WO2023080190A1 - 積層造形体の寸法品質評価方法及びその評価システム - Google Patents

積層造形体の寸法品質評価方法及びその評価システム Download PDF

Info

Publication number
WO2023080190A1
WO2023080190A1 PCT/JP2022/041118 JP2022041118W WO2023080190A1 WO 2023080190 A1 WO2023080190 A1 WO 2023080190A1 JP 2022041118 W JP2022041118 W JP 2022041118W WO 2023080190 A1 WO2023080190 A1 WO 2023080190A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
laminate
dimensional quality
deformation
dimensional
Prior art date
Application number
PCT/JP2022/041118
Other languages
English (en)
French (fr)
Inventor
ミンソク 朴
スティーブン ジェームズ オズマ
孝介 桑原
ジュエ 王
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Priority to JP2023517794A priority Critical patent/JP7347715B1/ja
Publication of WO2023080190A1 publication Critical patent/WO2023080190A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

積層造形体の寸法品質を容易且つ精度良く評価することが可能な評価方法及び評価システムを提供することを目的とする。積層造形体の寸法品質評価方法は、積層造形体2の寸法品質を評価するためのサンプル1を、積層造形体2が積層造形されるベースプレート3上において積層造形体2と同じ積層造形バッチに積層造形する工程S1と、積層造形されたサンプル1の基準部11及び変形部13の寸法差を取得する工程と、積層造形されたサンプル1をベースプレート3から切り離す工程S2と、ベースプレート3から切り離す前後でのサンプル1の変形量を測定する工程S3と、測定されたサンプル1の変形量に基づいて積層造形体2の寸法品質を評価する工程S4と、を含む。サンプル1の変形量は、切り離す前のサンプル1における基準部11及び変形部13の寸法差と、切り離されたサンプル1における基準部11及び変形部13の寸法差との差分値である。

Description

積層造形体の寸法品質評価方法及びその評価システム
 本発明は、積層造形体の寸法品質の評価方法、及び、その評価システムに関する。
 積層造形(Additive Manufacturing;付加造形、付加製造又は3Dプリンティングとも称する)は、樹脂や金属等の造形材料を、小体積単位で複数回、積層及び結合させることで3次元物体(造形物)を製造する加工技術である。積層造形は、内部に空間を有する等の複雑な形状を持つ造形物をも、略一定の時間及び費用にて製造できる特徴を有する。この特徴から、従来の加工技術では製造時間と費用の制約により実現困難であった、複雑な構造を有する製品の製造が積層造形を利用して進められている。積層造形された製品(以下「積層造形体」とも称する)が有する1つの共通点は、従来製品より高い性能を実現するために3次元的に入り組んだ複雑な構造を有する点である。
 寸法品質は、工業製品の重要な品質の1つであるが、複雑な構造で高い性能を実現する積層造形体においては特に重要な品質である。積層造形体の寸法品質を評価する方法として、複数の先行技術が知られている。
 特許文献1は、予め複数のサンプルの形状と、該複数のサンプルを造形して測定した形状誤差とを準備し、造形中に造形物の形状を検出できる造形装置を用意し、該造形装置で製品を造形しながら製品の形状を検出し、製品の設計形状と検出された製品の形状とを前記サンプル形状及びその形状誤差と比較し、製品の形状誤差を評価する技術を開示している。特許文献1に開示の技術によれば、製品の形状誤差を評価して造形装置の次の動作を変更することによって、より精度の高い積層造形を行うことができる。
 特許文献2は、積層造形中及び造形後に造形物の有限要素熱-機械モデルで有限要素解析を行うことにより、造形物における形状歪み及び残留応力成長を予測する技術を開示している。特許文献2に開示の技術によれば、造形前又は造形中に造形物に対する変更を導入することによって、予測される歪みを補償することができる。
 特許文献3は、造形中の造形物の状態を監視する監視部を備えた造形装置を用意し、該造形装置で製品と品質管理用サンプルを共に造形しながら、品質管理用サンプルの状態を、前記監視部を用いて監視する技術を開示している。監視部が監視する状態としては、温度、形状、表面粗さ又は色調が挙げられている。特許文献3に開示の技術によれば、品質管理用サンプルの状態を造形中に監視して、その監視結果に基づいて造形装置の次の動作を変更することによって、高品質の製品を造形することができる。
特開2018-103635号公報 特開2020-114677号公報 特開2021-94775号公報
 特許文献1に開示の技術は、予め複数のサンプルを造形するので、時間が掛かり、生産性が低下するという問題がある。更に、特許文献1に開示の技術は、造形中に造形物の形状を精度良く検出するための複雑な構成の装置と、この装置の精度を維持管理する手間とが必要となるので、容易に実施することはできないという問題がある。
 特許文献2に開示の技術は、有限要素熱-機械モデルに含まれない要因が寸法品質に与える影響を考慮して、寸法品質を評価することができないという問題がある。有限要素熱-機械モデルに含まれない要因としては、例えば、造形装置の部品の仕様や配置、造形時の造形物周りの雰囲気の成分やその流れ、造形材料の詳細形状等が挙げられる。これらの要因を有限要素熱-機械モデルに含めると、有限要素解析の時間が長くなり生産性が低下するという問題がある。一方、これらの要因を有限要素熱-機械モデルに含めないと、これらの要因の影響による寸法品質の変化を評価することができないという問題がある。
 特許文献3に開示の技術は、造形中に品質管理用サンプルの状態を精度良く監視するための複雑な構成の装置と、この装置の精度を維持管理する手間とが必要となるので、容易に実施することはできないという問題がある。
 このようなことから、複雑な構成の装置を用いることなく、有限要素熱-機械モデルに含めることが難しい要因のような様々な要因が積層造形体の寸法品質に与える影響を考慮して、積層造形体の寸法品質を容易且つ精度良く評価すること可能な技術を実現することが望まれている。
 本発明は、上記に鑑みてなされたものであり、積層造形体の寸法品質を容易且つ精度良く評価することが可能な評価方法及び評価システムを提供することを目的とする。
 上記課題を解決するために、本発明の積層造形体の寸法品質評価方法は、ベースプレート上に積層造形された積層造形体の寸法品質を評価する方法であって、前記積層造形体の前記寸法品質を評価するためのサンプルを、前記積層造形体が積層造形される前記ベースプレート上において前記積層造形体と同じ積層造形バッチに積層造形する工程と、積層造形された前記サンプルの基準部及び変形部の寸法差を取得する工程と、積層造形された前記サンプルを前記ベースプレートから切り離す工程と、切り離された前記サンプルの寸法を測定することで、前記ベースプレートから切り離す前後での前記サンプルの変形量を測定する工程と、測定された前記サンプルの前記変形量に基づいて前記積層造形体の前記寸法品質を評価する工程と、を含み、前記サンプルの前記変形量は、切り離される前の前記サンプルにおける前記基準部及び前記変形部の寸法差と、切り離された前記サンプルにおける前記基準部及び前記変形部の寸法差との差分値であることを特徴とする。
 本発明によれば、積層造形体の寸法品質を容易且つ精度良く評価することが可能な評価方法及び評価システムを提供することができる。
 上記以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施形態1の寸法品質評価方法の全体工程を示す図。 図2(a)は、積層造形終了後のサンプル及び製品の様子を示す側面図。図2(b)は、図2(a)に示す様子の上面図。 図3(a)は、図2(a)及び図2(b)に示すサンプルの形状を示す斜視図。図3(b)は、図3(a)に示すサンプルの上面図。図3(c)は、図3(a)に示すサンプルの側面図。図3(d)は、図3(c)とは異なる方向から視たサンプルの側面図。 図4(a)は、測定ステージに対して、櫛歯試験片を切り離す前のベースプレートを載せた様子を示す側面図。図4(b)は、測定ステージに対して、ベースプレートから切り離された櫛歯試験片を載せた様子を示す側面図。図4(c)は、測定ステージに対して、図4(b)とは異なる形状の櫛歯試験片を載せた様子を示す側面図。 測定ステージに対して、ベースプレートから切り離されたサンプルを載せた様子を示す側面図。 基準部の変形例を説明する図。 図7(a)は、サンプルの変形例を説明する図。図7(b)は、図7(a)とは異なるサンプルの変形例を説明する図。図7(c)は、図7(a)及び図7(b)とは異なるサンプルの変形例を説明する図。 図8(a)は、変形部のサポート部の変形例を説明する図。図8(b)は、図8(a)とは異なるサポート部の変形例を説明する図。図8(c)は、図8(a)及び図8(b)とは異なるサポート部の変形例を説明する図。 サンプルの変形量を測定する測定装置を示す図。 実施形態1の寸法品質判定表を示す図。 実施形態1の寸法品質評価システムの構成を示す図。 図11に示す端末装置に表示される画面の例を示す図。 実施形態2の寸法品質評価方法の全体工程を示す図。 相関モデルの例を示す図。 図14に示す相関モデルを構築する手法を説明する図。 実施形態2の寸法品質判定表を示す図。 図16とは異なる寸法品質判定表を示す図。 実施形態2の端末装置に表示される画面の例を示す図。
 以下、本発明の実施形態について図面を用いて説明する。なお、各実施形態において同一の符号を付された構成については、特に言及しない限り、各実施形態において同様の機能を有し、その説明を省略する。
[実施形態1]
 図1~図12を用いて、実施形態1に係る積層造形体の寸法品質評価方法及びその評価システムについて説明する。
 図1は、実施形態1の寸法品質評価方法の全体工程を示す図である。
 本実施形態の寸法品質評価方法は、ベースプレート3上に積層造形された積層造形体2(以下「製品2」とも称する)の寸法品質を評価する方法である。この寸法品質評価方法は、製品2の寸法品質を評価するための変形測定用サンプル1(以下「サンプル1」とも称する)と製品2とを積層造形する工程S1と、積層造形されたサンプル1をベースプレート3から切り離す工程S2と、切り離されたサンプル1の寸法を測定することで、ベースプレート3から切り離す前後でのサンプル1の変形量を測定する工程S3と、測定されたサンプル1の変形量に基づいて積層造形バッチ(batch)の寸法品質を評価する工程S4と、を含む。
 すなわち、工程S1では、サンプル1を、製品2が積層造形されるベースプレート3上において製品2と同時に積層造形する。工程S4における積層造形バッチとは、同じ積層造形バッチに造形された一群の造形物を意味し、1又は複数の製品2及びサンプル1を含む。すなわち、工程S4は、測定されたサンプル1の変形量に基づいて積層造形バッチの寸法品質を評価することによって、製品2の寸法品質を評価する。
<工程S1及びサンプル1について>
 図2(a)は、積層造形終了後のサンプル1及び製品2の様子を示す側面図である。図2(b)は、図2(a)に示す様子の上面図である。
 製品2が積層造形されたベースプレート3には、製品2と接触しない位置に配置されたサンプル1も製品2と同時に造形されている。更には、サンプル1の配置は、製品2をベースプレート3から切り離すことなく、サンプル1だけをベースプレート3から切り離すことが可能な配置が好ましい。例えば、図2(b)に示すように、サンプル1は、ベースプレートの四隅に配置されることで、製品2をベースプレート3から切り離すことなく、サンプル1だけをベースプレート3から切り離すことが可能である。但し、図2(b)は一例であり、製品2と同時に積層造形されるサンプル1の数は4個に限られない。
 サンプル1及び製品2の積層造形は、初めに、ベースプレート3上に溶融した造形材料を凝固させ、以後、凝固した造形材料上に更に溶融した造形材料を凝固させることを繰り返す造形装置を用いて行われる。このような造形装置には、例えば、粉末床(Powder-in-Bed)方式の積層造形装置があり、当業者には周知の技術であるので、その説明を省略する。ベースプレート3は、xy平面(例えば水平面)と略平行に配置される。積層造形の進行と共にサンプル1及び製品2は、ベースプレート3の上面から出発して+z軸方向(上方向)に沿って一層一層積み上がっていく。
 本実施形態では、粉末床方式の積層造形装置によって積層造形された製品2の寸法品質を評価する寸法品質評価方法及びその評価システムを例に挙げて説明するが、本発明は、粉末床方式以外の積層造形装置によって積層造形された製品(積層造形体)についても広く適用可能である。
 図3(a)は、図2(a)及び図2(b)に示すサンプル1の形状を示す斜視図である。図3(b)は、図3(a)に示すサンプル1の上面図である。図3(c)は、図3(a)に示すサンプル1の側面図である。図3(d)は、図3(c)とは異なる方向から視たサンプル1の側面図である。
 サンプル1は、サンプル1の寸法を測定する基準となる基準部11と、基準部11に連結された変形部13と、基準部11と変形部13とを連結する連結部12とを有する。
 基準部11は、表面が平坦な(すなわち表面に起伏や凹凸が無い)ブロック体を成す。図3(a)に示すように、基準部11は、例えば直方体のような六面体を成す。基準部11の上面11aは、ベースプレート3と略平行に積層造形される。基準部11の側面11cは、ベースプレート3と略垂直に積層造形される。基準部11の底面11bは、ベースプレート3上に接して積層造形される。
 変形部13は、基準部11の側方に配置される。変形部13の上面13aは、基準部11の上面11aと略同一の高さに積層造形される。具体的には、変形部13の上面13aは、ベースプレート3(又は底面13b)からの高さが、基準部11の上面11aのベースプレート3(又は底面11b)からの高さと略同一となるように積層造形される。変形部13の上面13aは、基準部11の上面11aよりも小面積に積層造形される。
 図3(a)~図3(d)に示す変形部13は、梁部131と、柱部132と、サポート部133とを有する。サンプル1及び製品2の積層造形終了後(工程S1の後であって工程S2の前)では、柱部132は、ベースプレート3から上方に延びる。梁部131は、柱部132の先端部からベースプレート3に沿って突出し、ベースプレート3と略平行に延びる。サポート部133は、梁部131からベースプレート3まで下方に延びて、梁部131を支持する。サポート部133は、梁部131とベースプレート3とを連通する空隙134を有する。柱部132の側面132aは、連結部12によって基準部11の側面11cに連結されている。
 図3(a)~図3(d)に示す変形部13は、従来から積層造形の分野で知られている櫛歯試験片(cantilever sample)Cと比較するため、櫛歯試験片Cに類似した形状のサポート部133を有する。サポート部133は、上下方向(z軸方向)に延びる複数の板状部材135がベースプレート3に沿った方向において互いに離隔して配置される構造を有する。これら複数の板状部材135の間には空隙134が形成されている。すなわち、図3(a)~図3(d)に示す変形部13だけを視ると、櫛歯試験片Cとして知られる形状と類似している。しかしながら、変形部13を連結部12により基準部11と連結して一体化させたサンプル1の形状は知られていない。
 基準部11と変形部13とを連結させたサンプル1を用いることで、本実施形態の寸法品質評価方法は、サンプル1と製品2とを同一のベースプレート3上において同時に積層造形しても、サンプル1の変形量を容易且つ精度良く測定することができる。その原理を説明するため、下記では、初めに積層造形における造形物の変形を説明した後、従来の櫛歯試験片Cと比較して、サンプル1を用いることの効果を説明する。
 xy平面に略平行なベースプレート3上において造形材料の溶融・凝固を繰り返して+z軸方向(上方)に沿って一層一層積み上げる積層造形において、製品2やサンプル1等の造形物には、加熱と冷却の繰り返しによる熱応力が発生することが知られている。具体的には、積層によって溶融した造形材料が加わった造形物の最上面が高温になり、熱伝導によって高温の最上面から相対的に低温のベースプレート3へ熱エネルギーが移動することで最上面が冷却される。この加熱と冷却による造形物の熱膨張と収縮が積層の度に繰り返されることで、熱応力が発生する。熱応力の大きさは造形物内での温度履歴が不均一なほど大きく、熱応力の方向は造形物の上部を収縮させて下部を膨張させる方向である。上部が収縮し下部が膨張すると、結果的に上に反り上がることになるので、造形物は基本的に反り上がる変形を起こす。但し、ベースプレート3から切り離される前の造形物は、ベースプレート3の上面との結合によって当該変形が力学的に拘束されるので、その変形量は微小な範囲に止まり、熱応力が残留応力として造形物内に残留する。しかし、造形物をベースプレート3から切り離すと、残留応力によって造形物は比較的大きく反り上がるように変形する。
 本実施形態において、サンプル1の変形量とは、積層造形されたサンプル1をベースプレート3から切り離すことによって当該サンプル1が反り上がるように変形する際のサンプル1の変形量である。すなわち、サンプル1の変形量は、積層造形されたサンプル1をベースプレート3から切り離す前後でのサンプル1の変形量である。製品2の変形量とは、積層造形された製品2をベースプレート3から切り離すことによって当該製品2が反り上がるように変形する際の製品2の変形量である。すなわち、製品2の変形量は、積層造形された製品2をベースプレート3から切り離す前後での製品2の変形量である。サンプル1又は製品2の変形量は、サンプル1又は製品2の設計形状からの寸法変化量と解釈することも可能である。
 次に、図4に示す櫛歯試験片Cは、上記の積層造形における熱変形の特性を利用して、その変形量を測定するための試験片である。xy平面と略平行に延びた梁部C1は、z軸に沿って延びた柱部C2及び櫛歯状のサポート部C3によってベースプレート3に接続されている。サポート部C3は空隙C4を有するので、梁部C1とベースプレート3との間の熱伝達率は、梁部C1の内部の位置によって変化する。これにより、梁部C1の内部では温度履歴(ヒステリシス)の不均一性が高くなり、梁部C1に発生する熱応力は大きくなる。積層造形終了後、サポート部C3をベースプレート3から切断すると、ベースプレート3との力学的拘束がなくなった梁部C1は、大きく反り上がるように変形する。このようなことから、従来の櫛歯試験片Cでは、この変形量を精度良く測定するために、柱部C2をベースプレート3から切り離すことはできなかった。その理由について図4(a)~図4(c)を用いて説明する。
 図4(a)は、測定ステージ41に対して、櫛歯試験片Cを切り離す前のベースプレート3を載せた様子を示す側面図である。図4(b)は、測定ステージ41に対して、ベースプレート3から切り離された櫛歯試験片Cを載せた様子を示す側面図である。図4(c)は、測定ステージ41に対して、図4(b)とは異なる形状の櫛歯試験片Cを載せた様子を示す側面図である。
 図4(a)では、変形量を測定するための測定ステージ41上には、櫛歯試験片Cが接続されたベースプレート3が載せられている。平坦で厚みの均一なベースプレート3を用いることで、櫛歯試験片Cの上部にある梁部C1の反り上がる変形量を精度良く測定することが可能である。ベースプレート3も積層造形によって変形し得るが、ベースプレート3の変形量は、櫛歯試験片Cの変形量と比較して十分小さいので、実質的に無視することが可能である。
 図4(b)では、測定ステージ41上には、ベースプレート3から切り離された櫛歯試験片Cが載せされている。反り上げ変形によって柱部C2の底面とサポート部C3の底面とは、同一平面上に存在できなくなる。図4(b)のように、柱部C2の底面の一部と、サポート部C3の底面の一部だけが、測定ステージ41に接する。これにより、櫛歯試験片Cは、zx平面内で回転し、櫛歯試験片Cの上部にある梁部C1の反り上がる変形量を精度良く測定することは困難である。
 図4(c)では、測定ステージ41上には、サポート部C3に対する柱部C2の体積比が図4(b)の場合よりも大きい櫛歯試験片Cが載せられている。これにより、図4(c)に示す櫛歯試験片Cは、図4(b)の場合に生じるzx平面内での回転を抑制することはできる。しかしながら、ベースプレート3から切り離された柱部C2の底面がxy平面と平行でない場合(すなわちベースプレート3と平行でない場合)、当該柱部C2の底面は、xy平面と略平行な測定ステージ41に対して傾く。この傾きに伴って、測定ステージ41に載せられた櫛歯試験片Cの上部にある梁部C1も傾くので、梁部C1の反り上がる変形量を精度良く測定することは困難である。
 上記の理由により、櫛歯試験片Cの変形量を精度良く測定するために、従来の櫛歯試験片Cでは、図4(a)に示すように、柱部C2をベースプレート3から切り離さずに、櫛歯試験片Cがベースプレート3に接続された状態で、当該変形量を測定する必要があった。しかし、一方で櫛歯試験片Cと製品2とを同時に積層造形するためには、測定ステージ41よりも大きいベースプレート3を使う必要がある。その上で、櫛歯試験片Cの変形量を精度良く測定するためには、ベースプレート3の櫛歯試験片Cを載せた部分をベースプレート3から切断する必要が生じる。すなわち、櫛歯試験片Cと製品2とを同時に積層造形して櫛歯試験片Cの変形量を精度良く測定するためには、その都度、ベースプレート3を切断する煩雑な工程が発生する。更に、切断された後のベースプレート3を再び積層造形に用いることは困難であるので、ベースプレート3を廃棄する手間と費用も発生する。このようなことから、従来の櫛歯試験片Cを製品2と同時に積層造形して櫛歯試験片Cの変形量を精度良く測定することは、実質的に困難であった。
 これに対し、本実施形態のサンプル1によれば、サポート部133のみならず柱部132をベースプレート3から完全に切り離しても、以下に説明するように、梁部131の反り上がる変形量を精度良く測定することが可能である。
 図5は、測定ステージ41に対して、ベースプレート3から切り離されたサンプル1を載せた様子を示す側面図である。
 サンプル1の変形部13は、図4(a)~図4(c)に示す櫛歯試験片Cと同様に、変形部13の上部にある梁部131が反り上がるように変形している。しかしながら、変形部13では、図4(b)に示す櫛歯試験片Cとは異なり、ベースプレート3から完全に切り離された状態であっても、zx平面内での回転を無視することが可能である。これは、変形部13が連結部12によって基準部11に連結されているからである。
 サンプル1の基準部11は、ベースプレート3と接する底面11bの面積が、変形部13の底面13bの面積よりも大きい。加えて、図3(b)に示すように変形部13は、基準部11の側方に配置されて、連結部12を介して基準部11に連結されている。よって、サンプル1は、転倒することなく測定ステージ41に載せられ得る。
 基準部11は表面が平坦なブロック体を成しているので、基準部11の変形量は変形部13の変形量と比較して無視することが可能である。これは次の2つの理由による。第1に、基準部11とベースプレート3との間の熱伝達率は、基準部11の内部の位置に関わらず略一定である。これにより、基準部11の内部では温度履歴が略均一になり、基準部11に発生する熱応力は小さくなるからである。第2に、基準部11のz軸方向(上下方向)の厚みは、梁部131のz軸方向の厚みより厚い。これにより、基準部11は、力学的な面で、梁部131と比較して変形し難いからである(剛性が高い)。
 また、ベースプレート3から切り離された基準部11の底面11bがxy平面と平行でない場合、測定ステージ41に載せられたサンプル1は傾く。しかしながら、基準部11は、その上面11aの面積が変形部13(梁部131)の上面13aの面積よりも大きいので、上面11aの高さの測定点を上面11aに対して多数設けることができる。これにより、基準部11の上面11aの高さを多数の測定点において測定するので測定精度が高くなる。そして、より多数の測定データからサンプル1の傾きを算出し、算出された傾きを用いて、梁部131の上面13aにおける高さの測定誤差を推定することが可能である。したがって、推定された測定誤差を用いて、梁部131の反り上がる変形量を精度良く補正することが可能である。
 上記のような基準部11の作用により、本実施形態のサンプル1によれば、サポート部133のみならず柱部132をベースプレート3から完全に切り離しても、梁部131の反り上がる変形量を精度良く測定することが可能である。これにより、本実施形態の寸法品質評価方法は、サンプル1を製品2と同時に積層造形した後、サンプル1をベースプレート3から切り離してサンプル1の変形量を精度良く測定することができる。本実施形態の寸法品質評価方法は、従来の櫛歯試験片Cを用いる方法とは異なり、ベースプレート3自体を切断する必要がないので、ベースプレート3を切断する煩雑な工程や、ベースプレート3を廃棄する手間と費用も発生しない。よって、本実施形態の寸法品質評価方法は、サンプル1を製品2と同時に造形することができ、サンプル1の変形量を精度良く測定することができるので、積層造形体の寸法品質を容易且つ精度良く評価することができる。
 図6は、基準部11の変形例を説明する図である。
 基準部11は、図6に示すように、断面における基準部11の上面11aと側面11cとが成す角度Atが90度以上であり、断面における基準部11の底面11bと側面11cとが成す角度Abが90度以下であってもよい。これにより、基準部11を積層造形する途中において、積層された最上面からベースプレート3に至る熱伝導経路の断面積、すなわち、当該最上面の下に存在する既に造形された部分のxy断面積は、当該最上面の断面積以上となり得る。このような熱伝導経路によって、基準部11は、当該最上面の温度が全体的又は局所的に異常に高くなることを抑制することができる。当該最上面の温度が異常に高くなることは、冷却後における基準部11の上面11aの平坦度を劣化させることが知られている。よって、角度Atが90度以上であり、角度Abが90度以下であることは、基準部11の上面11aの平坦度を良好にする効果があり、サンプル1の変形量を精度良く測定することが可能となる。すなわち、基準部11の断面が台形または長方形の形状であれば好ましい。
 図7は、サンプル1の変形例を説明する図である。
 図7(a)は、サンプル1の変形例を説明する図である。図7(b)は、図7(a)とは異なるサンプル1の変形例を説明する図である。図7(c)は、図7(a)及び図7(b)とは異なるサンプル1の変形例を説明する図である。
 サンプル1は、図7(a)に示すように、1つの基準部11に対して複数の変形部13が連結されていてもよい。また、サンプル1は、図7(b)に示すように、基準部11は六面体ではなく六角柱等のブロック体であってもよい。
 サンプル1は、図7(c)に示すように、変形部13が基準部11から突出する形状であってもよい。変形部13の柱部132は、基準部11とは別に設けられていてもよい。或いは、基準部11が柱部132を兼ねて、梁部131が基準部11から延びていてもよい。この場合、図7(c)に示すサンプル1と図4(c)に示す櫛歯試験片Cとの違いは、図7(c)に示すサンプル1では、梁部131の延びる方向に略直交する方向に沿った基準部11の幅(図7(c)のx軸方向の長さ)が、梁部131の幅よりも十分に大きいことである。図4(c)に示す櫛歯試験片Cでは、柱部C2の幅(図4(c)のy軸方向の長さ)が、梁部C1の幅と略同じ大きさである。基準部11の幅を梁部131の幅よりも大きくすることによって、図7(c)に示すサンプル1は、基準部11の上面11aの面積を変形部13(梁部131)の上面13aの面積よりも大きくなり得る。これにより、図7(c)に示すサンプル1は、基準部11の底面11bがxy平面と平行でない場合でも、基準部11の上面11aにおける多数の測定データから算出されたサンプル1の傾きから、梁部131の上面13aの高さの測定誤差を推定し、梁部131の反り上がる変形量を補正することが可能となる。
 図8は、変形部13の変形例を説明する図である。
 図8(a)は、変形部13のサポート部133の変形例を説明する図である。図8(b)は、図8(a)とは異なるサポート部133の変形例を説明する図である。図8(c)は、図8(a)及び図8(b)とは異なるサポート部133の変形例を説明する図である。図8(a)~図8(c)は、柱部132及びサポート部133を通るxy平面で変形部13を切断した断面図を示している。
 図3(a)~図3(d)に示すサポート部133は、上下方向に延びる複数の板状部材135がベースプレート3に沿った方向において互いに離隔して配置される構造を有する。しかしながら、本実施形態のサポート部133は、梁部131からベースプレート3まで下方に延びて梁部131を支持すると共に、梁部131とベースプレート3とを連通する空隙134を有していればよい。サポート部133が空隙134を有することにより、梁部131とベースプレート3との間の熱伝達率が梁部131の内部の位置によって変化する。
 例えば、サポート部133は、図8(a)に示すように、上下方向に延びる複数の棒状部材136が互いに離隔して配置され、複数の棒状部材136の間には空隙134が形成されている構造を有していてもよい。また、サポート部133は、図8(b)に示すように、内部に空隙134を有するメッシュ状部材137によって構成された構造を有していてもよい。また、サポート部133は、図8(c)に示すように、内部に空隙134を有する多孔質部材138によって構成された構造を有していてもよい。
<工程S2について>
 積層造形されたサンプル1をベースプレート3から切り離す工程S2では、サンプル1及び製品2の積層造形終了後に、積層造形されたサンプル1をベースプレート3から切り離す。サンプル1をベースプレート3から切り離す方法としては、例えば、ワイヤ放電加工又はレーザ切断等の種々の方法を用いることが可能である。
<工程S3について>
 図9は、サンプル1の変形量を測定する測定装置4を示す図である。
 サンプル1の変形量を測定する工程S3では、ベースプレート3から切り離されたサンプル1の寸法を測定して当該サンプル1の変形量を測定する。工程S3において、サンプル1の変形量を測定することは、切り離されたサンプル1における基準部11の寸法と変形部13の寸法との差分値を測定することである。具体的には、工程S3において、サンプル1の変形量を測定することは、切り離されたサンプル1における基準部11の上面11aの高さと、変形部13の上面13aの高さとの差分値を測定することである。
 図9に示す測定装置4では、センサ支持部42に支持されたレーザ変位センサ43が、測定ステージ41に載せられたサンプル1の上方に配置されている。レーザ変位センサ43は、レーザ変位センサ43の下方に配置されたサンプル1に向けてレーザ光44を照射し、当該サンプル1にて反射させたレーザ光44を受光することによって、当該サンプル1のレーザ光44が照射された測定点の高さを測定する。レーザ変位センサ43は、y軸方向に移動可能であり、測定ステージ41はx軸方向に移動可能である。これにより、レーザ変位センサ43は、基準部11の上面11a及び変形部13の上面13aにおける複数の測定点において基準面からの相対的な高さを容易に測定することができる。測定信号から、基準部11の上面11a及び変形部13の上面13aにおける高さを求めることは、周知の信号処理及びデータ処理技術によって容易に実施することが可能である。このデータ処理技術は、基準部11の上面11aの高さの測定データからサンプル1の傾きを算出する技術を含む。更に、このデータ処理技術は、算出された傾きから、変形部13の上面13aの測定点に発生する高さの変動値zeを算出する技術を含む。更に、このデータ処理技術は、算出された変動値zeを、変形部13の当該測定点の高さの測定データz’から差し引いた値(z’-ze)を、変形部13の当該測定点の高さの測定値とする補正技術を含む。なお、図9では、レーザ変位センサ43を用いた測定装置4を例示したが、測定装置4は、レーザ変位センサ43以外の手法を用いた測定装置であってもよい。
 このような手法によって、工程S3では、切り離されたサンプル1における基準部11の上面11aの高さと、変形部13の上面13aの高さとを測定する。そして、工程S3では、変形部13の上面13aの高さの測定値から、基準部11の上面11aの高さの測定値を差し引く。これにより、工程S3では、基準部11の上面11aの高さと変形部13の上面13aの高さとの差分値を取得することができる。
<工程S4について>
 図10は、実施形態1の寸法品質判定表T1を示す図である。
 工程S4では、測定されたサンプル1の変形量に基づいて、当該サンプル1が含まれる積層造形バッチの寸法品質を評価する。工程S4は、当該サンプル1が含まれる積層造形バッチの寸法品質を評価することによって、当該積層造形バッチに含まれる製品2の寸法品質を評価する。
 具体的には、工程S4は、図10に示す寸法品質判定表T1を用いて、積層造形バッチの寸法品質の等級を判定することによって、当該積層造形バッチに含まれる製品2の寸法品質を評価する。寸法品質判定表T1は、積層造形バッチに使用された造形材料の種類、及び、当該積層造形バッチに含まれるサンプル1の変形量と、当該積層造形バッチの寸法品質の等級との対応関係を定めた表である。例えば、造形材料Aが使用された積層造形バッチにおいて、当該バッチに含まれるサンプル1の変形量が0.3mmであったとする。このとき、サンプル1の変形量が0.26mmより大きく1mm以下であるので、工程S4では、積層造形バッチの寸法品質の等級はBであると判定し、製品2の寸法品質の等級はBであると判定する。寸法品質判定表T1において、寸法品質の等級の判定基準となるサンプル1の変形量は、ユーザによって予め決定された値であってもよい。また、寸法品質の等級の判定基準となるサンプル1の変形量は、複数のサンプル1の変形量に基づいて、人又はコンピュータによって決定され得る。
 なお、工程S4は、寸法品質判定表T1を用いずに、積層造形バッチ(すなわち製品2)の寸法品質を評価してもよい。例えば、工程S4は、寸法品質の等級ではなく、測定されたサンプル1の変形量に対してスコアを付けることによって、寸法品質を評価してもよい。
 本実施形態の寸法品質評価方法は、サンプル1の変形量に基づいて当該サンプル1が含まれる積層造形バッチの寸法品質を評価することによって、製品2の寸法品質を評価することができる。製品2の寸法品質を評価するには、製品2の設計形状が寸法品質に与える影響と、製品2の設計形状以外の要因が寸法品質に与える影響とを考慮することが望ましい。製品2の設計形状が寸法品質に与える影響は、比較的分かりやすい。例えば、細長い形状の製品2の変形量は太く短い形状の製品2の変形量よりも大きくなり易いので、細長い形状の製品2の寸法品質は、太く短い形状の製品2の寸法品質よりも低下し易い。寸法品質に影響を与える製品2の設計形状以外の要因としては、造形条件、造形装置又は造形材料の差異等が挙げられる。造形条件の差異は、例えば、造形装置に設定する各種パラメータの差異である。造形装置の差異は、造形装置の個体差の他、1つの造形装置における経時変化による差異をも含む。造形材料の差異は、材料の化学成分の差異の他、材料の形状の差異をも含む。材料の形状の差異は、例えば粉末状の材料の場合、粉末の大きさや真球度(真球に近い度合)の差異である。また、材料の形状の差異は、例えばフィラメント状の材料の場合、フィラメントの太さでもある。製品2の寸法品質は、製品2の設計形状の要因と設計形状以外の要因とが複合して影響を受ける。しかし、実際には、寸法品質に影響を与える製品2の設計形状以外の要因は、一般的に複雑であり、予測困難である。
 そこで、本実施形態の寸法品質評価方法は、サンプル1の変形量に基づいて当該サンプル1が含まれる積層造形バッチの寸法品質を評価することにより、比較的簡単な手法であっても、製品2の設計形状以外の要因が寸法品質に与える影響を考慮して、製品2の寸法品質を評価することができる。よって、本実施形態の寸法品質評価方法は、積層造形体の寸法品質を容易且つ精度良く評価することができる。
 本実施形態の寸法品質の評価結果は、例えば、類似設計の製品2の積層造形を行い、その寸法品質を評価する場合に利用することが可能である。すなわち、初めに、製品2及びサンプル1の両方の寸法品質を評価しておき、その後は、サンプル1の寸法品質の評価結果に準じて製品2の寸法品質を評価することが可能である。また、本実施形態の寸法品質の評価結果は、造形条件、造形装置又は造形材料等の状態監視及び状態改善に利用することが可能である。これらの要因を詳細調査することにより、より簡単な状態監視及び状態改善が可能になる。また、本実施形態の寸法品質の評価結果は、製品2の設計者と造形者とが異なっており製品2の寸法品質が不十分であった場合、その原因を究明すること、並びに、責任及び対策の所在を明らかにすることに対して利用することができる。
 以上のように、本実施形態の寸法品質評価方法は、ベースプレート3上に積層造形された製品2の寸法品質を評価する方法である。寸法品質評価方法は、製品2の寸法品質を評価するためのサンプル1を、製品2が積層造形されるベースプレート3上において製品2と同時に(すなわち、同じ積層造形バッチに)積層造形すること(工程S1)を含む。寸法品質評価方法は、積層造形されたサンプル1をベースプレート3から切り離すこと(工程S2)を含む。寸法品質評価方法は、切り離されたサンプル1の寸法を測定することで、ベースプレート3から切り離す前後でのサンプル1の変形量を測定すること(工程S3)を含む。寸法品質評価方法は、測定されたサンプル1の変形量に基づいて製品2の寸法品質を評価すること(工程S4)を含む。サンプル1は、基準部11と、基準部11に連結部12を介して連結された変形部13と、を有する。サンプル1の変形量は、切り離されたサンプル1における基準部11の寸法と変形部13の寸法との差分値である。
 これにより、本実施形態の寸法品質評価方法は、従来の櫛歯試験片Cを用いる方法とは異なり、ベースプレート3自体を切断しなくても、サンプル1の変形量を精度良く測定することができる。ベースプレート3を切断する煩雑な工程が不要であり、ベースプレート3を廃棄する必要がない。ベースプレート3を再び積層造形に用いることが可能となり、造形装置の連続的な使用が可能となる。加えて、本実施形態の寸法品質評価方法は、造形条件等の様々な要因が寸法品質に与える影響を考慮して、製品2の寸法品質を評価することができる。よって、本実施形態の寸法品質評価方法は、積層造形体の寸法品質を容易且つ精度良く評価することができる。
 更に、本実施形態の寸法品質評価方法において、基準部11は、表面が平坦なブロック体を成し、変形部13は、基準部11の側方に配置される。基準部11の上面11aは、ベースプレート3と略平行に積層造形される。変形部13の上面13aは、基準部11の上面11aと略同一の高さに積層造形され、且つ、基準部11の上面11aよりも小面積に積層造形される。サンプル1の変形量は、切り離されたサンプル1における基準部11の上面11aの高さと変形部13の上面13aの高さとの差分値である。
 これにより、本実施形態の寸法品質評価方法は、基準部11の底面11bがxy平面と平行でない場合でも、基準部11の上面11aの高さの測定データからサンプル1の傾きを算出し、変形部13の高さの測定誤差を推定し、変形部13の反り上がる変形量を補正することができる。加えて、本実施形態の寸法品質評価方法は、図9に示すような比較的簡単な既存の測定装置を用いて、サンプル1の変形量を精度良く測定することができる。よって、本実施形態の寸法品質評価方法は、積層造形体の寸法品質を更に容易且つ更に精度良く評価することができる。
 更に、図6に示すように、本実施形態の寸法品質評価方法において、基準部11の断面において、基準部11の上面11aと側面11cとが成す角度Atが90度以上であり、基準部11の底面11bと側面11cとが成す角度Abが90度以下である。
 これにより、本実施形態の寸法品質評価方法は、基準部11を積層造形する途中において、積層された最上面からベースプレート3に至る熱伝導経路が、当該最上面の断面積以上となり得る。したがって、本実施形態の寸法品質評価方法は、積層造形後において基準部11の上面11aの平坦度を良好に保つことができるので、サンプル1の変形量を精度良く測定することができる。よって、本実施形態の寸法品質評価方法は、積層造形体の寸法品質を容易且つ更に精度良く評価することができる。
 更に、本実施形態の寸法品質評価方法において、積層造形された変形部13は、ベースプレート3から上方に延びる柱部132と、柱部132からベースプレート3に沿って延びる梁部131と、梁部131からベースプレート3まで下方に延び梁部131を支持するサポート部133と、を有する。サポート部133は、梁部131とベースプレート3とを連通する空隙134を有する。柱部132の側面132aは、基準部11の側面11cに連結されている。
 これにより、本実施形態の寸法品質評価方法は、変形部13の形状を従来の櫛歯試験片Cに類似した形状とすることができる。したがって、本実施形態の寸法品質評価方法は、従来の櫛歯試験片Cを用いて製品2の寸法品質を評価するために用いられたシミュレーション解析のモデリングデータや解析結果等の知見を活用して、製品2の寸法品質を評価することができる。よって、本実施形態の寸法品質評価方法は、積層造形体の寸法品質を更に容易且つ精度良く評価することができる。
<寸法品質評価システムについて>
 図11は、実施形態1の寸法品質評価システム5の構成を示す図である。
 本実施形態の寸法品質評価システム5は、ベースプレート3上に積層造形された製品2の寸法品質を評価するシステムである。寸法品質評価システム5は、1又は複数の端末装置51と、演算処理装置52と、保存装置53とを備え、これらが通信ネットワーク50を介して互いに通信可能に接続されている。
 通信ネットワーク50は、ディジタルデータを送受信可能な有線又は無線の通信ネットワークである。通信ネットワーク50は、例えば、1つのコンピュータ内のデータ伝送路(バス)、インターネット網又はキャリア網等を含んで構成されてもよい。端末装置51は、入力機能、出力機能及び通信機能を備えた電子機器である。演算処理装置52は、CPUを備えたコンピュータである。保存装置53は、ハードディスクドライブ又はソリッドステートドライブ等の記憶装置を備えたコンピュータである。1つの端末装置51と演算処理装置52とは、1つのコンピュータに含まれていてもよい。演算処理装置52と保存装置53とは、1つのコンピュータに含まれていてもよい。
 寸法品質評価システム5のユーザは、ユーザ情報、上記工程S1において製品2及びサンプル1の積層造形に使用された造形材料の種類、及び、上記工程S3において測定されたサンプル1の変形量を端末装置51に入力し、端末装置51から演算処理装置52にアクセスする。すなわち、端末装置51は、製品2が積層造形されるベースプレート3上において製品2と同時に積層造形されたサンプル1をベースプレート3から切り離す前後でのサンプル1の変形量を取得する。そして、端末装置51は、ユーザ情報、造形材料の種類及びサンプル1の変形量を、演算処理装置52に送信する。
 演算処理装置52は、端末装置51から送信された造形材料の種類及びサンプル1の変形量を、ユーザ情報毎に割り当てられた保存装置53の保存領域に保存する。保存装置53は、造形材料の種類及びサンプル1の変形量と、寸法品質の等級との対応関係を定めた寸法品質判定表T1を予め保存している。演算処理装置52は、保存装置53から寸法品質判定表T1を読み出す。演算処理装置52は、端末装置51から送信された造形材料の種類及びサンプル1の変形量に対応する寸法品質の等級を、寸法品質判定表T1を用いて判定する。これによって、演算処理装置52は、上記工程S1において積層造形された積層造形バッチの寸法品質を評価する。すなわち、演算処理装置52は、端末装置51から送信されたサンプル1の変形量に基づいて製品2の寸法品質を評価する。そして、演算処理装置52は、寸法品質の評価結果を、端末装置51に送信する。端末装置51は、演算処理装置52から送信された評価結果を表示する。こうしてユーザは、端末装置51に表示された評価結果を確認することができる。
 なお、ユーザは、端末装置51から、サンプル1の変形量に係る複数のデータを比較して表示することを演算処理装置52に要求することもできる。この要求が送信された演算処理装置52は、ユーザに公開可能なデータを保存装置53から読み出し、所定の形式で端末装置51に送信する。そして、端末装置51は、演算処理装置52から送信されたサンプル1の変形量に係る複数のデータを比較した結果を表示する。こうしてユーザは、端末装置51に表示された比較結果を確認することによって、サンプル1の変形量の傾向を確認することができる。
 図12は、図11に示す端末装置51に表示される画面510の例を示す図である。
 図12に示す画面510は、端末装置51においてウェブブラウザを利用して入出力及び操作を行うウェブアプリケーションの画面である。具体的には、図12に示す画面510は、所定のウェブアドレスに接続して予め登録されたユーザ情報を用いてログインした後に、表示される。
 図12に示す画面510は、造形材料の種類の入力欄5101と、サンプル1の変形量の入力欄5102と、評価実行ボタン5103と、寸法品質の評価結果の表示欄5104と、を含む。更に、画面510は、保存装置53に保存されたサンプル1の変形量に係る複数のデータを比較して表示するためのデータ表示欄5105と、データ表示欄5105に表示させるデータを選択するフィルタ5106とを含む。
 図12の例では、データ表示欄5105におけるグラフの表示形式は、分布図(scattering plot)の形式であるが、折れ線図、棒グラフ又は度数分布図等の他の形式であってもよいし、これらの組合せであってもよい。図12の例では、データ表示欄5105におけるデータの表示形式は、グラフ形式であるが、表形式や、グラフ及び表の両方の形式であってもよい。データ表示欄5105におけるデータの表示形式は、ユーザの操作によって切り替えられてもよい。図12の例では、評価実行ボタン5103がユーザに操作されると、寸法品質の評価結果の表示欄5104とデータ表示欄5105との両方に対して同時に情報を表示するが、評価実行ボタン5103を分けて両方に別々に情報を表示するように構成されていてもよい。
 以上のように、本実施形態の寸法品質評価システム5は、ベースプレート3上に積層造形された製品2の寸法品質を評価するシステムである。寸法品質評価システム5は、製品2が積層造形されるベースプレート3上において製品2と同時に(すなわち、同じ積層造形バッチに)積層造形されたサンプル1をベースプレート3から切り離す前後でのサンプル1の変形量を取得する端末装置51を備える。寸法品質評価システム5は、端末装置51に通信可能に接続され、端末装置51から送信されたサンプル1の変形量に基づいて製品2の寸法品質を評価する演算処理装置52を備える。サンプル1は、基準部11と、基準部11に連結された変形部13と、を有する。サンプル1の変形量は、切り離されたサンプル1における基準部11の寸法と変形部13の寸法との差分値である。
 これにより、本実施形態の寸法品質評価システム5は、従来の櫛歯試験片Cを用いる方法とは異なり、ベースプレート3自体を切断しなくても精度良く測定されたサンプル1の変形量に基づいて、製品2の寸法品質を評価することができる。ベースプレート3を切断する煩雑な工程が不要であり、ベースプレート3を廃棄する必要がない。ベースプレート3を再び積層造形に用いることが可能となり、造形装置の連続的な使用が可能となる。加えて、本実施形態の寸法品質評価システム5は、造形条件等の様々な要因が寸法品質に与える影響を考慮して、製品2の寸法品質を評価することができる。よって、本実施形態の寸法品質評価システム5は、積層造形体の寸法品質を容易且つ精度良く評価することができる。
 更に、本実施形態の寸法品質評価システム5は、演算処理装置52に通信可能に接続された保存装置53を更に備える。端末装置51は、製品2及びサンプル1の積層造形に使用された造形材料の種類を更に取得する。保存装置53は、造形材料の種類及びサンプル1の変形量と、寸法品質の等級との対応関係を定めた寸法品質判定表T1を予め保存している。演算処理装置52は、端末装置51から送信された造形材料の種類及びサンプル1の変形量に対応する寸法品質の等級を、寸法品質判定表T1を用いて判定することによって、製品2の寸法品質を評価する。
 これにより、本実施形態の演算処理装置52は、複雑な評価アルゴリズムを使用しなくても、製品2の寸法品質を精度良く評価することができる。よって、本実施形態の寸法品質評価システム5は、積層造形体の寸法品質を更に容易且つ精度良く評価することができる。
[実施形態2]
 図13~図18を用いて、実施形態2に係る積層造形体の寸法品質評価方法及びその評価システムについて説明する。実施形態2の寸法品質評価方法及びその評価システムにおいて、実施形態1と同様の構成及び動作については、説明を省略する。
 図13は、実施形態2の寸法品質評価方法の全体工程を示す図である。
 実施形態2の寸法品質評価方法は、実施形態1と同様の工程S1~工程S3を含む。更に、実施形態2の寸法品質評価方法は、製品2の変形量とサンプル1の変形量との相関関係を予測する相関モデルを選択する工程S5と、サンプル1の変形量に基づいて製品2の寸法品質を評価する工程S6とを含む。工程S5は、実施形態1の寸法品質評価方法には無い工程である。工程S6は、実施形態1の工程S4とは内容が異なる工程である。
<工程S5及び相関モデルについて>
 図14は、相関モデルの例を示す図である。
 相関モデルを選択する工程S5では、寸法品質を評価したい製品2の変形量と、製品2と同時に積層造形されたサンプル1の変形量との相関関係を予測する相関モデルを選択する。
 相関モデルは、製品2の変形量とサンプル1の変形量との相関関係を予測するモデルではなく、製品2の寸法品質に係る指標とサンプル1の変形量との相関関係を予測するモデルであってもよい。製品2の寸法品質に係る指標としては、例えば、製品2の寸法、製品2の寸法誤差、製品2の寸法品質の等級などが挙げられる。
 図14の横軸は、サンプル1の変形量を示し、図14の縦軸は、製品2の変形量の予測値を示す。図14の符号P1は、製品P1の変形量と、製品P1と同時に積層造形されたサンプル1の変形量との相関関係を予測する相関モデルを示す。図14の符号P2は、製品P2の変形量と、製品P2と同時に積層造形されたサンプル1の変形量との相関関係を予測する相関モデルを示す。図14の符号P3は、製品P3の変形量と、製品P3と同時に積層造形されたサンプル1の変形量との相関関係を予測する相関モデルを示す。
 図14の実線は、サンプル1の変形量に対応する製品2の変形量の予測値を示す。図14の破線は、製品2の変形量の予測値の誤差範囲を示す。製品2の変形量の予測値の誤差範囲は、例えば、標準偏差σの2倍の範囲である。2σの誤差範囲は、誤差が正規分布を有すると仮定した場合に、真値が95%の確率で含まれる範囲である。
 上記のような相関モデルは、製品2の種類と対応付けて、予め保存されている。工程S5では、寸法品質を評価したい製品2に最も近い製品2の種類に対応付けられた相関モデルを選択する。
 図15は、図14に示す相関モデルを構築する手法を説明する図である。
 相関モデルを構築する1つの手法は、製品2及びサンプル1の各変形量の測定値を回帰分析して構築する手法である。例えば、サンプル1と同時に造形される製品2から1又は複数を選択し、サンプル1の変形量を測定すると共に、製品2の変形量も測定し、各変形量の測定値を回帰分析することによって、相関モデルを構築することができる。
 図15の横軸は、サンプル1の変形量の測定値を示し、図15の縦軸は、製品P1~P3の変形量の測定値を示す。造形材料が同じであれば、サンプル1と複数種類の製品2とを同時に造形して、各変形量を測定してもよい。これにより、比較的少ない工数で、相関モデルを構築するのに必要なデータを収集することができる。
 相関モデルの構築に用いられる回帰分析の種類としては、例えば、最小二乗法、ラッソ回帰法、リッジ回帰法、カーネルリッジ回帰法、サポートベクタ回帰法、又は、ニューラルネットワーク回帰が挙げられる。
 相関モデルを構築する他の手法は、積層造形の熱変形シミュレーションの結果を、回帰分析して構築する手法である。例えば、サンプル1及び製品2の各形状を再現したシミュレーションモデルを用いて熱変形シミュレーションを実行し、その結果からサンプル1及び製品2の各変形量を取得し、取得された各変形量を回帰分析することによって、相関モデルを構築することができる。更に、製品2及びサンプル1の各変形量の測定値と、シミュレーション結果との両方を組み合わせて相関モデルを構築することも可能である。
<工程S6について>
 図16は、実施形態2の寸法品質判定表T2を示す図である。
 工程S6では、測定されたサンプル1の変形量を、選択された相関モデルに入力して製品2の変形量の予測値を算出し、算出された予測値に基づいて、製品2の寸法品質を評価する。
 具体的には、工程S6は、図16に示す寸法品質判定表T2を用いて、製品2の寸法品質の等級を判定することによって、製品2の寸法品質を評価する。寸法品質判定表T2は、製品2の種類及び製品2の変形量の予測値と、製品2の寸法品質の等級との対応関係を定めた表である。寸法品質判定表T2において、寸法品質の等級の判定基準となる製品2の変形量は、ユーザによって予め決定された値であってもよい。寸法品質の等級の判定基準となる製品2の変形量は、複数の製品2の変形量に基づいて、人又はコンピュータによって決定され得る。
 なお、工程S6は、寸法品質判定表T2を用いずに、製品2の寸法品質を評価してもよい。例えば、工程S6は、寸法品質の等級ではなく、相関モデルから算出された製品2の変形量の予測値に対してスコアを付けることによって、製品2の寸法品質を評価してもよい。
 以上のように、実施形態2の寸法品質評価方法は、積層造形された製品2をベースプレート3から切り離す前後での製品2の変形量とサンプル1の変形量との相関関係を予測する相関モデルを選択すること(工程S5)を更に含む。製品2の寸法品質を評価すること(工程S6)は、測定されたサンプル1の変形量を、選択された相関モデルに入力して製品2の変形量の予測値を算出し、算出された予測値に基づいて、製品2の寸法品質を評価することである。
 これにより、実施形態2の寸法品質評価方法は、製品2の設計形状以外の要因だけでなく製品2の設計形状の要因が寸法品質に与える影響をも考慮して、製品2の寸法品質を評価することができる。よって、実施形態2の寸法品質評価方法は、積層造形体の寸法品質を容易且つ更に精度良く評価することができる。
 図17は、図16とは異なる寸法品質判定表T3を示す図である。
 なお、上記の寸法品質評価方法では、相関モデルを明示的に用いて、工程S5と工程S6とを分けて行っていた。しかしながら、実施形態2の工程S6は、寸法品質判定表T3を用いることにより、測定されたサンプル1の変形量から製品2の寸法品質の等級を直接的に判定することもできる。具体的には、実施形態2の工程S6は、製品2の種類及びサンプル1の変形量に対応する寸法品質の等級を、寸法品質判定表T3を用いて判定することによって、製品2の寸法品質を評価することも可能である。
 図17に示す寸法品質判定表T3は、製品2の種類及びサンプル1の変形量と、製品2の寸法品質の等級との対応関係を定めた表である。一方、図16に示す寸法品質判定表T2は、製品2の変形量の予測値と寸法品質の等級との対応関係を定めた表であった。図17に示す寸法品質判定表T3において、寸法品質の等級の判定基準となるサンプル1の変形量は、製品2の寸法品質の等級に対応する製品2の変形量の決定し、製品2の変形量に対応するサンプル1の変形量を、該当する相関モデルを用いて算出することによって、決定することが可能である。この際、製品2の変形量に対応するサンプル1の変形量を算出することは、該当する相関モデルの逆関数を計算し、計算された相関モデルの逆関数に製品2の変形量を入力することによって算出することが可能である。すなわち、寸法品質判定表T3は、製品2の寸法品質の等級に対応する製品2の変形量を、相関モデルの逆関数に入力して、入力された製品2の変形量に対応するサンプル1の変形量を算出することによって作成され得る。或いは、製品2の変形量に対応するサンプル1の変形量は、上記の熱変形シミュレーションの結果からも容易に算出することができる。
 寸法品質判定表T3を用いることにより、実施形態2の寸法品質評価方法では、相関モデルを用いて製品2の変形量の予測値を算出しなくても、サンプル1の変形量から製品2の寸法品質の等級を直接的に判定することができる。したがって、寸法品質判定表T3を用いる実施形態2の寸法品質評価方法は、寸法品質判定表T2を用いる場合よりも簡単に製品2の寸法品質を評価することができる。
<寸法品質評価システムについて>
 図18は、実施形態2の端末装置51に表示される画面511の例を示す図である。
 実施形態2の寸法品質評価システム5は、実施形態1と同様に、1又は複数の端末装置51と、演算処理装置52と、保存装置53とを備え、これらが通信ネットワーク50を介して互いに通信可能に接続されている。
 実施形態2の寸法品質評価システム5のユーザは、ユーザ情報、造形材料の種類、及び、サンプル1の変形量に加えて製品2の種類を端末装置51に入力し、端末装置51から演算処理装置52にアクセスする。すなわち、端末装置51は、ユーザ情報、造形材料の種類、製品2の種類及びサンプル1の変形量を取得する。端末装置51は、ユーザ情報、造形材料の種類、製品2の種類及びサンプル1の変形量を、演算処理装置52に送信する。
 演算処理装置52は、端末装置51から送信された造形材料の種類、製品2の種類、及び、サンプル1の変形量を、ユーザ情報毎に割り当てられた保存装置53の保存領域に保存する。保存装置53は、製品2の変形量とサンプル1の変形量との相関関係を予測する相関モデルを、製品2及び造形材料の種類毎に予め保存している。保存装置53は、製品2の種類及び製品2の変形量の予測値と、製品2の寸法品質の等級との対応関係を定めた寸法品質判定表T2を、造形材料の種類毎に予め保存している。演算処理装置52は、端末装置51から送信された製品2の種類及び造形材料の種類に対応する相関モデルを、保存装置53から読み出す。演算処理装置52は、端末装置51から送信されたサンプル1の変形量を、読み出した相関モデルに入力して、製品2の変形量の予測値を算出する。演算処理装置52は、端末装置51から送信された造形材料の種類に対応する寸法品質判定表T2を、保存装置53から読み出す。演算処理装置52は、端末装置51から送信された製品2の種類、及び、算出された製品2の変形量の予測値に対応する寸法品質の等級を、寸法品質判定表T2を用いて判定する。これによって、演算処理装置52は、製品2の寸法品質を評価する。すなわち、演算処理装置52は、相関モデルにより算出された製品2の変形量の予測値に基づいて、製品2の寸法品質を評価する。演算処理装置52は、寸法品質の評価結果を、端末装置51に送信する。端末装置51は、演算処理装置52から送信された評価結果を表示する。ユーザは、端末装置51に表示された評価結果を確認することができる。
 図18に示す画面511は、製品2の種類の入力欄5107が追加されている点が相違している。更に、図18に示す画面511は、図12に示す画面510と比較して、表示欄5104に表示される寸法品質の評価結果が製品2の寸法品質の等級である点が相違している。
 以上のように、実施形態2の寸法品質評価システム5は、端末装置51が製品2の種類を更に取得する。保存装置53は、積層造形された製品2をベースプレート3から切り離す前後での製品2の変形量とサンプル1の変形量との相関関係を予測する相関モデルを、製品2の種類毎に予め保存している。演算処理装置52は、端末装置51から送信されたサンプル1の変形量を、端末装置51から送信された製品2の種類に対応する相関モデルに入力して、製品2の変形量の予測値を算出し、算出された予測値に基づいて、製品2の寸法品質を評価する。
 これにより、実施形態2の寸法品質評価システム5は、製品2の設計形状以外の要因だけでなく製品2の設計形状の要因が寸法品質に与える影響をも考慮して、製品2の寸法品質を評価することができる。よって、実施形態2の寸法品質評価システム5は、積層造形体の寸法品質を容易且つ更に精度良く評価することができる。
 更に、実施形態2の寸法品質評価システム5は、保存装置53が、製品2の種類及び製品2の変形量の予測値と、製品2の寸法品質の等級との対応関係を定めた寸法品質判定表T2を予め保存している。演算処理装置52は、端末装置51から送信された製品2の種類、及び、算出された製品2の変形量の予測値に対応する寸法品質の等級を、寸法品質判定表T2を用いて判定することによって、製品2の寸法品質を評価する。
 これにより、実施形態2の寸法品質評価システム5は、複雑な評価アルゴリズムを使用しなくても、製品2の寸法品質を精度良く評価することができる。よって、実施形態2の寸法品質評価システム5は、積層造形体の寸法品質を更に容易且つ精度良く評価することができる。
 なお、実施形態2の寸法品質評価システム5は、保存装置53が、製品2の種類及びサンプル1の変形量と、製品2の寸法品質の等級との対応関係を定めた寸法品質判定表T3を予め保存していてもよい。演算処理装置52は、端末装置51から送信された製品2の種類及びサンプル1の変形量に対応する寸法品質の等級を、寸法品質判定表T3を用いて判定することによって、製品2の寸法品質を評価してもよい。
 これにより、実施形態2の演算処理装置52は、保存装置53に保存された相関モデルを用いて製品2の変形量の予測値を算出しなくても、サンプル1の変形量から製品2の寸法品質の等級を直接的に判定することができる。したがって、実施形態2の演算処理装置52は、寸法品質判定表T2を用いる場合よりも、製品2の寸法品質を評価する際の処理負荷を低減することができる。よって、実施形態2の寸法品質評価システム5は、積層造形体の寸法品質を更に容易且つ精度良く評価することができる。
[実施形態3]
 実施形態3に係る積層造形体の寸法品質評価方法及びその評価システムについて説明する。実施形態3の寸法品質評価方法及びその評価システムにおいて、実施形態1又は実施形態2と同様の構成及び動作については、説明を省略する。
 実施形態3の寸法品質評価方法は、工程S1と工程S2との間に、積層造形されたサンプル1の基準部11及び変形部13の寸法差を取得する工程を含む。すなわち、実施形態3の寸法品質評価方法では、ベースプレート3から切り離される前のサンプル1における基準部11及び変形部13の寸法差を取得する工程を含む。具体的には、当該工程では、上記の測定装置4を用いて、切り離される前のサンプル1において、基準部11の上面11aの高さと、変形部13の上面13aの高さとを測定する。そして、変形部13の上面13aの高さの測定値から、基準部11の上面11aの高さの測定値を差し引く。これにより、当該工程では、切り離される前のサンプル1における基準部11及び変形部13の寸法差を取得することができる。
 更に、実施形態3の寸法品質評価方法は、工程3の内容が、実施形態1及び実施形態2とは異なる。実施形態3の工程3では、切り離される前のサンプル1における基準部11及び変形部13の寸法差と、切り離されたサンプル1における基準部11及び変形部13の寸法差との差分値を測定することによって、サンプル1の変形量を測定する。具体的には、実施形態3の工程3では、上記の測定装置4を用いて、切り離されたサンプル1において、基準部11の上面11aの高さと、変形部13の上面13aの高さとを測定する。そして、変形部13の上面13aの高さの測定値から、基準部11の上面11aの高さの測定値を差し引くことによって、切り離されたサンプル1における基準部11及び変形部13の寸法差を取得する。そして、切り離されたサンプル1における当該寸法差から、切り離される前のサンプル1における当該寸法差を差し引く。これにより、実施形態3の工程3では、切り離される前のサンプル1における基準部11及び変形部13の寸法差と、切り離されたサンプル1における基準部11及び変形部13の寸法差との差分値を取得することができる。
 これにより、実施形態3の寸法品質評価方法は、サンプル1の基準部11の上面11aの高さと、変形部13の上面13aの高さとが、同一の高さに積層造形されていなくても、サンプル1の変形量を精度良く測定することができる。よって、実施形態3の寸法品質評価方法は、積層造形体の寸法品質を更に容易且つ精度良く評価することができる。
 実施形態3の寸法品質評価システム5において、端末装置51に入力されるサンプル1の変形量は、実施形態3の工程3のように、切り離される前のサンプル1における基準部11及び変形部13の寸法差と、切り離されたサンプル1における基準部11及び変形部13の寸法差との差分値である。
 これにより、実施形態3の寸法品質評価システム5は、サンプル1の基準部11の上面11aの高さと、変形部13の上面13aの高さとが、同一の高さに積層造形されていなくても、サンプル1の変形量を精度良く測定することができるので、積層造形体の寸法品質を更に容易且つ精度良く評価することができる。
[その他]
 なお、本発明は上記の実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、或る実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、或る実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路にて設計する等によりハードウェアによって実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアによって実現してもよい。各機能を実現するプログラム、テープ、ファイル等の情報は、メモリや、ハードディスク、SSD(solid state drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1…サンプル、11…基準部、11a…上面、11b…底面、11c…側面、12…連結部、13…変形部、13a…上面、131…梁部、132…柱部、132a…側面、133…サポート部、134…空隙、2…製品、3…ベースプレート、5…寸法品質評価システム、51…端末装置、52…演算処理装置、53…保存装置、T1、T2、T3…寸法品質判定表

Claims (9)

  1.  ベースプレート上に積層造形された積層造形体の寸法品質を評価する方法であって、
     前記積層造形体の前記寸法品質を評価するためのサンプルを、前記積層造形体が積層造形される前記ベースプレート上において前記積層造形体と同じ積層造形バッチに積層造形する工程と、
     積層造形された前記サンプルの基準部及び変形部の寸法差を取得する工程と、
     積層造形された前記サンプルを前記ベースプレートから切り離す工程と、
     切り離された前記サンプルの寸法を測定することで、前記ベースプレートから切り離す前後での前記サンプルの変形量を測定する工程と、
     測定された前記サンプルの前記変形量に基づいて前記積層造形体の前記寸法品質を評価する工程と、を含み、
     前記サンプルの前記変形量は、切り離される前の前記サンプルにおける前記基準部及び前記変形部の寸法差と、切り離された前記サンプルにおける前記基準部及び前記変形部の寸法差との差分値である
     ことを特徴とする積層造形体の寸法品質評価方法。
  2.  前記基準部は、表面が平坦なブロック体を成し、
     前記変形部は、前記基準部の側方に配置され、
     前記基準部の上面は、前記ベースプレートと略平行に積層造形され、
     前記変形部の上面は、前記基準部の上面と略同一の高さに積層造形され、且つ、前記基準部の上面よりも小面積に積層造形され、
     前記サンプルの変形量は、切り離される前の前記サンプルにおける前記基準部の上面の高さ及び前記変形部の上面の高さについての寸法差と、切り離された前記サンプルにおける前記基準部の上面の高さ及び前記変形部の上面の高さについての寸法差との差分値である
     ことを特徴とする請求項1に記載の積層造形体の寸法品質評価方法。
  3.  前記基準部の断面において、
     前記基準部の上面と前記基準部の側面とが成す角度は、90度以上であり、
     前記基準部の底面と前記基準部の側面とが成す角度は、90度以下である
     ことを特徴とする請求項2に記載の積層造形体の寸法品質評価方法。
  4.  積層造形された前記変形部は、
      前記ベースプレートから上方に延びる柱部と、
      前記柱部から前記ベースプレートと略平行に延びる梁部と、
      前記梁部から前記ベースプレートまで下方に延びて前記梁部を支持するサポート部と、を有し、
     前記サポート部は、前記梁部と前記ベースプレートとを連通する空隙を有し、
     前記柱部の側面は、前記基準部の側面に連結されている
     ことを特徴とする請求項2に記載の積層造形体の寸法品質評価方法。
  5.  積層造形された前記積層造形体を前記ベースプレートから切り離す前後での前記積層造形体の変形量と前記サンプルの変形量との相関関係を予測する相関モデルを選択する工程、を更に含み、
     積層造形体の寸法品質を評価する工程は、測定された前記サンプルの変形量を、選択された前記相関モデルに入力して、もって前記積層造形体の変形量の予測値を算出し、算出された前記予測値に基づいて、前記積層造形体の寸法品質を評価する工程である
     ことを特徴とする請求項1~請求項4の何れか一項に記載の積層造形体の寸法品質評価方法。
  6.  ベースプレート上に積層造形された積層造形体の寸法品質を評価するシステムであって、
     前記積層造形体が積層造形される前記ベースプレート上において前記積層造形体と同じ積層造形バッチに積層造形されたサンプルを前記ベースプレートから切り離す前後での前記サンプルの変形量を取得する端末装置と、
     前記端末装置に通信可能に接続され、前記端末装置から送信された前記サンプルの変形量に基づいて前記積層造形体の寸法品質を評価する演算処理装置と、を備え、
     前記サンプルは、基準部と、前記基準部に連結された変形部と、を有し、
     前記サンプルの前記変形量は、切り離される前の前記サンプルにおける前記基準部及び前記変形部の寸法差と、切り離された前記サンプルにおける前記基準部及び前記変形部の寸法差との差分値である
     ことを特徴とする積層造形体の寸法品質評価システム。
  7.  前記演算処理装置に通信可能に接続された保存装置を更に備え、
     前記端末装置は、前記積層造形体及び前記サンプルの積層造形に使用された造形材料の種類を更に取得し、
     前記保存装置は、前記造形材料の種類及び前記サンプルの変形量と、前記寸法品質の等級との対応関係を定めた寸法品質判定表を予め保存しており、
     前記演算処理装置は、前記端末装置から送信された前記造形材料の種類及び前記サンプルの変形量に対応する前記寸法品質の等級を、前記寸法品質判定表を用いて判定することによって、前記積層造形体の寸法品質を評価する
     ことを特徴とする請求項6に記載の積層造形体の寸法品質評価システム。
  8.  前記演算処理装置に通信可能に接続された保存装置を更に備え、
     前記端末装置は、前記積層造形体の種類を更に取得し、
     前記保存装置は、積層造形された前記積層造形体を前記ベースプレートから切り離す前後での積層造形体の変形量と前記サンプルの変形量との相関関係を予測する相関モデルを、前記積層造形体の種類毎に予め保存しており、
     前記演算処理装置は、前記端末装置から送信された前記サンプルの変形量を、前記端末装置から送信された前記積層造形体の種類に対応する前記相関モデルに入力して、前記積層造形体の変形量の予測値を算出し、算出された前記予測値に基づいて、前記積層造形体の寸法品質を評価する
     ことを特徴とする請求項6に記載の積層造形体の寸法品質評価システム。
  9.  前記保存装置は、前記積層造形体の種類及び前記積層造形体の変形量の予測値と、前記寸法品質の等級との対応関係を定めた寸法品質判定表を予め保存しており、
     前記演算処理装置は、前記端末装置から送信された前記積層造形体の種類、及び、算出された前記積層造形体の変形量の予測値に対応する前記寸法品質の等級を、前記寸法品質判定表を用いて判定することによって、前記積層造形体の寸法品質を評価する
     ことを特徴とする請求項8に記載の積層造形体の寸法品質評価システム。
PCT/JP2022/041118 2021-11-04 2022-11-04 積層造形体の寸法品質評価方法及びその評価システム WO2023080190A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023517794A JP7347715B1 (ja) 2021-11-04 2022-11-04 積層造形体の寸法品質評価方法及びその評価システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-180160 2021-11-04
JP2021180160 2021-11-04

Publications (1)

Publication Number Publication Date
WO2023080190A1 true WO2023080190A1 (ja) 2023-05-11

Family

ID=86241532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041118 WO2023080190A1 (ja) 2021-11-04 2022-11-04 積層造形体の寸法品質評価方法及びその評価システム

Country Status (2)

Country Link
JP (1) JP7347715B1 (ja)
WO (1) WO2023080190A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103635A (ja) 2014-09-19 2018-07-05 株式会社東芝 積層造形方法
JP2019217517A (ja) * 2018-06-18 2019-12-26 株式会社神戸製鋼所 積層造形物の製造方法、及び積層造形物の検査方法
JP2020114677A (ja) 2014-06-05 2020-07-30 ザ・ボーイング・カンパニーThe Boeing Company 付加製造における歪みの予測及び最小化
JP2020172106A (ja) * 2019-04-10 2020-10-22 コンセプト・レーザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 三次元物体を付加的に製造する装置及び当該装置の照射装置を較正する方法
JP2021094775A (ja) 2019-12-17 2021-06-24 セイコーエプソン株式会社 三次元造形装置及び三次元造形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020114677A (ja) 2014-06-05 2020-07-30 ザ・ボーイング・カンパニーThe Boeing Company 付加製造における歪みの予測及び最小化
JP2018103635A (ja) 2014-09-19 2018-07-05 株式会社東芝 積層造形方法
JP2019217517A (ja) * 2018-06-18 2019-12-26 株式会社神戸製鋼所 積層造形物の製造方法、及び積層造形物の検査方法
JP2020172106A (ja) * 2019-04-10 2020-10-22 コンセプト・レーザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 三次元物体を付加的に製造する装置及び当該装置の照射装置を較正する方法
JP2021094775A (ja) 2019-12-17 2021-06-24 セイコーエプソン株式会社 三次元造形装置及び三次元造形方法

Also Published As

Publication number Publication date
JP7347715B1 (ja) 2023-09-20
JPWO2023080190A1 (ja) 2023-05-11

Similar Documents

Publication Publication Date Title
Mohamed et al. Experimental investigations of process parameters influence on rheological behavior and dynamic mechanical properties of FDM manufactured parts
US20110288838A1 (en) Device for predicting deformation behavior of rubber material and method for predicting deformation behavior of rubber material
US20160169821A1 (en) Method of quality assurance of an additive manufacturing build process
JP6765666B2 (ja) 立体物製造装置、立体物製造方法及びプログラム
JP6904812B2 (ja) 金型寿命判定装置、及びプレス成形物の製造方法
JP2020001302A (ja) 造形予測システム、造形予測表示システム、情報処理装置およびプログラム
CN114818401A (zh) 机器学习模型的训练方法、训练装置、评价系统
WO2023080190A1 (ja) 積層造形体の寸法品質評価方法及びその評価システム
Moretti et al. In-process monitoring of part warpage in fused filament fabrication through the analysis of the repulsive force acting on the extruder
US11796980B2 (en) Additive-manufactured object design supporting device and additive-manufactured object design supporting method
US20210039323A1 (en) Verification of additive manufacturing processes
WO2020100726A1 (ja) 樹脂成形解析方法、プログラムおよび記録媒体
JP5241310B2 (ja) 成形品の変形形状の予測方法とその装置、変形形状の予測プログラムとその記憶媒体
JP4855866B2 (ja) 射出成形解析方法、そり変形解析方法およびその装置
Shaikh et al. Residual stresses in additively manufactured parts: Predictive simulation and experimental verification
Douellou et al. Assessment of geometrical defects caused by thermal distortions in laser-beam-melting additive manufacturing: a simulation approach
JP2020087446A (ja) 樹脂成形解析方法、プログラムおよび記録媒体
JP4305645B2 (ja) 板成形のシミュレーション方法
CN114719892A (zh) 一种基于机器学习的检测元件校准系统
JP3356660B2 (ja) 有限要素法を用いた構造体の反り状態解析方法およびシステム、有限要素法を用いた構造体の反り状態解析プログラムを記録した記録媒体
JP2005138120A (ja) プレス成形中の金型たわみ分布のシミュレーション方法
KR102091815B1 (ko) 지능형 초정밀 플라스틱 금형 설계장치
Clark et al. Validation of a Finite Element Model for Fused Filament Fabrication Additive Manufacturing
JP4590834B2 (ja) 面品質評価装置及び評価プログラム
JP4431957B2 (ja) 解析モデル作成装置および解析モデル作成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023517794

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890010

Country of ref document: EP

Kind code of ref document: A1