WO2023080132A1 - Aralkyl resin, diluent for epoxy resin, curable resin composition, photosensitive resin composition, cured product, electronic device, and aralkyl resin production method - Google Patents

Aralkyl resin, diluent for epoxy resin, curable resin composition, photosensitive resin composition, cured product, electronic device, and aralkyl resin production method Download PDF

Info

Publication number
WO2023080132A1
WO2023080132A1 PCT/JP2022/040860 JP2022040860W WO2023080132A1 WO 2023080132 A1 WO2023080132 A1 WO 2023080132A1 JP 2022040860 W JP2022040860 W JP 2022040860W WO 2023080132 A1 WO2023080132 A1 WO 2023080132A1
Authority
WO
WIPO (PCT)
Prior art keywords
integer
general formula
aralkyl resin
atom
resin
Prior art date
Application number
PCT/JP2022/040860
Other languages
French (fr)
Japanese (ja)
Inventor
謙亮 廣瀧
啓二朗 関
裕力 名倉
健史 細井
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2023558038A priority Critical patent/JPWO2023080132A1/ja
Priority to CN202280066753.5A priority patent/CN118043368A/en
Priority to KR1020247012222A priority patent/KR20240088837A/en
Publication of WO2023080132A1 publication Critical patent/WO2023080132A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G10/00Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only
    • C08G10/02Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/18Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or their halogen derivatives only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface

Definitions

  • the present disclosure relates to aralkyl resins, diluents for epoxy resins, curable resin compositions, photosensitive resin compositions, cured products, electronic devices, and methods for producing aralkyl resins.
  • Patent Document 1 describes a composition for forming a resist upper layer film for lithography containing a fluorine-containing resin.
  • Patent Document 2 describes a resin substrate for a circuit board containing a polymer having a fluorine atom.
  • Patent Document 3 describes a resist underlayer film material containing a fluorine-containing resin.
  • Patent Document 4 discloses a fluorine-containing resin that can be preferably used for manufacturing electronic devices.
  • the resin described in Patent Document 4 is a novolac resin, and in particular, a resin containing a structure in which a monocyclic or polycyclic aromatic ring is directly substituted with an oxygen atom is disclosed.
  • This novolak resin has also been required to have further improved properties.
  • the present inventors conducted studies with one object being to provide a fluorine-containing aralkyl resin having excellent properties that can be used for the production of electronic devices.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • n is an integer of 0 to 2
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • m and k are integers of 0 to 2
  • m+k 3
  • m+k is 4
  • X is a single bond or a divalent substituent other than an oxygen atom.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • t is an integer of 0 to 2
  • r is an integer of 1 or more
  • s is an integer of 0 or more, provided that r + s ⁇ 4 when t is 0, r + s ⁇ 6 when t is 1,
  • R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • n is an integer of 0 to 2
  • R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s ⁇ 4 when t is 0, r+s ⁇ 6 when t is 1, and r+s ⁇ 8 when t is 2.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • m and k are integers of 0 to 2
  • m+k 3
  • m+k 4, it is an integer of p+q ⁇ 16
  • X is a single bond or a divalent substituent other than an oxygen atom.
  • R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s ⁇ 4 when t is 0, r+s ⁇ 6 when t is 1, and r+s ⁇ 8 when t is 2.
  • R3 represents a hydrogen atom or a monovalent organic group
  • R4 represents a hydrogen atom, a methyl group, or a fluorine atom.
  • a photosensitive resin composition comprising the aralkyl resin according to any one of [1] to [14] and a photosensitive agent.
  • the photosensitive resin composition according to [19] which is a photoresist composition, a solder resist composition or an imprint composition.
  • a method for producing an aralkyl resin comprising reacting an aromatic compound with fluoral in the presence of an acid catalyst to produce an aralkyl resin having a structural unit represented by the following general formula (1) or (2).
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • n is an integer of 0 to 2
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • m and k are integers of 0 to 2
  • m+k 3
  • m+k is 4
  • X is a single bond or a divalent substituent other than an oxygen atom.
  • a structure represented by the following general formula (4) or (5) by reacting an aromatic compound represented by the following general formula (11) or (12) with a phenolic compound in the presence of an acid catalyst A method for producing an aralkyl resin, comprising producing an aralkyl resin having units.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • n is an integer of 0 to 2
  • a is an integer of 2 or more
  • n is 2 is an integer of p+a ⁇ 10 when Z represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and when multiple Zs are present, they may be the same or different.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when multiple R 1 are present, they may be the same or different.
  • m and k are integers of 0 to 2
  • a and b are integers of 1 or more
  • Z represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and when multiple Zs are present, they may be the same or different.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • n is an integer of 0 to 2
  • R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s ⁇ 4 when t is 0, r+s ⁇ 6 when t is 1, and r+s ⁇ 8 when t is 2.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • m and k are integers of 0 to 2
  • m+k 3
  • m+k 4, it is an integer of p+q ⁇ 16
  • X is a single bond or a divalent substituent other than an oxygen atom.
  • R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s ⁇ 4 when t is 0, r+s ⁇ 6 when t is 1, and r+s ⁇ 8 when t is 2.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • n is an integer of 0 to 2
  • a is an integer of 2 or more, when n is 0, it is an integer of p + a ⁇ 6, when n is 1, it is an integer of p + a ⁇ 8, and n is 2 is an integer of p+a ⁇ 10 when
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • m and k are integers of 0 to 2
  • a and b are integers of 1 or more
  • X is a single bond or excluding an oxygen atom It is a divalent substituent.
  • X to Y in the description of numerical ranges means X or more and Y or less, unless otherwise specified.
  • “1 to 5% by mass” means “1% by mass or more and 5% by mass or less”.
  • alkyl group includes not only alkyl groups without substituents (unsubstituted alkyl groups) but also alkyl groups with substituents (substituted alkyl groups).
  • (meth)acryl used herein represents a concept that includes both acryl and methacryl. The same applies to similar notations such as "(meth)acrylate”.
  • substituted means an atom or group of atoms having a bond.
  • substituent refers to an atom or atomic group having one bond
  • divalent substituent refers to an atom or atomic group having two bonds.
  • organic group as used herein means an atomic group obtained by removing one or more hydrogen atoms from an organic compound, unless otherwise specified.
  • monovalent organic group refers to an atomic group obtained by removing one hydrogen atom from any organic compound
  • divalent organic group refers to two hydrogen atoms from any organic compound.
  • the term “Me” represents a methyl group ( CH3 ).
  • the term “fluoral” means trifluoroacetaldehyde.
  • electronic device in this specification refers to semiconductor chips, semiconductor elements, printed wiring boards, electric circuits, display devices, information communication terminals, light emitting diodes, physical batteries, chemical batteries, etc., to which electronic engineering technology is applied. It is used in the sense of including elements, devices, final products, etc.
  • Having a fluorine atom within a structural unit also provides advantages in, for example, imprint applications. Low adhesion to metal molds is expected as a property required for general imprinting resins. In the present disclosure, having a fluorine atom in a structural unit can reduce adhesion to a mold.
  • the aralkyl resin in the present disclosure is an aralkyl resin having a structural unit represented by general formula (1) or (2) below.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • n is an integer of 0 to 2
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • m and k are integers of 0 to 2
  • m+k 3
  • m+k is 4
  • X is a single bond or a divalent substituent other than an oxygen atom.
  • the aralkyl resin of the present disclosure has a structural unit represented by general formula (1) or (2) and a structural unit represented by general formulas (3), (4) and/or (5) below.
  • R2 represents a hydrogen atom or a monovalent substituent, and when there are multiple R2s , they may be the same or different, and R1 is directly bonded to the aromatic ring.
  • R 1 represents a monovalent substituent excluding those where the atom is an oxygen atom, and when there are multiple R 1s , they may be the same or different, t is an integer of 0 to 2, r is 1 and s is an integer greater than or equal to 0, provided that when t is 0, r+s ⁇ 4, when t is 1, r+s ⁇ 6, and when t is 2, r+s ⁇ 8.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • n is an integer of 0 to 2, when n is 0, it is an integer of p ⁇ 4, when n is 1, it is an integer of p ⁇ 6, and when n is 2, it is an integer of p ⁇ 8 .
  • R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s ⁇ 4 when t is 0, r+s ⁇ 6 when t is 1, and r+s ⁇ 8 when t is 2.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • m and k are integers of 0 to 2
  • m+k 3
  • m+k 4, it is an integer of p+q ⁇ 16
  • X is a single bond or a divalent substituent other than an oxygen atom.
  • R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s ⁇ 4 when t is 0, r+s ⁇ 6 when t is 1, and r+s ⁇ 8 when t is 2.
  • R 1 is a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom
  • examples of the monovalent substituent include an alkyl group, a cycloalkyl group, an aryl group and an alkenyl group. , an alkynyl group, a cyano group, and the like.
  • Arbitrary carbon atoms of these groups may be substituted with any number and combination of substituents such as halogen atoms and haloalkoxy groups.
  • the number of carbon atoms in the monovalent substituent is, for example, 1-20, preferably 1-10.
  • R 1 directly bonded to the aromatic ring examples include hydrogen, fluorine, carbon, nitrogen, sulfur, silicon and phosphorus atoms. These atoms may be substituted with any number and any combination of substituents such as hydrogen atoms, alkyl groups, cycloalkyl groups and aryl groups. Furthermore, when the number of R 1 in general formula (1) is 2 or more, two or more R 1 are linked to form a saturated or unsaturated, monocyclic or polycyclic, C 3-6 A cyclic group may be formed.
  • R 1 is preferably a hydrogen atom, a fluorine atom or an alkyl group.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, among which n-butyl, s-butyl, isobutyl, t-butyl, n-propyl, i- A propyl group, an ethyl group and a methyl group are preferred, and an ethyl group and a methyl group are particularly preferred.
  • n is an integer of 0 to 2; when n is 0, p ⁇ 4; when n is 1, p ⁇ 6; and when n is 2, p ⁇ 8.
  • p is preferably an integer of 0 to 2 from the viewpoint of ease of preparation of raw materials and cost.
  • Preferred embodiments of the structural unit of the aralkyl resin having the partial structure represented by general formula (1) include structural units represented by the following structural formulas.
  • R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same.
  • X is a divalent substituent group excluding an oxygen atom, it is preferably a divalent organic group.
  • the divalent organic group include a methylene group, an ethylene group, an ethylidene group, a propylene group and a propylidene group. , isopropylidene group, butylene group, hexafluoroisopropylidene group, 2,2,2-trifluoroethylidene group, carbonyl group, phenylene group, naphthalene-1,4-diyl group and the like.
  • X is a divalent substituent excluding an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, a phosphorus atom, or the like is substituted with, for example, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or the like. It may be a divalent substituent substituted with any number of groups in any combination.
  • X is preferably a single bond or a divalent substituent in which a methylene group, an ethylene group, a hexafluoroisopropylidene group, a 2,2,2-trifluoroethylidene group, a nitrogen atom or a sulfur atom is the bonding site of X. is.
  • Examples of divalent substituents in which a nitrogen atom serves as a binding site for X include -N(Me)- and -N(C 6 H 5 )-.
  • m and k may be integers from 0 to 2.
  • n and k are integers of 0 to 2; when m+k is 0, p+q ⁇ 8; when m+k is 1, p+q ⁇ 10; when m+k is 2, p+q ⁇ 12; , m+k is an integer of p+q ⁇ 14 when m+k is 3, and an integer of p+q ⁇ 16 when m+k is 4.
  • p+q is preferably an integer of 0 to 4 from the viewpoint of ease of preparation of raw materials and cost.
  • Preferred embodiments of the structural unit of the aralkyl resin having the partial structure represented by general formula (2) include structural units represented by the following structural formulas.
  • aralkyl resin in the present disclosure may contain structural units that fit general formula (1) or (2) and structural units that do not fit general formulas (1) and (2).
  • an aralkyl resin having a structural unit represented by general formula (1) or (2) and a structural unit represented by general formula (3), (4) and/or (5) is also used in the manufacture of electronic devices. It can be preferably used for
  • R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same.
  • R 2 is a monovalent substituent
  • examples of the monovalent substituent include an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, an alkynyl group, a cyano group, a glycidyl group, and a (meth)acryl group. etc. can be mentioned. Any number and any combination of substituents such as halogen atoms, alkoxy groups and haloalkoxy groups may be substituted on any carbon of these groups.
  • R 2 is preferably a partial structure containing a hydrogen atom, an alkyl group, a glycidyl group, a polymerizable carbon-carbon double bond, or a partial structure represented by general formula (6) below.
  • R3 represents a hydrogen atom or a monovalent organic group
  • R4 represents a hydrogen atom, a methyl group, or a fluorine atom. Having this partial structure is preferable from a synthetic point of view.
  • R3 in the partial structure represented by the general formula (6) is a monovalent organic group having a terminal carboxyl group.
  • the presence of a carboxyl group at the end provides the effect of increasing developability.
  • t is an integer of 0 to 2
  • r is an integer of 1 or more
  • s is an integer of 0 or more
  • r+s is preferably 1 to 2 from the viewpoint of ease of preparation of raw materials and cost.
  • R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same.
  • R 2 is the same as R 2 in general formula (3), and the same preferred forms are also included.
  • n is an integer of 0 to 2; when n is 0, p ⁇ 4; when n is 1, p ⁇ 6; and when n is 2, p ⁇ 8.
  • t is an integer of 0 to 2
  • r is an integer of 1 or more
  • s is an integer of 0 or more, provided that r + s ⁇ 4 when t is 0, r + s ⁇ 6 when t is 1, and t is When 2, r+s ⁇ 8.
  • the structural unit represented by the general formula (4) means a structural unit in which the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) are combined, and the general formula In the structural unit represented by (4), the molar ratio of the structural unit represented by general formula (1) to the structural unit represented by general formula (3) is 1:1.
  • R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same.
  • X is the same as X in general formula (2), and the same preferred forms are also included.
  • R 2 is the same as R 2 in general formula (3), and the same preferred forms are also mentioned.
  • m and k are integers of 0 to 2; when m+k is 0, p+q ⁇ 8; when m+k is 1, p+q ⁇ 10; when m+k is 2, p+q ⁇ 12; , m+k is an integer of p+q ⁇ 14 when m+k is 3, and an integer of p+q ⁇ 16 when m+k is 4.
  • t is an integer of 0 to 2
  • r is an integer of 1 or more
  • s is an integer of 0 or more, provided that r + s ⁇ 4 when t is 0, r + s ⁇ 6 when t is 1, and t is When 2, r+s ⁇ 8.
  • the structural unit represented by the general formula (5) means a structural unit in which the structural unit represented by the general formula (2) and the structural unit represented by the general formula (3) are combined, and the general formula In the structural unit represented by (5), the molar ratio of the structural unit represented by general formula (2) to the structural unit represented by general formula (3) is 1:1.
  • the weight average molecular weight of the aralkyl resin in the present disclosure is preferably 300-500,000, more preferably 300-300,000, and even more preferably 300-200,000.
  • the weight-average molecular weight it is possible to adjust alkali solubility, solvent solubility, physical properties when formed into a film, and the like. That is, by adjusting the weight-average molecular weight, the applicability of the aralkyl resin of the present disclosure to the manufacture of electronic devices can be further enhanced.
  • the polydispersity (weight average molecular weight/number average molecular weight) of the aralkyl resin in the present disclosure is preferably 1-40, more preferably 1-20.
  • the weight average molecular weight and polydispersity can be determined by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • the aralkyl resins of the present disclosure are preferably used as diluents for epoxy resins. Also disclosed herein are diluents for epoxy resins, including the aralkyl resins of the present disclosure. Hereinafter, diluents for epoxy resins, including the aralkyl resins of the present disclosure, are referred to as diluents of the present disclosure.
  • a curable resin composition comprising an aralkyl resin of the present disclosure or a diluent of the present disclosure and an epoxy resin is expected to have a dielectric constant and/or dissipation factor suitable for electronic device manufacturing.
  • the term "diluent” refers to a substance that has few or no reactive substituents with the substance to be diluted (epoxy resin), and is used in the resin composition. It is a substance that reduces the concentration of the substance to be diluted in.
  • the substance to be diluted is an epoxy resin
  • the aralkyl resin used for the diluent of the epoxy resin or the diluent of the present disclosure preferably has a hydroxyl equivalent weight of 130 g/equivalent or more. It is also preferred that the aralkyl resin used for the diluent of the epoxy resin or the diluent of the present disclosure does not contain hydroxyl groups.
  • the aralkyl resin of the present disclosure has a lower melt viscosity than the resin having no aralkyl structure of the present disclosure, and is excellent in handleability when used as a resin composition and fine workability during extrusion molding.
  • the aralkyl resin of the present disclosure has a slower alkali dissolution rate than the resin having no aralkyl structure of the present disclosure, and the alkali dissolution rate can be appropriately controlled, so that the developability and film reduction are improved. be able to.
  • the aralkyl resin of the present disclosure has sufficient heat resistance to be used in electronic device applications.
  • the aralkyl resin of the present disclosure can employ a production method using a fluoral-containing mixture as a raw material in order to provide the “—CHCF 3 —” structure on the right side of general formulas (1) and (2).
  • This method provides a higher yield than using formaldehyde as a raw material to produce an aralkyl resin having a “—CH 2 —” structure. From this point of view as well, the aralkyl resin of the present disclosure having the structure “—CHCF 3 —” is excellent.
  • aralkyl resin I-1 (synthesis method I-1)> An aralkyl resin having a structural unit represented by general formula (1) or (2) can be produced (synthesized) by reacting an aromatic compound with fluorol in the presence of an acid catalyst. Raw materials, reaction conditions, and the like are described below.
  • aromatic compounds examples include alkylbenzenes such as benzene, toluene, ethylbenzene, propylbenzene, isopropylbenzene, n-butylbenzene, isobutylbenzene and tert-butylbenzene; xylenes such as o-xylene, m-xylene and p-xylene; trimethylbenzenes such as 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene; halogenated benzenes such as fluorobenzene, chlorobenzene, bromobenzene and iodobenzene; , biphenyl, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2-dimethylnaphthalene, 1,3-dimethylnaphthalene, 1,4-dimethylnaphthalene
  • Polycyclic aromatics may also be mentioned.
  • Aromatic compounds having multiple aromatic rings in the molecule such as hexafluoro-2,2-diphenylpropane and trifluoro-2,2-diphenylethane, can also be mentioned.
  • Aromatic amines such as diphenylamine, triphenylamine and carbazole; aromatic thiols such as thiophenol, toluenethiol and naphthalenethiol; aromatics such as thioanisole, diphenylsulfide, bis(p-tolyl)sulfide and dibenzothiophene. Sulfides may also be mentioned.
  • fluororal For the preparation of fluororal, commercially available hydrates (products of Tokyo Chemical Industry Co., Ltd.) and hemiacetal of fluororal can be used as its equivalents. A hydrate of fluoral and a hemiacetal of fluoral can also be prepared by the method described in Japanese Patent Application Laid-Open No. 5-97757.
  • Fluorals are low-boiling compounds, generally highly self-reactive, and difficult to handle.
  • fluoral can be handled very stably in a hydrogen fluoride solution.
  • 1,2,2,2-tetrafluoroethanol which is an adduct of fluoral and hydrogen fluoride, is produced as shown in the scheme below.
  • 1,2,2,2-tetrafluoroethanol is in an equilibrium relationship between fluoral and hydrogen fluoride. It is presumed that when hydrogen fluoride is excessively present in the system, the equilibrium shifts toward the 1,2,2,2-tetrafluoroethanol side, and as a result, the decomposition of fluororal is suppressed. According to the findings of the present inventors, it has been confirmed that fluoral in hydrogen fluoride not only improves the stability of the compound but also raises the boiling point. It can be easily handled as an adduct of hydrogen.
  • the amount of hydrogen fluoride to be added is usually 0.1 to 100 mol, preferably 1 to 75 mol, more preferably 2 to 50 mol, per 1 mol of the prepared fluororal. is.
  • the amount of hydrogen fluoride to be added is determined from the viewpoint of sufficient stabilization effect and cost.
  • the fluoral/hydrogen fluoride mixture may also contain excess hydrogen fluoride.
  • hydrogen fluoride since hydrogen fluoride itself has a function as an acidic substance, hydrogen fluoride may act as an acid catalyst or a dehydrating agent, or act as an additive that accelerates the reaction. From these points, it can be said that there is an advantage in treating fluoral as a mixture of hydrogen fluoride.
  • the synthesis can be carried out, for example, at -20 to 150°C for 1 to 30 hours.
  • the pressure during synthesis can be carried out under conditions of 0.1 to 10 MPa in terms of absolute pressure.
  • the pressure is preferably 0.1-5 MPa, more preferably 0.1-1 MPa.
  • a solvent may be used in the synthesis.
  • solvents include ketones such as acetone and methyl ethyl ketone, alcohols such as ethanol and butanol, esters such as ethyl acetate and butyl acetate, and ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, diisopropyl ether, and tert-butyl methyl ether.
  • ether alcohols such as ethoxyethyl alcohol
  • ether esters such as propylene glycol monomethyl ether acetate, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, N,N-dimethylimidazolidinone, etc.
  • Nitriles such as amides, acetonitrile, propionitrile, and benzonitrile, sulfoxides such as dimethylsulfoxide, cyclic sulfones such as sulfolane, nitro hydrocarbons such as nitromethane and nitroethane, and nitro aromatic hydrocarbons such as nitrobenzene types can be mentioned.
  • Halogen-based solvents such as 1,2-dichloroethane, chloroform, methylene chloride, carbon tetrachloride, and trichloroethane are also preferably used, particularly when fluoral is used as in the present disclosure.
  • the molar ratio of aromatic compound:fluoral during synthesis is preferably 2:1 to 1:3, more preferably 2:1 to 1:2, still more preferably 2:1 to 1:1. be.
  • the fluorine atoms are efficiently introduced into the aralkyl resin, and the solvent solubility when used in photosensitive resist applications can be made more suitable, making it suitable for imprint applications. Adhesion to the mold when used can be made more suitable.
  • Catalysts that can be used in the synthesis include inorganic acids such as hydrochloric acid, sulfuric acid, perchloric acid and phosphoric acid, organic acids such as formic acid, acetic acid, oxalic acid, trichloroacetic acid and p-toluenesulfonic acid, zinc acetate, zinc chloride. and divalent metal salts such as magnesium acetate. These may be used alone or in combination of two or more. Incidentally, as mentioned above, it is believed that when a fluoral/hydrogen fluoride mixture is used, the hydrogen fluoride acts as an acid catalyst.
  • the amount of the acid catalyst is preferably 0.01 to 100 mol, more preferably 0.1 to 30 mol, still more preferably 0, per 1 mol of fluoral. .5 to 25 mol.
  • aralkyl resin For the obtained aralkyl resin, unreacted substances and impurities are removed by combining a precipitation treatment by putting it in a poor solvent (typically water), a washing treatment with water or sodium bicarbonate water, and a liquid separation operation. preferably.
  • a poor solvent typically water
  • a washing treatment with water or sodium bicarbonate water preferably.
  • a liquid separation operation preferably.
  • the aralkyl resin of this embodiment may be in powder form.
  • the above powder may be dissolved in any solvent and used as an aralkyl resin solution.
  • the total reaction time is usually 1 to 30 hours.
  • analytical instruments such as nuclear magnetic resonance (NMR), gas chromatography (GC), liquid chromatography (LC), and gel permeation chromatography (GPC) are used, and the reaction conversion rate reaches a predetermined value.
  • the reaction is preferably terminated when it is confirmed that it has been reached.
  • ⁇ Manufacturing method I-2 of aralkyl resin (synthesis method I-2)> By reacting an aromatic compound, a phenolic compound, and a fluoral in the presence of an acid catalyst, in addition to the structural unit represented by general formula (1) or (2), general formula (3), ( An aralkyl resin having structural units represented by 4) and/or (5) and having phenolic hydroxyl groups and/or alkoxy groups in the molecular chain can be produced (synthesized). Raw materials, reaction conditions, and the like are described below.
  • aromatic compound The aromatic compound is the same as the aromatic compound in ⁇ Aralkyl resin production method I-1 (synthesis method I-1)>.
  • phenolic compounds examples include phenol, cresols such as o-cresol, m-cresol and p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3 xylenols such as ,4-xylenol and 3,5-xylenol; ethylphenols such as o-ethylphenol, m-ethylphenol and p-ethylphenol; o-isopropylphenol, m-isopropylphenol, p-isopropylphenol, etc.
  • polycyclic phenols such as 1-naphthol, 2-naphthol and 2-hydroxyanthracene, and dihydroxybenzenes such as hydroquinone, resorcinol and catechol.
  • bisphenols such as bisphenol A, bisphenol F, bisphenol E, bisphenol S, bisphenol AF, bisphenol M, bisphenol P, bisphenol Z, 1,1,1-trifluoro-2,2-bis(4-hydroxyphenyl)ethane types can also be mentioned.
  • alkoxybenzenes such as methoxybenzene, ethoxybenzene and propoxybenzene
  • alkoxynaphthalenes such as 1-methoxynaphthalene and 2-methoxynaphthalene
  • 1,2-dimethoxybenzene, 1,3-dimethoxybenzene and 1,4-dimethoxybenzene dialkoxybenzenes such as 1,2-dimethoxynaphthalene, 1,3-dimethoxynaphthalene, 1,4-dimethoxynaphthalene, 2,3-dimethoxynaphthalene, 2,4-dimethoxynaphthalene and other dialkoxynaphthalenes
  • fluoroanisole chloroanisole, bromoanisole, iodoanisole, and other halogenated anisoles
  • phenolic compounds having both a phenolic hydroxyl group and an alkoxy group on the aromatic ring, such as methoxyphenol and methoxynap
  • fluoral is the same as the fluoral in ⁇ Aralkyl resin production method I-1 (synthesis method I-1)>.
  • the synthesis can be carried out, for example, at -20 to 150°C for 1 to 30 hours.
  • the pressure during synthesis can be carried out under conditions of 0.1 to 10 MPa in terms of absolute pressure.
  • the pressure is preferably 0.1-5 MPa, more preferably 0.1-1 MPa.
  • a solvent may be used in the synthesis.
  • the solvent is the same as the solvent in the above ⁇ Aralkyl resin production method I-1 (synthesis method I-1)>.
  • the molar ratio of aromatic compound to phenolic compound during synthesis is preferably from 99:1 to 1:99, more preferably from 95:5 to 5:95.
  • the phenolic hydroxyl group and/or alkoxy group are efficiently introduced into the aralkyl resin, and the alkali solubility and solvent solubility are more suitable when used for photosensitive resist applications.
  • the molar ratio of the sum of the aromatic compound and the phenolic compound to the fluoral during the synthesis is preferably from 2:1 to 1:3, more preferably from 2:1 to 1:2, still more preferably 2: 1 to 1:1.
  • fluorine atoms are efficiently introduced into the aralkyl resin, and alkali solubility and solvent solubility can be made more suitable when used for photosensitive resist applications. Adhesion to a mold when used for imprinting can be made more suitable.
  • the catalyst that can be used in the synthesis is the same as the catalyst in ⁇ Aralkyl resin production method I-1 (synthesis method I-1)>.
  • the amount of the acid catalyst is the same as the amount of the catalyst in ⁇ Aralkyl resin production method I-1 (synthesis method I-1)>.
  • aralkyl resin For the obtained aralkyl resin, unreacted substances and impurities are removed by combining a precipitation treatment by putting it in a poor solvent (typically water), a washing treatment with water or sodium bicarbonate water, and a liquid separation operation. preferably.
  • a poor solvent typically water
  • a washing treatment with water or sodium bicarbonate water preferably.
  • a liquid separation operation preferably.
  • the aralkyl resin of this embodiment may be in powder form.
  • the above powder may be dissolved in any solvent and used as an aralkyl resin solution.
  • the obtained aralkyl resin having a phenolic hydroxyl group can be used as an epoxy resin by, for example, reacting epichlorohydrin.
  • the obtained epoxy resin can be reacted with a carboxylic acid such as (meth)acrylic acid and used as an epoxy (meth)acrylate resin.
  • the resulting epoxy (meth)acrylate resin can be reacted with an acid anhydride or the like to be used as an acid-modified epoxy (meth)acrylate resin.
  • the acid anhydride to be reacted may be a compound having a polymerizable carbon-carbon unsaturated bond.
  • the total reaction time is usually 1 to 30 hours.
  • analytical instruments such as nuclear magnetic resonance (NMR), gas chromatography (GC), liquid chromatography (LC), and gel permeation chromatography (GPC) are used, and the reaction conversion rate reaches a predetermined value.
  • the reaction is preferably terminated when it is confirmed that it has been reached.
  • n is an integer of 0 to 2
  • a is an integer of 2 or more, when n is 0, it is an integer of p + a ⁇ 6, when n is 1, it is an integer of p + a ⁇ 8, and when n is 2 It is an integer of p+a ⁇ 10.
  • Z represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and when multiple Zs are present, they may be the same or different.
  • R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same.
  • X is the same as X in general formula (2), and the same preferred forms are also included.
  • n and k are integers of 0 to 2
  • a and b are integers of 1 or more
  • m + k is an integer of p+q+a+b ⁇ 14 when is 2
  • an integer of p+q+a+b ⁇ 16 when m+k is 3, and an integer of p+q+a+b ⁇ 18 when m+k is 4.
  • Z is preferably a hydroxyl group from the viewpoints of ease of preparation of raw materials and cost.
  • Z can be prepared by methods described in the literature, such as Journal of Polymer Science (Hoboken, NJ, United States) (2020), 58(16), 2197-2210.
  • An aromatic compound having a structure represented by general formula (11), wherein Z is a hydroxyl group, is represented by general formula (13) below.
  • An aralkyl resin having a structural unit represented by general formula (4) can be produced by reacting an aromatic compound represented by general formula (13) with a phenolic compound in the presence of an acid catalyst.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • n is an integer of 0 to 2
  • a is an integer of 2 or more, when n is 0, it is an integer of p + a ⁇ 6, when n is 1, it is an integer of p + a ⁇ 8, and n is 2 is an integer of p+a ⁇ 10 when
  • Z is preferably a hydroxyl group from the viewpoint of ease of preparation of raw materials and cost.
  • Z can be prepared by methods described in literature such as Chinese Journal of Chemistry (2020), 38(9), 952-958.
  • An aromatic compound having a structure represented by general formula (12), wherein Z is a hydroxyl group, is represented by general formula (14) below.
  • An aralkyl resin having a structural unit represented by general formula (5) can be produced by reacting an aromatic compound represented by general formula (14) with a phenolic compound in the presence of an acid catalyst. preferable.
  • R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different.
  • m and k are integers of 0 to 2
  • a and b are integers of 1 or more
  • p + q + a + b ⁇ 18 when m + k is 4
  • X is a single bond or excluding an oxygen atom It is a divalent substituent.
  • the synthesis can be carried out, for example, at -20 to 150°C for 2 to 30 hours.
  • the pressure during synthesis can be carried out under conditions of 0.1 to 10 MPa in terms of absolute pressure.
  • the pressure is preferably 0.1-5 MPa, more preferably 0.1-1 MPa.
  • a solvent may be used in the synthesis.
  • solvents include ketones such as acetone and methyl ethyl ketone, alcohols such as ethanol and butanol, esters such as ethyl acetate and butyl acetate, and ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, diisopropyl ether, and tert-butyl methyl ether.
  • ether alcohols such as ethoxyethyl alcohol, ether esters such as propylene glycol monomethyl ether acetate, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, N,N-dimethylimidazolidinone, etc.
  • Nitriles such as amides, acetonitrile, propionitrile, and benzonitrile, sulfoxides such as dimethylsulfoxide, cyclic sulfones such as sulfolane, nitro hydrocarbons such as nitromethane and nitroethane, and nitro aromatic hydrocarbons such as nitrobenzene types can be mentioned.
  • Halogen solvents such as 1,2-dichloroethane, chloroform, methylene chloride, carbon tetrachloride and trichloroethane are also preferably used.
  • the molar ratio of the aromatic compound represented by the general formula (11) or (12) to the phenol compound during synthesis is preferably 1:5 to 2:1, more preferably 1:3 to 1: 1.
  • fluorine atoms are efficiently introduced into the aralkyl resin, and alkali solubility and solvent solubility can be made more suitable when used for photosensitive resist applications. Adhesion to a mold when used for imprinting can be made more suitable.
  • Catalysts that can be used in the synthesis include inorganic acids such as hydrochloric acid, sulfuric acid, hydrogen fluoride, perchloric acid and phosphoric acid; Organic acids, divalent metal salts such as zinc acetate, zinc chloride and magnesium acetate, and the like. These may be used alone or in combination of two or more.
  • the amount of the acid catalyst is preferably 0.01 to 100 mol per 1 mol of the aromatic compound represented by the general formula (11) or (12). It is preferably 0.01 to 30 mol.
  • aralkyl resin For the obtained aralkyl resin, unreacted substances and impurities are removed by combining a precipitation treatment by putting it in a poor solvent (typically water), a washing treatment with water or sodium bicarbonate water, and a liquid separation operation. preferably.
  • a poor solvent typically water
  • a washing treatment with water or sodium bicarbonate water preferably.
  • a liquid separation operation preferably.
  • the aralkyl resin of this embodiment may be in powder form.
  • the above powder may be dissolved in any solvent and used as an aralkyl resin solution.
  • the obtained aralkyl resin having a phenolic hydroxyl group can be used as an epoxy resin by, for example, reacting epichlorohydrin.
  • the obtained epoxy resin can be reacted with a carboxylic acid such as (meth)acrylic acid and used as an epoxy (meth)acrylate resin.
  • the resulting epoxy (meth)acrylate resin can be reacted with an acid anhydride or the like to be used as an acid-modified epoxy (meth)acrylate resin.
  • the acid anhydride to be reacted may be a compound having a polymerizable carbon-carbon bond.
  • the total reaction time is usually 1 to 30 hours.
  • analytical instruments such as nuclear magnetic resonance (NMR), gas chromatography (GC), liquid chromatography (LC), and gel permeation chromatography (GPC) are used, and the reaction conversion rate reaches a predetermined value.
  • the reaction is preferably terminated when it is confirmed that it has been reached.
  • the aralkyl resin in the present disclosure can be used as a resin composition by mixing with each component different from the aralkyl resin in the present disclosure.
  • a curable resin composition in the present disclosure can be mentioned as an application destination of the aralkyl resin in the present disclosure and the diluent in the present disclosure.
  • a curable resin composition can be produced by using an aralkyl resin in the present disclosure in combination with an epoxy resin.
  • the aralkyl resin in the present disclosure may act as a curing agent or a diluent for the epoxy resin.
  • the aralkyl resin in the present disclosure has a substituent, such as a hydroxyl group, that exhibits reactivity with the epoxy resin, the aralkyl resin in the present disclosure acts as a curing agent for the epoxy resin.
  • the aralkyl resin of the present disclosure When the aralkyl resin of the present disclosure does not have substituents, such as hydroxyl groups, that are reactive with the epoxy resin, the aralkyl resin of the present disclosure acts as a diluent for the epoxy resin.
  • Aralkyl resins in the present disclosure contain fluorine atoms. Therefore, a cured product formed from a curable resin composition containing an aralkyl resin in the present disclosure is expected to have a dielectric constant and/or dielectric loss tangent suitable for electronic device manufacture.
  • Epoxy resin The epoxy resin to be combined with the aralkyl resin in the present disclosure is not particularly limited, and known epoxy resins may be used.
  • Known epoxy resins include bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, bisphenol AD type epoxy resin, hydrogenated bisphenol A type epoxy resin, and hydrogenated bisphenol.
  • polyfunctional epoxy resins include phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol A novolak epoxy resin, bisphenol AF novolak epoxy resin, dicyclopentadiene phenol epoxy resin, and terpene phenol epoxy resin. , phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol novolak type epoxy resin, polyhydric phenol resin obtained by condensation reaction with various aldehydes such as hydroxybenzaldehyde, crotonaldehyde, glyoxal, fluoral, petroleum heavy Epoxy resins, triglycidyl isocyanurates, etc. produced from various aromatic compounds such as modified phenolic resins obtained by polycondensing oils or pitches, formaldehyde polymers and phenols in the presence of acid catalysts, and epihalohydrin. can be mentioned.
  • epoxy resins produced from various amine compounds such as diaminodiphenylmethane, aminophenol and xylenediamine and epihalohydrin
  • epoxy resins produced from various carboxylic acids such as methylhexahydroxyphthalic acid and dimer acid and epihalohydrin Resins
  • diluents for epoxy resins such as glycidyl ethers of aliphatic alcohols, alicyclic epoxy resins represented by 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate, and the like are also included.
  • the amount ratio of the aralkyl resin and the epoxy resin in the present disclosure may be appropriately designed based on the epoxy equivalent of the epoxy resin. Typically, the mass ratio of aralkyl resin to epoxy resin in the present disclosure is about 1:10 to 10:1.
  • the curable resin composition in the present disclosure may contain curing agents other than the aralkyl resin in the present disclosure.
  • the type of curing agent is not particularly limited. Examples of curing agents include amine-based curing agents, acid anhydride-based curing agents, and phenol-based curing agents.
  • the amine curing agent includes diethylenetriamine, triethylenetetramine, tetraethylenepentamine, N-aminoethylpiperazine, isophoronediamine, bis(4-aminocyclohexyl)methane, bis(aminomethyl)cyclohexane, m-xyl Aliphatic and alicyclic amines such as diamine, 3,9-bis(3-aminopropyl)-2,4,8,10-tetraspiro[5,5]undecane, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenyl aromatic amines such as sulfone, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo-(5,4,0)-undecene-7,1,5-diazabicyclo- Tertiary amines such as (4,3,0)-n
  • the acid anhydride curing agent includes aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride and pyromellitic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride.
  • aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride and pyromellitic anhydride
  • tetrahydrophthalic anhydride methyltetrahydrophthalic anhydride
  • hexahydrophthalic anhydride alicyclic acid anhydrides
  • acids such as acids, methylhexahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, and the like.
  • phenolic curing agents include catechol, resorcinol, hydroquinone, bisphenol F, bisphenol A, bisphenol AF, bisphenol S, biphenol, 1,1,1-trifluoro-2,2-bis(4-hydroxyphenyl ) dihydric phenols such as ethane, phenol novolacs, cresol novolaks, bisphenol A novolaks, trishydroxyphenylmethanes, aralkylpolyphenols, and various aldehydes and phenols such as hydroxybenzaldehyde, crotonaldehyde, glyoxal, and fluoral polyhydric phenol resin obtained by condensation reaction with bisphenol-based compounds, modified phenol resin obtained by polycondensation of heavy petroleum oil or pitches, formaldehyde polymer and phenols in the presence of an acid catalyst, etc.
  • phenolic compounds and the like can be mentioned.
  • curing agents include imidazole compounds and their salts, amine BF3 complex compounds, aliphatic sulfonium salts, aromatic sulfonium salts, iodonium salts and Bronsted acid salts such as phosphonium salts, dicyandiamide, adipic acid dihydrazide and phthalate. Also included are organic acid hydrazides such as acid dihydrazides, adipic acid, sebacic acid, terephthalic acid, trimellitic acid, and polycarboxylic acids such as carboxyl group-containing polyesters.
  • the curable resin composition in the present disclosure may contain only one curing agent, or may contain curing agents with two or more different chemical structures.
  • the amount thereof may be appropriately adjusted based on the epoxy equivalent of the epoxy resin and the like. Typically, when a curing agent is used, its amount is about 0.1 to 1,000 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the curable resin composition in the present disclosure may contain a curing accelerator.
  • curing accelerators for general epoxy resins such as tertiary amines, imidazoles, organic phosphine compounds or their salts, metal soaps such as zinc octylate and tin octylate can be used. can.
  • the curable resin composition in the present disclosure may contain only one curing accelerator, or may contain two or more curing accelerators with different chemical structures.
  • the amount may be adjusted as appropriate. Typically, when a curing accelerator is used, its amount is about 0.001 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the curable resin composition in the present disclosure can contain one or more optional components in addition to the above components.
  • Optional components include antioxidants, fillers, colorants, resins other than aralkyl resins, curable monomers, oligomers, and organic solvents.
  • antioxidants examples include phenol-based, sulfur-based, and phosphorus-based antioxidants. When an antioxidant is used, its amount is usually 0.005 to 5 parts by weight, preferably 0.01 to 1 part by weight, per 100 parts by weight of the aralkyl resin.
  • Fillers include metal oxides such as aluminum oxide and magnesium oxide, silicon compounds such as fine powder silica, fused silica and crystalline silica, glass beads, metal hydroxides such as aluminum hydroxide, gold, silver, Metals such as copper and aluminum, fluororesin powders such as polytetrafluoroethylene particles, carbon, rubbers, kaolin, mica, quartz powder, graphite, molybdenum disulfide, and boron nitride can be used.
  • a filler its amount is, for example, 1,500 parts by mass or less, preferably 0.1 to 1,500 parts by mass, based on 100 parts by mass of the aralkyl resin.
  • coloring agent examples include inorganic pigments such as titanium dioxide, molybdenum red, Prussian blue, ultramarine blue, cadmium yellow, and cadmium red, organic pigments, carbon black, phosphors, and the like.
  • inorganic pigments such as titanium dioxide, molybdenum red, Prussian blue, ultramarine blue, cadmium yellow, and cadmium red
  • organic pigments carbon black, phosphors, and the like.
  • a coloring agent When a coloring agent is used, its amount is usually 0.01 to 30 parts by weight per 100 parts by weight of the aralkyl resin.
  • flame retardants examples include antimony trioxide, bromine compounds, phosphorus compounds, and the like. When a flame retardant is used, its amount is usually 0.01 to 30 parts by weight per 100 parts by weight of the aralkyl resin.
  • resins other than epoxy resins include (meth)acrylate resins, epoxy (meth)acrylate resins, styrene resins, polyimide resins, polyamide resins, polyamic acid resins, active ester resins, and the like.
  • the amount thereof is usually 0.01 to 30 parts by mass with respect to 100 parts by mass of the solid content of the resin composition.
  • curable monomers and oligomers examples include benzoxazine compounds and maleimide compounds.
  • the amount thereof is usually 0.01 to 30 parts by mass with respect to 100 parts by mass of the solid content of the resin composition.
  • organic solvents examples include ketones such as acetone, methyl ethyl ketone, methyl amyl ketone, methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and amyl acetate; ethers such as ethylene glycol monomethyl ether; One or more of amides such as formamide and N,N-dimethylacetamide, alcohols such as methanol and ethanol, and hydrocarbons such as toluene and xylene can be used.
  • the curable resin composition of the present embodiment may contain a solvent, and may be solid or varnish-like.
  • a cured product of a curable resin composition containing the aralkyl resin of the present disclosure has sufficient heat resistance to be used for electronic devices. Moreover, the curable resin composition containing the aralkyl resin of the present disclosure has a lower water absorption rate of the cured product than the curable resin composition containing the resin having no aralkyl structure of the present disclosure. The low water absorption of the cured product is effective when used in electronic devices from the viewpoint of dielectric properties and insulation reliability.
  • a photosensitive resin composition can be preferably mentioned as an application destination of the aralkyl resin in the present disclosure.
  • a photosensitive resin composition can be prepared by mixing the aralkyl resin of the present disclosure with at least a photosensitive agent.
  • aralkyl resins tend to have good transparency to certain light and/or alkali solubility.
  • a photosensitive resin composition having good performance can be prepared.
  • the photosensitive resin composition herein can be patterned by exposure using a photoresist composition, ie, a photomask, followed by development, and selectively protects the substrate surface from processing such as etching in the manufacture of electronic devices. It is useful as a composition capable of protecting against This is due to the specific light transmittance, alkali solubility, and etching resistance of the aromatic ring contained in the aralkyl resin.
  • the above-mentioned photosensitive resin composition can be patterned by a solder resist composition or an imprint composition, that is, by light, and can selectively protect the substrate surface from processing such as etching in the manufacture of electronic devices. It is also useful as a possible composition. This is due to the specific light transmittance described above and the etching resistance of the aromatic ring contained in the aralkyl resin.
  • the amount of the aralkyl resin in the present disclosure is, for example, 20 to 99% by weight, preferably 50 to 98% by weight, based on the total non-volatile components of the photosensitive resin composition.
  • a quinonediazide compound is typically used as the photosensitive agent.
  • a quinonediazide compound is particularly preferably used when preparing a positive photosensitive resin composition. There are no particular restrictions on the quinonediazide compounds that can be used.
  • Examples of the quinonediazide compound include those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy compound via an ester bond, the sulfonic acid of quinonediazide to a polyamino compound in a sulfonamide bond, and the sulfonic acid of quinonediazide to a polyhydroxypolyamino compound in an ester bond and/or a sulfone bond. Examples thereof include those with an amide bond. It is preferable that 50 mol % or more of all the functional groups of these polyhydroxy compounds and polyamino compounds are substituted with quinonediazide.
  • both a 5-naphthoquinonediazidesulfonyl group and a 4-naphthoquinonediazidesulfonyl group are preferably used.
  • a 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region and is suitable for i-line exposure.
  • a 5-naphthoquinonediazide sulfonyl ester compound has absorption extending to the g-line region and is suitable for g-line exposure.
  • a 4-naphthoquinonediazide sulfonyl ester compound or a 5-naphthoquinone diazidesulfonyl ester compound depending on the wavelength of exposure.
  • a naphthoquinonediazide sulfonyl ester compound having a 4-naphthoquinonediazidesulfonyl group and a 5-naphthoquinonediazidesulfonyl group in the same molecule may be contained, and a 4-naphthoquinonediazide sulfonyl ester compound and a 5-naphthoquinonediazide sulfonyl ester compound may be contained. It may contain both.
  • a photoinitiator is preferably used for preparing a negative photosensitive resin composition, particularly when the above-described aralkyl resin contains a polymerizable carbon-carbon double bond.
  • the photopolymerization initiator is not particularly limited as long as it can generate active species such as radicals and polymerize polymerizable carbon-carbon double bonds upon irradiation with high-energy light such as ultraviolet rays. Specific examples include photoradical polymerization initiators.
  • Radical photopolymerization initiators include intramolecular cleavage type that generates radicals by cleaving intramolecular bonds, and hydrogen abstraction type that generates radicals by using hydrogen donors such as tertiary amines and ethers together. . Either can be used in the first embodiment.
  • 2-hydroxy-2-methyl-1-phenylpropan-1-one which is intramolecularly cleaved, generates radicals by cleaving the carbon-carbon bond upon exposure to light.
  • Hydrogen-abstraction types include benzophenone, methyl orthobenzoin benzoate, 4-benzoyl-4'-methyldiphenyl sulfide, and the like.
  • the radical photopolymerization generator is not particularly limited as long as it is a compound that generates radicals by absorbing light, and commercially available radical photopolymerization initiators can be used.
  • a photoradical polymerization initiator can be purchased, for example, from BASF.
  • the amount of the photosensitive agent is typically 1 to 90% by weight, preferably 1 to 50% by weight, based on the total non-volatile components in the photosensitive resin composition.
  • the photosensitizer is a photopolymerization initiator, its proportion is preferably in the range of 0.1 to 7% by mass based on the total mass of non-volatile components in the photosensitive resin composition.
  • the photosensitive resin composition preferably contains a solvent.
  • the photosensitive resin composition preferably has components such as the aralkyl resin and the photosensitizer of the present disclosure dissolved or dispersed in a solvent.
  • solvents include aprotic polar solvents such as N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide and dimethylsulfoxide;
  • Examples include ethers, ketones such as acetone, methyl ethyl ketone, diisobutyl ketone and diacetone alcohol, esters such as ethyl acetate, propylene glycol monomethyl ether acetate and ethyl lactate, and aromatic hydrocarbons such as toluene and xylene.
  • the solvent may be a single solvent or a mixed solvent.
  • the amount of the solvent to be used may be appropriately adjusted according to the thickness of the film to be formed using the photosensitive resin composition.
  • the amount of solvent used is such that the concentration of non-volatile components in the photosensitive resin composition is 1 to 95% by mass.
  • the photosensitive resin composition may contain optional components for performance adjustment in addition to the aralkyl resin, photosensitizer and solvent in the present disclosure.
  • optional components include surfactants, antioxidants, sensitizers, resins other than aralkyl resins, fillers, colorants, curable monomers, oligomers, and the like.
  • a good pattern can be formed by using the photosensitive resin composition, for example, in the following procedure.
  • a film forming step of applying a photosensitive resin composition on a substrate to form a photosensitive film (2)
  • An exposure step of exposing the photosensitive film (3)
  • the substrate to which the photosensitive resin composition is applied is not particularly limited. Substrates made of silicon wafers, metals, glasses, ceramics and plastics can be mentioned. Alternatively, the photosensitive resin composition may be applied onto a substrate that has been previously coated with another polymer. As the coating method, known coating methods such as spin coating, dip coating, spray coating, bar coating, applicator, ink jet, and roll coater can be applied without any particular limitation.
  • the base material coated with the photosensitive resin composition is heated, for example, at 80 to 120° C. for about 30 seconds to 30 minutes to dry the solvent.
  • a photosensitive film can be obtained by carrying out like this.
  • Exposure process The photosensitive film obtained in the film formation process is usually irradiated with light through a photomask for forming a desired pattern.
  • a known method and apparatus can be used for the exposure.
  • a light source having a light source wavelength in the range of 100 to 600 nm can be used. Specific examples include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, KrF excimer lasers (wavelength: 248 nm), UV-LED lamps, and the like.
  • the exposure dose is usually about 1 to 10,000 mJ/cm 2 , preferably about 10 to 5,000 mJ/cm 2 .
  • post-exposure heating may be performed before or after the development step, if necessary.
  • the post-exposure heating temperature is 60 to 180° C.
  • the post-exposure heating time is usually 0.1 to 60 minutes, preferably 0.5 to 10 minutes.
  • Developing process A patterned film is produced by developing the exposed photosensitive film obtained in the exposure process. By using an alkaline aqueous solution as a developer, the exposed portion is dissolved to form a pattern.
  • the developer is not particularly limited as long as it can remove the photosensitive film in the exposed area.
  • alkaline aqueous solutions in which inorganic alkalis, primary amines, secondary amines, tertiary amines, alcohol amines, quaternary ammonium salts, mixtures thereof, and the like are dissolved. More specifically, alkaline aqueous solutions such as potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine, and tetramethylammonium hydroxide (abbreviation: TMAH) can be mentioned. Among them, it is preferable to use a TMAH aqueous solution, and it is particularly preferable to use a 0.1 to 5% by mass TMAH aqueous solution.
  • a known method such as an immersion method, a puddle method, or a spray method can be used.
  • the development time is usually 0.1 to 120 minutes, preferably 0.5 to 60 minutes. After that, washing, rinsing, drying, etc. are performed as necessary. In this way a pattern can be formed on the substrate.
  • the photosensitive resin composition containing the aralkyl resin of the present disclosure can be used as a photosensitive resin composition used in the manufacture of electronic devices such as photoresists, and used to form patterns on silicon wafers. can do.
  • a cured product can be obtained by curing the curable resin composition. Curing can be done by light and/or heat. More specifically, the curable resin composition is usually heated at 100-200° C. for 0.1-20 minutes. Thereby, a cured product can be obtained. In order to improve the curing performance, "post-curing" may be performed at 70 to 200° C. for 0.1 to 10 hours.
  • the cured product may be in the form of a molded product, a cast product, a laminate having a cured film formed on one or both sides of a base material, a film, a base resin for biomaterials, and the like.
  • a cured product obtained by curing the curable resin composition has good transparency. From the viewpoint of this transparency, it is preferable to manufacture an optical member using the curable resin composition (manufacture an optical member comprising a cured product of the curable resin composition).
  • the curable resin composition can be used as a transparent material for sealing optical elements such as optical sensors and imaging elements.
  • the curable resin composition can also be used for the production of microlenses and as an optical adhesive.
  • An electronic device may be manufactured using the curable resin composition. That is, you may manufacture an electronic device provided with the said hardened
  • the curable resin composition can be used as a sealing material for electronic parts. That is, by encapsulating an electronic component with a melted product obtained by heating a curable resin composition, an electronic device in which the electronic component is encapsulated with the cured product can be produced.
  • a substrate preferably a fiber substrate
  • a curable resin composition such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, paper, etc.
  • curable materials can be produced.
  • This curable material for lamination can be suitably used for manufacturing printed wiring boards such as multilayer electrical laminates, build-up laminates, and flexible laminates.
  • an insulating film can be provided by applying a varnish-like curable resin composition to a circuit-formed substrate to form a resin film and curing the resin film.
  • the weight average molecular weight Mw and number average molecular weight Mn were measured using gel permeation chromatography (GPC, HLC-8320 manufactured by Tosoh Corporation). Tetrahydrofuran (THF) was used as the mobile phase, and TSKgel SuperHZ (3000 ⁇ 1+2000 ⁇ 2)/(6.0 mm ID ⁇ 15 cm ⁇ 3) columns were used.
  • the hydroxyl equivalent was calculated from the hydroxyl value measured based on JIS K 0070:1992.
  • the epoxy equivalent was measured based on JIS K 7236:2009.
  • the solid content acid value was calculated by measuring the acid value of the solution based on JIS K 0070:1992 and calculating the solid content acid value from the solid content concentration.
  • the solid content concentration is calculated by dividing the mass of the residue after depressurizing distillation of the solvent in the solution containing the solvent by the total mass of the solution containing the solvent, or dividing the mass of the reaction substrate excluding the solvent into the solution containing the solvent. Calculated by dividing by the total mass.
  • the gas flowing out of the reactor was collected over 18 hours in a SUS304 cylinder with a blowing tube cooled with a -15°C refrigerant.
  • the hydrogen fluoride content, the hydrogen chloride content, and the organic substance content were calculated by titration for 484.8 g of the collected liquid containing fluororal obtained here.
  • hydrogen fluoride was 40% by mass
  • hydrogen chloride was 11% by mass
  • the organic matter content was 49% by mass.
  • part of the recovered organic matter was collected in a resin NMR tube and the degree of fluorination was confirmed by 19F-NMR, almost no low-order fluorinated substances were detected, and the fluorination progressed quantitatively.
  • the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass) 14.6 g (fluoral: 82 mmol, hydrogen fluoride: 0.321 mol), hydrogen fluoride 8.3 g (0.416 mol), benzene 1.3 g ( 16 mmol) and 10.0 g (0.106 mol) of phenol were added. Then, the reaction was carried out at 25° C. and an absolute pressure of 0.2 MPa for 20 hours. Thereafter, the same operation as in Synthesis Example 1 was performed, and the organic layer was recovered.
  • the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass) 14.6 g (fluoral: 82 mmol, hydrogen fluoride: 0.321 mol), hydrogen fluoride 8.3 g (0.416 mol), biphenyl 2.5 g ( 16 mmol) and 10.0 g (0.106 mol) of phenol were added. Then, the reaction was carried out at 25° C. and an absolute pressure of 0.2 MPa for 20 hours. Thereafter, the same operation as in Synthesis Example 1 was performed, and the organic layer was recovered.
  • the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 14.6 g (fluoral: 82 mmol, hydrogen fluoride: 0.321 mol), hydrogen fluoride 8.3 g (0.416 mol), meta-xylene 1.7 g (16 mmol) and 10.0 g (0.106 mol) of phenol were added. Then, the reaction was carried out at 60° C. and an absolute pressure of 0.4 MPa for 20 hours. Thereafter, the same operation as in Synthesis Example 1 was performed, and the organic layer was recovered.
  • the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 104.7 g (fluoral: 664 mmol, hydrogen fluoride: 2.99 mol), hydrogen fluoride 60.0 g (3.00 mol), biphenyl 18.1 g ( 118 mmol) and 62.5 g (664 mmol) of phenol were added. Then, the reaction was carried out at 25° C. and an absolute pressure of 0.2 MPa for 20 hours.
  • the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 104.7 g (fluoral: 664 mmol, hydrogen fluoride: 2.99 mol), hydrogen fluoride 60.0 g (3.00 mol), meta-xylene 12.5 g (118 mmol) and 62.5 g (664 mmol) of phenol were added. Then, the reaction was carried out at 25° C. and an absolute pressure of 0.2 MPa for 20 hours.
  • aralkyl resin solution II (acid-modified epoxy acrylate resin solution)
  • aralkyl resin solution II epoxy resin solution
  • 30.0 g of the aralkyl resin solution I epoxy resin solution obtained above ( Epoxy equivalent (298 g/equivalent)
  • 3.5 g (48 mmol) of acrylic acid, 29 mg of 4-methoxyphenol, and 72 mg of triphenylphosphine were charged, and the internal temperature was raised to 110° C. while introducing dry air and allowed to react for 15 hours. rice field.
  • aralkyl resin solution IV (acid-modified epoxy acrylate resin solution)
  • aralkyl resin solution III epoxy resin solution obtained above ( Epoxy equivalent: 274 g/equivalent)
  • 4.1 g (48 mmol) of acrylic acid, 31 mg of 4-methoxyphenol, and 77 mg of triphenylphosphine were charged, and the temperature was raised to 110° C. while introducing dry air, and the mixture was reacted for 15 hours.
  • the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 18 g (fluoral: 103 mmol, hydrogen fluoride: 0.40 mol), hydrogen fluoride 10 g (0.50 mol), biphenyl 1.6 g (10 mmol), 2 - 10 g (92 mmol) of cresol and 40 g of chloroform were added. Then, the reaction was carried out at 70° C. and an absolute pressure of 0.4 MPa for 18 hours.
  • the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 18 g (fluoral: 103 mmol, hydrogen fluoride: 0.40 mol), hydrogen fluoride 10 g (0.50 mol), meta-xylene 1.1 g (10 mmol), 10 g (92 mmol) of 2-cresol and 40 g of chloroform were added. Then, the reaction was carried out at 70° C. and an absolute pressure of 0.4 MPa for 18 hours.
  • the hydroxyl equivalent weight was 175 g/equivalent.
  • Curable Resin Composition (Containing Epoxy Resin)> A curable resin composition having the composition shown in Table 1 was prepared, and the glass transition temperature and 5% heat weight loss temperature of each cured product were measured.
  • epoxy resins and curing accelerators are as follows.
  • Curing accelerator triphenylphosphine (0.4% by mass relative to the epoxy resin)
  • the glass transition temperature was measured using a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., model name: DSC7000) at a heating rate of 10°C/min.
  • thermogravimetric loss temperature was measured using a differential thermal/thermogravimetric simultaneous measurement device (manufactured by Hitachi High-Tech Science Co., Ltd., model name STA7200) under conditions of a temperature increase rate of 10° C./min in a nitrogen atmosphere.
  • the cured product of the curable resin composition containing the aralkyl resin of the present embodiment has sufficient heat resistance for use in electronic devices.
  • Table 2 shows the above measurement/evaluation results.
  • the aralkyl resin of the present embodiment having an aralkyl structure is a resin having no aralkyl structure (Patent Document 4 (equivalent to the novolac resin described in 1.), and has a relatively low melt viscosity, and is excellent in handleability when used as a resin composition and fine workability during extrusion molding.
  • epoxy resins and curing accelerators are as follows.
  • Curing accelerator triphenylphosphine (0.4% by mass relative to the epoxy resin)
  • the cured product of the curable resin composition comprising the aralkyl resin of the present embodiment is the resin having no aralkyl structure of the present disclosure (the novolak described in Patent Document 4 It is understood that the water absorption rate is lower than that of a cured product of a curable resin composition composed of (corresponding to resin).
  • the low water absorption of the cured product is effective when used in electronic devices from the viewpoint of dielectric properties and insulation reliability.
  • the glass transition temperature was measured using a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., model name: DSC7000) at a heating rate of 10°C/min.
  • thermogravimetric loss temperature was measured using a differential thermal/thermogravimetric simultaneous measurement device (manufactured by Hitachi High-Tech Science Co., Ltd., model name STA7200) under conditions of a temperature increase rate of 10° C./min in a nitrogen atmosphere.
  • the aralkyl resin of the present embodiment is the resin having no aralkyl structure of the present disclosure (Patent Document 4), the heat resistance is equivalent.
  • the alkali dissolution rate of the resin was evaluated by the following procedure.
  • PGMEA propylene glycol monomethyl ether acetate
  • a resin composition was applied by spin coating to the surface of a silicon wafer that had been subjected to HMDS treatment, and the PGMEA was dried using a hot plate. Thus, a resin film was formed on the surface of the silicon wafer.
  • the details of the spin coating conditions are as follows.
  • the alkali dissolution rate of the aralkyl resin of the present disclosure is higher than that of the resin having no aralkyl structure of the present disclosure (corresponding to the novolac resin described in Patent Document 4). It is understood that by using the aralkyl resin of the present disclosure, it is possible to appropriately control the alkali dissolution rate and improve developability and film reduction.
  • a photosensitive resin composition (photoresist composition) was prepared and evaluated by the following procedures. (1) 75 parts by mass of the aralkyl resin obtained in Synthesis Example 12 and 25 parts by mass of a quinone diazide photosensitizer (NT200, manufactured by Toyo Gosei Co., Ltd.) were dissolved in 500 parts by mass of PGMEA (propylene glycol monomethyl ether acetate), Then, it was filtered through a filter with a pore size of 0.2 ⁇ m. By carrying out like this, the photosensitive resin composition (photoresist composition) was prepared.
  • a photosensitive resin composition (photoresist composition) was applied to the surface of the HMDS-treated silicon wafer by spin coating, and the PGMEA was dried using a hot plate. Thus, a photosensitive resin film (photoresist film) was formed on the surface of the silicon wafer.
  • ⁇ Spin coating conditions slope 10 s, 1,000 rpm, 60 s ⁇ Drying conditions: 110°C, 60s ⁇ Dry film thickness: 1 ⁇ m
  • a photomask having a line/space pattern of various widths is placed on the photosensitive resin film (photoresist film) formed in (2) above, and a g h line lamp (g and h lines are 200 mJ/cm 2 of h-line converted light was irradiated with a device that emits light at the same time.
  • the light-irradiated photosensitive resin film (photoresist film) was developed together with the silicon wafer by immersing it in a developer (2.38% by mass tetramethylammonium hydroxide aqueous solution) for 30 seconds.
  • the aralkyl resin of the present disclosure is preferably applied to photosensitive resin compositions such as photoresists used in the manufacture of electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided is an aralkyl resin having a structural unit represented by general formula (1) or (2). In general formulas (1) and (2), R1 represents a monovalent substituent, excluding monovalent substituents in which an atom directly bonding to an aromatic ring is an oxygen atom, and may be identical or different when there are a plurality of R1. In general formula (1) n is an integer of 0-2, when n is 0, p is an integer of ≤4, when n is 1, p is an integer of ≤6, and when n is 2, p is an integer of ≤8. In general formula (2), m and k are each an integer of 0-2, when m+k is 0, p+q is an integer of ≤8, when m+k is 1, p+q is an integer of ≤10, when m+k is 2, p+q is an integer of ≤12, when m+k is 3, p+q is an integer of ≤14, when m+k is 4, p+q is an integer of ≤16, and X is a single bond or a divalent substituent other than an oxygen atom.

Description

アラルキル樹脂、エポキシ樹脂の希釈剤、硬化性樹脂組成物、感光性樹脂組成物、硬化物、電子デバイス、アラルキル樹脂の製造方法Aralkyl resin, diluent for epoxy resin, curable resin composition, photosensitive resin composition, cured product, electronic device, method for producing aralkyl resin
本開示は、アラルキル樹脂、エポキシ樹脂の希釈剤、硬化性樹脂組成物、感光性樹脂組成物、硬化物、電子デバイス、アラルキル樹脂の製造方法に関する。 TECHNICAL FIELD The present disclosure relates to aralkyl resins, diluents for epoxy resins, curable resin compositions, photosensitive resin compositions, cured products, electronic devices, and methods for producing aralkyl resins.
電子デバイスの製造のために、含フッ素アラルキル樹脂が使用される場合がある。特許文献1には、フッ素含有樹脂を含むリソグラフィー用レジスト上層膜形成組成物が記載されている。特許文献2には、フッ素原子を有する重合体を含む回路基板用樹脂基板が記載されている。特許文献3には、フッ素含有樹脂を含むレジスト下層膜材料が記載されている。また、特許文献4には、電子デバイスの製造に好ましく用いることができるフッ素含有樹脂が開示されている。 Fluorine-containing aralkyl resins are sometimes used for the manufacture of electronic devices. Patent Document 1 describes a composition for forming a resist upper layer film for lithography containing a fluorine-containing resin. Patent Document 2 describes a resin substrate for a circuit board containing a polymer having a fluorine atom. Patent Document 3 describes a resist underlayer film material containing a fluorine-containing resin. Further, Patent Document 4 discloses a fluorine-containing resin that can be preferably used for manufacturing electronic devices.
特許第6319582号公報Japanese Patent No. 6319582 特許第6206445号公報Japanese Patent No. 6206445 特許第6502885号公報Japanese Patent No. 6502885 国際公開第2021/193878号WO2021/193878
特許文献4に記載される樹脂はノボラック樹脂であり、とくに単環または多環の芳香環に酸素原子が直接置換されている構造を含む樹脂が開示されていた。このノボラック樹脂についても、さらに特性を向上させることが求められていた。
本発明者らは、電子デバイスの製造のために使用されうる、特性に優れる含フッ素アラルキル樹脂を提供することを目的の1つとして、検討を行った。
The resin described in Patent Document 4 is a novolac resin, and in particular, a resin containing a structure in which a monocyclic or polycyclic aromatic ring is directly substituted with an oxygen atom is disclosed. This novolak resin has also been required to have further improved properties.
The present inventors conducted studies with one object being to provide a fluorine-containing aralkyl resin having excellent properties that can be used for the production of electronic devices.
本発明者らは、検討の結果、以下に提供される開示を完成させた。 The present inventors have completed the disclosure provided below as a result of their studies.
[1]
以下一般式(1)または(2)で表される構造単位を有するアラルキル樹脂。
[1]
An aralkyl resin having a structural unit represented by general formula (1) or (2) below.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
一般式(1)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。 In general formula (1), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, when n is 0, it is an integer of p ≤ 4, when n is 1, it is an integer of p ≤ 6, and when n is 2, it is an integer of p ≤ 8 .
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
一般式(2)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。 In general formula (2), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, p + q ≤ 8 when m + k is 0, p + q ≤ 10 when m + k is 1, and p + q ≤ 12 when m + k is 2 When m+k is 3, it is an integer of p+q≤14, when m+k is 4, it is an integer of p+q≤16, and X is a single bond or a divalent substituent other than an oxygen atom.
[2]
上記一般式(1)で表される構造単位を有する[1]に記載のアラルキル樹脂。
[2]
The aralkyl resin according to [1], which has a structural unit represented by the general formula (1).
[3]
上記一般式(2)で表される構造単位を有する[1]に記載のアラルキル樹脂。
[3]
The aralkyl resin according to [1], which has a structural unit represented by the general formula (2).
[4]
[1]~[3]のいずれかに記載のアラルキル樹脂であって、以下一般式(3)で表される構造単位をさらに含むアラルキル樹脂。
[4]
The aralkyl resin according to any one of [1] to [3], which further comprises a structural unit represented by general formula (3) below.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
一般式(3)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8であり、Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよい。 In general formula (3), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, t is an integer of 0 to 2, r is an integer of 1 or more, and s is an integer of 0 or more, provided that r + s ≤ 4 when t is 0, r + s ≤ 6 when t is 1, When t is 2, r+s≦8, R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different.
[5]
[1]~[4]のいずれかに記載のアラルキル樹脂であって、以下一般式(4)または(5)で表される構造単位を有するアラルキル樹脂。
[5]
An aralkyl resin according to any one of [1] to [4], which has a structural unit represented by general formula (4) or (5) below.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
一般式(4)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。 In general formula (4), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, when n is 0, it is an integer of p ≤ 4, when n is 1, it is an integer of p ≤ 6, and when n is 2, it is an integer of p ≤ 8 . R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s≦4 when t is 0, r+s≦6 when t is 1, and r+s≦8 when t is 2.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
一般式(5)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。 In general formula (5), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, p + q ≤ 8 when m + k is 0, p + q ≤ 10 when m + k is 1, and p + q ≤ 12 when m + k is 2 When m+k is 3, it is an integer of p+q≤14, when m+k is 4, it is an integer of p+q≤16, and X is a single bond or a divalent substituent other than an oxygen atom. R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s≦4 when t is 0, r+s≦6 when t is 1, and r+s≦8 when t is 2.
[6]
[4]または[5]に記載のアラルキル樹脂であって、Rがグリシジル基を含むアラルキル樹脂。
[6]
The aralkyl resin according to [4] or [5], wherein R 2 contains a glycidyl group.
[7]
[4]または[5]に記載のアラルキル樹脂であって、Rが重合性炭素-炭素二重結合を含むアラルキル樹脂。
[7]
The aralkyl resin according to [4] or [5], wherein R 2 contains a polymerizable carbon-carbon double bond.
[8]
[4]または[5]に記載のアラルキル樹脂であって、Rが以下一般式(6)で表される部分構造を有するアラルキル樹脂。
[8]
An aralkyl resin according to [4] or [5], wherein R 2 has a partial structure represented by general formula (6) below.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
一般式(6)中、Rは水素原子または1価の有機基を表し、Rは水素原子、メチル基、またはフッ素原子を表す。 In general formula (6), R3 represents a hydrogen atom or a monovalent organic group, and R4 represents a hydrogen atom, a methyl group, or a fluorine atom.
[9]
[8]に記載のアラルキル樹脂であって、Rが末端にカルボキシ基を有する1価の有機基を表すアラルキル樹脂。
[9]
The aralkyl resin according to [8], wherein R3 represents a monovalent organic group having a terminal carboxyl group.
[10]
[1]、[2]又は[4]に記載のアラルキル樹脂であって、以下一般式(7)で表される構造単位を有するアラルキル樹脂。
[10]
An aralkyl resin according to [1], [2] or [4], which has a structural unit represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[11]
[1]、[2]又は[4]に記載のアラルキル樹脂であって、以下一般式(8)で表される構造単位を有するアラルキル樹脂。
[11]
An aralkyl resin according to [1], [2] or [4], which has a structural unit represented by the following general formula (8).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[12]
[1]、[3]又は[4]に記載のアラルキル樹脂であって、以下一般式(9)で表される構造単位を有するアラルキル樹脂。
[12]
An aralkyl resin according to [1], [3] or [4], which has a structural unit represented by the following general formula (9).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[13]
[1]、[2]又は[4]に記載のアラルキル樹脂であって、以下一般式(10)で表される構造単位を有するアラルキル樹脂。
[13]
An aralkyl resin according to [1], [2] or [4], which has a structural unit represented by general formula (10) below.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
[14]
[1]~[13]のいずれかに記載のアラルキル樹脂であって、重量平均分子量が300~200,000であるアラルキル樹脂。
[14]
The aralkyl resin according to any one of [1] to [13], which has a weight average molecular weight of 300 to 200,000.
[15]
[1]~[14]のいずれかに記載のアラルキル樹脂を含む、エポキシ樹脂の希釈剤。
[15]
[1] An epoxy resin diluent containing the aralkyl resin according to any one of [1] to [14].
[16]
水酸基当量が130g/当量以上である、[15]に記載のエポキシ樹脂の希釈剤。
[16]
The epoxy resin diluent according to [15], which has a hydroxyl equivalent of 130 g/equivalent or more.
[17]
[1]~[14]のいずれかに記載のアラルキル樹脂又は[15]若しくは[16]に記載のエポキシ樹脂の希釈剤を含む硬化性樹脂組成物。
[17]
A curable resin composition containing a diluent for the aralkyl resin according to any one of [1] to [14] or the epoxy resin according to [15] or [16].
[18]
さらにエポキシ樹脂を含む[17]に記載の硬化性樹脂組成物。
[18]
The curable resin composition according to [17], further comprising an epoxy resin.
[19]
[1]~[14]のいずれかに記載のアラルキル樹脂と、感光剤と、を含む感光性樹脂組成物。
[19]
A photosensitive resin composition comprising the aralkyl resin according to any one of [1] to [14] and a photosensitive agent.
[20]
[19]に記載の感光性樹脂組成物であって、フォトレジスト組成物、ソルダーレジスト組成物またはインプリント組成物である感光性樹脂組成物。
[20]
The photosensitive resin composition according to [19], which is a photoresist composition, a solder resist composition or an imprint composition.
[21]
[17]または[18]に記載の硬化性樹脂組成物を硬化させた硬化物。
[21]
A cured product obtained by curing the curable resin composition according to [17] or [18].
[22]
[21]に記載の硬化物を含む電子デバイス。
[22]
An electronic device comprising the cured product of [21].
[23]
芳香族化合物と、フルオラールとを、酸触媒の存在下で反応させることにより、以下一般式(1)または(2)で表される構造単位を有するアラルキル樹脂を製造する、アラルキル樹脂の製造方法。
[23]
A method for producing an aralkyl resin, comprising reacting an aromatic compound with fluoral in the presence of an acid catalyst to produce an aralkyl resin having a structural unit represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
一般式(1)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。 In general formula (1), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, when n is 0, it is an integer of p ≤ 4, when n is 1, it is an integer of p ≤ 6, and when n is 2, it is an integer of p ≤ 8 .
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
一般式(2)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。 In general formula (2), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, p + q ≤ 8 when m + k is 0, p + q ≤ 10 when m + k is 1, and p + q ≤ 12 when m + k is 2 When m+k is 3, it is an integer of p+q≤14, when m+k is 4, it is an integer of p+q≤16, and X is a single bond or a divalent substituent other than an oxygen atom.
[24]
以下一般式(11)または(12)で表される芳香族化合物と、フェノール系化合物を、酸触媒の存在下で反応させることにより、以下一般式(4)または(5)で表される構造単位を有するアラルキル樹脂を製造する、アラルキル樹脂の製造方法。
[24]
A structure represented by the following general formula (4) or (5) by reacting an aromatic compound represented by the following general formula (11) or (12) with a phenolic compound in the presence of an acid catalyst A method for producing an aralkyl resin, comprising producing an aralkyl resin having units.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
一般式(11)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、aは2以上の整数であり、nが0のときp+a≦6の整数であり、nが1のときp+a≦8の整数であり、nが2のときp+a≦10の整数である。Zは水酸基、炭素数1~4のアルコキシ基またはハロゲン原子を表し、Zが複数存在する場合は、それらは同一でも異なっていてもよい。 In general formula (11), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, a is an integer of 2 or more, when n is 0, it is an integer of p + a ≤ 6, when n is 1, it is an integer of p + a ≤ 8, and n is 2 is an integer of p+a≤10 when Z represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and when multiple Zs are present, they may be the same or different.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
一般式(12)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、aおよびbは1以上の整数であり、m+kが0のときp+q+a+b≦10の整数であり、m+kが1のときp+q+a+b≦12の整数であり、m+kが2のときp+q+a+b≦14の整数であり、m+kが3のときp+q+a+b≦16の整数であり、m+kが4のときp+q+a+b≦18の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。Zは水酸基、炭素数1~4のアルコキシ基またはハロゲン原子を表し、Zが複数存在する場合は、それらは同一でも異なっていてもよい。 In general formula (12), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when multiple R 1 are present, they may be the same or different. Well, m and k are integers of 0 to 2, a and b are integers of 1 or more, p + q + a + b ≤ 10 when m + k is 0, and p + q + a + b ≤ 12 when m + k is 1. , p + q + a + b ≤ 14 when m + k is 2, p + q + a + b ≤ 16 when m + k is 3, p + q + a + b ≤ 18 when m + k is 4, and X is a single bond or excluding an oxygen atom It is a divalent substituent. Z represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and when multiple Zs are present, they may be the same or different.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
一般式(4)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。 In general formula (4), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, when n is 0, it is an integer of p ≤ 4, when n is 1, it is an integer of p ≤ 6, and when n is 2, it is an integer of p ≤ 8 . R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s≦4 when t is 0, r+s≦6 when t is 1, and r+s≦8 when t is 2.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
一般式(5)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。 In general formula (5), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, p + q ≤ 8 when m + k is 0, p + q ≤ 10 when m + k is 1, and p + q ≤ 12 when m + k is 2 When m+k is 3, it is an integer of p+q≤14, when m+k is 4, it is an integer of p+q≤16, and X is a single bond or a divalent substituent other than an oxygen atom. R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s≦4 when t is 0, r+s≦6 when t is 1, and r+s≦8 when t is 2.
[25]
以下一般式(13)または(14)で表される芳香族化合物と、フェノール系化合物を、酸触媒の存在下で反応させることにより、前記一般式(4)または(5)で表される構造単位を有するアラルキル樹脂を製造する、[24]に記載のアラルキル樹脂の製造方法。
[25]
The structure represented by the general formula (4) or (5) is obtained by reacting an aromatic compound represented by the following general formula (13) or (14) with a phenolic compound in the presence of an acid catalyst. The method for producing an aralkyl resin according to [24], wherein an aralkyl resin having units is produced.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
一般式(13)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、aは2以上の整数であり、nが0のときp+a≦6の整数であり、nが1のときp+a≦8の整数であり、nが2のときp+a≦10の整数である。 In general formula (13), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, a is an integer of 2 or more, when n is 0, it is an integer of p + a ≤ 6, when n is 1, it is an integer of p + a ≤ 8, and n is 2 is an integer of p+a≤10 when
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
一般式(14)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、aおよびbは1以上の整数であり、m+kが0のときp+q+a+b≦10の整数であり、m+kが1のときp+q+a+b≦12の整数であり、m+kが2のときp+q+a+b≦14の整数であり、m+kが3のときp+q+a+b≦16の整数であり、m+kが4のときp+q+a+b≦18の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。 In general formula (14), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, a and b are integers of 1 or more, p + q + a + b ≤ 10 when m + k is 0, and p + q + a + b ≤ 12 when m + k is 1. , p + q + a + b ≤ 14 when m + k is 2, p + q + a + b ≤ 16 when m + k is 3, p + q + a + b ≤ 18 when m + k is 4, and X is a single bond or excluding an oxygen atom It is a divalent substituent.
本開示によれば、電子デバイスの製造のために使用されうる、特性に優れる含フッ素アラルキル樹脂を提供することができる。 INDUSTRIAL APPLICABILITY According to the present disclosure, it is possible to provide a fluorine-containing aralkyl resin with excellent properties that can be used for the production of electronic devices.
以下、本開示の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail.
本明細書中、数値範囲の説明における「X~Y」との表記は、特に断らない限り、X以上Y以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。 In this specification, the notation "X to Y" in the description of numerical ranges means X or more and Y or less, unless otherwise specified. For example, "1 to 5% by mass" means "1% by mass or more and 5% by mass or less".
本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。 In the description of a group (atomic group) in the present specification, a description without indicating whether it is substituted or unsubstituted includes both those having no substituent and those having a substituent. For example, the term “alkyl group” includes not only alkyl groups without substituents (unsubstituted alkyl groups) but also alkyl groups with substituents (substituted alkyl groups).
本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。 The notation "(meth)acryl" used herein represents a concept that includes both acryl and methacryl. The same applies to similar notations such as "(meth)acrylate".
本明細書における「置換基」の語は、結合手を有する原子または原子団を意味する。例えば、「1価の置換基」とは、結合手を1つ有する原子または原子団のことを表し、「2価の置換基」とは、結合手を2つ有する原子または原子団のことを表す。
本明細書における「有機基」の語は、特に断りが無い限り、有機化合物から1つ以上の水素原子を除いた原子団のことを意味する。例えば、「1価の有機基」とは、任意の有機化合物から1つの水素原子を除いた原子団のことを表し、「2価の有機基」とは、任意の有機化合物から2つの水素原子を除いた原子団のことを表す。
本明細書中の化学式において、「Me」の表記は、メチル基(CH)を表す。
本明細書中、「フルオラール」の語は、トリフルオロアセトアルデヒドを意味する。
本明細書中の「電子デバイス」の語は、半導体チップ、半導体素子、プリント配線基板、電気回路、ディスプレイ装置、情報通信端末、発光ダイオード、物理電池、化学電池など、電子工学の技術が適用された素子、デバイス、最終製品等を包含する意味で用いられる。
The term "substituent" as used herein means an atom or group of atoms having a bond. For example, the term "monovalent substituent" refers to an atom or atomic group having one bond, and the term "divalent substituent" refers to an atom or atomic group having two bonds. show.
The term "organic group" as used herein means an atomic group obtained by removing one or more hydrogen atoms from an organic compound, unless otherwise specified. For example, the term "monovalent organic group" refers to an atomic group obtained by removing one hydrogen atom from any organic compound, and the term "divalent organic group" refers to two hydrogen atoms from any organic compound. Represents the atomic group excluding
In the chemical formulas herein, the notation "Me" represents a methyl group ( CH3 ).
As used herein, the term "fluoral" means trifluoroacetaldehyde.
The term "electronic device" in this specification refers to semiconductor chips, semiconductor elements, printed wiring boards, electric circuits, display devices, information communication terminals, light emitting diodes, physical batteries, chemical batteries, etc., to which electronic engineering technology is applied. It is used in the sense of including elements, devices, final products, etc.
構造単位内にフッ素原子を持つことは、例えばインプリント用途においても利点をもたらす。一般的なインプリント用樹脂に求められる性質として、金属金型との密着性が低いことが期待される。本開示において構造単位内にフッ素原子を持つことで、金型との密着性を低下させることができる。 Having a fluorine atom within a structural unit also provides advantages in, for example, imprint applications. Low adhesion to metal molds is expected as a property required for general imprinting resins. In the present disclosure, having a fluorine atom in a structural unit can reduce adhesion to a mold.
以下、本開示におけるアラルキル樹脂に関する説明を続ける。 The description of the aralkyl resin in the present disclosure will be continued below.
本開示におけるアラルキル樹脂は、以下一般式(1)または(2)で表される構造単位を有するアラルキル樹脂である。
Figure JPOXMLDOC01-appb-C000037
一般式(1)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。
Figure JPOXMLDOC01-appb-C000038
一般式(2)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。
The aralkyl resin in the present disclosure is an aralkyl resin having a structural unit represented by general formula (1) or (2) below.
Figure JPOXMLDOC01-appb-C000037
In general formula (1), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, when n is 0, it is an integer of p ≤ 4, when n is 1, it is an integer of p ≤ 6, and when n is 2, it is an integer of p ≤ 8 .
Figure JPOXMLDOC01-appb-C000038
In general formula (2), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, p + q ≤ 8 when m + k is 0, p + q ≤ 10 when m + k is 1, and p + q ≤ 12 when m + k is 2 When m+k is 3, it is an integer of p+q≤14, when m+k is 4, it is an integer of p+q≤16, and X is a single bond or a divalent substituent other than an oxygen atom.
また、本開示のアラルキル樹脂は、一般式(1)または(2)で表される構造単位と、以下一般式(3)、(4)および/または(5)で表される構造単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000039
一般式(3)中、Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。
Figure JPOXMLDOC01-appb-C000040
一般式(4)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。
Figure JPOXMLDOC01-appb-C000041
一般式(5)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。
In addition, the aralkyl resin of the present disclosure has a structural unit represented by general formula (1) or (2) and a structural unit represented by general formulas (3), (4) and/or (5) below. You may have
Figure JPOXMLDOC01-appb-C000039
In general formula (3), R2 represents a hydrogen atom or a monovalent substituent, and when there are multiple R2s , they may be the same or different, and R1 is directly bonded to the aromatic ring. represents a monovalent substituent excluding those where the atom is an oxygen atom, and when there are multiple R 1s , they may be the same or different, t is an integer of 0 to 2, r is 1 and s is an integer greater than or equal to 0, provided that when t is 0, r+s≤4, when t is 1, r+s≤6, and when t is 2, r+s≤8.
Figure JPOXMLDOC01-appb-C000040
In general formula (4), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, when n is 0, it is an integer of p ≤ 4, when n is 1, it is an integer of p ≤ 6, and when n is 2, it is an integer of p ≤ 8 . R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s≦4 when t is 0, r+s≦6 when t is 1, and r+s≦8 when t is 2.
Figure JPOXMLDOC01-appb-C000041
In general formula (5), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, p + q ≤ 8 when m + k is 0, p + q ≤ 10 when m + k is 1, and p + q ≤ 12 when m + k is 2 When m+k is 3, it is an integer of p+q≤14, when m+k is 4, it is an integer of p+q≤16, and X is a single bond or a divalent substituent other than an oxygen atom. R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s≦4 when t is 0, r+s≦6 when t is 1, and r+s≦8 when t is 2.
(一般式(1)の説明)
が芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基である場合、その1価の置換基の例としては、アルキル基、シクロアルキル基、アリール基、アルケニル基、アルキニル基、シアノ基などを挙げることができる。これら基の任意の炭素上に、例えばハロゲン原子、ハロアルコキシ基などの置換基が、任意の数かつ任意の組み合わせで置換されていてもよい。その1価の置換基の炭素数は、例えば1~20、好ましくは1~10である。
また、Rにおいて芳香環に直接結合する原子の例としては、水素原子、フッ素原子、炭素原子、窒素原子、硫黄原子、ケイ素原子、燐原子などをあげることができる。これらの原子上に、例えば水素原子、アルキル基、シクロアルキル基、アリール基などの置換基が任意の数かつ任意の組み合わせで置換されていてもよい。
さらに、一般式(1)中のRの数が2以上である場合、2つ以上のRが連結して、飽和または不飽和の、単環または多環の、炭素数3~6の環式基を形成してもよい。
は、好ましくは水素原子、フッ素原子またはアルキル基である。アルキル基としては、炭素数1~6の直鎖または分岐のアルキル基であることが好ましく、中でもn-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-プロピル基、i-プロピル基、エチル基およびメチル基が好ましく、特にエチル基とメチル基が好ましい。
(Description of general formula (1))
When R 1 is a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, examples of the monovalent substituent include an alkyl group, a cycloalkyl group, an aryl group and an alkenyl group. , an alkynyl group, a cyano group, and the like. Arbitrary carbon atoms of these groups may be substituted with any number and combination of substituents such as halogen atoms and haloalkoxy groups. The number of carbon atoms in the monovalent substituent is, for example, 1-20, preferably 1-10.
Examples of atoms in R 1 directly bonded to the aromatic ring include hydrogen, fluorine, carbon, nitrogen, sulfur, silicon and phosphorus atoms. These atoms may be substituted with any number and any combination of substituents such as hydrogen atoms, alkyl groups, cycloalkyl groups and aryl groups.
Furthermore, when the number of R 1 in general formula (1) is 2 or more, two or more R 1 are linked to form a saturated or unsaturated, monocyclic or polycyclic, C 3-6 A cyclic group may be formed.
R 1 is preferably a hydrogen atom, a fluorine atom or an alkyl group. The alkyl group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, among which n-butyl, s-butyl, isobutyl, t-butyl, n-propyl, i- A propyl group, an ethyl group and a methyl group are preferred, and an ethyl group and a methyl group are particularly preferred.
nは0~2の整数であればよいが、好ましくはn=0または1である。例えば電子デバイス製造でしばしば用いられる光(g線、i線、h線など)の透過性の観点からは、n=0が好ましい。広い意味での電子デバイスで考えた場合、例えば下層膜などでは耐熱性の観点などからn=1が良い場合もある。 n may be an integer of 0 to 2, preferably n=0 or 1. For example, from the viewpoint of transparency of light (g-line, i-line, h-line, etc.) often used in electronic device manufacturing, n=0 is preferable. In the case of electronic devices in a broad sense, n=1 may be preferable in terms of heat resistance, for example, in the underlayer film.
nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。
原料の準備の容易性やコストの観点から、pは好ましくは0~2の整数である。
n is an integer of 0 to 2; when n is 0, p≤4; when n is 1, p≤6; and when n is 2, p≤8.
p is preferably an integer of 0 to 2 from the viewpoint of ease of preparation of raw materials and cost.
一般式(1)で表される部分構造を有するアラルキル樹脂の構造単位の好ましい態様として、以下構造式で表される構造単位を挙げることができる。 Preferred embodiments of the structural unit of the aralkyl resin having the partial structure represented by general formula (1) include structural units represented by the following structural formulas.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(一般式(2)の説明)
は一般式(1)におけるRと同等であり、好ましい形態も同じものが挙げられる。Xが、酸素原子を除く2価の置換基である場合、2価の有機基であることが好ましく2価の有機基の例としては、メチレン基、エチレン基、エチリデン基、プロピレン基、プロピリデン基、イソプロピリデン基、ブチレン基、ヘキサフルオロイソプロピリデン基、2,2,2-トリフルオロエチリデン基、カルボニル基、フェニレン基、ナフタレン1,4ジイル基などを挙げることができる。
また、Xが酸素原子を除く2価の置換基である場合、窒素原子、硫黄原子、ケイ素原子、燐原子などの原子上に、例えば水素原子、アルキル基、シクロアルキル基、アリール基などの置換基が任意の数かつ任意の組み合わせで置換されている2価の置換基であってもよい。Xは、好ましくは単結合またはメチレン基、エチレン基、ヘキサフルオロイソプロピリデン基、2,2,2-トリフルオロエチリデン基、窒素原子若しくは硫黄原子がXの結合部位となっている2価の置換基である。窒素原子がXの結合部位となっている2価の置換基としては、例えば、-N(Me)-、-N(C)-等が挙げられる。
(Description of general formula (2))
R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same. When X is a divalent substituent group excluding an oxygen atom, it is preferably a divalent organic group. Examples of the divalent organic group include a methylene group, an ethylene group, an ethylidene group, a propylene group and a propylidene group. , isopropylidene group, butylene group, hexafluoroisopropylidene group, 2,2,2-trifluoroethylidene group, carbonyl group, phenylene group, naphthalene-1,4-diyl group and the like.
Further, when X is a divalent substituent excluding an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, a phosphorus atom, or the like is substituted with, for example, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or the like. It may be a divalent substituent substituted with any number of groups in any combination. X is preferably a single bond or a divalent substituent in which a methylene group, an ethylene group, a hexafluoroisopropylidene group, a 2,2,2-trifluoroethylidene group, a nitrogen atom or a sulfur atom is the bonding site of X. is. Examples of divalent substituents in which a nitrogen atom serves as a binding site for X include -N(Me)- and -N(C 6 H 5 )-.
mおよびkは、0~2の整数であればよい。例えば電子デバイス製造でしばしば用いられる光(g線、i線、h線など)の透過性の観点からは、m+k=0が好ましい。広い意味での電子デバイスで考えた場合、例えば下層膜などでは耐熱性の観点などからm+k=1~2の整数が良い場合もある。 m and k may be integers from 0 to 2. For example, m+k=0 is preferable from the viewpoint of transparency of light (g-line, i-line, h-line, etc.) often used in electronic device manufacturing. When considering electronic devices in a broad sense, for example, in the case of an underlayer film, an integer of m+k=1 to 2 may be preferable from the viewpoint of heat resistance.
mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数である。
原料の準備の容易性やコストの観点から、p+qは好ましくは0~4の整数である。
m and k are integers of 0 to 2; when m+k is 0, p+q≤8; when m+k is 1, p+q≤10; when m+k is 2, p+q≤12; , m+k is an integer of p+q≦14 when m+k is 3, and an integer of p+q≦16 when m+k is 4.
p+q is preferably an integer of 0 to 4 from the viewpoint of ease of preparation of raw materials and cost.
一般式(2)で表される部分構造を有するアラルキル樹脂の構造単位の好ましい態様として、以下構造式で表される構造単位を挙げることができる。 Preferred embodiments of the structural unit of the aralkyl resin having the partial structure represented by general formula (2) include structural units represented by the following structural formulas.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
また、本開示におけるアラルキル樹脂は、一般式(1)または(2)に当てはまる構造単位と、一般式(1)および(2)に当てはまらない構造単位とを含んでいてもよい。 In addition, the aralkyl resin in the present disclosure may contain structural units that fit general formula (1) or (2) and structural units that do not fit general formulas (1) and (2).
また、一般式(1)または(2)で表される構造単位と、一般式(3)、(4)および/または(5)で表される構造単位を有するアラルキル樹脂も、電子デバイスの製造に好ましく用いることができる。 Further, an aralkyl resin having a structural unit represented by general formula (1) or (2) and a structural unit represented by general formula (3), (4) and/or (5) is also used in the manufacture of electronic devices. It can be preferably used for
(一般式(3)の説明)
は一般式(1)におけるRと同等であり、好ましい形態も同じものが挙げられる。Rが1価の置換基である場合、その1価の置換基の例としては、アルキル基、シクロアルキル基、アリール基、アルケニル基、アルキニル基、シアノ基、グリシジル基、(メタ)アクリル基などを挙げることができる。これら基の任意の炭素上に、例えばハロゲン原子、アルコキシ基、ハロアルコキシ基などの置換基が、任意の数かつ任意の組み合わせで置換されていてもよい。
は、好ましくは水素原子、アルキル基、グリシジル基、重合性炭素-炭素二重結合を含む部分構造、または以下一般式(6)で表される部分構造である。
(Description of general formula (3))
R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same. When R 2 is a monovalent substituent, examples of the monovalent substituent include an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, an alkynyl group, a cyano group, a glycidyl group, and a (meth)acryl group. etc. can be mentioned. Any number and any combination of substituents such as halogen atoms, alkoxy groups and haloalkoxy groups may be substituted on any carbon of these groups.
R 2 is preferably a partial structure containing a hydrogen atom, an alkyl group, a glycidyl group, a polymerizable carbon-carbon double bond, or a partial structure represented by general formula (6) below.
Figure JPOXMLDOC01-appb-C000044
一般式(6)中、Rは水素原子または1価の有機基を表し、Rは水素原子、メチル基、またはフッ素原子を表す。この部分構造を持つことは合成上の観点から好ましい。
Figure JPOXMLDOC01-appb-C000044
In general formula (6), R3 represents a hydrogen atom or a monovalent organic group, and R4 represents a hydrogen atom, a methyl group, or a fluorine atom. Having this partial structure is preferable from a synthetic point of view.
また、一般式(6)で表される部分構造中のRが末端にカルボキシ基を有する1価の有機基であることがさらに好ましい。末端にカルボキシ基が存在することによって、現像性が増す効果が得られる。 Further, it is more preferable that R3 in the partial structure represented by the general formula (6) is a monovalent organic group having a terminal carboxyl group. The presence of a carboxyl group at the end provides the effect of increasing developability.
tは0~2の整数であればよいが、好ましくはt=0である。例えば電子デバイス製造でしばしば用いられる光(g線、i線、h線など)の透過性の観点からは、t=0が好ましい。広い意味での電子デバイスで考えた場合、例えば下層膜などでは耐熱性の観点などからt=1が良い場合もある。 t may be an integer from 0 to 2, preferably t=0. For example, t=0 is preferable from the viewpoint of transparency of light (g-line, i-line, h-line, etc.) often used in the manufacture of electronic devices. When considering an electronic device in a broad sense, t=1 may be preferable from the viewpoint of heat resistance in, for example, an underlayer film.
tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。原料の準備の容易性やコストの観点から、r+sは好ましくは1~2である。 t is an integer of 0 to 2, r is an integer of 1 or more, s is an integer of 0 or more, r + s ≤ 4 when t is 0, r + s ≤ 6 when t is 1, t is 2 When r+s≦8. r+s is preferably 1 to 2 from the viewpoint of ease of preparation of raw materials and cost.
(一般式(4)の説明)
は一般式(1)におけるRと同等であり、好ましい形態も同じものが挙げられる。Rは一般式(3)におけるRと同等であり、好ましい形態も同じものが挙げられる。nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。
一般式(4)で表される構造単位は、一般式(1)で表される構造単位と、一般式(3)で表される構造単位が結合した構造単位を意味しており、一般式(4)で表される構造単位において、一般式(1)で表される構造単位と、一般式(3)で表される構造単位のモル比は1:1である。
(Description of general formula (4))
R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same. R 2 is the same as R 2 in general formula (3), and the same preferred forms are also included. n is an integer of 0 to 2; when n is 0, p≤4; when n is 1, p≤6; and when n is 2, p≤8. t is an integer of 0 to 2, r is an integer of 1 or more, and s is an integer of 0 or more, provided that r + s ≤ 4 when t is 0, r + s ≤ 6 when t is 1, and t is When 2, r+s≦8.
The structural unit represented by the general formula (4) means a structural unit in which the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) are combined, and the general formula In the structural unit represented by (4), the molar ratio of the structural unit represented by general formula (1) to the structural unit represented by general formula (3) is 1:1.
(一般式(5)の説明)
は一般式(1)におけるRと同等であり、好ましい形態も同じものが挙げられる。Xは一般式(2)におけるXと同等であり、好ましい形態も同じものが挙げられる。Rは一般式(3)におけるRと同等であり、好ましい形態も同じものがあげられる。mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数である。tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。
一般式(5)で表される構造単位は、一般式(2)で表される構造単位と、一般式(3)で表される構造単位が結合した構造単位を意味しており、一般式(5)で表される構造単位において、一般式(2)で表される構造単位と、一般式(3)で表される構造単位のモル比は1:1である。
(Description of general formula (5))
R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same. X is the same as X in general formula (2), and the same preferred forms are also included. R 2 is the same as R 2 in general formula (3), and the same preferred forms are also mentioned. m and k are integers of 0 to 2; when m+k is 0, p+q≤8; when m+k is 1, p+q≤10; when m+k is 2, p+q≤12; , m+k is an integer of p+q≦14 when m+k is 3, and an integer of p+q≦16 when m+k is 4. t is an integer of 0 to 2, r is an integer of 1 or more, and s is an integer of 0 or more, provided that r + s ≤ 4 when t is 0, r + s ≤ 6 when t is 1, and t is When 2, r+s≦8.
The structural unit represented by the general formula (5) means a structural unit in which the structural unit represented by the general formula (2) and the structural unit represented by the general formula (3) are combined, and the general formula In the structural unit represented by (5), the molar ratio of the structural unit represented by general formula (2) to the structural unit represented by general formula (3) is 1:1.
(分子量、分散度)
本開示におけるアラルキル樹脂の重量平均分子量は、好ましくは300~500,000、より好ましくは300~300,000、さらに好ましくは300~200,000である。重量平均分子量を調整することにより、アルカリ溶解性や溶剤溶解性、膜としたときの物性などを調整可能である。すなわち、重量平均分子量を調整することにより、本開示におけるアラルキル樹脂の電子デバイス製造への適用性を一層高めることができる。
本開示におけるアラルキル樹脂の多分散度(重量平均分子量/数平均分子量)は、好ましくは1~40、より好ましくは1~20である。多分散度を適当な数値範囲内とすることで、例えば、均一な膜を得やすくなったり、膜としたときの機械物性が良化したりする。
重量平均分子量や多分散度は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求めることができる。
(Molecular weight, dispersity)
The weight average molecular weight of the aralkyl resin in the present disclosure is preferably 300-500,000, more preferably 300-300,000, and even more preferably 300-200,000. By adjusting the weight-average molecular weight, it is possible to adjust alkali solubility, solvent solubility, physical properties when formed into a film, and the like. That is, by adjusting the weight-average molecular weight, the applicability of the aralkyl resin of the present disclosure to the manufacture of electronic devices can be further enhanced.
The polydispersity (weight average molecular weight/number average molecular weight) of the aralkyl resin in the present disclosure is preferably 1-40, more preferably 1-20. By setting the polydispersity within an appropriate numerical range, for example, it becomes easier to obtain a uniform film, and the mechanical properties of the film are improved.
The weight average molecular weight and polydispersity can be determined by gel permeation chromatography (GPC) using polystyrene as a standard substance.
本開示のアラルキル樹脂は、エポキシ樹脂の希釈剤用に用いられることが好ましい。
また、本開示のアラルキル樹脂を含む、エポキシ樹脂の希釈剤も本明細書に開示されている。
以下、本開示のアラルキル樹脂を含む、エポキシ樹脂の希釈剤を本開示の希釈剤という。
本開示のアラルキル樹脂又は本開示の希釈剤とエポキシ樹脂とを含む硬化性樹脂組成物は、電子デバイス製造に好適な誘電率および/または誘電正接を有することが期待される。
本明細書における「希釈剤」とは、希釈対象の物質(エポキシ樹脂)と反応性を示す置換基が少ない、または反応性を示す置換基を有さない性質の物質であり、樹脂組成物中における希釈対象の物質の濃度を低下させる物質である。
希釈対象の物質がエポキシ樹脂である場合、希釈剤は、エポキシ樹脂と反応性を有する水酸基が少ない、または水酸基を有さないことが好ましい。その観点から、エポキシ樹脂の希釈剤用に用いられるアラルキル樹脂又は本開示の希釈剤は、水酸基当量が130g/当量以上であることが好ましい。また、エポキシ樹脂の希釈剤用に用いられるアラルキル樹脂又は本開示の希釈剤は水酸基を含まないことが好ましい。
The aralkyl resins of the present disclosure are preferably used as diluents for epoxy resins.
Also disclosed herein are diluents for epoxy resins, including the aralkyl resins of the present disclosure.
Hereinafter, diluents for epoxy resins, including the aralkyl resins of the present disclosure, are referred to as diluents of the present disclosure.
A curable resin composition comprising an aralkyl resin of the present disclosure or a diluent of the present disclosure and an epoxy resin is expected to have a dielectric constant and/or dissipation factor suitable for electronic device manufacturing.
As used herein, the term "diluent" refers to a substance that has few or no reactive substituents with the substance to be diluted (epoxy resin), and is used in the resin composition. It is a substance that reduces the concentration of the substance to be diluted in.
When the substance to be diluted is an epoxy resin, it is preferable that the diluent has few or no hydroxyl groups reactive with the epoxy resin. From that point of view, the aralkyl resin used for the diluent of the epoxy resin or the diluent of the present disclosure preferably has a hydroxyl equivalent weight of 130 g/equivalent or more. It is also preferred that the aralkyl resin used for the diluent of the epoxy resin or the diluent of the present disclosure does not contain hydroxyl groups.
本開示のアラルキル樹脂は、本開示のアラルキル構造を有さない樹脂と比べて溶融粘度が小さく、樹脂組成物として用いる際のハンドリング性や、押し出し成形時の微細加工性に優れる。また、本開示のアラルキル樹脂は、本開示のアラルキル構造を有さない樹脂と比べてアルカリ溶解速度が遅く、アルカリ溶解速度を適度にコントロールすることができるので、現像性や膜減りの改善を図ることができる。
また、本開示のアラルキル樹脂は、電子デバイス用途に用いるのに十分な耐熱性を有する。
The aralkyl resin of the present disclosure has a lower melt viscosity than the resin having no aralkyl structure of the present disclosure, and is excellent in handleability when used as a resin composition and fine workability during extrusion molding. In addition, the aralkyl resin of the present disclosure has a slower alkali dissolution rate than the resin having no aralkyl structure of the present disclosure, and the alkali dissolution rate can be appropriately controlled, so that the developability and film reduction are improved. be able to.
Also, the aralkyl resin of the present disclosure has sufficient heat resistance to be used in electronic device applications.
また、本開示のアラルキル樹脂は、一般式(1)及び(2)の右側の「-CHCF-」構造を設けるために、フルオラール含有の混合物を原料に用いた製法を採用することができる。この方法は、ホルムアルデヒドを原料に用いて「-CH-」構造を有するアラルキル樹脂を製造するよりも収率の高い方法となる。この点からも「-CHCF-」の構造を有する本開示のアラルキル樹脂は優れている。 In addition, the aralkyl resin of the present disclosure can employ a production method using a fluoral-containing mixture as a raw material in order to provide the “—CHCF 3 —” structure on the right side of general formulas (1) and (2). This method provides a higher yield than using formaldehyde as a raw material to produce an aralkyl resin having a “—CH 2 —” structure. From this point of view as well, the aralkyl resin of the present disclosure having the structure “—CHCF 3 —” is excellent.
<アラルキル樹脂の製造方法I-1(合成方法I-1)>
芳香族化合物と、フルオラールとを、酸触媒の存在下で反応させることで、一般式(1)または(2)で表される構造単位を有するアラルキル樹脂を製造(合成)することができる。以下、原材料や反応条件などについて説明する。
<Method for producing aralkyl resin I-1 (synthesis method I-1)>
An aralkyl resin having a structural unit represented by general formula (1) or (2) can be produced (synthesized) by reacting an aromatic compound with fluorol in the presence of an acid catalyst. Raw materials, reaction conditions, and the like are described below.
(芳香族化合物)
芳香族化合物としては、ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、イソプロピルベンゼン、nブチルベンゼン、イソブチルベンゼン、tert-ブチルベンゼン等のアルキルベンゼン類、o-キシレン、m-キシレン、p-キシレン等のキシレン類、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン、1,3,5-トリメチルベンゼン等のトリメチルベンゼン類、フルオロベンゼン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン等のハロゲン化ベンゼン類、また、ビフェニル、ナフタレン、1-メチルナフタレン、2-メチルナフタレン、1,2-ジメチルナフタレン、1,3-ジメチルナフタレン、1,4-ジメチルナフタレン、1,6-ジメチルナフタレン、2,3-ジメチルナフタレン、2,4-ジメチルナフタレン、2,5-ジメチルナフタレン、2,6-ジメチルナフタレン、1-メチルアントラセン、2-メチルアントラセン、1,2-ジメチルアントラセン、1,2,3-トリメチルアントラセン、フルオレン等の多環芳香族類も挙げることができる。
また、ジフェニルメタン、トリフェニルメタン、1,1-ジフェニルエタン、1,2-ジフェニルエタン、1,1-ジフェニルプロパン、1,2-ジフェニルプロパン、1,3-ジフェニルプロパン、2,2-ジフェニルプロパン、ヘキサフルオロ-2,2-ジフェニルプロパン、トリフルオロ-2,2-ジフェニルエタン等の芳香環を分子内に複数有する芳香族化合物類も挙げることができる。
さらに、アニリン、トルイジン、キシリジン、2-エチルアニリン、3-エチルアニリン、4-エチルアニリン、N-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N,N-ジメチルアニリン、ジフェニルアミン、N-メチルジフェニルアミン、トリフェニルアミン、カルバゾール等の芳香族アミン類や、チオフェノール、トルエンチオール、ナフタレンチオール等の芳香族チオール類、チオアニソール、ジフェニルスルフィド、ビス(p-トリル)スルフィド、ジベンゾチオフェン等の芳香族スルフィド類も挙げることができる。
(aromatic compound)
Examples of aromatic compounds include alkylbenzenes such as benzene, toluene, ethylbenzene, propylbenzene, isopropylbenzene, n-butylbenzene, isobutylbenzene and tert-butylbenzene; xylenes such as o-xylene, m-xylene and p-xylene; trimethylbenzenes such as 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene; halogenated benzenes such as fluorobenzene, chlorobenzene, bromobenzene and iodobenzene; , biphenyl, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2-dimethylnaphthalene, 1,3-dimethylnaphthalene, 1,4-dimethylnaphthalene, 1,6-dimethylnaphthalene, 2,3-dimethylnaphthalene, 2,4-dimethylnaphthalene, 2,5-dimethylnaphthalene, 2,6-dimethylnaphthalene, 1-methylanthracene, 2-methylanthracene, 1,2-dimethylanthracene, 1,2,3-trimethylanthracene, fluorene, etc. Polycyclic aromatics may also be mentioned.
In addition, diphenylmethane, triphenylmethane, 1,1-diphenylethane, 1,2-diphenylethane, 1,1-diphenylpropane, 1,2-diphenylpropane, 1,3-diphenylpropane, 2,2-diphenylpropane, Aromatic compounds having multiple aromatic rings in the molecule, such as hexafluoro-2,2-diphenylpropane and trifluoro-2,2-diphenylethane, can also be mentioned.
Furthermore, aniline, toluidine, xylidine, 2-ethylaniline, 3-ethylaniline, 4-ethylaniline, N-methylaniline, N-ethylaniline, N-propylaniline, N,N-dimethylaniline, diphenylamine, N-methyl Aromatic amines such as diphenylamine, triphenylamine and carbazole; aromatic thiols such as thiophenol, toluenethiol and naphthalenethiol; aromatics such as thioanisole, diphenylsulfide, bis(p-tolyl)sulfide and dibenzothiophene. Sulfides may also be mentioned.
(フルオラール)
フルオラールの調製は、それの等価体として市販品(東京化成工業株式会社品)の水和物やフルオラールのヘミアセタールが利用可能である。また、特開平5-97757号公報等の文献に記載の方法でフルオラールの水和物やフルオラールのヘミアセタール体を調製できる。
(fluoral)
For the preparation of fluororal, commercially available hydrates (products of Tokyo Chemical Industry Co., Ltd.) and hemiacetal of fluororal can be used as its equivalents. A hydrate of fluoral and a hemiacetal of fluoral can also be prepared by the method described in Japanese Patent Application Laid-Open No. 5-97757.
また、特開平3-184933号公報に記載の方法のとおり、安価なクロラール(トリクロロエタナール)の触媒気相フッ素化反応により、クロラールをほぼ定量的にフルオラールへ変換させることが可能である。これを利用することで、無水フルオラールを調製することもできる。後述の実施例ではこのようにしてフルオラールを得ている。 In addition, as described in JP-A-3-184933, it is possible to convert chloral to fluoral almost quantitatively by catalytic gas-phase fluorination reaction of inexpensive chloral (trichloroethanal). Anhydrous fluoral can also be prepared by utilizing this. Fluorals are obtained in this manner in the examples described later.
フルオラールは低沸点化合物であり、一般的に自己反応性が高く、取り扱いが困難な化合物である。しかし、本発明者らの知見によれば、フルオラールはフッ化水素溶液中で非常に安定に取り扱える。フルオラールをフッ化水素中で取り扱った場合、下記スキームで表す通り、フルオラールとフッ化水素からなる付加体である、1,2,2,2-テトラフルオロエタノールが生成する。 Fluorals are low-boiling compounds, generally highly self-reactive, and difficult to handle. However, according to the findings of the present inventors, fluoral can be handled very stably in a hydrogen fluoride solution. When fluoral is treated in hydrogen fluoride, 1,2,2,2-tetrafluoroethanol, which is an adduct of fluoral and hydrogen fluoride, is produced as shown in the scheme below.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
このように、1,2,2,2-テトラフルオロエタノールは、フルオラールとフッ化水素との間で平衡状態の関係となる。系内にフッ化水素が過剰に存在する場合には、平衡が1,2,2,2-テトラフルオロエタノール側に寄り、その結果、フルオラールの分解が抑制されるものと推測される。本発明者らの知見によれば、フッ化水素中のフルオラールは、化合物の安定性の向上だけではなく、沸点の上昇も確認されており、室温付近でも低沸点化合物であるフルオラールを、フッ化水素の付加体として容易に取り扱える。 Thus, 1,2,2,2-tetrafluoroethanol is in an equilibrium relationship between fluoral and hydrogen fluoride. It is presumed that when hydrogen fluoride is excessively present in the system, the equilibrium shifts toward the 1,2,2,2-tetrafluoroethanol side, and as a result, the decomposition of fluororal is suppressed. According to the findings of the present inventors, it has been confirmed that fluoral in hydrogen fluoride not only improves the stability of the compound but also raises the boiling point. It can be easily handled as an adduct of hydrogen.
調製したフルオラールをフッ化水素との混合物として取り扱う場合、用いるフッ化水素の添加量は、調製されたフルオラール1molに対し、通常0.1~100mol、好ましくは1~75mol、更に好ましくは2~50molである。フッ化水素の添加量は、十分な安定化効果と、コスト面から決定される。
また、フルオラール/フッ化水素の混合物には、過剰量のフッ化水素が含まれる場合もある。しかし、フッ化水素自身は酸性物質としての機能を有するため、フッ化水素は酸触媒や脱水剤として作用したり、反応を促進させる添加剤として作用したりする場合もある。これらの点で、フルオラールを、フッ化水素の混合物として取り扱う利点はあると言える。
When the prepared fluororal is treated as a mixture with hydrogen fluoride, the amount of hydrogen fluoride to be added is usually 0.1 to 100 mol, preferably 1 to 75 mol, more preferably 2 to 50 mol, per 1 mol of the prepared fluororal. is. The amount of hydrogen fluoride to be added is determined from the viewpoint of sufficient stabilization effect and cost.
The fluoral/hydrogen fluoride mixture may also contain excess hydrogen fluoride. However, since hydrogen fluoride itself has a function as an acidic substance, hydrogen fluoride may act as an acid catalyst or a dehydrating agent, or act as an additive that accelerates the reaction. From these points, it can be said that there is an advantage in treating fluoral as a mixture of hydrogen fluoride.
合成は、例えば-20~150℃で1~30時間の条件で行うことができる。
合成の際の圧力は、絶対圧で0.1~10MPaの条件で行うことができる。圧力は、好ましくは0.1~5MPa、より好ましくは0.1~1MPaである。高い圧力で反応する際には高圧反応容器が必要となり設備コストがかかってしまうため、できるだけ低い圧力で実施することが好ましい。
The synthesis can be carried out, for example, at -20 to 150°C for 1 to 30 hours.
The pressure during synthesis can be carried out under conditions of 0.1 to 10 MPa in terms of absolute pressure. The pressure is preferably 0.1-5 MPa, more preferably 0.1-1 MPa. When reacting at a high pressure, a high-pressure reaction vessel is required, which increases equipment costs. Therefore, it is preferable to carry out the reaction at as low a pressure as possible.
合成においては、溶媒を使用してもよい。溶媒としては、例えば、アセトン、メチルエチルケトンなどのケトン類、エタノール、ブタノールなどのアルコール類、酢酸エチル、酢酸ブチルなどエステル類、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテルなどのエーテル類、エトキシエチルアルコールなどのエーテルアルコール類、プロピレングリコールモノメチルエーテルアセテートなどのエーテルエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N,N-ジメチルイミダゾリジノンなどのアミド類、アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル類、ジメチルスルホキシドなどのスルホキシド類、スルホランなどの環状スルホン類、ニトロメタン、ニトロエタンなどのニトロ系炭化水素類、ニトロベンゼンなどのニトロ系芳香族炭化水素類などを挙げることができる。また、特に本開示のようにフルオラールを用いる場合、1,2-ジクロロエタン、クロロホルム、塩化メチレン、四塩化炭素、トリクロロエタン等のハロゲン系溶媒も好ましく使用される。 A solvent may be used in the synthesis. Examples of solvents include ketones such as acetone and methyl ethyl ketone, alcohols such as ethanol and butanol, esters such as ethyl acetate and butyl acetate, and ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, diisopropyl ether, and tert-butyl methyl ether. , ether alcohols such as ethoxyethyl alcohol, ether esters such as propylene glycol monomethyl ether acetate, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, N,N-dimethylimidazolidinone, etc. Nitriles such as amides, acetonitrile, propionitrile, and benzonitrile, sulfoxides such as dimethylsulfoxide, cyclic sulfones such as sulfolane, nitro hydrocarbons such as nitromethane and nitroethane, and nitro aromatic hydrocarbons such as nitrobenzene types can be mentioned. Halogen-based solvents such as 1,2-dichloroethane, chloroform, methylene chloride, carbon tetrachloride, and trichloroethane are also preferably used, particularly when fluoral is used as in the present disclosure.
合成の際の芳香族化合物:フルオラールのモル比は、好ましくは2:1~1:3であり、より好ましくは2:1~1:2であり、さらに好ましくは2:1~1:1である。モル比が上記範囲内であることにより、フッ素原子がアラルキル樹脂中に効率よく導入され、感光性レジスト用途に用いた際の溶剤溶解性をより好適なものにすることができ、インプリント用途に用いた際の金型との密着性をより好適なものとすることができる。 The molar ratio of aromatic compound:fluoral during synthesis is preferably 2:1 to 1:3, more preferably 2:1 to 1:2, still more preferably 2:1 to 1:1. be. When the molar ratio is within the above range, the fluorine atoms are efficiently introduced into the aralkyl resin, and the solvent solubility when used in photosensitive resist applications can be made more suitable, making it suitable for imprint applications. Adhesion to the mold when used can be made more suitable.
合成で用いることができる触媒としては、塩酸、硫酸、過塩素酸および燐酸のような無機酸、蟻酸、酢酸、蓚酸、トリクロロ酢酸およびp-トルエンスルホン酸のような有機酸、酢酸亜鉛、塩化亜鉛および酢酸マグネシウムのような二価金属塩などが挙げられる。これらは単独で用いてもよいし、2以上を組合せて用いてもよい。ちなみに、前述のように、フルオラール/フッ化水素の混合物を用いる場合、フッ化水素が酸触媒として働くと考えられる。 Catalysts that can be used in the synthesis include inorganic acids such as hydrochloric acid, sulfuric acid, perchloric acid and phosphoric acid, organic acids such as formic acid, acetic acid, oxalic acid, trichloroacetic acid and p-toluenesulfonic acid, zinc acetate, zinc chloride. and divalent metal salts such as magnesium acetate. These may be used alone or in combination of two or more. Incidentally, as mentioned above, it is believed that when a fluoral/hydrogen fluoride mixture is used, the hydrogen fluoride acts as an acid catalyst.
合成の際に酸触媒を用いる場合、酸触媒の量としては、フルオラール1モルに対して好ましくは0.01~100モルであり、より好ましくは0.1~30モルであり、さらに好ましくは0.5~25モルである。酸触媒の量を上記範囲内にすることにより、フッ素原子がアラルキル樹脂中に効率よく導入され、溶剤溶解性やインプリント用途に用いた際の金型との密着性をより好適なものとすることができる。 When an acid catalyst is used in the synthesis, the amount of the acid catalyst is preferably 0.01 to 100 mol, more preferably 0.1 to 30 mol, still more preferably 0, per 1 mol of fluoral. .5 to 25 mol. By setting the amount of the acid catalyst within the above range, fluorine atoms are efficiently introduced into the aralkyl resin, and the solvent solubility and the adhesion to the mold when used for imprinting are more suitable. be able to.
(その他補足)
得られたアラルキル樹脂については、貧溶媒(典型的には水)に投入することによる析出処理、水や重曹水での洗浄処理、分液操作などを組み合わせることにより、未反応物や不純物を除去することが好ましい。これら処理の具体的方法は、ポリマー合成における公知の方法を適宜参照することができる。
(Other supplements)
For the obtained aralkyl resin, unreacted substances and impurities are removed by combining a precipitation treatment by putting it in a poor solvent (typically water), a washing treatment with water or sodium bicarbonate water, and a liquid separation operation. preferably. For specific methods of these treatments, known methods in polymer synthesis can be appropriately referred to.
本実施形態のアラルキル樹脂は、粉体状であっても良い。また、上記粉体を任意の溶媒に溶かしてアラルキル樹脂溶液として用いることもできる。 The aralkyl resin of this embodiment may be in powder form. Alternatively, the above powder may be dissolved in any solvent and used as an aralkyl resin solution.
全反応時間は、通常、1~30時間である。反応については、核磁気共鳴装置(NMR)やガスクロマトグラフィー(GC)、液体クロマトグラフィー(LC)、ゲルパーミエーションクロマトグラフィー(GPC)等の分析機器を使用し、反応変換率が所定の値に達したのを確認した時点で反応の終点とするのが好ましい。 The total reaction time is usually 1 to 30 hours. Regarding the reaction, analytical instruments such as nuclear magnetic resonance (NMR), gas chromatography (GC), liquid chromatography (LC), and gel permeation chromatography (GPC) are used, and the reaction conversion rate reaches a predetermined value. The reaction is preferably terminated when it is confirmed that it has been reached.
<アラルキル樹脂の製造方法I-2(合成方法I-2)>
芳香族化合物と、フェノール系化合物と、フルオラールとを、酸触媒の存在下で反応させることで、一般式(1)または(2)で表される構造単位に加え、一般式(3)、(4)および/または(5)で表される構造単位を有し、分子鎖中にフェノール性水酸基および/またはアルコキシ基を有するアラルキル樹脂を製造(合成)することができる。以下、原材料や反応条件などについて説明する。
<Manufacturing method I-2 of aralkyl resin (synthesis method I-2)>
By reacting an aromatic compound, a phenolic compound, and a fluoral in the presence of an acid catalyst, in addition to the structural unit represented by general formula (1) or (2), general formula (3), ( An aralkyl resin having structural units represented by 4) and/or (5) and having phenolic hydroxyl groups and/or alkoxy groups in the molecular chain can be produced (synthesized). Raw materials, reaction conditions, and the like are described below.
(芳香族化合物)
芳香族化合物は、上記<アラルキル樹脂の製造方法I-1(合成方法I-1)>における芳香族化合物と同等である。
(aromatic compound)
The aromatic compound is the same as the aromatic compound in <Aralkyl resin production method I-1 (synthesis method I-1)>.
(フェノール系化合物)
上記フェノール系化合物としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等のクレゾール類、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等のキシレノール類、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール類、o-イソプロピルフェノール、m-イソプロピルフェノール、p-イソプロピルフェノール等のイソプロピルフェノール類、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、p-イソブチルフェノール、p-tert-ブチルフェノール等のブチルフェノール類、p-tert-アミルフェノール、p-オクチルフェノール、p-ノニルフェノール、p-クミルフェノール等のアルキルフェノール類、フルオロフェノール、クロロフェノール、ブロモフェノール、ヨードフェノール等のハロゲン化フェノール類、p-フェニルフェノール、アミノフェノール、ニトロフェノール、ジニトロフェノール、トリニトロフェノール等の1価フェノール置換体を挙げることができる。
また、1-ナフトール、2-ナフトール、2-ヒドロキシアントラセン等の多環フェノール類、ハイドロキノン、レゾルシノール、カテコールなどのジヒドロキシベンゼン類も挙げることができる。
さらに、ビスフェノールA、ビスフェノールF、ビスフェノールE、ビスフェノールS、ビスフェノールAF、ビスフェノールM、ビスフェノールP、ビスフェノールZ、1,1,1-トリフルオロ-2,2-ビス(4-ヒドロキシフェニル)エタン等のビスフェノール類も挙げることができる。
さらに、メトキシベンゼン、エトキシベンゼン、プロポキシベンゼン等のアルコキシベンゼン、1-メトキシナフタレン、2-メトキシナフタレン等のアルコキシナフタレン類、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、1,4-ジメトキシベンゼン等のジアルコキシベンゼン類、1,2-ジメトキシナフタレン、1,3-ジメトキシナフタレン、1,4-ジメトキシナフタレン、2,3-ジメトキシナフタレン、2,4-ジメトキシナフタレン等のジアルコキシナフタレン類、フルオロアニソール、クロロアニソール、ブロモアニソール、ヨードアニソール等のハロゲン化アニソール類、メトキシフェノールやメトキシナフトール等、芳香環上にフェノール性水酸基とアルコキシ基の両方を有するフェノール系化合物類も挙げることができる。
(Phenolic compound)
Examples of the phenolic compounds include phenol, cresols such as o-cresol, m-cresol and p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3 xylenols such as ,4-xylenol and 3,5-xylenol; ethylphenols such as o-ethylphenol, m-ethylphenol and p-ethylphenol; o-isopropylphenol, m-isopropylphenol, p-isopropylphenol, etc. isopropylphenols, o-butylphenol, m-butylphenol, p-butylphenol, p-isobutylphenol, butylphenols such as p-tert-butylphenol, p-tert-amylphenol, p-octylphenol, p-nonylphenol, p- Alkylphenols such as millphenol, halogenated phenols such as fluorophenol, chlorophenol, bromophenol, iodophenol, monohydric phenol substituted products such as p-phenylphenol, aminophenol, nitrophenol, dinitrophenol, trinitrophenol can be mentioned.
Also included are polycyclic phenols such as 1-naphthol, 2-naphthol and 2-hydroxyanthracene, and dihydroxybenzenes such as hydroquinone, resorcinol and catechol.
Furthermore, bisphenols such as bisphenol A, bisphenol F, bisphenol E, bisphenol S, bisphenol AF, bisphenol M, bisphenol P, bisphenol Z, 1,1,1-trifluoro-2,2-bis(4-hydroxyphenyl)ethane types can also be mentioned.
Furthermore, alkoxybenzenes such as methoxybenzene, ethoxybenzene and propoxybenzene, alkoxynaphthalenes such as 1-methoxynaphthalene and 2-methoxynaphthalene, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene and 1,4-dimethoxybenzene dialkoxybenzenes such as 1,2-dimethoxynaphthalene, 1,3-dimethoxynaphthalene, 1,4-dimethoxynaphthalene, 2,3-dimethoxynaphthalene, 2,4-dimethoxynaphthalene and other dialkoxynaphthalenes, fluoroanisole , chloroanisole, bromoanisole, iodoanisole, and other halogenated anisoles, and phenolic compounds having both a phenolic hydroxyl group and an alkoxy group on the aromatic ring, such as methoxyphenol and methoxynaphthol.
(フルオラール)
フルオラールは、上記<アラルキル樹脂の製造方法I-1(合成方法I-1)>におけるフルオラールと同等である。
(fluoral)
The fluoral is the same as the fluoral in <Aralkyl resin production method I-1 (synthesis method I-1)>.
合成は、例えば-20~150℃で1~30時間の条件で行うことができる。
合成の際の圧力は、絶対圧で0.1~10MPaの条件で行うことができる。圧力は、好ましくは0.1~5MPa、より好ましくは0.1~1MPaである。高い圧力で反応する際には高圧反応容器が必要となり設備コストがかかってしまうため、できるだけ低い圧力で実施することが好ましい。
The synthesis can be carried out, for example, at -20 to 150°C for 1 to 30 hours.
The pressure during synthesis can be carried out under conditions of 0.1 to 10 MPa in terms of absolute pressure. The pressure is preferably 0.1-5 MPa, more preferably 0.1-1 MPa. When reacting at a high pressure, a high-pressure reaction vessel is required, which increases equipment costs. Therefore, it is preferable to carry out the reaction at as low a pressure as possible.
合成においては、溶媒を使用してもよい。溶媒としては、上記<アラルキル樹脂の製造方法I-1(合成方法I-1)>における溶媒と同等である。 A solvent may be used in the synthesis. The solvent is the same as the solvent in the above <Aralkyl resin production method I-1 (synthesis method I-1)>.
合成の際の芳香族化合物:フェノール系化合物のモル比は、好ましくは99:1~1:99であり、より好ましくは95:5~5:95である。モル比が上記範囲内であることにより、フェノール性水酸基および/またはアルコキシ基がアラルキル樹脂中に効率よく導入され、感光性レジスト用途に用いた際のアルカリ溶解性や溶剤溶解性をより好適なものにすることができる。 The molar ratio of aromatic compound to phenolic compound during synthesis is preferably from 99:1 to 1:99, more preferably from 95:5 to 5:95. When the molar ratio is within the above range, the phenolic hydroxyl group and/or alkoxy group are efficiently introduced into the aralkyl resin, and the alkali solubility and solvent solubility are more suitable when used for photosensitive resist applications. can be
合成の際の芳香族化合物とフェノール系化合物の合計:フルオラールのモル比は、好ましくは2:1~1:3であり、より好ましくは2:1~1:2であり、さらに好ましくは2:1~1:1である。モル比が上記範囲内であることにより、フッ素原子がアラルキル樹脂中に効率よく導入され、感光性レジスト用途に用いた際のアルカリ溶解性や溶剤溶解性をより好適なものにすることができ、インプリント用途に用いた際の金型との密着性をより好適なものとすることができる。 The molar ratio of the sum of the aromatic compound and the phenolic compound to the fluoral during the synthesis is preferably from 2:1 to 1:3, more preferably from 2:1 to 1:2, still more preferably 2: 1 to 1:1. When the molar ratio is within the above range, fluorine atoms are efficiently introduced into the aralkyl resin, and alkali solubility and solvent solubility can be made more suitable when used for photosensitive resist applications. Adhesion to a mold when used for imprinting can be made more suitable.
合成で用いることができる触媒としては、上記<アラルキル樹脂の製造方法I-1(合成方法I-1)>における触媒と同等である。 The catalyst that can be used in the synthesis is the same as the catalyst in <Aralkyl resin production method I-1 (synthesis method I-1)>.
合成の際に酸触媒を用いる場合、酸触媒の量としては、上記<アラルキル樹脂の製造方法I-1(合成方法I-1)>における触媒量と同等である。 When an acid catalyst is used in the synthesis, the amount of the acid catalyst is the same as the amount of the catalyst in <Aralkyl resin production method I-1 (synthesis method I-1)>.
(その他補足)
得られたアラルキル樹脂については、貧溶媒(典型的には水)に投入することによる析出処理、水や重曹水での洗浄処理、分液操作などを組み合わせることにより、未反応物や不純物を除去することが好ましい。これら処理の具体的方法は、ポリマー合成における公知の方法を適宜参照することができる。
(Other supplements)
For the obtained aralkyl resin, unreacted substances and impurities are removed by combining a precipitation treatment by putting it in a poor solvent (typically water), a washing treatment with water or sodium bicarbonate water, and a liquid separation operation. preferably. For specific methods of these treatments, known methods in polymer synthesis can be appropriately referred to.
本実施形態のアラルキル樹脂は、粉体状であっても良い。また、上記粉体を任意の溶媒に溶かしてアラルキル樹脂溶液として用いることもできる。 The aralkyl resin of this embodiment may be in powder form. Alternatively, the above powder may be dissolved in any solvent and used as an aralkyl resin solution.
また、得られたフェノール性水酸基を有するアラルキル樹脂にエピクロルヒドリンを反応させること等によりエポキシ樹脂として利用することができる。また、得られたエポキシ樹脂に(メタ)アクリル酸などのカルボン酸を反応させ、エポキシ(メタ)アクリレート樹脂として利用することが可能である。さらに、得られたエポキシ(メタ)アクリレート樹脂は、酸無水物などと反応させ、酸変性エポキシ(メタ)アクリレート樹脂として利用することもできる。この際、反応させる酸無水物としては、重合性炭素-炭素不飽和結合を持つ化合物であってもよい。 Moreover, the obtained aralkyl resin having a phenolic hydroxyl group can be used as an epoxy resin by, for example, reacting epichlorohydrin. Also, the obtained epoxy resin can be reacted with a carboxylic acid such as (meth)acrylic acid and used as an epoxy (meth)acrylate resin. Furthermore, the resulting epoxy (meth)acrylate resin can be reacted with an acid anhydride or the like to be used as an acid-modified epoxy (meth)acrylate resin. At this time, the acid anhydride to be reacted may be a compound having a polymerizable carbon-carbon unsaturated bond.
全反応時間は、通常、1~30時間である。反応については、核磁気共鳴装置(NMR)やガスクロマトグラフィー(GC)、液体クロマトグラフィー(LC)、ゲルパーミエーションクロマトグラフィー(GPC)等の分析機器を使用し、反応変換率が所定の値に達したのを確認した時点で反応の終点とするのが好ましい。 The total reaction time is usually 1 to 30 hours. Regarding the reaction, analytical instruments such as nuclear magnetic resonance (NMR), gas chromatography (GC), liquid chromatography (LC), and gel permeation chromatography (GPC) are used, and the reaction conversion rate reaches a predetermined value. The reaction is preferably terminated when it is confirmed that it has been reached.
<アラルキル樹脂の製造方法II(合成方法II)>
本開示におけるアラルキル樹脂の製造方法として、以下一般式(11)または(12)で表される芳香族化合物と、フェノール系化合物を、酸触媒の存在下で反応させることで、一般式(1)または(2)で表される構造単位と、一般式(3)、(4)および/または(5)で表される構造単位を有し、分子鎖中にフェノール性水酸基および/またはアルコキシ基を有するアラルキル樹脂を製造(合成)することができる。
Figure JPOXMLDOC01-appb-C000046
一般式(11)中、Rは一般式(1)におけるRと同等であり、好ましい形態も同じものが挙げられる。nは0~2の整数であり、aは2以上の整数であり、nが0のときp+a≦6の整数であり、nが1のときp+a≦8の整数であり、nが2のときp+a≦10の整数である。Zは水酸基、炭素数1~4のアルコキシ基またはハロゲン原子を表し、Zが複数存在する場合は、それらは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000047
一般式(12)中、Rは一般式(1)におけるRと同等であり、好ましい形態も同じものが挙げられる。Xは一般式(2)におけるXと同等であり、好ましい形態も同じものが挙げられる。mおよびkは0~2の整数であり、aおよびbは1以上の整数であり、m+kが0のときp+q+a+b≦10の整数であり、m+kが1のときp+q+a+b≦12の整数であり、m+kが2のときp+q+a+b≦14の整数であり、m+kが3のときp+q+a+b≦16の整数であり、m+kが4のときp+q+a+b≦18の整数である。
<Manufacturing method II of aralkyl resin (synthesis method II)>
As a method for producing an aralkyl resin in the present disclosure, an aromatic compound represented by the following general formula (11) or (12) and a phenolic compound are reacted in the presence of an acid catalyst to obtain the general formula (1) Or having a structural unit represented by (2) and a structural unit represented by general formulas (3), (4) and/or (5), and having a phenolic hydroxyl group and/or an alkoxy group in the molecular chain It is possible to manufacture (synthesize) an aralkyl resin having
Figure JPOXMLDOC01-appb-C000046
In general formula (11), R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same. n is an integer of 0 to 2, a is an integer of 2 or more, when n is 0, it is an integer of p + a ≤ 6, when n is 1, it is an integer of p + a ≤ 8, and when n is 2 It is an integer of p+a≦10. Z represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and when multiple Zs are present, they may be the same or different.
Figure JPOXMLDOC01-appb-C000047
In general formula (12), R 1 is the same as R 1 in general formula (1), and preferred forms thereof are also the same. X is the same as X in general formula (2), and the same preferred forms are also included. m and k are integers of 0 to 2, a and b are integers of 1 or more, p + q + a + b ≤ 10 when m + k is 0, p + q + a + b ≤ 12 when m + k is 1, m + k is an integer of p+q+a+b≤14 when is 2, an integer of p+q+a+b≤16 when m+k is 3, and an integer of p+q+a+b≤18 when m+k is 4.
(一般式(11)で表される構造を有する芳香族化合物)
一般式(11)で表される構造を有する芳香族化合物は、原料の準備の容易性やコストの観点から、Zが水酸基であることが好ましい。例えば、Journal of Polymer Science (Hoboken,NJ,United States)(2020),58(16),2197-2210等、文献に記載の方法で調製できる。
(Aromatic compound having a structure represented by general formula (11))
In the aromatic compound having the structure represented by general formula (11), Z is preferably a hydroxyl group from the viewpoints of ease of preparation of raw materials and cost. For example, it can be prepared by methods described in the literature, such as Journal of Polymer Science (Hoboken, NJ, United States) (2020), 58(16), 2197-2210.
一般式(11)で表される構造を有する芳香族化合物であって、Zが水酸基である化合物は、以下一般式(13)で表される。
一般式(13)で表される芳香族化合物と、フェノール系化合物を、酸触媒の存在下で反応させることにより、一般式(4)で表される構造単位を有するアラルキル樹脂を製造することが好ましい。
Figure JPOXMLDOC01-appb-C000048
一般式(13)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、aは2以上の整数であり、nが0のときp+a≦6の整数であり、nが1のときp+a≦8の整数であり、nが2のときp+a≦10の整数である。
An aromatic compound having a structure represented by general formula (11), wherein Z is a hydroxyl group, is represented by general formula (13) below.
An aralkyl resin having a structural unit represented by general formula (4) can be produced by reacting an aromatic compound represented by general formula (13) with a phenolic compound in the presence of an acid catalyst. preferable.
Figure JPOXMLDOC01-appb-C000048
In general formula (13), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, a is an integer of 2 or more, when n is 0, it is an integer of p + a ≤ 6, when n is 1, it is an integer of p + a ≤ 8, and n is 2 is an integer of p+a≤10 when
(一般式(12)で表される構造を有する芳香族化合物)
一般式(12)で表される構造を有する芳香族化合物は、原料の準備の容易性やコストの観点から、Zが水酸基であることが好ましい。例えば、Chinese Journal of Chemistry(2020),38(9),952-958等、文献に記載の方法で調製できる。
(Aromatic compound having a structure represented by general formula (12))
In the aromatic compound having the structure represented by general formula (12), Z is preferably a hydroxyl group from the viewpoint of ease of preparation of raw materials and cost. For example, it can be prepared by methods described in literature such as Chinese Journal of Chemistry (2020), 38(9), 952-958.
一般式(12)で表される構造を有する芳香族化合物であって、Zが水酸基である化合物は、以下一般式(14)で表される。
一般式(14)で表される芳香族化合物と、フェノール系化合物を、酸触媒の存在下で反応させることにより、一般式(5)で表される構造単位を有するアラルキル樹脂を製造することが好ましい。
Figure JPOXMLDOC01-appb-C000049
一般式(14)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、aおよびbは1以上の整数であり、m+kが0のときp+q+a+b≦10の整数であり、m+kが1のときp+q+a+b≦12の整数であり、m+kが2のときp+q+a+b≦14の整数であり、m+kが3のときp+q+a+b≦16の整数であり、m+kが4のときp+q+a+b≦18の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。
An aromatic compound having a structure represented by general formula (12), wherein Z is a hydroxyl group, is represented by general formula (14) below.
An aralkyl resin having a structural unit represented by general formula (5) can be produced by reacting an aromatic compound represented by general formula (14) with a phenolic compound in the presence of an acid catalyst. preferable.
Figure JPOXMLDOC01-appb-C000049
In general formula (14), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, a and b are integers of 1 or more, p + q + a + b ≤ 10 when m + k is 0, and p + q + a + b ≤ 12 when m + k is 1. , p + q + a + b ≤ 14 when m + k is 2, p + q + a + b ≤ 16 when m + k is 3, p + q + a + b ≤ 18 when m + k is 4, and X is a single bond or excluding an oxygen atom It is a divalent substituent.
合成は、例えば-20~150℃で2~30時間の条件で行うことができる。
合成の際の圧力は、絶対圧で0.1~10MPaの条件で行うことができる。圧力は、好ましくは0.1~5MPa、より好ましくは0.1~1MPaである。高い圧力で反応する際には高圧反応容器が必要となり設備コストがかかってしまうため、できるだけ低い圧力で実施することが好ましい。
The synthesis can be carried out, for example, at -20 to 150°C for 2 to 30 hours.
The pressure during synthesis can be carried out under conditions of 0.1 to 10 MPa in terms of absolute pressure. The pressure is preferably 0.1-5 MPa, more preferably 0.1-1 MPa. When reacting at a high pressure, a high-pressure reaction vessel is required, which increases equipment costs. Therefore, it is preferable to carry out the reaction at as low a pressure as possible.
合成においては、溶媒を使用してもよい。溶媒としては、例えば、アセトン、メチルエチルケトンなどのケトン類、エタノール、ブタノールなどのアルコール類、酢酸エチル、酢酸ブチルなどエステル類、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、tert-ブチルメチルエーテルなどのエーテル類、エトキシエチルアルコールなどのエーテルアルコール類、プロピレングリコールモノメチルエーテルアセテートなどのエーテルエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N,N-ジメチルイミダゾリジノンなどのアミド類、アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル類、ジメチルスルホキシドなどのスルホキシド類、スルホランなどの環状スルホン類、ニトロメタン、ニトロエタンなどのニトロ系炭化水素類、ニトロベンゼンなどのニトロ系芳香族炭化水素類などを挙げることができる。また、1,2-ジクロロエタン、クロロホルム、塩化メチレン、四塩化炭素、トリクロロエタン等のハロゲン系溶媒も好ましく使用される。 A solvent may be used in the synthesis. Examples of solvents include ketones such as acetone and methyl ethyl ketone, alcohols such as ethanol and butanol, esters such as ethyl acetate and butyl acetate, and ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, diisopropyl ether, and tert-butyl methyl ether. , ether alcohols such as ethoxyethyl alcohol, ether esters such as propylene glycol monomethyl ether acetate, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, N,N-dimethylimidazolidinone, etc. Nitriles such as amides, acetonitrile, propionitrile, and benzonitrile, sulfoxides such as dimethylsulfoxide, cyclic sulfones such as sulfolane, nitro hydrocarbons such as nitromethane and nitroethane, and nitro aromatic hydrocarbons such as nitrobenzene types can be mentioned. Halogen solvents such as 1,2-dichloroethane, chloroform, methylene chloride, carbon tetrachloride and trichloroethane are also preferably used.
合成の際の一般式(11)または(12)で表される芳香族化合物:フェノール系化合物のモル比は、好ましくは1:5~2:1であり、より好ましくは1:3~1:1である。モル比が上記範囲内であることにより、フッ素原子がアラルキル樹脂中に効率よく導入され、感光性レジスト用途に用いた際のアルカリ溶解性や溶剤溶解性をより好適なものにすることができ、インプリント用途に用いた際の金型との密着性をより好適なものとすることができる。 The molar ratio of the aromatic compound represented by the general formula (11) or (12) to the phenol compound during synthesis is preferably 1:5 to 2:1, more preferably 1:3 to 1: 1. When the molar ratio is within the above range, fluorine atoms are efficiently introduced into the aralkyl resin, and alkali solubility and solvent solubility can be made more suitable when used for photosensitive resist applications. Adhesion to a mold when used for imprinting can be made more suitable.
合成で用いることができる触媒としては、塩酸、硫酸、フッ化水素、過塩素酸および燐酸のような無機酸、蟻酸、酢酸、蓚酸、トリクロロ酢酸、メタンスルホン酸およびp-トルエンスルホン酸のような有機酸、酢酸亜鉛、塩化亜鉛および酢酸マグネシウムのような二価金属塩などが挙げられる。これらは単独で用いてもよいし、2以上を組合せて用いてもよい。 Catalysts that can be used in the synthesis include inorganic acids such as hydrochloric acid, sulfuric acid, hydrogen fluoride, perchloric acid and phosphoric acid; Organic acids, divalent metal salts such as zinc acetate, zinc chloride and magnesium acetate, and the like. These may be used alone or in combination of two or more.
合成の際に酸触媒を用いる場合、酸触媒の量としては、一般式(11)または(12)で表される芳香族化合物1モルに対して好ましくは0.01~100モルであり、より好ましくは0.01~30モルである。酸触媒の量を上記範囲内にすることにより、フッ素原子がアラルキル樹脂中に効率よく導入され、アルカリ溶解性やインプリント用途に用いた際の金型との密着性をより好適なものとすることができる。 When an acid catalyst is used in the synthesis, the amount of the acid catalyst is preferably 0.01 to 100 mol per 1 mol of the aromatic compound represented by the general formula (11) or (12). It is preferably 0.01 to 30 mol. By setting the amount of the acid catalyst within the above range, fluorine atoms are efficiently introduced into the aralkyl resin, and alkali solubility and adhesion to the mold when used for imprinting are more suitable. be able to.
(その他補足)
得られたアラルキル樹脂については、貧溶媒(典型的には水)に投入することによる析出処理、水や重曹水での洗浄処理、分液操作などを組み合わせることにより、未反応物や不純物を除去することが好ましい。これら処理の具体的方法は、ポリマー合成における公知の方法を適宜参照することができる。
(Other supplements)
For the obtained aralkyl resin, unreacted substances and impurities are removed by combining a precipitation treatment by putting it in a poor solvent (typically water), a washing treatment with water or sodium bicarbonate water, and a liquid separation operation. preferably. For specific methods of these treatments, known methods in polymer synthesis can be appropriately referred to.
本実施形態のアラルキル樹脂は、粉体状であっても良い。また、上記粉体を任意の溶媒に溶かしてアラルキル樹脂溶液として用いることもできる。 The aralkyl resin of this embodiment may be in powder form. Alternatively, the above powder may be dissolved in any solvent and used as an aralkyl resin solution.
また、得られたフェノール性水酸基を有するアラルキル樹脂にエピクロルヒドリンを反応させること等によりエポキシ樹脂として利用することができる。また、得られたエポキシ樹脂に(メタ)アクリル酸などのカルボン酸を反応させ、エポキシ(メタ)アクリレート樹脂として利用することが可能である。さらに、得られたエポキシ(メタ)アクリレート樹脂は、酸無水物などと反応させ、酸変性エポキシ(メタ)アクリレート樹脂として利用することもできる。この際、反応させる酸無水物としては、重合性炭素-炭素結合を持つ化合物であってもよい。 Moreover, the obtained aralkyl resin having a phenolic hydroxyl group can be used as an epoxy resin by, for example, reacting epichlorohydrin. Also, the obtained epoxy resin can be reacted with a carboxylic acid such as (meth)acrylic acid and used as an epoxy (meth)acrylate resin. Furthermore, the resulting epoxy (meth)acrylate resin can be reacted with an acid anhydride or the like to be used as an acid-modified epoxy (meth)acrylate resin. At this time, the acid anhydride to be reacted may be a compound having a polymerizable carbon-carbon bond.
全反応時間は、通常、1~30時間である。反応については、核磁気共鳴装置(NMR)やガスクロマトグラフィー(GC)、液体クロマトグラフィー(LC)、ゲルパーミエーションクロマトグラフィー(GPC)等の分析機器を使用し、反応変換率が所定の値に達したのを確認した時点で反応の終点とするのが好ましい。 The total reaction time is usually 1 to 30 hours. Regarding the reaction, analytical instruments such as nuclear magnetic resonance (NMR), gas chromatography (GC), liquid chromatography (LC), and gel permeation chromatography (GPC) are used, and the reaction conversion rate reaches a predetermined value. The reaction is preferably terminated when it is confirmed that it has been reached.
<<樹脂組成物>>
本開示におけるアラルキル樹脂は、本開示におけるアラルキル樹脂とは異なる各成分と混合することにより、樹脂組成物として利用することができる。
<<resin composition>>
The aralkyl resin in the present disclosure can be used as a resin composition by mixing with each component different from the aralkyl resin in the present disclosure.
<本開示における硬化性樹脂組成物>
本開示におけるアラルキル樹脂及び本開示の希釈剤の応用先として、硬化性樹脂組成物を挙げることができる。
例えば、本開示におけるアラルキル樹脂をエポキシ樹脂と組み合わせて用いることで、硬化性樹脂組成物を製造することができる。この場合、本開示におけるアラルキル樹脂は、エポキシ樹脂の硬化剤として働く場合もあれば、希釈剤として働く場合もある。本開示におけるアラルキル樹脂が水酸基等のエポキシ樹脂と反応性を示す置換基を有する場合、本開示のアラルキル樹脂はエポキシ樹脂の硬化剤として働く。本開示におけるアラルキル樹脂が水酸基等のエポキシ樹脂と反応性を示す置換基を有しない場合、本開示のアラルキル樹脂はエポキシ樹脂の希釈剤として働く。
本開示におけるアラルキル樹脂は、フッ素原子を含む。よって、本開示におけるアラルキル樹脂を含む硬化性樹脂組成物により形成された硬化物は、電子デバイス製造に好適な誘電率および/または誘電正接を有することが期待される。
<Curable resin composition in the present disclosure>
A curable resin composition can be mentioned as an application destination of the aralkyl resin in the present disclosure and the diluent in the present disclosure.
For example, a curable resin composition can be produced by using an aralkyl resin in the present disclosure in combination with an epoxy resin. In this case, the aralkyl resin in the present disclosure may act as a curing agent or a diluent for the epoxy resin. When the aralkyl resin in the present disclosure has a substituent, such as a hydroxyl group, that exhibits reactivity with the epoxy resin, the aralkyl resin in the present disclosure acts as a curing agent for the epoxy resin. When the aralkyl resin of the present disclosure does not have substituents, such as hydroxyl groups, that are reactive with the epoxy resin, the aralkyl resin of the present disclosure acts as a diluent for the epoxy resin.
Aralkyl resins in the present disclosure contain fluorine atoms. Therefore, a cured product formed from a curable resin composition containing an aralkyl resin in the present disclosure is expected to have a dielectric constant and/or dielectric loss tangent suitable for electronic device manufacture.
(エポキシ樹脂)
本開示におけるアラルキル樹脂と組み合わせるエポキシ樹脂は特に制限されず、公知のエポキシ樹脂を用いてよい。公知のエポキシ樹脂としては、2官能型エポキシ樹脂、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、ビスフェノールA-アルキレンオキサイド付加体のジグリシジルエーテル、ビスフェノールFのアルキレンオキサイド付加体のジグリシジルエーテル、ビスフェノールS型エポキシ樹脂、テトラメチルビスフェノールA型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、チオジフェノール型エポキシ樹脂、ジヒドロキシジフェニルエーテル型エポキシ樹脂、テルペンジフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、メチルハイドロキノン型エポキシ樹脂、ジブチルハイドロキノン型エポキシ樹脂、レゾルシン型エポキシ樹脂、メチルレゾルシン型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、1,1,1-トリフルオロ-2,2-ビス(4-グリシジルオキシフェニル)エタンなどを挙げることができる。
(Epoxy resin)
The epoxy resin to be combined with the aralkyl resin in the present disclosure is not particularly limited, and known epoxy resins may be used. Known epoxy resins include bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, bisphenol AD type epoxy resin, hydrogenated bisphenol A type epoxy resin, and hydrogenated bisphenol. F type epoxy resin, diglycidyl ether of bisphenol A-alkylene oxide adduct, diglycidyl ether of bisphenol F alkylene oxide adduct, bisphenol S type epoxy resin, tetramethylbisphenol A type epoxy resin, tetramethylbisphenol F type epoxy resin , thiodiphenol-type epoxy resin, dihydroxydiphenyl ether-type epoxy resin, terpene diphenol-type epoxy resin, biphenol-type epoxy resin, tetramethylbiphenol-type epoxy resin, hydroquinone-type epoxy resin, methylhydroquinone-type epoxy resin, dibutylhydroquinone-type epoxy resin, Resorcinol-type epoxy resins, methylresorcinol-type epoxy resins, dihydroxynaphthalene-type epoxy resins, 1,1,1-trifluoro-2,2-bis(4-glycidyloxyphenyl)ethane and the like can be mentioned.
また、多官能型エポキシ樹脂として、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールAFノボラック型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、テルペンフェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザール、フルオラール等の種々のアルデヒド類との縮合反応で得られる多価フェノール樹脂、石油系重質油またはピッチ類とホルムアルデヒド重合物とフェノール類とを酸触媒の存在下に重縮合させた変性フェノール樹脂等の各種の芳香族化合物と、エピハロヒドリンとから製造されるエポキシ樹脂、トリグリシジルイソシアヌレート、などを挙げることができる。 Examples of polyfunctional epoxy resins include phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol A novolak epoxy resin, bisphenol AF novolak epoxy resin, dicyclopentadiene phenol epoxy resin, and terpene phenol epoxy resin. , phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol novolak type epoxy resin, polyhydric phenol resin obtained by condensation reaction with various aldehydes such as hydroxybenzaldehyde, crotonaldehyde, glyoxal, fluoral, petroleum heavy Epoxy resins, triglycidyl isocyanurates, etc. produced from various aromatic compounds such as modified phenolic resins obtained by polycondensing oils or pitches, formaldehyde polymers and phenols in the presence of acid catalysts, and epihalohydrin. can be mentioned.
さらに、ジアミノジフェニルメタン、アミノフェノール、キシレンジアミン等の種々のアミン化合物と、エピハロヒドリンとから製造されるエポキシ樹脂、メチルヘキサヒドロキシフタル酸、ダイマー酸等の種々のカルボン酸類と、エピハロヒドリンとから製造されるエポキシ樹脂、脂肪族アルコールのグリシジルエーテル等のエポキシ樹脂用希釈剤、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートに代表される脂環式エポキシ樹脂、なども挙げられる。 Furthermore, epoxy resins produced from various amine compounds such as diaminodiphenylmethane, aminophenol and xylenediamine and epihalohydrin, and epoxy resins produced from various carboxylic acids such as methylhexahydroxyphthalic acid and dimer acid and epihalohydrin Resins, diluents for epoxy resins such as glycidyl ethers of aliphatic alcohols, alicyclic epoxy resins represented by 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate, and the like are also included.
本開示におけるアラルキル樹脂とエポキシ樹脂の量比については、エポキシ樹脂のエポキシ当量などを踏まえて、適切に設計すればよい。典型的には、質量比において、本開示におけるアラルキル樹脂:エポキシ樹脂=1:10~10:1程度である。 The amount ratio of the aralkyl resin and the epoxy resin in the present disclosure may be appropriately designed based on the epoxy equivalent of the epoxy resin. Typically, the mass ratio of aralkyl resin to epoxy resin in the present disclosure is about 1:10 to 10:1.
(硬化剤)
本開示における硬化性樹脂組成物は、本開示におけるアラルキル樹脂以外の硬化剤を含んでも良い。本開示における硬化性樹脂組成物が硬化剤を含む場合、硬化剤の種類は特に限定されない。硬化剤としては、例えばアミン系硬化剤、酸無水物系硬化剤、フェノール系硬化剤などを挙げることができる。
(curing agent)
The curable resin composition in the present disclosure may contain curing agents other than the aralkyl resin in the present disclosure. When the curable resin composition in the present disclosure contains a curing agent, the type of curing agent is not particularly limited. Examples of curing agents include amine-based curing agents, acid anhydride-based curing agents, and phenol-based curing agents.
アミン系硬化剤としてより具体的には、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、N-アミノエチルピペラジン、イソホロンジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン、m-キシリレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5,5]ウンデカン等の脂肪族および脂環族アミン類、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン類、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ-(5,4,0)-ウンデセン-7、1,5-ジアザビシクロ-(4,3,0)-ノネン-7等の3級アミン類およびその塩類、などを挙げることができる。 More specifically, the amine curing agent includes diethylenetriamine, triethylenetetramine, tetraethylenepentamine, N-aminoethylpiperazine, isophoronediamine, bis(4-aminocyclohexyl)methane, bis(aminomethyl)cyclohexane, m-xyl Aliphatic and alicyclic amines such as diamine, 3,9-bis(3-aminopropyl)-2,4,8,10-tetraspiro[5,5]undecane, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenyl aromatic amines such as sulfone, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo-(5,4,0)-undecene-7,1,5-diazabicyclo- Tertiary amines such as (4,3,0)-nonene-7 and salts thereof, and the like can be mentioned.
酸無水物系硬化剤としてより具体的には、無水フタル酸、無水トリメリット酸、無水ピロメリット酸等の芳香族酸無水物類、無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水メチルエンドメチレンテトラヒドロフタル酸、無水トリアルキルテトラヒドロフタル酸等の脂環式酸無水物類、などを挙げることができる。 More specifically, the acid anhydride curing agent includes aromatic acid anhydrides such as phthalic anhydride, trimellitic anhydride and pyromellitic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride. alicyclic acid anhydrides such as acids, methylhexahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, and the like.
フェノール系硬化剤としてより具体的には、カテコール、レゾルシン、ハイドロキノン、ビスフェノールF、ビスフェノールA、ビスフェノールAF、ビスフェノールS、ビフェノール、1,1,1-トリフルオロ-2,2-ビス(4-ヒドロキシフェニル)エタン等の2価フェノール類、フェノールノボラック類、クレゾールノボラック類、ビスフェノールAノボラック類、トリスヒドロキシフェニルメタン類、アラルキルポリフェノール類や、ヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザール、フルオラール等の種々のアルデヒド類とフェノール系化合物およびビスフェノール系化合物との縮合反応で得られる多価フェノール樹脂、石油系重質油またはピッチ類とホルムアルデヒド重合物とフェノール類とを酸触媒の存在下に重縮合させた変性フェノール樹脂等の各種のフェノール系化合物などを挙げることができる。 More specifically, phenolic curing agents include catechol, resorcinol, hydroquinone, bisphenol F, bisphenol A, bisphenol AF, bisphenol S, biphenol, 1,1,1-trifluoro-2,2-bis(4-hydroxyphenyl ) dihydric phenols such as ethane, phenol novolacs, cresol novolaks, bisphenol A novolaks, trishydroxyphenylmethanes, aralkylpolyphenols, and various aldehydes and phenols such as hydroxybenzaldehyde, crotonaldehyde, glyoxal, and fluoral polyhydric phenol resin obtained by condensation reaction with bisphenol-based compounds, modified phenol resin obtained by polycondensation of heavy petroleum oil or pitches, formaldehyde polymer and phenols in the presence of an acid catalyst, etc. Various phenolic compounds and the like can be mentioned.
その他、硬化剤としては、イミダゾール系化合物およびその塩類、アミンのBF錯体化合物、脂肪族スルホニウム塩、芳香族スルホニウム塩、ヨードニウム塩およびホスホニウム塩等のブレンステッド酸塩類、ジシアンジアミド、アジピン酸ジヒドラジッドおよびフタル酸ジヒドラジッド等の有機酸ヒドラジッド類、アジピン酸、セバシン酸、テレフタル酸、トリメリット酸およびカルボキシル基含有ポリエステル等のポリカルボン酸類、なども挙げられる。 Other curing agents include imidazole compounds and their salts, amine BF3 complex compounds, aliphatic sulfonium salts, aromatic sulfonium salts, iodonium salts and Bronsted acid salts such as phosphonium salts, dicyandiamide, adipic acid dihydrazide and phthalate. Also included are organic acid hydrazides such as acid dihydrazides, adipic acid, sebacic acid, terephthalic acid, trimellitic acid, and polycarboxylic acids such as carboxyl group-containing polyesters.
本開示における硬化性樹脂組成物が硬化剤を含む場合、1のみの硬化剤を含んでもよいし、2以上の異なる化学構造の硬化剤を含んでもよい。
本開示における硬化性樹脂組成物が硬化剤を含む場合、その量は、エポキシ樹脂のエポキシ当量などを踏まえて適宜調整すればよい。典型的には、硬化剤を用いる場合、その量は、エポキシ樹脂100質量部に対して0.1~1,000質量部程度である。
When the curable resin composition in the present disclosure contains a curing agent, it may contain only one curing agent, or may contain curing agents with two or more different chemical structures.
When the curable resin composition in the present disclosure contains a curing agent, the amount thereof may be appropriately adjusted based on the epoxy equivalent of the epoxy resin and the like. Typically, when a curing agent is used, its amount is about 0.1 to 1,000 parts by weight with respect to 100 parts by weight of the epoxy resin.
(硬化促進剤)
硬化速度を速めたり、かつ/または、硬化をより完全にしたりする観点から、本開示における硬化性樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤としては、3級アミン類、イミダゾール類、有機ホスフィン化合物類またはこれらの塩類、オクチル酸亜鉛、オクチル酸スズ等の金属石鹸類といった、一般のエポキシ樹脂向けの硬化促進剤を用いることができる。
(Curing accelerator)
From the viewpoint of accelerating the curing speed and/or making the curing more complete, the curable resin composition in the present disclosure may contain a curing accelerator. As curing accelerators, curing accelerators for general epoxy resins such as tertiary amines, imidazoles, organic phosphine compounds or their salts, metal soaps such as zinc octylate and tin octylate can be used. can.
本開示における硬化性樹脂組成物が硬化促進剤を含む場合、1のみの硬化促進剤を含んでもよいし、2以上の異なる化学構造の硬化促進剤を含んでもよい。
本開示における硬化性樹脂組成物が硬化促進剤を含む場合、その量は適宜調整すればよい。典型的には、硬化促進剤を用いる場合、その量は、エポキシ樹脂100質量部に対して0.001~10質量部程度である。
When the curable resin composition in the present disclosure contains a curing accelerator, it may contain only one curing accelerator, or may contain two or more curing accelerators with different chemical structures.
When the curable resin composition in the present disclosure contains a curing accelerator, the amount may be adjusted as appropriate. Typically, when a curing accelerator is used, its amount is about 0.001 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin.
(その他成分)
本開示における硬化性樹脂組成物は、上記成分のほか、任意の成分を1または2以上含むことができる。任意の成分としては、酸化防止剤、充填剤(フィラー)、着色剤、アラルキル樹脂以外の樹脂、硬化性モノマー、オリゴマー、有機溶剤などが挙げられる。
(Other ingredients)
The curable resin composition in the present disclosure can contain one or more optional components in addition to the above components. Optional components include antioxidants, fillers, colorants, resins other than aralkyl resins, curable monomers, oligomers, and organic solvents.
酸化防止剤としては、フェノール系、硫黄系、リン系酸化防止剤などが挙げられる。酸化防止剤を用いる場合、その量は、アラルキル樹脂100質量部に対して通常0.005~5質量部、好ましくは0.01~1質量部である。 Examples of antioxidants include phenol-based, sulfur-based, and phosphorus-based antioxidants. When an antioxidant is used, its amount is usually 0.005 to 5 parts by weight, preferably 0.01 to 1 part by weight, per 100 parts by weight of the aralkyl resin.
充填剤(フィラー)としては、酸化アルミニウム、酸化マグネシウム等の金属酸化物、微粉末シリカ、溶融シリカ、結晶シリカ等のケイ素化合物、ガラスビーズ、水酸化アルミニウム等の金属水酸化物、金、銀、銅、アルミニウム等の金属類、ポリテトラフルオロエチレン粒子等のフッ素樹脂粉末、カーボン、ゴム類、カオリン、マイカ、石英粉末、グラファイト、二硫化モリブデン、窒化ホウ素等を挙げることができる。
充填剤(フィラー)を用いる場合、その量は、アラルキル樹脂100質量部に対して、例えば1,500質量部以下、好ましくは0.1~1,500質量部である。
Fillers (fillers) include metal oxides such as aluminum oxide and magnesium oxide, silicon compounds such as fine powder silica, fused silica and crystalline silica, glass beads, metal hydroxides such as aluminum hydroxide, gold, silver, Metals such as copper and aluminum, fluororesin powders such as polytetrafluoroethylene particles, carbon, rubbers, kaolin, mica, quartz powder, graphite, molybdenum disulfide, and boron nitride can be used.
When a filler is used, its amount is, for example, 1,500 parts by mass or less, preferably 0.1 to 1,500 parts by mass, based on 100 parts by mass of the aralkyl resin.
着色剤としては、二酸化チタン、モリブデン赤、紺青、群青、カドミウム黄、カドミウム赤などの無機顔料、有機顔料、カーボンブラック、蛍光体等を挙げることができる。
着色剤を用いる場合、その量は、アラルキル樹脂100質量部に対して、通常0.01~30質量部である。
Examples of the coloring agent include inorganic pigments such as titanium dioxide, molybdenum red, Prussian blue, ultramarine blue, cadmium yellow, and cadmium red, organic pigments, carbon black, phosphors, and the like.
When a coloring agent is used, its amount is usually 0.01 to 30 parts by weight per 100 parts by weight of the aralkyl resin.
難燃剤としては、三酸化アンチモン、ブロム化合物、リン化合物等を挙げることができる。難燃剤を用いる場合、その量は、アラルキル樹脂100質量部に対して、通常0.01~30質量部である。 Examples of flame retardants include antimony trioxide, bromine compounds, phosphorus compounds, and the like. When a flame retardant is used, its amount is usually 0.01 to 30 parts by weight per 100 parts by weight of the aralkyl resin.
エポキシ樹脂以外の樹脂としては、(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、スチレン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミド酸樹脂、活性エステル樹脂等を挙げることができる。その量は、樹脂組成物の固形分100質量部に対して、通常0.01~30質量部である。 Examples of resins other than epoxy resins include (meth)acrylate resins, epoxy (meth)acrylate resins, styrene resins, polyimide resins, polyamide resins, polyamic acid resins, active ester resins, and the like. The amount thereof is usually 0.01 to 30 parts by mass with respect to 100 parts by mass of the solid content of the resin composition.
硬化性モノマー、オリゴマーとしては、ベンゾオキサジン化合物、マレイミド化合物等を挙げることができる。その量は、樹脂組成物の固形分100質量部に対して、通常0.01~30質量部である。 Examples of curable monomers and oligomers include benzoxazine compounds and maleimide compounds. The amount thereof is usually 0.01 to 30 parts by mass with respect to 100 parts by mass of the solid content of the resin composition.
有機溶剤としては、アセトン、メチルエチルケトン、メチルアミルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル類、エチレングリコールモノメチルエーテル等のエーテル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、メタノール、エタノール等のアルコール類、トルエン、キシレン等の炭化水素系類のうち、1または2以上を挙げることができる。
本実施形態の硬化性樹脂組成物は、溶剤を含むものであってもよく、固形状でもワニス状でもよい。
Examples of organic solvents include ketones such as acetone, methyl ethyl ketone, methyl amyl ketone, methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and amyl acetate; ethers such as ethylene glycol monomethyl ether; One or more of amides such as formamide and N,N-dimethylacetamide, alcohols such as methanol and ethanol, and hydrocarbons such as toluene and xylene can be used.
The curable resin composition of the present embodiment may contain a solvent, and may be solid or varnish-like.
本開示のアラルキル樹脂を含む硬化性樹脂組成物の硬化物は、電子デバイス用途に用いるのに十分な耐熱性を有する。
また、本開示のアラルキル樹脂を含む硬化性樹脂組成物は、本開示のアラルキル構造を有さない樹脂を含む硬化性樹脂組成物と比べて、硬化物の吸水率が低くなる。硬化物の吸水率が低いことは、誘電特性や絶縁信頼性の観点から、電子デバイスに利用する際に有効である。
A cured product of a curable resin composition containing the aralkyl resin of the present disclosure has sufficient heat resistance to be used for electronic devices.
Moreover, the curable resin composition containing the aralkyl resin of the present disclosure has a lower water absorption rate of the cured product than the curable resin composition containing the resin having no aralkyl structure of the present disclosure. The low water absorption of the cured product is effective when used in electronic devices from the viewpoint of dielectric properties and insulation reliability.
<感光性樹脂組成物>
本開示におけるアラルキル樹脂の応用先として、感光性樹脂組成物を好ましく挙げることができる。具体的には、本開示におけるアラルキル樹脂と、少なくとも感光剤とを混合することで、感光性樹脂組成物を調製することができる。
既に述べたように、アラルキル樹脂の、特定の光の透過性、および/または、アルカリ溶解性は良好な傾向がある。このような良好な特性を有するアラルキル樹脂を用いることで、良好な性能を有する感光性樹脂組成物を調製することができる。特に、本明細書における感光性樹脂組成物は、フォトレジスト組成物、すなわち、フォトマスクを用いた露光とその後の現像によりパターニング可能であり、電子デバイス製造におけるエッチングなどの処理から基板表面を選択的に保護することが可能な組成物として有用である。これは、アラルキル樹脂の、特定の光の透過性、アルカリ溶解性、および、アラルキル樹脂が含む芳香環の耐エッチング性による。
<Photosensitive resin composition>
A photosensitive resin composition can be preferably mentioned as an application destination of the aralkyl resin in the present disclosure. Specifically, a photosensitive resin composition can be prepared by mixing the aralkyl resin of the present disclosure with at least a photosensitive agent.
As already mentioned, aralkyl resins tend to have good transparency to certain light and/or alkali solubility. By using an aralkyl resin having such good properties, a photosensitive resin composition having good performance can be prepared. In particular, the photosensitive resin composition herein can be patterned by exposure using a photoresist composition, ie, a photomask, followed by development, and selectively protects the substrate surface from processing such as etching in the manufacture of electronic devices. It is useful as a composition capable of protecting against This is due to the specific light transmittance, alkali solubility, and etching resistance of the aromatic ring contained in the aralkyl resin.
また、上述の感光性樹脂組成物は、ソルダーレジスト組成物や、インプリント組成物、すなわち、光によりパターニング可能であり、電子デバイス製造におけるエッチングなどの処理から基板表面を選択的に保護することが可能な組成物としても有用である。これは、上述の特定の光の透過性、および、アラルキル樹脂が含む芳香環の耐エッチング性による。 In addition, the above-mentioned photosensitive resin composition can be patterned by a solder resist composition or an imprint composition, that is, by light, and can selectively protect the substrate surface from processing such as etching in the manufacture of electronic devices. It is also useful as a possible composition. This is due to the specific light transmittance described above and the etching resistance of the aromatic ring contained in the aralkyl resin.
本開示におけるアラルキル樹脂の量は、感光性樹脂組成物の全不揮発成分中、例えば20~99質量%、好ましくは50~98質量%である。 The amount of the aralkyl resin in the present disclosure is, for example, 20 to 99% by weight, preferably 50 to 98% by weight, based on the total non-volatile components of the photosensitive resin composition.
感光性樹脂組成物に本開示におけるアラルキル樹脂を用いる場合、感光剤としては、典型的にはキノンジアジド化合物が用いられる。キノンジアジド化合物は、特に、ポジ型の感光性樹脂組成物を調製する際に好ましく用いられる。使用可能なキノンジアジド化合物に特に制限はない。キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物やポリアミノ化合物の官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。 When the aralkyl resin of the present disclosure is used in the photosensitive resin composition, a quinonediazide compound is typically used as the photosensitive agent. A quinonediazide compound is particularly preferably used when preparing a positive photosensitive resin composition. There are no particular restrictions on the quinonediazide compounds that can be used. Examples of the quinonediazide compound include those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy compound via an ester bond, the sulfonic acid of quinonediazide to a polyamino compound in a sulfonamide bond, and the sulfonic acid of quinonediazide to a polyhydroxypolyamino compound in an ester bond and/or a sulfone bond. Examples thereof include those with an amide bond. It is preferable that 50 mol % or more of all the functional groups of these polyhydroxy compounds and polyamino compounds are substituted with quinonediazide.
キノンジアジドの構造単位としては、5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。4-ナフトキノンジアジドスルホニルエステル化合物はi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物はg線領域まで吸収が伸びており、g線露光に適している。露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基、5-ナフトキノンジアジドスルホニル基を有するナフトキノンジアジドスルホニルエステル化合物を含有してもよいし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物の両方を含有してもよい。 As the structural unit of quinonediazide, both a 5-naphthoquinonediazidesulfonyl group and a 4-naphthoquinonediazidesulfonyl group are preferably used. A 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region and is suitable for i-line exposure. A 5-naphthoquinonediazide sulfonyl ester compound has absorption extending to the g-line region and is suitable for g-line exposure. It is preferable to select a 4-naphthoquinonediazide sulfonyl ester compound or a 5-naphthoquinone diazidesulfonyl ester compound depending on the wavelength of exposure. Further, a naphthoquinonediazide sulfonyl ester compound having a 4-naphthoquinonediazidesulfonyl group and a 5-naphthoquinonediazidesulfonyl group in the same molecule may be contained, and a 4-naphthoquinonediazide sulfonyl ester compound and a 5-naphthoquinonediazide sulfonyl ester compound may be contained. It may contain both.
また、感光剤としては光重合開始剤を用いてもよい。重合開始剤は、特に、上述のアラルキル樹脂が重合性炭素-炭素二重結合を含む場合に、ネガ型の感光性樹脂組成物を調製するために好ましく用いられる。 Moreover, you may use a photoinitiator as a photosensitive agent. A polymerization initiator is preferably used for preparing a negative photosensitive resin composition, particularly when the above-described aralkyl resin contains a polymerizable carbon-carbon double bond.
光重合開始剤としては、紫外線などの高エネルギー光の照射により、ラジカルなどの活性種を発生し、重合性炭素-炭素二重結合を重合させることができるものである限り、特に限定されない。具体的には光ラジカル重合開始剤などが挙げられる。 The photopolymerization initiator is not particularly limited as long as it can generate active species such as radicals and polymerize polymerizable carbon-carbon double bonds upon irradiation with high-energy light such as ultraviolet rays. Specific examples include photoradical polymerization initiators.
光ラジカル重合開始剤には、分子内の結合が開裂してラジカルを生成する分子内開裂型と、3級アミンやエーテル等の水素供与体を併用することでラジカルを生成する水素引き抜き型がある。第1実施形態においてはいずれも使用することができる。例えば、分子内開裂型である2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンは、光の照射によって炭素-炭素結合が開裂することでラジカルを生成する。また、水素引き抜き型としては、ベンゾフェノンやオルソベンゾイン安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルサルファイド等がある。 Radical photopolymerization initiators include intramolecular cleavage type that generates radicals by cleaving intramolecular bonds, and hydrogen abstraction type that generates radicals by using hydrogen donors such as tertiary amines and ethers together. . Either can be used in the first embodiment. For example, 2-hydroxy-2-methyl-1-phenylpropan-1-one, which is intramolecularly cleaved, generates radicals by cleaving the carbon-carbon bond upon exposure to light. Hydrogen-abstraction types include benzophenone, methyl orthobenzoin benzoate, 4-benzoyl-4'-methyldiphenyl sulfide, and the like.
光ラジカル重合発生剤は、光を吸収することでラジカルを発生する化合物であれば特に限定されず、市販の光ラジカル重合開始剤を用いることができる。光ラジカル重合開始剤は、例えば、BASF社から購入可能である。 The radical photopolymerization generator is not particularly limited as long as it is a compound that generates radicals by absorbing light, and commercially available radical photopolymerization initiators can be used. A photoradical polymerization initiator can be purchased, for example, from BASF.
感光剤の量は、感光性樹脂組成物中の全不揮発成分中、典型的には1~90質量%、好ましくは1~50質量%である。特に、感光剤が光重合開始剤である場合、その割合は、感光性樹脂組成物の不揮発成分の全質量を基準として、0.1~7質量%の範囲内であることが好ましい。 The amount of the photosensitive agent is typically 1 to 90% by weight, preferably 1 to 50% by weight, based on the total non-volatile components in the photosensitive resin composition. In particular, when the photosensitizer is a photopolymerization initiator, its proportion is preferably in the range of 0.1 to 7% by mass based on the total mass of non-volatile components in the photosensitive resin composition.
感光性樹脂組成物は、好ましくは溶剤を含む。別の言い方として、感光性樹脂組成物は、好ましくは、本開示におけるアラルキル樹脂や感光剤などの成分が、溶剤中に溶解または分散したものである。
溶剤としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドなどの非プロトン性極性溶媒、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、ジアセトンアルコールなどのケトン類、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類などが挙げられる。溶剤は単独溶剤であっても混合溶剤であってもよい。
The photosensitive resin composition preferably contains a solvent. In other words, the photosensitive resin composition preferably has components such as the aralkyl resin and the photosensitizer of the present disclosure dissolved or dispersed in a solvent.
Examples of solvents include aprotic polar solvents such as N-methyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide and dimethylsulfoxide; Examples include ethers, ketones such as acetone, methyl ethyl ketone, diisobutyl ketone and diacetone alcohol, esters such as ethyl acetate, propylene glycol monomethyl ether acetate and ethyl lactate, and aromatic hydrocarbons such as toluene and xylene. The solvent may be a single solvent or a mixed solvent.
溶剤の使用量は、感光性樹脂組成物を用いて形成する膜の厚みなどに応じて適宜調整すればよい。典型的には、溶剤の使用量は、感光性樹脂組成物の不揮発成分濃度が1~95質量%となる量である。 The amount of the solvent to be used may be appropriately adjusted according to the thickness of the film to be formed using the photosensitive resin composition. Typically, the amount of solvent used is such that the concentration of non-volatile components in the photosensitive resin composition is 1 to 95% by mass.
光性樹脂組成物は、本開示におけるアラルキル樹脂、感光剤および溶剤のほか、性能の調整のために任意成分を含んでもよい。任意成分としては、界面活性剤、酸化防止剤、増感剤、アラルキル樹脂とは異なる樹脂、充填剤(フィラー)、着色剤、硬化性モノマー、オリゴマーなどを挙げることができる。 The photosensitive resin composition may contain optional components for performance adjustment in addition to the aralkyl resin, photosensitizer and solvent in the present disclosure. Examples of optional components include surfactants, antioxidants, sensitizers, resins other than aralkyl resins, fillers, colorants, curable monomers, oligomers, and the like.
感光性樹脂組成物を、例えば以下手順のように用いることで、良好なパターンを形成することができる。
(1)感光性樹脂組成物を基材上に塗布して感光膜を形成する膜形成工程
(2)感光性膜を露光する露光工程
(3)露光後の感光性膜を現像して、パターンを形成する現像工程
A good pattern can be formed by using the photosensitive resin composition, for example, in the following procedure.
(1) A film forming step of applying a photosensitive resin composition on a substrate to form a photosensitive film (2) An exposure step of exposing the photosensitive film (3) Developing the photosensitive film after exposure to form a pattern development process to form
以下、上記の各工程において説明を加える。 Descriptions of the above steps will be added below.
・膜形成工程
感光性樹脂組成物を塗布する基材は特に限定されない。シリコンウエハ、金属、ガラス、セラミック、プラスチック製の基材を挙げることができる。また、あらかじめ他のポリマーが塗布されている基材上に感光性樹脂組成物を塗布してもよい。塗布方法としては、スピンコート、ディップコート、スプレーコート、バーコート、アプリケーター、インクジェット、ロールコーター等、公知の塗布方法を特に制限無く適用できる。
- Film forming step The substrate to which the photosensitive resin composition is applied is not particularly limited. Substrates made of silicon wafers, metals, glasses, ceramics and plastics can be mentioned. Alternatively, the photosensitive resin composition may be applied onto a substrate that has been previously coated with another polymer. As the coating method, known coating methods such as spin coating, dip coating, spray coating, bar coating, applicator, ink jet, and roll coater can be applied without any particular limitation.
感光性樹脂組成物を塗布した基材を、例えば80~120℃で、30秒~30分程度加熱して溶剤を乾燥させる。こうすることで感光性膜を得ることができる。 The base material coated with the photosensitive resin composition is heated, for example, at 80 to 120° C. for about 30 seconds to 30 minutes to dry the solvent. A photosensitive film can be obtained by carrying out like this.
・露光工程
膜形成工程で得られた感光性膜に対し、通常は、目的のパターンを形成するためのフォトマスクを介して光を照射する。露光には、公知の方法・装置を用いることができる。光源としては、光源波長が100~600nmの範囲のものを用いることができる。具体的に例示すると、低圧水銀灯、高圧水銀灯、超高圧水銀灯、KrFエキシマレーザー(波長248nm)、UV-LEDランプなどを用いることができる。露光量は、通常1~10,000mJ/cm程度、好ましくは10~5,000mJ/cm程度である。
• Exposure process The photosensitive film obtained in the film formation process is usually irradiated with light through a photomask for forming a desired pattern. A known method and apparatus can be used for the exposure. A light source having a light source wavelength in the range of 100 to 600 nm can be used. Specific examples include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, KrF excimer lasers (wavelength: 248 nm), UV-LED lamps, and the like. The exposure dose is usually about 1 to 10,000 mJ/cm 2 , preferably about 10 to 5,000 mJ/cm 2 .
露光後、必要に応じて現像工程の前後に露光後加熱を行うこともできる。露光後加熱の温度は60~180℃、露光後加熱の時間は通常0.1~60分、好ましくは0.5~10分間である。 After exposure, post-exposure heating may be performed before or after the development step, if necessary. The post-exposure heating temperature is 60 to 180° C., and the post-exposure heating time is usually 0.1 to 60 minutes, preferably 0.5 to 10 minutes.
・現像工程
露光工程で得られた露光後の感光性膜を現像することで、パターン形状をする膜を作製する。アルカリ性の水溶液を現像液として用いることで、露光部が溶解し、パターンが形成される。
Developing process A patterned film is produced by developing the exposed photosensitive film obtained in the exposure process. By using an alkaline aqueous solution as a developer, the exposed portion is dissolved to form a pattern.
現像液としては、露光部の感光性膜を除去できるものであれば特に限定されない。具体的には、無機アルカリ、1級アミン、2級アミン、3級アミン、アルコールアミン、4級アンモニウム塩、これらの混合物等が溶解したアルカリ水溶液が挙げられる。より具体的には、炭酸カリウム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリウム、アンモニア、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(略称:TMAH)などのアルカリ水溶液が挙げられる。中でも、TMAH水溶液を用いることが好ましく、特に、0.1~5質量%のTMAH水溶液を用いることが好ましい。 The developer is not particularly limited as long as it can remove the photosensitive film in the exposed area. Specific examples include alkaline aqueous solutions in which inorganic alkalis, primary amines, secondary amines, tertiary amines, alcohol amines, quaternary ammonium salts, mixtures thereof, and the like are dissolved. More specifically, alkaline aqueous solutions such as potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine, and tetramethylammonium hydroxide (abbreviation: TMAH) can be mentioned. Among them, it is preferable to use a TMAH aqueous solution, and it is particularly preferable to use a 0.1 to 5% by mass TMAH aqueous solution.
現像法としては、浸漬法、パドル法、スプレー法等の公知の方法を用いることができる。現像時間は、通常0.1~120分、好ましくは0.5~60分である。その後、必要に応じて洗浄、リンス、乾燥などを行う。このようにして、基板上にパターンを形成することができる。 As a developing method, a known method such as an immersion method, a puddle method, or a spray method can be used. The development time is usually 0.1 to 120 minutes, preferably 0.5 to 60 minutes. After that, washing, rinsing, drying, etc. are performed as necessary. In this way a pattern can be formed on the substrate.
本開示のアラルキル樹脂を含む感光性樹脂組成物は、フォトレジスト等の、電子デバイス製造の際に用いられる感光性樹脂組成物として使用することができ、シリコンウェハ上にパターンを形成するために使用することができる。 The photosensitive resin composition containing the aralkyl resin of the present disclosure can be used as a photosensitive resin composition used in the manufacture of electronic devices such as photoresists, and used to form patterns on silicon wafers. can do.
<硬化物、電子デバイス>
上記硬化性樹脂組成物を硬化させることで、硬化物を得ることができる。硬化は、光および/または熱により行うことができる。
より具体的には、硬化性樹脂組成物を、通常、100~200℃で0.1~20分間加熱する。これにより硬化物を得ることができる。硬化性能の向上を図るために、70~200℃で0.1~10時間の範囲で「後硬化」を行ってもよい。
硬化物の形態は、成形体、注型物、何らかの基材の片面または両面に硬化膜が形成された積層体、フィルム、生体材料用ベース樹脂等であることができる。
<Cured product, electronic device>
A cured product can be obtained by curing the curable resin composition. Curing can be done by light and/or heat.
More specifically, the curable resin composition is usually heated at 100-200° C. for 0.1-20 minutes. Thereby, a cured product can be obtained. In order to improve the curing performance, "post-curing" may be performed at 70 to 200° C. for 0.1 to 10 hours.
The cured product may be in the form of a molded product, a cast product, a laminate having a cured film formed on one or both sides of a base material, a film, a base resin for biomaterials, and the like.
上記硬化性樹脂組成物を硬化させた硬化物は良好な透明性を有する。この透明性の観点で、上記硬化性樹脂組成物を用いて光学部材を製造すること(上記硬化性樹脂組成物の硬化物を備える光学部材を製造すること)が好ましい。
例えば、光センサー、撮像素子などの光学素子を封止するための透明材料として、上記硬化性樹脂組成物を用いることができる。また、マイクロレンズの製造用途や、光学用接着剤としても上記硬化性樹脂組成物を用いることができる。
A cured product obtained by curing the curable resin composition has good transparency. From the viewpoint of this transparency, it is preferable to manufacture an optical member using the curable resin composition (manufacture an optical member comprising a cured product of the curable resin composition).
For example, the curable resin composition can be used as a transparent material for sealing optical elements such as optical sensors and imaging elements. The curable resin composition can also be used for the production of microlenses and as an optical adhesive.
上記硬化性樹脂組成物を用いて、電子デバイスを製造してもよい。すなわち、上記硬化物を備える電子デバイスを製造してもよい。上記硬化物は、フッ素原子を含むことにより、透明性のみならず誘電特性が良好(低誘電率・低誘電正接となる傾向がある)と考えられる。良好な誘電特性は、電子デバイスへの適用に好ましい特性である。 An electronic device may be manufactured using the curable resin composition. That is, you may manufacture an electronic device provided with the said hardened|cured material. It is considered that the above-mentioned cured product has good dielectric properties (it tends to have a low dielectric constant and a low dielectric loss tangent) as well as transparency due to the inclusion of fluorine atoms. Good dielectric properties are desirable properties for electronic device applications.
一例として、電子部品の封止用材料として上記の硬化性樹脂組成物を用いることができる。すなわち、硬化性樹脂組成物を加熱して溶融物としたものにより電子部品を封止することで、電子部品が上記硬化物で封止された電子デバイスを製造することができる。
別の例として、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、紙等の基材(好ましくは繊維基材)に、硬化性樹脂組成物を塗布する、かつ/または、含浸させる等により、積層用硬化性材料を製造することができる。この積層用硬化性材料は、多層電気積層板や、ビルドアップ積層板、フレキシブル積層板等のプリント配線板の製造に好適に使用できる。
さらに別の例として、ワニス状の硬化性樹脂組成物を、回路が形成された基板に塗布して樹脂膜を形成し、硬化させることで、絶縁膜を設けることができる。
As an example, the curable resin composition can be used as a sealing material for electronic parts. That is, by encapsulating an electronic component with a melted product obtained by heating a curable resin composition, an electronic device in which the electronic component is encapsulated with the cured product can be produced.
As another example, a substrate (preferably a fiber substrate) such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, paper, etc., is coated with a curable resin composition and / or impregnated to laminate. curable materials can be produced. This curable material for lamination can be suitably used for manufacturing printed wiring boards such as multilayer electrical laminates, build-up laminates, and flexible laminates.
As still another example, an insulating film can be provided by applying a varnish-like curable resin composition to a circuit-formed substrate to form a resin film and curing the resin film.
以上、本開示の実施形態について述べたが、これらは本開示の例示であり、上記以外の様々な構成を採用することができる。また、本開示は上述の実施形態に限定されるものではなく、本開示の目的を達成できる範囲での変形、改良等は本開示に含まれる。 The embodiments of the present disclosure have been described above, but these are examples of the present disclosure, and various configurations other than those described above can be adopted. In addition, the present disclosure is not limited to the above-described embodiments, and includes modifications, improvements, and the like within a range that can achieve the purpose of the present disclosure.
本開示の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本開示は実施例のみに限定されない。 Embodiments of the present disclosure will be described in detail based on examples and comparative examples. As a reminder, this disclosure is not limited to the examples only.
以下において、重量平均分子量Mwおよび数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製HLC-8320)を用いて測定した。移動相はテトラヒドロフラン(THF)、カラムはTSKgel SuperHZ(3000×1+2000×2)/(6.0mmI.D.×15cm×3本)を用いた。 In the following, the weight average molecular weight Mw and number average molecular weight Mn were measured using gel permeation chromatography (GPC, HLC-8320 manufactured by Tosoh Corporation). Tetrahydrofuran (THF) was used as the mobile phase, and TSKgel SuperHZ (3000×1+2000×2)/(6.0 mm ID×15 cm×3) columns were used.
水酸基当量は、JIS K 0070:1992に基づき水酸基価を測定して、水酸基価から算出した。 The hydroxyl equivalent was calculated from the hydroxyl value measured based on JIS K 0070:1992.
エポキシ当量は、JIS K 7236:2009に基づき測定した。 The epoxy equivalent was measured based on JIS K 7236:2009.
固形分酸価は、JIS K 0070:1992に基づき溶液の酸価を測定して、固形分濃度から固形分酸価を算出した。 The solid content acid value was calculated by measuring the acid value of the solution based on JIS K 0070:1992 and calculating the solid content acid value from the solid content concentration.
固形分濃度は、溶媒を含む溶液中の溶媒を減圧留去した後の残渣の質量を、溶媒を含む溶液全体質量で割って算出するか、溶媒を除く反応基質の質量を、溶媒を含む溶液全体質量で割って算出した。 The solid content concentration is calculated by dividing the mass of the residue after depressurizing distillation of the solvent in the solution containing the solvent by the total mass of the solution containing the solvent, or dividing the mass of the reaction substrate excluding the solvent into the solution containing the solvent. Calculated by dividing by the total mass.
[フルオラール合成のための触媒の調製例]
896gの特級試薬CrCl・6HOを純水に溶かして3.0Lの溶液とした。この溶液に粒状アルミナ400gを浸漬し、一昼夜放置した。放置後の溶液を濾過してアルミナを取り出し、そのアルミナを熱風循環式乾燥器中で100℃に保ち、さらに一昼夜乾燥した。このようにしてクロム担持アルミナを得た。
得られたクロム担持アルミナを、電気炉を備えた円筒形SUS316L製反応管(直径4.2cm、長さ60cm)に充填した。この反応管に窒素ガスを約20mL/分の流量で流しながら、クロム担持アルミナを300℃まで昇温した。反応管から水の流出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させ、その濃度を徐々に高めた。充填されたクロム担持アルミナのフッ素化によるホットスポットが反応管出口端に達したタイミングで反応器温度を350℃に上げ、その状態を5時間保った。このようにして、フルオラール合成のための触媒を得た。以下では、この触媒を「触媒A」と表記する。
[Preparation example of catalyst for fluoral synthesis]
896 g of special grade reagent CrCl 3 .6H 2 O was dissolved in pure water to make 3.0 L of solution. 400 g of granular alumina was immersed in this solution and left for a whole day and night. After standing, the solution was filtered to take out alumina, and the alumina was kept at 100° C. in a hot air circulation dryer and dried for one day. Chromium-supported alumina was thus obtained.
The obtained chromium-supported alumina was filled in a cylindrical SUS316L reaction tube (diameter: 4.2 cm, length: 60 cm) equipped with an electric furnace. The chromium-supported alumina was heated to 300° C. while nitrogen gas was passed through the reaction tube at a flow rate of about 20 mL/min. When water stopped flowing out of the reaction tube, hydrogen fluoride was allowed to accompany the nitrogen gas, and its concentration was gradually increased. The reactor temperature was raised to 350° C. at the timing when a hot spot due to fluorination of the filled chromium-supported alumina reached the outlet end of the reaction tube, and this state was maintained for 5 hours. A catalyst for fluoral synthesis was thus obtained. This catalyst is hereinafter referred to as "catalyst A".
[フルオラールの調製例]
電気炉を備えた円筒形反応管を有する気相反応装置(SUS316L製、直径2.5cm、長さ40cm)に、触媒Aを125mL充填した。
気相反応装置に約100mL/分の流量で空気を流しながら、反応管の温度を280℃に上げ、フッ化水素を約0.32g/分の速度で1時間にわたり導入した。
次いで、クロラール(トリクロロエタナール)を約0.38g/分(接触時間15秒)の速度で反応管へ供給開始した。反応開始1時間後には反応は安定した。反応安定後、反応器から流出するガスを、-15℃の冷媒で冷却した吹き込み管付きSUS304製シリンダーへ18時間かけて捕集した。
ここで得たフルオラール含有の484.8gの捕集液について、滴定により、フッ化水素含量、塩化水素含量、そして有機物含量を算出した。算出の結果、フッ化水素40質量%、塩化水素11質量%、そして有機物含有量49質量%であり、有機物の回収率は88%(供給原料クロラールモル数基準)であった。また、回収した有機物の一部を樹脂製のNMRチューブに採取し、19F-NMRにてフッ素化度を確認すると、低次フッ素化物はほぼ未検出であり、定量的にフッ素化が進行していることを確認した。
次に、捕集したフルオラール含有の混合物の一部、150g(フッ化水素:40質量%、塩化水素:11質量%、有機物:49質量%)を-15℃の冷媒を通液させた冷却管と温度計と攪拌機を備え付けた500mlのSUS製反応器に仕込み、反応器を25℃になるように加温した。常圧下、冷却管にてフッ化水素を還流させながら、冷却管の頂塔からすり抜ける塩化水素を、水に吸収させて除去した。5時間の還流後、反応器からサンプリングを行い、得られたサンプルを滴定することにより、フッ化水素含量、塩化水素含量、そして有機物含量を算出した。算出の結果、フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%であった。
[物性データ]
1,2,2,2-テトラフルオロエタノール:
19F-NMR(400MHz,CFCl)δ(ppm):-85.82(3F,s),-137.95(1F,d,J=54.9Hz)
フッ化水素:
19F-NMR(400MHz,CFCl)δ(ppm):-193.37(1F,s)
[Preparation example of fluoral]
125 mL of catalyst A was packed in a gas phase reactor (made of SUS316L, diameter 2.5 cm, length 40 cm) having a cylindrical reaction tube equipped with an electric furnace.
While air was flowing through the gas phase reactor at a flow rate of about 100 mL/min, the temperature of the reaction tube was raised to 280° C. and hydrogen fluoride was introduced at a rate of about 0.32 g/min over 1 hour.
Next, chloral (trichloroethanal) was started to be supplied to the reaction tube at a rate of about 0.38 g/min (contact time 15 seconds). One hour after the start of the reaction, the reaction was stabilized. After the reaction was stabilized, the gas flowing out of the reactor was collected over 18 hours in a SUS304 cylinder with a blowing tube cooled with a -15°C refrigerant.
The hydrogen fluoride content, the hydrogen chloride content, and the organic substance content were calculated by titration for 484.8 g of the collected liquid containing fluororal obtained here. As a result of the calculation, hydrogen fluoride was 40% by mass, hydrogen chloride was 11% by mass, and the organic matter content was 49% by mass. In addition, when part of the recovered organic matter was collected in a resin NMR tube and the degree of fluorination was confirmed by 19F-NMR, almost no low-order fluorinated substances were detected, and the fluorination progressed quantitatively. confirmed that there is
Next, 150 g (hydrogen fluoride: 40% by mass, hydrogen chloride: 11% by mass, organic matter: 49% by mass) of a portion of the collected fluororal-containing mixture was passed through a -15°C refrigerant through a condenser tube. was charged into a 500 ml SUS reactor equipped with a thermometer and a stirrer, and the reactor was heated to 25°C. Hydrogen chloride passing through the top tower of the condenser was removed by being absorbed by water while hydrogen fluoride was refluxed in the condenser under normal pressure. After refluxing for 5 hours, the reactor was sampled, and the obtained samples were titrated to calculate the hydrogen fluoride content, the hydrogen chloride content, and the organic matter content. As a result of calculation, hydrogen fluoride: 44% by mass, hydrogen chloride: 1% by mass, and organic matter: 55% by mass.
[Physical property data]
1,2,2,2-tetrafluoroethanol:
19F-NMR (400MHz, CFCl3 ) δ (ppm): -85.82 (3F, s), -137.95 (1F, d, J = 54.9Hz)
Hydrogen fluoride:
19F-NMR (400MHz, CFCl3 ) δ (ppm): -193.37 (1F, s)
(合成例1:以下一般式(7)で表される構造単位を有するアラルキル樹脂の合成) (Synthesis Example 1: Synthesis of aralkyl resin having a structural unit represented by general formula (7) below)
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた100mLステンレス鋼製オートクレーブ反応器内に、上記[フルオラールの調製例]で得られたフルオラール含有の混合物(フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%)を16.8g(フルオラール:94mmol、フッ化水素:0.369mol)と、フッ化水素9.6g(0.479mol)、メタキシレン10.0g(94mmol)を入れた。そして、100℃、絶対圧0.8MPaで20時間反応させた。その後、反応液を50gの氷水へ注ぎ込み、メチルイソブチルケトン50gで有機物を抽出した。分液操作で回収した有機層を水50gで2回洗浄し、さらに炭酸水素カリウム水溶液で中和した。分液操作で回収した有機層中のメタキシレンの量をガスクロマトグラフィーで定量し、メタキシレンの変換率を算出した結果、99%以上であった。その後、エバポレーターで濃縮して、目的のアラルキル樹脂16.2gを得た。
[物性データ]
数平均分子量(Mn)=592、重量平均分子量(Mw)=845、多分散度(Mw/Mn)=1.4
In a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor, the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 16.8 g (fluoral: 94 mmol, hydrogen fluoride: 0.369 mol), hydrogen fluoride 9.6 g (0.479 mol), meta-xylene 10.0 g (94 mmol) was charged. Then, the reaction was carried out at 100° C. and an absolute pressure of 0.8 MPa for 20 hours. After that, the reaction solution was poured into 50 g of ice water, and organic matter was extracted with 50 g of methyl isobutyl ketone. The organic layer collected by the liquid separation operation was washed twice with 50 g of water, and further neutralized with an aqueous potassium hydrogencarbonate solution. The amount of meta-xylene in the organic layer recovered by the liquid separation operation was quantified by gas chromatography, and the meta-xylene conversion rate was calculated to be 99% or more. Then, it was concentrated by an evaporator to obtain 16.2 g of the desired aralkyl resin.
[Physical property data]
Number average molecular weight (Mn) = 592, weight average molecular weight (Mw) = 845, polydispersity (Mw/Mn) = 1.4
(合成例2:以下一般式(8)で表される構造単位を有するアラルキル樹脂の合成) (Synthesis Example 2: Synthesis of aralkyl resin having a structural unit represented by general formula (8) below)
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた100mLステンレス鋼製オートクレーブ反応器内に、上記[フルオラールの調製例]で得られたフルオラール含有の混合物(フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%)を14.6g(フルオラール:82mmol、フッ化水素:0.321mol)と、フッ化水素8.3g(0.416mol)、ベンゼン1.3g(16mmol)、フェノール10.0g(0.106mol)を入れた。そして、25℃、絶対圧0.2MPaで20時間反応させた。その後、合成例1と同様の操作を行い、有機層を回収した。回収した有機層中のベンゼンの量をガスクロマトグラフィーで定量し、ベンゼンの変換率を算出した結果、89%であった。その後、エバポレーターで濃縮して、目的のアラルキル樹脂16.2gを得た。水酸基当量は191g/当量であった。
[物性データ]
数平均分子量(Mn)=622、重量平均分子量(Mw)=723、多分散度(Mw/Mn)=1.2
In a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor, the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass) 14.6 g (fluoral: 82 mmol, hydrogen fluoride: 0.321 mol), hydrogen fluoride 8.3 g (0.416 mol), benzene 1.3 g ( 16 mmol) and 10.0 g (0.106 mol) of phenol were added. Then, the reaction was carried out at 25° C. and an absolute pressure of 0.2 MPa for 20 hours. Thereafter, the same operation as in Synthesis Example 1 was performed, and the organic layer was recovered. The amount of benzene in the collected organic layer was quantified by gas chromatography, and the conversion of benzene was calculated to be 89%. Then, it was concentrated by an evaporator to obtain 16.2 g of the desired aralkyl resin. The hydroxyl equivalent weight was 191 g/equivalent.
[Physical property data]
Number average molecular weight (Mn) = 622, weight average molecular weight (Mw) = 723, polydispersity (Mw/Mn) = 1.2
(合成例3:以下一般式(9)で表される構造単位を有するアラルキル樹脂の合成) (Synthesis Example 3: Synthesis of aralkyl resin having a structural unit represented by general formula (9) below)
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた100mLステンレス鋼製オートクレーブ反応器内に、上記[フルオラールの調製例]で得られたフルオラール含有の混合物(フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%)を14.6g(フルオラール:82mmol、フッ化水素:0.321mol)と、フッ化水素8.3g(0.416mol)、ビフェニル2.5g(16mmol)、フェノール10.0g(0.106mol)を入れた。そして、25℃、絶対圧0.2MPaで20時間反応させた。その後、合成例1と同様の操作を行い、有機層を回収した。回収した有機層中のビフェニルの量をガスクロマトグラフィーで定量し、ビフェニルの変換率を算出した結果、99%以上であった。その後、エバポレーターで濃縮して、目的のアラルキル樹脂17.3gを得た。水酸基当量は227g/当量であった。
[物性データ]
数平均分子量(Mn)=924、重量平均分子量(Mw)=1185、多分散度(Mw/Mn)=1.3
In a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor, the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass) 14.6 g (fluoral: 82 mmol, hydrogen fluoride: 0.321 mol), hydrogen fluoride 8.3 g (0.416 mol), biphenyl 2.5 g ( 16 mmol) and 10.0 g (0.106 mol) of phenol were added. Then, the reaction was carried out at 25° C. and an absolute pressure of 0.2 MPa for 20 hours. Thereafter, the same operation as in Synthesis Example 1 was performed, and the organic layer was recovered. The amount of biphenyl in the collected organic layer was quantified by gas chromatography, and the conversion rate of biphenyl was calculated to be 99% or more. Then, it was concentrated by an evaporator to obtain 17.3 g of the desired aralkyl resin. The hydroxyl equivalent weight was 227 g/equivalent.
[Physical property data]
Number average molecular weight (Mn) = 924, weight average molecular weight (Mw) = 1185, polydispersity (Mw/Mn) = 1.3
(合成例4:以下一般式(10)で表される構造単位を有するアラルキル樹脂の合成) (Synthesis Example 4: Synthesis of Aralkyl Resin Having Structural Unit Represented by General Formula (10) Below)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた100mLステンレス鋼製オートクレーブ反応器内に、上記[フルオラールの調製例]で得られたフルオラール含有の混合物(フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%)を14.6g(フルオラール:82mmol、フッ化水素:0.321mol)と、フッ化水素8.3g(0.416mol)、メタキシレン1.7g(16mmol)、フェノール10.0g(0.106mol)を入れた。そして、60℃、絶対圧0.4MPaで20時間反応させた。その後、合成例1と同様の操作を行い、有機層を回収した。回収した有機層中のメタキシレンの量をガスクロマトグラフィーで定量し、メタキシレンの変換率を算出した結果、99%以上であった。その後、エバポレーターで濃縮して、目的のアラルキル樹脂17.4gを得た。水酸基当量は206g/当量であった。
[物性データ]
数平均分子量(Mn)=598、重量平均分子量(Mw)=691、多分散度(Mw/Mn)=1.2
In a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor, the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 14.6 g (fluoral: 82 mmol, hydrogen fluoride: 0.321 mol), hydrogen fluoride 8.3 g (0.416 mol), meta-xylene 1.7 g (16 mmol) and 10.0 g (0.106 mol) of phenol were added. Then, the reaction was carried out at 60° C. and an absolute pressure of 0.4 MPa for 20 hours. Thereafter, the same operation as in Synthesis Example 1 was performed, and the organic layer was recovered. The amount of meta-xylene in the recovered organic layer was quantified by gas chromatography, and the meta-xylene conversion rate was calculated to be 99% or more. Then, it was concentrated by an evaporator to obtain 17.4 g of the desired aralkyl resin. The hydroxyl equivalent weight was 206 g/equivalent.
[Physical property data]
Number average molecular weight (Mn) = 598, weight average molecular weight (Mw) = 691, polydispersity (Mw/Mn) = 1.2
(合成例5:以下一般式(15)で表される構造単位を有するアラルキル樹脂の合成) (Synthesis Example 5: Synthesis of aralkyl resin having a structural unit represented by general formula (15) below)
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
攪拌機、滴下ロートおよび温度計を備えた50mLガラス製フラスコに、合成例3で得られたアラルキル樹脂7.8g(水酸基当量227g/当量)と、エピクロルヒドリン19.1g(205mmol)と、1-ブタノール1.9gを仕込み、ウォーターバスで50℃に加熱した。その後、20質量%水酸化ナトリウム水溶液6.8g(34mmol)を30分かけてフラスコ内に滴下した。さらにその後、フラスコ内を50℃に保ちながら2時間保持し反応させた。反応完了後、過剰のアルカリを塩酸で中和して、分液操作で有機層を回収し、エバポレーターで濃縮して粗エポキシ樹脂を得た。
攪拌機と温度計を備えた50mLガラス製フラスコに、上記の粗エポキシ樹脂、メチルイソブチルケトン19.0g、1-ブタノール1.9g、20質量%水酸化ナトリウム水溶液4.3gを仕込み、ウォーターバスで80℃に加熱して2時間アルカリ処理した。その後、過剰分のアルカリを塩酸で中和して、分液操作で有機層を回収し、メチルイソブチルケトン50gを加えた後、水50gで3回洗浄した。そして、分液操作で有機層を回収し、エバポレーターで濃縮して目的のアラルキル樹脂(エポキシ樹脂)を7.6g得た。エポキシ当量は271g/当量であった。
[物性データ]
数平均分子量(Mn)=1035、重量平均分子量(Mw)=1519、多分散度(Mw/Mn)=1.5
A 50 mL glass flask equipped with a stirrer, a dropping funnel and a thermometer was charged with 7.8 g of the aralkyl resin obtained in Synthesis Example 3 (hydroxyl equivalent: 227 g/equivalent), 19.1 g of epichlorohydrin (205 mmol), and 1-butanol. .9 g was charged and heated to 50° C. in a water bath. After that, 6.8 g (34 mmol) of a 20% by mass sodium hydroxide aqueous solution was dropped into the flask over 30 minutes. Further, after that, the temperature inside the flask was maintained at 50° C., and the reaction was carried out for 2 hours. After completion of the reaction, excess alkali was neutralized with hydrochloric acid, and the organic layer was collected by liquid separation operation and concentrated by an evaporator to obtain a crude epoxy resin.
A 50 mL glass flask equipped with a stirrer and a thermometer was charged with the above crude epoxy resin, 19.0 g of methyl isobutyl ketone, 1.9 g of 1-butanol, and 4.3 g of a 20% by mass sodium hydroxide aqueous solution. ℃ and alkaline treatment for 2 hours. After that, the excess alkali was neutralized with hydrochloric acid, and the organic layer was recovered by a liquid separation operation, added with 50 g of methyl isobutyl ketone, and then washed with 50 g of water three times. Then, the organic layer was collected by liquid separation operation and concentrated by an evaporator to obtain 7.6 g of the desired aralkyl resin (epoxy resin). The epoxy equivalent weight was 271 g/equivalent.
[Physical property data]
Number average molecular weight (Mn) = 1035, weight average molecular weight (Mw) = 1519, polydispersity (Mw/Mn) = 1.5
(合成例6:以下一般式(16)で表される構造単位を有するアラルキル樹脂の合成) (Synthesis Example 6: Synthesis of aralkyl resin having a structural unit represented by general formula (16) below)
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
攪拌機、滴下ロートおよび温度計を備えた50mLガラス製フラスコに、合成例4で得られたアラルキル樹脂6.8g(水酸基当量206g/当量)と、エピクロルヒドリン18.3g(198mmol)と、1-ブタノール1.8gを仕込み、ウォーターバスで50℃に加熱した。その後、20質量%水酸化ナトリウム水溶液6.6g(33mmol)を30分かけてフラスコ内に滴下した。その後、合成例5と同様の操作を行い、目的のアラルキル樹脂(エポキシ樹脂)を6.7g得た。エポキシ当量は257g/当量であった。
[物性データ]
数平均分子量(Mn)=623、重量平均分子量(Mw)=821、多分散度(Mw/Mn)=1.4
A 50 mL glass flask equipped with a stirrer, a dropping funnel and a thermometer was charged with 6.8 g of the aralkyl resin obtained in Synthesis Example 4 (hydroxyl equivalent: 206 g/equivalent), 18.3 g (198 mmol) of epichlorohydrin, and 1-butanol. 0.8 g was charged and heated to 50° C. in a water bath. After that, 6.6 g (33 mmol) of a 20% by mass sodium hydroxide aqueous solution was dropped into the flask over 30 minutes. Thereafter, the same operation as in Synthesis Example 5 was performed to obtain 6.7 g of the desired aralkyl resin (epoxy resin). The epoxy equivalent weight was 257 g/equivalent.
[Physical property data]
Number average molecular weight (Mn) = 623, weight average molecular weight (Mw) = 821, polydispersity (Mw/Mn) = 1.4
(合成例7:以下一般式(9)で表される構造単位を有するアラルキル樹脂溶液の合成) (Synthesis Example 7: Synthesis of Aralkyl Resin Solution Having Structural Unit Represented by General Formula (9))
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた500mLステンレス鋼製オートクレーブ反応器内に、上記[フルオラールの調製例]で得られたフルオラール含有の混合物(フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%)を104.7g(フルオラール:664mmol、フッ化水素:2.99mol)と、フッ化水素60.0g(3.00mol)、ビフェニル18.1g(118mmol)、フェノール62.5g(664mmol)を入れた。そして、25℃、絶対圧0.2MPaで20時間反応させた。その後、合成例1と同様の操作を行い、有機層を回収し、エバポレーターで濃縮して、目的のアラルキル樹脂溶液を219.6g回収した。固形分濃度は55.1質量%であり、固形分の水酸基当量は210g/当量であった。溶液の一部はエバポレーターで溶媒を除去して、実施例4の操作に使用した。
[物性データ]
数平均分子量(Mn)=793、重量平均分子量(Mw)=1058、多分散度(Mw/Mn)=1.5
In a 500 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor, the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 104.7 g (fluoral: 664 mmol, hydrogen fluoride: 2.99 mol), hydrogen fluoride 60.0 g (3.00 mol), biphenyl 18.1 g ( 118 mmol) and 62.5 g (664 mmol) of phenol were added. Then, the reaction was carried out at 25° C. and an absolute pressure of 0.2 MPa for 20 hours. After that, the same operation as in Synthesis Example 1 was performed, the organic layer was recovered, and the organic layer was concentrated by an evaporator to recover 219.6 g of the desired aralkyl resin solution. The solid content concentration was 55.1% by mass, and the hydroxyl group equivalent weight of the solid content was 210 g/equivalent. A part of the solution was used for the operation of Example 4 after removing the solvent by an evaporator.
[Physical property data]
Number average molecular weight (Mn) = 793, weight average molecular weight (Mw) = 1058, polydispersity (Mw/Mn) = 1.5
(合成例8:以下一般式(10)で表される構造単位を有するアラルキル樹脂溶液の合成) (Synthesis Example 8: Synthesis of Aralkyl Resin Solution Having Structural Unit Represented by General Formula (10) Below)
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた500mLステンレス鋼製オートクレーブ反応器内に、上記[フルオラールの調製例]で得られたフルオラール含有の混合物(フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%)を104.7g(フルオラール:664mmol、フッ化水素:2.99mol)と、フッ化水素60.0g(3.00mol)、メタキシレン12.5g(118mmol)、フェノール62.5g(664mmol)を入れた。そして、25℃、絶対圧0.2MPaで20時間反応させた。その後、合成例1と同様の操作を行い、有機層を回収し、エバポレーターで濃縮して、目的のアラルキル樹脂溶液を234.8g回収した。固形分濃度は48.1質量%であり、固形分の水酸基当量は198g/当量であった。溶液の一部はエバポレーターで溶媒を除去して、実施例5の操作に使用した。
[物性データ]
数平均分子量(Mn)=712、重量平均分子量(Mw)=884、多分散度(Mw/Mn)=1.2
In a 500 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor, the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 104.7 g (fluoral: 664 mmol, hydrogen fluoride: 2.99 mol), hydrogen fluoride 60.0 g (3.00 mol), meta-xylene 12.5 g (118 mmol) and 62.5 g (664 mmol) of phenol were added. Then, the reaction was carried out at 25° C. and an absolute pressure of 0.2 MPa for 20 hours. After that, the same operation as in Synthesis Example 1 was performed, the organic layer was recovered, and the organic layer was concentrated by an evaporator to recover 234.8 g of the desired aralkyl resin solution. The solid content concentration was 48.1% by mass, and the hydroxyl group equivalent weight of the solid content was 198 g/equivalent. A part of the solution was used for the operation of Example 5 after removing the solvent by an evaporator.
[Physical property data]
Number average molecular weight (Mn) = 712, weight average molecular weight (Mw) = 884, polydispersity (Mw/Mn) = 1.2
(合成例9:以下一般式(17)で表される構造単位を有するアラルキル樹脂溶液の合成) (Synthesis Example 9: Synthesis of aralkyl resin solution having structural unit represented by general formula (17) below)
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
・アラルキル樹脂溶液I(エポキシ樹脂溶液)の合成
攪拌機、滴下ロートおよび温度計を備えた50mLガラス製フラスコに、合成例7で得られたアラルキル樹脂溶液100g(水酸基当量210g/当量)と、エピクロルヒドリン146g(1.57mol)と、1-ブタノール14.6gを仕込み、ウォーターバスで内温50℃に加熱した。その後、20質量%水酸化ナトリウム水溶液57.7g(289mmol)を1時間かけてフラスコ内に滴下した。その後、合成例5と同様の操作を行い、有機層を回収し、エバポレーターで濃縮して、アラルキル樹脂溶液I(エポキシ樹脂溶液)を133.0g回収した。固形分濃度は48.1質量%であり、固形分のエポキシ当量は298g/当量であった。
-Synthesis of aralkyl resin solution I (epoxy resin solution) In a 50 mL glass flask equipped with a stirrer, a dropping funnel and a thermometer, 100 g of the aralkyl resin solution obtained in Synthesis Example 7 (hydroxyl equivalent: 210 g/equivalent) and 146 g of epichlorohydrin were added. (1.57 mol) and 14.6 g of 1-butanol were charged and heated to an internal temperature of 50° C. in a water bath. After that, 57.7 g (289 mmol) of a 20% by mass sodium hydroxide aqueous solution was dropped into the flask over 1 hour. After that, the same operation as in Synthesis Example 5 was performed, the organic layer was recovered, and concentrated by an evaporator to recover 133.0 g of aralkyl resin solution I (epoxy resin solution). The solid content concentration was 48.1% by mass, and the epoxy equivalent weight of the solid content was 298 g/equivalent.
・アラルキル樹脂溶液II(酸変性エポキシアクリレート樹脂溶液)の合成
攪拌機、還流冷却器および温度計を備えた100mLガラス製フラスコに、上記で得られたアラルキル樹脂溶液I(エポキシ樹脂溶液)30.0g(エポキシ当量298g/当量)と、アクリル酸3.5g(48mmol)、4-メトキシフェノール29mg、トリフェニルホスフィン72mgを仕込み、乾燥空気を導入しながら、内温110℃に昇温して15時間反応させた。その後、1,2,3,6-テトラヒドロフタル酸無水物4.4g(29mmol)を入れ、6時間反応させた。冷却後、目的のアラルキル樹脂溶液II(酸変性エポキシアクリレート樹脂溶液)を得た。固形分濃度は59.0質量%、固形分酸価は85mgKOH/gであった。
[物性データ]
数平均分子量(Mn)=1180、重量平均分子量(Mw)=2904、多分散度(Mw/Mn)=2.5
・Synthesis of aralkyl resin solution II (acid-modified epoxy acrylate resin solution) In a 100 mL glass flask equipped with a stirrer, a reflux condenser and a thermometer, 30.0 g of the aralkyl resin solution I (epoxy resin solution) obtained above ( Epoxy equivalent (298 g/equivalent), 3.5 g (48 mmol) of acrylic acid, 29 mg of 4-methoxyphenol, and 72 mg of triphenylphosphine were charged, and the internal temperature was raised to 110° C. while introducing dry air and allowed to react for 15 hours. rice field. After that, 4.4 g (29 mmol) of 1,2,3,6-tetrahydrophthalic anhydride was added and reacted for 6 hours. After cooling, the desired aralkyl resin solution II (acid-modified epoxy acrylate resin solution) was obtained. The solid content concentration was 59.0% by mass, and the solid content acid value was 85 mgKOH/g.
[Physical property data]
Number average molecular weight (Mn) = 1180, weight average molecular weight (Mw) = 2904, polydispersity (Mw/Mn) = 2.5
(合成例10:以下一般式(18)で表される構造単位を有するアラルキル樹脂溶液の合成) (Synthesis Example 10: Synthesis of Aralkyl Resin Solution Having Structural Unit Represented by General Formula (18) Below)
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
・アラルキル樹脂溶液III(エポキシ樹脂溶液)の合成
攪拌機、滴下ロートおよび温度計を備えた50mLガラス製フラスコに、合成例8で得られたアラルキル樹脂溶液100g(水酸基当量198g/当量)と、エピクロルヒドリン135g(1.46mol)と、1-ブタノール13.5gを仕込み、ウォーターバスで50℃に加熱した。その後、20質量%水酸化ナトリウム水溶液53.6g(268mmol)を1時間かけてフラスコ内に滴下した。その後、合成例5と同様の操作を行い、有機層を回収し、エバポレーターで濃縮して、アラルキル樹脂溶液III(エポキシ樹脂溶液)を103.5g回収した。固形分濃度は51.8質量%であり、固形分のエポキシ当量は274g/当量であった。
-Synthesis of aralkyl resin solution III (epoxy resin solution) Into a 50 mL glass flask equipped with a stirrer, a dropping funnel and a thermometer, 100 g of the aralkyl resin solution obtained in Synthesis Example 8 (hydroxyl equivalent: 198 g/equivalent) and 135 g of epichlorohydrin were added. (1.46 mol) and 13.5 g of 1-butanol were charged and heated to 50° C. in a water bath. After that, 53.6 g (268 mmol) of a 20% by mass sodium hydroxide aqueous solution was dropped into the flask over 1 hour. After that, the same operation as in Synthesis Example 5 was performed, the organic layer was recovered, and the organic layer was concentrated by an evaporator to recover 103.5 g of aralkyl resin solution III (epoxy resin solution). The solid content concentration was 51.8% by mass, and the epoxy equivalent weight of the solid content was 274 g/equivalent.
・アラルキル樹脂溶液IV(酸変性エポキシアクリレート樹脂溶液)の合成
攪拌機、還流冷却器および温度計を備えた100mLガラス製フラスコに、上記で得られたアラルキル樹脂溶液III(エポキシ樹脂溶液)30.0g(エポキシ当量274g/当量)と、アクリル酸4.1g(48mmol)、4-メトキシフェノール31mg、トリフェニルホスフィン77mgを仕込み、乾燥空気を導入しながら、110℃に昇温して15時間反応させた。その後、1,2,3,6-テトラヒドロフタル酸無水物5.2g(34mmol)を入れ、6時間反応ささせた。冷却後、目的のアラルキル樹脂溶液IV(酸変性エポキシアクリレート樹脂溶液)を得た。固形分濃度は63.3質量%、固形分酸価は84mgKOH/gであった。
[物性データ]
数平均分子量(Mn)=1142、重量平均分子量(Mw)=1995、多分散度(Mw/Mn)=2.3
・Synthesis of aralkyl resin solution IV (acid-modified epoxy acrylate resin solution) In a 100 mL glass flask equipped with a stirrer, a reflux condenser and a thermometer, 30.0 g of the aralkyl resin solution III (epoxy resin solution) obtained above ( Epoxy equivalent: 274 g/equivalent), 4.1 g (48 mmol) of acrylic acid, 31 mg of 4-methoxyphenol, and 77 mg of triphenylphosphine were charged, and the temperature was raised to 110° C. while introducing dry air, and the mixture was reacted for 15 hours. After that, 5.2 g (34 mmol) of 1,2,3,6-tetrahydrophthalic anhydride was added and reacted for 6 hours. After cooling, the desired aralkyl resin solution IV (acid-modified epoxy acrylate resin solution) was obtained. The solid content concentration was 63.3% by mass, and the solid content acid value was 84 mgKOH/g.
[Physical property data]
Number average molecular weight (Mn) = 1142, weight average molecular weight (Mw) = 1995, polydispersity (Mw/Mn) = 2.3
(合成例11:以下一般式(19)で表される構造単位を有するアラルキル樹脂の合成) (Synthesis Example 11: Synthesis of aralkyl resin having a structural unit represented by general formula (19) below)
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた100mLステンレス鋼製オートクレーブ反応器内に、上記[フルオラールの調製例]で得られたフルオラール含有の混合物(フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%)を18g(フルオラール:103mmol、フッ化水素:0.40mol)と、フッ化水素10g(0.50mol)、ビフェニル1.6g(10mmol)、2-クレゾール10g(92mmol)、クロロホルム40gを入れた。そして、70℃、絶対圧0.4MPaで18時間反応させた。その後、合成例1と同様の操作を行い、有機層を回収し、エチレングリコール30gを加えた後、エバポレーターでメチルイソブチルケトンとクロロホルムを留去した。得られたアラルキル樹脂溶液を強攪拌した水150gに投入し、析出した固体を濾過回収した。回収した固体を水100gで2回洗浄し、濾過回収した固体をエバポレーターで乾燥させ、目的のアラルキル樹脂を18g得た。
[物性データ]
数平均分子量(Mn)=9597、重量平均分子量(Mw)=79248、多分散度(Mw/Mn)=8.3
In a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor, the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 18 g (fluoral: 103 mmol, hydrogen fluoride: 0.40 mol), hydrogen fluoride 10 g (0.50 mol), biphenyl 1.6 g (10 mmol), 2 - 10 g (92 mmol) of cresol and 40 g of chloroform were added. Then, the reaction was carried out at 70° C. and an absolute pressure of 0.4 MPa for 18 hours. Thereafter, the same operation as in Synthesis Example 1 was performed, the organic layer was recovered, 30 g of ethylene glycol was added, and methyl isobutyl ketone and chloroform were distilled off using an evaporator. The obtained aralkyl resin solution was poured into 150 g of strongly stirred water, and the precipitated solid was collected by filtration. The recovered solid was washed twice with 100 g of water, and the solid recovered by filtration was dried with an evaporator to obtain 18 g of the target aralkyl resin.
[Physical property data]
Number average molecular weight (Mn) = 9597, weight average molecular weight (Mw) = 79248, polydispersity (Mw/Mn) = 8.3
(合成例12:以下一般式(20)で表される構造単位を有するアラルキル樹脂の合成) (Synthesis Example 12: Synthesis of aralkyl resin having a structural unit represented by general formula (20) below)
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた100mLステンレス鋼製オートクレーブ反応器内に、上記[フルオラールの調製例]で得られたフルオラール含有の混合物(フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%)を18g(フルオラール:103mmol、フッ化水素:0.40mol)と、フッ化水素10g(0.50mol)、メタキシレン1.1g(10mmol)、2-クレゾール10g(92mmol)、クロロホルム40gを入れた。そして、70℃、絶対圧0.4MPaで18時間反応させた。その後、合成例1と同様の操作を行い、有機層を回収し、エチレングリコール30gを加えた後、エバポレーターでメチルイソブチルケトンとクロロホルムを留去した。得られたアラルキル樹脂溶液を強攪拌した水150gに投入し、析出した固体を濾過回収した。回収した固体を水100gで2回洗浄し、濾過回収した固体をエバポレーターで乾燥させ、目的のアラルキル樹脂を18g得た。
[物性データ]
数平均分子量(Mn)=5760、重量平均分子量(Mw)=27033、多分散度(Mw/Mn)=4.7
In a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor, the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 18 g (fluoral: 103 mmol, hydrogen fluoride: 0.40 mol), hydrogen fluoride 10 g (0.50 mol), meta-xylene 1.1 g (10 mmol), 10 g (92 mmol) of 2-cresol and 40 g of chloroform were added. Then, the reaction was carried out at 70° C. and an absolute pressure of 0.4 MPa for 18 hours. Thereafter, the same operation as in Synthesis Example 1 was performed, the organic layer was recovered, 30 g of ethylene glycol was added, and methyl isobutyl ketone and chloroform were distilled off using an evaporator. The obtained aralkyl resin solution was poured into 150 g of strongly stirred water, and the precipitated solid was collected by filtration. The recovered solid was washed twice with 100 g of water, and the solid recovered by filtration was dried with an evaporator to obtain 18 g of the target aralkyl resin.
[Physical property data]
Number average molecular weight (Mn) = 5760, weight average molecular weight (Mw) = 27033, polydispersity (Mw/Mn) = 4.7
(ノボラック樹脂の合成例1:以下一般式(21)で表される構造単位を有するノボラック樹脂Aの合成) (Synthesis Example 1 of Novolac Resin: Synthesis of Novolak Resin A Having a Structural Unit Represented by General Formula (21))
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた100mLステンレス鋼製オートクレーブ反応器内に、上記[フルオラールの調製例]で得られたフルオラール含有の混合物(フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%)を19.3g(フルオラール:108mmol、フッ化水素:0.421mol)と、フッ化水素11.0g(0.55mol)、フェノール13.5g(0.144mol)を入れた。そして、20℃、絶対圧0.2MPaで20時間反応させた。その後、合成例1と同様の操作を行い、目的のノボラック樹脂(ノボラック樹脂A)21.5gを得た。水酸基当量は175g/当量であった。
[物性データ]
数平均分子量(Mn)=806、重量平均分子量(Mw)=1272、多分散度(Mw/Mn)=1.6
In a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor, the fluoral-containing mixture (hydrogen fluoride: 44 mass% , hydrogen chloride: 1% by mass, organic matter: 55% by mass), 19.3 g (fluoral: 108 mmol, hydrogen fluoride: 0.421 mol), hydrogen fluoride 11.0 g (0.55 mol), phenol 13.5 g ( 0.144 mol) was added. Then, the reaction was carried out at 20° C. and an absolute pressure of 0.2 MPa for 20 hours. Thereafter, the same operation as in Synthesis Example 1 was carried out to obtain 21.5 g of the desired novolac resin (novolak resin A). The hydroxyl equivalent weight was 175 g/equivalent.
[Physical property data]
Number average molecular weight (Mn) = 806, weight average molecular weight (Mw) = 1272, polydispersity (Mw/Mn) = 1.6
(エポキシ樹脂の合成例:以下一般式(22)で表される構造単位を有するエポキシ樹脂Aの合成) (Synthesis Example of Epoxy Resin: Synthesis of Epoxy Resin A Having a Structural Unit Represented by General Formula (22) Below)
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
攪拌機、滴下ロートおよび温度計を備えた50mLガラス製フラスコに、上記ノボラック樹脂の合成例1で得られたノボラック樹脂A5.8g(水酸基当量175g/当量)と、エピクロルヒドリン18.3g(198mmol)と、1-ブタノール1.8gを仕込み、ウォーターバスで50℃に加熱した。その後、20質量%水酸化ナトリウム水溶液6.6g(33mmol)を30分かけてフラスコ内に滴下した。その後、合成例5と同様の操作を行い、エポキシ樹脂(エポキシ樹脂A)を5.8g得た。エポキシ当量は233g/当量であった。
[物性データ]
数平均分子量(Mn)=956、重量平均分子量(Mw)=2236、多分散度(Mw/Mn)=2.3
In a 50 mL glass flask equipped with a stirrer, a dropping funnel and a thermometer, 5.8 g of the novolak resin A obtained in Synthesis Example 1 of the novolac resin (hydroxyl equivalent: 175 g/equivalent), 18.3 g (198 mmol) of epichlorohydrin, 1.8 g of 1-butanol was charged and heated to 50° C. in a water bath. After that, 6.6 g (33 mmol) of a 20% by mass sodium hydroxide aqueous solution was dropped into the flask over 30 minutes. Thereafter, the same operation as in Synthesis Example 5 was performed to obtain 5.8 g of an epoxy resin (epoxy resin A). The epoxy equivalent weight was 233 g/equivalent.
[Physical property data]
Number average molecular weight (Mn) = 956, weight average molecular weight (Mw) = 2236, polydispersity (Mw/Mn) = 2.3
(ノボラック樹脂の合成例2:以下一般式(23)で表される構造単位を有するノボラック樹脂Bの合成) (Synthesis Example 2 of Novolak Resin: Synthesis of Novolak Resin B Having a Structural Unit Represented by General Formula (23) Below)
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた100mLステンレス鋼製オートクレーブ反応器内に、フッ化水素107g(5.35mol)、2-クレゾール115g(1.07mmol)、クロロホルム400gを入れ、上記[フルオラールの調製例]で得られたフルオラール含有の混合物(フッ化水素:44質量%、塩化水素:1質量%、有機物:55質量%)188g(フルオラール:1.06mol、フッ化水素:5.37mol)を30℃下で1時間掛けて導入した。そして、70℃に昇温し、絶対圧0.4MPaで15時間反応させた。その後、合成例1と同様の操作を行い、目的のノボラック樹脂(ノボラック樹脂B)を180g得た。
[物性データ]
数平均分子量(Mn)=7056、重量平均分子量(Mw)=21287、多分散度(Mw/Mn)=3.0
107 g (5.35 mol) hydrogen fluoride, 115 g (1.07 mmol) 2-cresol, 400 g chloroform were placed in a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor. 188 g of the fluoral-containing mixture (hydrogen fluoride: 44% by mass, hydrogen chloride: 1% by mass, organic substance: 55% by mass) obtained in [Fluoral preparation example] above (fluoral: 1.06 mol, hydrogen fluoride : 5.37 mol) was introduced over 1 hour at 30°C. Then, the temperature was raised to 70° C. and the reaction was carried out for 15 hours at an absolute pressure of 0.4 MPa. Thereafter, the same operation as in Synthesis Example 1 was performed to obtain 180 g of the desired novolac resin (novolac resin B).
[Physical property data]
Number average molecular weight (Mn) = 7056, weight average molecular weight (Mw) = 21287, polydispersity (Mw/Mn) = 3.0
(比較アラルキル樹脂の合成例:以下一般式(24)で表される構造単位を有する比較アラルキル樹脂の合成) (Synthesis Example of Comparative Aralkyl Resin: Synthesis of Comparative Aralkyl Resin Having Structural Unit Represented by General Formula (24) Below)
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
圧力計、温度計保護管、挿入管、そして攪拌モーターを備えた100mLステンレス鋼製オートクレーブ反応器内に、フッ化水素25.4g(1.27mol)、フェノール15.0g(159mmol)、パラホルムアルデヒド3.9g(141mmol)を入れた。そして、20℃、絶対圧0.2MPaで20時間反応させた。その後、合成例1と同様の操作を行い、有機層を回収した。この際、多量の不溶成分がみられた。また、回収した有機層中のメタキシレンの量をガスクロマトグラフィーで定量し、メタキシレンの変換率を算出した結果、69%であった。 25.4 g (1.27 mol) hydrogen fluoride, 15.0 g (159 mmol) phenol, 3 paraformaldehyde in a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, thermometer protection tube, insert tube, and stirring motor. .9 g (141 mmol) was added. Then, the reaction was carried out at 20° C. and an absolute pressure of 0.2 MPa for 20 hours. Thereafter, the same operation as in Synthesis Example 1 was performed, and the organic layer was recovered. At this time, a large amount of insoluble components was observed. Further, the amount of meta-xylene in the recovered organic layer was quantified by gas chromatography, and the meta-xylene conversion rate was calculated to be 69%.
ホルムアルデヒドを原料に用いた比較アラルキル樹脂の合成例の対比として、フルオラール含有の混合物を原料に用いた合成例4では、不溶成分の生成はなく、メタキシレンの変換率は99%以上であった。以上のことから、ホルムアルデヒドを原料に用いて「-CH-」構造を有するアラルキル樹脂を製造するよりも、フルオラールを原料に用いて「-CHCF-」構造を有するアラルキル樹脂を製造する方が容易であることが理解される。 In contrast to the synthesis examples of comparative aralkyl resins using formaldehyde as a starting material, in Synthesis Example 4 using a fluoral-containing mixture as a starting material, no insoluble components were generated and meta-xylene conversion was 99% or more. From the above, it is better to produce an aralkyl resin having a “—CHCF 3 —” structure using fluoral as a raw material than to produce an aralkyl resin having a “—CH 2 —” structure using formaldehyde as a raw material. It is understood that it is easy.
<硬化性樹脂組成物(エポキシ樹脂含有)の調製と評価I>
表1に表される組成の硬化性樹脂組成物を調製し、各硬化物のガラス転移温度と5%熱重量減少温度を測定した。
<Preparation and Evaluation I of Curable Resin Composition (Containing Epoxy Resin)>
A curable resin composition having the composition shown in Table 1 was prepared, and the glass transition temperature and 5% heat weight loss temperature of each cured product were measured.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
上表において、エポキシ樹脂および硬化促進剤は以下である。
・エポキシ樹脂:ビスフェノールA型エポキシ樹脂(三菱ケミカル製、jer828、エポキシ当量=186g/当量)
・硬化促進剤:トリフェニルホスフィン(エポキシ樹脂に対して0.4質量%)
In the above table, epoxy resins and curing accelerators are as follows.
Epoxy resin: bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical, jer828, epoxy equivalent = 186 g/equivalent)
- Curing accelerator: triphenylphosphine (0.4% by mass relative to the epoxy resin)
得られた硬化性樹脂組成物4gを、51mmφのアルミカップ容器に量りとり、常圧下のオーブンで160℃、2時間、さらに180℃、6時間加熱した。加熱後、自然冷却して硬化物を得た。 4 g of the resulting curable resin composition was weighed into an aluminum cup container of 51 mm diameter and heated in an oven under normal pressure at 160° C. for 2 hours and further at 180° C. for 6 hours. After heating, it was naturally cooled to obtain a cured product.
ガラス転移温度は、示差走査熱量計(株式会社日立ハイテクサイエンス社製、機種名DSC7000)を使用し、昇温速度10℃/分の条件で測定した。 The glass transition temperature was measured using a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., model name: DSC7000) at a heating rate of 10°C/min.
5%熱重量減少温度は、示差熱・熱重量同時測定装置(株式会社日立ハイテクサイエンス社製、機種名STA7200)を使用し、窒素雰囲気下で昇温速度10℃/分の条件で測定した。 The 5% thermogravimetric loss temperature was measured using a differential thermal/thermogravimetric simultaneous measurement device (manufactured by Hitachi High-Tech Science Co., Ltd., model name STA7200) under conditions of a temperature increase rate of 10° C./min in a nitrogen atmosphere.
実施例1~3から、本実施形態のアラルキル樹脂を含む硬化性樹脂組成物の硬化物は、電子デバイス用途に用いるのに十分な耐熱性を有することが理解される。 From Examples 1 to 3, it is understood that the cured product of the curable resin composition containing the aralkyl resin of the present embodiment has sufficient heat resistance for use in electronic devices.
<樹脂の溶融粘度評価>
1気圧の下、回転粘度計(ANTONPAAR製、品名:PHYSICAMCR51,測定用コーンCP50-1)を用い、150℃に加熱されたアラルキル樹脂の粘度を測定した。装置の設定は以下のとおりとした。この測定における、せん断速度1000[1/s]での粘度を後掲の表に示す。
・せん断速度:対数昇降(開始10[1/s]-終了1000[1/s])
・測定間隔:対数(開始90秒-終了3秒)
・測定点:21
<Resin melt viscosity evaluation>
Under 1 atmospheric pressure, the viscosity of the aralkyl resin heated to 150° C. was measured using a rotational viscometer (manufactured by ANTONPAAR, product name: PHYSICAMCR51, measuring cone CP50-1). The device settings were as follows. The viscosity at a shear rate of 1000 [1/s] in this measurement is shown in the table below.
・Shear rate: logarithmic ascending/descending (starting 10 [1/s] - finishing 1000 [1/s])
・Measurement interval: logarithmic (start 90 seconds - end 3 seconds)
・Measurement points: 21
以上の測定/評価結果を表2に示す。 Table 2 shows the above measurement/evaluation results.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
合成例2~4とノボラック樹脂A、及び合成例5,6とエポキシ樹脂Aの溶融粘度の対比から、アラルキル構造を備える本実施形態のアラルキル樹脂は、アラルキル構造を有さない樹脂(特許文献4に記載のノボラック樹脂に相当)よりも溶融粘度が比較的小さく、樹脂組成物として用いる際のハンドリング性や、押し出し成形時の微細加工性に優れることが理解される。 From the comparison of the melt viscosities of Synthesis Examples 2 to 4 and Novolac Resin A, and Synthesis Examples 5 and 6 and Epoxy Resin A, the aralkyl resin of the present embodiment having an aralkyl structure is a resin having no aralkyl structure (Patent Document 4 (equivalent to the novolac resin described in 1.), and has a relatively low melt viscosity, and is excellent in handleability when used as a resin composition and fine workability during extrusion molding.
<硬化性樹脂組成物(エポキシ樹脂含有)の調製と評価II>
表3に表される組成の硬化性樹脂組成物を調製し、硬化物の吸水率を測定した。
<Preparation and Evaluation II of Curable Resin Composition (Containing Epoxy Resin)>
A curable resin composition having the composition shown in Table 3 was prepared, and the water absorption of the cured product was measured.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
上表において、エポキシ樹脂および硬化促進剤は以下である。
・エポキシ樹脂:ビスフェノールA型エポキシ樹脂(三菱ケミカル製、jer828、エポキシ当量=186g/当量)
・硬化促進剤:トリフェニルホスフィン(エポキシ樹脂に対して0.4質量%)
In the above table, epoxy resins and curing accelerators are as follows.
Epoxy resin: bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical, jer828, epoxy equivalent = 186 g/equivalent)
- Curing accelerator: triphenylphosphine (0.4% by mass relative to the epoxy resin)
得られた硬化性樹脂組成物2.4gをシリコンモールドに量りとり、常圧下のオーブンで160℃、2時間、さらに180℃、6時間加熱した。加熱後、自然冷却して、直径2.8cm厚さ3mmの硬化物を得た。得られた硬化物を50℃オーブンで24時間乾燥させた後に、デシケーター中で室温に冷却した。この時の質量をW1とする。乾燥後の硬化物を23℃の水に24時間浸漬した後、表面の水をふき取り質量を測定した。この時の質量をW2とする。吸水率を、吸水率(%)={(W2-W1)/W1}×100の計算式から算出した。 2.4 g of the obtained curable resin composition was weighed into a silicon mold and heated in an oven under normal pressure at 160° C. for 2 hours and further at 180° C. for 6 hours. After heating, the mixture was naturally cooled to obtain a cured product having a diameter of 2.8 cm and a thickness of 3 mm. The resulting cured product was dried in an oven at 50° C. for 24 hours and then cooled to room temperature in a desiccator. Let the mass at this time be W1. After drying, the cured product was immersed in water at 23° C. for 24 hours, after which the water on the surface was wiped off and the mass was measured. Let the mass at this time be W2. The water absorption was calculated from the formula of water absorption (%)={(W2−W1)/W1}×100.
実施例4、5と比較例1との対比から、本実施形態のアラルキル樹脂からなる硬化性樹脂組成物の硬化物は、本開示のアラルキル構造を有さない樹脂(特許文献4に記載のノボラック樹脂に相当)からなる硬化性樹脂組成物の硬化物と比べて吸水率が低い事が理解される。硬化物の吸水率が低い事は、誘電特性や絶縁信頼性の観点から、電子デバイスに利用する際に有効である。 From the comparison between Examples 4 and 5 and Comparative Example 1, the cured product of the curable resin composition comprising the aralkyl resin of the present embodiment is the resin having no aralkyl structure of the present disclosure (the novolak described in Patent Document 4 It is understood that the water absorption rate is lower than that of a cured product of a curable resin composition composed of (corresponding to resin). The low water absorption of the cured product is effective when used in electronic devices from the viewpoint of dielectric properties and insulation reliability.
<樹脂の評価>
表4に表される樹脂のガラス転移温度と5%熱重量減少温度を測定した。
<Resin evaluation>
The glass transition temperature and 5% heat weight loss temperature of the resin shown in Table 4 were measured.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
ガラス転移温度は、示差走査熱量計(株式会社日立ハイテクサイエンス社製、機種名DSC7000)を使用し、昇温速度10℃/分の条件で測定した。 The glass transition temperature was measured using a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., model name: DSC7000) at a heating rate of 10°C/min.
5%熱重量減少温度は、示差熱・熱重量同時測定装置(株式会社日立ハイテクサイエンス社製、機種名STA7200)を使用し、窒素雰囲気下で昇温速度10℃/分の条件で測定した。 The 5% thermogravimetric loss temperature was measured using a differential thermal/thermogravimetric simultaneous measurement device (manufactured by Hitachi High-Tech Science Co., Ltd., model name STA7200) under conditions of a temperature increase rate of 10° C./min in a nitrogen atmosphere.
合成例11、12で得られた樹脂及びノボラック樹脂Bのガラス転移温度と5%熱重量減少温度の対比から、本実施形態のアラルキル樹脂は、本開示のアラルキル構造を有さない樹脂(特許文献4に記載のノボラック樹脂に相当)と比べて耐熱性は同等である事が理解される。 From the comparison of the glass transition temperature and the 5% heat weight loss temperature of the resins obtained in Synthesis Examples 11 and 12 and the novolac resin B, the aralkyl resin of the present embodiment is the resin having no aralkyl structure of the present disclosure (Patent Document 4), the heat resistance is equivalent.
<樹脂組成物の調製と評価>
表5に表される樹脂組成物を調製し、アルカリ溶解速度を測定した。
<Preparation and Evaluation of Resin Composition>
A resin composition shown in Table 5 was prepared and the alkali dissolution rate was measured.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
以下手順で、樹脂のアルカリ溶解速度を評価した。
(1)合成例11,12で得られた樹脂及びノボラック樹脂Bの単体もしくは混合物を、PGMEA(プロピレングリコールモノメチルエーテルアセテート)に溶解し、その後、ポアサイズ0.2μmのフィルターで濾過した。こうすることで、樹脂のPGMEA溶液を得た。
(2)HMDS処理がされたシリコンウエハの表面に、樹脂組成物をスピンコートにより塗布し、ホットプレートを用いてPGMEAを乾燥させた。このようにして、シリコンウエハの表面に樹脂膜を形成した。スピンコート条件の詳細は以下の通りである。
・スピンコート条件:スロープ50s、1,000rpm、60s
・乾燥条件:110℃、60s
・乾燥膜厚:10μm
(3)上記(2)で形成した樹脂膜を、シリコンウエハごと、アルカリ水溶液(2.38質量%テトラメチルアンモニウムヒドロキシド水溶液)に浸漬した。そして、浸漬時間と膜厚との関係から、アルカリ溶解速度を算出した。
The alkali dissolution rate of the resin was evaluated by the following procedure.
(1) The resins obtained in Synthesis Examples 11 and 12 and the novolac resin B, either alone or in mixture, were dissolved in PGMEA (propylene glycol monomethyl ether acetate) and then filtered through a filter with a pore size of 0.2 μm. By doing so, a PGMEA solution of the resin was obtained.
(2) A resin composition was applied by spin coating to the surface of a silicon wafer that had been subjected to HMDS treatment, and the PGMEA was dried using a hot plate. Thus, a resin film was formed on the surface of the silicon wafer. The details of the spin coating conditions are as follows.
・Spin coating conditions: slope 50 s, 1,000 rpm, 60 s
・Drying conditions: 110°C, 60s
・ Dry film thickness: 10 μm
(3) The resin film formed in (2) above was immersed together with the silicon wafer in an alkaline aqueous solution (2.38% by mass tetramethylammonium hydroxide aqueous solution). Then, the alkali dissolution rate was calculated from the relationship between the immersion time and the film thickness.
実施例6~9、及び比較例2の結果から、本開示のアラルキル樹脂のアルカリ溶解速度は、本開示のアラルキル構造を有さない樹脂(特許文献4に記載のノボラック樹脂に相当)と比べて遅く、本開示のアラルキル樹脂を用いることで、アルカリ溶解速度を適度にコントロールすることができ、現像性や膜減りの改善を図ることができると理解される。 From the results of Examples 6 to 9 and Comparative Example 2, the alkali dissolution rate of the aralkyl resin of the present disclosure is higher than that of the resin having no aralkyl structure of the present disclosure (corresponding to the novolac resin described in Patent Document 4). It is understood that by using the aralkyl resin of the present disclosure, it is possible to appropriately control the alkali dissolution rate and improve developability and film reduction.
<感光性樹脂組成物(フォトレジスト組成物)の調製と評価>
以下の手順で、感光性樹脂組成物(フォトレジスト組成物)を調製し、そして評価した。
(1)合成例12で得られたアラルキル樹脂75質量部と、キノンジアジド系感光剤(東洋合成社製、NT200)25質量部とを、PGMEA(プロピレングリコールモノメチルエーテルアセテート)500質量部に溶解し、その後、ポアサイズ0.2μmのフィルターで濾過した。こうすることで、感光性樹脂組成物(フォトレジスト組成物)を調製した。
(2)HMDS処理したシリコンウエハの表面に、感光性樹脂組成物(フォトレジスト組成物)をスピンコートにより塗布し、ホットプレートを用いてPGMEAを乾燥させた。このようにして、シリコンウエハの表面に感光性樹脂膜(フォトレジスト膜)を形成した。
・スピンコート条件:スロープ10s、1,000rpm、60s
・乾燥条件:110℃、60s
・乾燥膜厚:1μm
(3)上記(2)で形成された感光性樹脂膜(フォトレジスト膜)の上に、様々な幅のライン/スペースパターンを有するフォトマスクを載せ、g・h線ランプ(g、h線が同時に出る装置)で、h線換算で200mJ/cmの光を照射した。
(4)光照射された感光性樹脂膜(フォトレジスト膜)を、シリコンウエハごと、現像液(2.38質量%テトラメチルアンモニウムヒドロキシド水溶液)に30秒間浸漬して現像処理した。浸漬後、取り出したシリコンウエハ上の樹脂膜に窒素ガスを吹き付けることで、乾燥させた。このようにして、シリコンウエハ上に「パターン」を得た。
上記「パターン」を、マイクロスコープで観察した。観察の結果、ライン/スペース=5μm/5μmのパターンが解像できていることを確認した。この結果より、本開示のアラルキル樹脂は、フォトレジスト等の、電子デバイス製造の際に用いられる感光性樹脂組成物に好ましく適用されることが理解される。
<Preparation and Evaluation of Photosensitive Resin Composition (Photoresist Composition)>
A photosensitive resin composition (photoresist composition) was prepared and evaluated by the following procedures.
(1) 75 parts by mass of the aralkyl resin obtained in Synthesis Example 12 and 25 parts by mass of a quinone diazide photosensitizer (NT200, manufactured by Toyo Gosei Co., Ltd.) were dissolved in 500 parts by mass of PGMEA (propylene glycol monomethyl ether acetate), Then, it was filtered through a filter with a pore size of 0.2 μm. By carrying out like this, the photosensitive resin composition (photoresist composition) was prepared.
(2) A photosensitive resin composition (photoresist composition) was applied to the surface of the HMDS-treated silicon wafer by spin coating, and the PGMEA was dried using a hot plate. Thus, a photosensitive resin film (photoresist film) was formed on the surface of the silicon wafer.
・Spin coating conditions: slope 10 s, 1,000 rpm, 60 s
・Drying conditions: 110°C, 60s
・ Dry film thickness: 1 μm
(3) A photomask having a line/space pattern of various widths is placed on the photosensitive resin film (photoresist film) formed in (2) above, and a g h line lamp (g and h lines are 200 mJ/cm 2 of h-line converted light was irradiated with a device that emits light at the same time.
(4) The light-irradiated photosensitive resin film (photoresist film) was developed together with the silicon wafer by immersing it in a developer (2.38% by mass tetramethylammonium hydroxide aqueous solution) for 30 seconds. After the immersion, the resin film on the silicon wafer taken out was dried by blowing nitrogen gas. Thus, a "pattern" was obtained on the silicon wafer.
The "pattern" was observed under a microscope. As a result of observation, it was confirmed that a pattern of line/space=5 μm/5 μm was resolved. From this result, it is understood that the aralkyl resin of the present disclosure is preferably applied to photosensitive resin compositions such as photoresists used in the manufacture of electronic devices.
本願は、2021年11月2日に出願された日本国特許出願2021-179571号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。 This application is based on Japanese Patent Application No. 2021-179571 filed on November 2, 2021, and claims priority based on the Paris Convention or the laws and regulations of transition countries. The contents of that application are incorporated herein by reference in their entirety.

Claims (25)

  1. 以下一般式(1)または(2)で表される構造単位を有するアラルキル樹脂。
    Figure JPOXMLDOC01-appb-C000001
    一般式(1)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。
    Figure JPOXMLDOC01-appb-C000002
    一般式(2)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。
    An aralkyl resin having a structural unit represented by general formula (1) or (2) below.
    Figure JPOXMLDOC01-appb-C000001
    In general formula (1), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, when n is 0, it is an integer of p ≤ 4, when n is 1, it is an integer of p ≤ 6, and when n is 2, it is an integer of p ≤ 8 .
    Figure JPOXMLDOC01-appb-C000002
    In general formula (2), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, p + q ≤ 8 when m + k is 0, p + q ≤ 10 when m + k is 1, and p + q ≤ 12 when m + k is 2 When m+k is 3, it is an integer of p+q≤14, when m+k is 4, it is an integer of p+q≤16, and X is a single bond or a divalent substituent other than an oxygen atom.
  2. 上記一般式(1)で表される構造単位を有する請求項1に記載のアラルキル樹脂。 2. The aralkyl resin according to claim 1, which has a structural unit represented by the general formula (1).
  3. 上記一般式(2)で表される構造単位を有する請求項1に記載のアラルキル樹脂。 2. The aralkyl resin according to claim 1, which has a structural unit represented by the general formula (2).
  4. 請求項1に記載のアラルキル樹脂であって、以下一般式(3)で表される構造単位をさらに含むアラルキル樹脂。
    Figure JPOXMLDOC01-appb-C000003
    一般式(3)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8であり、Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよい。
    2. The aralkyl resin according to claim 1, further comprising a structural unit represented by general formula (3) below.
    Figure JPOXMLDOC01-appb-C000003
    In general formula (3), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, t is an integer of 0 to 2, r is an integer of 1 or more, and s is an integer of 0 or more, provided that r + s ≤ 4 when t is 0, r + s ≤ 6 when t is 1, When t is 2, r+s≦8, R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different.
  5. 請求項1に記載のアラルキル樹脂であって、以下一般式(4)または(5)で表される構造単位を有するアラルキル樹脂。
    Figure JPOXMLDOC01-appb-C000004
    一般式(4)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。
    Figure JPOXMLDOC01-appb-C000005
    一般式(5)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。
    2. An aralkyl resin according to claim 1, which has a structural unit represented by general formula (4) or (5) below.
    Figure JPOXMLDOC01-appb-C000004
    In general formula (4), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, when n is 0, it is an integer of p ≤ 4, when n is 1, it is an integer of p ≤ 6, and when n is 2, it is an integer of p ≤ 8 . R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s≦4 when t is 0, r+s≦6 when t is 1, and r+s≦8 when t is 2.
    Figure JPOXMLDOC01-appb-C000005
    In general formula (5), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, p + q ≤ 8 when m + k is 0, p + q ≤ 10 when m + k is 1, and p + q ≤ 12 when m + k is 2 When m+k is 3, it is an integer of p+q≤14, when m+k is 4, it is an integer of p+q≤16, and X is a single bond or a divalent substituent other than an oxygen atom. R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s≦4 when t is 0, r+s≦6 when t is 1, and r+s≦8 when t is 2.
  6. 請求項4または5に記載のアラルキル樹脂であって、Rがグリシジル基を含むアラルキル樹脂。 6. An aralkyl resin according to claim 4 or 5, wherein R2 comprises a glycidyl group.
  7. 請求項4または5に記載のアラルキル樹脂であって、Rが重合性炭素-炭素二重結合を含むアラルキル樹脂。 6. The aralkyl resin of claim 4 or 5, wherein R2 contains a polymerizable carbon-carbon double bond.
  8. 請求項4または5に記載のアラルキル樹脂であって、Rが以下一般式(6)で表される部分構造を有するアラルキル樹脂。
    Figure JPOXMLDOC01-appb-C000006
    一般式(6)中、Rは水素原子または1価の有機基を表し、Rは水素原子、メチル基、またはフッ素原子を表す。
    6. The aralkyl resin according to claim 4 or 5, wherein R2 has a partial structure represented by general formula (6) below.
    Figure JPOXMLDOC01-appb-C000006
    In general formula (6), R3 represents a hydrogen atom or a monovalent organic group, and R4 represents a hydrogen atom, a methyl group, or a fluorine atom.
  9. 請求項8に記載のアラルキル樹脂であって、Rが末端にカルボキシ基を有する1価の有機基を表すアラルキル樹脂。 9. The aralkyl resin according to claim 8, wherein R3 represents a monovalent organic group having a terminal carboxyl group.
  10. 請求項1または4に記載のアラルキル樹脂であって、以下一般式(7)で表される構造単位を有するアラルキル樹脂。
    Figure JPOXMLDOC01-appb-C000007
    5. An aralkyl resin according to claim 1 or 4, which has a structural unit represented by general formula (7) below.
    Figure JPOXMLDOC01-appb-C000007
  11. 請求項1または4に記載のアラルキル樹脂であって、以下一般式(8)で表される構造単位を有するアラルキル樹脂。
    Figure JPOXMLDOC01-appb-C000008
    5. An aralkyl resin according to claim 1 or 4, which has a structural unit represented by general formula (8) below.
    Figure JPOXMLDOC01-appb-C000008
  12. 請求項1または4に記載のアラルキル樹脂であって、以下一般式(9)で表される構造単位を有するアラルキル樹脂。
    Figure JPOXMLDOC01-appb-C000009
    5. An aralkyl resin according to claim 1 or 4, which has a structural unit represented by general formula (9) below.
    Figure JPOXMLDOC01-appb-C000009
  13. 請求項1または4に記載のアラルキル樹脂であって、以下一般式(10)で表される構造単位を有するアラルキル樹脂。
    Figure JPOXMLDOC01-appb-C000010
    5. An aralkyl resin according to claim 1 or 4, which has a structural unit represented by general formula (10) below.
    Figure JPOXMLDOC01-appb-C000010
  14. 請求項1または4に記載のアラルキル樹脂であって、重量平均分子量が300~200,000であるアラルキル樹脂。 5. The aralkyl resin according to claim 1 or 4, which has a weight average molecular weight of 300 to 200,000.
  15. 請求項1または4に記載のアラルキル樹脂を含む、エポキシ樹脂の希釈剤。 An epoxy resin diluent comprising the aralkyl resin according to claim 1 or 4.
  16. 水酸基当量が130g/当量以上である、請求項15に記載のエポキシ樹脂の希釈剤。 16. The epoxy resin diluent according to claim 15, having a hydroxyl equivalent weight of 130 g/equivalent or more.
  17. 請求項1に記載のアラルキル樹脂又は請求項15に記載のエポキシ樹脂の希釈剤を含む硬化性樹脂組成物。 A curable resin composition comprising a diluent for the aralkyl resin of claim 1 or the epoxy resin of claim 15.
  18. さらにエポキシ樹脂を含む請求項17に記載の硬化性樹脂組成物。 The curable resin composition according to claim 17, further comprising an epoxy resin.
  19. 請求項1または4に記載のアラルキル樹脂と、感光剤と、を含む感光性樹脂組成物。 A photosensitive resin composition comprising the aralkyl resin according to claim 1 or 4 and a photosensitive agent.
  20. 請求項19に記載の感光性樹脂組成物であって、フォトレジスト組成物、ソルダーレジスト組成物またはインプリント組成物である感光性樹脂組成物。 20. The photosensitive resin composition according to claim 19, which is a photoresist composition, a solder resist composition or an imprint composition.
  21. 請求項17に記載の硬化性樹脂組成物を硬化させた硬化物。 A cured product obtained by curing the curable resin composition according to claim 17 .
  22. 請求項21に記載の硬化物を含む電子デバイス。 An electronic device comprising the cured product according to claim 21.
  23. 芳香族化合物と、フルオラールとを、酸触媒の存在下で反応させることにより、以下一般式(1)または(2)で表される構造単位を有するアラルキル樹脂を製造する、アラルキル樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    一般式(1)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。
    Figure JPOXMLDOC01-appb-C000012
    一般式(2)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。
    A method for producing an aralkyl resin, comprising reacting an aromatic compound with fluoral in the presence of an acid catalyst to produce an aralkyl resin having a structural unit represented by the following general formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000011
    In general formula (1), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, when n is 0, it is an integer of p ≤ 4, when n is 1, it is an integer of p ≤ 6, and when n is 2, it is an integer of p ≤ 8 .
    Figure JPOXMLDOC01-appb-C000012
    In general formula (2), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, p + q ≤ 8 when m + k is 0, p + q ≤ 10 when m + k is 1, and p + q ≤ 12 when m + k is 2 When m+k is 3, it is an integer of p+q≤14, when m+k is 4, it is an integer of p+q≤16, and X is a single bond or a divalent substituent other than an oxygen atom.
  24. 以下一般式(11)または(12)で表される芳香族化合物と、フェノール系化合物を、酸触媒の存在下で反応させることにより、以下一般式(4)または(5)で表される構造単位を有するアラルキル樹脂を製造する、アラルキル樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000013
    一般式(11)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、aは2以上の整数であり、nが0のときp+a≦6の整数であり、nが1のときp+a≦8の整数であり、nが2のときp+a≦10の整数である。Zは水酸基、炭素数1~4のアルコキシ基またはハロゲン原子を表し、Zが複数存在する場合は、それらは同一でも異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000014
    一般式(12)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、aおよびbは1以上の整数であり、m+kが0のときp+q+a+b≦10の整数であり、m+kが1のときp+q+a+b≦12の整数であり、m+kが2のときp+q+a+b≦14の整数であり、m+kが3のときp+q+a+b≦16の整数であり、m+kが4のときp+q+a+b≦18の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。Zは水酸基、炭素数1~4のアルコキシ基またはハロゲン原子を表し、Zが複数存在する場合は、それらは同一でも異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000015
    一般式(4)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、nが0のときp≦4の整数であり、nが1のときp≦6の整数であり、nが2のときp≦8の整数である。Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。
    Figure JPOXMLDOC01-appb-C000016
    一般式(5)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、m+kが0のときp+q≦8の整数であり、m+kが1のときp+q≦10の整数であり、m+kが2のときp+q≦12の整数であり、m+kが3のときp+q≦14の整数であり、m+kが4のときp+q≦16の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。Rは、水素原子、または1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、tは0~2の整数であり、rは1以上の整数であり、sは0以上の整数であり、ただし、tが0のときr+s≦4、tが1のときr+s≦6、tが2のときr+s≦8である。
    A structure represented by the following general formula (4) or (5) by reacting an aromatic compound represented by the following general formula (11) or (12) with a phenolic compound in the presence of an acid catalyst A method for producing an aralkyl resin, comprising producing an aralkyl resin having units.
    Figure JPOXMLDOC01-appb-C000013
    In general formula (11), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, a is an integer of 2 or more, when n is 0, it is an integer of p + a ≤ 6, when n is 1, it is an integer of p + a ≤ 8, and n is 2 is an integer of p+a≤10 when Z represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and when multiple Zs are present, they may be the same or different.
    Figure JPOXMLDOC01-appb-C000014
    In general formula (12), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when multiple R 1 are present, they may be the same or different. Well, m and k are integers of 0 to 2, a and b are integers of 1 or more, p + q + a + b ≤ 10 when m + k is 0, and p + q + a + b ≤ 12 when m + k is 1. , p + q + a + b ≤ 14 when m + k is 2, p + q + a + b ≤ 16 when m + k is 3, p + q + a + b ≤ 18 when m + k is 4, and X is a single bond or excluding an oxygen atom It is a divalent substituent. Z represents a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and when multiple Zs are present, they may be the same or different.
    Figure JPOXMLDOC01-appb-C000015
    In general formula (4), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, when n is 0, it is an integer of p ≤ 4, when n is 1, it is an integer of p ≤ 6, and when n is 2, it is an integer of p ≤ 8 . R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s≦4 when t is 0, r+s≦6 when t is 1, and r+s≦8 when t is 2.
    Figure JPOXMLDOC01-appb-C000016
    In general formula (5), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, p + q ≤ 8 when m + k is 0, p + q ≤ 10 when m + k is 1, and p + q ≤ 12 when m + k is 2 When m+k is 3, it is an integer of p+q≤14, when m+k is 4, it is an integer of p+q≤16, and X is a single bond or a divalent substituent other than an oxygen atom. R 2 represents a hydrogen atom or a monovalent substituent, and when multiple R 2 are present, they may be the same or different, t is an integer of 0 to 2, r is 1 or more is an integer and s is an integer greater than or equal to 0, provided that r+s≦4 when t is 0, r+s≦6 when t is 1, and r+s≦8 when t is 2.
  25. 以下一般式(13)または(14)で表される芳香族化合物と、フェノール系化合物を、酸触媒の存在下で反応させることにより、前記一般式(4)または(5)で表される構造単位を有するアラルキル樹脂を製造する、請求項24に記載のアラルキル樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000017
    一般式(13)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、nは0~2の整数であり、aは2以上の整数であり、nが0のときp+a≦6の整数であり、nが1のときp+a≦8の整数であり、nが2のときp+a≦10の整数である。
    Figure JPOXMLDOC01-appb-C000018
    一般式(14)中、Rは芳香環に直接結合する原子が酸素原子であるものを除く1価の置換基を表し、Rが複数存在する場合は、それらは同一でも異なっていてもよく、mおよびkは0~2の整数であり、aおよびbは1以上の整数であり、m+kが0のときp+q+a+b≦10の整数であり、m+kが1のときp+q+a+b≦12の整数であり、m+kが2のときp+q+a+b≦14の整数であり、m+kが3のときp+q+a+b≦16の整数であり、m+kが4のときp+q+a+b≦18の整数であり、Xは単結合、または酸素原子を除く2価の置換基である。

     
    The structure represented by the general formula (4) or (5) is obtained by reacting an aromatic compound represented by the following general formula (13) or (14) with a phenolic compound in the presence of an acid catalyst. 25. The method for producing an aralkyl resin according to claim 24, wherein an aralkyl resin having units is produced.
    Figure JPOXMLDOC01-appb-C000017
    In general formula (13), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, n is an integer of 0 to 2, a is an integer of 2 or more, when n is 0, it is an integer of p + a ≤ 6, when n is 1, it is an integer of p + a ≤ 8, and n is 2 is an integer of p+a≤10 when
    Figure JPOXMLDOC01-appb-C000018
    In general formula (14), R 1 represents a monovalent substituent excluding those in which the atom directly bonded to the aromatic ring is an oxygen atom, and when there are multiple R 1s , they may be the same or different. Well, m and k are integers of 0 to 2, a and b are integers of 1 or more, p + q + a + b ≤ 10 when m + k is 0, and p + q + a + b ≤ 12 when m + k is 1. , p + q + a + b ≤ 14 when m + k is 2, p + q + a + b ≤ 16 when m + k is 3, p + q + a + b ≤ 18 when m + k is 4, and X is a single bond or excluding an oxygen atom It is a divalent substituent.

PCT/JP2022/040860 2021-11-02 2022-11-01 Aralkyl resin, diluent for epoxy resin, curable resin composition, photosensitive resin composition, cured product, electronic device, and aralkyl resin production method WO2023080132A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023558038A JPWO2023080132A1 (en) 2021-11-02 2022-11-01
CN202280066753.5A CN118043368A (en) 2021-11-02 2022-11-01 Aralkyl resin, diluent for epoxy resin, curable resin composition, photosensitive resin composition, cured product, electronic device, and process for producing aralkyl resin
KR1020247012222A KR20240088837A (en) 2021-11-02 2022-11-01 Aralkyl resin, diluent for epoxy resin, curable resin composition, photosensitive resin composition, cured product, electronic device, method for producing aralkyl resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-179571 2021-11-02
JP2021179571 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023080132A1 true WO2023080132A1 (en) 2023-05-11

Family

ID=86241151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040860 WO2023080132A1 (en) 2021-11-02 2022-11-01 Aralkyl resin, diluent for epoxy resin, curable resin composition, photosensitive resin composition, cured product, electronic device, and aralkyl resin production method

Country Status (5)

Country Link
JP (1) JPWO2023080132A1 (en)
KR (1) KR20240088837A (en)
CN (1) CN118043368A (en)
TW (1) TW202330683A (en)
WO (1) WO2023080132A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179914A (en) * 1986-12-10 1988-07-23 インペリアル・ケミカル・インダストリーズ・ピーエルシー Oligomer, manufacture, addition polymeric composition, bridge thermosettable resin, fiber composite material and manufacture
WO2020162408A1 (en) * 2019-02-06 2020-08-13 セントラル硝子株式会社 Method for producing 1,1,1-trifluoro-2,2-bisarylethane, and 1,1,1-trifluoro-2,2-bisarylethane
WO2021193878A1 (en) * 2020-03-27 2021-09-30 セントラル硝子株式会社 Novolac resin, epoxy resin, photosensitive resin composition, curable resin composition, cured product, electronic device, method for producing novolac resin, and method for producing epoxy resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179914A (en) * 1986-12-10 1988-07-23 インペリアル・ケミカル・インダストリーズ・ピーエルシー Oligomer, manufacture, addition polymeric composition, bridge thermosettable resin, fiber composite material and manufacture
WO2020162408A1 (en) * 2019-02-06 2020-08-13 セントラル硝子株式会社 Method for producing 1,1,1-trifluoro-2,2-bisarylethane, and 1,1,1-trifluoro-2,2-bisarylethane
WO2021193878A1 (en) * 2020-03-27 2021-09-30 セントラル硝子株式会社 Novolac resin, epoxy resin, photosensitive resin composition, curable resin composition, cured product, electronic device, method for producing novolac resin, and method for producing epoxy resin

Also Published As

Publication number Publication date
JPWO2023080132A1 (en) 2023-05-11
CN118043368A (en) 2024-05-14
TW202330683A (en) 2023-08-01
KR20240088837A (en) 2024-06-20

Similar Documents

Publication Publication Date Title
JP7069529B2 (en) Compounds, resins, compositions, resist pattern forming methods and circuit pattern forming methods
CN115427470B (en) Novolak resin, epoxy resin, photosensitive resin composition, curable resin composition, cured product, electronic device, method for producing novolak resin, and method for producing epoxy resin
JP7069530B2 (en) Compounds, resins, compositions and pattern forming methods
JP2022033731A (en) Compound, resin and composition, and method for forming resist pattern and method for forming circuit pattern
JP5383606B2 (en) Phenolic resin and method for producing the same
JP6165690B2 (en) Method for producing composition for forming organic film
KR20160135122A (en) Radiation-sensitive resin composition and electronic component
TWI664501B (en) Radiation-sensitive resin composition and electronic component
WO2018016634A1 (en) Compound, resin, and composition, as well as resist pattern formation method and circuit pattern formation method
JP7452947B2 (en) Compounds, resins, compositions, resist pattern forming methods, and circuit pattern forming methods
US9550711B2 (en) Fluorine-containing polymerizable monomer and polymer compound using same
JP7061271B2 (en) Compounds, resins, compositions, resist pattern forming methods and circuit pattern forming methods
JP7205715B2 (en) Compound, resin, composition, resist pattern forming method and circuit pattern forming method
JP7068661B2 (en) Compounds, resins, compositions, resist pattern forming methods and pattern forming methods
KR20180048651A (en) Resin composition
CN107848926B (en) Novolac type phenolic hydroxyl group-containing resin and resist film
WO2023080132A1 (en) Aralkyl resin, diluent for epoxy resin, curable resin composition, photosensitive resin composition, cured product, electronic device, and aralkyl resin production method
JP5481037B2 (en) Novel fluorene compound having phenolic hydroxyl group and methylol group and method for producing the same
JPWO2019151400A1 (en) Compounds, resins, compositions, resist pattern forming methods, circuit pattern forming methods and resin purification methods
WO2017217312A1 (en) Resin composition for resist and resist film
JP6063740B2 (en) NOVOLAC RESIN, PROCESS FOR PRODUCING THE SAME, AND USE THEREOF
JP2008024900A (en) Benzoxazole precursor, resin composition and coating varnish, resin film, and semiconductor device using the same
JP6825217B2 (en) Radiation-sensitive resin composition and electronic components
WO2023080072A1 (en) Resin curing agent, curable resin composition, cured product, electronic device, laminate sheet material, electronic component sealing material, ester compound, method for producing ester compound, and method for producing novolac resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023558038

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280066753.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE