WO2023080216A1 - Insulating film, all-solid-state battery, and method for manufacturing all-solid-state battery - Google Patents

Insulating film, all-solid-state battery, and method for manufacturing all-solid-state battery Download PDF

Info

Publication number
WO2023080216A1
WO2023080216A1 PCT/JP2022/041247 JP2022041247W WO2023080216A1 WO 2023080216 A1 WO2023080216 A1 WO 2023080216A1 JP 2022041247 W JP2022041247 W JP 2022041247W WO 2023080216 A1 WO2023080216 A1 WO 2023080216A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
positive electrode
negative electrode
insulating film
Prior art date
Application number
PCT/JP2022/041247
Other languages
French (fr)
Japanese (ja)
Inventor
秀紀 浅井
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2023080216A1 publication Critical patent/WO2023080216A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an insulating film, an all-solid-state battery including the same, and a method for manufacturing the same.
  • Patent Document 1 discloses an example of an all-solid-state battery.
  • This all-solid-state battery includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte layer includes a central portion containing a solid electrolyte and an outer peripheral portion formed along the outer circumference of the central portion. The outer peripheral portion is made of an insulating material.
  • a laminate is manufactured in which a positive electrode layer, a negative electrode layer, and a solid electrolyte layer are laminated such that the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer. By press-molding this laminate, the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are densified, in other words, the porosity is reduced, and an all-solid battery is manufactured.
  • the outer peripheral edge of the positive electrode layer and the outer peripheral edge of the negative electrode layer are damaged during press molding, causing a short circuit. There is a risk.
  • Such short-circuit problems also arise, for example, when the sizes of the positive electrode layer and the negative electrode layer are different in plan view.
  • at least one of the positive electrode layer and the negative electrode layer may have burrs or the like during manufacturing, and the positive electrode layer may extend beyond the solid electrolyte layer. The same occurs when the edge and the edge of the negative electrode layer are in contact.
  • An object of the present invention is to provide an insulating film that contributes to preventing the occurrence of a short circuit during the manufacture of an all-solid-state battery, an all-solid-state battery including the same, and a method for manufacturing the same.
  • An insulating film according to a first aspect of the present invention is an insulating film used in an all-solid-state battery, and the all-solid-state battery includes a positive electrode layer, a negative electrode layer, and between the positive electrode layer and the negative electrode layer and the insulating film is arranged along the outline of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer.
  • a first layer, and a second layer laminated on the first layer, wherein the material constituting the first layer and the material constituting the second layer have at least one of a melting point and a melt mass flow rate is different.
  • An insulating film according to a second aspect of the present invention is the insulating film according to the first aspect, wherein the material forming the first layer has a higher melting point than the material forming the second layer, and the The melting point of the material forming the second layer is 170° C. or lower.
  • An insulating film according to a third aspect of the present invention is the insulating film according to the first aspect or the second aspect, wherein the material forming the first layer has a melting point lower than that of the material forming the second layer. is high, and the melting point of the material forming the first layer is 250° C. or higher.
  • the insulating film according to the fourth aspect of the present invention is the insulating film according to any one of the first to third aspects, wherein the material constituting the first layer constitutes the second layer
  • the difference between the melting point of the material forming the first layer and the melting point of the material forming the second layer is 50° C. or more.
  • An insulating film according to a fifth aspect of the present invention is the insulating film according to any one of the first to fourth aspects, wherein the material constituting the first layer constitutes the second layer.
  • the melt mass flow rate at 190°C of the material constituting the second layer is 0.8 g/10 min or more at 190°C.
  • the insulating film according to the sixth aspect of the present invention is the insulating film according to any one of the first to fifth aspects, wherein the material constituting the first layer constitutes the second layer
  • the melt mass flow rate at 190°C of the material constituting the first layer is 0.1 g/10 min or less at 190°C.
  • An insulating film according to a seventh aspect of the present invention is the insulating film according to any one of the first to sixth aspects, wherein the material constituting the first layer constitutes the second layer.
  • the difference between the melt mass flow rate of the material forming the second layer and the melt mass flow rate of the material forming the first layer is, at 190° C., 0.5°C. 8 g/10 min or more.
  • An insulating film according to an eighth aspect of the present invention is an insulating film used in an all-solid-state battery, wherein the all-solid-state battery includes a positive electrode layer, a negative electrode layer, and between the positive electrode layer and the negative electrode layer and the insulating film is arranged along the outline of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer.
  • the all-solid-state battery according to the ninth aspect of the present invention comprises the insulating film according to any one of the first to eighth aspects.
  • a method for manufacturing an all-solid-state battery according to a tenth aspect of the present invention is a method for manufacturing an all-solid-state battery comprising an insulating film according to any one of the first to eighth aspects, wherein the all-solid-state battery comprises , a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer. and the insulating film arranged along the outline of at least one of the layers, wherein the positive electrode layer and the negative electrode layer are arranged such that the solid electrolyte layer is arranged between the positive electrode layer and the negative electrode layer.
  • a method for manufacturing an all-solid-state battery according to an eleventh aspect of the present invention includes a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and the positive electrode layer and the negative electrode layer. and an insulating film disposed along an outer shell of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer.
  • the insulating film is arranged around at least one of the positive electrode layer and the negative electrode layer, and the insulating film comprises a first layer and a second layer laminated on the first layer; wherein at least one of a melting point and a melt mass flow rate is different between the material forming the first layer and the material forming the second layer.
  • An all-solid-state battery includes a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and at least one of the positive electrode layer and the negative electrode layer an insulating film disposed along at least one of the positive electrode layer and the negative electrode layer so as to be in contact with the positive electrode layer and the negative electrode layer.
  • An all-solid-state battery according to a thirteenth aspect of the present invention is the all-solid-state battery according to the twelfth aspect, wherein the insulating film includes a first layer and a second layer laminated on the first layer. , the second layer is arranged along the outline of at least one of the positive electrode layer and the negative electrode layer, and the first layer is arranged at least one between the solid electrolyte layer and the negative electrode layer or the positive electrode layer. placed in the department.
  • An all-solid-state battery according to a fourteenth aspect of the present invention is the all-solid-state battery according to the twelfth aspect or the thirteenth aspect, wherein the insulating film partially overlaps the solid electrolyte layer in plan view. placed in
  • the insulating film, all-solid-state battery, and method for manufacturing an all-solid-state battery according to the present invention can contribute to making short circuits less likely to occur during manufacture of all-solid-state batteries.
  • FIG. 1 is a plan view of an all-solid-state battery according to an embodiment
  • FIG. FIG. 2 is a cross-sectional view taken along line D2-D2 of FIG. 1
  • FIG. 3 is a plan view of the insulating film of FIG. 2
  • FIG. 3 is a cross-sectional view showing an example of the layer structure of the laminated film of FIG. 2
  • 2 is a flowchart showing an example of a method for manufacturing the all-solid-state battery of FIG. 1
  • FIG. 5 is a diagram of a state in which an insulating film is arranged on a negative electrode layer in the lamination step of the manufacturing method of the all-solid-state battery of FIG. 4 ; The figure of the state which laminated
  • FIG. 7 is a diagram of a state in which an insulating film is arranged in the state of FIG. 6;
  • FIG. 8 is a view showing a state in which a negative electrode layer is laminated on the state shown in FIG. 7;
  • stacking unit with which the all-solid-state battery of a modification is provided.
  • stacking unit with which the all-solid-state battery of another modification is provided.
  • 4 is a table showing specifications and test results of all-solid-state batteries of Examples and Comparative Examples;
  • FIG. 2 is a cross-sectional view of an all-solid-state battery of Comparative Example 2;
  • FIG. 3 is a cross-sectional view of an all-solid-state battery of Comparative Example 3;
  • FIG. 1 is a plan view of an all-solid-state battery 10 of this embodiment.
  • FIG. 2 is a cross-sectional view along line D2-D2.
  • the vertical direction in FIG. 1 will be referred to as "front and rear”
  • the horizontal direction will be referred to as “left and right”
  • the vertical direction in FIG. 2 will be referred to as "up and down”.
  • the orientation during use of the all-solid-state battery 10 is not limited to this.
  • characteristic parts may be enlarged for convenience of description, and the dimensional ratios and the like of each component are not limited to those shown in the drawings.
  • the all-solid battery 10 is, for example, an all-solid lithium-ion secondary battery, an all-solid sodium-ion secondary battery, or an all-solid magnesium-ion secondary battery.
  • the all-solid battery 10 is an all-solid lithium ion secondary battery.
  • the all-solid-state battery 10 is used, for example, in electric vehicles such as electric vehicles and hybrid vehicles that are connected in series and used at high voltage.
  • All-solid-state battery 10 includes container 20 , laminate unit 30 , tab 80 , and tab film 90 .
  • the container 20 has an internal space S1 and a peripheral seal portion 23 .
  • the laminate unit 30 is housed in the internal space S ⁇ b>1 of the housing 20 .
  • One end of the tab 80 is joined to the laminate unit 30 , and the other end protrudes outward from the peripheral seal portion 23 of the container 20 .
  • a portion between one end and the other end of the tab 80 is fused to the peripheral seal portion 23 via the tab film 90 .
  • the container 20 includes a container 20A.
  • 20 A of containers are comprised including the packaging materials 21 and 22.
  • the packaging materials 21 and 22 are heat-sealed and fused together, thereby forming a peripheral edge seal portion 23 .
  • the inner space S1 of the container 20A which is isolated from the outer space, is formed by the peripheral seal portion 23.
  • the peripheral edge seal portion 23 defines the peripheral edge of the internal space S1 of the container 20A.
  • the mode of heat sealing referred to herein includes modes such as thermal fusion from a heat source and ultrasonic fusion.
  • the peripheral seal portion 23 means a portion where the packaging materials 21 and 22 are fused and integrated.
  • packaging material 22 , the tab 80 , the pair of tab films 90 , and the packaging material 21 are integrated at the portion of the peripheral seal portion 23 sandwiching the tab 80 and the tab film 90 .
  • the packaging material 22 , the pair of tab films 90 , and the packaging material 21 are integrated in the portion of the peripheral seal portion 23 that sandwiches only the pair of tab films 90 .
  • the packaging materials 21 and 22 are composed of resin molded products or films, for example.
  • the resin molded product referred to here can be manufactured by methods such as injection molding, pressure molding, vacuum molding, and blow molding, and in-mold molding may be performed to impart design and functionality.
  • the type of resin can be polyolefin, polyester, nylon, ABS, and the like.
  • the film referred to here is, for example, a resin film that can be produced by a method such as an inflation method or a T-die method, or a laminate of such a resin film on a metal foil.
  • the film referred to here may or may not be stretched, and may be a single-layer film or a multilayer film.
  • the multilayer film referred to here may be produced by a coating method, may be produced by adhering a plurality of films with an adhesive or the like, or may be produced by a multilayer extrusion method.
  • the packaging materials 21 and 22 can be configured in various ways, but in this embodiment, they are composed of laminated films.
  • a laminate film can be a laminate obtained by laminating a substrate layer, a barrier layer, and a heat-fusible resin layer.
  • the base layer functions as a base material for the packaging materials 21 and 22, typically forms the outer layer side of the container 20A, and is made of polyester such as polyethylene terephthalate or polybutylene terephthalate, polyamide such as nylon, or the like.
  • the resin layer may be formed of a single layer or multiple layers of two or more layers.
  • the barrier layer has a function of preventing at least moisture from entering the laminate unit 30, and is typically aluminum alloy foil, stainless steel foil, or titanium foil. It is a metal layer made of steel foil, steel plate foil, or the like.
  • the heat-sealable resin layer is typically made of heat-sealable resin such as polyolefin such as polypropylene, polyester such as polyethylene terephthalate and polybutylene terephthalate, and forms the innermost layer of the container 20A.
  • the shape of the container 20A is not particularly limited, and can be, for example, a bag shape (pouch shape).
  • the bag-like shape referred to herein includes a three-side seal type, a four-side seal type, a pillow type, a gusset type, and the like.
  • the container 20A may be composed of the packaging materials 21 and 22, but may also be, for example, a metal can.
  • the tab 80 is a metal terminal used for power input/output of the all-solid-state battery 10 .
  • the tabs 80 are arranged separately at the left and right ends of the peripheral seal portion 23 of the container 20A, one constituting a positive terminal and the other constituting a negative terminal.
  • One end in the left-right direction of each tab 80 is electrically connected to the positive electrode layer 40 or the negative electrode layer 50 (both see FIG. 2) of the laminate unit 30 in the internal space S1 of the container 20A, and the other end
  • the portion protrudes outward from the peripheral edge seal portion 23 .
  • the attachment positions of the two tabs 80 constituting the terminals of the positive electrode layer 40 and the negative electrode layer 50 are not particularly limited.
  • the metal material forming the tab 80 is, for example, aluminum, nickel, copper, or the like.
  • the tab 80 connected to the positive electrode layer 40 is typically made of aluminum or the like, and the tab 80 connected to the negative electrode layer 50 is typically is composed of copper, nickel, or the like.
  • the left tab 80 is sandwiched between the packaging materials 21 and 22 via the tab film 90 at the left end of the peripheral seal portion 23 .
  • the right tab 80 is also sandwiched between the packaging materials 21 and 22 via the tab film 90 at the right end of the peripheral seal portion 23 .
  • the tab film 90 is a so-called adhesive film, and is configured to adhere to both the packaging materials 21, 22 and the tab 80 (metal). By interposing the tab film 90, even if the tab 80 and the innermost layers (heat-fusible resin layers) of the packaging materials 21 and 22 are made of different materials, they can be fixed.
  • the tab film 90 is previously fused and fixed to the tab 80 to be integrated, and the tab 80 to which the tab film 90 is fixed is sandwiched between the packaging materials 21 and 22 and fused, so that these are integrated.
  • the laminate unit 30 includes a positive electrode layer 40, a negative electrode layer 50, a solid electrolyte layer 60 laminated between the positive electrode layer 40 and the negative electrode layer 50, an insulating film 70, including.
  • the positive electrode layer 40 and the negative electrode layer 50 are alternately stacked vertically with the solid electrolyte layer 60 interposed therebetween. Charging and discharging of the all-solid-state battery 10 are performed by transfer of lithium ions between the positive electrode layer 40 and the negative electrode layer 50 via the solid electrolyte layer 60 .
  • the number of positive electrode layers 40 and negative electrode layers 50 included in the laminate unit 30 can be arbitrarily selected.
  • the laminate unit 30 includes one positive electrode layer 40 and two negative electrode layers 50 .
  • the laminate unit 30 may have two or more positive electrode layers 40 and may have three or more negative electrode layers 50 .
  • the cathode layer 40 includes a cathode current collector 41 and cathode active material layers 42 and 43 formed on part of both surfaces of the cathode current collector 41 .
  • the positive electrode current collector 41 is preferably composed of at least a material with high electrical conductivity.
  • a highly conductive substance is, for example, a metal or an alloy containing at least one metal element of silver, palladium, gold, platinum, aluminum, copper, chromium, and nickel.
  • the material forming the positive electrode current collector 41 may be a non-metal such as carbon.
  • the shape of the positive electrode current collector 41 is, for example, foil-like, plate-like, mesh-like, nonwoven fabric-like, or foam-like. In this embodiment, the shape of the positive electrode current collector 41 is a rectangular foil shape.
  • the positive electrode active material layers 42 and 43 contain a positive electrode active material capable of transferring lithium ions and electrons.
  • the positive electrode active material is not particularly limited as long as it is a material that can reversibly release and absorb lithium ions and transport electrons, and a known positive electrode active material that can be applied to the positive electrode layer of an all-solid lithium ion secondary battery can be used. can be done.
  • the positive electrode active material layers 42 and 43 include a solid electrolyte that exchanges lithium ions with the positive electrode active material.
  • the solid electrolyte is not particularly limited as long as it has lithium ion conductivity, and materials generally used for all-solid lithium ion secondary batteries can be used.
  • the positive electrode active material layers 42 and 43 are formed on both sides of the positive electrode current collector 41, but this is not restrictive, and either one of the positive electrode active material layers 42 and 43 is formed on the positive electrode current collector 41. may be formed on one side of the
  • tab connecting portions 41A are formed on which the positive electrode active material layers 42 and 43 are not formed.
  • the tip of the tab connection portion 41A is located on the right side of the right end of the negative electrode layer 50 and exposed from the end of the insulating film 70 .
  • a portion of the tab connection portion 41A exposed from the insulating film 70 is electrically connected to, for example, the right tab 80 (see FIG. 1).
  • the negative electrode layer 50 includes a negative current collector 51 and negative active material layers 52 and 53 formed on both sides of the negative current collector 51 .
  • Materials exemplified as materials for forming the positive electrode current collector 41 can be used as the material for forming the negative electrode current collector 51 .
  • the shape of the negative electrode current collector 51 the shape exemplified as the shape of the positive electrode current collector 41 can be adopted. In this embodiment, the shape of the negative electrode current collector 51 is a rectangular foil shape.
  • the negative electrode active material layers 52 and 53 contain a negative electrode active material capable of transferring lithium ions and electrons.
  • the negative electrode active material is not particularly limited as long as it is a material that can reversibly release and absorb lithium ions and transport electrons, and a known negative electrode active material that can be applied to the negative electrode layer of an all-solid lithium ion secondary battery can be used. can be done.
  • the negative electrode active material layers 52 and 53 are formed on both sides of the negative electrode current collector 51 , but this is not restrictive, and either one of the negative electrode active material layers 52 and 53 is formed on the negative electrode current collector 51 . may be formed on one side of the
  • the negative electrode active material layer 52 may be formed only on one surface on the upper side in the stacking direction.
  • a tab connection portion 51A where the negative electrode active material layers 52 and 53 are not formed is formed on part of both surfaces of the negative electrode current collector 51 .
  • the tip of the tab connection portion 51A is located on the left side of the left end portion of the positive electrode layer 40 .
  • the tab connection portion 51A is electrically connected to, for example, the left tab 80 (see FIG. 1).
  • Solid electrolyte layer 60 is made of a material containing a solid electrolyte.
  • the solid electrolyte is not particularly limited as long as it has lithium ion conductivity, and materials generally used for all-solid lithium ion secondary batteries can be used.
  • the all-solid-state battery 10 is an all-solid-state sodium-ion secondary battery
  • a known material having sodium-ion conductivity can be used as the solid electrolyte.
  • the solid electrolyte can be a known material having magnesium ion conductivity.
  • the laminated body unit 30 is manufactured by hot-pressing the laminated body 100 (see FIG. 8), for example, with a warm isostatic press in a bonding step described later.
  • the laminate unit 30 may be manufactured by hot-pressing the laminate 100 using a flat plate press, a roll press, or the like.
  • the shape and area of the positive electrode layer 40 and the negative electrode layer 50 are substantially the same, there is a possibility that the outer peripheral edge portion of the positive electrode layer 40 and the outer peripheral edge portion of the negative electrode layer 50 contact each other in the bonding step, causing a short circuit. be. Therefore, it is preferable that one of the positive electrode layer 40 and the negative electrode layer 50 has a smaller area than the other.
  • the area of the positive electrode layer 40 is the area of the positive electrode active material layers 42 and 43 in plan view.
  • the area of the negative electrode layer 50 is the area of the negative electrode active material layers 52 and 53 in plan view.
  • the area of the positive electrode current collector 41 in plan view is smaller than the area of the negative electrode current collector 51
  • the areas of the positive electrode active material layers 42 and 43 in plan view are the same as those of the negative electrode active material layers 52 and 53 . smaller than area.
  • the areas of the positive electrode active material layers 42 and 43 are the same as the areas of the negative electrode active material layers 52 and 53, or It is preferably smaller than the area of the layers 52,53.
  • the outer peripheral end portion of the positive electrode layer 40 and the negative electrode layer 50 are formed.
  • a step 200 (see FIG. 8) is formed between the layer 50 and the outer peripheral edge.
  • the laminate 100 FIG. 8
  • the insulating film 70 is arranged so as to fill the step 200 in order to prevent such a situation from occurring.
  • the laminate unit 30 has two insulating films 70 .
  • the laminate unit 30 may have one, or three or more insulating films 70 .
  • Insulating film 70 is arranged along the outline of at least one of positive electrode layer 40 and negative electrode layer 50 so as to be bonded to at least one of positive electrode layer 40 and negative electrode layer 50 .
  • the insulating film 70 is arranged along the contour of the positive electrode layer 40 so as to join with the positive electrode layer 40 .
  • the insulating film 70 may be arranged along at least part of the outer shell of the positive electrode layer 40 .
  • the insulating film 70 is arranged along the entire circumference of the outer shell of the positive electrode layer 40 . Therefore, since the insulating film 70 is arranged at a position corresponding to a wider area of the outer peripheral edge of the negative electrode layer 50 , the negative electrode layer 50 is less likely to be damaged during manufacturing of the laminate unit 30 .
  • FIG. 3A is a plan view of the insulating film 70 before being joined to the positive electrode layer 40.
  • the shape of the insulating film 70 can be arbitrarily selected. In this embodiment, the contour shape of the insulating film 70 is rectangular. The shape of the insulating film 70 may be a square or a polygon with pentagons or more.
  • the insulating film 70 has a hole 70A penetrating through the insulating film 70 substantially in the center.
  • the inner contour shape of the hole 70A is substantially the same shape as the outer contour shape of the positive electrode active material layers 42 and 43 .
  • the area of hole 70A is slightly larger than the areas of positive electrode active material layers 42 and 43 .
  • the insulating film 70 is a laminated film including a first layer 71 and a second layer 72 laminated on the first layer 71 .
  • the first layer 71 is a layer that does not substantially melt when the laminate 100 (see FIG. 8) is hot-pressed by a warm isostatic pressing machine in the bonding step described later.
  • the second layer 72 is a layer that has the property of melting when hot pressed in the bonding process.
  • the insulating film 70 is laminated in order of the first layer 71 and the second layer 72 from the side closer to the solid electrolyte layer 60 .
  • the first layer 71 and the second layer 72 partially overlap the solid electrolyte layer 60 in plan view. Therefore, for example, damage to the outer peripheral edge of the negative electrode layer 50 at the step 200 (see FIG. 8) can be preferably suppressed.
  • the portion of the second layer 72 of the two insulating films 70 that partially covers the tab connection portion 41A is the outer peripheral edge of the positive electrode active material layer 42 and the positive electrode. It is joined to part of the surface of the current collector 41 .
  • the portions of the second layers 72 of the two insulating films 70 other than the portion covering the tab connection portion 41A are the outer peripheral end portion of the positive electrode active material layer 43 and the outer peripheral end portion of the positive electrode current collector 41. is joined with
  • the material forming the first layer 71 and the material forming the second layer 72 are preferably different in at least one of melting point and melt mass flow rate.
  • the melting point is measured based on the provisions of JIS K7121:2012 (Method for measuring transition temperature of plastics (JIS K7121:1987 Supplement 1)).
  • the melting point in this embodiment is synonymous with the melting temperature in JIS K7121.
  • the melting temperature with the maximum peak is taken as the melting temperature.
  • the temperature rise is 10°C/min.
  • the melting point is measured three times, and the average value of two melting points that are close to each other is used as the melting point.
  • the melting point is the endothermic peak measured by Differential Scanning Calorimetry.
  • the melt mass flow rate is a value at 190°C measured according to JIS K7210-1:2014 (ISO 1133-1:2011).
  • the material forming the first layer 71 has a higher melting point than the material forming the second layer 72 . Further, in the present embodiment, the material forming the first layer 71 has a lower melt mass flow rate at 190° C. than the material forming the second layer 72 . For this reason, when the laminate 100 shown in FIG. 8 is hot-pressed by a warm isostatic press, the second layer 72 preferably melts while the second layer 72 flows out. 71. Therefore, the insulating film 70 can be preferably arranged along the contour of the positive electrode layer 40 .
  • the melting point of the material forming the first layer 71 and the melting point of the material forming the second layer may be determined based on the temperature TA when the laminate 100 (see FIG. 8) is hot-pressed. preferable.
  • the melting point of the material forming the first layer 71 is preferably higher than the temperature TA.
  • the melting point of the material forming the second layer 72 is preferably lower than the temperature TA.
  • the temperature TA is preferably determined based on the resistance and heat resistance of the solid electrolyte layer 60 . The higher the temperature TA, the lower the resistance of the solid electrolyte layer 60 can be. Therefore, the lower limit of the temperature TA is, for example, 20°C, preferably 80°C, more preferably 150°C, most preferably 185°C.
  • the upper limit of the temperature TA is, for example, 250°C, preferably 195°C.
  • Preferred ranges of temperature TA are, for example, 20°C to 250°C, 20°C to 195°C, 80°C to 250°C, 80°C to 195°C, 150°C to 250°C, 150°C to 195°C, 185°C to 250°C. , or between 185°C and 195°C.
  • the difference between the melting point of the material forming the first layer 71 and the melting point of the material forming the second layer 72 is preferably 50°C or more.
  • the melting point of the material forming the second layer 72 is preferably 170° C. or lower.
  • the melting point of the material forming the first layer 71 is preferably 250° C. or higher.
  • the difference between the melt mass flow rate of the material forming the second layer 72 and the melt mass flow rate of the material forming the first layer 71 is preferably 0.8 g/10 min or more at 190°C.
  • the melt mass flow rate of the material forming the second layer 72 is preferably 0.8 g/10 min or more at 190°C.
  • the melt mass flow rate of the material forming the first layer 71 is preferably 0.1 g/10 min or less at 190°C.
  • the material forming the first layer 71 is preferably polyester, engineering plastic, or the like, for example.
  • polyester include polyethylene naphthalate, polybutylene terephthalate, polyethylene terephthalate and the like.
  • the engineering plastic is, for example, a resin having a heat resistance temperature of 100° C. or higher, a tensile strength of 500 kgf/cm 2 or higher, and a flexural modulus of 24000 kgf/cm 2 or higher. Tensile strength is measured according to JIS K7161. The flexural modulus is measured according to JIS K7171.
  • Engineering plastics are, for example, polyacetals, polyamides, polycarbonates, modified polyphenylene ethers, polybutylene terephthalate, GF-reinforced polyethylene terephthalate, ultra-high molecular weight polyethylene or syndiotactic polystyrene. Engineering plastics include super engineering plastics.
  • Super engineering plastics have a high resistance to solvents, a heat resistance temperature of 150° C. or higher, and properties that allow them to be used for a long period of time.
  • Super engineering plastics are amorphous polyarylates, polysulfones, polyethersulfones, polyphenylene sulfides, polyetheretherketones, polyimides, polyetherimides, fluororesins, or liquid crystal polymers.
  • the material forming the second layer 72 is preferably polyolefin or the like.
  • Polyolefins are, for example, low-density polyolefins, medium-density polyolefins, high-density polyolefins, linear low-density polyolefins, or polypropylene.
  • these olefin materials may be acid-modified or silane-modified to have functional groups attached to their ends.
  • the material constituting the second layer 72 may be ethylene-vinyl-acetate, ionomer, polyvinyl butyral, silicone resin, polyurethane, or the like, in addition to polyolefin.
  • the all-solid-state battery 10 of this embodiment can be suitably used in an environment where it is constrained from the outside under high pressure.
  • the pressure between the solid electrolyte layer 60 and the negative electrode active material layers 52 and 53 and between the solid electrolyte layer 60 and the positive electrode active material layers 42 and 43 are From the viewpoint of suitably suppressing peeling, the pressure is preferably about 0.1 MPa, more preferably about 0.5 MPa, even more preferably about 1 MPa, and even more preferably about 5 MPa.
  • the upper limit of the pressure that constrains the all-solid-state battery 10 from the outside is preferably about 100 MPa, more preferably about 30 MPa, and even more preferably about 10 MPa.
  • Preferable ranges of the pressure for restraining the all-solid-state battery 10 from the outside are about 0.1 to 100 MPa, about 0.1 to 30 MPa, about 0.1 to 10 MPa, about 0.5 to 100 MPa, and about 0.5 to 30 MPa. , about 0.5 to 10 MPa, about 1 to 100 MPa, about 1 to 30 MPa, about 1 to 10 MPa, about 5 to 100 MPa, about 5 to 30 MPa, and about 5 to 10 MPa.
  • the all-solid-state battery 10 may be sandwiched between metal plates or the like and fixed in a state of being pressed under high pressure (for example, tightened with a vise), or gas pressurization may be used. method.
  • the lower limit of the temperature when restraining the all-solid-state battery 10 from the outside is preferably 20° C., more preferably 40° C.
  • the upper limit is preferably 200° C., more preferably 200° C. 150° C. is preferred.
  • a preferred temperature range for restraining the all-solid-state battery 10 from the outside is 20°C to 200°C, 20°C to 150°C, 40°C to 200°C, or 40°C to 150°C.
  • the manufacturing method of the all-solid-state battery 10 includes a layer manufacturing process, a stacking process, a sealing process, and a bonding process.
  • the positive electrode layer 40, the negative electrode layer 50, and the solid electrolyte layer 60 are manufactured.
  • the positive electrode layer 40 for example, positive electrode slurry containing a positive electrode active material is applied to part of both surfaces of the positive electrode current collector 41 .
  • the positive electrode current collector 41 is cut into a desired size so as to include a portion coated with the positive electrode slurry and a portion not coated with the positive electrode slurry, that is, to include the tab connecting portion 41A.
  • the positive electrode layer 40 is manufactured.
  • negative electrode layer 50 for example, negative electrode slurry containing a negative electrode active material is applied to part of both surfaces of the negative electrode current collector 51. Next, the negative electrode current collector 51 is cut into a desired size so as to include a portion coated with the negative electrode slurry and a portion not coated with the negative electrode slurry, that is, to include the tab connecting portion 51A. Thus, the negative electrode layer 50 is manufactured. Note that the negative electrode layer 50 may be manufactured prior to the positive electrode layer 40 in each layer manufacturing process.
  • the solid electrolyte layer 60 for example, a solid electrolyte slurry containing a solid electrolyte is applied to one side of a base material made of any material. Next, the solid electrolyte layer 60 is manufactured by cutting the portion of the substrate coated with the solid electrolyte into a desired size.
  • the solid electrolyte layer 60 is laminated on the negative electrode active material layers 52 and 53 of the negative electrode layer 50, and the base material is peeled off to manufacture the negative electrode layer 50 with the solid electrolyte layer 60 laminated thereon.
  • step S12 The lamination process of step S12 is performed after each layer manufacturing process. As shown in FIG. 5, in the lamination step, the insulating film 70 is placed on the negative electrode active material layer 52 of the negative electrode layer 50 on which the solid electrolyte layer 60 is laminated.
  • the positive electrode layer 40 is laminated on the negative electrode layer 50 by inserting the positive electrode active material layer 43 of the positive electrode layer 40 into the hole 70A of the insulating film 70 . Since the area of hole 70A is slightly larger than the area of positive electrode active material layers 42 and 43, in the state of FIG. A gap is formed.
  • the insulating film 70 is arranged such that the positive electrode active material layer 42 of the positive electrode layer 40 is inserted into the hole 70A of the insulating film 70, in other words, the positive electrode layer An insulating film 70 is placed around 40 .
  • the anode layer 50 in which the solid electrolyte layer 60 is laminated on the cathode active material layer 42 of the cathode layer 40 is laminated to complete the laminate 100 .
  • Tab 80 and tab film 90 are attached to laminate 100 after the lamination process.
  • step S13 The sealing process in step S13 is performed after the lamination process.
  • the laminate 100 with the tab 80 and tab film 90 attached is sealed, for example, by packaging materials 21, 22 (see FIG. 1). Portions of the tab 80 and tab film 90 are exposed from the wrapping material 21,22.
  • step S14 The bonding process of step S14 is performed after the sealing process.
  • the laminate 100 sealed with the packaging materials 21 and 22 is hot-pressed by a warm isostatic press.
  • the positive electrode layer 40, the negative electrode layer 50, the solid electrolyte layer 60, and the insulating film 70 are bonded to each other, and the all-solid-state battery 10 is completed.
  • the above-described embodiments are examples of possible forms of the insulating film, all-solid battery, and method of manufacturing an all-solid battery according to the present invention, and are not intended to limit the forms.
  • the insulating film, all-solid-state battery, and method for manufacturing an all-solid-state battery according to the present invention may take forms different from those illustrated in the embodiments.
  • One example is a form in which part of the configuration of the embodiment is replaced, changed, or omitted, or a form in which a new configuration is added to the embodiment.
  • the insulating film 70 has a two-layer structure of the first layer 71 and the second layer 72, but the specific layer structure of the insulating film 70 can be changed arbitrarily.
  • the insulating film 70 may have the first layer 71 laminated on both sides of the second layer 72 .
  • the first layer 71A and the second layer 72B of the insulating film 70 may be laminated in a direction orthogonal to the lamination direction (vertical direction) of the laminate unit 30 .
  • the insulating film 70 may be laminated in order of a first layer 71 and a second layer 72 from the side closer to the positive electrode current collector 41 .
  • the insulating film 70 may have the second layers 72 laminated on both sides of the first layer 71 .
  • the area of the positive electrode current collector 41 in plan view is smaller than the area of the negative electrode current collector 51, and the areas of the positive electrode active material layers 42 and 43 in plan view are the same as those of the negative electrode active material layers 52 and 53. Although it was smaller than the area, these magnitude relationships may be reversed. That is, the area of the positive electrode current collector 41 in plan view is larger than the area of the negative electrode current collector 51, and the areas of the positive electrode active material layers 42 and 43 in plan view are larger than the areas of the negative electrode active material layers 52 and 53. It can be big.
  • the insulating film 70 is preferably arranged along at least a portion of the outer contour of the negative electrode layer 50 so as to join with the negative electrode layer 50 .
  • the method for manufacturing the all-solid-state battery 10 can be arbitrarily changed.
  • the laminate 100 may be once sealed with an arbitrary packaging material, and the joining step may be performed.
  • an arbitrary packaging material is opened, a tab 80 and a tab film 90 are attached to the laminate 100, and the laminate 100 is sealed with the packaging materials 21 and 22 (see FIG. 1) to form an all-solid-state battery. 10 may be manufactured.
  • the positive electrode layer 40 and the negative electrode layer 50 on which the solid electrolyte layer 60 is laminated may be densified in advance.
  • the negative electrode layer 50 laminated with the solid electrolyte layer 60 may be densified.
  • the bonding process may be performed after the lamination process and before the sealing process.
  • the bonding process preferably densifies the laminate 100 by hot roll pressing or hot plate pressing in a low dew point environment.
  • Example> The inventors of the present application manufactured all-solid-state batteries of Examples and Comparative Examples, and conducted tests to confirm whether or not they could be charged and discharged.
  • the same elements as in the embodiment among the elements constituting the all-solid-state batteries of the examples and the comparative examples may be given the same reference numerals as in the embodiment.
  • FIG. 13 is a table showing the specifications and test results of the all-solid-state batteries 10 of Examples 1-6 and Comparative Examples 1-3.
  • the MFR (melt mass-flow rate) of the first layer and the MFR of the second layer in FIG. 13 are the values at 190°C.
  • the all-solid-state battery 10 of Comparative Example 1 does not include the insulating film 70 .
  • the insulating film 70 of the all-solid-state battery 10 of Comparative Example 2 has only the first layer 71 .
  • the first layer 71 does not melt under the hot press conditions of the bonding process. Therefore, as shown in FIG. 14, in the laminate unit 30 of the all-solid-state battery 10 of Comparative Example 2, the insulating film 70 and the positive electrode layer 40 are not bonded.
  • the insulating film 70 of the all-solid-state battery 10 of Comparative Example 3 has only the second layer 72 .
  • the second layer 72 melts almost entirely under the hot press conditions of the bonding process. Therefore, as shown in FIG. 15 , in the laminate unit 30 of the all-solid-state battery 10 of Comparative Example 3, the second layer 72 of the insulating film 70 flows out substantially entirely, so that the outer shell of the positive electrode layer 40 not placed along Therefore, in the laminate unit 30 of the all-solid-state battery 10 of Comparative Example 3, the end of the positive electrode layer 40 and the end of the negative electrode layer 50 come into contact with each other, or a large pressure acts on the step 200, and the positive electrode layer A short circuit occurs when at least one of the end of the electrode 40 and the end of the negative electrode layer 50 is damaged. Note that FIG. 15 shows an example of a state in which the end portion of the negative electrode layer 50 is damaged.
  • the all-solid-state batteries 10 of Examples 1 to 6 and Comparative Examples 1 to 3 were restrained with a pressure of 0.2 tons/cm 2 .
  • This all-solid-state battery 10 was charged at a voltage of 4.35 V and discharged at a voltage of 3.0 V at an ambient temperature of 25° C. and a 0.1 C rate.
  • three each of the all-solid-state batteries 10 of Examples 1 to 6 and Comparative Examples 1-3, that is, a total of 27 all-solid-state batteries 10 were created, and for the 27 all-solid-state batteries 10, Each charge and discharge was performed three times.

Abstract

Provided is an insulating film used for an all-solid-state battery, wherein: the all-solid-state battery includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer; the insulating film is disposed along the outer contour of at least one among the positive electrode layer and the negative electrode layer so as to be joined to at least one among the positive electrode layer and the negative electrode layer, and includes a first layer and a second layer laminated on the first layer; and the material constituting the first layer and the material constituting the second layer are different in terms of either melting point or melt mass-flow rate.

Description

絶縁性フィルム、全固体電池、全固体電池の製造方法Insulating film, all-solid-state battery, method for manufacturing all-solid-state battery
 本発明は、絶縁性フィルム、これを備える全固体電池、および、その製造方法に関する。 The present invention relates to an insulating film, an all-solid-state battery including the same, and a method for manufacturing the same.
 特許文献1は、全固体電池の一例を開示している。この全固体電池は、正極層と、負極層と、正極層と負極層との間に配置される固体電解質層とを備える。固体電解質層は、固体電解質を含む中央部と、中央部の外周に沿うように形成される外周部を含む。外周部は、絶縁性を有する材料によって構成される。この全固体電池の製造では、正極層と負極層との間に固体電解質層が配置されるように、正極層、負極層、および、固体電解質層が積層された積層体が製造される。この積層体がプレス成形されることによって、正極層と固体電解質層と負極層とが稠密化され、換言すれば、空隙率が低下され、全固体電池が製造される。 Patent Document 1 discloses an example of an all-solid-state battery. This all-solid-state battery includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. The solid electrolyte layer includes a central portion containing a solid electrolyte and an outer peripheral portion formed along the outer circumference of the central portion. The outer peripheral portion is made of an insulating material. In manufacturing this all-solid-state battery, a laminate is manufactured in which a positive electrode layer, a negative electrode layer, and a solid electrolyte layer are laminated such that the solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer. By press-molding this laminate, the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are densified, in other words, the porosity is reduced, and an all-solid battery is manufactured.
特開2020-173953号公報JP 2020-173953 A
 上記全固体電池では、例えば、正極層と負極層との相対的な位置がずれている場合、プレス成形の際に、正極層の外周端部および負極層の外周端部が破損し、短絡するおそれがある。このような短絡に関する課題は、例えば、平面視における正極層と負極層との大きさが異なる場合にも同様に生じる。また、平面視における正極層と負極層との大きさが同じであっても、例えば、正極層および負極層の少なくとも一方に製造時のバリ等が存在し、固体電解質層を超えて正極層の端部と負極層の端部とが接触した場合、同様に生じる。 In the all-solid-state battery, for example, if the relative positions of the positive electrode layer and the negative electrode layer are misaligned, the outer peripheral edge of the positive electrode layer and the outer peripheral edge of the negative electrode layer are damaged during press molding, causing a short circuit. There is a risk. Such short-circuit problems also arise, for example, when the sizes of the positive electrode layer and the negative electrode layer are different in plan view. Further, even if the positive electrode layer and the negative electrode layer have the same size in plan view, for example, at least one of the positive electrode layer and the negative electrode layer may have burrs or the like during manufacturing, and the positive electrode layer may extend beyond the solid electrolyte layer. The same occurs when the edge and the edge of the negative electrode layer are in contact.
 本発明は、全固体電池の製造時に短絡が発生しにくいことに貢献する絶縁性フィルム、これを備える全固体電池、および、その製造方法を提供することを目的とする。 An object of the present invention is to provide an insulating film that contributes to preventing the occurrence of a short circuit during the manufacture of an all-solid-state battery, an all-solid-state battery including the same, and a method for manufacturing the same.
 本発明の第1観点に係る絶縁性フィルムは、全固体電池に用いられる絶縁性フィルムであって、前記全固体電池は、正極層、負極層、および、前記正極層と前記負極層との間に配置される固体電解質層を含み、前記絶縁性フィルムは、前記正極層および前記負極層の少なくとも一方と接合されるように、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置され、第1層、および、前記第1層に積層される第2層を含み、前記第1層を構成する材料と、前記第2層を構成する材料とは、融点およびメルトマスフローレートの少なくとも一方が異なる。 An insulating film according to a first aspect of the present invention is an insulating film used in an all-solid-state battery, and the all-solid-state battery includes a positive electrode layer, a negative electrode layer, and between the positive electrode layer and the negative electrode layer and the insulating film is arranged along the outline of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer. , a first layer, and a second layer laminated on the first layer, wherein the material constituting the first layer and the material constituting the second layer have at least one of a melting point and a melt mass flow rate is different.
 本発明の第2観点に係る絶縁性フィルムは、第1観点に係る絶縁性フィルムであって、前記第1層を構成する材料は、前記第2層を構成する材料よりも融点が高く、前記第2層を構成する材料の融点は、170℃以下である。 An insulating film according to a second aspect of the present invention is the insulating film according to the first aspect, wherein the material forming the first layer has a higher melting point than the material forming the second layer, and the The melting point of the material forming the second layer is 170° C. or lower.
 本発明の第3観点に係る絶縁性フィルムは、第1観点または第2観点に係る絶縁性フィルムであって、前記第1層を構成する材料は、前記第2層を構成する材料よりも融点が高く、前記第1層を構成する材料の融点は、250℃以上である。 An insulating film according to a third aspect of the present invention is the insulating film according to the first aspect or the second aspect, wherein the material forming the first layer has a melting point lower than that of the material forming the second layer. is high, and the melting point of the material forming the first layer is 250° C. or higher.
 本発明の第4観点に係る絶縁性フィルムは、第1観点~第3観点のいずれか1つに係る絶縁性フィルムであって、前記第1層を構成する材料は、前記第2層を構成する材料よりも融点が高く、前記第1層を構成する材料の融点と前記第2層を構成する材料の融点との差は、50℃以上である。 The insulating film according to the fourth aspect of the present invention is the insulating film according to any one of the first to third aspects, wherein the material constituting the first layer constitutes the second layer The difference between the melting point of the material forming the first layer and the melting point of the material forming the second layer is 50° C. or more.
 本発明の第5観点に係る絶縁性フィルムは、第1観点~第4観点のいずれか1つに係る絶縁性フィルムであって、前記第1層を構成する材料は、前記第2層を構成する材料よりも190℃におけるメルトマスフローレートが低く、前記第2層を構成する材料のメルトマスフローレートは、190℃において、0.8g/10min以上である。 An insulating film according to a fifth aspect of the present invention is the insulating film according to any one of the first to fourth aspects, wherein the material constituting the first layer constitutes the second layer. The melt mass flow rate at 190°C of the material constituting the second layer is 0.8 g/10 min or more at 190°C.
 本発明の第6観点に係る絶縁性フィルムは、第1観点~第5観点のいずれか1つに係る絶縁性フィルムであって、前記第1層を構成する材料は、前記第2層を構成する材料よりも190℃におけるメルトマスフローレートが低く、前記第1層を構成する材料のメルトマスフローレートは、190℃において、0.1g/10min以下である。 The insulating film according to the sixth aspect of the present invention is the insulating film according to any one of the first to fifth aspects, wherein the material constituting the first layer constitutes the second layer The melt mass flow rate at 190°C of the material constituting the first layer is 0.1 g/10 min or less at 190°C.
 本発明の第7観点に係る絶縁性フィルムは、第1観点~第6観点のいずれか1つに係る絶縁性フィルムであって、前記第1層を構成する材料は、前記第2層を構成する材料よりも190℃におけるメルトマスフローレートが低く、前記第2層を構成する材料のメルトマスフローレートと、前記第1層を構成する材料のメルトマスフローレートとの差は、190℃において、0.8g/10min以上である。 An insulating film according to a seventh aspect of the present invention is the insulating film according to any one of the first to sixth aspects, wherein the material constituting the first layer constitutes the second layer. The difference between the melt mass flow rate of the material forming the second layer and the melt mass flow rate of the material forming the first layer is, at 190° C., 0.5°C. 8 g/10 min or more.
 本発明の第8観点に係る絶縁性フィルムは、全固体電池に用いられる絶縁性フィルムであって、前記全固体電池は、正極層、負極層、および、前記正極層と前記負極層との間に配置される固体電解質層を含み、前記絶縁性フィルムは、前記正極層および前記負極層の少なくとも一方と接合されるように、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置され、第1層、および、前記第1層に積層される第2層を含み、前記第1層を構成する材料は、ポリエステルまたはエンジニアリングプラスチックを含み、前記第2層を構成する材料は、ポリオレフィンを含む。 An insulating film according to an eighth aspect of the present invention is an insulating film used in an all-solid-state battery, wherein the all-solid-state battery includes a positive electrode layer, a negative electrode layer, and between the positive electrode layer and the negative electrode layer and the insulating film is arranged along the outline of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer. , a first layer, and a second layer laminated on the first layer, the material constituting the first layer includes polyester or engineering plastic, and the material constituting the second layer is polyolefin include.
 本発明の第9観点に係る全固体電池は、第1観点~第8観点のいずれか1つの絶縁性フィルムを備える。 The all-solid-state battery according to the ninth aspect of the present invention comprises the insulating film according to any one of the first to eighth aspects.
 本発明の第10観点に係る全固体電池の製造方法は、第1観点~第8観点のいずれか1つに係る絶縁性フィルムを備える全固体電池の製造方法であって、前記全固体電池は、正極層と、負極層と、前記正極層と前記負極層との間に配置される固体電解質層と、前記正極層および前記負極層の少なくとも一方と接合するように、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置される前記絶縁性フィルムと、を含み、前記正極層と前記負極層との間に前記固体電解質層が配置されるように、前記正極層、前記負極層、および、前記固体電解質層を積層することによって積層体を製造する積層工程と、前記積層工程よりも後に実施され、前記積層体をホットプレスすることによって、前記積層体を接合する接合工程と、前記接合工程よりも前または後に実施され、前記積層体を包装材料で封止する封止工程と、を含み、前記積層工程では、前記正極層および前記負極層の少なくとも一方の周囲に前記絶縁性フィルムが配置される。 A method for manufacturing an all-solid-state battery according to a tenth aspect of the present invention is a method for manufacturing an all-solid-state battery comprising an insulating film according to any one of the first to eighth aspects, wherein the all-solid-state battery comprises , a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer. and the insulating film arranged along the outline of at least one of the layers, wherein the positive electrode layer and the negative electrode layer are arranged such that the solid electrolyte layer is arranged between the positive electrode layer and the negative electrode layer. , and a lamination step of manufacturing a laminate by laminating the solid electrolyte layers, and a bonding step of hot-pressing the laminate to join the laminate, which is performed after the lamination step. and a sealing step of sealing the laminate with a packaging material, which is performed before or after the bonding step, and in the laminating step, the insulating film is formed around at least one of the positive electrode layer and the negative electrode layer. A film is placed.
 本発明の11観点に係る全固体電池の製造方法は、正極層と、負極層と、前記正極層と前記負極層との間に配置される固体電解質層と、前記正極層および前記負極層の少なくとも一方と接合するように、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置される絶縁性フィルムと、を含む全固体電池の製造方法であって、前記正極層と前記負極層との間に前記固体電解質層が配置されるように、前記正極層、前記負極層、および、前記固体電解質層を積層することによって積層体を製造する積層工程と、前記積層工程よりも後に実施され、前記積層体をホットプレスすることによって、前記積層体を接合する接合工程と、前記接合工程よりも前または後に実施され、前記積層体を包装材料で封止する封止工程と、を含み、前記積層工程では、前記正極層および前記負極層の少なくとも一方の周囲に前記絶縁性フィルムが配置され、前記絶縁性フィルムは、第1層、および、前記第1層に積層される第2層を含み、前記第1層を構成する材料と、前記第2層を構成する材料とは、融点およびメルトマスフローレートの少なくとも一方が異なる。 A method for manufacturing an all-solid-state battery according to an eleventh aspect of the present invention includes a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and the positive electrode layer and the negative electrode layer. and an insulating film disposed along an outer shell of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer. a stacking step of manufacturing a stack by stacking the positive electrode layer, the negative electrode layer, and the solid electrolyte layer such that the solid electrolyte layer is disposed between the stacking step and the stacking step; and a bonding step of bonding the laminate by hot-pressing the laminate, and a sealing step of sealing the laminate with a packaging material performed before or after the bonding step. , in the laminating step, the insulating film is arranged around at least one of the positive electrode layer and the negative electrode layer, and the insulating film comprises a first layer and a second layer laminated on the first layer; wherein at least one of a melting point and a melt mass flow rate is different between the material forming the first layer and the material forming the second layer.
 本発明の第12観点に係る全固体電池は、正極層と、負極層と、前記正極層と前記負極層との間に配置される固体電解質層と、前記正極層および前記負極層の少なくとも一方と接合するように、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置される絶縁性フィルムと、を含む。 An all-solid-state battery according to a twelfth aspect of the present invention includes a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and at least one of the positive electrode layer and the negative electrode layer an insulating film disposed along at least one of the positive electrode layer and the negative electrode layer so as to be in contact with the positive electrode layer and the negative electrode layer.
 本発明の第13観点に係る全固体電池は、第12観点に係る全固体電池であって、前記絶縁性フィルムは、第1層、および、前記第1層に積層される第2層を含み、前記第2層は、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置され、前記第1層は、前記固体電解質層と、前記負極層または前記正極層との間の少なくとも一部に配置される。 An all-solid-state battery according to a thirteenth aspect of the present invention is the all-solid-state battery according to the twelfth aspect, wherein the insulating film includes a first layer and a second layer laminated on the first layer. , the second layer is arranged along the outline of at least one of the positive electrode layer and the negative electrode layer, and the first layer is arranged at least one between the solid electrolyte layer and the negative electrode layer or the positive electrode layer. placed in the department.
 本発明の第14観点に係る全固体電池は、第12観点または第13観点に係る全固体電池であって、前記絶縁性フィルムは、平面視において、一部が前記固体電解質層と重畳するように配置される。 An all-solid-state battery according to a fourteenth aspect of the present invention is the all-solid-state battery according to the twelfth aspect or the thirteenth aspect, wherein the insulating film partially overlaps the solid electrolyte layer in plan view. placed in
 本発明に関する絶縁性フィルム、全固体電池、および、全固体電池の製造方法によれば、全固体電池の製造時に短絡が発生しにくいことに貢献できる。 The insulating film, all-solid-state battery, and method for manufacturing an all-solid-state battery according to the present invention can contribute to making short circuits less likely to occur during manufacture of all-solid-state batteries.
実施形態の全固体電池の平面図。1 is a plan view of an all-solid-state battery according to an embodiment; FIG. 図1のD2-D2線に沿う断面図。FIG. 2 is a cross-sectional view taken along line D2-D2 of FIG. 1; 図2の絶縁性フィルムの平面図。FIG. 3 is a plan view of the insulating film of FIG. 2; 図2の積層フィルムの層構成の一例を示す断面図。FIG. 3 is a cross-sectional view showing an example of the layer structure of the laminated film of FIG. 2; 図1の全固体電池の製造方法の一例を示すフローチャート。2 is a flowchart showing an example of a method for manufacturing the all-solid-state battery of FIG. 1; 図4の全固体電池の製造方法の積層工程において、負極層に絶縁性フィルムを配置した状態の図。FIG. 5 is a diagram of a state in which an insulating film is arranged on a negative electrode layer in the lamination step of the manufacturing method of the all-solid-state battery of FIG. 4 ; 図5の状態に正極層を積層した状態の図。The figure of the state which laminated|stacked the positive electrode layer on the state of FIG. 図6の状態に絶縁性フィルムを配置した状態の図。FIG. 7 is a diagram of a state in which an insulating film is arranged in the state of FIG. 6; 図7の状態に負極層を積層した状態の図。FIG. 8 is a view showing a state in which a negative electrode layer is laminated on the state shown in FIG. 7; 変形例の絶縁性フィルムの層構成を示す断面図。Sectional drawing which shows the layer structure of the insulating film of a modification. 変形例の全固体電池が備える積層ユニットの断面図。Sectional drawing of the lamination|stacking unit with which the all-solid-state battery of a modification is provided. 別の変形例の全固体電池が備える積層ユニットの断面図。Sectional drawing of the lamination|stacking unit with which the all-solid-state battery of another modification is provided. 別の変形例の絶縁性フィルムの層構成を示す断面図。Sectional drawing which shows the layer structure of the insulating film of another modification. 実施例および比較例の全固体電池の諸元、および、試験結果を示す表。4 is a table showing specifications and test results of all-solid-state batteries of Examples and Comparative Examples; 比較例2の全固体電池の断面図。FIG. 2 is a cross-sectional view of an all-solid-state battery of Comparative Example 2; 比較例3の全固体電池の断面図。FIG. 3 is a cross-sectional view of an all-solid-state battery of Comparative Example 3;
 以下、図面を参照しつつ、本発明の一実施形態に係る全固体電池について説明する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。 An all-solid-state battery according to one embodiment of the present invention will be described below with reference to the drawings. In this specification, the numerical range indicated by "-" means "more than" and "less than". For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
 <1.全固体電池の全体構成>
 図1は、本実施形態の全固体電池10の平面図である。図2は、D2-D2線に沿う断面図である。以下では、説明の便宜のため、特に断らない限り、図1の上下方向を「前後」と称し、左右方向を「左右」と称し、図2の上下方向を「上下」と称する。ただし、全固体電池10の使用時の向きは、これに限定されない。また、以下の説明で用いる図は、説明の便宜上、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は図示するものに限られない。
<1. Overall configuration of all-solid-state battery>
FIG. 1 is a plan view of an all-solid-state battery 10 of this embodiment. FIG. 2 is a cross-sectional view along line D2-D2. Hereinafter, for convenience of explanation, unless otherwise specified, the vertical direction in FIG. 1 will be referred to as "front and rear", the horizontal direction will be referred to as "left and right", and the vertical direction in FIG. 2 will be referred to as "up and down". However, the orientation during use of the all-solid-state battery 10 is not limited to this. Also, in the drawings used in the following description, characteristic parts may be enlarged for convenience of description, and the dimensional ratios and the like of each component are not limited to those shown in the drawings.
 全固体電池10は、例えば、全固体リチウムイオン二次電池、全固体ナトリウムイオン二次電池、または、全固体マグネシウムイオン二次電池等である。本実施形態では、全固体電池10は、全固体リチウムイオン二次電池である。全固体電池10は、例えば、多数直列接続して高電圧で使用する電気自動車およびハイブリッド自動車等の電動車両に使用される。全固体電池10は、収容体20と、積層体ユニット30と、タブ80と、タブフィルム90とを含む。 The all-solid battery 10 is, for example, an all-solid lithium-ion secondary battery, an all-solid sodium-ion secondary battery, or an all-solid magnesium-ion secondary battery. In this embodiment, the all-solid battery 10 is an all-solid lithium ion secondary battery. The all-solid-state battery 10 is used, for example, in electric vehicles such as electric vehicles and hybrid vehicles that are connected in series and used at high voltage. All-solid-state battery 10 includes container 20 , laminate unit 30 , tab 80 , and tab film 90 .
 収容体20は、内部空間S1および周縁シール部23を備える。積層体ユニット30は、収容体20の内部空間S1に収容される。タブ80は、その一端が積層体ユニット30と接合しており、その他端が収容体20の周縁シール部23から外側に突出している。タブ80の一端と他端との間の一部は、タブフィルム90を介して周縁シール部23に融着されている。 The container 20 has an internal space S1 and a peripheral seal portion 23 . The laminate unit 30 is housed in the internal space S<b>1 of the housing 20 . One end of the tab 80 is joined to the laminate unit 30 , and the other end protrudes outward from the peripheral seal portion 23 of the container 20 . A portion between one end and the other end of the tab 80 is fused to the peripheral seal portion 23 via the tab film 90 .
 収容体20は、容器20Aを含む。容器20Aは、包装材料21、22を含んで構成される。平面視における容器20Aの外周部分においては、包装材料21、22がヒートシールされ、互いに融着しており、これにより、周縁シール部23が形成されている。そして、この周縁シール部23によって、外部空間から遮断された容器20Aの内部空間S1が形成される。周縁シール部23は、容器20Aの内部空間S1の周縁を画定する。なお、ここでいうヒートシールの態様には、熱源からの加熱融着、超音波融着等の態様が想定される。いずれにせよ、周縁シール部23とは、包装材料21、22が融着され、一体化している部分を意味する。なお、周縁シール部23のタブ80とタブフィルム90とを挟む部分は、包装材料22、タブ80、一対のタブフィルム90、および、包装材料21が一体化されている。周縁シール部23の一対のタブフィルム90のみを挟む部分は、包装材料22、一対のタブフィルム90、および、包装材料21が一体化されている。 The container 20 includes a container 20A. 20 A of containers are comprised including the packaging materials 21 and 22. As shown in FIG. At the outer peripheral portion of the container 20A in plan view, the packaging materials 21 and 22 are heat-sealed and fused together, thereby forming a peripheral edge seal portion 23 . The inner space S1 of the container 20A, which is isolated from the outer space, is formed by the peripheral seal portion 23. As shown in FIG. The peripheral edge seal portion 23 defines the peripheral edge of the internal space S1 of the container 20A. It should be noted that the mode of heat sealing referred to herein includes modes such as thermal fusion from a heat source and ultrasonic fusion. In any case, the peripheral seal portion 23 means a portion where the packaging materials 21 and 22 are fused and integrated. Note that the packaging material 22 , the tab 80 , the pair of tab films 90 , and the packaging material 21 are integrated at the portion of the peripheral seal portion 23 sandwiching the tab 80 and the tab film 90 . The packaging material 22 , the pair of tab films 90 , and the packaging material 21 are integrated in the portion of the peripheral seal portion 23 that sandwiches only the pair of tab films 90 .
 包装材料21、22は、例えば、樹脂成形品またはフィルムから構成される。ここでいう樹脂成形品とは、射出成形や圧空成形、真空成形、ブロー成形等の方法により製造することができ、意匠性や機能性を付与するためにインモールド成形を行ってもよい。樹脂の種類は、ポリオレフィン、ポリエステル、ナイロン、ABS等とすることができる。また、ここでいうフィルムとは、例えば、インフレーション法やTダイ法等の方法により製造することができる樹脂フィルムや、このような樹脂フィルムを金属箔に積層したものである。また、ここでいうフィルムは、延伸されたものであってもなくてもよく、単層のフィルムであっても多層フィルムであってもよい。また、ここでいう多層フィルムは、コーティング法により製造されてもよいし、複数枚のフィルムが接着剤等により接着されたものでもよいし、多層押出法により製造されてもよい。 The packaging materials 21 and 22 are composed of resin molded products or films, for example. The resin molded product referred to here can be manufactured by methods such as injection molding, pressure molding, vacuum molding, and blow molding, and in-mold molding may be performed to impart design and functionality. The type of resin can be polyolefin, polyester, nylon, ABS, and the like. The film referred to here is, for example, a resin film that can be produced by a method such as an inflation method or a T-die method, or a laminate of such a resin film on a metal foil. The film referred to here may or may not be stretched, and may be a single-layer film or a multilayer film. The multilayer film referred to here may be produced by a coating method, may be produced by adhering a plurality of films with an adhesive or the like, or may be produced by a multilayer extrusion method.
 以上のとおり、包装材料21、22は様々に構成することができるが、本実施形態では、ラミネートフィルムから構成される。ラミネートフィルムは、基材層、バリア層、および、熱融着性樹脂層を積層した積層体とすることができる。基材層は、包装材料21、22の基材として機能し、典型的には、容器20Aの外層側を形成し、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ナイロン等のポリアミド等の絶縁性を有する樹脂層が、単層または2層以上の複層で形成されていてもよい。バリア層は、包装材料21、22の強度向上の他、積層体ユニット30内に少なくとも水分等が侵入することを防止する機能を有し、典型的には、アルミニウム合金箔、ステンレス鋼箔、チタン鋼箔、鋼板箔等からなる金属層である。熱融着性樹脂層は、典型的には、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル等の熱融着可能な樹脂からなり、容器20Aの最内層を形成する。容器20Aの形状は、特に限定されず、例えば、袋状(パウチ状)とすることができる。ここでいう袋状には、三方シールタイプ、四方シールタイプ、ピロータイプ、ガセットタイプ等が考えられる。なお、容器20Aは、包装材料21、22から構成されてもよいが、その他、例えば、金属缶であってもよい。 As described above, the packaging materials 21 and 22 can be configured in various ways, but in this embodiment, they are composed of laminated films. A laminate film can be a laminate obtained by laminating a substrate layer, a barrier layer, and a heat-fusible resin layer. The base layer functions as a base material for the packaging materials 21 and 22, typically forms the outer layer side of the container 20A, and is made of polyester such as polyethylene terephthalate or polybutylene terephthalate, polyamide such as nylon, or the like. The resin layer may be formed of a single layer or multiple layers of two or more layers. In addition to improving the strength of the packaging materials 21 and 22, the barrier layer has a function of preventing at least moisture from entering the laminate unit 30, and is typically aluminum alloy foil, stainless steel foil, or titanium foil. It is a metal layer made of steel foil, steel plate foil, or the like. The heat-sealable resin layer is typically made of heat-sealable resin such as polyolefin such as polypropylene, polyester such as polyethylene terephthalate and polybutylene terephthalate, and forms the innermost layer of the container 20A. The shape of the container 20A is not particularly limited, and can be, for example, a bag shape (pouch shape). The bag-like shape referred to herein includes a three-side seal type, a four-side seal type, a pillow type, a gusset type, and the like. Note that the container 20A may be composed of the packaging materials 21 and 22, but may also be, for example, a metal can.
 タブ80は、全固体電池10の電力の入出力に用いられる金属端子である。タブ80は、容器20Aの周縁シール部23の左右方向の端部に分かれて配置されており、一方が正極側の端子を構成し、他方が負極側の端子を構成する。各タブ80の左右方向の一方の端部は、容器20Aの内部空間S1において積層体ユニット30の正極層40または負極層50(ともに図2参照)に電気的に接続されており、他方の端部は、周縁シール部23から外側に突出している。なお、正極層40および負極層50の端子を構成する2つのタブ80の取付け位置は特に限定されず、例えば、周縁シール部23の同じ1つの辺に配置されていてもよい。 The tab 80 is a metal terminal used for power input/output of the all-solid-state battery 10 . The tabs 80 are arranged separately at the left and right ends of the peripheral seal portion 23 of the container 20A, one constituting a positive terminal and the other constituting a negative terminal. One end in the left-right direction of each tab 80 is electrically connected to the positive electrode layer 40 or the negative electrode layer 50 (both see FIG. 2) of the laminate unit 30 in the internal space S1 of the container 20A, and the other end The portion protrudes outward from the peripheral edge seal portion 23 . The attachment positions of the two tabs 80 constituting the terminals of the positive electrode layer 40 and the negative electrode layer 50 are not particularly limited.
 タブ80を構成する金属材料は、例えば、アルミニウム、ニッケル、銅等である。全固体電池10がリチウムイオン二次電池である場合、正極層40に接続されるタブ80は、典型的には、アルミニウム等によって構成され、負極層50に接続されるタブ80は、典型的には、銅、ニッケル等によって構成される。 The metal material forming the tab 80 is, for example, aluminum, nickel, copper, or the like. When the all-solid-state battery 10 is a lithium-ion secondary battery, the tab 80 connected to the positive electrode layer 40 is typically made of aluminum or the like, and the tab 80 connected to the negative electrode layer 50 is typically is composed of copper, nickel, or the like.
 左側のタブ80は、周縁シール部23のうち左端部において、タブフィルム90を介して包装材料21、22に挟まれている。右側のタブ80も、周縁シール部23のうち右端部において、タブフィルム90を介して包装材料21、22に挟まれている。 The left tab 80 is sandwiched between the packaging materials 21 and 22 via the tab film 90 at the left end of the peripheral seal portion 23 . The right tab 80 is also sandwiched between the packaging materials 21 and 22 via the tab film 90 at the right end of the peripheral seal portion 23 .
 タブフィルム90は、いわゆる接着性フィルムであり、包装材料21、22と、タブ80(金属)との両方に接着するように構成されている。タブフィルム90を介することによって、タブ80と、包装材料21、22の最内層(熱融着性樹脂層)とが異素材であっても、両者を固定することができる。なお、タブフィルム90は、タブ80に予め融着して固定することで一体化しておき、このタブフィルム90が固定されたタブ80を包装材料21、22で挟んで融着することで、これらが一体化される。 The tab film 90 is a so-called adhesive film, and is configured to adhere to both the packaging materials 21, 22 and the tab 80 (metal). By interposing the tab film 90, even if the tab 80 and the innermost layers (heat-fusible resin layers) of the packaging materials 21 and 22 are made of different materials, they can be fixed. The tab film 90 is previously fused and fixed to the tab 80 to be integrated, and the tab 80 to which the tab film 90 is fixed is sandwiched between the packaging materials 21 and 22 and fused, so that these are integrated.
 <2.積層体ユニット>
 <2-1.全体構成>
 図2に示されるように、積層体ユニット30は、正極層40と、負極層50と、正極層40と負極層50との間に積層される固体電解質層60と、絶縁性フィルム70と、を含む。正極層40と負極層50とは、固体電解質層60を介して上下に交互に積層される。正極層40と負極層50との間で固体電解質層60を介したリチウムイオンの授受によって、全固体電池10の充放電が行われる。積層体ユニット30に含まれる正極層40および負極層50の数は、任意に選択可能である。本実施形態では、積層体ユニット30は、1つの正極層40と、2つの負極層50とを含む。積層体ユニット30は、2つ以上の正極層40を有していてもよく、3つ以上の負極層50を有していてもよい。
<2. Laminate Unit>
<2-1. Overall configuration>
As shown in FIG. 2, the laminate unit 30 includes a positive electrode layer 40, a negative electrode layer 50, a solid electrolyte layer 60 laminated between the positive electrode layer 40 and the negative electrode layer 50, an insulating film 70, including. The positive electrode layer 40 and the negative electrode layer 50 are alternately stacked vertically with the solid electrolyte layer 60 interposed therebetween. Charging and discharging of the all-solid-state battery 10 are performed by transfer of lithium ions between the positive electrode layer 40 and the negative electrode layer 50 via the solid electrolyte layer 60 . The number of positive electrode layers 40 and negative electrode layers 50 included in the laminate unit 30 can be arbitrarily selected. In this embodiment, the laminate unit 30 includes one positive electrode layer 40 and two negative electrode layers 50 . The laminate unit 30 may have two or more positive electrode layers 40 and may have three or more negative electrode layers 50 .
 <2-2.正極層>
 正極層40は、正極集電体41と、正極集電体41の両面の一部に形成される正極活物質層42、43とを含む。正極集電体41は、好ましくは、導電率が高い少なくとも材料によって構成される。導電性が高い物質は、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、クロム、および、ニッケルの少なくともいずれか一つの金属元素を含む金属または合金である。正極集電体41を構成する材料は、カーボン等の非金属であってもよい。正極集電体41の形状は、例えば、箔状、板状、メッシュ状、不織布状、または、発泡状である。本実施形態では、正極集電体41の形状は、長方形の箔状である。
<2-2. Positive electrode layer>
The cathode layer 40 includes a cathode current collector 41 and cathode active material layers 42 and 43 formed on part of both surfaces of the cathode current collector 41 . The positive electrode current collector 41 is preferably composed of at least a material with high electrical conductivity. A highly conductive substance is, for example, a metal or an alloy containing at least one metal element of silver, palladium, gold, platinum, aluminum, copper, chromium, and nickel. The material forming the positive electrode current collector 41 may be a non-metal such as carbon. The shape of the positive electrode current collector 41 is, for example, foil-like, plate-like, mesh-like, nonwoven fabric-like, or foam-like. In this embodiment, the shape of the positive electrode current collector 41 is a rectangular foil shape.
 正極活物質層42、43は、リチウムイオンと電子を授受可能である正極活物質を含む。正極活物質は、リチウムイオンを可逆に放出・吸蔵でき、電子輸送が行える材料であれば特に限定されず、全固体リチウムイオン二次電池の正極層に適用可能な公知の正極活物質を用いることができる。正極活物質層42、43は、正極活物質とリチウムイオンの授受をする固体電解質を含む。固体電解質は、リチウムイオン伝導性を有するものであれば特に制限は無く、一般的に全固体リチウムイオン二次電池に用いられる材料を用いることができる。 The positive electrode active material layers 42 and 43 contain a positive electrode active material capable of transferring lithium ions and electrons. The positive electrode active material is not particularly limited as long as it is a material that can reversibly release and absorb lithium ions and transport electrons, and a known positive electrode active material that can be applied to the positive electrode layer of an all-solid lithium ion secondary battery can be used. can be done. The positive electrode active material layers 42 and 43 include a solid electrolyte that exchanges lithium ions with the positive electrode active material. The solid electrolyte is not particularly limited as long as it has lithium ion conductivity, and materials generally used for all-solid lithium ion secondary batteries can be used.
 本実施形態では、正極活物質層42、43は、正極集電体41の両面に形成されているが、これに限らず、正極活物質層42、43のいずれかが、正極集電体41の一方の面に形成されていてもよい。 In the present embodiment, the positive electrode active material layers 42 and 43 are formed on both sides of the positive electrode current collector 41, but this is not restrictive, and either one of the positive electrode active material layers 42 and 43 is formed on the positive electrode current collector 41. may be formed on one side of the
 正極集電体41の両面の一部には、正極活物質層42、43が形成されていないタブ接続部41Aが形成されている。タブ接続部41Aの先端は、負極層50の右側の端部よりも右側に位置し、かつ、絶縁性フィルム70の端部から露出する。タブ接続部41Aのうちの絶縁性フィルム70から露出している部分は、例えば、右側のタブ80(図1参照)と電気的に接続される。 On part of both surfaces of the positive electrode current collector 41, tab connecting portions 41A are formed on which the positive electrode active material layers 42 and 43 are not formed. The tip of the tab connection portion 41A is located on the right side of the right end of the negative electrode layer 50 and exposed from the end of the insulating film 70 . A portion of the tab connection portion 41A exposed from the insulating film 70 is electrically connected to, for example, the right tab 80 (see FIG. 1).
 <2-3.負極層>
 負極層50は、負極集電体51と、負極集電体51の両面に形成される負極活物質層52、53を含む。負極集電体51を構成する材料は、正極集電体41を構成する材料として例示した材料を用いることが出きる。負極集電体51の形状は、正極集電体41の形状として例示した形状を採用するこができる。本実施形態では、負極集電体51の形状は、長方形の箔状である。
<2-3. Negative electrode layer>
The negative electrode layer 50 includes a negative current collector 51 and negative active material layers 52 and 53 formed on both sides of the negative current collector 51 . Materials exemplified as materials for forming the positive electrode current collector 41 can be used as the material for forming the negative electrode current collector 51 . As for the shape of the negative electrode current collector 51 , the shape exemplified as the shape of the positive electrode current collector 41 can be adopted. In this embodiment, the shape of the negative electrode current collector 51 is a rectangular foil shape.
 負極活物質層52、53は、リチウムイオンと電子を授受可能である負極活物質を含む。負極活物質は、リチウムイオンを可逆に放出・吸蔵でき、電子輸送が行える材料であれば特に限定されず、全固体リチウムイオン二次電池の負極層に適用可能な公知の負極活物質を用いることができる。 The negative electrode active material layers 52 and 53 contain a negative electrode active material capable of transferring lithium ions and electrons. The negative electrode active material is not particularly limited as long as it is a material that can reversibly release and absorb lithium ions and transport electrons, and a known negative electrode active material that can be applied to the negative electrode layer of an all-solid lithium ion secondary battery can be used. can be done.
 本実施形態では、負極活物質層52、53は、負極集電体51の両面に形成されているが、これに限らず、負極活物質層52、53のいずれかが、負極集電体51の一方の面に形成されていてもよい。例えば、積層体ユニット30の積層方向(上下方向)の最下層に負極層50が形成されている場合、最下層に位置する負極層50の下方には対向する正極層40が存在しない。このため、最下層に位置する負極層50においては、積層方向上側の片面のみに負極活物質層52が形成されてもよい。 In the present embodiment, the negative electrode active material layers 52 and 53 are formed on both sides of the negative electrode current collector 51 , but this is not restrictive, and either one of the negative electrode active material layers 52 and 53 is formed on the negative electrode current collector 51 . may be formed on one side of the For example, when the negative electrode layer 50 is formed as the lowest layer in the stacking direction (vertical direction) of the laminate unit 30 , the positive electrode layer 40 facing the lowermost negative electrode layer 50 does not exist below the negative electrode layer 50 . Therefore, in the negative electrode layer 50 positioned at the bottom layer, the negative electrode active material layer 52 may be formed only on one surface on the upper side in the stacking direction.
 負極集電体51の両面の一部には、負極活物質層52、53が形成されていないタブ接続部51Aが形成されている。タブ接続部51Aの先端は、正極層40の左側の端部よりも左側に位置する。タブ接続部51Aは、例えば、左側のタブ80(図1参照)と電気的に接続される。 A tab connection portion 51A where the negative electrode active material layers 52 and 53 are not formed is formed on part of both surfaces of the negative electrode current collector 51 . The tip of the tab connection portion 51A is located on the left side of the left end portion of the positive electrode layer 40 . The tab connection portion 51A is electrically connected to, for example, the left tab 80 (see FIG. 1).
 <2-4.固体電解質層>
 固体電解質層60は、固体電解質を含む材料によって構成される。固体電解質は、リチウムイオン伝導性を有するものであれば特に制限は無く、一般的に全固体リチウムイオン二次電池に用いられる材料を用いることができる。全固体電池10が全固体ナトリウムイオン二次電池である場合、固体電解質は、ナトリウムイオン導電性を有する公知の材料を用いることができる。全固体電池10が全固体マグネシウムイオン二次電池である場合、固体電解質は、マグネシウムイオン導電性を有する公知の材料を用いることができる。
<2-4. Solid electrolyte layer>
Solid electrolyte layer 60 is made of a material containing a solid electrolyte. The solid electrolyte is not particularly limited as long as it has lithium ion conductivity, and materials generally used for all-solid lithium ion secondary batteries can be used. When the all-solid-state battery 10 is an all-solid-state sodium-ion secondary battery, a known material having sodium-ion conductivity can be used as the solid electrolyte. When the all-solid battery 10 is an all-solid magnesium ion secondary battery, the solid electrolyte can be a known material having magnesium ion conductivity.
 <2-5.絶縁性フィルム>
 積層体ユニット30は、後述する接合工程において、積層体100(図8参照)が例えば、温間等方圧プレス機によってホットプレスされることによって製造される。積層体ユニット30は、積層体100が、平板プレス、または、ロールプレス等によってホットプレスされることによって製造されてもよい。正極層40および負極層50の形状および面積が実質的に同じである場合、接合工程において、正極層40の外周端部と負極層50の外周端部とが接触することによって、短絡するおそれがある。このため、正極層40および負極層50の一方は、他方に対して面積が小さいことが好ましい。なお、正極層40の面積とは、平面視における正極活物質層42、43の面積である。負極層50の面積は、平面視における負極活物質層52、53の面積である。本実施形態では、平面視における正極集電体41の面積は、負極集電体51の面積よりも小さく、平面視における正極活物質層42、43の面積は、負極活物質層52、53の面積よりも小さい。なお、一般に、全固体電池10において、全固体電池10を平面視した場合に、正極活物質層42、43の面積は、負極活物質層52、53の面積と同じであるか、負極活物質層52、53の面積よりも小さいことが好ましい。また、全固体電池10が高圧プレスされる部分は、一般に、正極活物質層42、43が存在している部分に対応した範囲をプレスすることが好ましい。
<2-5. Insulating film>
The laminated body unit 30 is manufactured by hot-pressing the laminated body 100 (see FIG. 8), for example, with a warm isostatic press in a bonding step described later. The laminate unit 30 may be manufactured by hot-pressing the laminate 100 using a flat plate press, a roll press, or the like. When the shape and area of the positive electrode layer 40 and the negative electrode layer 50 are substantially the same, there is a possibility that the outer peripheral edge portion of the positive electrode layer 40 and the outer peripheral edge portion of the negative electrode layer 50 contact each other in the bonding step, causing a short circuit. be. Therefore, it is preferable that one of the positive electrode layer 40 and the negative electrode layer 50 has a smaller area than the other. The area of the positive electrode layer 40 is the area of the positive electrode active material layers 42 and 43 in plan view. The area of the negative electrode layer 50 is the area of the negative electrode active material layers 52 and 53 in plan view. In the present embodiment, the area of the positive electrode current collector 41 in plan view is smaller than the area of the negative electrode current collector 51 , and the areas of the positive electrode active material layers 42 and 43 in plan view are the same as those of the negative electrode active material layers 52 and 53 . smaller than area. Generally, in the all-solid-state battery 10, when the all-solid-state battery 10 is viewed from above, the areas of the positive electrode active material layers 42 and 43 are the same as the areas of the negative electrode active material layers 52 and 53, or It is preferably smaller than the area of the layers 52,53. Moreover, it is generally preferable to press a range corresponding to the portions where the positive electrode active material layers 42 and 43 are present as the portion of the all-solid-state battery 10 to be press-pressed at high pressure.
 製造時における正極層40と負極層50との短絡を抑制するため、正極層40および負極層50の一方を他方に対して面積が小さいように構成した場合、正極層40の外周端部と負極層50の外周端部との間に段差200(図8参照)が形成される。このため、積層体100(図8)がホットプレスされた場合に、段差200において、例えば、負極層50の外周端部が破損するおそれがある。本実施形態の積層体ユニット30は、このような事態が発生することを抑制するために、段差200を埋めるように絶縁性フィルム70が配置されている。 In order to suppress a short circuit between the positive electrode layer 40 and the negative electrode layer 50 during manufacturing, when one of the positive electrode layer 40 and the negative electrode layer 50 is configured to have a smaller area than the other, the outer peripheral end portion of the positive electrode layer 40 and the negative electrode layer 50 are formed. A step 200 (see FIG. 8) is formed between the layer 50 and the outer peripheral edge. For this reason, when the laminate 100 (FIG. 8) is hot-pressed, there is a risk that, for example, the outer peripheral edge of the negative electrode layer 50 may be damaged at the step 200 . In the laminate unit 30 of the present embodiment, the insulating film 70 is arranged so as to fill the step 200 in order to prevent such a situation from occurring.
 本実施形態では、積層体ユニット30は、2枚の絶縁性フィルム70を有する。積層体ユニット30は、1枚、または、3枚以上の絶縁性フィルム70を有していてもよい。絶縁性フィルム70は、正極層40および負極層50の少なくとも一方と接合するように、正極層40および負極層50の少なくとも一方の外郭に沿って配置される。本実施形態では、絶縁性フィルム70は、正極層40と接合するように、正極層40の外郭に沿って配置される。絶縁性フィルム70は、正極層40の外郭の少なくとも一部に沿って配置されていればよい。本実施形態では、絶縁性フィルム70は、正極層40の外郭の全周に沿って配置される。このため、負極層50の外周端部のうちのより広い範囲と対応する位置に絶縁性フィルム70が配置されているため、積層体ユニット30の製造時において、負極層50がより破損しにくい。 In this embodiment, the laminate unit 30 has two insulating films 70 . The laminate unit 30 may have one, or three or more insulating films 70 . Insulating film 70 is arranged along the outline of at least one of positive electrode layer 40 and negative electrode layer 50 so as to be bonded to at least one of positive electrode layer 40 and negative electrode layer 50 . In this embodiment, the insulating film 70 is arranged along the contour of the positive electrode layer 40 so as to join with the positive electrode layer 40 . The insulating film 70 may be arranged along at least part of the outer shell of the positive electrode layer 40 . In this embodiment, the insulating film 70 is arranged along the entire circumference of the outer shell of the positive electrode layer 40 . Therefore, since the insulating film 70 is arranged at a position corresponding to a wider area of the outer peripheral edge of the negative electrode layer 50 , the negative electrode layer 50 is less likely to be damaged during manufacturing of the laminate unit 30 .
 図3Aは、正極層40と接合される前の絶縁性フィルム70の平面図である。絶縁性フィルム70の形状は、任意に選択可能である。本実施形態では、絶縁性フィルム70の外郭形状は、長方形である。絶縁性フィルム70の形状は、正方形、または、五角形以上の多角形であってもよい。絶縁性フィルム70は、概ね中央に、絶縁性フィルム70を貫通する孔70Aが形成されている。孔70Aの内郭形状は、正極活物質層42、43の外郭形状と概ね同じ形状である。孔70Aの面積は、正極活物質層42、43の面積よりも若干大きい。このため、孔70Aに正極活物質層42、43を挿入した場合、孔70Aの内郭と正極活物質層42、43の外郭との間には、僅かに隙間が形成される。図8に示される積層体100がホットプレスされることによって、絶縁性フィルム70を構成する層の一部が溶融し、孔70Aの内郭と正極活物質層42、43の外郭との隙間は埋められる。 3A is a plan view of the insulating film 70 before being joined to the positive electrode layer 40. FIG. The shape of the insulating film 70 can be arbitrarily selected. In this embodiment, the contour shape of the insulating film 70 is rectangular. The shape of the insulating film 70 may be a square or a polygon with pentagons or more. The insulating film 70 has a hole 70A penetrating through the insulating film 70 substantially in the center. The inner contour shape of the hole 70A is substantially the same shape as the outer contour shape of the positive electrode active material layers 42 and 43 . The area of hole 70A is slightly larger than the areas of positive electrode active material layers 42 and 43 . Therefore, when the positive electrode active material layers 42 and 43 are inserted into the hole 70A, a slight gap is formed between the inner shell of the hole 70A and the outer shell of the positive electrode active material layers 42 and 43 . By hot-pressing the laminate 100 shown in FIG. 8, a part of the layers constituting the insulating film 70 melts, and the gap between the inner shell of the hole 70A and the outer shell of the positive electrode active material layers 42 and 43 becomes be buried.
 図3Bは、絶縁性フィルム70の層構成の一例を示す断面図である。本実施形態では、絶縁性フィルム70は、第1層71、および、第1層71に積層される第2層72を含む積層フィルムである。第1層71は、後述する接合工程において、積層体100(図8参照)が温間等方圧プレス機によってホットプレスされた場合に、実質的に溶融しない性質を有する層である。第2層72は、接合工程においてホットプレスされた場合に溶融する性質を有する層である。本実施形態では、絶縁性フィルム70は、固体電解質層60に近い側から、第1層71、および、第2層72の順に積層される。本実施形態では、第1層71および第2層72は、平面視において、一部が、固体電解質層60と重畳している。このため、段差200(図8参照)において、例えば、負極層50の外周端部が破損することを好適に抑制できる。 3B is a cross-sectional view showing an example of the layer structure of the insulating film 70. FIG. In this embodiment, the insulating film 70 is a laminated film including a first layer 71 and a second layer 72 laminated on the first layer 71 . The first layer 71 is a layer that does not substantially melt when the laminate 100 (see FIG. 8) is hot-pressed by a warm isostatic pressing machine in the bonding step described later. The second layer 72 is a layer that has the property of melting when hot pressed in the bonding process. In this embodiment, the insulating film 70 is laminated in order of the first layer 71 and the second layer 72 from the side closer to the solid electrolyte layer 60 . In the present embodiment, the first layer 71 and the second layer 72 partially overlap the solid electrolyte layer 60 in plan view. Therefore, for example, damage to the outer peripheral edge of the negative electrode layer 50 at the step 200 (see FIG. 8) can be preferably suppressed.
 図2に示される例では、2枚の絶縁性フィルム70の第2層72のうちのタブ接続部41Aの一部を覆っている部分は、正極活物質層42の外周端部、および、正極集電体41の表面の一部と接合される。2枚の絶縁性フィルム70の第2層72のうちのタブ接続部41Aを覆っている部分以外の部分は、正極活物質層43の外周端部、および、正極集電体41の外周端部と接合される。 In the example shown in FIG. 2, the portion of the second layer 72 of the two insulating films 70 that partially covers the tab connection portion 41A is the outer peripheral edge of the positive electrode active material layer 42 and the positive electrode. It is joined to part of the surface of the current collector 41 . The portions of the second layers 72 of the two insulating films 70 other than the portion covering the tab connection portion 41A are the outer peripheral end portion of the positive electrode active material layer 43 and the outer peripheral end portion of the positive electrode current collector 41. is joined with
 第1層71を構成する材料と、第2層72を構成する材料とは、融点およびメルトマスフローレートの少なくとも一方が異なることが好ましい。本実施形態において、融点は、JIS K7121:2012(プラスチックの転移温度測定方法(JIS K7121:1987の追補1))の規定に基づいて測定される。本実施形態における融点とは、JIS K7121における融解温度と同義である。融解温度のピークが複数ある場合は、最大ピークを有する融解温度を融解温度とする。昇温温度は、10℃/分である。融点の測定は、3回実施し、値が近い2回の融点の平均値を融点として用いる。本実施形態において、融点は、示差走査熱量計(Differential Scanning Calorimetry)で測定される吸熱ピークである。本実施形態において、メルトマスフローレートは、JIS K7210-1:2014(ISO 1133-1:2011)の規定に準拠して測定された190℃の値である。本実施形態では、第1層71を構成する材料は、第2層72を構成する材料よりも融点が高い。また、本実施形態では、第1層71を構成する材料は、第2層72を構成する材料よりも190℃におけるメルトマスフローレートが低い。このため、図8に示される積層体100が温間等方圧プレス機によってホットプレスされた場合に、第2層72が好適に溶融する一方、第2層72が流出することが第1層71によって抑制される。このため、正極層40の外郭に沿って絶縁性フィルム70を好適に配置できる。なお、第1層71を構成する材料の融点、および、第2層を構成する材料の融点は、積層体100(図8参照)がホットプレスされる際の温度TAに基づいて決められることが好ましい。第1層71を構成する材料の融点は、温度TAよりも高いことが好ましい。第2層72を構成する材料の融点は、温度TAよりも低いことが好ましい。温度TAは、固体電解質層60の抵抗、および、耐熱性の観点に基づいて決められることが好ましい。温度TAが高い程、固体電解質層60の抵抗を低くできる。このため、温度TAの下限値は、例えば、20℃、好ましくは、80℃、さらに好ましくは、150℃、最も好ましくは、185℃である。一方、温度TAが高すぎると、固体電解質層60の性能が低下する。このため、温度TAの上限値は、例えば、250℃、好ましくは、195℃である。温度TAの好ましい範囲は、例えば、20℃~250℃、20℃~195℃、80℃~250℃、80℃~195℃、150℃~250℃、150℃~195℃、185℃~250℃、または、185℃~195℃である。 The material forming the first layer 71 and the material forming the second layer 72 are preferably different in at least one of melting point and melt mass flow rate. In this embodiment, the melting point is measured based on the provisions of JIS K7121:2012 (Method for measuring transition temperature of plastics (JIS K7121:1987 Supplement 1)). The melting point in this embodiment is synonymous with the melting temperature in JIS K7121. When there are multiple melting temperature peaks, the melting temperature with the maximum peak is taken as the melting temperature. The temperature rise is 10°C/min. The melting point is measured three times, and the average value of two melting points that are close to each other is used as the melting point. In this embodiment, the melting point is the endothermic peak measured by Differential Scanning Calorimetry. In this embodiment, the melt mass flow rate is a value at 190°C measured according to JIS K7210-1:2014 (ISO 1133-1:2011). In this embodiment, the material forming the first layer 71 has a higher melting point than the material forming the second layer 72 . Further, in the present embodiment, the material forming the first layer 71 has a lower melt mass flow rate at 190° C. than the material forming the second layer 72 . For this reason, when the laminate 100 shown in FIG. 8 is hot-pressed by a warm isostatic press, the second layer 72 preferably melts while the second layer 72 flows out. 71. Therefore, the insulating film 70 can be preferably arranged along the contour of the positive electrode layer 40 . Note that the melting point of the material forming the first layer 71 and the melting point of the material forming the second layer may be determined based on the temperature TA when the laminate 100 (see FIG. 8) is hot-pressed. preferable. The melting point of the material forming the first layer 71 is preferably higher than the temperature TA. The melting point of the material forming the second layer 72 is preferably lower than the temperature TA. The temperature TA is preferably determined based on the resistance and heat resistance of the solid electrolyte layer 60 . The higher the temperature TA, the lower the resistance of the solid electrolyte layer 60 can be. Therefore, the lower limit of the temperature TA is, for example, 20°C, preferably 80°C, more preferably 150°C, most preferably 185°C. On the other hand, if the temperature TA is too high, the performance of the solid electrolyte layer 60 will deteriorate. Therefore, the upper limit of the temperature TA is, for example, 250°C, preferably 195°C. Preferred ranges of temperature TA are, for example, 20°C to 250°C, 20°C to 195°C, 80°C to 250°C, 80°C to 195°C, 150°C to 250°C, 150°C to 195°C, 185°C to 250°C. , or between 185°C and 195°C.
 第1層71を構成する材料の融点と第2層72を構成する材料の融点との差は、50℃以上であることが好ましい。第2層72を構成する材料の融点は、170℃以下であることが好ましい。第1層71を構成する材料の融点は、250℃以上であることが好ましい。第2層72を構成する材料のメルトマスフローレートと、第1層71を構成する材料のメルトマスフローレートとの差は、190℃において、0.8g/10min以上であることが好ましい。第2層72を構成する材料のメルトマスフローレートは、190℃において、0.8g/10min以上であることが好ましい。第1層71を構成する材料のメルトマスフローレートは、190℃において、0.1g/10min以下であることが好ましい。 The difference between the melting point of the material forming the first layer 71 and the melting point of the material forming the second layer 72 is preferably 50°C or more. The melting point of the material forming the second layer 72 is preferably 170° C. or lower. The melting point of the material forming the first layer 71 is preferably 250° C. or higher. The difference between the melt mass flow rate of the material forming the second layer 72 and the melt mass flow rate of the material forming the first layer 71 is preferably 0.8 g/10 min or more at 190°C. The melt mass flow rate of the material forming the second layer 72 is preferably 0.8 g/10 min or more at 190°C. The melt mass flow rate of the material forming the first layer 71 is preferably 0.1 g/10 min or less at 190°C.
 第1層71を構成する材料は、例えば、ポリエステルまたはエンジニアリングプラスチック等が好ましい。ポリエステルは、例えば、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート等が挙げられる。 The material forming the first layer 71 is preferably polyester, engineering plastic, or the like, for example. Examples of polyester include polyethylene naphthalate, polybutylene terephthalate, polyethylene terephthalate and the like.
 エンジニアリングプラスチックは、例えば、耐熱温度が100℃以上であり、引張強度500kgf/cm2以上であり、曲げ弾性率24000kgf/cm2以上の性質を有する樹脂である。引張強度は、JIS K7161の規定に基づいて測定される。曲げ弾性率は、JIS K7171の規定に基づいて測定される。エンジニアリングプラスチックは、例えば、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、GF強化ポリエチレンテレフタレート、超高分子量ポリエチレン、または、シンジオタクチックポリスチレンである。エンジニアリングプラスチックは、スーパーエンジニアリング・プラスチックを含む。スーパーエンジニアリング・プラスチックは、溶剤に対して高い耐性を有し、耐熱温度が150℃以上であり、長期間使用できる性質を有する。スーパーエンジニアリング・プラスチックは、非晶ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、フッ素樹脂、または、液晶ポリマーである。 The engineering plastic is, for example, a resin having a heat resistance temperature of 100° C. or higher, a tensile strength of 500 kgf/cm 2 or higher, and a flexural modulus of 24000 kgf/cm 2 or higher. Tensile strength is measured according to JIS K7161. The flexural modulus is measured according to JIS K7171. Engineering plastics are, for example, polyacetals, polyamides, polycarbonates, modified polyphenylene ethers, polybutylene terephthalate, GF-reinforced polyethylene terephthalate, ultra-high molecular weight polyethylene or syndiotactic polystyrene. Engineering plastics include super engineering plastics. Super engineering plastics have a high resistance to solvents, a heat resistance temperature of 150° C. or higher, and properties that allow them to be used for a long period of time. Super engineering plastics are amorphous polyarylates, polysulfones, polyethersulfones, polyphenylene sulfides, polyetheretherketones, polyimides, polyetherimides, fluororesins, or liquid crystal polymers.
 第2層72を構成する材料は、ポリオレフィン等が好ましい。ポリオレフィンは、例えば、低密度ポリオレフィン、中密度ポリオレフィン、高密度ポリオレフィン、直鎖状低密度ポリオレフィン、または、ポリプロピレン等である。また、これらのオレフィン材料については、密着性を向上するため、酸変性したもの、シラン変性したものなど末端に官能基をつけたものであってもよい。また、第2層72を構成する材料は、ポリオレフィン以外に、エチレン・ビニル・アセテート、アイオノマー、ポリビニルブチラール、シリコーン樹脂、または、ポリウレタン等であってもよい。 The material forming the second layer 72 is preferably polyolefin or the like. Polyolefins are, for example, low-density polyolefins, medium-density polyolefins, high-density polyolefins, linear low-density polyolefins, or polypropylene. Moreover, in order to improve adhesion, these olefin materials may be acid-modified or silane-modified to have functional groups attached to their ends. Further, the material constituting the second layer 72 may be ethylene-vinyl-acetate, ionomer, polyvinyl butyral, silicone resin, polyurethane, or the like, in addition to polyolefin.
 本実施形態の全固体電池10は、外側から高圧下で拘束された環境で好適に使用できる。全固体電池10を外側から拘束する圧力の下限値としては、固体電解質層60と負極活物質層52、53との間、および、固体電解質層60と正極活物質層42、43との間の剥離を好適に抑制する観点から、好ましくは約0.1MPa、より好ましくは約0.5MPa、さらに好ましくは約1MPa、さらに好ましくは約5MPaが挙げられる。また、同様の観点から、全固体電池10を外側から拘束する圧力の上限値としては、好ましくは約100MPa、より好ましくは約30MPa、さらに好ましくは約10MPaが挙げられる。全固体電池10を外側から拘束する圧力の好ましい範囲としては、0.1~100MPa程度、0.1~30MPa程度、0.1~10MPa程度、0.5~100MPa程度、0.5~30MPa程度、0.5~10MPa程度、1~100MPa程度、1~30MPa程度、1~10MPa程度、5~100MPa程度、5~30MPa程度、5~10MPa程度、が挙げられる。 The all-solid-state battery 10 of this embodiment can be suitably used in an environment where it is constrained from the outside under high pressure. As the lower limit of the pressure that constrains the all-solid-state battery 10 from the outside, the pressure between the solid electrolyte layer 60 and the negative electrode active material layers 52 and 53 and between the solid electrolyte layer 60 and the positive electrode active material layers 42 and 43 are From the viewpoint of suitably suppressing peeling, the pressure is preferably about 0.1 MPa, more preferably about 0.5 MPa, even more preferably about 1 MPa, and even more preferably about 5 MPa. From a similar point of view, the upper limit of the pressure that constrains the all-solid-state battery 10 from the outside is preferably about 100 MPa, more preferably about 30 MPa, and even more preferably about 10 MPa. Preferable ranges of the pressure for restraining the all-solid-state battery 10 from the outside are about 0.1 to 100 MPa, about 0.1 to 30 MPa, about 0.1 to 10 MPa, about 0.5 to 100 MPa, and about 0.5 to 30 MPa. , about 0.5 to 10 MPa, about 1 to 100 MPa, about 1 to 30 MPa, about 1 to 10 MPa, about 5 to 100 MPa, about 5 to 30 MPa, and about 5 to 10 MPa.
 全固体電池10を外側から高圧下で拘束する方法としては、金属板等で全固体電池10を挟み、高圧プレスした状態で固定する(例えば、万力などで締め付ける)方法やガス加圧等の方法が挙げられる。 As a method of restraining the all-solid-state battery 10 from the outside under high pressure, the all-solid-state battery 10 may be sandwiched between metal plates or the like and fixed in a state of being pressed under high pressure (for example, tightened with a vise), or gas pressurization may be used. method.
 また、同様の観点から、全固体電池10を外側から拘束する際の温度の下限値としては、好ましくは20℃、より好ましくは40℃が挙げられ、上限値としては、好ましくは200℃、より好ましくは150℃が挙げられる。全固体電池10を外側から拘束する際の温度の好ましい範囲は、20℃~200℃、20℃~150℃、40℃~200℃、または、40℃~150℃が挙げられる。 From the same point of view, the lower limit of the temperature when restraining the all-solid-state battery 10 from the outside is preferably 20° C., more preferably 40° C., and the upper limit is preferably 200° C., more preferably 200° C. 150° C. is preferred. A preferred temperature range for restraining the all-solid-state battery 10 from the outside is 20°C to 200°C, 20°C to 150°C, 40°C to 200°C, or 40°C to 150°C.
 <3.全固体電池の製造方法>
 図4~図8を参照して、全固体電池10の製造方法の一例について、説明する。
 図4に示されるように、全固体電池10の製造方法は、各層製造工程、積層工程、封止工程、および、接合工程を含む。
<3. Method for manufacturing all-solid-state battery>
An example of a method for manufacturing the all-solid-state battery 10 will be described with reference to FIGS. 4 to 8. FIG.
As shown in FIG. 4, the manufacturing method of the all-solid-state battery 10 includes a layer manufacturing process, a stacking process, a sealing process, and a bonding process.
 ステップS11の各層製造工程では、正極層40、負極層50、および、固体電解質層60が製造される。正極層40は、例えば、正極集電体41の両面の一部に正極活物質を含む正極スラリが塗布される。次に、正極スラリが塗布されている部分と、正極スラリが塗布されていない部分を含むように、すなわち、タブ接続部41Aを含むように、正極集電体41が所望の大きさに切断されることによって、正極層40が製造される。 In the layer manufacturing process of step S11, the positive electrode layer 40, the negative electrode layer 50, and the solid electrolyte layer 60 are manufactured. For the positive electrode layer 40 , for example, positive electrode slurry containing a positive electrode active material is applied to part of both surfaces of the positive electrode current collector 41 . Next, the positive electrode current collector 41 is cut into a desired size so as to include a portion coated with the positive electrode slurry and a portion not coated with the positive electrode slurry, that is, to include the tab connecting portion 41A. Thus, the positive electrode layer 40 is manufactured.
 負極層50は、例えば、負極集電体51の両面の一部に負極活物質を含む負極スラリが塗布される。次に、負極スラリが塗布されている部分と、負極スラリが塗布されていない部分を含むように、すなわち、タブ接続部51Aを含むように、負極集電体51が所望の大きさに切断されることによって、負極層50が製造される。なお、各層製造工程において、正極層40よりも先に負極層50を製造してもよい。 For the negative electrode layer 50, for example, negative electrode slurry containing a negative electrode active material is applied to part of both surfaces of the negative electrode current collector 51. Next, the negative electrode current collector 51 is cut into a desired size so as to include a portion coated with the negative electrode slurry and a portion not coated with the negative electrode slurry, that is, to include the tab connecting portion 51A. Thus, the negative electrode layer 50 is manufactured. Note that the negative electrode layer 50 may be manufactured prior to the positive electrode layer 40 in each layer manufacturing process.
 固体電解質層60は、例えば、任意の材料によって構成される基材の片面に固体電解質を含む固体電解質スラリが塗布される。次に、基材のうちの固体電解質が塗布されている部分が所望の大きさとなるように切断されることによって、固体電解質層60が製造される。 For the solid electrolyte layer 60, for example, a solid electrolyte slurry containing a solid electrolyte is applied to one side of a base material made of any material. Next, the solid electrolyte layer 60 is manufactured by cutting the portion of the substrate coated with the solid electrolyte into a desired size.
 次に、負極層50の負極活物質層52、53に固体電解質層60が積層され、基材が剥離されることによって、固体電解質層60が積層された負極層50が製造される。 Next, the solid electrolyte layer 60 is laminated on the negative electrode active material layers 52 and 53 of the negative electrode layer 50, and the base material is peeled off to manufacture the negative electrode layer 50 with the solid electrolyte layer 60 laminated thereon.
 ステップS12の積層工程は、各層製造工程の後に実施される。図5に示されるように、積層工程では、固体電解質層60が積層された負極層50の負極活物質層52に絶縁性フィルム70が載せられる。 The lamination process of step S12 is performed after each layer manufacturing process. As shown in FIG. 5, in the lamination step, the insulating film 70 is placed on the negative electrode active material layer 52 of the negative electrode layer 50 on which the solid electrolyte layer 60 is laminated.
 次に、図6に示されるように、絶縁性フィルム70の孔70Aに正極層40の正極活物質層43が挿入されることによって、負極層50に正極層40が積層される。孔70Aの面積は、正極活物質層42、43の面積よりも若干大きいため、図6の状態では、孔70Aの内郭と正極活物質層42、43の外郭との間には、僅かに隙間が形成される。 Next, as shown in FIG. 6, the positive electrode layer 40 is laminated on the negative electrode layer 50 by inserting the positive electrode active material layer 43 of the positive electrode layer 40 into the hole 70A of the insulating film 70 . Since the area of hole 70A is slightly larger than the area of positive electrode active material layers 42 and 43, in the state of FIG. A gap is formed.
 次に、図7に示されるように、絶縁性フィルム70の孔70Aに正極層40の正極活物質層42が挿入されるように、絶縁性フィルム70が配置される、換言すれば、正極層40の周囲に絶縁性フィルム70が配置される。次に、図8に示されるように、正極層40の正極活物質層42に固体電解質層60が積層された負極層50が積層され、積層体100が完成する。積層工程の後、積層体100にタブ80およびタブフィルム90が取り付けられる。 Next, as shown in FIG. 7, the insulating film 70 is arranged such that the positive electrode active material layer 42 of the positive electrode layer 40 is inserted into the hole 70A of the insulating film 70, in other words, the positive electrode layer An insulating film 70 is placed around 40 . Next, as shown in FIG. 8, the anode layer 50 in which the solid electrolyte layer 60 is laminated on the cathode active material layer 42 of the cathode layer 40 is laminated to complete the laminate 100 . Tab 80 and tab film 90 are attached to laminate 100 after the lamination process.
 ステップS13の封止工程は、積層工程の後に実施される。封止工程では、タブ80およびタブフィルム90が取り付けられた積層体100が、例えば、包装材料21、22(図1参照)によって、密封される。タブ80およびタブフィルム90の一部は、包装材料21、22から露出する。 The sealing process in step S13 is performed after the lamination process. In the sealing process, the laminate 100 with the tab 80 and tab film 90 attached is sealed, for example, by packaging materials 21, 22 (see FIG. 1). Portions of the tab 80 and tab film 90 are exposed from the wrapping material 21,22.
 ステップS14の接合工程は、封止工程の後に実施される。接合工程では、包装材料21、22によって封止された積層体100が温間等方圧プレス機によってホットプレスされる。接合工程が完了することによって、正極層40、負極層50、固体電解質層60、および、絶縁性フィルム70が互いに接合され、全固体電池10が完成する。 The bonding process of step S14 is performed after the sealing process. In the joining step, the laminate 100 sealed with the packaging materials 21 and 22 is hot-pressed by a warm isostatic press. By completing the bonding step, the positive electrode layer 40, the negative electrode layer 50, the solid electrolyte layer 60, and the insulating film 70 are bonded to each other, and the all-solid-state battery 10 is completed.
 <4.全固体電池の作用および効果>
 全固体電池10によれば、段差200において、正極層40と接合するように正極層40の外郭に沿って絶縁性フィルム70が配置されているため、積層体100がホットプレスされ、負極層50の外周端部に圧力が作用した場合に、絶縁性フィルム70がクッションのように機能する。全固体電池10の製造時に負極層50の外周端部が破損しにくいため、短絡が発生しにくい。なお、このような効果は、容器20Aの形態に関わらず、例えば、容器20Aが金属缶であっても、同様に得られる。
<4. Action and effect of all-solid-state battery>
According to the all-solid-state battery 10, since the insulating film 70 is arranged along the outer shell of the positive electrode layer 40 so as to join with the positive electrode layer 40 at the step 200, the laminate 100 is hot-pressed, and the negative electrode layer 50 The insulating film 70 functions like a cushion when pressure is applied to the outer peripheral edge of the . Since the outer peripheral edge of the negative electrode layer 50 is less likely to be damaged during manufacturing of the all-solid-state battery 10, short circuits are less likely to occur. Such an effect can be similarly obtained regardless of the form of the container 20A, for example, even if the container 20A is a metal can.
 <5.変形例>
 上記実施形態は本発明に関する絶縁性フィルム、全固体電池、および、全固体電池の製造方法が取り得る形態の例示であり、その形態を制限することを意図していない。本発明に関する絶縁性フィルム、全固体電池、および、全固体電池の製造方法は、実施形態に例示された形態とは異なる形態を取り得る。その一例は、実施形態の構成の一部を置換、変更、もしくは、省略した形態、または、実施形態に新たな構成を付加した形態である。以下に実施形態の変形例の幾つかの例を示す。
<5. Variation>
The above-described embodiments are examples of possible forms of the insulating film, all-solid battery, and method of manufacturing an all-solid battery according to the present invention, and are not intended to limit the forms. The insulating film, all-solid-state battery, and method for manufacturing an all-solid-state battery according to the present invention may take forms different from those illustrated in the embodiments. One example is a form in which part of the configuration of the embodiment is replaced, changed, or omitted, or a form in which a new configuration is added to the embodiment. Some examples of modifications of the embodiment are shown below.
 <5-1>
 上記実施形態では、絶縁性フィルム70は、第1層71および第2層72の2層構成でであったが、絶縁性フィルム70の具体的な層構成は、任意に変更可能である。例えば、図9に示されるように、絶縁性フィルム70は、第2層72の両面に第1層71が積層されてもよい。また、図10に示されるように、絶縁性フィルム70の第1層71Aおよび第2層72Bは、積層体ユニット30の積層方向(上下方向)と直交する方向に積層されていてもよい。また、図11に示されるように、絶縁性フィルム70は、正極集電体41に近い側から、第1層71、および、第2層72の順に積層されてもよい。さらには、図12に示されるように、絶縁性フィルム70は、第1層71の両面に第2層72が積層されてもよい。
<5-1>
In the above embodiment, the insulating film 70 has a two-layer structure of the first layer 71 and the second layer 72, but the specific layer structure of the insulating film 70 can be changed arbitrarily. For example, as shown in FIG. 9, the insulating film 70 may have the first layer 71 laminated on both sides of the second layer 72 . Moreover, as shown in FIG. 10, the first layer 71A and the second layer 72B of the insulating film 70 may be laminated in a direction orthogonal to the lamination direction (vertical direction) of the laminate unit 30 . Also, as shown in FIG. 11, the insulating film 70 may be laminated in order of a first layer 71 and a second layer 72 from the side closer to the positive electrode current collector 41 . Furthermore, as shown in FIG. 12, the insulating film 70 may have the second layers 72 laminated on both sides of the first layer 71 .
 <5-2>
 上記実施形態では、平面視における正極集電体41の面積は、負極集電体51の面積よりも小さく、平面視における正極活物質層42、43の面積は、負極活物質層52、53の面積よりも小さかったが、これらの大小関係は、逆であってもよい。すなわち、平面視における正極集電体41の面積は、負極集電体51の面積よりも大きく、平面視における正極活物質層42、43の面積は、負極活物質層52、53の面積よりも大きくてもよい。この変形例では、絶縁性フィルム70は、負極層50と接合するように、負極層50の外郭の少なくとも一部に沿って配置されること好ましい。
<5-2>
In the above embodiment, the area of the positive electrode current collector 41 in plan view is smaller than the area of the negative electrode current collector 51, and the areas of the positive electrode active material layers 42 and 43 in plan view are the same as those of the negative electrode active material layers 52 and 53. Although it was smaller than the area, these magnitude relationships may be reversed. That is, the area of the positive electrode current collector 41 in plan view is larger than the area of the negative electrode current collector 51, and the areas of the positive electrode active material layers 42 and 43 in plan view are larger than the areas of the negative electrode active material layers 52 and 53. It can be big. In this modification, the insulating film 70 is preferably arranged along at least a portion of the outer contour of the negative electrode layer 50 so as to join with the negative electrode layer 50 .
 <5-3>
 上記実施形態において、全固体電池10の製造方法は、任意に変更可能である。例えば、積層工程の後、積層体100にタブ80およびタブフィルム90を取り付けずに、一旦、任意の包装材で積層体100を密封し、接合工程を実施してもよい。接合工程の後に、任意の包装材を開封し、積層体100にタブ80およびタブフィルム90を取り付け、積層体100を包装材料21、22(図1参照)によって、密封することによって、全固体電池10を製造してもよい。また、各層製造工程において、正極層40、および、固体電解質層60が積層された負極層50をそれぞれ、予め稠密化してもよく、各層製造工程の後の任意の工程において、正極層40、および、固体電解質層60が積層された負極層50をそれぞれ稠密化してもよい。
<5-3>
In the above embodiment, the method for manufacturing the all-solid-state battery 10 can be arbitrarily changed. For example, after the lamination step, without attaching the tab 80 and the tab film 90 to the laminate 100, the laminate 100 may be once sealed with an arbitrary packaging material, and the joining step may be performed. After the bonding process, an arbitrary packaging material is opened, a tab 80 and a tab film 90 are attached to the laminate 100, and the laminate 100 is sealed with the packaging materials 21 and 22 (see FIG. 1) to form an all-solid-state battery. 10 may be manufactured. Further, in each layer manufacturing process, the positive electrode layer 40 and the negative electrode layer 50 on which the solid electrolyte layer 60 is laminated may be densified in advance. , the negative electrode layer 50 laminated with the solid electrolyte layer 60 may be densified.
 別の例では、上記実施形態において、接合工程は、積層工程よりも後、かつ、封止工程よりも前に実施されてもよい。この変形例では、接合工程において、積層体100を低露点環境下でホットロールプレスすること、または、加熱平板プレスすることによって稠密化することが好ましい。 As another example, in the above embodiment, the bonding process may be performed after the lamination process and before the sealing process. In this variation, the bonding process preferably densifies the laminate 100 by hot roll pressing or hot plate pressing in a low dew point environment.
 <6.実施例>
 本願発明者は、実施例および比較例の全固体電池を製造し、充放電可能か否かを確認する試験を実施した。なお、以下では、説明の便宜上、実施例および比較例の全固体電池を構成する要素のうち、実施形態と同じ要素には、実施形態と同様の符号を付して説明する場合がある。
<6. Example>
The inventors of the present application manufactured all-solid-state batteries of Examples and Comparative Examples, and conducted tests to confirm whether or not they could be charged and discharged. In the following, for convenience of explanation, the same elements as in the embodiment among the elements constituting the all-solid-state batteries of the examples and the comparative examples may be given the same reference numerals as in the embodiment.
 図13は、実施例1~6、および、比較例1~3の全固体電池10の諸元、および、試験結果を示す表である。図13の第1層のMFR(Melt mass-Flow Rate)、第2層のMFRの値は、190℃における値である。比較例1の全固体電池10は、絶縁性フィルム70を備えていない。比較例2の全固体電池10の絶縁性フィルム70は、第1層71のみを有する。第1層71は、接合工程のホットプレスの条件では、溶融しない。このため、図14に示されるように、比較例2の全固体電池10の積層体ユニット30では、絶縁性フィルム70と正極層40とは、接合されていない。比較例3の全固体電池10の絶縁性フィルム70は、第2層72のみを有する。第2層72は、接合工程のホットプレスの条件では、概ね全体が溶融する。このため、図15に示されるように、比較例3の全固体電池10の積層体ユニット30では、絶縁性フィルム70は、第2層72のほぼ全体が流出するため、正極層40の外郭に沿って配置されていない。このため、比較例3の全固体電池10の積層体ユニット30では、正極層40の端部と負極層50の端部とが接触すること、または、段差200に大きな圧力が作用し、正極層40の端部および負極層50の端部の少なくとも一方が破損することによって、短絡が発生している。なお、図15では、負極層50の端部が破損した状態の一例を示している。 FIG. 13 is a table showing the specifications and test results of the all-solid-state batteries 10 of Examples 1-6 and Comparative Examples 1-3. The MFR (melt mass-flow rate) of the first layer and the MFR of the second layer in FIG. 13 are the values at 190°C. The all-solid-state battery 10 of Comparative Example 1 does not include the insulating film 70 . The insulating film 70 of the all-solid-state battery 10 of Comparative Example 2 has only the first layer 71 . The first layer 71 does not melt under the hot press conditions of the bonding process. Therefore, as shown in FIG. 14, in the laminate unit 30 of the all-solid-state battery 10 of Comparative Example 2, the insulating film 70 and the positive electrode layer 40 are not bonded. The insulating film 70 of the all-solid-state battery 10 of Comparative Example 3 has only the second layer 72 . The second layer 72 melts almost entirely under the hot press conditions of the bonding process. Therefore, as shown in FIG. 15 , in the laminate unit 30 of the all-solid-state battery 10 of Comparative Example 3, the second layer 72 of the insulating film 70 flows out substantially entirely, so that the outer shell of the positive electrode layer 40 not placed along Therefore, in the laminate unit 30 of the all-solid-state battery 10 of Comparative Example 3, the end of the positive electrode layer 40 and the end of the negative electrode layer 50 come into contact with each other, or a large pressure acts on the step 200, and the positive electrode layer A short circuit occurs when at least one of the end of the electrode 40 and the end of the negative electrode layer 50 is damaged. Note that FIG. 15 shows an example of a state in which the end portion of the negative electrode layer 50 is damaged.
 本試験では、実施例1~6、および、比較例1~3の全固体電池10を0.2tоn/cm2の圧力で拘束した。この全固体電池10を環境温度25℃、0.1Cレートにおいて、4.35Vの電圧で充電、および、3.0Vの電圧で放電した。本試験では、実施例1~6、および、比較例1~3の全固体電池10をそれぞれ3つ、すなわち、合計27個の全固体電池10を作成し、27個の全固体電池10について、それぞれ充電および放電を3回実施した。実施例1~6、および、比較例1~3の全固体電池10のそれぞれについて、3個全てで充電を3回実施でき、かつ、放電を3回実施できた場合を「〇」と評価した。実施例1~6、および、比較例1~3の全固体電池10のそれぞれについて、少なくとも1回、充電および放電を実施できなかった場合を「×」と評価した。 In this test, the all-solid-state batteries 10 of Examples 1 to 6 and Comparative Examples 1 to 3 were restrained with a pressure of 0.2 tons/cm 2 . This all-solid-state battery 10 was charged at a voltage of 4.35 V and discharged at a voltage of 3.0 V at an ambient temperature of 25° C. and a 0.1 C rate. In this test, three each of the all-solid-state batteries 10 of Examples 1 to 6 and Comparative Examples 1-3, that is, a total of 27 all-solid-state batteries 10 were created, and for the 27 all-solid-state batteries 10, Each charge and discharge was performed three times. For each of the all-solid-state batteries 10 of Examples 1 to 6 and Comparative Examples 1 to 3, a case where all three batteries could be charged three times and discharged three times was evaluated as "◯". . For each of the all-solid-state batteries 10 of Examples 1 to 6 and Comparative Examples 1 to 3, a case where charging and discharging could not be performed at least once was evaluated as "x".
 図13に示されるように、実施形態および変形例の絶縁性フィルム70を備える実施例1~6は、3個全てで充電および放電をそれぞれ3回実施できることが確認された。一方、比較例1の全固体電池10は、3個全てで充電および放電を1度も実施できなかった。比較例1の全固体電池10は、絶縁性フィルム70を備えないため、接合工程でホットプレスする際に、負極層50の外周端部が破損したためであると考えられる。また、比較例2、3の全固体電池10も比較例1の全固体電池10と同様に、3個全てで充電および放電を1度も実施できなかった。これは、比較例2の全固体電池10においては、孔70Aの内郭と正極活物質層42、43の外郭との間に正極活物質層42、43、負極活物質層52、53、正極集電体41、および、負極集電体51が入り込み、正極活物質層42、43および負極活物質層52、53、ならびに、固体電解質層60が破損して、短絡が発生したためであると考えられる。比較例3の全固体電池10においては、接合工程でホットプレスした際に、第2層72のほぼ全体が流出し、絶縁性フィルム70が消失したためであると考えられる。 As shown in FIG. 13, it was confirmed that all three of Examples 1 to 6, which include the insulating films 70 of the embodiment and modification, can be charged and discharged three times each. On the other hand, all three solid-state batteries 10 of Comparative Example 1 could not be charged and discharged even once. This is presumably because the all-solid-state battery 10 of Comparative Example 1 did not include the insulating film 70, and thus the outer peripheral edge of the negative electrode layer 50 was damaged during hot pressing in the bonding step. In addition, as with the all-solid-state battery 10 of Comparative Example 1, all three of the all-solid-state batteries 10 of Comparative Examples 2 and 3 could not be charged or discharged even once. This is because, in the all-solid-state battery 10 of Comparative Example 2, the positive electrode active material layers 42 and 43, the negative electrode active material layers 52 and 53, the positive electrode active material layers 52 and 53, and the positive electrode active material layers 52 and 53 are placed between the inner shell of the hole 70A and the outer shell of the positive electrode active material layers 42 and 43. It is believed that the current collector 41 and the negative electrode current collector 51 entered into the positive electrode active material layers 42 and 43, the negative electrode active material layers 52 and 53, and the solid electrolyte layer 60, thereby causing a short circuit. be done. This is probably because, in the all-solid-state battery 10 of Comparative Example 3, almost the entire second layer 72 flowed out and the insulating film 70 disappeared when hot-pressed in the bonding step.
 10 :全固体電池
 21 :包装材料
 22 :包装材料
 40 :正極層
 50 :負極層
 60 :固体電解質層
 70 :絶縁性フィルム
 71 :第1層
 72 :第2層
 100:積層体
10: All-solid battery 21: Packaging material 22: Packaging material 40: Positive electrode layer 50: Negative electrode layer 60: Solid electrolyte layer 70: Insulating film 71: First layer 72: Second layer 100: Laminate

Claims (14)

  1.  全固体電池に用いられる絶縁性フィルムであって、
     前記全固体電池は、正極層、負極層、および、前記正極層と前記負極層との間に配置される固体電解質層を含み、
     前記絶縁性フィルムは、前記正極層および前記負極層の少なくとも一方と接合されるように、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置され、
     第1層、および、前記第1層に積層される第2層を含み、
     前記第1層を構成する材料と、前記第2層を構成する材料とは、融点およびメルトマスフローレートの少なくとも一方が異なる
     絶縁性フィルム。
    An insulating film used in an all-solid-state battery,
    The all-solid-state battery includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer,
    the insulating film is arranged along an outline of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer;
    comprising a first layer and a second layer laminated to the first layer;
    At least one of a melting point and a melt mass flow rate is different between a material forming the first layer and a material forming the second layer. An insulating film.
  2.  前記第1層を構成する材料は、前記第2層を構成する材料よりも融点が高く、
     前記第2層を構成する材料の融点は、170℃以下である
     請求項1に記載の絶縁性フィルム。
    The material forming the first layer has a higher melting point than the material forming the second layer,
    The insulating film according to claim 1, wherein the melting point of the material forming the second layer is 170°C or lower.
  3.  前記第1層を構成する材料は、前記第2層を構成する材料よりも融点が高く、
     前記第1層を構成する材料の融点は、250℃以上である
     請求項1または2に記載の絶縁性フィルム。
    The material forming the first layer has a higher melting point than the material forming the second layer,
    The insulating film according to claim 1 or 2, wherein the material forming the first layer has a melting point of 250°C or higher.
  4.  前記第1層を構成する材料は、前記第2層を構成する材料よりも融点が高く、
     前記第1層を構成する材料の融点と前記第2層を構成する材料の融点との差は、50℃以上である
     請求項1または2に記載の絶縁性フィルム。
    The material forming the first layer has a higher melting point than the material forming the second layer,
    The insulating film according to claim 1 or 2, wherein the difference between the melting point of the material forming the first layer and the melting point of the material forming the second layer is 50°C or more.
  5.  前記第1層を構成する材料は、前記第2層を構成する材料よりも190℃におけるメルトマスフローレートが低く、
     前記第2層を構成する材料のメルトマスフローレートは、190℃において、0.8g/10min以上である
     請求項1または2に記載の絶縁性フィルム。
    The material forming the first layer has a lower melt mass flow rate at 190° C. than the material forming the second layer,
    The insulating film according to claim 1 or 2, wherein the material constituting the second layer has a melt mass flow rate of 0.8 g/10 min or more at 190°C.
  6.  前記第1層を構成する材料は、前記第2層を構成する材料よりも190℃におけるメルトマスフローレートが低く、
     前記第1層を構成する材料のメルトマスフローレートは、190℃において、0.1g/10min以下である
     請求項1または2に記載の絶縁性フィルム。
    The material forming the first layer has a lower melt mass flow rate at 190° C. than the material forming the second layer,
    The insulating film according to claim 1 or 2, wherein the material constituting the first layer has a melt mass flow rate of 0.1 g/10 min or less at 190°C.
  7.  前記第1層を構成する材料は、前記第2層を構成する材料よりも190℃におけるメルトマスフローレートが低く、
     前記第2層を構成する材料のメルトマスフローレートと、前記第1層を構成する材料のメルトマスフローレートとの差は、190℃において、0.8g/10min以上である
     請求項1または2に記載の絶縁性フィルム。
    The material forming the first layer has a lower melt mass flow rate at 190° C. than the material forming the second layer,
    The difference between the melt mass flow rate of the material forming the second layer and the melt mass flow rate of the material forming the first layer is 0.8 g/10 min or more at 190°C. insulating film.
  8.  全固体電池に用いられる絶縁性フィルムであって、
     前記全固体電池は、正極層、負極層、および、前記正極層と前記負極層との間に配置される固体電解質層を含み、
     前記絶縁性フィルムは、前記正極層および前記負極層の少なくとも一方と接合されるように、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置され、
     第1層、および、前記第1層に積層される第2層を含み、
     前記第1層を構成する材料は、ポリエステルまたはエンジニアリングプラスチックを含み、
     前記第2層を構成する材料は、ポリオレフィンを含む
     絶縁性フィルム。
    An insulating film used in an all-solid-state battery,
    The all-solid-state battery includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer,
    the insulating film is arranged along an outline of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer;
    comprising a first layer and a second layer laminated to the first layer;
    The material constituting the first layer includes polyester or engineering plastic,
    A material constituting the second layer contains polyolefin. An insulating film.
  9.  請求項1または2に記載の絶縁性フィルムを備える
     全固体電池。
    An all-solid battery comprising the insulating film according to claim 1 or 2.
  10.  請求項1または2に記載の絶縁性フィルムを備える全固体電池の製造方法であって、
     前記全固体電池は、
     正極層と、
     負極層と、
     前記正極層と前記負極層との間に配置される固体電解質層と、
     前記正極層および前記負極層の少なくとも一方と接合するように、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置される前記絶縁性フィルムと、を含み、
     前記正極層と前記負極層との間に前記固体電解質層が配置されるように、前記正極層、前記負極層、および、前記固体電解質層を積層することによって積層体を製造する積層工程と、
     前記積層工程よりも後に実施され、前記積層体をホットプレスすることによって、前記積層体を接合する接合工程と、
     前記接合工程よりも前または後に実施され、前記積層体を包装材料で封止する封止工程と、を含み、
     前記積層工程では、前記正極層および前記負極層の少なくとも一方の周囲に前記絶縁性フィルムが配置される
     全固体電池の製造方法。
    A method for manufacturing an all-solid-state battery comprising the insulating film according to claim 1 or 2,
    The all-solid-state battery is
    a positive electrode layer;
    a negative electrode layer;
    a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer;
    the insulating film arranged along the contour of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer;
    a stacking step of manufacturing a laminate by stacking the positive electrode layer, the negative electrode layer, and the solid electrolyte layer such that the solid electrolyte layer is arranged between the positive electrode layer and the negative electrode layer;
    A joining step of joining the laminate by hot-pressing the laminate, which is performed after the lamination step;
    A sealing step that is performed before or after the bonding step and seals the laminate with a packaging material,
    In the lamination step, the insulating film is arranged around at least one of the positive electrode layer and the negative electrode layer.
  11.  正極層と、
     負極層と、
     前記正極層と前記負極層との間に配置される固体電解質層と、
     前記正極層および前記負極層の少なくとも一方と接合するように、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置される絶縁性フィルムと、を含む全固体電池の製造方法であって、
     前記正極層と前記負極層との間に前記固体電解質層が配置されるように、前記正極層、前記負極層、および、前記固体電解質層を積層することによって積層体を製造する積層工程と、
     前記積層工程よりも後に実施され、前記積層体をホットプレスすることによって、前記積層体を接合する接合工程と、
     前記接合工程よりも前または後に実施され、前記積層体を包装材料で封止する封止工程と、を含み、
     前記積層工程では、前記正極層および前記負極層の少なくとも一方の周囲に前記絶縁性フィルムが配置され、
     前記絶縁性フィルムは、第1層、および、前記第1層に積層される第2層を含み、
     前記第1層を構成する材料と、前記第2層を構成する材料とは、融点およびメルトマスフローレートの少なくとも一方が異なる
     全固体電池の製造方法。
    a positive electrode layer;
    a negative electrode layer;
    a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer;
    and an insulating film arranged along an outer shell of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer, wherein ,
    a stacking step of manufacturing a laminate by stacking the positive electrode layer, the negative electrode layer, and the solid electrolyte layer such that the solid electrolyte layer is arranged between the positive electrode layer and the negative electrode layer;
    A joining step of joining the laminate by hot-pressing the laminate, which is performed after the lamination step;
    A sealing step that is performed before or after the bonding step and seals the laminate with a packaging material,
    In the lamination step, the insulating film is arranged around at least one of the positive electrode layer and the negative electrode layer,
    The insulating film includes a first layer and a second layer laminated on the first layer,
    A method for manufacturing an all-solid-state battery, wherein at least one of a melting point and a melt mass flow rate is different between a material forming the first layer and a material forming the second layer.
  12.  正極層と、
     負極層と、
     前記正極層と前記負極層との間に配置される固体電解質層と、
     前記正極層および前記負極層の少なくとも一方と接合するように、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置される絶縁性フィルムと、を含む
     全固体電池。
    a positive electrode layer;
    a negative electrode layer;
    a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer;
    an insulating film arranged along an outer shell of at least one of the positive electrode layer and the negative electrode layer so as to be bonded to at least one of the positive electrode layer and the negative electrode layer.
  13.  前記絶縁性フィルムは、第1層、および、前記第1層に積層される第2層を含み、
     前記第2層は、前記正極層および前記負極層の少なくとも一方の外郭に沿って配置され、
     前記第1層は、前記固体電解質層と、前記負極層または前記正極層との間の少なくとも一部に配置される
     請求項12に記載の全固体電池。
    The insulating film includes a first layer and a second layer laminated on the first layer,
    the second layer is arranged along the outline of at least one of the positive electrode layer and the negative electrode layer;
    The all-solid battery according to claim 12, wherein the first layer is arranged at least partly between the solid electrolyte layer and the negative electrode layer or the positive electrode layer.
  14.  前記絶縁性フィルムは、平面視において、一部が前記固体電解質層と重畳するように配置される
     請求項12または13に記載の全固体電池。
    The all-solid-state battery according to claim 12 or 13, wherein the insulating film is arranged so as to partially overlap the solid electrolyte layer in plan view.
PCT/JP2022/041247 2021-11-04 2022-11-04 Insulating film, all-solid-state battery, and method for manufacturing all-solid-state battery WO2023080216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-180588 2021-11-04
JP2021180588 2021-11-04

Publications (1)

Publication Number Publication Date
WO2023080216A1 true WO2023080216A1 (en) 2023-05-11

Family

ID=86241165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041247 WO2023080216A1 (en) 2021-11-04 2022-11-04 Insulating film, all-solid-state battery, and method for manufacturing all-solid-state battery

Country Status (1)

Country Link
WO (1) WO2023080216A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025649A1 (en) * 2016-08-02 2018-02-08 日本碍子株式会社 All-solid-state lithium cell
US20190131603A1 (en) * 2017-10-31 2019-05-02 Hyundai Motor Company All-solid battery and method for manufacturing the same
WO2020195381A1 (en) * 2019-03-27 2020-10-01 株式会社村田製作所 Solid-state battery
JP2022104116A (en) * 2020-12-28 2022-07-08 トヨタ自動車株式会社 All-solid battery
JP2022183500A (en) * 2021-05-31 2022-12-13 本田技研工業株式会社 Solid-state battery and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025649A1 (en) * 2016-08-02 2018-02-08 日本碍子株式会社 All-solid-state lithium cell
US20190131603A1 (en) * 2017-10-31 2019-05-02 Hyundai Motor Company All-solid battery and method for manufacturing the same
WO2020195381A1 (en) * 2019-03-27 2020-10-01 株式会社村田製作所 Solid-state battery
JP2022104116A (en) * 2020-12-28 2022-07-08 トヨタ自動車株式会社 All-solid battery
JP2022183500A (en) * 2021-05-31 2022-12-13 本田技研工業株式会社 Solid-state battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6563589B2 (en) Secondary battery pouch exterior
JP5422842B2 (en) Electrochemical devices
KR101045858B1 (en) Electrode lead containing high insulation lead film and secondary battery using the same
JP4828458B2 (en) Secondary battery with improved sealing safety
JP5169820B2 (en) Film exterior electrical device
JP4491843B2 (en) Lithium ion secondary battery and method of sealing a lithium ion secondary battery container
JP5457040B2 (en) Electrochemical device and manufacturing method thereof
JP5418477B2 (en) Battery manufacturing method
JP6006104B2 (en) Tab lead manufacturing method
WO2011145608A1 (en) Bipolar secondary battery
US20080070111A1 (en) Sheet-type secondary battery and manufacturing method therefor
TWI389368B (en) Laminated secondary battery
KR101082960B1 (en) Secondary Battery with Excellent Durability
KR20120069319A (en) Secondary battery with improved moisture barrier
KR101487092B1 (en) Pouch for secondary battery and secondary battery using the same
JP2002151024A (en) Flat type battery
WO2018198461A1 (en) Lithium ion secondary battery
WO2023080216A1 (en) Insulating film, all-solid-state battery, and method for manufacturing all-solid-state battery
KR102490216B1 (en) Pouch-Type Secondary Battery Having Reinforcing Member
KR102328646B1 (en) Pouch case and secondary battery including the same
KR20180085456A (en) Battery Case Comprising Clad-typed Metal Layer and Battery Cell Comprising the Same
JP4354152B2 (en) Battery and manufacturing method thereof
JPH10106531A (en) Packaged flat battery
JP2018098167A (en) Lithium ion secondary battery, battery structure of lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2018092886A (en) Lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023558083

Country of ref document: JP