族複素環アルキルオキシカルボニル基及びヘテロアリールアルキルオキシカルボニル基から選択することができる。 In an embodiment in which the aromatic heterocyclic group represented by K 1 and/or the aromatic hydrocarbon cyclic group represented by K 3 , the aliphatic heterocyclic group or the aromatic heterocyclic group has one or more substituents. The one or more substituents can each be independently selected, for example, from the substituent groups A to M. The aromatic heterocyclic group represented by K 1 and/or the aromatic hydrocarbon ring group represented by K 3 , the aliphatic heterocyclic group, or the one or more substituents possessed by the aromatic heterocyclic group are each independently Then, for example, a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, an optionally protected thiol group, an optionally protected amino group, an optionally protected formyl Group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl group, alkyl group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkyl Aliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group, aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryloxy Group, alkylaliphatic heterocyclic oxy group, alkylheteroaryloxy group, arylalkyloxy group, aliphatic heterocyclic alkyloxy group, heteroarylalkyloxy group, alkylthio group, arylthio group, aliphatic heterocyclic thio group, heteroaryl Ruthio group, alkylarylthio group, alkylaliphatic heterocyclic thio group, alkylheteroarylthio group, arylalkylthio group, aliphatic heterocyclic alkylthio group, heteroarylalkylthio group, alkylcarbonyl group, arylcarbonyl group, aliphatic heterocycle Carbonyl group, heteroarylcarbonyl group, alkylarylcarbonyl group, alkylaliphatic heterocyclic carbonyl group, alkylheteroarylcarbonyl group, arylalkylcarbonyl group, aliphatic heterocyclic alkylcarbonyl group, heteroarylalkylcarbonyl group, alkyloxycarbonyl group , Aryloxycarbonyl group, aliphatic heterocyclic oxycarbonyl group, heteroaryloxycarbonyl group, alkylaryloxycarbonyl group, alkylaliphatic heterocyclic oxycarbonyl group, alkylheteroaryloxycarbonyl group, arylalkyloxycarbonyl group, aliphatic It can be selected from heterocyclic alkyloxycarbonyl groups and heteroarylalkyloxycarbonyl groups.
 Arで表される有機基に含まれる、式(I)中のオキサン環と結合する芳香族炭化水素環基又は芳香族複素環基は、好ましくは、炭素数6~14の芳香族炭化水素環基又は炭素数3~12の芳香族複素環基であり、より好ましくは、炭素数6~10の芳香族炭化水素環基又は炭素数3~8の芳香族複素環基であり、より一層好ましくは、フェニル基、チエニル基、ベンゾチオフェニル基、フリル基、ピロリル基、イミダゾリル基又はピリジル基であり、より一層好ましくはフェニル基、チエニル基又はベンゾチオフェニル基であり、より一層好ましくは、フェニル基である。 The aromatic hydrocarbon ring group or aromatic heterocyclic group bonded to the oxane ring in the formula (I) contained in the organic group represented by Ar is preferably an aromatic hydrocarbon ring having 6 to 14 carbon atoms. Group or an aromatic heterocyclic group having 3 to 12 carbon atoms, more preferably an aromatic hydrocarbon ring group having 6 to 10 carbon atoms or an aromatic heterocyclic group having 3 to 8 carbon atoms, and still more preferably Is a phenyl group, a thienyl group, a benzothiophenyl group, a furyl group, a pyrrolyl group, an imidazolyl group or a pyridyl group, more preferably a phenyl group, a thienyl group or a benzothiophenyl group, and even more preferably a phenyl group. It is a base.
 Arで表される有機基は、SGLT-2阻害薬又はその誘導体を製造する観点からは、SGLT-2阻害薬が有する芳香族炭化水素環基又は芳香族複素環基と同一であるか、当該芳香族炭化水素環基又は芳香族複素環基を誘導化した基であることが好ましい。 From the viewpoint of producing an SGLT-2 inhibitor or a derivative thereof, the organic group represented by Ar is the same as the aromatic hydrocarbon ring group or aromatic heterocyclic group contained in the SGLT-2 inhibitor, or It is preferably a group derived from an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
 ここで、カナグリフロジン(1-(β-D-グリコピラノシル)-4-メチル-3-[5-(4-フルオロフェニル)-2-チエニルメチル]ベンゼン)、エンパグリフロジン((1S)-1,5-アンヒドロ-1-C-{4-クロロ-3-[(4-{[(3S)-オキソラン-3-イル]オキシ}フェニル)メチル]フェニル}-D-グルシトール)、イプラグリフロジン((1S)-1,5-アンヒドロ-1-C-{3-[(1-ベンゾチオフェン-2-イル)メチル]-4-フルオロフェニル}-D-グルシトール―(2S)-ピロリジン-2-カルボン酸)及びダパグリフロジン((2S,3R,4R,5S,6R)-2-[4-クロロ-3-(4-エチルオキシベンジル)フェニル]-6-(ヒドロキシメチル)テトラヒドロ-2H-ピラン-3,4,5-チオール)をはじめとするSGLT-2阻害薬は、下記式(V)又は式(Va)で表される芳香族炭化水素環基又は芳香族複素環基を有している。 Here, canagliflozin (1-(β-D-glycopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene), empagliflozin ((1S)-1 ,5-anhydro-1-C-{4-chloro-3-[(4-{[(3S)-oxolan-3-yl]oxy}phenyl)methyl]phenyl}-D-glucitol), ipragliflozin ( (1S)-1,5-Anhydro-1-C-{3-[(1-benzothiophen-2-yl)methyl]-4-fluorophenyl}-D-glucitol-(2S)-pyrrolidine-2-carvone Acid) and dapagliflozin ((2S,3R,4R,5S,6R)-2-[4-chloro-3-(4-ethyloxybenzyl)phenyl]-6-(hydroxymethyl)tetrahydro-2H-pyran-3, 4,5-thiol) and other SGLT-2 inhibitors have an aromatic hydrocarbon ring group or aromatic heterocyclic group represented by the following formula (V) or formula (Va).
 したがって、一態様によれば、Arで表される有機基は、下記式(V):
Figure JPOXMLDOC01-appb-C000038
で表される。
Therefore, according to one embodiment, the organic group represented by Ar has the following formula (V):
Figure JPOXMLDOC01-appb-C000038
It is represented by.
 式(V)において、Rは、それぞれ独立して、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、アリールアルキルオキシ基、アリールアルケニルオキシ基及びアリールアルキニルオキシ基からなる群から選択される官能基を表し、前記群に含まれるアルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、アリールアルキルオキシ基、アリールアルケニルオキシ基及びアリールアルキニルオキシ基は各々、1個以上の置換基を有していてもよい。 In formula (V), R a is each independently a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an arylalkenyl group, an arylalkynyl group, an alkyloxy group, an alkenyloxy group, It represents a functional group selected from the group consisting of an alkynyloxy group, an aryloxy group, an arylalkyloxy group, an arylalkenyloxy group and an arylalkynyloxy group, and is an alkyl group, an alkenyl group, an alkynyl group or an aryl group included in the group. An arylalkyl group, an arylalkenyl group, an arylalkynyl group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, an aryloxy group, an arylalkyloxy group, an arylalkenyloxy group and an arylalkynyloxy group, each of which is 1 or more. It may have a substituent.
 式(V)において、Rで表される官能基は、それぞれ独立して、好ましくは、ハロゲン原子、炭素数1~20のアルキル基、炭素数6~14のアリール基、炭素数7~15のアリールアルキル基、炭素数1~20のアルキルオキシ基及び炭素数7~15のアリールアルキルオキシ基から選択され、より好ましくは、ハロゲン原子及び炭素数1~10のアルキル基から選択される。 In the formula (V), the functional groups represented by R a are preferably each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 14 carbon atoms, or 7 to 15 carbon atoms. Is selected from the group consisting of an arylalkyl group having 1 to 20 carbon atoms, an alkyloxy group having 1 to 20 carbon atoms and an arylalkyloxy group having 7 to 15 carbon atoms, and more preferably a halogen atom and an alkyl group having 1 to 10 carbon atoms.
 式(V)において、nは、0~4の整数を表す。nで表される整数は、好ましくは1~3であり、より好ましくは1又は2である。nが2以上である場合、n個のRは、同一であってもよいし、異なっていてもよい。 In the formula (V), n represents an integer of 0-4. The integer represented by n is preferably 1 to 3, and more preferably 1 or 2. When n is 2 or more, n R a s may be the same or different.
 式(V)において、Ar’は、1個以上の置換基を有していてもよい芳香族炭化水素環基、1個以上の置換基を有していてもよい脂肪族複素環基又は1個以上の置換基を有していてもよい芳香族複素環基を表す。Ar’は、好ましくは、1個以上の置換基を有していてもよい芳香族炭化水素環基又は1個以上の置換基を有していてもよい芳香族複素環基を表す。 In the formula (V), Ar′ represents an aromatic hydrocarbon ring group which may have one or more substituents, an aliphatic heterocyclic group which may have one or more substituents, or 1 Represents an aromatic heterocyclic group which may have one or more substituents. Ar' preferably represents an aromatic hydrocarbon ring group which may have one or more substituents or an aromatic heterocyclic group which may have one or more substituents.
 Ar’で表される官能基は、好ましくは、1個以上の置換基を有していてもよい炭素数6~14の芳香族炭化水素環基又は1個以上の置換基を有していてもよい炭素数3~12の芳香族複素環であり、より好ましくは、1個以上の置換基を有していてもよい炭素数6~14の芳香族炭化水素環基又は1個以上の置換基を有していてもよい炭素数3~12の芳香族複素環であり、より一層好ましくは1個以上の置換基を有していてもよいフェニル基、1個以上の置換基を有していてもよいチエニル基、1個以上の置換基を有していてもよいベンゾチオフェニル基、1個以上の置換基を有していてもよいフリル基、1個以上の置換基を有していてもよいピロリル基、1個以上の置換基を有していてもよいイミダゾリル基又は1個以上の置換基を有していてもよいピリジル基であり、より一層好ましくは、1個以上の置換基を有していてもよいフェニル基、1個以上の置換基を有していてもよいチエニル基又は1個以上の置換基を有していてもよいベンゾチオフェニル基である。 The functional group represented by Ar′ preferably has an aromatic hydrocarbon ring group having 6 to 14 carbon atoms which may have one or more substituents, or one or more substituents. Is an aromatic heterocycle having 3 to 12 carbon atoms, more preferably an aromatic hydrocarbon ring group having 6 to 14 carbon atoms which may have one or more substituents, or one or more substituents. An aromatic heterocycle having 3 to 12 carbon atoms which may have a group, more preferably a phenyl group which may have one or more substituents, and one or more substituents. Optionally a thienyl group, an optionally substituted benzothiophenyl group, an optionally substituted furyl group, an optionally substituted one or more substituents A pyrrolyl group which may have one or more, an imidazolyl group which may have one or more substituents, or a pyridyl group which may have one or more substituents, and more preferably one or more A phenyl group which may have a substituent, a thienyl group which may have one or more substituents, or a benzothiophenyl group which may have one or more substituents.
 Ar’で表される官能基が有する1個以上の置換基は、好ましくは、ハロゲン原子で置換されていてもよいフェニル基、炭素数1~5のアルキルオキシ基、脂肪族複素環オキシ基(例えば、テトラヒドロフラニルオキシ基等)等である。 The one or more substituents contained in the functional group represented by Ar′ are preferably a phenyl group which may be substituted with a halogen atom, an alkyloxy group having 1 to 5 carbon atoms, an aliphatic heterocyclic oxy group ( For example, a tetrahydrofuranyloxy group etc.) and the like.
 より好ましい態様によれば、式(I)において、Arで表される有機基は、下記式(Va)で表される。
Figure JPOXMLDOC01-appb-C000039
According to a more preferred embodiment, in formula (I), the organic group represented by Ar is represented by the following formula (Va).
Figure JPOXMLDOC01-appb-C000039
 Rで表される官能基は、前記と同義である。 The functional group represented by Ra is as defined above.
 式(V)及び式(Va)において、Ar’は、好ましくは、下記式(Va-I)、(Va-II)及び(Va-III)で表される官能基である。
Figure JPOXMLDOC01-appb-C000040
で表される。
In the formulas (V) and (Va), Ar′ is preferably a functional group represented by the following formulas (Va-I), (Va-II) and (Va-III).
Figure JPOXMLDOC01-appb-C000040
It is represented by.
 式(IVa-I)、(IVa-II)及び(IVa-III)において、Rは、それぞれ独立して、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基からなる群から選択される官能基を表し、前記群に含まれる脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環は各々、1個以上の置換基を有していてもよい。 In formulas (IVa-I), (IVa-II) and (IVa-III), R b is each independently an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group or an aromatic group. Represents a functional group selected from the group consisting of heterocyclic groups, wherein the aliphatic hydrocarbon group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocycle included in the group are each one or more. It may have a substituent.
 Rで表される官能基は、それぞれ独立して、1個以上の置換基を有していてもよい炭素数1~20のアルキル基、1個以上の置換基を有していてもよい炭素数2~20のアルケニル基、1個以上の置換基を有していてもよい炭素数2~20のアルキニル基、1個以上の置換基を有していてもよい炭素数6~14の芳香族炭化水素環基、1個以上の置換基を有していてもよい炭素数2~12の脂肪族複素環基及び1個以上の置換基を有していてもよい炭素数3~12の芳香族複素環基から選択されることが好ましく、1個以上の置換基を有していてもよい炭素数1~10のアルキル基、1個以上の置換基を有していてもよい炭素数2~10のアルケニル基、1個以上の置換基を有していてもよい炭素数2~10のアルキニル基、1個以上の置換基を有していてもよい炭素数6~10の芳香族炭化水素環基及び1個以上の置換基を有していてもよい炭素数2~5の脂肪族複素環基から選択されることがより好ましく、1個以上の置換基を有していてもよいフェニル基又は1個以上の置換基を有していてもよいテトラヒドロフラニル基であることがより一層好ましい。 The functional groups represented by R b are each independently an alkyl group having 1 to 20 carbon atoms, which may have one or more substituents, and one or more substituents. An alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have one or more substituents, and an alkynyl group having 6 to 14 carbon atoms which may have one or more substituents Aromatic hydrocarbon ring group, aliphatic heterocyclic group having 2 to 12 carbon atoms which may have one or more substituents, and 3 to 12 carbon atoms which may have one or more substituents Preferably, it is selected from the aromatic heterocyclic groups of, and an alkyl group having 1 to 10 carbon atoms which may have one or more substituents, and a carbon which may have one or more substituents. Alkenyl group having 2 to 10 carbon atoms, alkynyl group having 2 to 10 carbon atoms that may have one or more substituents, and fragrance having 6 to 10 carbon atoms that may have one or more substituents More preferably selected from an aromatic hydrocarbon ring group and an aliphatic heterocyclic group having 2 to 5 carbon atoms, which may have one or more substituents, and has one or more substituents. Is more preferably a phenyl group or a tetrahydrofuranyl group which may have one or more substituents.
 Rで表される官能基が有する1個以上の置換基は、それぞれ独立して、例えば、置換基群A~Mから選択することができる。Rで表される官能基が有する1個以上の置換基は、それぞれ独立して、例えば、ハロゲン原子、ニトロ基、シアノ基、オキソ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アルキル基、アリール基、脂肪族複素環基、ヘテロアリール基、アルキルアリール基、アルキル脂肪族複素環基、アルキルヘテロアリール基、アリールアルキル基、脂肪族複素環アルキル基、ヘテロアリールアルキル基、アルキルオキシ基、アリールオキシ基、脂肪族複素環オキシ基、ヘテロアリールオキシ基、アルキルアリールオキシ基、アルキル脂肪族複素環オキシ基、アルキルヘテロアリールオキシ基、アリールアルキルオキシ基、脂肪族複素環アルキルオキシ基、ヘテロアリールアルキルオキシ基、アルキルチオ基、アリールチオ基、脂肪族複素環チオ基、ヘテロアリールチオ基、アルキルアリールチオ基、アルキル脂肪族複素環チオ基、アルキルヘテロアリールチオ基、アリールアルキルチオ基、脂肪族複素環アルキルチオ基、ヘテロアリールアルキルチオ基、アルキルカルボニル基、アリールカルボニル基、脂肪族複素環カルボニル基、ヘテロアリールカルボニル基、アルキルアリールカルボニル基、アルキル脂肪族複素環カルボニル基、アルキルヘテロアリールカルボニル基、アリールアルキルカルボニル基、脂肪族複素環アルキルカルボニル基、ヘテロアリールアルキルカルボニル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、脂肪族複素環オキシカルボニル基、ヘテロアリールオキシカルボニル基、アルキルアリールオキシカルボニル基、アルキル脂肪族複素環オキシカルボニル基、アルキルヘテロアリールオキシカルボニル基、アリールアルキルオキシカルボニル基、脂肪族複素環アルキルオキシカルボニル基及びヘテロアリールアルキルオキシカルボニル基から選択することができる。1個以上の置換基は、それぞれ独立して、ハロゲン原子、ニトロ基、シアノ基、オキソ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アルキル基、アルキルオキシ基、アルキルチオ基、アルキルカルボニル基及びアルキルオキシカルボニル基から選択されることが好ましい。1個以上の置換基は、それぞれ独立して、ハロゲン原子、ニトロ基、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいホルミル基、保護されていてもよいアミノ基、保護されていてもよいカルボキシル基、保護されていてもよいスルホニル基及び炭素数1~10のアルキルオキシカルボニル基から選択されることがより好ましく、ハロゲン原子、アミノ基、ニトロ基、炭素数1~10のアルキルオキシ基及び炭素数1~10のアルキルオキシカルボニル基から選択されることがより一層好ましい。 The one or more substituents contained in the functional group represented by R b can be independently selected from, for example, the substituent groups A to M. The one or more substituents contained in the functional group represented by R b are each independently, for example, a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, or an optionally protected group. Good thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl group, alkyl Group, aryl group, aliphatic heterocyclic group, heteroaryl group, alkylaryl group, alkylaliphatic heterocyclic group, alkylheteroaryl group, arylalkyl group, aliphatic heterocyclic alkyl group, heteroarylalkyl group, alkyloxy group , Aryloxy group, aliphatic heterocyclic oxy group, heteroaryloxy group, alkylaryloxy group, alkylaliphatic heterocyclic oxy group, alkylheteroaryloxy group, arylalkyloxy group, aliphatic heterocyclic alkyloxy group, hetero Arylalkyloxy group, alkylthio group, arylthio group, aliphatic heterocyclic thio group, heteroarylthio group, alkylarylthio group, alkylaliphatic heterocyclic thio group, alkylheteroarylthio group, arylalkylthio group, aliphatic heterocycle Alkylthio group, heteroarylalkylthio group, alkylcarbonyl group, arylcarbonyl group, aliphatic heterocyclic carbonyl group, heteroarylcarbonyl group, alkylarylcarbonyl group, alkylaliphatic heterocyclic carbonyl group, alkylheteroarylcarbonyl group, arylalkylcarbonyl Group, aliphatic heterocyclic alkylcarbonyl group, heteroarylalkylcarbonyl group, alkyloxycarbonyl group, aryloxycarbonyl group, aliphatic heterocyclic oxycarbonyl group, heteroaryloxycarbonyl group, alkylaryloxycarbonyl group, alkylaliphatic heterocycle It can be selected from a ring oxycarbonyl group, an alkylheteroaryloxycarbonyl group, an arylalkyloxycarbonyl group, an aliphatic heterocyclic alkyloxycarbonyl group and a heteroarylalkyloxycarbonyl group. The one or more substituents are each independently a halogen atom, a nitro group, a cyano group, an oxo group, an optionally protected hydroxyl group, an optionally protected thiol group, an optionally protected amino group. , Optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected sulfonyl group, alkyl group, alkyloxy group, alkylthio group, alkylcarbonyl group And alkyloxycarbonyl groups are preferred. The one or more substituents are each independently a halogen atom, a nitro group, an optionally protected hydroxyl group, an optionally protected thiol group, an optionally protected formyl group, or an optionally protected formyl group. More preferably selected from a good amino group, an optionally protected carboxyl group, an optionally protected sulfonyl group and an alkyloxycarbonyl group having 1 to 10 carbon atoms, a halogen atom, an amino group, a nitro group, Even more preferably, it is selected from an alkyloxy group having 1 to 10 carbon atoms and an alkyloxycarbonyl group having 1 to 10 carbon atoms.
 式(Va-I)において、pは0~5の整数を表す。pで表される整数は、好ましくは0~3、より好ましくは0~2、より一層好ましくは0又は1である。式(Va-II)及び(Va-III)において、pで表される整数は、好ましくは0~5、より好ましくは0~3、より一層好ましくは0~2である。pが2以上である場合、p個のRは、同一であってもよいし、異なっていてもよい。 In the formula (Va-I), p represents an integer of 0-5. The integer represented by p is preferably 0 to 3, more preferably 0 to 2, and even more preferably 0 or 1. In formulas (Va-II) and (Va-III), the integer represented by p is preferably 0 to 5, more preferably 0 to 3, and even more preferably 0 to 2. When p is 2 or more, p R b s may be the same or different.
 式(Va-I)において、pは、好ましくは1であり、Rは、好ましくは、1個以上の置換基を有していてもよいフェニル基であり、より好ましくは、ハロゲン原子を有するフェニル基であり、より一層好ましくは、フッ素原子を有するフェニル基である。1個以上の置換基を有していてもよいフェニル基が結合している位置は、好ましくは、チオフェン環の2位である。ハロゲン原子を有するフェニル基において、ハロゲン原子が結合している位置は、好ましくは、ベンゼン環の4位である。 In formula (Va-I), p is preferably 1, R b is preferably a phenyl group optionally having one or more substituents, and more preferably has a halogen atom. It is a phenyl group, and more preferably a phenyl group having a fluorine atom. The position to which the phenyl group, which may have one or more substituents, is bonded is preferably the 2-position of the thiophene ring. In the phenyl group having a halogen atom, the position to which the halogen atom is bonded is preferably the 4-position of the benzene ring.
 式(Va-II)において、pは、好ましくは0である。 In the formula (Va-II), p is preferably 0.
 式(Va-III)において、pは、好ましくは1であり、Rは、好ましくは、1個以上の置換基を有していてもよいアルキル基又は1個以上の置換基を有していてもよい脂肪族複素環基である。1個以上の置換基を有していてもよいアルキル基は、好ましくは、炭素数1~3のアルキル基であり、より好ましくは、メチル基又はエチル基である。1個以上の置換基を有していてもよい脂肪族複素環基は、好ましくは、テトラヒドロフラニル基である。1個以上の置換基を有していてもよいアルキル基又は1個以上の置換基を有していてもよい脂肪族複素環基が結合している位置は、好ましくは、ベンゼン環の4位である。 In formula (Va-III), p is preferably 1 and R b is preferably an alkyl group optionally having one or more substituents or one or more substituents. It may be an aliphatic heterocyclic group. The alkyl group which may have one or more substituents is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group or an ethyl group. The aliphatic heterocyclic group which may have one or more substituents is preferably a tetrahydrofuranyl group. The position at which the alkyl group which may have one or more substituents or the aliphatic heterocyclic group which may have one or more substituents is bonded is preferably the 4-position of the benzene ring. Is.
 より好ましい別の態様によれば、式(I)において、Arで表される有機基は、下記(V-I-I)、(V-II-I)、(V-III-I)又は(V-III-II)で表される。
Figure JPOXMLDOC01-appb-C000041
According to another more preferred embodiment, in the formula (I), the organic group represented by Ar is the following (VI-I), (V-II-I), (V-III-I) or (V-III-I) V-III-II).
Figure JPOXMLDOC01-appb-C000041
<化合物(I)を製造する方法>
 本発明の化合物(I)を製造する方法は、以下の工程(a)及び工程(b)を含んでなることを特徴としている。
 工程(a):下記式(II):
Figure JPOXMLDOC01-appb-C000042
で表される化合物(II)と、
 下記式(III-I):
Figure JPOXMLDOC01-appb-C000043
で表される化合物(III-I)、及び、下記式(III-II):
Figure JPOXMLDOC01-appb-C000044
で表される化合物(III-II)
からなる群から選択される少なくとも1種の有機亜鉛化合物とを、
 ニッケル触媒及びパラジウム触媒から選択される1種以上の遷移金属触媒、又は、前記1種以上の遷移金属触媒と、前記1種以上の遷移金属触媒を担持する担体とを有する担持触媒の存在下で反応させて下記式(IV):
Figure JPOXMLDOC01-appb-C000045
で表される化合物(IV)を得る工程;
 工程(b):前記化合物(IV)におけるRで表される水酸基保護基を除去して前記化合物(I)を得る工程。
<Method for producing compound (I)>
The method for producing the compound (I) of the present invention is characterized by comprising the following step (a) and step (b).
Step (a): The following formula (II):
Figure JPOXMLDOC01-appb-C000042
A compound (II) represented by
The following formula (III-I):
Figure JPOXMLDOC01-appb-C000043
And a compound (III-I) represented by the following formula (III-II):
Figure JPOXMLDOC01-appb-C000044
Compound (III-II) represented by
At least one organozinc compound selected from the group consisting of:
In the presence of one or more transition metal catalysts selected from nickel catalysts and palladium catalysts, or a supported catalyst having one or more transition metal catalysts and a carrier supporting the one or more transition metal catalysts. After reaction, the following formula (IV):
Figure JPOXMLDOC01-appb-C000045
A step of obtaining a compound (IV) represented by:
Step (b): a step of removing the hydroxyl-protecting group represented by R 5 in the compound (IV) to obtain the compound (I).
 以下、工程(a)及び工程(b)を順に説明する。
<工程(a)>
Figure JPOXMLDOC01-appb-C000046
Hereinafter, the step (a) and the step (b) will be described in order.
<Step (a)>
Figure JPOXMLDOC01-appb-C000046
<化合物(II)>
 工程(a)においては、下記式(II):
Figure JPOXMLDOC01-appb-C000047
で表される化合物(II)を準備する。化合物(II)の準備工程の詳細は、工程(a-1)として後述する。
<Compound (II)>
In the step (a), the following formula (II):
Figure JPOXMLDOC01-appb-C000047
A compound (II) represented by is prepared. Details of the preparation step of compound (II) will be described later as step (a-1).
 Rで表される水酸基保護基は、式(I)の6員環を効率的に形成する観点から、Rで表される水酸基保護基又はRで表される水酸基保護基と同一のものを除くものとする。Rで表される水酸基保護基が除去されると水酸基を生じ、同一分子内のカルボニル基と反応して式(I)の環を形成しうる。したがって、Rで表される水酸基保護基を保持しつつRで表される水酸基保護基を選択的に除去できるようにRで表される水酸基保護基の種類を選択することが好ましい。 The hydroxyl protecting group represented by R 5 is the same as the hydroxyl protecting group represented by R 1 or R 2 from the viewpoint of efficiently forming the 6-membered ring of formula (I). Excluding items. When the hydroxyl-protecting group represented by R 5 is removed, a hydroxyl group is generated and can react with a carbonyl group in the same molecule to form a ring of formula (I). Thus, it is possible to select the type of hydroxyl-protecting group represented by R 5 to allow selective removal of the hydroxyl-protecting group represented by R 5 while maintaining the hydroxyl-protecting group represented by R 1 R 2 preferable.
 Rで表される水酸基保護基は、特に限定されないが、例えば、エステル型保護基、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基アリールアルキルアルキルオキシアルキル型保護基、シリル型保護基、オキシカルボニル型保護基あり、より好ましくはエステル型保護基、アリールアルキルオキシアルキル型保護基アルキルオキシアルキル型保護基、シリル型保護基、オキシカルボニル型保護基である。より具体的には、Rで表される水酸基保護基は、好ましくはメチルオキシメチル基、ベンジルオキシメチル基、アセチル基、プロパノイル基、ブタノイル基、イソプロパノイル基、ピバロイル基、ベンゾイル基、4-ニトロベンゾイル基、4-メチルオキシベンゾイル基、4-メチルベンゾイル基、4-tert-ブチルベンゾイル基、4-フルオロベンゾイル基、4-クロロベンゾイル基、4-ブロモベンゾイル基、4-フェニルベンゾイル基、4-メチルオキシカルボニルベンゾイル基、ベンジル基、1-フェニルエチル基、ジフェニルメチル基、1,1-ジフェニルエチル基、ナフチルメチル基、メチル基、tert-ブチル基、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基、tert-ブチルオキシカルボニルオキシ基、ベンジルオキシカルボニル基であり、より好ましくはメチル基、ベンジル基、アセチル基、ピバロイル基、トリメチルシリル基又はtert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基である。 The hydroxyl group-protecting group represented by R 5 is not particularly limited, and examples thereof include ester type protecting groups, arylalkyl type protecting groups, alkyl type protecting groups, arylalkyloxyalkyl type protecting groups, arylalkylalkyloxyalkyl type protecting groups, There are silyl type protecting groups and oxycarbonyl type protecting groups, and more preferred are ester type protecting groups, arylalkyloxyalkyl type protecting groups, alkyloxyalkyl type protecting groups, silyl type protecting groups, and oxycarbonyl type protecting groups. More specifically, the hydroxyl-protecting group represented by R 5 is preferably a methyloxymethyl group, a benzyloxymethyl group, an acetyl group, a propanoyl group, a butanoyl group, an isopropanoyl group, a pivaloyl group, a benzoyl group, 4 -Nitrobenzoyl group, 4-methyloxybenzoyl group, 4-methylbenzoyl group, 4-tert-butylbenzoyl group, 4-fluorobenzoyl group, 4-chlorobenzoyl group, 4-bromobenzoyl group, 4-phenylbenzoyl group, 4-methyloxycarbonylbenzoyl group, benzyl group, 1-phenylethyl group, diphenylmethyl group, 1,1-diphenylethyl group, naphthylmethyl group, methyl group, tert-butyl group, trimethylsilyl group, triethylsilyl group, tert- Butyldimethylsilyl group, tert-butyldiphenylsilyl group, tert-butyloxycarbonyloxy group, benzyloxycarbonyl group, more preferably methyl group, benzyl group, acetyl group, pivaloyl group, trimethylsilyl group or tert-butyldimethylsilyl group. A tert-butyldiphenylsilyl group.
 また、好ましい態様によれば、Rで表される水酸基保護基はエステル型保護基であり、Rで表される水酸基保護基及びRで表される水酸基保護基は、それぞれ独立して、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基、アルキルオキシアルキル型保護基、シリル型保護基及びオキシカルボニル型保護基アリールアルキルからなる群から選択されるものである。また、より好ましい態様によれば、Rで表される水酸基保護基はアセチル基又はピバロイル基であり、Rで表される水酸基保護基及びRで表される水酸基保護基は、それぞれ独立して、メチル基、ベンジル基、トリメチルシリル基又はtert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基である。 Further, according to a preferred embodiment, the hydroxyl protecting group represented by R 5 is an ester protecting group, and the hydroxyl protecting group represented by R 1 and the hydroxyl protecting group represented by R 2 are each independently , An arylalkyl protecting group, an alkyl protecting group, an arylalkyloxyalkyl protecting group, an alkyloxyalkyl protecting group, a silyl protecting group, and an oxycarbonyl protecting group arylalkyl. Further, according to a more preferred embodiment, the hydroxyl group protecting group represented by R 5 is an acetyl group or a pivaloyl group, and the hydroxyl group protecting group represented by R 1 and the hydroxyl group protecting group represented by R 2 are each independently And a methyl group, a benzyl group, a trimethylsilyl group, a tert-butyldimethylsilyl group, and a tert-butyldiphenylsilyl group.
 また、本発明の別の好ましい態様によれば、Rで表される水酸基保護基はシリル型保護基であり、Rで表される水酸基保護基及びRで表される水酸基保護基は、それぞれ独立して、エステル型保護基、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基アルキルオキシアルキル型保護基、シリル型保護基及びオキシカルボニル型保護基アリールアルキルからなる群から選択されるものである。また、より好ましい別の態様によれば、Rで表される水酸基保護基はトリメチルシリル基、tert-ブチルジメチルシリル基又はtert-ブチルジフェニルシリル基であり、Rで表される水酸基保護基及びRで表される水酸基保護基は、それぞれ独立して、メチル基、ベンジル基、アセチル基又はピバロイル基である。 Further, according to another preferred embodiment of the present invention, the hydroxyl protecting group represented by R 5 is a silyl type protecting group, and the hydroxyl protecting group represented by R 1 and the hydroxyl protecting group represented by R 2 are , Each independently consisting of an ester type protecting group, an arylalkyl type protecting group, an alkyl type protecting group, an arylalkyloxyalkyl type protecting group an alkyloxyalkyl type protecting group, a silyl type protecting group and an oxycarbonyl type protecting group arylalkyl. Is selected from the group. According to another more preferred embodiment, the hydroxyl group-protecting group represented by R 5 is a trimethylsilyl group, a tert-butyldimethylsilyl group or a tert-butyldiphenylsilyl group, and the hydroxyl-protecting group represented by R 1 and The hydroxyl protecting groups represented by R 2 are each independently a methyl group, a benzyl group, an acetyl group or a pivaloyl group.
 また、より一層効率的な式(I)の6員環形成の観点からは、Rで表される水酸基保護基は、R、R、R及びRで表される水酸基保護基と異なることが好ましい。 From the viewpoint of forming a 6-membered ring of formula (I) more efficiently, the hydroxyl-protecting group represented by R 5 is a hydroxyl-protecting group represented by R 1 , R 2 , R 3 and R 4. Is preferred.
 一態様によれば、Rで表される水酸基保護基はエステル型保護基であり、R、R、R及びRで表される水酸基保護基は、それぞれ独立して、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基、アルキルオキシアルキル型保護基、シリル型保護基及びオキシカルボニル型保護基からなる群から選択されるものである。また、より好ましい態様によれば、Rで表される水酸基保護基はアセチル基又はピバロイル基であり、R、R、R及びRで表される水酸基保護基は、それぞれ独立して、メチル基、ベンジル基、トリメチルシリル基又はtert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基からなる群から選択されるものである。 According to one embodiment, the hydroxyl protecting group represented by R 5 is an ester protecting group, and the hydroxyl protecting groups represented by R 1 , R 2 , R 3 and R 4 are each independently arylalkyl. Group, an alkyl-type protecting group, an arylalkyloxyalkyl-type protecting group, an alkyloxyalkyl-type protecting group, a silyl-type protecting group, and an oxycarbonyl-type protecting group. Moreover, according to a more preferred embodiment, the hydroxyl-protecting group represented by R 5 is an acetyl group or a pivaloyl group, and the hydroxyl-protecting groups represented by R 1 , R 2 , R 3 and R 4 are each independently And is selected from the group consisting of a methyl group, a benzyl group, a trimethylsilyl group, a tert-butyldimethylsilyl group, and a tert-butyldiphenylsilyl group.
 また、本発明の別の好ましい態様によれば、Rで表される水酸基保護基はシリル型保護基であり、R、R、R及びRで表される水酸基保護基は、それぞれ独立して、アリールアルキルオキシアルキル型保護基、アルキルオキシアルキル型保護基及びオキシカルボニル型保護基アリールアルキルからなる群から選択されるものである。また、より好ましい別の態様によれば、Rで表される水酸基保護基はトリメチルシリル基、tert-ブチルジメチルシリル基又はtert-ブチルジフェニルシリル基であり、R、R、R及びRで表される水酸基保護基は、それぞれ独立して、メチル基、ベンジル基、アセチル基及びピバロイル基らなる群から選択されるものである。 Further, according to another preferred embodiment of the present invention, the hydroxyl protecting group represented by R 5 is a silyl type protecting group, and the hydroxyl protecting group represented by R 1 , R 2 , R 3 and R 4 is Each of them is independently selected from the group consisting of an arylalkyloxyalkyl type protecting group, an alkyloxyalkyl type protecting group and an oxycarbonyl type protecting group arylalkyl. Further, according to another more preferable embodiment, the hydroxyl-protecting group represented by R 5 is a trimethylsilyl group, a tert-butyldimethylsilyl group or a tert-butyldiphenylsilyl group, and R 1 , R 2 , R 3 and R 3 The hydroxyl protecting group represented by 4 is independently selected from the group consisting of a methyl group, a benzyl group, an acetyl group and a pivaloyl group.
 式(II)において、Qは、1個以上の置換基を有していてもよい脂肪族炭化水素基、1個以上の置換基を有していてもよい芳香族炭化水素環基、1個以上の置換基を有していてもよい脂肪族複素環基又は1個以上の置換基を有していてもよい芳香族複素環基を、式(II)中の硫黄原子と結合する官能基として含む有機基を表す。 In the formula (II), Q is an aliphatic hydrocarbon group optionally having one or more substituents, an aromatic hydrocarbon ring group optionally having one or more substituents, one A functional group for bonding the above-mentioned aliphatic heterocyclic group optionally having substituents or aromatic heterocyclic group optionally having one or more substituents to the sulfur atom in the formula (II). Represents an organic group contained as.
 一実施形態において、Qで表される有機基は、1個以上の置換基を有していてもよい脂肪族炭化水素基であるか、又は、1個以上の置換基を有していてもよい脂肪族炭化水素基を式(II)中の硫黄原子と結合する官能基として含む。 In one embodiment, the organic group represented by Q is an aliphatic hydrocarbon group which may have one or more substituents, or has one or more substituents. It contains a good aliphatic hydrocarbon group as a functional group bonded to the sulfur atom in the formula (II).
 別の実施形態において、Qで表される有機基は、1個以上の置換基を有していてもよい芳香族炭化水素環基であるか、又は、1個以上の置換基を有していてもよい芳香族炭化水素環基を式(II)中の硫黄原子と結合する官能基として含む。 In another embodiment, the organic group represented by Q is an aromatic hydrocarbon ring group which may have one or more substituents, or has one or more substituents. And optionally contains an aromatic hydrocarbon ring group as a functional group bonded to the sulfur atom in the formula (II).
 別の実施形態において、Qで表される有機基は、1個以上の置換基を有していてもよい脂肪族複素環基であるか、又は、1個以上の置換基を有していてもよい脂肪族複素環基を式(II)中の硫黄原子と結合する官能基として含む。 In another embodiment, the organic group represented by Q is an aliphatic heterocyclic group which may have one or more substituents, or has one or more substituents. And an aliphatic heterocyclic group as a functional group bonded to the sulfur atom in the formula (II).
 別の実施形態において、Qで表される有機基は、1個以上の置換基を有していてもよい芳香族複素環基であるか、1個以上の置換基を有していてもよい芳香族複素環基を式(II)中の硫黄原子と結合する官能基として含む。 In another embodiment, the organic group represented by Q is an aromatic heterocyclic group which may have one or more substituents, or may have one or more substituents. An aromatic heterocyclic group is included as a functional group bonded to the sulfur atom in the formula (II).
 1個以上の置換基を有していてもよい脂肪族炭化水素基を式(II)中の硫黄原子と結合する官能基として含む有機基は、例えば、下記式:
Figure JPOXMLDOC01-appb-C000048
[式中、Lは、1個以上の置換基を有していてもよい脂肪族炭化水素基を表し、Lは、1個以上の置換基を有していてもよい芳香族炭化水素環基、1個以上の置換基を有していてもよい脂肪族複素環基又は1個以上の置換基を有していてもよい芳香族複素環基を表し、(*)は式(II)中の硫黄原子と結合する結合手を表す。]
で表すことができる。
Examples of the organic group containing an aliphatic hydrocarbon group which may have one or more substituents as a functional group bonding to the sulfur atom in the formula (II) include compounds represented by the following formula:
Figure JPOXMLDOC01-appb-C000048
[In the formula, L 1 represents an aliphatic hydrocarbon group which may have one or more substituents, and L 2 represents an aromatic hydrocarbon group which may have one or more substituents. Represents a cyclic group, an aliphatic heterocyclic group which may have one or more substituents, or an aromatic heterocyclic group which may have one or more substituents, and (*) represents the formula (II ) Represents a bond to be bonded to the sulfur atom. ]
Can be expressed as
 また、1個以上の置換基を有していてもよい脂肪族炭化水素基を式(II)中の硫黄原子と結合する官能基として含む有機基は、例えば、下記式:
Figure JPOXMLDOC01-appb-C000049
[式中、L及びLは、前記と同義であり、Lは、1個以上の置換基を有していてもよい脂肪族炭化水素基を表し、(*)は式(II)中の硫黄原子と結合する結合手を表す。]
で表すことができる。
Further, an organic group containing an aliphatic hydrocarbon group which may have one or more substituents as a functional group bonding to the sulfur atom in the formula (II) is, for example, the following formula:
Figure JPOXMLDOC01-appb-C000049
[In the formula, L 1 and L 2 have the same meanings as described above, L 3 represents an aliphatic hydrocarbon group which may have one or more substituents, and (*) represents formula (II). Represents a bond that bonds to the sulfur atom in. ]
Can be expressed as
 また、1個以上の置換基を有していてもよい脂肪族炭化水素基を式(II)中の硫黄原子と結合する官能基として含む有機基は、例えば、下記式:
Figure JPOXMLDOC01-appb-C000050
[式中、L、L及びLは、前記と同義であり、Lは、1個以上の置換基を有していてもよい芳香族炭化水素環基、1個以上の置換基を有していてもよい脂肪族複素環基又は1個以上の置換基を有していてもよい芳香族複素環基を表し、(*)は式(II)中の硫黄原子と結合する結合手を表す。]
で表すことができる。
Further, an organic group containing an aliphatic hydrocarbon group which may have one or more substituents as a functional group bonding to the sulfur atom in the formula (II) is, for example, the following formula:
Figure JPOXMLDOC01-appb-C000050
[In the formula, L 1 , L 2 and L 3 have the same meanings as described above, and L 4 is an aromatic hydrocarbon ring group which may have one or more substituents, and one or more substituents. Represents an aliphatic heterocyclic group which may have or an aromatic heterocyclic group which may have one or more substituents, and (*) is a bond which is bonded to the sulfur atom in the formula (II). Represents a hand. ]
Can be expressed as
 L又はLで表される脂肪族炭化水素基が有し得る1個以上の置換基は、それぞれ独立して、例えば置換基群A~M、好ましくは置換基群Aから選択することができる。L又はLで表される脂肪族炭化水素基が有し得る1個以上の置換基は、それぞれ独立して、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基及び保護されていてもよいスルホニル基から選択されることが好ましい。L又はLで表される脂肪族炭化水素基は、無置換であってもよい。なお、L及び/又はLで表される脂肪族炭化水素基が直鎖状又は分岐鎖状の脂肪族炭化水素基である場合、直鎖状又は分岐鎖状の脂肪族炭化水素基は、環状の脂肪族炭化水素基(例えば、シクロアルキル基、シクロアルケニル基、シクロアルキニル基等)を置換基として有し得る。 The one or more substituents which the aliphatic hydrocarbon group represented by L 1 or L 3 may have may be independently selected from, for example, the substituent groups A to M, preferably the substituent group A. it can. The one or more substituents that the aliphatic hydrocarbon group represented by L 1 or L 3 may have are each independently a halogen atom, an optionally protected hydroxyl group, or an optionally protected thiol group. Selected from an optionally protected amino group, an optionally protected formyl group, an optionally protected carboxyl group, an optionally protected carbamoyl group and an optionally protected sulfonyl group. Is preferred. The aliphatic hydrocarbon group represented by L 1 or L 3 may be unsubstituted. When the aliphatic hydrocarbon group represented by L 1 and/or L 3 is a linear or branched aliphatic hydrocarbon group, a linear or branched aliphatic hydrocarbon group is It may have a cyclic aliphatic hydrocarbon group (for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.) as a substituent.
 L又はLで表される芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基が有し得る1個以上の置換基は、例えば置換基群A~M、好ましくは置換基群A~D及びG、より好ましくは置換基群A、B及びGから選択することができる。L又はLで表される芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基が有し得る1個以上の置換基は、それぞれ独立して、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アルキル基、アルキルオキシ基、アリールオキシ基、アリールアルキルオキシ基、アルキルアリールアルキルオキシ基、ヘテロアリールオキシ基、ヘテロアリールアルキルオキシ基、アルキルヘテロアリールアルキルオキシ基、脂肪族複素環オキシ基、脂肪族複素環アルキルオキシ基及びアルキル脂肪族複素環アルキルオキシ基から選択されることが好ましい。L又はLで表される芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基は、無置換であってもよい。 The one or more substituents which the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by L 2 or L 4 may have are, for example, Substituent groups A to M, preferably substituted It can be selected from the groups A to D and G, more preferably the groups A, B and G of substituents. One or more substituents that the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by L 2 or L 4 may have are independently a halogen atom or a protected group. Optionally hydroxyl group, optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, Optionally protected sulfonyl group, alkyl group, alkyloxy group, aryloxy group, arylalkyloxy group, alkylarylalkyloxy group, heteroaryloxy group, heteroarylalkyloxy group, alkylheteroarylalkyloxy group, fat It is preferably selected from a group heterocyclic oxy group, an aliphatic heterocyclic alkyloxy group and an alkylaliphatic heterocyclic alkyloxy group. The aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by L 2 or L 4 may be unsubstituted.
 1個以上の置換基を有していてもよい芳香族炭化水素環基、1個以上の置換基を有していてもよい脂肪族複素環基、又は、1個以上の置換基を有していてもよい芳香族複素環基を式(II)中の硫黄原子と結合する官能基として含む有機基は、例えば、下記式:
Figure JPOXMLDOC01-appb-C000051
[式中、Mは、1個以上の置換基を有していてもよい芳香族炭化水素環基、1個以上の置換基を有していてもよい脂肪族複素環基、又は、1個以上の置換基を有していてもよい芳香族複素環基を表し、Mは、1個以上の置換基を有していてもよい脂肪族炭化水素基を表し、(*)は式(II)中の硫黄原子と結合する結合手を表す。]
で表すことができる。
Having an aromatic hydrocarbon ring group which may have one or more substituents, an aliphatic heterocyclic group which may have one or more substituents, or one or more substituents Examples of the organic group containing an optionally substituted aromatic heterocyclic group as a functional group bonding to the sulfur atom in the formula (II) include compounds represented by the following formula:
Figure JPOXMLDOC01-appb-C000051
[Wherein, M 1 is an aromatic hydrocarbon ring group which may have one or more substituents, an aliphatic heterocyclic group which may have one or more substituents, or 1 Represents an aromatic heterocyclic group which may have one or more substituents, M 2 represents an aliphatic hydrocarbon group which may have one or more substituents, and (*) is a formula It represents a bond that bonds to the sulfur atom in (II). ]
Can be expressed as
 また、1個以上の置換基を有していてもよい芳香族炭化水素環基を式(II)中の硫黄原子と結合する官能基として含む有機基は、例えば、下記式:
Figure JPOXMLDOC01-appb-C000052
[式中、M及びMは前記と同義であり、Mは、1個以上の置換基を有していてもよい芳香族炭化水素環基、1個以上の置換基を有していてもよい脂肪族複素環基、又は、1個以上の置換基を有していてもよい芳香族複素環基を表し、(*)は式(II)中の硫黄原子と結合する結合手を表す。]
で表すことができる。
Further, an organic group containing an aromatic hydrocarbon ring group which may have one or more substituents as a functional group bonding to the sulfur atom in the formula (II) is, for example, the following formula:
Figure JPOXMLDOC01-appb-C000052
[Wherein, M 1 and M 2 have the same meanings as described above, and M 3 has an aromatic hydrocarbon ring group which may have one or more substituents, and one or more substituents. Represents an optionally substituted aliphatic heterocyclic group or an aromatic heterocyclic group which may have one or more substituents, and (*) represents a bond which bonds to the sulfur atom in the formula (II). Represent ]
Can be expressed as
 また、1個以上の置換基を有していてもよい芳香族炭化水素環基を式(II)中の硫黄原子と結合する官能基として含む有機基は、例えば、下記式:
Figure JPOXMLDOC01-appb-C000053
[式中、M、M及びMは、前記と同義であり、Mは、1個以上の置換基を有していてもよい脂肪族炭化水素基を表し、(*)は式(II)中の硫黄原子と結合する結合手を表す。]
で表すことができる。
Further, an organic group containing an aromatic hydrocarbon ring group which may have one or more substituents as a functional group bonding to the sulfur atom in the formula (II) is, for example, the following formula:
Figure JPOXMLDOC01-appb-C000053
[Wherein M 1 , M 2 and M 3 have the same meanings as defined above, M 4 represents an aliphatic hydrocarbon group which may have one or more substituents, and (*) represents It represents a bond that bonds to the sulfur atom in (II). ]
Can be expressed as
 Mで表される芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基が1個以上の置換基を有する実施形態において、1個以上の置換基は、それぞれ独立して、例えば、置換基群A~Mから選択することができる。Mで表される芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基が有する1個以上の置換基は、それぞれ独立して、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アルキル基、アルケニル基及びアルキニル基から選択されることが好ましい。Mで表される芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基は、無置換であってもよい。 In the embodiment where the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by M 1 has one or more substituents, one or more substituents are each independently For example, it can be selected from the substituent groups A to M. The one or more substituents contained in the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by M 1 are each independently a halogen atom, an optionally protected hydroxyl group, Optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected It is preferably selected from good sulfonyl groups, alkyl groups, alkenyl groups and alkynyl groups. The aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by M 1 may be unsubstituted.
 M及び/又はMで表される脂肪族炭化水素基が1個以上の置換基を有する実施形態において、1個以上の置換基は、それぞれ独立して、例えば、置換基群A~Mから選択することができる。M及び/又はMで表される脂肪族炭化水素基が有する1個以上の置換基は、それぞれ独立して、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基及び保護されていてもよいスルホニル基から選択されることが好ましい。M又はMで表される脂肪族炭化水素基は、無置換であってもよい。なお、M及び/又はMで表される脂肪族炭化水素基が直鎖状又は分岐鎖状の脂肪族炭化水素基である場合、直鎖状又は分岐鎖状の脂肪族炭化水素基は、環状の脂肪族炭化水素基(例えば、シクロアルキル基、シクロアルケニル基、シクロアルキニル基等)を置換基として有し得る。 In the embodiment where the aliphatic hydrocarbon group represented by M 2 and/or M 4 has one or more substituents, each of the one or more substituents independently represents, for example, the substituent group A to M. You can choose from. The one or more substituents contained in the aliphatic hydrocarbon group represented by M 2 and/or M 4 are each independently a halogen atom, an optionally protected hydroxyl group, or an optionally protected thiol group. Selected from an optionally protected amino group, an optionally protected formyl group, an optionally protected carboxyl group, an optionally protected carbamoyl group and an optionally protected sulfonyl group. Is preferred. The aliphatic hydrocarbon group represented by M 2 or M 4 may be unsubstituted. When the aliphatic hydrocarbon group represented by M 2 and/or M 4 is a linear or branched aliphatic hydrocarbon group, the linear or branched aliphatic hydrocarbon group is It may have a cyclic aliphatic hydrocarbon group (for example, a cycloalkyl group, a cycloalkenyl group, a cycloalkynyl group, etc.) as a substituent.
 Mで表される芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基が1個以上の置換基を有する実施形態において、1個以上の置換基は、それぞれ独立して、例えば、置換基群A~Mから選択することができる。Mで表される芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基が有する1個以上の置換基は、それぞれ独立して、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいカルバモイル基、保護されていてもよいスルホニル基、アルキル基、アルキルオキシ基、アリールオキシ基、アリールアルキルオキシ基、アルキルアリールアルキルオキシ基、ヘテロアリールオキシ基、ヘテロアリールアルキルオキシ基、アルキルヘテロアリールアルキルオキシ基、脂肪族複素環オキシ基、脂肪族複素環アルキルオキシ基及びアルキル脂肪族複素環アルキルオキシ基から選択されることが好ましい。Mで表される芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基は、無置換であってもよい。 In the embodiment where the aromatic hydrocarbon ring group, the aliphatic heterocyclic group or the aromatic heterocyclic group represented by M 3 has one or more substituents, one or more substituents are each independently, For example, it can be selected from the substituent groups A to M. One or more substituents contained in the aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by M 3 are each independently a halogen atom, an optionally protected hydroxyl group, Optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected carbamoyl group, optionally protected Good sulfonyl group, alkyl group, alkyloxy group, aryloxy group, arylalkyloxy group, alkylarylalkyloxy group, heteroaryloxy group, heteroarylalkyloxy group, alkylheteroarylalkyloxy group, aliphatic heterocyclic oxy group It is preferably selected from an aliphatic heterocyclic alkyloxy group and an alkylaliphatic heterocyclic alkyloxy group. The aromatic hydrocarbon ring group, aliphatic heterocyclic group or aromatic heterocyclic group represented by M 3 may be unsubstituted.
 Qで表される有機基は、好ましくはアルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基、ヘテロアリール基、ヘテロアリールアルキル基、ヘテロアリールアルケニル基又はヘテロアリールアルキニル基を式(II)中の硫黄原子と結合する官能基として含み、より好ましくはアルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基又はアリールアルキニル基を式(II)中の硫黄原子と結合する官能基として含む。アルキル基の炭素数は、例えば1~20、好ましくは1~10であり、アリールアルキル基の炭素数は、例えば7~20、好ましくは7~15であり、アリール基の炭素数は、例えば6~20、好ましくは6~10であり、ヘテロアリール基の炭素数は、例えば5~20、好ましくは5~9である。 The organic group represented by Q is preferably an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an arylalkenyl group, an arylalkynyl group, a heteroaryl group, a heteroarylalkyl group, a heteroarylalkenyl group or a heteroaryl group. An arylalkynyl group is contained as a functional group that bonds to the sulfur atom in the formula (II), and more preferably an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an arylalkenyl group or an arylalkynyl group. ) As a functional group which is bonded to the sulfur atom. The carbon number of the alkyl group is, for example, 1 to 20, preferably 1 to 10, the carbon number of the arylalkyl group is, for example, 7 to 20, preferably 7 to 15, and the carbon number of the aryl group is, for example, 6 The number of carbon atoms in the heteroaryl group is, for example, 5 to 20, preferably 5 to 9.
<有機亜鉛化合物を用いた反応>
 工程(a)においては、化合物(II)と、下記式(III-I):
Figure JPOXMLDOC01-appb-C000054
で表される化合物(III-I)、及び、
 下記式(III-II):
Figure JPOXMLDOC01-appb-C000055
で表される化合物(III-II)
からなる群から選択される少なくとも1種の有機亜鉛化合物とを、ニッケル触媒及びパラジウム触媒から選択される1種以上の遷移金属触媒、又は、1種以上の遷移金属触媒と、1種以上の遷移金属触媒を担持する担体とを有する担持触媒の存在下で反応させて、下記式(IV):
Figure JPOXMLDOC01-appb-C000056
で表される化合物(IV)を得る。
<Reaction using organic zinc compound>
In step (a), compound (II) and the following formula (III-I):
Figure JPOXMLDOC01-appb-C000054
A compound (III-I) represented by
Formula (III-II) below:
Figure JPOXMLDOC01-appb-C000055
Compound (III-II) represented by
At least one organozinc compound selected from the group consisting of: a nickel catalyst and a palladium catalyst; one or more transition metal catalysts; or one or more transition metal catalysts The reaction is carried out in the presence of a supported catalyst having a carrier supporting a metal catalyst to give the following formula (IV):
Figure JPOXMLDOC01-appb-C000056
A compound (IV) represented by
 工程(a)において、有機亜鉛化合物は、Ar基を化合物(II)に導入する試薬として使用される。有機亜鉛化合物は、化合物(III-I)及び化合物(III-II)のいずれかを単独で使用してもよいが、化合物(III-I)及び化合物(III-II)は、工程(a)において、反応系内において、下記式:
Figure JPOXMLDOC01-appb-C000057
で表される平衡状態を好適にとり得ることから、化合物(III-I)及び化合物(III-II)は共に使用することが好ましい。好ましい態様によれば、少なくとも1種の有機亜鉛化合物は前記化合物(III-I)を含み、化合物(III-I)が、上記平衡状態にある。
In step (a), the organozinc compound is used as a reagent for introducing an Ar group into compound (II). As the organozinc compound, either the compound (III-I) or the compound (III-II) may be used alone, but the compound (III-I) and the compound (III-II) can be used in the step (a) In the reaction system, the following formula:
Figure JPOXMLDOC01-appb-C000057
It is preferable to use both the compound (III-I) and the compound (III-II) because the equilibrium state represented by According to a preferred embodiment, at least one organozinc compound comprises said compound (III-I), compound (III-I) being in said equilibrium state.
 Xで表されるハロゲン原子は、特に限定されないが、好ましくは塩素原子、臭素原子、ヨウ素原子である。 The halogen atom represented by X is not particularly limited, but is preferably a chlorine atom, a bromine atom, or an iodine atom.
 化合物(III-I)及び化合物(III-II)の有機亜鉛化合物は、市販品を使用してもよく、非特許文献5等に記載されているように公知の手法に従い製造してもよい。 As the organozinc compounds of the compound (III-I) and the compound (III-II), commercially available products may be used, or they may be produced according to a known method as described in Non-Patent Document 5 and the like.
 一実施態様によれば、化合物(III-I)の有機亜鉛化合物は、グリニャール試薬ArMgXと、ハロゲン化亜鉛ZnXとを有機溶媒中で反応させることにより製造される。 In one embodiment, the organozinc compound of compound (III-I) is prepared by reacting a Grignard reagent ArMgX with a zinc halide ZnX 2 in an organic solvent.
 化合物(III-I)の製造において、ハロゲン化亜鉛の使用量はグリニャール試薬1当量に対して、通常0.9~1.5当量程度、好ましくは1~1.2当量程度、より好ましくは1~1.1当量程度である。 In the production of the compound (III-I), the amount of zinc halide used is usually about 0.9 to 1.5 equivalents, preferably about 1 to 1.2 equivalents, more preferably 1 to 1 equivalent of the Grignard reagent. It is about 1.1 equivalents.
 化合物(III-I)の製造に使用される有機溶媒としては、安定的な製造の観点から、好ましくはエーテル系溶媒であり、より好ましくは2-メチルテトラヒドロフラン、テトラヒドロフラン等であり、より一層好ましくはテトラヒドロフランである。 From the viewpoint of stable production, the organic solvent used in the production of the compound (III-I) is preferably an ether solvent, more preferably 2-methyltetrahydrofuran, tetrahydrofuran, etc., and even more preferably Tetrahydrofuran.
 化合物(III-I)の製造における反応温度は、通常-50~50℃であり、好ましくは0~30℃である。 The reaction temperature in the production of compound (III-I) is usually -50 to 50°C, preferably 0 to 30°C.
 化合物(III-I)は、リチウム塩(式中、Yは、ハロゲン原子である)との複合体として使用してもよい。前記化合物(III-I)のリチウム塩複合体は、下記式(III-Ia):
Figure JPOXMLDOC01-appb-C000058
[式中、X及びYは、それぞれ独立して、ハロゲン原子を表す。]
で表される。リチウム塩複合体(III-Ia)は、リチウム塩の存在下で化合物(III-I)の製造を実施することにより好適に得ることができる。リチウム塩複合体(III-Ia)は、化合物(III-I)のリチウム塩錯体であってもよい。
The compound (III-I) may be used as a complex with a lithium salt (wherein Y is a halogen atom). The lithium salt complex of the compound (III-I) has the following formula (III-Ia):
Figure JPOXMLDOC01-appb-C000058
[In the formula, X and Y each independently represent a halogen atom. ]
It is represented by. The lithium salt complex (III-Ia) can be suitably obtained by carrying out the production of the compound (III-I) in the presence of a lithium salt. The lithium salt complex (III-Ia) may be a lithium salt complex of the compound (III-I).
 工程(a)において、リチウム塩複合体(III-Ia)を使用することは、有機亜鉛化合物の反応速度を向上させる上で好ましい。 In the step (a), it is preferable to use the lithium salt complex (III-Ia) in order to improve the reaction rate of the organozinc compound.
 リチウム塩としては、塩化リチウム、臭化リチウム、ヨウ化リチウム等が挙げられるが、好ましくは塩化リチウムである。したがって、有機亜鉛化合物のリチウム塩複合体(III-Ia)において、X及びYは、好ましくは塩素、臭素又はヨウ素であり、より好ましくは塩素又は臭素である。 Examples of the lithium salt include lithium chloride, lithium bromide, lithium iodide, and the like, with lithium chloride being preferred. Therefore, in the lithium salt complex (III-Ia) of the organozinc compound, X and Y are preferably chlorine, bromine or iodine, and more preferably chlorine or bromine.
 有機亜鉛化合物のリチウム塩複合体(III-Ia)は、市販品を使用してもよく、公知手法により製造してもよい。好ましい製造方法としては、ターボグリニャール試薬ArMgXa・LiY[式中、Arは前記と同義であり、Xaは、ハロゲン原子である。]と、ハロゲン化亜鉛ZnX[式中、Xは、ハロゲン原子であり、Yと同一であっても異なっていてもよい。]とを有機溶媒中で反応させる方法が挙げられる。 As the lithium salt complex (III-Ia) of the organozinc compound, a commercially available product may be used, or a known method may be used. As a preferable production method, a turbo-Grignard reagent ArMgXa.LiY [wherein, Ar has the same meaning as described above, and Xa is a halogen atom. ], and zinc halide ZnX 2 [In formula, X is a halogen atom and may be the same as or different from Y. ] With the reaction in an organic solvent.
 ターボグリニャール試薬は、不活性化ガス(窒素、アルゴン等)に置換した反応容器において、リチウム塩の存在下、マグネシウムとハロゲン有機化合物ArXa[式中、Ar及びXaは前記と同義である。]とを有機溶媒中で反応させることにより得ることができる。 The turbo-Grignard reagent is magnesium and a halogen organic compound ArXa in the presence of a lithium salt in a reaction vessel in which an inert gas (nitrogen, argon, etc.) is substituted [wherein Ar and Xa are as defined above]. ] Can be obtained by reacting with an organic solvent.
 マグネシウムは、反応性向上の観点から、粉砕物、削り屑状物として使用することが好ましい。また、マグネシウムには、その反応性を向上する観点から、マグネシウム1当量に対して0.05~0.2当量程度の触媒量の水素化ジイソブチルアルミニウム(DIBAL-H)等の還元剤を有機溶媒中で添加していてもよい。 Magnesium is preferably used as a pulverized product or shavings from the viewpoint of improving reactivity. From the viewpoint of improving the reactivity of magnesium, a reducing agent such as diisobutylaluminum hydride (DIBAL-H) in a catalytic amount of about 0.05 to 0.2 equivalents relative to 1 equivalent of magnesium is used as an organic solvent. It may be added in.
 ターボグリニャール試薬の製造において、リチウム塩の使用量は、通常、マグネシウム1当量に対して、通常0.5~5.0当量程度、好ましくは0.5~3.0当量程度、より好ましくは0.5~2.0当量程度とすればよい。 In the production of the turbo-Grignard reagent, the amount of the lithium salt used is usually about 0.5 to 5.0 equivalents, preferably about 0.5 to 3.0 equivalents, and more preferably 0, relative to 1 equivalent of magnesium. It may be about 0.5 to 2.0 equivalents.
 ターボグリニャール試薬の製造において、ハロゲン有機化合物ArXaの使用量は、マグネシウム1当量に対して、通常0.5~3.0当量程度、好ましくは0.5~2.0当量程度、より好ましくは0.5~1.5当量程度とすればよい。 In the production of the turbo Grignard reagent, the amount of the halogen organic compound ArXa used is usually about 0.5 to 3.0 equivalents, preferably about 0.5 to 2.0 equivalents, and more preferably 0, relative to 1 equivalent of magnesium. It may be about 0.5 to 1.5 equivalents.
 ターボグリニャール試薬の製造に使用される有機溶媒としては、安定的な製造の観点から、好ましくはエーテル系溶媒であり、より好ましくはジエチルエーテル、テトラヒドロフラン等であり、より一層好ましくはテトラヒドロフランである。使用される溶媒の量は、ハロゲン有機化合物ArXaに対して通常1~1000倍の容量、好ましくは1~100倍の容量である。 From the viewpoint of stable production, the organic solvent used for producing the turbo-Grignard reagent is preferably an ether solvent, more preferably diethyl ether, tetrahydrofuran, etc., and even more preferably tetrahydrofuran. The amount of the solvent used is usually 1 to 1000 times, preferably 1 to 100 times the volume of the halogen organic compound ArXa.
 ターボグリニャール試薬の製造における反応温度は、通常-50~50℃であり、好ましくは-20~20℃である。
 また、反応時間は、通常0.5~5時間、好ましくは1~3時間である。
The reaction temperature in the production of the turbo-Grignard reagent is usually -50 to 50°C, preferably -20 to 20°C.
The reaction time is usually 0.5 to 5 hours, preferably 1 to 3 hours.
 なお、ターボグリニャール試薬ArMgXa・LiYは、Angew Chem.Int.Ed2006,45,2958等に記載の公知方法に従い、下記式:
Figure JPOXMLDOC01-appb-C000059
に示される通り、ノッシェル・ハウザー塩基TMPMgXa・LiY(TMPは2,2,6,6-テトラメチルピペリジン)と化合物Ar-Hとを反応させることにより製造してもよく、本発明にはかかる態様も包含される。
The turbo-Grignard reagent ArMgXa.LiY was prepared as described in Angew Chem. Int. According to the known method described in Ed 2006, 45, 2958, etc., the following formula:
Figure JPOXMLDOC01-appb-C000059
As shown in, the compound may be produced by reacting Noschel-Hauser base TMPMgXa.LiY (TMP is 2,2,6,6-tetramethylpiperidine) with a compound Ar—H. Is also included.
 有機亜鉛化合物のリチウム塩複合体は、ターボグリニャール試薬とハロゲン化亜鉛とを溶媒中で混合して製造することができる。ターボグリニャール試薬とハロゲン化亜鉛との反応は、ターボグリニャール試薬の製造と同様、エーテル系溶媒(テトラヒドロフラン等)中で実施することが好ましい。 A lithium salt complex of an organozinc compound can be produced by mixing a turbo Grignard reagent and zinc halide in a solvent. The reaction between the turbo-Grignard reagent and zinc halide is preferably carried out in an ether solvent (tetrahydrofuran or the like) as in the production of the turbo-Grignard reagent.
 ターボグリニャール試薬とハロゲン化亜鉛との反応は、通常、-30~30℃程度の温度で行うことができる。
 また、反応時間は、通常0.1~1時間である。
The reaction between the turbo-Grignard reagent and zinc halide can be usually performed at a temperature of about -30 to 30°C.
The reaction time is usually 0.1 to 1 hour.
 工程(a)において、有機亜鉛化合物又はそのリチウム塩複合体の使用量は、化合物(II)の量に応じ適宜設定することができる。有機亜鉛化合物の使用量は、化合物(II)1当量に対して通常1~5当量、好ましくは1~3当量とすることができる。 In the step (a), the amount of the organozinc compound or its lithium salt complex used can be appropriately set according to the amount of the compound (II). The amount of the organic zinc compound used can be usually 1 to 5 equivalents, preferably 1 to 3 equivalents, relative to 1 equivalent of the compound (II).
 有機亜鉛化合物又はそのリチウム塩複合体は、前記遷移触媒と化合物(II)とを混合してから反応系に添加してもよく、前記遷移触媒と同時に化合物(II)と混合してもよいが、前記遷移触媒と化合物(II)とを混合してから反応系に添加することが好ましい。 The organozinc compound or its lithium salt complex may be added to the reaction system after mixing the transition catalyst and the compound (II), or may be mixed with the transition catalyst and the compound (II) at the same time. It is preferable that the transition catalyst and the compound (II) are mixed and then added to the reaction system.
 なお、工程(a)において、ハロゲン化亜鉛ZnXは、有機亜鉛化合物を活性化して収率を向上する観点から、有機亜鉛化合物又はそのリチウム塩複合体と共に工程(a)の反応系に添加してもよい。有機亜鉛化合物又はそのリチウム塩複合体と共に反応系に添加されるハロゲン化亜鉛の量は、通常、有機亜鉛化合物又はそのリチウム塩複合体1当量に対して、通常0.05~1.0当量程度、好ましくは0.05~0.3当量程度、より好ましくは0.05~0.2当量程度である。ハロゲン化亜鉛は、有機亜鉛化合物又はそのリチウム塩複合体と別々に工程(a)の反応系に添加してもよく、有機亜鉛化合物又はそのリチウム塩複合体と同時に添加してもよいが、ハロゲン化亜鉛と有機亜鉛化合物又はそのリチウム塩複合体とを予め混合した状態で工程(a)の反応系に添加することが好ましい。 In the step (a), zinc halide ZnX 2 is added to the reaction system of the step (a) together with the organozinc compound or its lithium salt complex from the viewpoint of activating the organozinc compound and improving the yield. May be. The amount of zinc halide added to the reaction system together with the organozinc compound or its lithium salt complex is usually about 0.05 to 1.0 equivalent with respect to 1 equivalent of the organozinc compound or its lithium salt complex. , Preferably about 0.05 to 0.3 equivalents, more preferably about 0.05 to 0.2 equivalents. The zinc halide may be added to the reaction system of step (a) separately from the organozinc compound or the lithium salt complex thereof, or may be added simultaneously with the organozinc compound or the lithium salt complex thereof. It is preferable to add zinc oxide and an organozinc compound or a lithium salt complex thereof in a state of being premixed to the reaction system of step (a).
 反応雰囲気は、前記遷移触媒の活性を考慮して、通常アルゴン、窒素等の不活性ガス雰囲気下で行われることが好ましい。また、加圧下でも、常圧下でもよいし、減圧下でもよい。 The reaction atmosphere is preferably an atmosphere of an inert gas such as argon or nitrogen in consideration of the activity of the transition catalyst. Further, it may be under pressure, normal pressure, or reduced pressure.
 一実施形態において、ニッケル触媒は、ニッケル塩又は溶媒和物である。ニッケル塩に含まれるニッケル原子の価数は、通常2価である。ニッケル塩として例えば、ニッケル(II)ジクロリド、ニッケル(II)ジブロミド、ニッケル(II)ジフルオリド、ニッケル(II)ヨーダイド(NiI)、ニッケル(II)スルフェート、ニッケル(II)カーボネート、ニッケル(II)ジメチルグリオキシム、ニッケル(II)ヒドロキシド、ニッケル(II)ヒドロキシアセテート、ニッケル(II)オキサレート、ニッケル(II)2-エチルヘキサノエート、ニッケル(II)アセテート、ニッケル(II)トリフルオロアセテード、ニッケル(II)トリフラート、ニッケル(II)アセチルアセトネート(Ni(acac))等が挙げられる。 In one embodiment, the nickel catalyst is a nickel salt or solvate. The valence of the nickel atom contained in the nickel salt is usually divalent. Examples of the nickel salt include nickel (II) dichloride, nickel (II) dibromide, nickel (II) difluoride, nickel (II) iodide (NiI 2 ), nickel (II) sulfate, nickel (II) carbonate, nickel (II) dimethyl. Glyoxime, nickel (II) hydroxide, nickel (II) hydroxyacetate, nickel (II) oxalate, nickel (II) 2-ethylhexanoate, nickel (II) acetate, nickel (II) trifluoroacetate, nickel Examples thereof include (II) triflate and nickel(II) acetylacetonate (Ni(acac) 2 ).
 別の実施形態において、ニッケル触媒は、ニッケル錯体触媒である。ニッケル錯体触媒はニッケル原子及び該ニッケル原子にキレートする配位子を含んでなる。ニッケル錯体触媒は、反応収率の向上又は副生成物の低減の観点から有利に利用することができる。ニッケル錯体触媒におけるニッケル原子の価数は、好ましくは0価又は2価であり、より好ましくは2価である。ニッケル錯体触媒に含まれるニッケル原子は、例えば、反応系に添加されたニッケル塩又は溶媒和物に由来する。ニッケル触媒がニッケル錯体触媒である実施形態において、予め形成されたニッケル錯体触媒を反応系に添加してもよいし、反応系にニッケル塩又溶媒和物と配位子とを添加し、反応系中でニッケル錯体触媒を形成してもよい。反応系中でニッケル錯体触媒を形成する場合、配位子の量は、例えば、ニッケル塩1当量に対して、通常1~3当量程度、好ましくは1~2当量程度としてもよい。 In another embodiment, the nickel catalyst is a nickel complex catalyst. The nickel complex catalyst comprises a nickel atom and a ligand chelating to the nickel atom. The nickel complex catalyst can be advantageously used from the viewpoint of improving the reaction yield or reducing the by-products. The valence of the nickel atom in the nickel complex catalyst is preferably 0 or divalent, and more preferably divalent. The nickel atom contained in the nickel complex catalyst is derived from, for example, a nickel salt or a solvate added to the reaction system. In an embodiment in which the nickel catalyst is a nickel complex catalyst, a preformed nickel complex catalyst may be added to the reaction system, or a nickel salt or solvate and a ligand may be added to the reaction system. A nickel complex catalyst may be formed therein. When the nickel complex catalyst is formed in the reaction system, the amount of the ligand may be, for example, usually 1 to 3 equivalents, preferably 1 to 2 equivalents, relative to 1 equivalent of the nickel salt.
 ニッケル錯体触媒に含まれる配位子は、ニッケル原子に配位結合で結合している分子又はイオンである。配位子は、単座配位子であってもよく、多座配位子であってもよい。単座配位子は、一座の配位子である。多座配位子は、二座以上の配位子である。二座配位子は、配位原子数が2個の配位子であり、三座配位子は、配位原子数が3個の配位子であり、四座配位子は、配位原子数が4個の配位子である。配位原子は、配位結合に直接かかわっている原子である。ニッケル錯体触媒において、配位子とニッケル原子との比は特に限定されないが、配位子が単座配位子である場合、ニッケル原子1個あたりの配位子の数は、通常2~4個であり、好ましくは2個である。また、配位子が多座配位子である場合、配位子1個あたり1個以上のニッケル原子が配位することが好ましい。配位子1個あたりのニッケル原子の数は、例えば、1~3個である。好ましい配位子は、ホスフィン配位子又は窒素配位子である。 The ligand contained in the nickel complex catalyst is a molecule or ion bonded to the nickel atom by a coordinate bond. The ligand may be a monodentate ligand or a polydentate ligand. A monodentate ligand is a monodentate ligand. The polydentate ligand is a bidentate or higher-dentate ligand. The bidentate ligand is a ligand having two coordination atoms, the tridentate ligand is a ligand having three coordination atoms, and the tetradentate ligand is a coordination ligand. It is a ligand having four atoms. A coordinating atom is an atom that is directly involved in the coordination bond. In the nickel complex catalyst, the ratio of the ligand to the nickel atom is not particularly limited, but when the ligand is a monodentate ligand, the number of ligands per nickel atom is usually 2 to 4 And preferably two. Further, when the ligand is a polydentate ligand, it is preferable that one or more nickel atoms coordinate with each ligand. The number of nickel atoms per ligand is, for example, 1 to 3. Preferred ligands are phosphine ligands or nitrogen ligands.
 ホスフィン配位子は、配位原子としてリン原子を含有する配位子である。ホスフィン配位子は、単座配位子であってもよく、多座配位子であってもよいが、多座配位のホスフィン配位子であることが好ましい。 Phosphine ligand is a ligand containing a phosphorus atom as a coordinating atom. The phosphine ligand may be a monodentate ligand or a polydentate ligand, but is preferably a polydentate phosphine ligand.
 ホスフィン配位子としては、例えば、トリメチルホスフィン、トリ-n-ブチルホスフィン(PBu)、トリシクロペンチルホスフィン、トリシクロヘキシルホスフィン(PCy)、トリオクチルホスフィン(P(Oct))、トリフェニルホスフィン(PPh)等の単座配位のホスフィン;1,1’-ビス(ジフェニルホスフィノ)フェロセン(dppf)、1,2-ビス(ジフェニルホスフィノ)エタン(dppe)、1,2-ビス(ジフェニルホスフィノ)ブタン(dppb)、1,2-ビス(ジシクロヘキシルホスフィノ)エタン(dcype)、1,2-ビス(ジメチルホスフィノ)エタン(dmpe)、3,4-ビス(ジシクロヘキシルホスフィノ)チオフェン(dcypt)、1,3-ビス(ジフェニルホスフィノ)プロパン(dppp)、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)等の二座配位の多座ホスフィン;ビス(2-ジフェニルホスフィノエチル)フェニルホスフィン、1,1,1-トリス(ジフェニルホスフィノメチル)エタン、1,1,1-トリス(ビス(3,5-ジメチルフェニル)ホスフィノメチル)エタン等の三座配位の多座ホスフィン;トリス(2-ジフェニルホスフィノエチル)ホスフィン等の四座配位の多座ホスフィンが挙げられるが、好ましくはトリシクロヘキシルホスフィン、トリフェニルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,2-ビス(ジシクロヘキシルホスフィノ)エタン、1,2-ビス(ジメチルホスフィノ)エタン又は3,4-ビス(ジシクロヘキシルホスフィノ)チオフェン等の単座配位又は二座配位のホスフィンであり、より好ましくはトリフェニルホスフィン、1,2-ビス(ジシクロヘキシルホスフィノ)エタン又は3,4-ビス(ジシクロヘキシルホスフィノ)チオフェン等の二座配位のホスフィンであり、より一層好ましくは3,4-ビス(ジシクロヘキシルホスフィノ)チオフェンである。 Examples of the phosphine ligand include trimethylphosphine, tri-n-butylphosphine (P n Bu 3 ), tricyclopentylphosphine, tricyclohexylphosphine (PCy 3 ), trioctylphosphine (P(Oct) 3 ), triphenyl Monodentate coordination phosphines such as phosphine (PPh 3 ); 1,1′-bis(diphenylphosphino)ferrocene (dppf), 1,2-bis(diphenylphosphino)ethane (dppe), 1,2-bis( Diphenylphosphino)butane (dppb), 1,2-bis(dicyclohexylphosphino)ethane (dcype), 1,2-bis(dimethylphosphino)ethane (dmpe), 3,4-bis(dicyclohexylphosphino)thiophene (Dcypt), 1,3-bis(diphenylphosphino)propane (dpppp), 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), etc. Bis(2-diphenylphosphinoethyl)phenylphosphine, 1,1,1-tris(diphenylphosphinomethyl)ethane, 1,1,1-tris(bis(3,5-dimethylphenyl)phosphinomethyl)ethane And tridentate phosphine such as tris(2-diphenylphosphinoethyl)phosphine, and tridentate phosphine such as tris(2-diphenylphosphinoethyl)phosphine. Monodentate or bidentate of (diphenylphosphino)ethane, 1,2-bis(dicyclohexylphosphino)ethane, 1,2-bis(dimethylphosphino)ethane or 3,4-bis(dicyclohexylphosphino)thiophene Coordination phosphine, more preferably tridentate phosphine, 1,2-bis(dicyclohexylphosphino)ethane, or 3,4-bis(dicyclohexylphosphino)thiophene, or other bidentate phosphine. Preferred is 3,4-bis(dicyclohexylphosphino)thiophene.
 ホスフィン配位子には、上記ホスフィン配位子の誘導体も包含される。ホスフィン配位子の誘導体化としては、例えば、1個以上の置換基の導入等が挙げられる。ホスフィン配位子に導入される1個以上の置換基としては、例えば、アルキル基、アリール基、アリールアルキル基、アルキルアリール基、アルキルオキシ基、アルキルオキシアルキル基、アリールオキシ基、アリールオキシアルキル基、ハロゲン原子、ジアルキル基、ニトロ基、オキシカルボニル基等が挙げられる。 The phosphine ligand also includes derivatives of the above phosphine ligand. Examples of derivatization of the phosphine ligand include introduction of one or more substituents. Examples of the one or more substituents introduced into the phosphine ligand include an alkyl group, an aryl group, an arylalkyl group, an alkylaryl group, an alkyloxy group, an alkyloxyalkyl group, an aryloxy group, an aryloxyalkyl group. , Halogen atoms, dialkyl groups, nitro groups, oxycarbonyl groups and the like.
 窒素配位子は、配位原子として窒素原子を含有する配位子である。窒素配位子は、通常、塩基性である。窒素配位子は、例えば、アミン系又はイミン系の多座配位子である。 A nitrogen ligand is a ligand containing a nitrogen atom as a coordinating atom. Nitrogen ligands are usually basic. The nitrogen ligand is, for example, an amine-based or imine-based polydentate ligand.
 窒素配位子としては、例えば、2,2-ビピリジン(bpy)、4,4’-ジメチル-2,2’-ビピリジン(bmbpy)、4,4’-ジ-tert-ブチル-2,2’-ビピリジン(BBBPY)、4,4’-ジ-(5-ノニル)-2,2’-ビピリジン、1,10-フェナントロリン、N-(n-プロピル)ピリジルメタンイミン、N-(n-オクチル)ピリジルメタンイミン、N、N、N‘、N’-テトラメチルエチレンジアミン(TMDTA)等の二座配位の多座アミン;N、N、N’、N’’、N’’-ペンタメチルジエチレントリアミン(PMDTA)、N-プロピル-N,N-ジ(2-ピリジルメチル)アミン等の三座配位の多座アミン;ヘキサメチルトリス(2-アミノエチル)アミン、N,N-ビス(2-ジメチルアミノエチル)-N,N’-ジメチルエチレンジアミン、2,5,9,12-テトラメチル-2,5,9,12-テトラアザテトラデカン、2,6,9,13-テトラメチル-2,6,9,13-テトラアザテトラデカン、4,11-ジメチル-1,4,8,11-テトラアザビシクロヘキサデカン、N’,N’’-ジメチル-N’,N’’-ビス((ピリジン-2-イル)メチル)エタン-1,2-ジアミン、トリス[(2-ピリジル)メチル]アミン、2,5,8,12-テトラメチル-2,5,8,12-テトラアザテトラデカン等の四座配位の多座アミン;N,N,N’,N’’,N’’’,N’’’’,N’’’’-ヘプタメチルテトラエチレンテトラミン等の五座配位の多座アミン;N,N,N’,N’-テトラキス(2-ピリジルメチル)エチレンジアミン等の六座配位の多座アミン;ポリアミン、ポリエチレンイミン等の多座アミンが挙げられるが、好ましくは2,2-ビピリジン、4,4’-ジメチル-2,2’-ビピリジン、4,4’-ジ-tert-ブチル-2,2’-ビピリジン等のビピリジン基を有する二座配位の多座アミンである。 Examples of the nitrogen ligand include 2,2-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (bmbpy), 4,4′-di-tert-butyl-2,2′ -Bipyridine (BBBPY), 4,4'-di-(5-nonyl)-2,2'-bipyridine, 1,10-phenanthroline, N-(n-propyl)pyridylmethanimine, N-(n-octyl) Bidentate polydentate amines such as pyridylmethanimine, N,N,N′,N′-tetramethylethylenediamine (TMDTA); N,N,N′,N″,N″-pentamethyldiethylenetriamine( PMDTA), tridentate polydentate amines such as N-propyl-N,N-di(2-pyridylmethyl)amine; hexamethyltris(2-aminoethyl)amine, N,N-bis(2-dimethyl) Aminoethyl)-N,N'-dimethylethylenediamine, 2,5,9,12-tetramethyl-2,5,9,12-tetraazatetradecane, 2,6,9,13-tetramethyl-2,6 9,13-Tetraazatetradecane, 4,11-Dimethyl-1,4,8,11-tetraazabicyclohexadecane, N',N"-dimethyl-N',N"-bis((pyridine-2- Tetradentate coordination such as (yl)methyl)ethane-1,2-diamine, tris[(2-pyridyl)methyl]amine, 2,5,8,12-tetramethyl-2,5,8,12-tetraazatetradecane Polydentate amine; N,N,N′,N″,N′″,N″″,N″″-pentacoordinate tetradentate amine such as heptamethyltetraethylenetetramine; N , N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine and other hexadentate polydentate amines; polyamines, polyethylenimine and other polydentate amines, but preferably 2,2-bipyridine, It is a bidentate polydentate amine having a bipyridine group such as 4,4′-dimethyl-2,2′-bipyridine and 4,4′-di-tert-butyl-2,2′-bipyridine.
 窒素配位子には、上記窒素配位子の誘導体も包含される。窒素配位子の誘導体化としては、例えば、1個以上の置換基の導入等が挙げられる。窒素配位子に導入される1個以上の置換基としては、例えば、アルキル基、アリール基、アリールアルキル基、アルキルアリール基、アルキルオキシ基、アルキルオキシアルキル基、アリールオキシ基、アリールオキシアルキル基、ハロゲン原子、ジアルキル基、ニトロ基、オキシカルボニル基等が挙げられる。 The nitrogen ligand also includes derivatives of the above nitrogen ligand. Examples of derivatization of the nitrogen ligand include introduction of one or more substituents. The one or more substituents introduced into the nitrogen ligand include, for example, an alkyl group, an aryl group, an arylalkyl group, an alkylaryl group, an alkyloxy group, an alkyloxyalkyl group, an aryloxy group, an aryloxyalkyl group. , Halogen atoms, dialkyl groups, nitro groups, oxycarbonyl groups and the like.
 ニッケル錯体触媒に含まれるその他の配位子としては、シクロオクタジエン(COD)、テトラヒドロフラン(thf)、ジメトキシエタン(dme)等が挙げられる。 Other ligands contained in the nickel complex catalyst include cyclooctadiene (COD), tetrahydrofuran (thf), dimethoxyethane (dme) and the like.
 本発明において使用されるニッケル触媒としては、例えば、ニッケル(0)シクロオクダジエン錯体(Ni(COD))、ニッケル(II)アセチルアセトナート、ニッケル(II)ジクロリド又はそのジメトキシエタン付加物、ニッケル(II)ジブロミド、ニッケル(II)ジクロリドビストリフェニルホスフィン錯体、ニッケル(II)ジブロミドビストリフェニルホスフィン錯体、ニッケル(II)ジクロリドトリ-n-ブチルホスフィン錯体、ニッケル(II)ジクロリド1,2-ジフェニルホスフィン錯体、ニッケル(II)ジクロリド1,3-ジフェニルホスフィノプロパン錯体、ビス(テトラヒドロフラン)ニッケル(II)ジクロリド錯体(NiCl(thf))等の2価のニッケル触媒が挙げられるが、好ましくはニッケル(II)ジクロリド又はそのジメトキシエタン付加物、ニッケル(II)ジクロリド1,2-ジフェニルホスフィノエタン錯体、ニッケル(II)アセチルアセトナート又はビス(テトラヒドロフラン)ニッケル(II)ジクロリド錯体であり、より好ましくはニッケル(II)ジクロリド1,2-ジフェニルホスフィノエタン錯体、ニッケル(II)アセチルアセトナート又はビス(テトラヒドロフラン)ニッケル(II)ジクロリド錯体であり、より一層好ましくはビス(テトラヒドロフラン)ニッケル(II)ジクロリド錯体である。これらは単独で使用しても、2種以上を混合して使用してもよい。工程(a)において、ニッケル触媒を使用することは、反応を迅速に進行させる上で特に有利である。 Examples of the nickel catalyst used in the present invention include nickel (0) cyclooctadiene complex (Ni(COD) 2 ), nickel (II) acetylacetonate, nickel (II) dichloride or its dimethoxyethane adduct, nickel. (II) dibromide, nickel (II) dichloride bistriphenylphosphine complex, nickel (II) dibromide bistriphenylphosphine complex, nickel (II) dichloride tri-n-butylphosphine complex, nickel (II) dichloride 1,2-diphenylphosphine Examples of the divalent nickel catalyst include a complex, nickel(II) dichloride 1,3-diphenylphosphinopropane complex, and bis(tetrahydrofuran) nickel(II) dichloride complex (NiCl 2 (thf) 2 ), but nickel is preferable. (II) dichloride or its dimethoxyethane adduct, nickel(II) dichloride 1,2-diphenylphosphinoethane complex, nickel(II) acetylacetonate or bis(tetrahydrofuran) nickel(II) dichloride complex, more preferably Nickel(II) dichloride 1,2-diphenylphosphinoethane complex, nickel(II) acetylacetonate or bis(tetrahydrofuran) nickel(II) dichloride complex, and more preferably bis(tetrahydrofuran) nickel(II) dichloride complex. Is. These may be used alone or in combination of two or more. The use of a nickel catalyst in step (a) is particularly advantageous in that the reaction proceeds rapidly.
 本発明において使用されるパラジウム触媒としては、例えば、パラジウム(II)ジクロリド、パラジウム(II)ジブロミド、パラジウム(II)ジクロリドビストリフェニルホスフィン錯体、パラジウム(0)テトラキストリフェニルホスフィン錯体、酢酸パラジウム(II)、酸化パラジウム(II)、パラジウム(0)、パラジウム(II)ジクロリド、パラジウム(II)ジブロミド、パラジウム(II)ジクロリドビストリフェニルホスフィン錯体、パラジウム(0)テトラキストリフェニルホスフィン錯体、酢酸パラジウム(II)、酸化パラジウム(II)等の0価又は2価のパラジウム触媒が挙げられるが、好ましくはパラジウム(0)テトラキストリフェニルホスフィン錯体、パラジウム(0)である。パラジウム触媒を使用することは、Ar基間のカップリング反応等により生じる副生成物の量を低減する上で有利である。 Examples of the palladium catalyst used in the present invention include palladium(II) dichloride, palladium(II) dibromide, palladium(II) dichloride bistriphenylphosphine complex, palladium(0) tetrakistriphenylphosphine complex, and palladium(II) acetate. , Palladium(II) oxide, palladium(0), palladium(II) dichloride, palladium(II) dibromide, palladium(II) dichloride bistriphenylphosphine complex, palladium(0) tetrakistriphenylphosphine complex, palladium(II) acetate, Examples of the catalyst include zero-valent or divalent palladium catalysts such as palladium(II) oxide, and palladium(0) tetrakistriphenylphosphine complex and palladium(0) are preferable. The use of a palladium catalyst is advantageous in reducing the amount of by-products generated by the coupling reaction between Ar groups and the like.
 本発明において使用される遷移触媒は、均一触媒であってもよく、不均一触媒であってもよい。 The transition catalyst used in the present invention may be a homogeneous catalyst or a heterogeneous catalyst.
 本発明において使用される遷移金属触媒が均一触媒である場合、遷移金属触媒は、0価もしくは2価のニッケル錯体又は0価もしくは2価のパラジウム錯体であることが好ましい。ニッケル錯体としては、好ましくはニッケル(II)アセチルアセトナート、ニッケル(II)ジクロリドのジメトキシエタン付加物又はビス(テトラヒドロフラン)ニッケル(II)ジクロリド錯体である。また、パラジウム錯体としては、好ましくはパラジウム(0)テトラキストリフェニルホスフィン錯体又はビス(テトラヒドロフラン)ニッケル(II)ジクロリド錯体である。 When the transition metal catalyst used in the present invention is a homogeneous catalyst, the transition metal catalyst is preferably a zero-valent or divalent nickel complex or a zero-valent or divalent palladium complex. The nickel complex is preferably nickel(II) acetylacetonate, a dimethoxyethane adduct of nickel(II) dichloride, or a bis(tetrahydrofuran) nickel(II) dichloride complex. The palladium complex is preferably palladium(0) tetrakistriphenylphosphine complex or bis(tetrahydrofuran) nickel(II) dichloride complex.
 本発明において使用される遷移金属触媒が不均一触媒である場合、遷移金属触媒は、ニッケル触媒及びパラジウム触媒から選択される1種以上の遷移金属触媒と、前記1種以上の遷移金属触媒を担持する担体とを有する担持触媒であることが好ましい。担持触媒は、反応混合物から遷移金属触媒を容易に分離する上で有利である。 When the transition metal catalyst used in the present invention is a heterogeneous catalyst, the transition metal catalyst carries one or more transition metal catalysts selected from nickel catalysts and palladium catalysts, and one or more transition metal catalysts. A supported catalyst having a carrier for Supported catalysts are advantageous because they facilitate the separation of the transition metal catalyst from the reaction mixture.
 担持触媒が有する担体としては、例えば、活性炭、アルミナ、硫酸バリウム、炭酸カルシウム、ヒドロキシアパタイト、ハイドロタルサイト、酸化アルミニウム、二酸化チタン、二酸化ジルコニウム、二酸化珪素、粘土、珪酸塩、ゼオライト、高分子マトリックス等が挙げられる。高分子マトリックスは、例えば、スチレン-ジビニルベンゼン樹脂又はフェノール-ホルムアルデヒド樹脂であってもよく、前記樹脂はキレート配位子(ホスフィン、1,10-フェナントロリン又は2,2′-ビピリジン等)が結合していてもよい。樹脂に結合する配位子はパラジウム触媒又はニッケル触媒との錯体を形成し、これら遷移触媒を不動化し、不均一触媒とすることができる。 Examples of the carrier that the supported catalyst has include activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite, hydrotalcite, aluminum oxide, titanium dioxide, zirconium dioxide, silicon dioxide, clay, silicates, zeolites, polymer matrices, and the like. Are listed. The polymeric matrix may be, for example, a styrene-divinylbenzene resin or a phenol-formaldehyde resin, said resin having a chelating ligand (phosphine, 1,10-phenanthroline or 2,2'-bipyridine) attached thereto. May be The ligand bound to the resin forms a complex with a palladium catalyst or a nickel catalyst, and these transition catalysts can be immobilized to give a heterogeneous catalyst.
 担持触媒における遷移金属触媒は、好ましくは0価又は2価のパラジウム触媒であり、より好ましくはパラジウム(0)である。また、担持触媒が有する遷移金属触媒がパラジウム触媒である場合、担持触媒における担体は、好ましくは活性炭、アルミナ、硫酸バリウム、炭酸カルシウム、ヒドロキシアパタイト及びハイドロタルサイト、酸化アルミニウム、二酸化チタン、二酸化ジルコニウムであり、より好ましくは活性炭である。特に好ましい態様によれば、担持触媒は,パラジウムブラック、パラジウム炭素(Pd/C)である。 The transition metal catalyst in the supported catalyst is preferably a zero-valent or divalent palladium catalyst, more preferably palladium (0). When the transition metal catalyst of the supported catalyst is a palladium catalyst, the carrier in the supported catalyst is preferably activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite and hydrotalcite, aluminum oxide, titanium dioxide, zirconium dioxide. Yes, and more preferably activated carbon. According to a particularly preferred embodiment, the supported catalyst is palladium black, palladium carbon (Pd/C).
 担持触媒における遷移金属触媒の量は、担持触媒の総重量に対して、例えば、0.05~10重量%、好ましくは0.1~7重量%、より好ましくは4~7重量%である。 The amount of the transition metal catalyst in the supported catalyst is, for example, 0.05 to 10% by weight, preferably 0.1 to 7% by weight, more preferably 4 to 7% by weight, based on the total weight of the supported catalyst.
 遷移金属触媒の使用量は、有機亜鉛化合物1モルに対して、通常0.001~2モル程度、好ましくは0.01~1モル程度である。 The amount of the transition metal catalyst used is usually about 0.001 to 2 mol, preferably about 0.01 to 1 mol, based on 1 mol of the organozinc compound.
 工程(a)において使用される溶媒としては、好ましくは有機溶媒であり、例えば、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、1,2-ジメトキシエタン、テトラヒドロフラン(THF)、2-メチル-テトラヒドロフラン、シクロペンチルメチルエーテル(CPME)、tert-ブチルメチルエーテル、ジイソプロピルエーテル、N,N-ジメチルアセトアミド(DMA)、ジグライム、メチル-テトラヒドロフラン、1,4-ジオキサン等の極性非プロトン性溶媒;トルエン、塩化メチレン、ヘキサン、ヘプタン、キシレン、1,4-ジオキサン、ジブチルエーテル、メシチレン、p-シメン等の非極性溶媒又はそれらの組み合わせが挙げられるが、好ましくはTHF、2-メチル-THF、ジブチルエーテル、トルエン、DMF又はそれらの混合溶媒であり、より好ましくはTHFである。 The solvent used in step (a) is preferably an organic solvent such as N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,2-dimethoxyethane, tetrahydrofuran (THF), 2 A polar aprotic solvent such as -methyl-tetrahydrofuran, cyclopentyl methyl ether (CPME), tert-butyl methyl ether, diisopropyl ether, N,N-dimethylacetamide (DMA), diglyme, methyl-tetrahydrofuran, 1,4-dioxane; Nonpolar solvents such as toluene, methylene chloride, hexane, heptane, xylene, 1,4-dioxane, dibutyl ether, mesitylene, p-cymene, and the like, or a combination thereof can be mentioned, with preference given to THF, 2-methyl-THF and diethylene. Butyl ether, toluene, DMF or a mixed solvent thereof, and more preferably THF.
 工程(a)において使用される溶媒の量は、特に限定されないが、例えば、化合物(II)に対して1~100倍の容量とすることができる。 The amount of the solvent used in the step (a) is not particularly limited, but can be, for example, 1 to 100 times the volume of the compound (II).
 一実施態様によれば、工程(a)において、反応温度は、0~100℃程度で実施してもよいが、通常0~60℃、好ましくは0~50℃、より好ましくは10~50℃である。このようなマイルドな温度条件を採用して化合物(a)を取得することは、温度管理に関連した設備コストを抑制して工業生産を実施する上で好ましい。 According to one embodiment, in step (a), the reaction temperature may be carried out at about 0 to 100°C, but is usually 0 to 60°C, preferably 0 to 50°C, more preferably 10 to 50°C. Is. Obtaining the compound (a) by adopting such a mild temperature condition is preferable from the viewpoint of suppressing the facility cost related to temperature control and implementing industrial production.
 また、遷移金属触媒がニッケル触媒である場合、工程(a)において、反応温度は、好ましくは0~50℃、より好ましくは10~50℃、より好ましくは20~30℃であり、より一層好ましくは25℃程度である。また、遷移金属触媒がパラジウム触媒である場合、工程(a)において、反応温度は、好ましくは45~90℃、より好ましくは45~80℃、より好ましくは50~70℃であり、より一層好ましくは60℃程度である。 When the transition metal catalyst is a nickel catalyst, in step (a), the reaction temperature is preferably 0 to 50° C., more preferably 10 to 50° C., more preferably 20 to 30° C., and even more preferably Is about 25°C. When the transition metal catalyst is a palladium catalyst, the reaction temperature in step (a) is preferably 45 to 90°C, more preferably 45 to 80°C, more preferably 50 to 70°C, and even more preferably Is about 60°C.
 工程(a)において、反応時間は、用いる基質の量、触媒の量、反応温度等に応じて適宜決定してよく、通常0.5~48時間、好ましくは1~24時間である。 In the step (a), the reaction time may be appropriately determined according to the amount of the substrate used, the amount of the catalyst, the reaction temperature, etc., and is usually 0.5 to 48 hours, preferably 1 to 24 hours.
<工程(b)>
Figure JPOXMLDOC01-appb-C000060
 工程(b)においては、工程(a)で得られた化合物(IV)におけるRで表される水酸基保護基を除去して化合物(I)を得る。
<Step (b)>
Figure JPOXMLDOC01-appb-C000060
In the step (b), the hydroxyl protecting group represented by R 5 in the compound (IV) obtained in the step (a) is removed to obtain the compound (I).
 Rの除去方法は、水酸基保護基の種類に応じて、Peter G.M. Wuts著、「プロテクティブ・グループ・イン・オーガニック・シンセシス(“Protective Group in Organic Synthesis”)第5版」(JOHN WILEY&SONS出版)等に記載の公知の手法によって除去することができる。典型的な手法としては、化合物(II)と酸性試薬又は塩基性試薬とを不活性溶媒中で反応させてRを除去する方法が挙げられる。 The method for removing R 5 is described in Peter G. M. It can be removed by a known method described in Wuts, "Protective Group in Organic Synthesis, 5th Edition" (published by JOHN WILEY & SONS) and the like. A typical method is a method of reacting compound (II) with an acidic reagent or a basic reagent in an inert solvent to remove R 5 .
 酸性試薬としては、例えば、塩酸、硫酸、硝酸、酢酸、臭化水素等の無機酸、トリフルオロ酢酸、トリクロロ酢酸、p-トルエンスルホン酸、ギ酸、フタル酸等の有機酸が挙げられる。また、塩基性試薬としては、特に限定されないが、テトラ-n-ブチルアンモニウムフルオリド、アンモニウムフルオリド、アンモニウムバイフルオリド、フッ化水素酸等のフッ化物、炭酸カリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、ナトリウムメチルオキシド、ナトリウムエチルオキシド、アンモニア水等が挙げられる。 Examples of the acidic reagent include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid and hydrogen bromide, and organic acids such as trifluoroacetic acid, trichloroacetic acid, p-toluenesulfonic acid, formic acid and phthalic acid. The basic reagent is not particularly limited, but tetra-n-butylammonium fluoride, ammonium fluoride, ammonium bifluoride, fluorides such as hydrofluoric acid, potassium carbonate, lithium hydroxide, sodium hydroxide. , Potassium hydroxide, sodium methyl oxide, sodium ethyl oxide, aqueous ammonia and the like.
 酸性試薬の使用量は、化合物(II)1当量に対して通常0.1~1000当量、好ましくは1~5当量である。また、塩基性試薬の使用量は、化合物(II)1当量に対して通常0.001~10当量、好ましくは0.01~2当量である。 The amount of the acidic reagent used is usually 0.1 to 1000 equivalents, preferably 1 to 5 equivalents, relative to 1 equivalent of compound (II). The amount of the basic reagent used is usually 0.001 to 10 equivalents, preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound (II).
 工程(b)において使用される溶媒としては、好ましくは有機溶媒であり、例えば、メタノール、エタノール、イソプロパノール、ブタノール等の極性プロトン性溶媒;アセトニトリル、プロピオニトリル、THF、2-メチル-テトラヒドロフラン、1,4-ジオキサン、tert-ブチルメチルエーテル、ジイソプロピルエーテル、ジメチルオキシエタン、ジグライム、アセトン、メチルエチルケトン、ジエチルケトン、酢酸メチル、酢酸エチル、酢酸ブチル等の極性非プロトン性溶媒:塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン、トルエン、キシレン、ヘキサン、ヘプタン等の無極性溶媒又はそれらの組み合わせが挙げられるが、好ましくはメタノール、エタノール、イソプロパノール又はそれらの混合溶媒である。 The solvent used in step (b) is preferably an organic solvent, and examples thereof include polar protic solvents such as methanol, ethanol, isopropanol, butanol; acetonitrile, propionitrile, THF, 2-methyl-tetrahydrofuran, 1 , 4-Dioxane, tert-butyl methyl ether, diisopropyl ether, dimethyloxyethane, diglyme, acetone, methyl ethyl ketone, diethyl ketone, methyl acetate, ethyl acetate, butyl acetate and other polar aprotic solvents: methylene chloride, chloroform, tetrachloride Examples thereof include nonpolar solvents such as carbon, 1,2-dichloroethane, chlorobenzene, toluene, xylene, hexane, heptane, and combinations thereof, with preference given to methanol, ethanol, isopropanol or a mixed solvent thereof.
 工程(b)において使用される溶媒の量は、化合物(II)に対して通常1~1000倍の容量、好ましくは1~100倍の容量である。 The amount of the solvent used in the step (b) is usually 1 to 1000 times the volume of the compound (II), preferably 1 to 100 times the volume.
 工程(b)において、反応温度は、通常-30~100℃、好ましくは0~100℃、より好ましくは0~40℃、より一層好ましくは0~50℃である。このようなマイルドな温度条件を採用して化合物(I)を取得することは、温度管理に関連した設備コストを抑制して工業生産を実施する上で好ましい。 In the step (b), the reaction temperature is usually −30 to 100° C., preferably 0 to 100° C., more preferably 0 to 40° C., and even more preferably 0 to 50° C. Obtaining the compound (I) by adopting such a mild temperature condition is preferable in order to suppress the facility cost related to temperature control and to carry out industrial production.
<工程(a-1):化合物(II)の製造>
Figure JPOXMLDOC01-appb-C000061
 化合物(I)を製造する方法において、出発原料として使用される化合物(II)は購入してもよく、製造してもよいが、工程(a-1)に従い製造することが好ましい。
<Step (a-1): Production of Compound (II)>
Figure JPOXMLDOC01-appb-C000061
In the method for producing compound (I), compound (II) used as a starting material may be purchased or produced, but it is preferably produced according to step (a-1).
 工程(a-1)は、以下の工程(a-1-1)及び工程(a-1-2)に分けて実施することができる。
 工程(a-1-1):下記式(VI):
Figure JPOXMLDOC01-appb-C000062
で表される化合物(VI)と、
 下記式(VII):
Figure JPOXMLDOC01-appb-C000063
で表される化合物(VII)とを、
反応させて下記式(VIII):
Figure JPOXMLDOC01-appb-C000064
で表される化合物(VIII)を得る工程、及び
 工程(a-1-2):前記化合物(VIII)における水酸基をRで表される水酸基保護基で保護し、前記化合物(II)を得る工程。
The step (a-1) can be carried out separately in the following step (a-1-1) and step (a-1-2).
Step (a-1-1): The following formula (VI):
Figure JPOXMLDOC01-appb-C000062
A compound (VI) represented by
The following formula (VII):
Figure JPOXMLDOC01-appb-C000063
And a compound (VII) represented by
After reaction, the following formula (VIII):
Figure JPOXMLDOC01-appb-C000064
A step of obtaining a compound (VIII) represented by: and a step (a-1-2): protecting the hydroxyl group in the compound (VIII) with a hydroxyl-protecting group represented by R 5 to obtain the compound (II) Process.
<工程(a-1-1):化合物(VIII)の製造>
Figure JPOXMLDOC01-appb-C000065
 工程(a-1-1)においては、化合物(VI)と、化合物(VII)とを反応させて化合物(VIII)を得る工程を実施する。
<Step (a-1-1): Production of Compound (VIII)>
Figure JPOXMLDOC01-appb-C000065
In step (a-1-1), the step of reacting compound (VI) with compound (VII) to give compound (VIII) is carried out.
 工程(a-1-1)において出発物として使用される化合物(VI)は、特に限定されず、例えば、非特許文献1、非特許文献2等に記載の公知の方法や後述する例1に記載の方法により製造してもよく、市販品を使用してもよい。 The compound (VI) used as a starting material in the step (a-1-1) is not particularly limited, and examples thereof include known methods described in Non-Patent Document 1 and Non-Patent Document 2 and Example 1 described later. It may be produced by the method described or a commercially available product may be used.
 化合物(VII)についても公知手法により製造してもよく、市販の有機チオール化合物を用いもよい。 The compound (VII) may also be produced by a known method, or a commercially available organic thiol compound may be used.
 化合物(VII)の使用量は、特に限定されないが、例えば、化合物(VI)1当量に対して通常1~10当量、好ましくは1~5当量である。 The amount of the compound (VII) to be used is not particularly limited, but is, for example, usually 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to 1 equivalent of the compound (VI).
 化合物(VI)と化合物(VII)との反応条件は、化合物(VIII)を取得しうる限り特に限定されないが、下記式(IX):
Figure JPOXMLDOC01-appb-C000066
で表される化合物(IX)の存在下で実施することが好ましい。化合物(IX)の取得方法は、特に限定されず、公知手法により製造してもよく、市販のアルミニウム触媒を使用してもよい。
The reaction conditions of the compound (VI) and the compound (VII) are not particularly limited as long as the compound (VIII) can be obtained, but the following formula (IX):
Figure JPOXMLDOC01-appb-C000066
It is preferable to carry out in the presence of a compound (IX) represented by The method for obtaining the compound (IX) is not particularly limited, and the compound (IX) may be produced by a known method, or a commercially available aluminum catalyst may be used.
 R及びRは、それぞれ独立して、ハロゲン原子、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基からなる群から選択される官能基を表し、前記群に含まれる脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基は各々、1個以上の置換基を有していてもよい。 R c and R d each independently represent a functional group selected from the group consisting of a halogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. The aliphatic hydrocarbon group, aromatic hydrocarbon ring group, aliphatic heterocyclic group and aromatic heterocyclic group included in the above group may each have one or more substituents.
 R及びRで表される官能基は、それぞれ独立して、好ましくはアルキル基、アリール基、アリールアルキル基であり、より好ましくは炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアリールアルキル基であり、より一層好ましくは炭素数1~10のアルキル基であり、より一層好ましくはメチル基、エチル基、プロピル基である。 The functional groups represented by R c and R d are each independently preferably an alkyl group, an aryl group or an arylalkyl group, more preferably an alkyl group having 1 to 20 carbon atoms or a carbon atom having 6 to 20 carbon atoms. An aryl group and an arylalkyl group having 7 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and even more preferably a methyl group, an ethyl group and a propyl group.
 式(IX)において、Rで表される官能基及びRで表される官能基は、互いに同一であっても異なっていてもよいが、同一であることが好ましい。
 また、好ましい態様によれば、q又はrの一方は0を表し、他方は3を表す。
In the formula (IX), the functional group represented by R c and the functional group represented by R d may be the same or different, but are preferably the same.
Moreover, according to a preferable aspect, one of q and r represents 0, and the other represents 3.
 工程(a-1-1)において、化合物(IX)の使用量は、化合物(VI)1当量に対して通常1~5当量、好ましくは3~5当量である。 In the step (a-1-1), the amount of the compound (IX) used is usually 1 to 5 equivalents, preferably 3 to 5 equivalents, relative to 1 equivalent of the compound (VI).
 工程(a-1-1)において使用される溶媒としては、好ましくは有機溶媒であり、例えば、アセトニトリル、プロピオニトリル、THF、2-メチル-テトラヒドロフラン、1,4-ジオキサン、tert-ブチルメチルエーテル、ジイソプロピルエーテル、ジメチルオキシエタン、ジグライム、アセトン、メチルエチルケトン、ジエチルケトン、酢酸メチル、酢酸エチル、酢酸ブチル等の極性非プロトン性溶媒;塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン、トルエン、キシレン、ヘキサン、ヘプタン等の無極性溶媒又はそれらの組み合わせが挙げられるが、好ましくは塩化メチレン、トルエン、ヘキサン又はそれらの混合溶媒であり、より好ましくは塩化メチレンである。 The solvent used in step (a-1-1) is preferably an organic solvent, for example, acetonitrile, propionitrile, THF, 2-methyl-tetrahydrofuran, 1,4-dioxane, tert-butyl methyl ether. , Diisopropyl ether, dimethyloxyethane, diglyme, acetone, methyl ethyl ketone, diethyl ketone, methyl acetate, ethyl acetate, butyl acetate and other polar aprotic solvents; methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, Non-polar solvents such as toluene, xylene, hexane, heptane and combinations thereof can be mentioned, but methylene chloride, toluene, hexane or a mixed solvent thereof is preferable, and methylene chloride is more preferable.
 工程(a-1-1)において使用される溶媒の量は、特に限定されないが、化合物(VI)に対して通常1~1000倍の容量、好ましくは1~100倍の容量である。 The amount of the solvent used in the step (a-1-1) is not particularly limited, but is usually 1 to 1000 times the volume of the compound (VI), preferably 1 to 100 times the volume.
 工程(a-1-1)において、反応温度は、特に限定されないが、通常-30~80℃、好ましくは-10~40℃、より好ましくは0~40℃である。本工程において比較的マイルドな温度条件を採用することは、温度管理に関連した設備コストを抑制する観点から好ましい。 In step (a-1-1), the reaction temperature is not particularly limited, but is usually −30 to 80° C., preferably −10 to 40° C., more preferably 0 to 40° C. It is preferable to adopt a relatively mild temperature condition in this step from the viewpoint of suppressing the equipment cost related to temperature management.
 工程(a-1-1)においては、水、HCl水溶液、塩化アンモニウム水溶液等を使用してアルミニウム触媒反応を反応終了させ、触媒の除去を簡便に実施することができる。 In the step (a-1-1), water, HCl aqueous solution, ammonium chloride aqueous solution or the like can be used to terminate the reaction of the aluminum catalyst and the catalyst can be easily removed.
 したがって、本工程(a-1)では、化合物(VIII)を得た後、次の工程(a-1-2)の製造工程はできる限り速やかに行うことが好ましく、工程(a-1-1)及び工程(a-1-2)を同じ反応系で実施することがより好ましい。工程(a-1-1)から速やかに工程(a-1-2)に移行することは、化合物(VIII)の閉環反応により化合物(VI)が再度生成することを防止する上で有利である。 Therefore, in this step (a-1), after the compound (VIII) is obtained, the production step of the next step (a-1-2) is preferably carried out as quickly as possible. ) And step (a-1-2) are more preferably carried out in the same reaction system. Promptly shifting from step (a-1-1) to step (a-1-2) is advantageous in preventing compound (VI) from being regenerated due to the ring closure reaction of compound (VIII). ..
<工程(a-1-2):化合物(II)の製造工程>
Figure JPOXMLDOC01-appb-C000067
<Step (a-1-2): Step of producing compound (II)>
Figure JPOXMLDOC01-appb-C000067
 工程(a-1-2)においては、下記式(VIII):
Figure JPOXMLDOC01-appb-C000068
で表される化合物(VIII)における水酸基をRで表される水酸基保護基により保護して化合物(II)を得る。
In the step (a-1-2), the following formula (VIII):
Figure JPOXMLDOC01-appb-C000068
The hydroxyl group in the compound (VIII) represented by is protected by a hydroxyl protecting group represented by R 5 to obtain the compound (II).
 化合物(VIII)における水酸基に対するR基の導入は、特に限定されず、Rで表される水酸基保護基の種類に応じて、Peter G.M. Wuts著、「プロテクティブ・グループ・イン・オーガニック・シンセシス(“Protective Group in Organic Synthesis”)第5版」(JOHN WILEY&SONS出版)等に記載の公知の手法によって実施することができる。典型的な手法としては、化合物(VIII)と保護基導入試薬とを酸又は塩基性試薬の存在下、不活性溶媒中で反応させてRを導入する方法が挙げられる。 Introduction of the R 5 group to the hydroxyl group in the compound (VIII) is not particularly limited, and depending on the kind of the hydroxyl group-protecting group represented by R 5 , Peter G. M. It can be carried out by a known method described in Wuts, "Protective Group in Organic Synthesis, 5th Edition" (published by JOHN WILEY & SONS) and the like. As a typical method, a method of introducing R 5 by reacting compound (VIII) with a protecting group introducing reagent in the presence of an acid or a basic reagent in an inert solvent can be mentioned.
 保護基導入試薬は、Rの種類に応じて適宜決定することができるが、例えば、無水酢酸、無水ピバリン酸、アセチルクロリド、ピバロイルクロリド等のエステル型保護基導入剤;臭化ベンジル等のアリールアルキルエーテル型保護基導入剤;ヨードメタン等のアルキルエーテル型保護基導入剤;トリメチルシリルクロリド、トリイソプロピルシリルクロリド、tert-ブチルジメチルシリルクロリド、tert-ブチルジフェニルシリルクロリド等のシリル型保護基導入剤ビス(tert-ブチルオキシカルボニルオキシ)オキシド等のオキシカルボニル型保護基等が挙げられるが、好ましくは無水酢酸、無水ピバリン酸、アセチルクロリド、ピバロイルクロリド等のエステル型保護基導入剤であり、より好ましくは無水酢酸である。 The protective group-introducing reagent can be appropriately determined according to the type of R 5 , and examples thereof include ester-type protective group-introducing agents such as acetic anhydride, pivalic anhydride, acetyl chloride, pivaloyl chloride; benzyl bromide and the like. Arylalkyl ether type protecting group introducing agent; alkyl ether type protecting group introducing agent such as iodomethane; silyl type protecting group introducing agent such as trimethylsilyl chloride, triisopropylsilyl chloride, tert-butyldimethylsilyl chloride, tert-butyldiphenylsilyl chloride Examples thereof include oxycarbonyl-type protecting groups such as bis(tert-butyloxycarbonyloxy)oxide, etc., preferably acetic anhydride, pivalic anhydride, acetyl chloride, pivaloyl chloride and other ester-type protecting group introducing agents, More preferably, it is acetic anhydride.
 酸性試薬としては、例えば、酢酸、臭化水素等の無機酸、p-トルエンスルホン酸、フタル酸等の有機酸等が挙げられる。塩基性試薬としては、特に限定されないが、トリエチルアミン、4-ジメチルアミノピリジン(DMAP)、ジアザビシクロウンデセン(DBU)及びジエチルアニリン等の有機アミン等が挙げられるが、好ましくはトリエチルアミン、4-ジメチルアミノピリジン(DMAP)又はそれらの混合物である。 Examples of acidic reagents include inorganic acids such as acetic acid and hydrogen bromide, and organic acids such as p-toluenesulfonic acid and phthalic acid. Examples of the basic reagent include, but are not limited to, triethylamine, 4-dimethylaminopyridine (DMAP), diazabicycloundecene (DBU), organic amines such as diethylaniline, and the like, with preference given to triethylamine and 4-dimethyl. Aminopyridine (DMAP) or a mixture thereof.
 酸性試薬の使用量は、特に限定されないが、化合物(VIII)1当量に対して通常0.1~1000当量、好ましくは1~5当量である。また、塩基性試薬の使用量は、特に限定されないが、化合物(VIII)1当量に対して通常0.001~10当量、好ましくは0.01~2当量である。 The amount of the acidic reagent used is not particularly limited, but is usually 0.1 to 1000 equivalents, preferably 1 to 5 equivalents, relative to 1 equivalent of the compound (VIII). The amount of the basic reagent used is not particularly limited, but is usually 0.001 to 10 equivalents, preferably 0.01 to 2 equivalents, relative to 1 equivalent of the compound (VIII).
 工程(a-1-2)において使用される溶媒としては、好ましくは有機溶媒であり、例えば、アセトニトリル、プロピオニトリル、THF、2-メチル-テトラヒドロフラン、1,4-ジオキサン、tert-ブチルメチルエーテル、ジイソプロピルエーテル、ジメチルオキシエタン、ジグライム、アセトン、メチルエチルケトン、ジエチルケトン、酢酸メチル、酢酸エチル、酢酸ブチル等の極性非プロトン性溶媒;塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、クロロベンゼン、トルエン、キシレン、ヘキサン、ヘプタン等の無極性溶媒又はそれらの組み合わせが挙げられるが、好ましくは塩化メチレン、トルエン又はそれらの混合溶媒である。 The solvent used in step (a-1-2) is preferably an organic solvent, for example, acetonitrile, propionitrile, THF, 2-methyl-tetrahydrofuran, 1,4-dioxane, tert-butyl methyl ether. , Diisopropyl ether, dimethyloxyethane, diglyme, acetone, methyl ethyl ketone, diethyl ketone, methyl acetate, ethyl acetate, butyl acetate and other polar aprotic solvents; methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, Nonpolar solvents such as toluene, xylene, hexane, heptane and the like can be mentioned, but methylene chloride, toluene or a mixed solvent thereof is preferable.
 工程(a-1-2)において使用される溶媒の量は、特に限定されないが、化合物(VIII)に対して通常1~1000倍の容量、好ましくは1~100倍の容量である。 The amount of the solvent used in the step (a-1-2) is not particularly limited, but is usually 1 to 1000 times the volume of the compound (VIII), preferably 1 to 100 times the volume.
 工程(a-1-2)において、反応温度は、特に限定されないが、通常-30~100℃、好ましくは-30~40℃、より好ましくは-10~40℃、より一層好ましくは0~30℃である。本工程においても比較的マイルドな温度条件を採用することは、化合物(VIII)から化合物(VI)への戻りの反応を抑制する上で有利である。また、本工程においても比較的マイルドな温度条件を採用することは、温度管理に関連した設備コストを抑制して工業生産を実施する上で好ましい。 In step (a-1-2), the reaction temperature is not particularly limited, but is usually −30 to 100° C., preferably −30 to 40° C., more preferably −10 to 40° C., further preferably 0 to 30. ℃. It is advantageous to employ a relatively mild temperature condition also in this step, in order to suppress the reaction of the return of the compound (VIII) to the compound (VI). Further, it is preferable to adopt a relatively mild temperature condition also in this step, in order to suppress the facility cost related to temperature management and to carry out industrial production.
<β-C-アリールグリコシド誘導体(化合物(XI))の製造工程>
Figure JPOXMLDOC01-appb-C000069
<Production Process of β-C-Aryl Glycoside Derivative (Compound (XI))>
Figure JPOXMLDOC01-appb-C000069
 本発明における化合物(I)は、下記式(XI):
Figure JPOXMLDOC01-appb-C000070
で表わされる化合物(XI)、すなわちβ-C-アリールグリコシド誘導体の製造原料として有利に使用することができる。
The compound (I) in the present invention has the following formula (XI):
Figure JPOXMLDOC01-appb-C000070
It can be advantageously used as a starting material for the production of the compound (XI) represented by, that is, a β-C-arylglycoside derivative.
 化合物(I)から化合物(XI)への反応は公知の還元反応を用いることが可能である。具体的には、還元方法としては、三フッ化ホウ素ジエチルエーテル錯体(BF・OEt)の存在下でトリエチルシランを用いて化合物(I)を還元する方法や、トリエチルシラン、トリイソプロピルシラン、テトラメチルジシロキサン等のシラン化合物の存在下、BF・OEt、三フッ化ホウ素テトラヒドロフラン(BF・THF)、塩化アルミニウム等のルイス酸と化合物(I)とを反応させる方法等が挙げられる。 A known reduction reaction can be used for the reaction from compound (I) to compound (XI). Specifically, as the reduction method, a method of reducing the compound (I) using triethylsilane in the presence of a boron trifluoride diethyl ether complex (BF 3 ·OEt 2 ), triethylsilane, triisopropylsilane, Examples include a method of reacting a compound (I) with a Lewis acid such as BF 3 ·OEt 2 , boron trifluoride tetrahydrofuran (BF 3 ·THF), and aluminum chloride in the presence of a silane compound such as tetramethyldisiloxane. ..
 得られた化合物(XI)は、そのまま、あるいはR’、R’、R’又はR’が水酸基保護基の場合、所望によりPeter G.M. Wuts著、「プロテクティブ・グループ・イン・オーガニック・シンセシス(“Protective Group in Organic Synthesis”)第5版」(JOHN WILEY&SONS出版)等に記載の公知の方法で脱保護して、β-C-アリールグリコシド誘導体として使用することができる。 The obtained compound (XI) was used as it is, or when R 1 ′, R 2 ′, R 3 ′ or R 4 ′ was a hydroxyl-protecting group, if desired, Peter G. M. Deprotection by a known method described in Wuts, "Protective Group in Organic Synthesis, 5th Edition" (published by JOHN WILEY & SONS) and the like, and β-C-arylglycoside. It can be used as a derivative.
<化合物(II)の用途/製造中間体>
 本発明によれば、上述した通り、化合物(II)を製造中間体として使用して化合物(I)を製造し、さらにSGLT2阻害剤自体又はその合成中間体に当たる化合物(XI)に変換することができる。すなわち、本発明によれば、化合物(II)を化合物(XI)の製造のための試薬又は中間体として好適に適用することができる。
<Use of compound (II)/manufacturing intermediate>
According to the present invention, as described above, compound (II) can be used as a production intermediate to produce compound (I), which can be further converted to compound (XI) which is the SGLT2 inhibitor itself or a synthetic intermediate thereof. it can. That is, according to the present invention, compound (II) can be preferably applied as a reagent or an intermediate for the production of compound (XI).
 したがって、本発明の好ましい態様によれば、下記式(II):
Figure JPOXMLDOC01-appb-C000071
で表される化合物(II)を含んでなる、下記式(XI):
Figure JPOXMLDOC01-appb-C000072
で表される前記化合物(XI)を製造するための試薬が提供される。また、本発明の好ましい態様によれば、前記試薬において、式(XI)におけるArは式(V)又は(Va)で表されるものである。
Therefore, according to a preferred embodiment of the present invention, the following formula (II):
Figure JPOXMLDOC01-appb-C000071
A compound represented by the following formula (XI):
Figure JPOXMLDOC01-appb-C000072
A reagent for producing the compound (XI) represented by Further, according to a preferred aspect of the present invention, in the reagent, Ar in the formula (XI) is represented by the formula (V) or (Va).
 また、本発明の別の態様によれば、下記式化合物(XI):
Figure JPOXMLDOC01-appb-C000073
で表される前記化合物(XI)の製造中間体としての、
 下記式(II): 
Figure JPOXMLDOC01-appb-C000074
で表される化合物(II)の使用が提供される。また、本発明の好ましい態様によれば、前記使用において、式(XI)におけるArは式(V)又は(Va)で表されるものである。
According to another aspect of the present invention, a compound of the following formula (XI):
Figure JPOXMLDOC01-appb-C000073
As an intermediate for the production of the compound (XI) represented by
Formula (II) below:
Figure JPOXMLDOC01-appb-C000074
The use of the compound (II) represented by Further, according to a preferred embodiment of the present invention, in the use, Ar in formula (XI) is represented by formula (V) or (Va).
 以下、本発明の実施例を説明するが、本発明はこれら実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
例1:化合物(2)((3R,4S,5R,6R)-3,4,5-トリス(ベンジルオキシ)-6-(ベンジルオキシメチル)テトラヒドロ-2H-ピラン-2-オン)の製造Example 1: Preparation of compound (2) ((3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)tetrahydro-2H-pyran-2-one)
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 ジメチルスルホキシド(25mL)中に化合物(1)(2,3,4,6-テトラ-O-ベンジル-D-グルコピラノース;5.0g、9.24mmol)を含有する溶液をアルゴン雰囲気下、20~25℃で30分間撹拌した。この反応混合液に対して25℃にて無水酢酸(15mL)を5分かけて添加した。添加が完了した後、得られた反応混合液を薄層クロマトグラフィー(TLC)分析によってモニターしながら、20~25℃で20時間撹拌した。次に、反応混合液をトルエン(100mL)で希釈し、得られた希釈液に1N HCl水溶液(120mL)を加えて過剰の無水酢酸をクエンチした。得られた反応混合液を20~25℃で20分間撹拌した後、相分離した。得られた有機相を1M NaHCO水溶液(3×50mL)で洗浄した。さらに有機相を水(15mL)及び食塩水(15mL)で洗浄し、次いで無水NaSOで乾燥させ、濾過し、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=2/20~3/20)により精製し、無色油状物として化合物(2)((3R、4S、5R、6R)-3,4,5-トリス(ベンジルオキシ)-6-(ベンジルオキシメチル)テトラヒドロ-2H-ピラン-2-オン;4.8g、収率96%)を得た。 A solution containing the compound (1) (2,3,4,6-tetra-O-benzyl-D-glucopyranose; 5.0 g, 9.24 mmol) in dimethyl sulfoxide (25 mL) was added under argon atmosphere at 20- The mixture was stirred at 25°C for 30 minutes. Acetic anhydride (15 mL) was added to this reaction mixture at 25° C. over 5 minutes. After the addition was complete, the resulting reaction mixture was stirred at 20-25° C. for 20 hours while being monitored by thin layer chromatography (TLC) analysis. Then, the reaction mixture was diluted with toluene (100 mL), and 1N HCl aqueous solution (120 mL) was added to the obtained diluted solution to quench excess acetic anhydride. The resulting reaction mixture was stirred at 20-25°C for 20 minutes and then phase separated. The resulting organic phase was washed with 1M aqueous NaHCO 3 solution (3 x 50 mL). The organic phase was further washed with water (15 mL) and brine (15 mL), then dried over anhydrous Na 2 SO 4 , filtered and concentrated under reduced pressure. The obtained crude product was purified by silica gel column chromatography (ethyl acetate/hexane=2/20 to 3/20) to give compound (2) as a colorless oil ((3R, 4S, 5R, 6R)-3, 4,5-Tris(benzyloxy)-6-(benzyloxymethyl)tetrahydro-2H-pyran-2-one; 4.8 g, yield 96%) was obtained.
化合物(2)
 IR(KBr):νmax=3030,2868,1754,1496,1363,1164,1097,737,698cm-1
 H NMR(400MHz,CDCl)δ:7.39-7.16(m,20H),4.97(d,J=11.4Hz,1H),4.73-4.44(m,8H),4.12(d,J=6.3Hz,1H),3.96-3.89(m,2H),3.73-3.64(m,2H)
 13C NMR(101MHz,CDCl)δ:169.38,137.71,137.64,137.63,137.06,128.57,128.53,128.48,128.19,128.09,128.07,128.02,127.91,81.06,78.26,77.51,76.20,73.98,73.80,73.78,73.66,68.40
 HRMS[M+H] C3435 計算値539.2428;実測値:539.2420
 質量分析[M+H]:539
Compound (2)
IR(KBr): νmax=3030, 2868, 1754, 1496, 1363, 1164, 1097, 737, 698 cm -1
1 H NMR (400 MHz, CDCl 3 ) δ: 7.39-7.16 (m, 20H), 4.97 (d, J=11.4 Hz, 1H), 4.73-4.44 (m, 8H) ), 4.12 (d, J=6.3 Hz, 1H), 3.96-3.89 (m, 2H), 3.73-3.64 (m, 2H)
13 C NMR (101 MHz, CDCl 3 ) δ: 169.38, 137.71, 137.64, 137.63, 137.06, 128.57, 128.53, 128.48, 128.19, 128.09. , 128.07, 128.02, 127.91, 81.06, 78.26, 77.51, 76.20, 73.98, 73.80, 73.78, 73.66, 68.40.
HRMS [M + H] + C 34 H 35 O 6 Calculated 539.2428; Found: 539.2420
Mass spectrum [M+H] + : 539
例2:化合物(3)((2R,3S,4R,5R)-S-デシル2,3,4,6-テトラキス(ベンゾイルオキシ)-5-ヒドロキシヘキサンチオエート)の製造Example 2: Preparation of compound (3) ((2R,3S,4R,5R)-S-decyl 2,3,4,6-tetrakis(benzoyloxy)-5-hydroxyhexanethioate)
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 0℃に冷却した無水CHCl(10mL)中にデカンチオール(0.72g、4.1mmol)を含有する溶液に、トリメチルアルミニウム(1Mトルエン溶液;4.1mL、4.1mmol)を10分間かけて滴下し、20分間撹拌した。次に、得られた反応混合液に対して、無水CHCl(12mL)中に化合物(2)(2g、3.71mmol)を含有する溶液を10分間かけてゆっくりと加え、1時間撹拌した。得られた反応混合液をCHCl(20mL)で希釈して氷冷水(20mL)を含む250mLビーカーに加え、さらに1N HCl水溶液(10mL)を撹拌しながらゆっくりビーカーに注ぎ、相分離を行った。得られた水相は冷CHCl(3×30mL)で抽出した。有機抽出物を合わせた有機相は、水及び食塩水で洗浄し、NaSOで乾燥させ、溶離液としてCHClを使用したフラッシュシリカカラムにより濾過し、化合物(3)((2R,3S,4R,5R)-S-デシル2,3,4,6-テトラキス(ベンゾイルオキシ)-5-ヒドロキシヘキサンチオエート)の粗生成物を得た。その後、得られた化合物(3)の粗生成物は精製せずに、次の工程に用いた。 To a solution containing decanethiol (0.72 g, 4.1 mmol) in anhydrous CH 2 Cl 2 (10 mL) cooled to 0° C. was added trimethylaluminum (1M toluene solution; 4.1 mL, 4.1 mmol) for 10 minutes. It dripped over, and stirred for 20 minutes. Then, to the obtained reaction mixture, a solution containing compound (2) (2 g, 3.71 mmol) in anhydrous CH 2 Cl 2 (12 mL) was slowly added over 10 minutes, and the mixture was stirred for 1 hour. did. The obtained reaction mixture was diluted with CH 2 Cl 2 (20 mL) and added to a 250 mL beaker containing ice-cold water (20 mL), and 1N HCl aqueous solution (10 mL) was slowly poured into the beaker while stirring to perform phase separation. It was The resulting aqueous phase was extracted with cold CH 2 Cl 2 (3 × 30mL ). The combined organic extracts were washed with water and brine, dried over Na 2 SO 4 and filtered through a flash silica column using CH 2 Cl 2 as eluent to give compound (3)((2R , 3S,4R,5R)-S-decyl 2,3,4,6-tetrakis(benzoyloxy)-5-hydroxyhexanethioate) was obtained. Thereafter, the obtained crude product of compound (3) was used in the next step without purification.
例3:化合物(4)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-(デシルチオ)-6-オキソヘキサン-2-イルアセテート)の製造Example 3: Preparation of compound (4) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-(decylthio)-6-oxohexan-2-ylacetate)
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 アルゴン雰囲気下、0℃に冷却した無水CHCl中に化合物(3)の粗生成物(2.8g、3.71mmol)を含有する溶液に対して、無水酢酸(AcO;0.88mL、9.5mmol)を添加し、さらにDMAP(9mg、2mol%)を添加した。5分後、得られた混合液にトリエチルアミン(1.32mL、9.5mmol)を添加し、アルゴン雰囲気下で4時間撹拌した。得られた反応混合液を水(30mL)でクエンチし、有機相をCHCl(3×30mL)で抽出した。有機抽出物を合わせた有機相は、水(30mL)及び食塩水(30mL)で洗浄し、無水NaSOで乾燥し、濃縮した。得られた粗生成物をシリカクロマトグラフィー(酢酸エチル/ヘキサン=1/20~2/20)で精製し、無色液体として化合物(4)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-(デシルチオ)-6-オキソヘキサン-2-イルアセテート;2.6g、化合物(2)を基準として収率92%)を得た。 For a solution of the crude product of compound (3) (2.8 g, 3.71 mmol) in anhydrous CH 2 Cl 2 cooled to 0° C. under argon atmosphere, acetic anhydride (Ac 2 O; 88 mL, 9.5 mmol) was added, and further DMAP (9 mg, 2 mol%) was added. After 5 minutes, triethylamine (1.32 mL, 9.5 mmol) was added to the obtained mixed solution, and the mixture was stirred under an argon atmosphere for 4 hours. The resulting reaction mixture was quenched with water (30 mL) and the organic phase was extracted with CH 2 Cl 2 (3 x 30 mL). The combined organic phases of the organic extracts were washed with water (30 mL) and brine (30 mL), dried over anhydrous Na 2 SO 4 and concentrated. The obtained crude product was purified by silica chromatography (ethyl acetate/hexane=1/20 to 2/20) to obtain compound (4) ((2R,3R,4S,5R)-1,3, as a colorless liquid. 2.6 g of 4,5-tetrakis(benzoyloxy)-6-(decylthio)-6-oxohexan-2-yl acetate were obtained, and the yield was 92% based on the compound (2).
化合物(4)
 IR (KBr):νmax=3063,3031,2926,2860,1745,1676,1452,1375,1244,1093,1069,745,696cm-1
 H-NMR(400MHz,CDCl)δ:7.40(d,J=6.5Hz,2H),7.36-7.15(m,18H),5.15(q,J=4.3Hz,1H),4.79(d,J=10.8Hz,1H),4.71(d,J=11.4Hz,1H),4.65-4.39(m,6H),4.25(d,J=4.3Hz,1H),4.01-3.95(m,2H),3.82(dd,J=10.6,4.1Hz,1H),3.65(dd,J=10.6,5.7Hz,1H),2.84(t,J=7.4Hz,2H),1.96(s,3H),1.55(p,J=7.3Hz,2H),1.41-1.18(m,15H),0.88(t,J=6.7Hz,3H)
 13C-NMR(101MHz,CDCl)δ:201.90,170.02,138.51,138.08,137.98,137.08,128.65,128.43,128.39,128.36,128.25,128.17,128.04,127.97,127.80,127.71,127.59,127.53,85.28,80.31,78.45,75.71,74.67,74.53,73.23,72.91,68.06,31.95,29.61,29.55,29.36,29.20,29.05,28.39,22.74,21.11,14.18
 HRMS [M+H] C4659S 計算値755.3981;実測値:755.3976
 質量分析[M+H]:755
Compound (4)
IR (KBr): νmax=3063, 3031, 2926, 2860, 1745, 1676, 1452, 1375, 1244, 1093, 1069, 745, 696 cm -1
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.40 (d, J=6.5 Hz, 2 H), 7.36-7.15 (m, 18 H), 5.15 (q, J=4. 3Hz, 1H), 4.79 (d, J = 10.8Hz, 1H), 4.71 (d, J = 11.4Hz, 1H), 4.65-4.39 (m, 6H), 4. 25 (d, J=4.3 Hz, 1H), 4.01-3.95 (m, 2H), 3.82 (dd, J=10.6, 4.1 Hz, 1H), 3.65 (dd , J=10.6, 5.7 Hz, 1H), 2.84 (t, J=7.4 Hz, 2H), 1.96 (s, 3H), 1.55 (p, J=7.3 Hz, 2H), 1.41-1.18 (m, 15H), 0.88 (t, J=6.7Hz, 3H)
13 C-NMR (101 MHz, CDCl 3 ) δ: 201.90, 170.02, 138.51, 138.08, 137.98, 137.08, 128.65, 128.43, 128.39, 128. 36,128.25,128.17,128.04,127.97,127.80,127.71,127.59,127.53,85.28,80.31,78.45,75.71, 74.67, 74.53, 73.23, 72.91, 68.06, 31.95, 29.61, 29.55, 29.36, 29.20, 29.05, 28.39, 22. 74, 21.11, 14.18
HRMS [M + H] + C 46 H 59 O 7 S Calculated 755.3981; Found: 755.3976
Mass spectrometry [M+H] + : 755
例4:ニッケル(II)アセチルアセトナート(Ni(acac)Example 4: Nickel (II) acetylacetonate (Ni(acac) Two ))を使用した化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート)の製造Compound) (5) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl acetate)
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 ホットオーブンで乾燥したSchlenk管に、アルゴン雰囲気下、化合物(4)(0.25mmol、190mg)を入れ、続いてNi(acac)(0.0125mmol、3.2mg)及びTHF(2mL)を入れた。得られた混合液を5分間撹拌し、続いて有機亜鉛化合物と塩化リチウムとの複合体PhZnCl・LiCl(0.375mmol、3mL)のTHF溶液(0.125M)を注射器で添加した。得られた反応混合液を25℃で1時間撹拌した。その後、反応混合液を水でクエンチし、酢酸エチル(3×30mL)で抽出した。有機抽出物を食塩水で洗浄し、無水NaSOで乾燥させ、濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/20~2/20)で精製し、化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート;105mg、0.16mmol、収率64%)を得た。なお、化合物(5)と共に、未反応の化合物(4)(49mg、0.065mmol、収率26%)及び副生成物ビフェニルPh-Ph(10mg、0.064mmol、収率35%)を得た。 A Schlenk tube dried in a hot oven was charged with Compound (4) (0.25 mmol, 190 mg) under an argon atmosphere, followed by Ni(acac) 2 (0.0125 mmol, 3.2 mg) and THF (2 mL). It was The obtained mixture was stirred for 5 minutes, and then a THF solution (0.125M) of a complex PhZnCl.LiCl (0.375 mmol, 3 mL) of an organozinc compound and lithium chloride was added with a syringe. The resulting reaction mixture was stirred at 25°C for 1 hour. Then the reaction mixture was quenched with water and extracted with ethyl acetate (3 x 30 mL). The organic extract was washed with brine, dried over anhydrous Na 2 SO 4 and concentrated. The obtained crude product was purified by silica gel column chromatography (ethyl acetate/hexane=1/20 to 2/20) to give compound (5) ((2R,3R,4S,5R)-1,3,4,4). 5-Tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl acetate; 105 mg, 0.16 mmol, yield 64%) was obtained. In addition to the compound (5), an unreacted compound (4) (49 mg, 0.065 mmol, yield 26%) and a by-product biphenyl Ph-Ph (10 mg, 0.064 mmol, yield 35%) were obtained. ..
化合物(5)
 IR (KBr):νmax=3027,2870,1735,1724,1449,1369,1236,1090,1027,738,696cm-1
 H-NMR(400MHz,CDCl)δ:7.92(d,J=7.8Hz,2H),7.47(t,J=7.4Hz,1H),7.37-7.22(m,15H),7.21-7.11(m,5H),7.06-7.00(m,2H),5.27(q,J=5.2Hz,1H),4.89(d,J=4.2Hz,1H),4.73-4.55(m,4H),4.53-4.46(m,3H),4.31(d,J=10.8Hz,1H),4.21(dd,J=6.8,4.3Hz,1H),4.07(dd,J=6.8,3.4Hz,1H),3.87(dd,J=10.2,5.4Hz,1H),3.63(dd,J=10.2,5.5Hz,1H),1.98(s,3H)
 13C-NMR(101MHz,CDCl)δ:198.88,169.94,138.43,137.88,137.77,137.10,136.05,133.06,128.96,128.76,128.45,128.35,128.31,128.26,128.19,128.05,127.92,127.80,127.73,127.70,127.49,127.45,82.68,80.39,79.62,75.29,74.62,73.22,73.05,72.59,67.87,21.08
 HRMS[M+H]:C4243 計算値659.3009;実測値:659.3004
 質量分析[M+H]:659
Compound (5)
IR (KBr): νmax=3027,2870,1735,1724,1449,1369,1236,1090,1027,738,696 cm −1
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.92 (d, J=7.8 Hz, 2 H), 7.47 (t, J=7.4 Hz, 1 H), 7.37-7.22 ( m, 15H), 7.21 to 7.11 (m, 5H), 7.06 to 7.00 (m, 2H), 5.27 (q, J=5.2Hz, 1H), 4.89 ( d, J=4.2 Hz, 1H), 4.73-4.55 (m, 4H), 4.53-4.46 (m, 3H), 4.31 (d, J=10.8 Hz, 1H) ), 4.21 (dd, J=6.8, 4.3 Hz, 1H), 4.07 (dd, J=6.8, 3.4 Hz, 1H), 3.87 (dd, J=10. 2,5.4 Hz, 1H), 3.63 (dd, J=10.2, 5.5 Hz, 1H), 1.98 (s, 3H)
13 C-NMR (101 MHz, CDCl 3 ) δ: 198.88, 169.94, 138.43, 137.88, 137.77, 137.10, 136.05, 133.06, 128.96, 128. 76,128.45,128.35,128.31,128.26,128.19,128.05,127.92,127.80,127.73,127.70,127.49,127.45, 82.68,80.39,79.62,75.29,74.62,73.22,73.05,72.59,67.87,21.08
HRMS [M + H] +: C 42 H 43 O 7 Calculated 659.3009; Found: 659.3004
Mass spectrum [M+H] + : 659
例5:ニッケル(II)ジクロリド(NiClExample 5: Nickel (II) dichloride (NiCl Two )を使用した化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート)の製造Of compound (5) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-ylacetate)
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 ホットオーブンで乾燥したSchlenk管に、アルゴン雰囲気下、化合物(4)(0.25mmol、190mg)を入れ、続いてNiCl(0.0125mmol、3.2mg)及びTHF(2mL)を入れた。得られた混合液を5分間撹拌し、続いてPh有機亜鉛化合物と塩化リチウムとの複合体ZnCl・LiCl(0.375mmol、3mL)のTHF溶液(0.125M)を注射器で添加した。得られた反応混合液を25℃で1時間撹拌した。その後、反応混合液を水でクエンチし、酢酸エチル(3×30mL)で抽出した。有機抽出物を食塩水で洗浄し、無水NaSOで乾燥させ、濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/20~2/20)で精製し、化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート;96mg、0.145mmol、収率58%)を得た。なお、化合物(5)と共に、未反応の化合物(4)(60mg、0.08mmol、収率32%)及び副生成物ビフェニルPh-Ph(11.6mg、0.075mmol、収率40%)を得た。 A Schlenk tube dried in a hot oven was charged with Compound (4) (0.25 mmol, 190 mg) under an argon atmosphere, followed by NiCl 2 (0.0125 mmol, 3.2 mg) and THF (2 mL). The resulting mixture was stirred for 5 minutes, and then a THF solution (0.125M) of a complex ZnCl.LiCl (0.375 mmol, 3 mL) of Ph organozinc compound and lithium chloride was added with a syringe. The resulting reaction mixture was stirred at 25°C for 1 hour. Then the reaction mixture was quenched with water and extracted with ethyl acetate (3 x 30 mL). The organic extract was washed with brine, dried over anhydrous Na 2 SO 4 and concentrated. The obtained crude product was purified by silica gel column chromatography (ethyl acetate/hexane=1/20 to 2/20) to give compound (5) ((2R,3R,4S,5R)-1,3,4,4). 5-Tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl acetate; 96 mg, 0.145 mmol, yield 58%) was obtained. In addition to the compound (5), the unreacted compound (4) (60 mg, 0.08 mmol, yield 32%) and the by-product biphenyl Ph-Ph (11.6 mg, 0.075 mmol, yield 40%) were added. Obtained.
例6:ニッケル(II)ジクロリド(ジメトキシエタン付加物)(NiClExample 6: Nickel (II) dichloride (dimethoxyethane adduct) (NiCl Two (dme))を使用した化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート)の製造(Dme)) (5) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-ylacetate) Manufacturing of
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 ホットオーブンで乾燥したSchlenk管に、アルゴン雰囲気下、化合物(4)(0.25mmol、190mg)を入れ、続いてNiCl(dme)(0.0125mmol、3mg)及びTHF(2mL)を入れた。得られた混合液を5分間撹拌し、続いて有機亜鉛化合物と塩化リチウムとの複合体PhZnCl・LiCl(0.375mmol、3mL)のTHF溶液(0.125M)を注射器で添加した。得られた反応混合液を25℃(室温)で1時間撹拌した。その後、反応混合液を水でクエンチし、酢酸エチル(3×30mL)で抽出した。有機抽出物を食塩水で洗浄し、無水NaSOで乾燥させ、濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/20~2/20)で精製し、化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート;99mg、0.15mmol、収率60%)を得た。なお、化合物(5)と共に、未反応の化合物(4)(9mg、0.058mmol、収率31%)及び副生成物ビフェニルPh-Ph(65mg、0.085mmol、収率34%)を得た。 A Schlenk tube dried in a hot oven was charged with compound (4) (0.25 mmol, 190 mg) under an argon atmosphere, followed by NiCl 2 (dme) (0.0125 mmol, 3 mg) and THF (2 mL). The obtained mixture was stirred for 5 minutes, and then a THF solution (0.125M) of a complex PhZnCl.LiCl (0.375 mmol, 3 mL) of an organozinc compound and lithium chloride was added with a syringe. The resulting reaction mixture was stirred at 25°C (room temperature) for 1 hour. Then the reaction mixture was quenched with water and extracted with ethyl acetate (3 x 30 mL). The organic extract was washed with brine, dried over anhydrous Na 2 SO 4 and concentrated. The obtained crude product was purified by silica gel column chromatography (ethyl acetate/hexane=1/20 to 2/20) to give compound (5) ((2R,3R,4S,5R)-1,3,4,4). 5-Tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl acetate; 99 mg, 0.15 mmol, yield 60%) was obtained. In addition to the compound (5), an unreacted compound (4) (9 mg, 0.058 mmol, yield 31%) and a by-product biphenyl Ph-Ph (65 mg, 0.085 mmol, yield 34%) were obtained. ..
 例7:ニッケル触媒についての検討
Figure JPOXMLDOC01-appb-C000081
Example 7: Study on nickel catalyst
Figure JPOXMLDOC01-appb-C000081
 例6におけるPhZnCl・LiClをPhZnBrに変更しかつNiCl(dme)を表1に示すニッケル触媒(Ni cat.)又はニッケル触媒と配位子(ligand)との組み合わせに変更する以外、例6と同様の操作にて化合物(5)の合成をTHF(3mL)中で行った。 Example 6 except that PhZnCl·LiCl in Example 6 was changed to PhZnBr and NiCl 2 (dme) was changed to the nickel catalyst (Ni cat.) or the combination of nickel catalyst and ligand shown in Table 1. Compound (5) was synthesized in THF (3 mL) by the same operation.
 結果を表1に示す。ニッケル触媒NiCl(thf)と配位子PPhとの組合せを用いた試験番号6における化合物(5)の収率は、試験番号1~5及び7の収率と比較して高かった。
Figure JPOXMLDOC01-appb-T000082
The results are shown in Table 1. The yield of the compound (5) in the test number 6 using the combination of the nickel catalyst NiCl 2 (thf) 2 and the ligand PPh 3 was higher than the yields of the test numbers 1 to 5 and 7.
Figure JPOXMLDOC01-appb-T000082
 なお、試験番号6における副生成物ビフェニルPh-Phの収率は20%であり、試験番号1~5及び7における副生成物ビフェニルPh-Phの収率と比較して低かった。 The yield of the by-product biphenyl Ph-Ph in Test No. 6 was 20%, which was lower than the yields of the by-product biphenyl Ph-Ph in Test Nos. 1 to 5 and 7.
 例8:ニッケル触媒における配位子についての検討
 表2に示される試験番号7~11では、配位子を表2に示されるものに変更する以外、例7の試験番号6と同様の操作にて化合物(5)の合成を行った。さらに、試験番号12では、ニッケル触媒NiCl(thf)をNi(COD)に変更する以外、試験番号11と同様の操作にて化合物(5)の合成を行った。
Example 8: Examination of Ligands in Nickel Catalyst In Test Nos. 7 to 11 shown in Table 2, the same operation as Test No. 6 in Example 7 was performed except that the ligands were changed to those shown in Table 2. Then, the compound (5) was synthesized. Further, in Test No. 12, except for changing the nickel catalyst NiCl 2 (thf) 2 in Ni (COD) 2, was synthesized compound (5) in the same operation as test No. 11.
 結果を表2に示す。二座ホスフィン配位子を用いた試験番号10、11及び12における化合物(5)の収率は、試験番号6の収率と比較して高かった。 The results are shown in Table 2. The yield of the compound (5) in Test Nos. 10, 11 and 12 using the bidentate phosphine ligand was higher than that in Test No. 6.
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000083
 なお、二座ホスフィン配位子を用いた試験番号8、9、10、11及び12における副生成物ビフェニルPh-Phの収率は各々、18%、10%、16%、9%及び14%であり、単座ホスフィン配位子を用いた試験番号6における収率20%よりも低かった。 The yields of the by-product biphenyl Ph-Ph in Test Nos. 8, 9, 10, 11 and 12 using the bidentate phosphine ligand were 18%, 10%, 16%, 9% and 14%, respectively. And the yield was lower than 20% in the test number 6 using the monodentate phosphine ligand.
 例9:ニッケル触媒を用いた反応系における反応温度についての検討
 表3に示される試験番号13及び14では、反応温度を表3に示されるものに変更する以外、例8の試験番号11と同様の操作にて化合物(5)の合成を行った。また、試験番号15及び16ではそれぞれ、配位子dcypeをdcyptに変更する以外、試験番号11及び14と同様の操作にて化合物(5)の合成を行った。その結果を表3に示す。
Example 9: Examination of reaction temperature in reaction system using nickel catalyst In Test Nos. 13 and 14 shown in Table 3, the same as Test No. 11 in Example 8 except that the reaction temperature was changed to that shown in Table 3. Compound (5) was synthesized by the operation of. In Test Nos. 15 and 16, compound (5) was synthesized in the same manner as in Test Nos. 11 and 14, except that the ligand dcype was changed to dcypt. The results are shown in Table 3.
 結果を表3に示す。反応温度25℃で行われた試験番号11及び15における化合物(5)の収率は、反応温度0℃又は50℃で行われた試験番号13、14及び16における収率と比較して高かった。 The results are shown in Table 3. The yield of the compound (5) in Test Nos. 11 and 15 performed at the reaction temperature of 25° C. was higher than that in Test Nos. 13, 14 and 16 performed at the reaction temperature of 0° C. or 50° C. ..
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000084
 なお、反応温度25℃で行われた試験番号11及び15における副生成物ビフェニルPh-Phの収率はそれぞれ、9%及び16%であり、反応温度0℃又は50℃で行われた試験番号13、14及び16における副生成物ビフェニルPh-Phの収率と比較して低かった。 The yields of the by-product biphenyl Ph-Ph in Test Nos. 11 and 15 conducted at the reaction temperature of 25°C were 9% and 16%, respectively, and the test numbers conducted at the reaction temperature of 0°C or 50°C. It was low compared to the yield of the by-product biphenyl Ph-Ph in 13, 14 and 16.
 例10:ニッケル触媒における配位子についての検討
 表4に示される試験番号17~19では、配位子を表4に示されるものに変更する以外、例8の試験番号11と同様の操作にて化合物(5)の合成を行った。
Example 10: Examination of Ligands in Nickel Catalysts Test Nos. 17 to 19 shown in Table 4 were conducted in the same manner as Test No. 11 of Example 8 except that the ligands were changed to those shown in Table 4. Then, the compound (5) was synthesized.
 結果を表4に示す。ジピリジンタイプの配位子を用いた試験番号17~19においても反応は進行することが確認された。 The results are shown in Table 4. It was confirmed that the reaction also proceeded in Test Nos. 17 to 19 using the dipyridine type ligand.
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000085
 なお、試験番号17、18及び19における副生成物ビフェニルPh-Phの収率はそれぞれ、32%、21%及び18%であった。 The yields of the by-product biphenyl Ph-Ph in Test Nos. 17, 18 and 19 were 32%, 21% and 18%, respectively.
例11:Pd/Cを使用した化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート)の製造Example 11: Compound (5) using Pd/C ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl Production of acetate)
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 ホットオーブンで乾燥したSchlenk管に、アルゴン雰囲気下、化合物(4)(0.25mmol、190mg)を入れ、続いてPd/C(0.0025mmol、3mg)及びTHF(2mL)を入れた。得られた反応混合液を5分間撹拌し、続いて有機亜鉛化合物と塩化リチウムとの複合体PhZnCl・LiCl(0.375mmol、3mL)のTHF溶液(0.125M)を注射器で添加した。得られた反応混合液を25℃(室温)で24時間撹拌した。その後、反応混合液を水(1mL)でクエンチし、セライトパッドにより濾過し、酢酸エチル(3×30mL)で抽出した。有機抽出物を水及び食塩水で洗浄し、無水NaSOで乾燥させ、濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/20~2/20)で精製し、化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート;110mg、0.167mmol、収率67%)を得た。なお、化合物(5)と共に、未反応の化合物(4)(58mg、0.077mmol、収率31%)及び副生成物ビフェニルPh-Ph(3mg、0.0187mmol、収率10%)を得た。 A Schlenk tube dried in a hot oven was charged with compound (4) (0.25 mmol, 190 mg) under an argon atmosphere, followed by Pd/C (0.0025 mmol, 3 mg) and THF (2 mL). The obtained reaction mixture was stirred for 5 minutes, and then a THF solution (0.125M) of a complex PhZnCl.LiCl (0.375 mmol, 3 mL) of an organozinc compound and lithium chloride was added with a syringe. The resulting reaction mixture was stirred at 25°C (room temperature) for 24 hours. The reaction mixture was then quenched with water (1 mL), filtered through a Celite pad and extracted with ethyl acetate (3 x 30 mL). The organic extract was washed with water and brine, dried over anhydrous Na 2 SO 4 and concentrated. The obtained crude product was purified by silica gel column chromatography (ethyl acetate/hexane=1/20 to 2/20) to give compound (5) ((2R,3R,4S,5R)-1,3,4,4). 5-Tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl acetate; 110 mg, 0.167 mmol, yield 67%) was obtained. In addition to the compound (5), an unreacted compound (4) (58 mg, 0.077 mmol, yield 31%) and a by-product biphenyl Ph-Ph (3 mg, 0.0187 mmol, yield 10%) were obtained. ..
例12:Pd/Cを使用した化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート)の製造Example 12: Compound (5) using Pd/C ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl Production of acetate)
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 ホットオーブンで乾燥したSchlenk管に、アルゴン雰囲気下、化合物(4)(0.25mmol、190mg)を入れ、続いてPd/C(0.05mol、6mg)及びTHF(2mL)を入れた。得られた反応混合液を5分間撹拌し、続いて有機亜鉛化合物と塩化リチウムとの複合体PhZnCl・LiCl(0.375mmol、3mL)のTHF溶液(0.125M)を注射器で添加した。得られた反応混合液を40℃で24時間撹拌した。その後、反応混合液を水(1mL)でクエンチし、セライトパッドにより濾過し、酢酸エチル(3×30mL)で抽出した。有機抽出物を水及び食塩水で洗浄し、無水NaSOで乾燥させ、濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/20~2/20)で精製し、化合物(5)(119mg、0.18mmol、収率72%)を得た。なお、化合物(5)と共に、未反応の化合物(4)(49mg、0.065mmol、収率26%)及び副生成物ビフェニルPh-Ph(5mg、0.032mmol、収率17%)を得た。 A Schlenk tube dried in a hot oven was charged with compound (4) (0.25 mmol, 190 mg) under an argon atmosphere, followed by Pd/C (0.05 mol, 6 mg) and THF (2 mL). The obtained reaction mixture was stirred for 5 minutes, and then a THF solution (0.125M) of a complex PhZnCl.LiCl (0.375 mmol, 3 mL) of an organozinc compound and lithium chloride was added with a syringe. The resulting reaction mixture was stirred at 40°C for 24 hours. The reaction mixture was then quenched with water (1 mL), filtered through a Celite pad and extracted with ethyl acetate (3 x 30 mL). The organic extract was washed with water and brine, dried over anhydrous Na 2 SO 4 and concentrated. The obtained crude product was purified by silica gel column chromatography (ethyl acetate/hexane=1/20 to 2/20) to obtain compound (5) (119 mg, 0.18 mmol, yield 72%). In addition to the compound (5), an unreacted compound (4) (49 mg, 0.065 mmol, yield 26%) and a by-product biphenyl Ph-Ph (5 mg, 0.032 mmol, yield 17%) were obtained. ..
例13:Pd/Cを使用する反応系の反応条件の検討Example 13: Examination of reaction conditions of a reaction system using Pd/C
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 以下の示す表5の試験番号20~25では、有機亜鉛化合物、添加物(additive)の有無、反応温度及び反応時間を表5に示すように変更する以外、例12と同様の操作にて化合物(5)の合成を行った。なお、試験番号23及び試験番号24では、PhZnCl・LiCl溶液のTHF溶液に続いて注射器を用いて添加物(DMF)を反応混合液に添加した。また、試験番号25では、PhZnCl・LiClのTHF溶液に代えて後述する例20に記載のPhZnBr及びZnBrを含有するTHE溶液を用いて添加物(ZnBr)を反応混合液に添加した。 In Test Nos. 20 to 25 shown in Table 5 below, the compounds were prepared in the same manner as in Example 12 except that the organozinc compound, the presence or absence of an additive, the reaction temperature and the reaction time were changed as shown in Table 5. (5) was synthesized. In Test No. 23 and Test No. 24, an additive (DMF) was added to the reaction mixture using a THF solution of the PhZnCl.LiCl solution and then using a syringe. In Test No. 25, an additive (ZnBr 2 ) was added to the reaction mixture using a THE solution containing PhZnBr and ZnBr 2 described in Example 20 described later in place of the THF solution of PhZnCl·LiCl.
 結果を表5に示す。有機亜鉛化合物としてPhZnBrを用いかつZnBrを添加した試験番号25は、有機亜鉛化合物としてPhZnCl・LiClを用いた試験番号20~24と比較して化合物(5)の収率が高かった。
Figure JPOXMLDOC01-appb-T000089
The results are shown in Table 5. Test number 25 in which PhZnBr was used as the organozinc compound and ZnBr 2 was added showed a higher yield of compound (5) compared to test numbers 20 to 24 in which PhZnCl.LiCl was used as the organozinc compound.
Figure JPOXMLDOC01-appb-T000089
例14:Pd/Cを使用した反応系における反応条件の検討Example 14: Examination of reaction conditions in a reaction system using Pd/C
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 表6の試験番号20~25では、有機亜鉛化合物又はその量、溶媒、反応時間及び反応温度を表5に示すように変更する以外、例13と同様の操作にて化合物(5)の合成を行った。 In Test Nos. 20 to 25 in Table 6, compound (5) was synthesized by the same operation as in Example 13 except that the organozinc compound or its amount, solvent, reaction time and reaction temperature were changed as shown in Table 5. went.
 結果を表6に示す。反応温度60℃で実施した試験番号24及び25は、反応温度40~50で実施した試験番号20~23と比較して化合物(5)の収率は高かった。また、PhZnBr2当量を使用した試験番号25は、PhZnBr1当量を使用した試験番号24と比較して化合物(5)の収率は高かった。
Figure JPOXMLDOC01-appb-T000091
The results are shown in Table 6. Test Nos. 24 and 25 conducted at the reaction temperature of 60° C. showed higher yields of the compound (5) compared with Test Nos. 20 to 23 conducted at the reaction temperature of 40 to 50. Moreover, the test number 25 using 2 equivalents of PhZnBr had a higher yield of the compound (5) than the test number 24 using 1 equivalent of PhZnBr.
Figure JPOXMLDOC01-appb-T000091
例15:パラジウム(0)テトラキストリフェニルホスフィン錯体(Pd(PPh )を使用した化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート)の製造  
Figure JPOXMLDOC01-appb-C000092
Example 15: Compound (5) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzoyloxy) using a palladium(0) tetrakistriphenylphosphine complex (Pd(PPh 3 ) 4 ). )-6-Oxo-6-phenylhexan-2-yl acetate)
Figure JPOXMLDOC01-appb-C000092
  ホットオーブンで乾燥したSchlenk管に、アルゴン雰囲気下、化合物(4)(0.25mmol、190mg)を入れ、続いてPd(PPh(0.0125mol、15mg)及びTHF(2mL)を入れた。得られた反応混合液を5分間撹拌し、続いて有機亜鉛化合物と塩化リチウムとの複合体PhZnCl・LiCl(0.375mmol、3mL)のTHF溶液(0.125M)を注射器で添加した。得られた反応混合液を40℃で24時間撹拌した。その後、反応混合液を水(1mL)でクエンチし、セライトパッドにより濾過し、酢酸エチル(3×30mL)で抽出した。有機抽出物を水及び食塩水で洗浄し、無水NaSOで乾燥させ、濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/20~2/20)で精製し、化合物(5)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンゾイルオキシ)-6-オキソ-6-フェニルヘキサン-2-イルアセテート;89mg、0.135mmol、収率54%)を得た。なお、化合物(5)と共に、未反応の化合物(4)(80mg、0.105mmol、収率42%)を得た。 A Schlenk tube dried in a hot oven was charged with compound (4) (0.25 mmol, 190 mg) under an argon atmosphere, followed by Pd(PPh 3 ) 4 (0.0125 mol, 15 mg) and THF (2 mL). .. The obtained reaction mixture was stirred for 5 minutes, and then a THF solution (0.125M) of a complex PhZnCl.LiCl (0.375 mmol, 3 mL) of an organozinc compound and lithium chloride was added with a syringe. The resulting reaction mixture was stirred at 40°C for 24 hours. The reaction mixture was then quenched with water (1 mL), filtered through a Celite pad and extracted with ethyl acetate (3 x 30 mL). The organic extract was washed with water and brine, dried over anhydrous Na 2 SO 4 and concentrated. The obtained crude product was purified by silica gel column chromatography (ethyl acetate/hexane=1/20 to 2/20) to give compound (5) ((2R,3R,4S,5R)-1,3,4,4). 5-Tetrakis(benzoyloxy)-6-oxo-6-phenylhexan-2-yl acetate; 89 mg, 0.135 mmol, yield 54%) was obtained. An unreacted compound (4) (80 mg, 0.105 mmol, yield 42%) was obtained together with the compound (5).
例16:化合物(6)(2,3,4,6-テトラ-O-ベンジル-1C-フェニルグルコース)の製造Example 16: Preparation of compound (6) (2,3,4,6-tetra-O-benzyl-1C-phenylglucose)
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 ホットオーブンで乾燥したSchlenk管に、アルゴン雰囲気下、化合物(5)(0.2mmol、132mg)を入れ、続いてナトリウムメトキシド(0.02mmol、1mg)及びメタノール(2mL)を入れた。得られた反応混合液を25℃で6時間撹拌した。その後、反応混合液をシリカ層で濾過し、メタノール(3×20mL)で洗浄した。次に、得られた溶液を減圧濃縮して粗生成物を得た。粗生成物はシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=4/20~8/20)で精製し、無色液体として化合物(6)(2,3,4,6-テトラ-O-ベンジル-1C-フェニルグルコース;112mg、0.182mmol、収率91%)を得た。 A Schlenk tube dried in a hot oven was charged with the compound (5) (0.2 mmol, 132 mg) under an argon atmosphere, followed by sodium methoxide (0.02 mmol, 1 mg) and methanol (2 mL). The resulting reaction mixture was stirred at 25°C for 6 hours. Then the reaction mixture was filtered through a layer of silica and washed with methanol (3 x 20 mL). Next, the obtained solution was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (ethyl acetate/hexane=4/20 to 8/20) to give compound (6) (2,3,4,6-tetra-O-benzyl-1C-) as a colorless liquid. Phenyl glucose; 112 mg, 0.182 mmol, yield 91%) was obtained.
化合物(6)
 IR(KBr):νmax=3411,3027,2923,1590,1494,1452,1361,1212,1093,734,696cm-1
 H-NMR(400MHz,CDCl)δ:7.64(d,J=7.0Hz,2H),7.38-7.13(m,21H),6.97(d,J=6.1Hz,2H),4.95-4.81(m,3H),4.69-4.56(m,2H),4.51(d,J=12.3Hz,1H),4.38(d,J=10.4Hz,1H),4.17(d,J=8.2Hz,1H),4.07(t,J=9.2Hz,1H),3.84-3.79(m,3H),3.70(d,J=10.9Hz,1H),3.53(d,J=9.4Hz,1H),3.34(s,1H)
 13C-NMR(101MHz,CDCl)δ:142.47,138.85,138.58,138.45,137.59,128.61,128.47,128.42,128.26,128.23,128.03,127.79,127.75,127.69,127.62,127.58,126.36,98.00,85.28,83.59,78.53,75.75,75.53,75.08,73.38,72.15,69.12
 HRMS [M-H]:C4039 計算値615.2747;実測値:615.2743
 質量分析[M-H]:615
Compound (6)
IR (KBr): νmax=3411, 3027, 2923, 1590, 1494, 1452, 1361, 1212, 1093, 734, 696 cm -1
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.64 (d, J=7.0 Hz, 2 H), 7.38-7.13 (m, 21 H), 6.97 (d, J=6. 1Hz, 2H), 4.95-4.81(m, 3H), 4.69-4.56(m, 2H), 4.51(d, J=12.3Hz, 1H), 4.38( d, J=10.4 Hz, 1H), 4.17 (d, J=8.2 Hz, 1H), 4.07 (t, J=9.2 Hz, 1H), 3.84-3.79 (m , 3H), 3.70 (d, J=10.9 Hz, 1H), 3.53 (d, J=9.4 Hz, 1H), 3.34 (s, 1H).
13 C-NMR (101 MHz, CDCl 3 ) δ:142.47,138.85,138.58,138.45,137.59,128.61,128.47,128.42,128.26,128. 23, 128.03, 127.79, 127.75, 127.69, 127.62, 127.58, 126.36, 98.00, 85.28, 83.59, 78.53, 75.75, 75.53, 75.08, 73.38, 72.15, 69.12.
HRMS [M-H] -: C 40 H 39 O 6 Calculated 615.2747; Found: 615.2743
Mass spectrometry [MH] - : 615
例17:化合物(7)(3R,4S、5R-トリベンジルオキシ-6R-ベンジルオキシメチル-6S-フェニルテトラヒドロピラン)の製造Example 17: Preparation of compound (7) (3R,4S,5R-tribenzyloxy-6R-benzyloxymethyl-6S-phenyltetrahydropyran)
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 例1で得られた化合物(6)(200mg、0.32mmol)のアセトニトリル溶液(3mL)にトリエチルシラン(76mg、0.65mmol)を加えた。得られた溶液をドライアイス/アセトンバスで-40℃まで冷却後、三フッ化ホウ素・エーテル錯体(70mg、0.49mmol)の塩化メチレン(1mL)溶液を加えて-40~―30℃で3時間撹拌した。 Triethylsilane (76 mg, 0.65 mmol) was added to an acetonitrile solution (3 mL) of the compound (6) (200 mg, 0.32 mmol) obtained in Example 1. The resulting solution was cooled to −40° C. with a dry ice/acetone bath, and a solution of boron trifluoride/ether complex (70 mg, 0.49 mmol) in methylene chloride (1 mL) was added to the solution at −40 to −30° C. Stir for hours.
 反応液をHPLC分析したところ、化合物(6)は完全に消費され、化合物(7)のピークが確認された。 When the reaction solution was analyzed by HPLC, the compound (6) was completely consumed and the peak of the compound (7) was confirmed.
 反応液に水(20mL)を加え、生成物を酢酸エチル(5mL×4)で抽出した。有機抽出物を合わせて減圧濃縮した。濃縮液をシリカゲルカラム(展開溶媒:ヘキサン/酢酸エチル=10/1)で精製して化合物(7)(3R,4S、5R-トリベンジルオキシ-6R-ベンジルオキシメチル-6S-フェニルテトラヒドロピラン;110mg、収率56%)を得た。化合物(7)の異性体比は、β:α=82/18であった。 Water (20 mL) was added to the reaction solution, and the product was extracted with ethyl acetate (5 mL x 4). The organic extracts were combined and concentrated under reduced pressure. The concentrated solution was purified with a silica gel column (developing solvent: hexane/ethyl acetate=10/1) to give compound (7) (3R,4S,5R-tribenzyloxy-6R-benzyloxymethyl-6S-phenyltetrahydropyran; 110 mg. , Yield 56%) was obtained. The isomer ratio of the compound (7) was β:α=82/18.
HPLC条件:
測定波長:210nm
流速:1.0mL/min
移動相:アセトニトリル:水=90/10→100/0(0→10、20min)
カラム温度:20℃
充填剤:X Bridge、C18、5mm、4.8mmx150mm)
保持時間:β体 5.64min; α体 5.31min
HPLC conditions:
Measurement wavelength: 210 nm
Flow rate: 1.0 mL/min
Mobile phase: Acetonitrile: Water=90/10→100/0 (0→10, 20 min)
Column temperature: 20℃
Filler: X Bridge, C18, 5 mm, 4.8 mm x 150 mm)
Retention time: β body 5.64 min; α body 5.31 min
化合物(7)
 H-NMR(CDCl)δ:3.50-3.55(m,1H),3.60-3.61(m,1H),3.73-3.82(m,5H),4.25(d,J=9.3Hz,1H),4.36(d,J=10.3Hz,1H),4.55-4.68(m,3H),4.86-4.98(m,3H),6.91-6.93(m,2H),7.14-7.53(m,23H)
Compound (7)
1 H-NMR (CDCl 3 ) δ: 3.50-3.55 (m, 1H), 3.60-3.61 (m, 1H), 3.73-3.82 (m, 5H), 4 0.25 (d, J=9.3 Hz, 1H), 4.36 (d, J=10.3 Hz, 1H), 4.55-4.68 (m, 3H), 4.86-4.98( m, 3H), 6.91-6.93 (m, 2H), 7.14-7.53 (m, 23H)
例18:有機亜鉛化合物と塩化リチウムとの複合体PhZnCl・LiClの製造Example 18: Preparation of complex PhZnCl/LiCl of organozinc compound and lithium chloride
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
 マグネチック撹拌子の入った50mLの乾燥したシュレンク管に削り屑状Mg(372mg、15.3mmol、1.5当量)及び塩化リチウム(LiCl;540mg、12.75mmol、1.25当量)入れてグローブボックスに入れ、ホットガンで乾燥させた。次に、温かいフラスコにアルゴンを3回注入した後、乾燥したTHF(8mL)及び水素化ジイソブチルアルミニウム(DIBAL-H;1.0M THF溶液0.1mL、1mol%)を室温で加え、5~10分撹拌した。次に、シュレンク管を0℃に冷却し、ブロモベンゼン(1.1mL、10.2mmol、1.0当量)を加えた。得られた反応混合液を0℃で10分間、次いで室温で2時間撹拌してグリニャール試薬と塩化リチウムとの複合体(PhMgBr・LiCl)を得た。グリニャール試薬と塩化リチウムとの複合体(PhMgBr・LiCl)を適当な量の乾燥THFで希釈して、LiCl及びヨウ素を用いて滴定し、約1M濃度に調整した。得られたグリニャール試薬と塩化リチウムとの錯体を含有する溶液を、ZnCl(グリニャール試薬に対して1当量)を含有する乾燥THF溶液に室温で添加し、15分間撹拌して、0.125Mの目的の複合体PhZnCl・LiClを含有する溶液を取得した。なお、溶液濃度は、対応するグリニャール試薬の滴定濃度とトランスメタレーション後の希釈率に基づき調整した。 Scrap metal Mg (372 mg, 15.3 mmol, 1.5 eq) and lithium chloride (LiCl; 540 mg, 12.75 mmol, 1.25 eq) are put into a 50 mL dry Schlenk tube containing a magnetic stir bar and gloved. It was placed in a box and dried with a hot gun. Next, after injecting argon 3 times into a warm flask, dry THF (8 mL) and diisobutylaluminum hydride (DIBAL-H; 0.1 M THF solution 0.1 mL, 1 mol%) were added at room temperature, and the mixture was heated at 5-10%. Stir for minutes. The Schlenk tube was then cooled to 0° C. and bromobenzene (1.1 mL, 10.2 mmol, 1.0 eq) was added. The resulting reaction mixture was stirred at 0° C. for 10 minutes and then at room temperature for 2 hours to obtain a complex of Grignard reagent and lithium chloride (PhMgBr·LiCl). The complex of Grignard reagent and lithium chloride (PhMgBr.LiCl) was diluted with an appropriate amount of dry THF and titrated with LiCl and iodine to adjust the concentration to about 1M. The resulting solution containing the complex of Grignard reagent and lithium chloride was added to a dry THF solution containing ZnCl 2 (1 equivalent to the Grignard reagent) at room temperature and stirred for 15 minutes to give 0.125M A solution containing the target complex PhZnCl.LiCl was obtained. The solution concentration was adjusted based on the titration concentration of the corresponding Grignard reagent and the dilution rate after transmetallation.
例19:フェニル亜鉛ブロミド(PhZnBr)の製造Example 19: Preparation of phenyl zinc bromide (PhZnBr)
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 フェニルマグネシウムブロミド(グリニャール試薬)を乾燥THFで希釈し、LiCl及びヨウ素を用いて滴定して、約0.5M濃度のグリニャール試薬のTHF溶液を調製した。得られたグリニャール試薬のTHF溶液を、ZnBr(グリニャール試薬に対して1当量)を含有する乾燥THF溶液に25℃で添加して1時間撹拌してトランスメタレーションを実施し、0.25MのPhZnBrを含有するTHF溶液を取得した。なお、溶液濃度は、対応するグリニャール試薬の滴定濃度とトランスメタレーション後の希釈率に基づき調整した。 Phenylmagnesium bromide (Grignard reagent) was diluted with dry THF and titrated with LiCl and iodine to prepare a THF solution of Grignard reagent having a concentration of about 0.5M. The THF solution of the obtained Grignard reagent was added to a dry THF solution containing ZnBr 2 (1 equivalent to the Grignard reagent) at 25° C. and stirred for 1 hour to carry out transmetallation to obtain a 0.25 M solution. A THF solution containing PhZnBr was obtained. The solution concentration was adjusted based on the titration concentration of the corresponding Grignard reagent and the dilution rate after transmetallation.
例20:フェニル亜鉛ブロミド(PhZnBr)及び臭化亜鉛(ZnBr )を含有するTHF溶液の製造
 0.5M濃度のフェニルマグネシウムブロミド(グリニャール試薬)のTHF溶液を、ZnBrを含有する乾燥THF溶液に25℃で添加して1時間撹拌してトランスメタレーションを実施し、0.25MのPhZnBr及びZnBr(PhZnBrに対して0.1当量過剰)を含有するTHF溶液を取得した。なお、溶液濃度は、対応するグリニャール試薬の滴定濃度とトランスメタレーション後の希釈率に基づき調整した。
Example 20: A THF solution of phenyl zinc bromide (PhZnBr) and phenyl magnesium bromide prepared 0.5M concentration of THF solution containing zinc bromide (ZnBr 2) (Grignard reagent), in dry THF solution containing ZnBr 2 A THF solution containing 0.25M PhZnBr and ZnBr 2 (0.1 equivalent excess with respect to PhZnBr) was obtained by performing transmetallation by adding at 25° C. and stirring for 1 hour. The solution concentration was adjusted based on the titration concentration of the corresponding Grignard reagent and the dilution rate after transmetallation.
例21:化合物(9)(アリール臭化亜鉛)の製造Example 21: Preparation of compound (9) (aryl zinc bromide)
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
 アルゴン雰囲気下、無水THF(2mL)中無水塩化リチウム(65mg、1.53mmol、1.02当量)の溶液に対して、THF(0.8mL、1.6mmol、1.06当量)中i-プロピル塩化マグネシウムの溶液2.0Mを0℃にて添加した。無水THF(5mL)中の化合物(8)(2-(5-ヨード-2-メチルベンジル)-5-(4-フルオロフェニル)チオフェン;612mg、1.5mmol、1当量)を0℃にてアルゴン下で反応混合液に滴下し、反応液を室温にし、1時間撹拌した。得られた反応液を無水THF(5mL)中ZnBr(372mg、1.65mmol、1.1当量)の乾燥THF溶液に加えることによってトランスメタレーションして化合物(9)の溶液を得、次の工程に使用した。 I-Propyl in THF (0.8 mL, 1.6 mmol, 1.06 eq) against a solution of anhydrous lithium chloride (65 mg, 1.53 mmol, 1.02 eq) in anhydrous THF (2 mL) under argon atmosphere. A 2.0 M solution of magnesium chloride was added at 0°C. Compound (8) (2-(5-iodo-2-methylbenzyl)-5-(4-fluorophenyl)thiophene; 612 mg, 1.5 mmol, 1 eq) in anhydrous THF (5 mL) at 0° C. with argon. The reaction mixture was allowed to come to room temperature and stirred for 1 hour. The resulting reaction solution was transmetallated by adding ZnBr 2 (372 mg, 1.65 mmol, 1.1 eq) in dry THF (5 mL) to a solution of compound (9) to give a solution of Used in the process.
例22:化合物(10)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンジルオキシ)-6-(3-((5-(4-フルオロフェニル)チオフェン-2-イル)メチル)-4-メチルフェニル)-6-オキソヘキサン-2-イルアセテート)の製造Example 22: Compound (10)((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzyloxy)-6-(3-((5-(4-fluorophenyl)thiophene-2 -Yl)methyl)-4-methylphenyl)-6-oxohexan-2-ylacetate)
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 例21で得られた化合物(9)の溶液を、THF(5mL)中に化合物(4)(566mg、0.75mmol、0.5当量)が入ったSchlenk管に滴下した。反応液を36時間25℃で撹拌し、次いで反応液を水(1mL)でクエンチし、反応混合液をセライト(商標)により濾過し、酢酸エチル(3×100mL)で洗浄した。濾液を水及び食塩水で洗浄し、無水NaSOで乾燥させて減圧留去させた。残渣をシリカクロマトグラフィー(酢酸エチル/ヘキサン=1/20~3/20)で精製し、化合物(10)(492mg、0.57mmol、76%)を得た。 The solution of compound (9) obtained in Example 21 was added dropwise to a Schlenk tube containing compound (4) (566 mg, 0.75 mmol, 0.5 eq) in THF (5 mL). The reaction was stirred for 36 hours at 25° C., then the reaction was quenched with water (1 mL), the reaction mixture was filtered through Celite™, washing with ethyl acetate (3×100 mL). The filtrate was washed with water and brine, dried over anhydrous Na 2 SO 4 and evaporated under reduced pressure. The residue was purified by silica chromatography (ethyl acetate/hexane=1/20 to 3/20) to obtain compound (10) (492 mg, 0.57 mmol, 76%).
化合物(10)
 H-NMR(400MHz,CDCl)δ:7.50(d,J=1.3Hz,1H),7.43(dd,J=7.8,1.6Hz,1H),7.41-7.14(m,21H),7.07-7.04(m,2H),7.00-6.93(m,3H),6.60(d,J=3.5Hz,1H),4.95-4.84(m,3H),4.70-4.59(m,3H),4.42(d,J=10.4Hz,1H),4.19-4.14(m,2H),4.04(d,J=16.0Hz,1H),3.91(d,J=10.4Hz,1H),3.89-3.74(m,4H),3.40(d,J=9.6Hz,1H),3.16(s,3H),2.34(s,3H)
 13C-NMR(101MHz,CDCl)δ:198.51,170.08,162.2(d,J=245.3Hz),142.69,142.60,141.79,138.64,138.55,138.06,137.99,137.36,134.54,130.84(d,J=3.4Hz),130.68,130.31,128.76,128.53,128.42,128.38,128.29,128.17,127.98,127.91,127.88,127.79,127.58,127.55,127.22(d,J=8.0Hz),126.24,122.83,115.82(d,J=21.8Hz),82.94,80.68,79.52,75.51,74.64,73.26,73.15,72.72,68.12,34.14,21.21,19.88
HRMS [M+Na] C5451FOSNa 計算値885.3237;実測値885.3229.
Compound (10)
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.50 (d, J=1.3 Hz, 1 H), 7.43 (dd, J=7.8, 1.6 Hz, 1 H), 7.41- 7.14 (m, 21H), 7.07-7.04 (m, 2H), 7.00-6.93 (m, 3H), 6.60 (d, J=3.5Hz, 1H), 4.95-4.84 (m, 3H), 4.70-4.59 (m, 3H), 4.42 (d, J=10.4Hz, 1H), 4.19-4.14 (m , 2H), 4.04 (d, J=16.0 Hz, 1H), 3.91 (d, J=10.4 Hz, 1H), 3.89-3.74 (m, 4H), 3.40. (D, J=9.6 Hz, 1H), 3.16 (s, 3H), 2.34 (s, 3H)
13 C-NMR (101 MHz, CDCl 3 ) δ: 198.51, 170.08, 162.2 (d, J=245.3 Hz), 142.69, 142.60, 141.79, 138.64, 138. .55, 138.06, 137.99, 137.36, 134.54, 130.84 (d, J=3.4 Hz), 130.68, 130.31, 128.76, 128.53, 128. 42, 128.38, 128.29, 128.17, 127.98, 127.91, 127.88, 127.79, 127.58, 127.55, 127.22 (d, J=8.0 Hz). , 126.24, 122.83, 115.82 (d, J=21.8 Hz), 82.94, 80.68, 79.52, 75.51, 74.64, 73.26, 73.15, 72.72, 68.12, 34.14, 21.21, 19.88
HRMS [M+Na] + C 54 H 51 FO 7 SNa calcd 885.3237; found 885.3229.
例23:化合物(11)の製造Example 23: Production of compound (11)
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 ホットオーブンで乾燥したSchlenk管を室温に冷却し、Schlenk管にMeOH(5mL)中の化合物(10)(173mg、0.2mmol)を入れた。得られた溶液にNaOMe(11mg、0.2mmol)をアルゴン雰囲気下で加え、6時間25℃にて反応液を撹拌した。次いで反応液を1N HCl(2mL)水溶液で中和した。次に、溶媒を減圧留去させて粗生成物を得た。粗生成物をシリカクロマトグラフィー(酢酸エチル/ヘキサン=2/20~8/20)で精製し、黄色固体として化合物(11)(142mg、0.172mmol、86%)を得た。 The Schlenk tube dried in a hot oven was cooled to room temperature and the Schlenk tube was charged with compound (10) (173 mg, 0.2 mmol) in MeOH (5 mL). NaOMe (11 mg, 0.2 mmol) was added to the obtained solution under an argon atmosphere, and the reaction solution was stirred at 25° C. for 6 hours. Then, the reaction solution was neutralized with a 1N HCl (2 mL) aqueous solution. Next, the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified by silica chromatography (ethyl acetate/hexane=2/20 to 8/20) to obtain compound (11) (142 mg, 0.172 mmol, 86%) as a yellow solid.
H-NMR(400MHz,CDCl)δ:7.52(s,1H),7.47-7.43(m,1H),7.39-7.09(m,21H),7.03-6.89(m,5H),6.61(d,J=3.5Hz,1H),4.89-4.86(m,3H),4.68-4.62(m,2H),4.53(d,J=12.3Hz,1H),4.38(d,J=10.6Hz,1H),4.19-4.03(m,4H),3.94(d,J=10.5Hz,1H),3.87-3.82(m,2H),3.71(d,J=11.1Hz,1H),3.60(d,J=9.3Hz,1H),3.08(s,1H),2.33(s,3H)
13C-NMR(101MHz,CDCl)δ:162.18(d,J=246.6Hz),143.59,141.58,140.59,138.86,138.75,138.50,138.13,137.77,136.95,130.94(d,J=3.3Hz),130.59,128.52,128.50,128.44,128.38,128.28,128.08,127.87,127.82,127.73,127.67,127.57,127.20(d,J=8.0Hz),125.94,124.97,122.78,115.77(d,J=21.6Hz),98.03,85.55,83.63,78.53,77.48,77.16,76.84,75.84,75.68,75.18,73.52,72.39,69.11,34.48,19.37
 HRMS [M+Na]:C5249FOSNa 計算値843.3132,実測値843.3123
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.52 (s, 1H), 7.47-7.43 (m, 1H), 7.39-7.09 (m, 21H), 7.03. -6.89 (m, 5H), 6.61 (d, J=3.5Hz, 1H), 4.89-4.86 (m, 3H), 4.68-4.62 (m, 2H) , 4.53 (d, J=12.3 Hz, 1H), 4.38 (d, J=10.6 Hz, 1H), 4.19-4.03 (m, 4H), 3.94 (d, J=10.5Hz, 1H), 3.87-3.82(m, 2H), 3.71(d, J=11.1Hz, 1H), 3.60(d, J=9.3Hz, 1H ), 3.08 (s, 1H), 2.33 (s, 3H)
13 C-NMR (101 MHz, CDCl 3 ) δ: 162.18 (d, J=246.6 Hz), 143.59, 141.58, 140.59, 138.86, 138.75, 138.50, 138. .13, 137.77, 136.95, 130.94 (d, J=3.3 Hz), 130.59, 128.52, 128.50, 128.44, 128.38, 128.28, 128. 08,127.87,127.82,127.73,127.67,127.57,127.20 (d, J=8.0 Hz), 125.94, 124.97, 122.78, 115.77. (D, J=21.6 Hz), 98.03, 85.55, 83.63, 78.53, 77.48, 77.16, 76.84, 75.84, 75.68, 75.18, 73.52, 72.39, 69.11, 34.48, 19.37
HRMS [M+Na] + : C 52 H 49 FO 6 SNa calcd 843.3132, found 843.3123.
例24:化合物(12)((2R,3R,4R,5S,6S)-3,4,5-トリス(ベンジルオキシ)-2-(ベンジルオキシメチル)-6-(3-((5-(4-フルオロフェニル)チオフェン-2-イル)メチル)-4-メチルフェニル)テトラヒドロ-2H-ピラン)の製造Example 24: Compound (12)((2R,3R,4R,5S,6S)-3,4,5-Tris(benzyloxy)-2-(benzyloxymethyl)-6-(3-((5-( Preparation of 4-fluorophenyl)thiophen-2-yl)methyl)-4-methylphenyl)tetrahydro-2H-pyran)
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 アルゴン雰囲気下で、アセトニトリル/ジクロロメタン(3:2)(10mL)中の化合物(11)(150mg、0.18mmol)の溶液にEtSiH(88μL、0.55mmol)を加え、次いで反応液を-40℃に冷却し、反応液にBF・EtO(70μL、0.56mmol)を滴下した。次に、反応液を6時間撹拌し、0℃にてNaHCO水溶液(20mL)を反応液にゆっくりと加え、ジクロロメタン(3×40mL)で水相を抽出した。相分離後、水相を廃棄し、有機相を食塩水で洗浄し、無水NaSOで乾燥させ、濾過し、減圧濃縮した。粗生成物をフラッシュシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=2/20~6/20)により精製し、無色ガム状物として化合物(12)(133mg、0.164mmol、90%)を得、そのまま次の工程に使用した。
 HRMS [M+Na]:C5249FOSNa 計算値827.3182,実測値827.3176
Under an argon atmosphere, Et 3 SiH (88 μL, 0.55 mmol) was added to a solution of compound (11) (150 mg, 0.18 mmol) in acetonitrile/dichloromethane (3:2) (10 mL), and the reaction was then allowed to- After cooling to 40° C., BF 3 .Et 2 O (70 μL, 0.56 mmol) was added dropwise to the reaction solution. The reaction was then stirred for 6 hours, NaHCO 3 aqueous solution (20 mL) was slowly added to the reaction at 0° C., and the aqueous phase was extracted with dichloromethane (3×40 mL). After phase separation, the aqueous phase was discarded and the organic phase was washed with brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (ethyl acetate/hexane=2/20 to 6/20) to obtain compound (12) (133 mg, 0.164 mmol, 90%) as a colorless gum, as it was. Used in the next step.
HRMS [M+Na] + : C 52 H 49 FO 5 SNa calcd 827.33182, found 827.3176.
例25:化合物(13)((2S,3R,4R,5S,6R)-2-(3-((5-(4-フルオロフェニル)チオフェン-2-イル)メチル-4-メチルフェニル)-6-(ヒドロキシメチル)テトラヒドロ-2H-ピラン-3,4,5-トリオール;カナグリフロジン)の製造Example 25: Compound (13) ((2S,3R,4R,5S,6R)-2-(3-((5-(4-fluorophenyl)thiophen-2-yl)methyl-4-methylphenyl)-6 -(Hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; canagliflozin)
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
 アルゴン雰囲気下で、ジクロロメタン(5mL)中の化合物(12)の溶液(100mg、0.124mmol)に、0℃でヨードトリメチルシリル(0.110ml、0.744mmol)をゆっくりと加えた。添加が完了した後、反応液を25℃に暖め、8時間撹拌した。反応液を濃縮した。得られた粗生成物をシリカゲルのカラムクロマトグラフィー(MeOH/DCM=1/30~1/20)により精製し、化合物(13)(51mg、93%)を得た。 Iodotrimethylsilyl (0.110 ml, 0.744 mmol) was added slowly at 0° C. to a solution of compound (12) (100 mg, 0.124 mmol) in dichloromethane (5 mL) under argon atmosphere. After the addition was complete, the reaction was warmed to 25°C and stirred for 8 hours. The reaction solution was concentrated. The obtained crude product was purified by silica gel column chromatography (MeOH/DCM=1/30 to 1/20) to obtain compound (13) (51 mg, 93%).
 H-NMR(400MHz,DMSO-d)δ:7.61-7.57(m,2H),7.27(d,J=4.4Hz,1H),7.22-7.10(m,5H),6.79(d,J=3.6Hz,1H),4.99(br,2H,OH),4.79(br,1H,OH),4.45(br,1H,OH),4.15(d,J=16Hz,1H),4.09(d,J=16Hz,1H),3.96(d,J=9.6Hz,1H),3.69(d,J=11.2Hz,1H),3.46-3.41(m,1H),3.29-3.14(m,4H),2.26(s,3H)
 13C-NMR(101MHz,DMSO-d)δ:161.4(d,J=243Hz),143.63,140.22,138.21,137.35,134.93,130.53(d,J=3.1Hz),129.65,129.05,126.95(d,J=8Hz),126.34,126.23,123.38,115.86(d,J=21.6Hz),81.31,81.17,78.48,74.68,70.44,61.45,33.44,18.79
HRMS[M+Na]:C2425FOSNa 計算値467.1304;実測値:467.1299
1 H-NMR (400 MHz, DMSO-d 6 )δ:7.61-7.57 (m, 2H), 7.27 (d, J=4.4 Hz, 1H), 7.22-7.10 ( m, 5H), 6.79 (d, J=3.6Hz, 1H), 4.99 (br, 2H, OH), 4.79 (br, 1H, OH), 4.45 (br, 1H, OH), 4.15 (d, J=16 Hz, 1H), 4.09 (d, J=16 Hz, 1H), 3.96 (d, J=9.6 Hz, 1H), 3.69 (d, J=11.2 Hz, 1H), 3.46-3.41 (m, 1H), 3.29-3.14 (m, 4H), 2.26 (s, 3H)
13 C-NMR (101 MHz, DMSO-d 6 )δ: 161.4 (d, J=243 Hz), 143.63, 140.22, 138.21, 137.35, 134.93, 130.53 (d , J=3.1 Hz), 129.65, 129.05, 126.95 (d, J=8 Hz), 126.34, 126.23, 123.38, 115.86 (d, J=21.6 Hz). ), 81.31, 81.17, 78.48, 74.68, 70.44, 61.45, 33.44, 18.79.
HRMS [M+Na] + : C 24 H 25 FO 5 SNa calc. 467.1304; found: 467.1299.
例26:化合物(15)(アリール臭化亜鉛)の製造Example 26: Preparation of compound (15) (aryl zinc bromide)
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
 ホットオーブンで乾燥したSchlenk管をアルゴン雰囲気下で冷却し、化合物(14)(4-ブロモ-1-クロロ-2-(4-エトキシベンジル)ベンゼン:0.163g、0.5mmol)及び切削状マグネシウム(0.1g、4.1mmol)を入れ、続いて無水THF(5mL)及び1,2-ジブロモエタン(0.05mL)を入れた。反応液を還流まで熱して反応を開始させた。反応が開始した後に無水THF(10mL)中の追加の化合物(8)(0.49g、1.5mmol)を、アルゴン雰囲気下で反応液に滴下し、反応液を3時間還流させた。次いで反応混合液を室温に冷却した。得られた直後のグリニャール試薬を、25℃にて乾燥THF中のZnBr(773mg、3.43mmol、1.1当量)の溶液に添加し1時間撹拌して化合物(9)を得、次の工程に用いた。 A Schlenk tube dried in a hot oven was cooled under an argon atmosphere to give compound (14) (4-bromo-1-chloro-2-(4-ethoxybenzyl)benzene: 0.163 g, 0.5 mmol) and magnesium-like cuttings. (0.1 g, 4.1 mmol) was added, followed by anhydrous THF (5 mL) and 1,2-dibromoethane (0.05 mL). The reaction was heated to reflux to start the reaction. After the reaction started, additional compound (8) (0.49 g, 1.5 mmol) in anhydrous THF (10 mL) was added dropwise to the reaction solution under an argon atmosphere, and the reaction solution was refluxed for 3 hours. The reaction mixture was then cooled to room temperature. The Grignard reagent just obtained was added to a solution of ZnBr 2 (773 mg, 3.43 mmol, 1.1 eq) in dry THF at 25° C. and stirred for 1 hour to give compound (9), Used in the process.
例27:化合物(10)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンジルオキシ)-6-(4-クロロ-3-(4-エトキシベンジル)フェニル)-6-オキソヘキサン-2-イルアセテート)の製造Example 27: Compound (10) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzyloxy)-6-(4-chloro-3-(4-ethoxybenzyl)phenyl)- 6-oxohexan-2-yl acetate)
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 化合物(9)の溶液をTHF(5mL)中の化合物(4)(756mg、1mmol)の溶液が入ったSchlenk管に滴下し、続いて10重量%Pd/C(22mg、0.02mmol)を入れた。反応液を48間40℃で撹拌し、水(1mL)でクエンチし、反応液をセライト(商標)により濾過し、酢酸エチル(3×100mL)で洗浄した。濾液を水及び食塩水で洗浄し、無水NaSOで乾燥させ、減圧留去させた。残渣をシリカクロマトグラフィー(酢酸エチル/ヘキサン=1/20~3/20)で精製し、化合物(16)((2R,3R,4S,5R)-1,3,4,5-テトラキス(ベンジルオキシ)-6-(4-クロロ-3-(4-エトキシベンジル)フェニル)-6-オキソヘキサン-2-イルアセテート;588mg、0.71mmol、71%)を得た。 A solution of compound (9) was added dropwise to a Schlenk tube containing a solution of compound (4) (756 mg, 1 mmol) in THF (5 mL), followed by 10 wt% Pd/C (22 mg, 0.02 mmol). It was The reaction was stirred for 48 hours at 40° C., quenched with water (1 mL), filtered the reaction through Celite™ and washed with ethyl acetate (3×100 mL). The filtrate was washed with water and brine, dried over anhydrous Na 2 SO 4 and evaporated under reduced pressure. The residue was purified by silica chromatography (ethyl acetate/hexane=1/20 to 3/20) to give compound (16) ((2R,3R,4S,5R)-1,3,4,5-tetrakis(benzyloxy) )-6-(4-Chloro-3-(4-ethoxybenzyl)phenyl)-6-oxohexan-2-yl acetate; 588 mg, 0.71 mmol, 71%) was obtained.
化合物(16)
 H-NMR(400MHz,CDCl)δ:7.82(d,J=1.3Hz,1H),7.68(dd,J=8.3,1.6Hz,1H),7.33-7.12(m,19H),6.99(d,J=6.8Hz,2H),6.95(d,J=8.5Hz,2H),6.71(d,J=8.5Hz,2H),5.24(q,J=4.9Hz,1H),4.73(d,J=4.5Hz,1H),4.62-4.42(m,7H),4.31(d,J=10.8Hz,1H),4.13-4.09(m,1H),4.02-3.99(m,1H),3.94-3.88(m,4H),3.84(dd,J=10.4,5.0Hz,1H),3.63(dd,J=10.4,5.5Hz,1H),1.97(s,3H),1.34(t,J=7.0Hz,3H)
 13C-NMR(101MHz,CDCl)δ:198.56,170.09,157.66,139.53,138.42,138.00,137.78,137.12,134.76,131.85,130.70,129.98,129.56,128.72,128.57,128.45,128.40,128.38,128.32,128.20,128.07,127.93,127.87,127.83,127.68,127.62,114.65,83.59,80.59,79.21,77.36,75.49,74.60,73.35,72.71,68.15,63.46,38.45,21.21,14.96
 HRMS [M+Na]:C5151ClONa 計算値849.3170;実測値849.3165
Compound (16)
1 H-NMR (400 MHz, CDCl 3 ) δ:7.82 (d, J=1.3 Hz, 1 H), 7.68 (dd, J=8.3, 1.6 Hz, 1 H), 7.33- 7.12 (m, 19H), 6.99 (d, J=6.8Hz, 2H), 6.95 (d, J=8.5Hz, 2H), 6.71 (d, J=8.5Hz) , 2H), 5.24 (q, J=4.9 Hz, 1H), 4.73 (d, J=4.5 Hz, 1H), 4.62-4.42 (m, 7H), 4.31. (D, J=10.8 Hz, 1H), 4.13-4.09 (m, 1H), 4.02-3.99 (m, 1H), 3.94-3.88 (m, 4H) , 3.84 (dd, J=10.4, 5.0 Hz, 1H), 3.63 (dd, J=10.4, 5.5 Hz, 1H), 1.97 (s, 3H), 1. 34 (t, J=7.0Hz, 3H)
13 C-NMR (101 MHz, CDCl 3 ) δ: 198.56, 170.09, 157.66, 139.53, 138.42, 138.00, 137.78, 137.12, 134.76, 131. 85, 130.70, 129.98, 129.56, 128.72, 128.57, 128.45, 128.40, 128.38, 128.32, 128.20, 128.07, 127.93, 127.87, 127.83, 127.68, 127.62, 114.65, 83.59, 80.59, 79.21, 77.36, 75.49, 74.60, 73.35, 72. 71, 68.15, 63.46, 38.45, 21.21, 14.96.
HRMS [M+Na] + : C 51 H 51 ClO 8 Na calcd 849.3170; found 849.3165.
例28:化合物(17)の製造Example 28: Production of compound (17)
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 ホットオーブンで乾燥したSchlenk管を室温に冷却し、MeOH(5mL)中の化合物(16)(166mg、0.2mmol)を入れた。アルゴン雰囲気下でその溶液にNaOMe(11mg、0.2mmol)を添加し、25℃で反応液を6時間撹拌した。その後、反応液を1N HCl(2mL)水溶液で中和した。溶媒を減圧留去させて粗生成物を得た。粗生成物はシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=2/20~8/20)で精製し、無色固体として化合物(17)(145mg、0.184mmol、92%)を得た。 A Schlenk tube dried in a hot oven was cooled to room temperature and charged with compound (16) (166 mg, 0.2 mmol) in MeOH (5 mL). NaOMe (11 mg, 0.2 mmol) was added to the solution under an argon atmosphere and the reaction was stirred at 25° C. for 6 hours. Then, the reaction solution was neutralized with a 1N HCl (2 mL) aqueous solution. The solvent was distilled off under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (ethyl acetate/hexane=2/20 to 8/20) to obtain compound (17) (145 mg, 0.184 mmol, 92%) as a colorless solid.
 H-NMR(400MHz,CDCl)δ:7.44(d,J=1.9Hz,1H),7.37(dd,J=8.3,2.0Hz,1H),7.32-7.12(m,19H),7.01(d,J=8.5Hz,2H),6.91(d,J=6.7Hz,2H),6.71(d,J=8.6Hz,2H),4.86(s,2H),4.85(d,J=10.1Hz,1H),4.63(d,J=10.9Hz,1H),4.58(d,J=12.3Hz,1H),4.49(d,J=12.3Hz,1H),4.42(d,J=10.7Hz,1H),4.14-3.85(m,7H),3.83-3.74(m,2H),3.68-3.65(m,1H),3.48(d,J=9.3Hz,1H),3.12(s,1H),1.35(t,J=7.0Hz,3H)
 13C-NMR(101MHz,CDCl)δ:157.53,141.37,138.89,138.72,138.59,138.38,137.43,134.50,131.43,129.82,129.44,129.03,128.53,128.46,128.31,128.07,127.86,127.84,127.79,127.72,127.69,127.64,125.72,114.64,97.77,84.88,83.66,78.46,75.84,75.57,75.17,73.48,72.36,69.00,63.45,38.60,14.98
 HRMS [M+Na]:C4949ClONa 計算値807.3065;実測値807.3060.
1 H-NMR (400 MHz, CDCl 3 ) δ:7.44 (d, J=1.9 Hz, 1 H), 7.37 (dd, J=8.3, 2.0 Hz, 1 H), 7.32- 7.12 (m, 19H), 7.01 (d, J=8.5Hz, 2H), 6.91 (d, J=6.7Hz, 2H), 6.71 (d, J=8.6Hz) , 2H), 4.86(s, 2H), 4.85(d, J=10.1Hz, 1H), 4.63(d, J=10.9Hz, 1H), 4.58(d, J =12.3 Hz, 1H), 4.49 (d, J=12.3 Hz, 1H), 4.42 (d, J=10.7 Hz, 1H), 4.14-3.85 (m, 7H) , 3.83-3.74 (m, 2H), 3.68-3.65 (m, 1H), 3.48 (d, J=9.3Hz, 1H), 3.12 (s, 1H) , 1.35 (t, J=7.0 Hz, 3H)
13 C-NMR (101 MHz, CDCl 3 ) δ: 157.53, 141.37, 138.89, 138.72, 138.59, 138.38, 137.43, 134.50, 131.43, 129. 82, 129.44, 129.03, 128.53, 128.46, 128.31, 128.07, 127.86, 127.84, 127.79, 127.72, 127.69, 127.64, 125.72, 114.64, 97.77, 84.88, 83.66, 78.46, 75.84, 75.57, 75.17, 73.48, 72.36, 69.00, 63. 45, 38.60, 14.98
HRMS [M+Na] + : C 49 H 49 ClO 7 Na calcd 807.3605; found 807.3060.
例29:化合物(18)の製造Example 29: Production of compound (18)
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
 アルゴン雰囲気下で、アセトニトリル/ジクロロメタン(3:2)(10mL)中に化合物(17)(142mg、0.18mmol)の溶液にEtSiH(88μL、0.55mmol)を加え、次いで反応液を-30℃に冷却し、BF・EtO(70μL、0.56mmol)を滴下した。滴下が完了した後、反応液を4時間撹拌し、0℃にてNaHCO水溶液(20mL)をゆっくりと加え、ジクロロメタン(3×40mL)で水相を抽出した。相分離後、水相を廃棄し、有機相を食塩水で洗浄し、無水NaSOで乾燥させ、濾過し、減圧濃縮した。粗生成物をフラッシュシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=2/20~6/20)により精製し、無色ガム状物として化合物(18)(105mg、0.137mmol、76%)を得、そのまま次の工程に使用した。
 HRMS [M+Na]: C4949ClONa 計算値791.3115;実測値791.3109
Under an argon atmosphere, Et 3 SiH (88 μL, 0.55 mmol) was added to a solution of compound (17) (142 mg, 0.18 mmol) in acetonitrile/dichloromethane (3:2) (10 mL), and then the reaction solution was- After cooling to 30° C., BF 3 .Et 2 O (70 μL, 0.56 mmol) was added dropwise. After the addition was complete, the reaction was stirred for 4 hours, NaHCO 3 aqueous solution (20 mL) was added slowly at 0° C., and the aqueous phase was extracted with dichloromethane (3×40 mL). After phase separation, the aqueous phase was discarded and the organic phase was washed with brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (ethyl acetate/hexane=2/20 to 6/20) to obtain compound (18) (105 mg, 0.137 mmol, 76%) as a colorless gum, as it was. Used in the next step.
HRMS [M+Na] + : C 49 H 49 ClO 6 Na calc 791.3115; found 791.3109.
例30:化合物(19)((2S,3R,4R,5S,6R)-2-(4-クロロ-3-(4-エトキシベンジル)フェニル)-6-(ヒドロキシメチル)テトラヒドロ-2H-ピラン-3,4,5-トリオール:ダパグリフロジン)の製造Example 30: Compound (19) ((2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(hydroxymethyl)tetrahydro-2H-pyran- Production of 3,4,5-triol: Dapagliflozin)
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 アルゴン雰囲気下で、EtOAc(4mL)中の化合物(18)の溶液(100mg、0.13mmol)に、5重量%Pd/C(1.5mg、0.014mmol、金属に基づき11mol%)を添加し、水素化フラスコをアルゴンで置換した。アルゴン雰囲気を水素雰囲気に置換し、反応液を30℃で24時間撹拌した。次いで反応液をセライトで濾過し、EtOAc(3×40mL)で洗浄し、減圧下で濾液のすべての揮発物を減圧留去し、濃縮して粗生成物を得た。次いで粗生成物をPTLCクロマトグラフィー(ヘキサン/EtOAc/MeOH、10:10:1)により精製し、化合物(19)(42mg、79%)を得た。 To a solution of compound (18) (100 mg, 0.13 mmol) in EtOAc (4 mL) under argon atmosphere was added 5 wt% Pd/C (1.5 mg, 0.014 mmol, 11 mol% based on metal). The hydrogenation flask was purged with argon. The argon atmosphere was replaced with a hydrogen atmosphere, and the reaction solution was stirred at 30° C. for 24 hours. The reaction was then filtered through Celite, washed with EtOAc (3 x 40 mL), and all volatiles of the filtrate were removed under reduced pressure under reduced pressure and concentrated to give a crude product. The crude product was then purified by PTLC chromatography (hexane/EtOAc/MeOH, 10:10:1) to give compound (19) (42 mg, 79%).
化合物(19)
 H-NMR(400MHz,メタノール-d)δ:7.35-7.22(m,3H),7.09(d,J=8.4Hz,2H),6.79(d,J=8.5Hz,2H),4.09(d,J=9.5Hz,1H),4.03-3.95(m,3H),3.87(d,J=12.6Hz,1H),3.69(dd,J=11.9,4.8Hz,1H),3.48-3.26(m,5H),1.35(t,J=7.0Hz,3H)
 13C-NMR(101MHz,MeOD)δ:158.81,139.97,139.89,134.45,132.91,131.91,130.80,130.11,128.19,115.47,82.86,82.16,79.73,76.42,71.86,64.46,63.10,39.21,15.18
 HRMS [M+Na]:C2125ClONa 計算値431.1237;実測値431.1231
Compound (19)
1 H-NMR (400 MHz, methanol-d 4 ) δ: 7.35-7.22 (m, 3H), 7.09 (d, J=8.4 Hz, 2H), 6.79 (d, J= 8.5 Hz, 2 H), 4.09 (d, J=9.5 Hz, 1 H), 4.03-3.95 (m, 3 H), 3.87 (d, J=12.6 Hz, 1 H), 3.69 (dd, J=11.9, 4.8 Hz, 1H), 3.48-3.26 (m, 5H), 1.35 (t, J=7.0 Hz, 3H)
13 C-NMR (101 MHz, MeOD) δ: 158.81, 139.97, 139.89, 134.45, 132.91, 131.91, 130.80, 130.11, 128.19, 115.47. , 82.86, 82.16, 79.73, 76.42, 71.86, 64.46, 63.10, 39.21, 15.18.
HRMS [M+Na] + : C 21 H 25 ClO 6 Na calc. 431.1237; found 431.1231.

Claims (21)

  1.  下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     R及びRは、それぞれ独立して、水酸基保護基を表し、
     R及びRは、それぞれ独立して、水酸基保護基又は水素原子を表し、 Arは、芳香族炭化水素環基又は芳香族複素環基を、式中のオキサン環と結合する官能基として含む有機基を表し、前記芳香族炭化水素環基及び前記芳香族複素環基は各々、1個以上の置換基を有していてもよい。]
    で表される化合物(I)を製造する方法であって、
     下記式(II):
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     R~Rは、前記と同義であり、
     Rは、水酸基保護基(ただし、Rで表される水酸基保護基と同一の水酸基保護基及びRで表される水酸基保護基と同一の水酸基保護基を除く。)を表し、
     Qは、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基又は芳香族複素環基を、式中の硫黄原子と結合する官能基として含む有機基を表し、前記脂肪族炭化水素基、前記芳香族炭化水素環基、前記脂肪族複素環基及び前記芳香族複素環基は各々、1個以上の置換基を有していてもよい。]
    で表される化合物(II)と、
     下記式(III-I):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Arは、前記と同義であり、Xは、ハロゲン原子を表す。]
    で表される化合物(III-I)、及び、
     下記式(III-II):
    Figure JPOXMLDOC01-appb-C000004
    [式中、Arは、前記と同義である。]
    で表される化合物(III-II)
    からなる群から選択される少なくとも1種の有機亜鉛化合物とを、
     ニッケル触媒及びパラジウム触媒から選択される1種以上の遷移金属触媒、又は、前記1種以上の遷移金属触媒と、前記1種以上の遷移金属触媒を担持する担体とを有する担持触媒の存在下で反応させて、下記式(IV):
    Figure JPOXMLDOC01-appb-C000005
    [式中、R~R及びArは、前記と同義である。]
    で表される化合物(IV)を得る工程、及び
     前記化合物(IV)からRで表される水酸基保護基を除去して、前記化合物(I)を得る工程
    を含んでなる、方法。
    Formula (I) below:
    Figure JPOXMLDOC01-appb-C000001
    [In the formula,
    R 1 and R 2 each independently represent a hydroxyl-protecting group,
    R 3 and R 4 each independently represent a hydroxyl group-protecting group or a hydrogen atom, and Ar contains an aromatic hydrocarbon ring group or an aromatic heterocyclic group as a functional group that bonds to the oxane ring in the formula. It represents an organic group, and the aromatic hydrocarbon ring group and the aromatic heterocyclic group each may have one or more substituents. ]
    A method for producing a compound (I) represented by
    Formula (II) below:
    Figure JPOXMLDOC01-appb-C000002
    [In the formula,
    R 1 to R 4 are as defined above,
    R 5 represents a hydroxyl protecting group (however, the same hydroxyl protecting group as the hydroxyl protecting group represented by R 1 and the same hydroxyl protecting group as the hydroxyl protecting group represented by R 2 are excluded);
    Q represents an organic group containing an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group or an aromatic heterocyclic group as a functional group bonding to the sulfur atom in the formula, and the aliphatic carbon group Each of the hydrogen group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group may have one or more substituents. ]
    A compound (II) represented by
    The following formula (III-I):
    Figure JPOXMLDOC01-appb-C000003
    [In the formula, Ar has the same meaning as described above, and X represents a halogen atom. ]
    A compound (III-I) represented by
    Formula (III-II) below:
    Figure JPOXMLDOC01-appb-C000004
    [In the formula, Ar has the same meaning as described above. ]
    Compound (III-II) represented by
    At least one organozinc compound selected from the group consisting of:
    In the presence of one or more transition metal catalysts selected from nickel catalysts and palladium catalysts, or a supported catalyst having the one or more transition metal catalysts and a carrier carrying the one or more transition metal catalysts. After reaction, the following formula (IV):
    Figure JPOXMLDOC01-appb-C000005
    [In the formula, R 1 to R 5 and Ar have the same meanings as described above. ]
    And a step of removing the hydroxyl-protecting group represented by R 5 from the compound (IV) to obtain the compound (I).
  2.  前記化合物(II)と前記少なくとも1種の有機亜鉛化合物との反応が、0~80℃で行われる、請求項1に記載の方法。 The method according to claim 1, wherein the reaction between the compound (II) and the at least one organozinc compound is performed at 0 to 80°C.
  3.  前記担持触媒が、活性炭、アルミナ、硫酸バリウム、炭酸カルシウム、ヒドロキシアパタイト及びハイドロタルサイトからなる群から選択される少なくとも1種の担体と、前記担体に担持されたパラジウム触媒とを有する、請求項1又は2に記載の方法。 2. The supported catalyst comprises at least one carrier selected from the group consisting of activated carbon, alumina, barium sulfate, calcium carbonate, hydroxyapatite and hydrotalcite, and a palladium catalyst supported on the carrier. Or the method described in 2.
  4.  前記少なくとも1種の有機亜鉛化合物が前記化合物(III-I)を含み、
     前記化合物(III-I)が、下記式:
    Figure JPOXMLDOC01-appb-C000006
    [式中、Ar及びXは、前記と同義である。]
    で表されるシュレンク平衡状態にある、請求項1~3のいずれか一項に記載の方法。
    The at least one organozinc compound comprises the compound (III-I),
    The compound (III-I) has the following formula:
    Figure JPOXMLDOC01-appb-C000006
    [In the formula, Ar and X are as defined above. ]
    The method according to any one of claims 1 to 3, which is in a Schlenk equilibrium state represented by:
  5.  R及びRが水酸基保護基を表す、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein R 3 and R 4 represent a hydroxyl-protecting group.
  6.  Rで表される水酸基保護基が、R~Rで表される水酸基保護基と異なる、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the hydroxyl group-protecting group represented by R 5 is different from the hydroxyl group-protecting group represented by R 1 to R 4 .
  7.  R~Rで表される水酸基保護基が、それぞれ独立して、エステル型保護基、アリールアルキル型保護基、アルキル型保護基、アリールアルキルオキシアルキル型保護基、アルキルオキシアルキル型保護基、シリル型保護基及びオキシカルボニル型保護基からなる群から選択される、請求項1~6のいずれか一項に記載の方法。 The hydroxyl group-protecting groups represented by R 1 to R 5 are each independently an ester type protecting group, an arylalkyl type protecting group, an alkyl type protecting group, an arylalkyloxyalkyl type protecting group, an alkyloxyalkyl type protecting group, The method according to any one of claims 1 to 6, which is selected from the group consisting of a silyl type protecting group and an oxycarbonyl type protecting group.
  8.  Qで表される有機基が、アルキル基、アルケニル基、アルキニル基又はアリール基を、式中の硫黄原子と結合する官能基として含み、前記アルキル基、前記アルケニル基、前記アルキニル基及び前記アリール基が各々、1個以上の置換基を有していてもよい、請求項1~7のいずれか一項に記載の方法。 The organic group represented by Q contains an alkyl group, an alkenyl group, an alkynyl group or an aryl group as a functional group that bonds to a sulfur atom in the formula, and the alkyl group, the alkenyl group, the alkynyl group and the aryl group The method according to any one of claims 1 to 7, wherein each may have one or more substituents.
  9.  Qで表される有機基に含まれる前記脂肪族炭化水素基、前記芳香族炭化水素環基、前記脂肪族複素環基又は前記芳香族複素環基が有していてもよい前記1個以上の置換基が、それぞれ独立して、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基及び保護されていてもよいスルホニル基からなる群から選択される、請求項1~8のいずれか一項に記載の方法。 The aliphatic hydrocarbon group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group or the aromatic heterocyclic group contained in the organic group represented by Q may have one or more of the above. The substituents are each independently a halogen atom, an optionally protected hydroxyl group, an optionally protected thiol group, an optionally protected amino group, an optionally protected formyl group, and a protected group. The method according to any one of claims 1 to 8, which is selected from the group consisting of an optionally carboxyl group and an optionally protected sulfonyl group.
  10.  Arで表される有機基が、炭素数6~14の芳香族炭化水素環基又は炭素数3~12の芳香族複素環基を、式中のオキサン環と結合する官能基として含む有機基であり、前記炭素数6~14の芳香族炭化水素環基及び炭素数3~12の芳香族複素環基が各々、1個以上の置換基を有していてもよい、請求項1~9のいずれか一項に記載の方法。 The organic group represented by Ar is an organic group containing an aromatic hydrocarbon ring group having 6 to 14 carbon atoms or an aromatic heterocyclic group having 3 to 12 carbon atoms as a functional group that bonds to the oxane ring in the formula. The aromatic hydrocarbon ring group having 6 to 14 carbon atoms and the aromatic heterocyclic group having 3 to 12 carbon atoms each may have one or more substituents. The method according to any one of claims.
  11.  Arで表される有機基が、下記式(V):
    Figure JPOXMLDOC01-appb-C000007
    [式中、
     Rは、それぞれ独立して、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、アリールアルキルオキシ基、アリールアルケニルオキシ基及びアリールアルキニルオキシ基からなる群から選択される官能基を表し、前記アルキル基、前記アルケニル基、前記アルキニル基、前記アリール基、前記アリールアルキル基、前記アリールアルケニル基、前記アリールアルキニル基、前記アルキルオキシ基、前記アルケニルオキシ基、前記アルキニルオキシ基、前記アリールオキシ基、前記アリールアルキルオキシ基、前記アリールアルケニルオキシ基及び前記アリールアルキニルオキシ基は各々、1個以上の置換基を有していてもよく、
     nは、0~4の整数であり、
     Ar’は、芳香族炭化水素環基、脂肪族複素環又は芳香族複素環基を表し、前記芳香族炭化水素環基、前記脂肪族複素環基及び前記芳香族複素環基は各々、1個以上の置換基を有していてもよい。]
    で表される、請求項1~10のいずれか一項に記載の方法。
    The organic group represented by Ar has the following formula (V):
    Figure JPOXMLDOC01-appb-C000007
    [In the formula,
    R a is each independently a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an arylalkyl group, an arylalkenyl group, an arylalkynyl group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, or aryloxy. Group, an arylalkyloxy group, an arylalkenyloxy group and a functional group selected from the group consisting of an arylalkynyloxy group, the alkyl group, the alkenyl group, the alkynyl group, the aryl group, the arylalkyl group, the The arylalkenyl group, the arylalkynyl group, the alkyloxy group, the alkenyloxy group, the alkynyloxy group, the aryloxy group, the arylalkyloxy group, the arylalkenyloxy group and the arylalkynyloxy group are each 1 May have one or more substituents,
    n is an integer of 0 to 4,
    Ar′ represents an aromatic hydrocarbon ring group, an aliphatic heterocycle or an aromatic heterocycle group, and each of the aromatic hydrocarbon ring group, the aliphatic heterocycle group and the aromatic heterocycle group is 1 It may have the above substituents. ]
    The method according to any one of claims 1 to 10, represented by:
  12.  Rで表される官能基が、それぞれ独立して、アルキル基及びハロゲン原子から選択され、前記アルキル基が、1個以上の置換基を有していてもよい、請求項11に記載の方法。 The method according to claim 11, wherein the functional groups represented by R a are each independently selected from an alkyl group and a halogen atom, and the alkyl group may have one or more substituents. ..
  13.  Arで表される有機基が、下記式(Va):
    Figure JPOXMLDOC01-appb-C000008
    [式中、
     Rは、前記と同義であり、
     Ar’は、下記式(Va-I)、(Va-II)及び(Va-III):
    Figure JPOXMLDOC01-appb-C000009
    [式中、Rは、それぞれ独立して、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基からなる群から選択される官能基を表し、前記脂肪族炭化水素基、前記芳香族炭化水素環基、前記脂肪族複素環基及び前記芳香族複素環は各々、1個以上の置換基を有していてもよく、pは0~5の整数を表す。]
    からなる群から選択される官能基を表す。]
    で表される、請求項11又は12に記載の方法。
    The organic group represented by Ar has the following formula (Va):
    Figure JPOXMLDOC01-appb-C000008
    [In the formula,
    Ra is as defined above,
    Ar' is represented by the following formulas (Va-I), (Va-II) and (Va-III):
    Figure JPOXMLDOC01-appb-C000009
    [Wherein each R b independently represents a functional group selected from the group consisting of an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group, The aliphatic hydrocarbon group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocycle each may have one or more substituents, and p is an integer of 0 to 5 Represents. ]
    Represents a functional group selected from the group consisting of: ]
    The method according to claim 11 or 12, represented by:
  14.  Rで表される官能基が、それぞれ独立して、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~14の芳香族炭化水素環基、炭素数2~12の脂肪族複素環基及び炭素数3~12の芳香族複素環基からなる群から選択され、前記アルキル基、前記アルケニル基、前記アルキニル基、前記芳香族炭化水素環基、前記脂肪族複素環基及び前記芳香族複素環基が各々、1個以上の置換基を有していてもよい、請求項13に記載の方法。 The functional groups represented by R b are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and an aromatic group having 6 to 14 carbon atoms. Selected from the group consisting of a hydrocarbon ring group, an aliphatic heterocyclic group having 2 to 12 carbon atoms and an aromatic heterocyclic group having 3 to 12 carbon atoms, the alkyl group, the alkenyl group, the alkynyl group, the aromatic group 14. The method according to claim 13, wherein the hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group each may have one or more substituents.
  15.  Arで表される有機基に含まれる前記芳香族炭化水素環基又は前記芳香族複素環基が有していてもよい前記1個以上の置換基が、それぞれ独立して、ハロゲン原子、保護されていてもよい水酸基、保護されていてもよいチオール基、保護されていてもよいアミノ基、保護されていてもよいホルミル基、保護されていてもよいカルボキシル基、保護されていてもよいスルホニル基、アルキル基、アルケニル基及びアルキニル基からなる群から選択される、請求項1~14のいずれか一項に記載の方法。 The one or more substituents which the aromatic hydrocarbon ring group or the aromatic heterocyclic group contained in the organic group represented by Ar may have, are each independently a halogen atom or a protected group. Optionally protected hydroxyl group, optionally protected thiol group, optionally protected amino group, optionally protected formyl group, optionally protected carboxyl group, optionally protected sulfonyl group The method according to any one of claims 1 to 14, wherein the method is selected from the group consisting of an alkyl group, an alkenyl group and an alkynyl group.
  16.  下記式(VI):
    Figure JPOXMLDOC01-appb-C000010
    [式中、R~Rは、前記と同義である。]
    で表される化合物(VI)と、
     下記式(VII):
    Figure JPOXMLDOC01-appb-C000011
    [式中、Qは、前記と同義である。]
    で表される化合物(VII)とを反応させて、下記式(VIII):
    Figure JPOXMLDOC01-appb-C000012
    [式中、R~Rは、前記と同義である。]
    で表される化合物(VIII)を得る工程、及び
     前記化合物(VIII)における水酸基をRで保護して前記化合物(II)を得る工程
    をさらに含んでなる、請求項1~15のいずれか一項に記載の方法。
    Formula (VI) below:
    Figure JPOXMLDOC01-appb-C000010
    [In the formula, R 1 to R 4 have the same meanings as described above. ]
    A compound (VI) represented by
    The following formula (VII):
    Figure JPOXMLDOC01-appb-C000011
    [In the formula, Q has the same meaning as described above. ]
    By reacting with a compound (VII) represented by the following formula (VIII):
    Figure JPOXMLDOC01-appb-C000012
    [In the formula, R 1 to R 4 have the same meanings as described above. ]
    16. The method according to claim 1, further comprising a step of obtaining a compound (VIII) represented by: and a step of protecting the hydroxyl group in the compound (VIII) with R 5 to obtain the compound (II). The method described in the section.
  17.  前記化合物(VI)と前記化合物(VII)との反応が、-30~40℃で行われる、請求項16に記載の方法。 The method according to claim 16, wherein the reaction between the compound (VI) and the compound (VII) is performed at -30 to 40°C.
  18.  前記化合物(VI)と前記化合物(VII)との反応が、下記式(IX):
    Figure JPOXMLDOC01-appb-C000013
    [式中、
     R及びRは、それぞれ独立して、ハロゲン原子、脂肪族炭化水素基、芳香族炭化水素環基、脂肪族複素環基及び芳香族複素環基からなる群から選択される官能基を表し、前記脂肪族炭化水素基、前記芳香族炭化水素環基、前記脂肪族複素環基及び前記芳香族複素環基は各々、1個以上の置換基を有していてもよく、
     qは0~3の整数を表し、
     rは0~3の整数を表し、ただし、q+r=3である。]
    で表される化合物(IX)の存在下で行われる、請求項16又は17に記載の方法。
    The reaction of the compound (VI) with the compound (VII) is represented by the following formula (IX):
    Figure JPOXMLDOC01-appb-C000013
    [In the formula,
    R c and R d each independently represent a functional group selected from the group consisting of a halogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon ring group, an aliphatic heterocyclic group and an aromatic heterocyclic group. The aliphatic hydrocarbon group, the aromatic hydrocarbon ring group, the aliphatic heterocyclic group and the aromatic heterocyclic group each may have one or more substituents,
    q represents an integer of 0 to 3,
    r represents an integer of 0 to 3, provided that q+r=3. ]
    The method according to claim 16 or 17, which is carried out in the presence of a compound (IX) represented by:
  19.  R及びRで表される官能基が、それぞれ独立して、アルキル基、アリール基及びアリールアルキル基からなる群から選択され、前記アルキル基、前記アリール基及び前記アリールアルキル基が各々、1個以上の置換基を有していてもよい、請求項18に記載の方法。 The functional groups represented by R c and R d are each independently selected from the group consisting of an alkyl group, an aryl group and an arylalkyl group, wherein the alkyl group, the aryl group and the arylalkyl group are each 1 19. The method according to claim 18, which may have one or more substituents.
  20.  下記式(II):
    Figure JPOXMLDOC01-appb-C000014
    [式中、R~R及びQは、前記と同義である。]
    で表される化合物(II)を含んでなる、下記式(XI):
    Figure JPOXMLDOC01-appb-C000015
    [式中、Arは、前記と同義であり、R’~R’は、それぞれ独立して、水素原子又は水酸基保護基を表す。]
    で表される化合物(XI)を製造するための試薬。
    Formula (II) below:
    Figure JPOXMLDOC01-appb-C000014
    [In the formula, R 1 to R 5 and Q have the same meanings as described above. ]
    A compound represented by the following formula (XI):
    Figure JPOXMLDOC01-appb-C000015
    [In the formula, Ar has the same meaning as described above, and R 1 ′ to R 4 ′ each independently represent a hydrogen atom or a hydroxyl group-protecting group. ]
    A reagent for producing a compound (XI) represented by:
  21.  下記式化合物(XI):
    Figure JPOXMLDOC01-appb-C000016
    [式中、Ar及びR’~R’は、前記と同義である。]
    で表される化合物(XI)の製造中間体としての、
     下記式(II):
    Figure JPOXMLDOC01-appb-C000017
    [式中、R~R及びQは、前記と同義である。]
    で表される化合物(II)の使用。
    The following formula compound (XI):
    Figure JPOXMLDOC01-appb-C000016
    [In the formula, Ar and R 1 ′ to R 4 ′ have the same meanings as described above. ]
    As an intermediate for the production of compound (XI) represented by
    Formula (II) below:
    Figure JPOXMLDOC01-appb-C000017
    [In the formula, R 1 to R 5 and Q have the same meanings as described above. ]
    Use of the compound (II) represented by:
PCT/JP2019/049174 2018-12-17 2019-12-16 Method for producing c-aryl hydroxy glycoxide derivatives WO2020129899A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-235903 2018-12-17
JP2018235903 2018-12-17
JP2019034357 2019-02-27
JP2019-034357 2019-02-27

Publications (1)

Publication Number Publication Date
WO2020129899A1 true WO2020129899A1 (en) 2020-06-25

Family

ID=71101382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049174 WO2020129899A1 (en) 2018-12-17 2019-12-16 Method for producing c-aryl hydroxy glycoxide derivatives

Country Status (2)

Country Link
TW (1) TW202039428A (en)
WO (1) WO2020129899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080243A1 (en) * 2021-11-08 2023-05-11 株式会社トクヤマ Method for producing c-arylglucoside derivative

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505858A (en) * 2008-10-17 2012-03-08 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Process for preparing compounds useful as inhibitors of SGLT
WO2015012110A1 (en) * 2013-07-24 2015-01-29 壽製薬株式会社 Method for manufacturing c-glycoside derivative
WO2016098016A1 (en) * 2014-12-17 2016-06-23 Dr. Reddy’S Laboratories Limited Process for the preparation of sglt2 inhibitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505858A (en) * 2008-10-17 2012-03-08 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Process for preparing compounds useful as inhibitors of SGLT
WO2015012110A1 (en) * 2013-07-24 2015-01-29 壽製薬株式会社 Method for manufacturing c-glycoside derivative
WO2016098016A1 (en) * 2014-12-17 2016-06-23 Dr. Reddy’S Laboratories Limited Process for the preparation of sglt2 inhibitors

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOWLES, PAUL, ORGANIC PROCESS RESEARCH & DEVELOPMENT, vol. 18, 2014, pages 66 - 81 *
GEHRTZ H., PAUL, GHEM. EUR. J., vol. 24, 21 June 2018 (2018-06-21), pages 8774 - 8778 *
SHIMIZU, YOSHIAKI, TETRAHEDRON LETTERS, vol. 43, 2002, pages 1039 - 1042 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080243A1 (en) * 2021-11-08 2023-05-11 株式会社トクヤマ Method for producing c-arylglucoside derivative

Also Published As

Publication number Publication date
TW202039428A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
CA2807034C (en) C-aryl glucoside derivatives, preparation process and pharmaceutical use thereof
CA2702898C (en) Inhibitors of c-fms kinase
AU2013361602B2 (en) Mannose derivatives for treating bacterial infections
JP6353054B2 (en) C-aryl glucoside derivative, production method thereof and pharmaceutical application thereof
JP6955485B2 (en) Heterocyclic limited tricyclic sulfonamides as anti-cancer agents
CA3172478A1 (en) Bcl-2 inhibitor
KR20210061400A (en) Inhibition of ubiquitin specific peptidase 9X
TW202144339A (en) Fused ring compound and application thereof in medicine
WO2014207648A1 (en) Chromane and chromene derivatives and their use as crac modulators
WO2020129899A1 (en) Method for producing c-aryl hydroxy glycoxide derivatives
WO2020129901A1 (en) Method for preparing ketone compound
WO2020129900A1 (en) Method for producing c-arylhydroxy glycoxide derivative
JP6533794B2 (en) Taxane compounds, process for their preparation and their use
JP2016510740A (en) Isohexide monotriflate and process for synthesizing it
CA3168355A1 (en) Macrocyclic indole derivatives as inhibitors of mcl-1
JP6268014B2 (en) Compounds useful for the production of salacinol and methods for producing them, methods for producing salacinol, methods for protecting and deprotecting diol groups, and protecting agents for diol groups
CN116947856A (en) EZH2 inhibitor and preparation method and application thereof
IL303036A (en) Malt-1 modulators
AU2013203813B2 (en) Inhibitors of C-FMS kinase
JP2022530882A (en) Eribulin intermediate, its synthesis method and use
TW202300146A (en) Triazolyl-methyl substituted alpha-d-galactopyranoside derivatives
CN110963955A (en) Synthesis method of monofluoro spiro compound and intermediate thereof
JP2018168196A (en) Compounds useful for manufacturing salacinol, method for manufacturing the same, method for manufacturing salacinol, methods for protecting and deprotecting diol group, and protective agent for diol group
JP2017214422A (en) Compounds useful for manufacturing salacinol, method for manufacturing the same, method for manufacturing salacinol, methods for protecting and deprotecting diol group, and protective agent for diol group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP