WO2023080130A1 - Anisotropic light-diffusing film, anisotropic light-diffusing film with adhesive layer, and image display device - Google Patents

Anisotropic light-diffusing film, anisotropic light-diffusing film with adhesive layer, and image display device Download PDF

Info

Publication number
WO2023080130A1
WO2023080130A1 PCT/JP2022/040850 JP2022040850W WO2023080130A1 WO 2023080130 A1 WO2023080130 A1 WO 2023080130A1 JP 2022040850 W JP2022040850 W JP 2022040850W WO 2023080130 A1 WO2023080130 A1 WO 2023080130A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
anisotropic light
light diffusion
ratio
Prior art date
Application number
PCT/JP2022/040850
Other languages
French (fr)
Japanese (ja)
Inventor
知彰 原田
隆敏 牟田
博樹 中村
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021179414A external-priority patent/JP2023068370A/en
Priority claimed from JP2021212117A external-priority patent/JP2023096395A/en
Priority claimed from JP2021212116A external-priority patent/JP2023096394A/en
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023080130A1 publication Critical patent/WO2023080130A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to an anisotropic light diffusion film.
  • This application is based on Japanese Patent Application No. 2021-179414 filed in Japan on November 2, 2021, Japanese Patent Application No. 2021-212116 filed in Japan on December 27, 2021, and Japan on December 27, 2021. Claiming priority based on Japanese Patent Application No. 2021-212117 filed, March 18, 2022, Japanese Patent Application No. 2022-043572, Japanese Patent Application No. 2022-043573, and Japanese Patent Application No. 2022-043574. , the contents of which are hereby incorporated by reference.
  • a light diffusion film is used as an optical film used in a liquid crystal display.
  • a light diffusion film is used as a diffuser plate in a liquid crystal display device to obtain a uniform planar light source by planarly scattering the light from the light source. It is used as a screen for
  • a light diffusion film As a light diffusion film, one or both surfaces of the film are roughened, or the surface of the film is provided with a scattering particle-containing layer obtained by coating transparent organic fine particles such as acrylic resin. It is used.
  • a scattering particle-containing layer obtained by coating transparent organic fine particles such as acrylic resin.
  • an internal structure containing a diffusion element of organic particles inside a matrix resin A light diffusion film is disclosed in which a light diffusion layer is formed on at least one surface of the diffusion film, and the light diffusion layer is composed of at least a binder resin and particles.
  • an anisotropic light diffusion film that scatters light in a specific direction instead of scattering light evenly has been desired.
  • Applications of such an anisotropic light diffusion film include the display surface of large-sized liquid crystal televisions, diffusion plates, screens of projection type image display devices such as rear projection televisions, and the like.
  • Patent Document 2 as an anisotropic scattering film suitable as a screen of a projection type image display device and excellent in all performances of resolution, contrast, and brightness, at least two or more incompatible resins wherein the phase-separated structure of the immiscible resin is a sea-island structure comprising a sea phase comprising at least one resin and an island phase comprising at least one resin, wherein the island phase comprises
  • the film has a rod-like shape oriented in one direction at least on the surface layer, and is characterized in that the scattered light intensity is different between the scattering plane parallel to the orientation direction of the island phase and the scattering plane perpendicular to the orientation direction of the island phase.
  • Patent Document 3 describes an anisotropic optical film that suppresses glare and abrupt changes in luminance and has an optimized balance of optical properties including light diffusion properties.
  • a film is disclosed.
  • the mainstream is the direct type, in which the light source is arranged on the back of the liquid crystal panel, or the edge-light type, in which the light source is arranged near the side of the liquid crystal panel.
  • Backlight units used in large-sized liquid crystal displays are mainly direct type cold cathode ray tube backlight units that use cold cathode ray tubes as the light source from the viewpoint of excellent brightness of the screen and uniformity of brightness within the screen. Used.
  • a cold cathode ray tube which is a linear light source
  • a plurality of cold cathode ray tubes may be arranged in parallel in order to brighten the display screen. In this case, light from adjacent cold cathode ray tubes interferes with each other, and stripe-like spots of brightness tend to occur.
  • edge-light type backlight units have also come to be used in large liquid crystal displays.
  • an edge light type LED backlight unit using light emitting diodes (LEDs) as a light source is often used. Parts such as a light plate are required.
  • LEDs light emitting diodes
  • direct backlight units using LEDs as light sources have come to be used for reasons such as reducing power consumption and reducing costs by omitting the light guide plate.
  • Such a direct type LED backlight unit generally has an aspect in which the LED light sources are arranged substantially on the same plane as the reflector.
  • luminance spots such as darkening of the corresponding portions between the LEDs, tend to occur in the display device.
  • an anisotropic diffusion film capable of diffusing light in a specific direction can prevent light from scattering in directions other than the direction in which the viewer views the screen. You can expect to be able to solve these problems.
  • an object of one aspect of the present invention is to provide a light diffusion film that is excellent in brightness and visibility when mounted on a display.
  • Another object of the present invention is to provide an anisotropic light diffusion film having both an anisotropic light diffusion property for diffusing light in a specific direction and low reflectivity.
  • an anisotropic light diffusion film that can diffuse light in a specific direction can prevent light from scattering in directions other than the direction in which the viewer views the screen, enabling viewing at a wide viewing angle. I thought it would be possible to improve the brightness reflected in the human eye. On the other hand, we discovered that if the anisotropic light diffusion is too high, the visibility of the screen when viewed from the front deteriorates. It was found that the brightness and visibility were improved when mounted. Further, as a result of intensive studies by the present inventors, in an anisotropic light diffusion film having a sea-island structure, the anisotropic light diffusion property and the It has been found that both low reflectivity can be achieved.
  • the gist of the present invention is as follows.
  • a light diffusion film having at least a first layer capable of scattering incident light in the direction of travel of the light An anisotropic light-diffusing film having a ratio of 60° brightness ratio to front brightness ratio (60° brightness ratio/front brightness ratio) determined by the following method of 0.30 or more and 0.60 or less.
  • ⁇ 60° luminance ratio> In the light diffusion film, the ratio (C/B) of the luminance C in the direction inclined 60° from the normal N direction of the film surface to the light diffusion direction and the front luminance B in the normal N direction of the film surface is 60° Let it be the luminance ratio.
  • ⁇ Front luminance ratio> The ratio (B/A) of the front luminance B of the light diffusion film and the front luminance A in the normal N direction of the film surface in the blank sample satisfying the following conditions (1) and (2) is defined as the front luminance ratio. do.
  • the ratio of the luminous reflectance R SCE of the specular component exclude method to the luminous reflectance R SCI of the specular component include method (R SCE /R SCI ) is 50% or more, the anisotropic light-diffusing film according to any one of the above [1] to [7].
  • the diol component having an alicyclic structure is one or more selected from spiroglycol, isosorbide, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol. , the anisotropic light diffusion film according to [19] above.
  • the first layer comprises an amorphous polyester resin and a polycarbonate resin (excluding a polycarbonate resin containing a structural unit (a) derived from a dihydroxy compound represented by the following general formula (1)).
  • It has a first layer having a sea-island structure with a continuous phase (I) and a dispersed phase (II), has a haze of 40% or more as measured in accordance with JIS K7136, and is tensile in the MD and TD directions.
  • An anisotropic light-diffusing film having an intensity ratio ( ⁇ MD / ⁇ TD ) of 0.75 to 1.25.
  • It has a first layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II), has a haze of 40% or more as measured according to JIS K7136, and has a tensile strength ⁇ MD in the MD direction.
  • a first layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II) is provided, and the volume of the dispersed phase at the central portion in the thickness direction of the first layer is 20 ⁇ m 3 or more and 120 ⁇ m 3 or less.
  • the ratio of the average dispersion diameter in the MD direction to the average dispersion diameter in the TD direction of the dispersed phase (II) is 3 or more at the center in the thickness direction. .
  • an anisotropic light diffusion film wherein the area of the dispersion diameter in the TD cross section at the central portion in the thickness direction of the dispersed phase (II) is 2 ⁇ m 2 or more.
  • It has a sea-island structure with a continuous phase (I) and a dispersed phase (II), and at least one of the continuous phase (I) and the dispersed phase (II) contains a thermoplastic resin having an average refractive index of 1.53 or less.
  • An anisotropic light diffusing film including.
  • An anisotropic light-diffusing film with an adhesive layer comprising an adhesive layer on at least one surface of the anisotropic light-diffusing film of any one of [1] to [31] above.
  • An image display device comprising the anisotropic light diffusion film according to any one of [1] to [31] above.
  • the image display device according to [34] having a screen size of 32 inches or more.
  • the anisotropic light-diffusing film according to one aspect of the present invention is excellent in anisotropic light-diffusing properties, transmittance, and low reflectivity, and is therefore excellent in brightness and visibility when mounted on a display.
  • An anisotropic light-diffusing film according to another aspect of the present invention can have both anisotropic light-diffusing properties and low reflectivity.
  • FIG. 4 is a cross-sectional view (MD cross section) of an anisotropic light diffusion film of Test Example 4-1.
  • FIG. 4 is a cross-sectional view (TD cross section) of an anisotropic light diffusion film of Test Example 4-1.
  • FIG. 10 is a cross-sectional view (MD cross section) of an anisotropic light-diffusing film of Test Example 4-2.
  • FIG. 10 is a cross-sectional view (TD cross section) of an anisotropic light-diffusing film of Test Example 4-2.
  • FIG. 10 is a cross-sectional view (MD cross section) of an anisotropic light-diffusing film of Test Example 4-3.
  • FIG. 10 is a cross-sectional view (TD cross section) of an anisotropic light-diffusing film of Test Example 4-3.
  • FIG. 10 is a cross-sectional view (MD cross section) of an anisotropic light-diffusing film of Test Example 4-4.
  • FIG. 10 is a cross-sectional view (TD cross section) of an anisotropic light-diffusing film of Test Example 4-4.
  • FIG. 10 is a cross-sectional view (MD cross section) of an anisotropic light-diffusing film of Test Example 4-7.
  • FIG. 10 is a cross-sectional view (TD cross section) of an anisotropic light-diffusing film of Test Example 4-7.
  • FIG. 10 is a cross-sectional view (MD cross section) of an anisotropic light-diffusing film of Test Example 4-8.
  • FIG. 10 is a cross-sectional view (TD cross section) of an anisotropic light-diffusing film of Test Example 4-8.
  • An anisotropic light diffusion film (hereinafter also referred to as “this light diffusion film”) according to one embodiment of the present invention includes a first layer (hereinafter simply referred to as “first (also referred to as “layer”).
  • first also referred to as “layer”
  • “capable of scattering incident light in the traveling direction of light” means that the front luminance ratio is 70% or more and the 60-degree luminance ratio is 20% or more.
  • the ratio of the 60° luminance ratio (60° luminance ratio/front luminance ratio) to the front luminance ratio obtained by the following method is 0.30 or more and 0.30. It is preferably 60 or less.
  • the 60° luminance ratio/front luminance ratio is more preferably 0.32 or more, still more preferably 0.34 or more, and even more preferably 0.36 or more. It is more preferably 0.55 or less, more preferably 0.50 or less, more preferably 0.48 or less, still more preferably 0.46 or less, and even more preferably 0.44 or less.
  • the fact that the 60° luminance ratio/front luminance ratio is within the above range means that the display has good brightness and visibility both when viewed from the front and when viewed at a wide viewing angle. Therefore, when the 60° luminance ratio/front luminance ratio is within the above range, it can be said that the anisotropic light diffusibility and the front luminance are well balanced.
  • the 60° luminance ratio and the front luminance ratio are obtained by the following methods.
  • the ratio (C/B) of the luminance C in the direction inclined 60° from the normal N direction of the film surface to the front luminance B in the normal N direction of the film surface (100%) is the 60° luminance ratio (%).
  • An example of the measuring method is shown in FIG.
  • the light diffusion film 1 is fixed to the backlight unit 2, and light is made to enter from the normal N direction of the film surface (thick arrow in FIG. 1).
  • the luminance C is the measured value when the backlight unit 2 is tilted so that the luminance meter 3 is positioned in a direction tilted 60° from the normal N direction of the film surface to the light diffusion direction y.
  • the luminance B is the measured value when the backlight unit 2 is arranged so that the luminance meter 3 is positioned in the normal N direction.
  • front luminance ratio The ratio (B/A) of the front luminance B of this light diffusion film to the front luminance A in the normal N direction of the film surface (100%) in a blank sample that satisfies the following conditions (1) and (2). Brightness ratio (%).
  • [Blank sample] (1) The total light transmittance measured according to JIS K7361-1 is 90% or more. (2) The haze measured according to JIS K7136 is 1% or less.
  • the front luminance A is obtained when the blank sample is fixed to the backlight unit, light is incident from the normal N direction of the film surface, and the backlight unit is arranged so that the luminance meter is positioned in the normal N direction. is the measured value.
  • the 60° brightness ratio of the present light diffusion film is preferably 27% or more, more preferably 30% or more, and even more preferably 32% or more.
  • the upper limit of the 60° luminance ratio is not particularly limited, it is preferably 99% or less, more preferably 95% or less.
  • the anisotropic light diffusing property of the film is good, and it is possible to prevent light from scattering in a direction other than the direction in which the viewer views the screen. can improve the brightness seen by viewers.
  • the front luminance ratio of the present light diffusion film is preferably 50% or more, more preferably 60% or more, further preferably 70% or more, and 80% or more. is even more preferred.
  • the upper limit of the front luminance ratio is not particularly limited, but is preferably 99% or less, more preferably 95% or less, and even more preferably 90% or less.
  • the haze of the present light diffusion film is preferably 10% or more, more preferably 20% or more, still more preferably 25% or more, and even more preferably 30% or more. Furthermore, among them, 40% or more is preferable, 45% or more is more preferable, 50% or more is still more preferable, 60% or more is still more preferable, and 70% or more is particularly preferable. On the other hand, the upper limit of the haze is not particularly limited, but is preferably 99% or less, more preferably 95% or less, and even more preferably 90% or less.
  • the present light diffusion film has a structure containing a liquid crystal component, organic fine particles, an anisotropic inorganic filler, or a dispersed phase in a sea-island structure (hereinafter also referred to as a "dispersed component")
  • a large amount of the dispersed component is present in the film.
  • haze tends to increase. Therefore, when the haze is within the above range, the anisotropic light diffusibility of the film tends to be high.
  • the haze in the present invention can be measured according to JIS K7136 by the method described in Examples.
  • the light diffusion film preferably has a total light transmittance of 85% or more, more preferably 86% or more, even more preferably 87% or more, and 90% or more. is even more preferable, and 92% or more is particularly preferable. Furthermore, among them, it is preferably 94% or more, more preferably 94.5% or more, still more preferably 95% or more, and even more preferably 96% or more. On the other hand, although the upper limit of the total light transmittance is not particularly limited, it is preferably 99% or less.
  • the total light transmittance in the present invention can be measured according to JIS K7361-1 by the method described in Examples.
  • the present light diffusion film has a reflectance of Specular Component Include method measured using a spectrophotometer, that is, a luminous reflectance R SCI of 32 or less. It is preferably 29 or less, even more preferably 26 or less, and even more preferably 22 or less. Furthermore, among them, it is preferably 20 or less, more preferably 18 or less, still more preferably 16 or less, and even more preferably 14 or less.
  • the lower limit of the luminous reflectance R SCI is not particularly limited, but from the viewpoint of anisotropic light diffusion, it is preferably 5 or more, more preferably 5.5 or more. When the luminous reflectance R SCI is within the above range, the film tends to have low reflectivity.
  • This light diffusion film has a specular component exclude method (Specular Component Exclude method) reflectance measured using a spectrophotometer (100%) with respect to the luminous reflectance R SCI , that is, the luminous reflectance R
  • the SCE ratio (R SCE /R SCI ) is preferably 40% or more, more preferably 45% or more, still more preferably 50% or more, and even more preferably 55% or more. , above 60%.
  • the upper limit of the ratio (R SCE /R SCI ) is not particularly limited as long as it is 100% or less. When the ratio (R SCE /R SCI ) is within the above range, the film has good light diffusing properties.
  • the luminous reflectance R SCI and the luminous reflectance R SCE in the present invention can be measured by the method described in Examples using a black background having a luminous reflectance R SCI of 5.1.
  • the light diffusion film has a heat dimensional change rate in the MD direction measured under test conditions of 110°C for 60 minutes in accordance with JIS K7133: 1999, which is 0.5% or less. is preferred, 0.4% or less is more preferred, and 0.3% or less is even more preferred.
  • the thermal dimensional change rate is within the above range, it can be considered that the present light diffusion film has sufficient heat resistance at 110° C. or less.
  • Such a film can be suitably used as a constituent member of an image display device mounted on a vehicle.
  • the surface hardness of the light diffusion film is measured on the surface of the film layer in accordance with JIS K5600 under the conditions of a temperature of 23°C ⁇ 2°C, a relative humidity of 50% ⁇ 10°C, and a load of 750 gf. is preferably B or higher, more preferably HB or higher, and even more preferably F or higher. When the surface hardness is within the above range, the present light diffusion film can be prevented from being scratched.
  • the light diffusion film preferably has an arithmetic mean height Ra of 10 ⁇ m or less, more preferably 5 ⁇ m or less, even more preferably 3 ⁇ m or less, and preferably 1 ⁇ m or less. Even more preferable.
  • the lower limit of the arithmetic mean roughness Ra is not particularly limited. More preferred.
  • the arithmetic mean height Ra in the present invention can be measured according to JIS B0601:2001 by the method described in Examples.
  • the tensile strength ratio ( ⁇ MD / ⁇ TD ) in the MD direction and the TD direction is preferably 0.75 to 1.25, especially It is more preferably 0.80 or more and 1.20 or less, more preferably 0.85 or more and 1.15 or less, and more preferably 0.90 or more and 1.10 or less. preferable.
  • the anisotropy of the tensile strength is small.
  • the "MD direction” indicates the take-up (flow) direction of the sheet or film when manufacturing the sheet or film
  • the "TD direction” indicates the orthogonal direction.
  • both the tensile strength ⁇ MD in the MD direction and the tensile strength ⁇ TD in the TD direction are preferably 50 MPa or more, more preferably 55 MPa or more, and 60 MPa or more. is more preferable.
  • the upper limit of the tensile strength is not particularly limited, it is preferably 200 MPa or less.
  • the tensile strength ⁇ MD in the MD direction and the tensile strength ⁇ TD in the TD direction are within the above ranges, reflection due to interfacial peeling between the matrix component and the dispersed component is less likely to occur, and the film tends to have low reflectivity. , the total light transmittance tends to be high.
  • the tensile strength of the light diffusion film can be measured according to JIS K7161-1 by the method described in Examples.
  • the first layer will be described below.
  • the first layer has a structure capable of scattering incident light in the traveling direction of the light.
  • a liquid crystal component, organic fine particles, anisotropic inorganic filler, or other dispersing component is added to the matrix resin
  • a liquid crystal component, organic fine particles, anisotropic inorganic filler, or other dispersing component is added to the matrix resin
  • Patent Document 1 JP-A-2010-079197, International Publication No. 2015/182517, etc.
  • those having an uneven structure on the film surface for example, JP-A-2013-114846, etc.
  • a light diffusion film having an uneven structure on its surface can have a 60° luminance ratio/front luminance ratio within the above range by adjusting the uneven structure.
  • such a light diffusion film may cause a striped pattern called moire when mounted on a display, and it may be difficult to increase the production speed due to the manufacturing method.
  • a light diffusion film having a sea-island structure with a continuous phase (I) and a dispersed phase (II) has a 60° luminance ratio by adjusting the components and amounts of the continuous phase (I) and the dispersed phase (II). /front luminance ratio can be set within the above range.
  • the first layer preferably has an uneven structure on the surface or has a sea-island structure with the continuous phase (I) and the dispersed phase (II), and the continuous phase (I) and the dispersed phase (II) It is more preferable to have a sea-island structure by Preferred forms of the first layer are described below.
  • a first layer according to a first preferred embodiment of the present invention has an uneven structure on its surface.
  • the concave-convex structure of the first layer is not particularly limited as long as the 60° luminance ratio/front luminance ratio of the present light diffusion film is within the above range.
  • Examples of the first layer having an uneven structure on its surface include the following. (1) Concavities and convexities are formed on the surface of a mold base material made of metal, resin, etc., and the shape is transferred from this mold to a resin film, etc.
  • a first layer according to a second preferred embodiment of the present invention has a sea-island structure with a continuous phase (I) and a dispersed phase (II).
  • the continuous phase (I) is the phase that forms the sea in the island-sea structure
  • the dispersed phase (II) is the phase that forms the islands in the island-sea structure.
  • the dispersed structure can be observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
  • the first layer has a dispersed structure in which the island portions of the sea-island structure, ie, the dispersed phase (II), are extended in the MD direction, and the sea portion, ie, the continuous phase (I) is dispersed. preferable.
  • the anisotropic light diffusibility of the film is enhanced.
  • At least one of the continuous phase (I) and the dispersed phase (II) of the first layer preferably contains a thermoplastic resin having an average refractive index of 1.53 or less.
  • the average refractive index of the thermoplastic resin is more preferably 1.52 or less, even more preferably 1.51 or less.
  • the lower limit of the average refractive index is not particularly limited, it is preferably 1.45 or more.
  • thermoplastic resin having an average refractive index of 1.53 or less is preferably a resin component that constitutes the continuous phase (I). Among them, it is preferable that the thermoplastic resin having an average refractive index of 1.53 or less accounts for 50% by mass or more of the resin components constituting the continuous phase (I). Among them, it accounts for 80% by mass or more, more preferably 90% by mass or more (including 100% by mass).
  • the refractive index difference between the continuous phase (I) and the dispersed phase (II) is preferably 0.010 to 0.080, more preferably 0.015 or more or 0.075 or less, and more preferably 0.020 or more or 0.070 or less is more preferable.
  • the refractive index difference between the continuous phase (I) and the dispersed phase (II) is within the above range, the internal reflection of the film is suppressed and the reflectivity tends to be low.
  • the anisotropic light diffusibility can be enhanced while maintaining a high total light transmittance.
  • the refractive index difference between the continuous phase (I) and the dispersed phase (II) is calculated as the absolute value of the refractive index difference between the raw material resins forming the continuous phase (I) and the dispersed phase (II).
  • the refractive index of each phase can be determined from the compounding ratio of the raw material resins and the average refractive index of each resin. shall be calculated.
  • the continuous phase (I) and dispersed phase (II) in the first layer can be formed by using at least two thermoplastic resins.
  • the thermoplastic resin include polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate and polybutylene terephthalate; polyolefins such as polyethylene, polypropylene, cyclopolyolefin and polymethylpentene; acetylcellulose and nitrocellulose.
  • Cellulose derivatives such as , acetylbutyl cellulose, ethyl cellulose, methyl cellulose; vinyl resins such as vinyl acetate and its copolymers, vinyl chloride and its copolymers, vinylidene chloride and its copolymers; acetals such as polyvinyl formal and polyvinyl butyral Acrylic resins such as acrylic resins such as polyacrylates and copolymers thereof, methacrylic resins such as polymethacrylates and copolymers thereof; acrylic resins such as polystyrene resins; polyamide resins; be able to.
  • vinyl resins such as vinyl acetate and its copolymers, vinyl chloride and its copolymers, vinylidene chloride and its copolymers
  • acetals such as polyvinyl formal and polyvinyl butyral Acrylic resins such as acrylic resins such as polyacrylates and copolymers thereof, methacrylic resins such as polymethacrylates and copolymers
  • thermoplastic resins are a thermoplastic resin having an average refractive index of 1.53 or less (also referred to as “resin ⁇ "). More specifically, the at least two thermoplastic resins include a combination of resin ⁇ and a thermoplastic resin incompatible therewith (also referred to as “resin ⁇ ”).
  • the term "incompatible” means a state in which at least two resin components are not completely mixed, and may be partially mixed. (TEM) or scanning electron microscope (SEM), micro-phase separation structure due to sea-island structure is observed.
  • the continuous phase (I) and the dispersed phase (II) By forming the continuous phase (I) and the dispersed phase (II) with materials containing these two types of resins ⁇ and ⁇ , the vicinity of the direction inclined 60° from the normal N direction of the surface of the light diffusion film to the light diffusion direction An ideal island component having strong diffusivity can be formed, and an optimum dispersion structure can be formed to exhibit excellent anisotropic light diffusibility.
  • the first layer may contain a resin ⁇ as a third component in addition to the resins ⁇ and ⁇ .
  • the resin ⁇ is a thermoplastic resin incompatible with the resin ⁇ , and preferably forms the dispersed phase (II) together with the resin ⁇ and is compatible with or phase-separated from the resin ⁇ in the dispersed phase (II).
  • the anisotropic light diffusibility of the present light diffusion film can be adjusted.
  • resin ⁇ having an average refractive index of 1.53 or less include polymethyl methacrylate, polypropylene, polyurethane, and the like. From the viewpoint of above, a polycarbonate resin containing a structural unit (a) derived from a dihydroxy compound represented by general formula (1) is preferred.
  • the polycarbonate resin containing the structural unit (a) is preferably the main component in the continuous phase (I) of the first layer.
  • the "main component” means the resin with the highest content among the resins constituting the continuous phase (I) or the dispersed phase (II), for example, the continuous phase (I) or the dispersed phase (II ), a resin component that accounts for 50% by mass or more, particularly 70% by mass or more, especially 80% by mass or more (including 100% by mass).
  • dihydroxy compound represented by the general formula (1) examples include isosorbide, isomannide and isoide, which are stereoisomers. These may be used individually by 1 type, and may be used in combination of 2 or more type. Since these dihydroxy compounds do not have a phenolic hydroxyl group, they are usually produced by transesterification using diester carbonate.
  • isosorbide which is obtained by dehydration condensation of sorbitol produced from various easily available starches, which exists abundantly as a plant-derived resource, has transparency, stretchability, heat resistance and It is most preferable from the aspect of anisotropic light diffusion.
  • the structural unit (a) in the polycarbonate resin accounts for preferably 35 mol% or more, more preferably 40 mol% or more, and even more preferably 45 mol% or more of all structural units derived from the dihydroxy compound. Also, it is preferably 90 mol % or less, more preferably 85 mol % or less, and still more preferably 80 mol % or less. If the ratio of the structural unit (a) is at least the above lower limit, it becomes easy to increase the molecular weight of the polycarbonate resin. On the other hand, if the said ratio is below the said upper limit, polycarbonate resin will be hard to color.
  • the polycarbonate resin containing the structural unit (a) may further contain a structural unit (b) derived from a dihydroxy compound other than the structural unit (a).
  • Examples of the structural unit (b) include a structural unit (b1) derived from an aliphatic dihydroxy compound and/or a structural unit (b2) derived from an alicyclic dihydroxy compound.
  • Specific examples of the aliphatic dihydroxy compound and the alicyclic dihydroxy compound include the following.
  • aliphatic dihydroxy compound examples include 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 2-ethyl -1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, 1,9-nonanediol, 1,10-decanediol, hydrogenated dilinoleyl glycol, hydrogenated dioleyl glycol, etc. are mentioned. These aliphatic dihydroxy compounds may be used singly or in combination of two or more.
  • the molar ratio between the structural unit (a) and the structural unit (b1) derived from the aliphatic dihydroxy compound can be selected at any ratio. Flexibility and moldability can be improved by adjusting the molar ratio. Therefore, from such a viewpoint, the molar ratio of the structural unit (a) and the structural unit (b1) derived from the aliphatic dihydroxy compound is preferably 35:65 to 99:1, and 40:60 to More preferably 90:10, even more preferably 45:55 to 80:20.
  • Alicyclic dihydroxy compounds include compounds containing a 5- or 6-membered ring structure. When the alicyclic dihydroxy compound has a 5-membered ring structure or a 6-membered ring structure, there are advantages such as improved heat resistance.
  • the six-membered ring structure may be fixed in a chair or boat shape by a covalent bond.
  • the number of carbon atoms contained in the alicyclic dihydroxy compound is usually 70 or less, preferably 50 or less, more preferably 30 or less.
  • An alicyclic dihydroxy compound having 70 or less carbon atoms is preferred because it is easy to synthesize and purify, and is inexpensive and readily available.
  • alicyclic dihydroxy compound containing a 5-membered ring structure or 6-membered ring structure include alicyclic dihydroxy compounds represented by the following general formula (2) or (3).
  • HO—R 10 —OH (3) (In general formulas (2) and (3), R 9 and R 10 each independently represent a substituted or unsubstituted divalent group containing a cycloalkyl structure having 4 to 20 carbon atoms.)
  • Examples of the alicyclic dihydroxy compound represented by the general formula (2) include cyclohexanedimethanol, tricyclodecanedimethanol, pentacyclopentadecanedimethanol, decalindimethanol, tricyclotetradecanedimethanol, norbornanedimethanol, and adamantanediethanol. Methanol etc. are mentioned.
  • the alicyclic dihydroxy compounds represented by the general formula (3) include tricyclodecanediol, pentacyclopentadecanediol, decalindiol, tricyclotetradecanediol, norbornanediol, and adamantanediol.
  • alicyclic dihydroxy compounds may be used singly or in combination of two or more.
  • the structural unit (b3) is any one or more selected from cyclohexanedimethanol, tricyclodecanedimethanol, adamantanediol and pentacyclopentadecanedimethanol from the viewpoint of availability and ease of handling. Structural units derived from compounds are particularly preferred.
  • the molar ratio of the structural unit (a) and the structural unit (b2) derived from the alicyclic dihydroxy compound is preferably 35:65 to 99:1, more preferably 40:60 to 90:10. More preferably, it is 45:55 to 80:20. When the molar ratio is within the above range, the polycarbonate resin is less likely to be colored and the molecular weight can be easily increased.
  • the glass transition temperature (Tg) of resin ⁇ is preferably 90° C. or higher, more preferably 100° C. or higher, and more preferably 110° C. or higher.
  • the temperature is preferably 350° C. or lower, more preferably 300° C. or lower, and more preferably 250° C. or lower.
  • the glass transition temperature of the resin is determined according to JIS K7121:2012 using a differential scanning calorimeter (for example, "DSC8500" manufactured by PerkinElmer Japan Co., Ltd.) with a temperature range of 0 to 200 ° C. and a heating rate of A value measured at 10°C/min.
  • the apparent viscosity ⁇ 240, ⁇ of the resin ⁇ at 240° C. and a shear rate of 100 (1/s) is preferably 100 (Pa s) to 10000 (Pa s), especially 200 (Pa s) from the viewpoint of moldability. (Pa ⁇ s) or more and 5000 (Pa ⁇ s) or less is more preferable, and among them, 300 (Pa ⁇ s) or more and 1000 (Pa ⁇ s) or less is more preferable.
  • the content of resin ⁇ in the first layer is preferably 10 to 90% by mass, more preferably 20% by mass or more or 80% by mass or less, and more preferably 30% by mass or more or 70% by mass or less. Among them, 40% by mass or more or 65% by mass or less is more preferable.
  • the content of the resin ⁇ is within the above range, the dispersed phase (II) is appropriately formed in the first layer, and the anisotropic light diffusibility is improved.
  • the resin ⁇ examples include at least one resin selected from the group consisting of amorphous polyester resins and amorphous styrene resins.
  • the resin ⁇ is preferably the main component in the dispersed phase (II) of the first layer.
  • amorphous polyester resin for example, a polyalkylene terephthalate resin such as polyethylene terephthalate or a polyalkylene-2,6-naphthalate resin such as polyethylene-2,6-naphthalate is acid-modified and/or diol-modified.
  • a crystalline copolyester may be mentioned.
  • an amorphous polyester resin modified with a diol component having an alicyclic structure that is, an amorphous polyester resin containing a diol component having an alicyclic structure is preferred.
  • amorphous means having no melting peak in DSC measurement.
  • a diol component having at least one alicyclic structure selected from spiroglycol, isosorbide, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol Amorphous polyester resins containing are particularly preferred.
  • the amorphous polyester resin containing a diol component having an alicyclic structure various commercially available raw materials can be preferably used.
  • amorphous styrene resin examples include styrene resin, acrylonitrile/styrene copolymer (AS resin), and acrylonitrile/butadiene/styrene copolymer (ABS resin).
  • the average refractive index of the resin ⁇ is preferably 1.53 or higher, more preferably 1.54 or higher, and even more preferably 1.55 or higher, from the viewpoint of anisotropic light diffusion and low reflectivity. On the other hand, from the viewpoint of low reflectivity, it is preferably 1.60 or less, more preferably 1.58 or less.
  • the glass transition temperature (Tg) of resin ⁇ is preferably 70° C. or higher, more preferably 80° C. or higher, and more preferably 90° C. or higher.
  • the temperature is preferably 350° C. or lower, more preferably 300° C. or lower, and more preferably 250° C. or lower.
  • the apparent viscosity ⁇ 240, ⁇ of the resin ⁇ at a shear rate of 100 (1/s) at 240° C. is preferably higher than the apparent viscosity ⁇ 240, ⁇ of the resin ⁇ . , preferably 400 (Pa s) to 10000 (Pa s), more preferably 600 (Pa s) or more or 9000 (Pa s) or less, among which 800 (Pa s) ) or more or 8000 (Pa ⁇ s) or less.
  • the resin ⁇ examples include at least one selected from the amorphous polyester resins exemplified for the resin ⁇ and the polycarbonate resins other than those exemplified for the resin ⁇ .
  • Examples thereof include 4,4'-dioxydiarylalkane-based polycarbonates such as 2,2-bis(4-hydroxyphenyl)propane-based polycarbonates (bisphenol A-based polycarbonates).
  • the resins ⁇ and ⁇ include the following combinations, and these resins ⁇ and ⁇ preferably constitute the dispersed phase (II).
  • Resins ⁇ and ⁇ are both amorphous polyester resins. That is, the first layer contains two or more amorphous polyester resins.
  • the resin ⁇ is an amorphous polyester resin, and the resin ⁇ is a polycarbonate resin other than those exemplified for the resin ⁇ . That is, the first layer contains an amorphous polyester resin and a polycarbonate resin (excluding the polycarbonate resin containing the structural unit (a)).
  • resin ⁇ (the resin with the higher content among the amorphous polyester resins in the dispersed phase (II)) and resin ⁇ (among the amorphous polyester resins in the dispersed phase (II)
  • the content mass ratio of the resin having a smaller content is preferably 50:50 to 95:5, more preferably 50:50 to 90:10, further preferably 50:50 to 85:15, and 50:50 to 80 :20 is even more preferred.
  • the content mass ratio of the resin ⁇ and the resin ⁇ is preferably 50:50 to 95:5, more preferably 50:50 to 90:10, further preferably 50:50 to 85:15. :50 to 80:20 is even more preferable.
  • the average refractive index of the resin ⁇ is preferably higher than that of the resin ⁇ . Even more preferable. On the other hand, from the viewpoint of low reflectivity, it is preferably 1.64 or less, more preferably 1.62 or less, and even more preferably 1.60 or less.
  • the glass transition temperature (Tg) of resin ⁇ is preferably 70° C. or higher, more preferably 80° C. or higher, and more preferably 90° C. or higher.
  • the temperature is preferably 350° C. or lower, more preferably 300° C. or lower, and more preferably 250° C. or lower.
  • the apparent viscosity ⁇ 240, ⁇ of the resin ⁇ at a shear rate of 100 (1/s) at 240° C. is preferably higher than the apparent viscosity ⁇ 240, ⁇ of the resin ⁇ . , preferably 400 (Pa s) to 10000 (Pa s), more preferably 600 (Pa s) or more or 9000 (Pa s) or less, among which 800 (Pa s) ) or more or 8000 (Pa ⁇ s) or less.
  • the dispersed phase volume of the first layer is preferably 20 ⁇ m 3 or more, more preferably 30 ⁇ m 3 or more, and even more preferably 40 ⁇ m 3 or more at the central portion in the thickness direction. Among them, it is preferably 50 ⁇ m 3 or more, more preferably 60 ⁇ m 3 or more, and even more preferably 70 ⁇ m 3 or more. Also, it is preferably 120 ⁇ m 3 or less, more preferably 110 ⁇ m 3 or less, even more preferably 100 ⁇ m 3 or less, and even more preferably 90 ⁇ m 3 or less.
  • the volume of the dispersed phase in the first layer is equal to or greater than the above lower limit, the dispersed diameters in the TD direction and the thickness direction are appropriately large, so that the reflection per dispersed phase can be reduced.
  • the dispersion diameter in the MD direction is moderately large, the anisotropic light diffusibility is also improved.
  • the dispersed phase volume is equal to or less than the above upper limit, the dispersion diameter in the TD direction and the thickness direction does not become too large, so the vicinity of the direction inclined 60° from the normal N direction of the light diffusion film surface to the light diffusion direction.
  • An ideal island component with strong diffusivity can be formed, and an optimum dispersion structure can be obtained to enhance the anisotropic light diffusibility.
  • the dispersed phase volume of the first layer is preferably 10 ⁇ m 3 or more, more preferably 15 ⁇ m 3 or more, and 20 ⁇ m in the surface layer and/or back layer in the thickness direction. More preferably, it is 3 or more. Among them, it is preferably 25 ⁇ m 3 or more, more preferably 30 ⁇ m 3 or more, and even more preferably 35 ⁇ m 3 or more. Also, it is preferably 120 ⁇ m 3 or less, more preferably 110 ⁇ m 3 or less, even more preferably 100 ⁇ m 3 or less, and even more preferably 90 ⁇ m 3 or less.
  • the dispersed phase volume was calculated by calculating the average dispersed diameter in the MD direction, the average dispersed diameter in the TD direction, and the average dispersed diameter in the thickness direction by the method described later, and assuming that the dispersed phase (II) was elliptical. value.
  • the “central portion in the thickness direction” refers to an area corresponding to ⁇ 15% of the thickness of the light diffusion film from the center in the thickness direction of the light diffusion film
  • the “surface layer and / or back in the thickness direction “Layer portion” refers to a region corresponding to 35% of the thickness of the light diffusion film from the front surface or back surface in the thickness direction of the light diffusion film.
  • the dispersed phase area in the TD cross section of the first layer is preferably 2 ⁇ m 2 or more, more preferably 2.5 ⁇ m 2 or more, and even more preferably 3 ⁇ m 2 or more at the central portion in the thickness direction. . Among them, it is preferably 3.5 ⁇ m 2 or more, more preferably 4 ⁇ m 2 or more. Also, it is preferably 100 ⁇ m 2 or less, more preferably 80 ⁇ m 2 or less, even more preferably 50 ⁇ m 2 or less, and even more preferably 30 ⁇ m 2 or less.
  • the dispersed phase area in the TD cross section of the first layer is at least the above lower limit, the dispersion diameters in the TD direction and the thickness direction are appropriately large, so that the reflection per dispersed phase can be reduced.
  • the dispersed phase area in the TD cross section is equal to or less than the above upper limit, the dispersion diameter in the TD direction and the thickness direction does not become too large, so the light diffusion film is tilted at 60° from the normal N direction of the surface of the light diffusion film to the light diffusion direction.
  • An ideal island component with strong diffusivity can be formed in the vicinity of the polar direction, and an optimum dispersion structure can be obtained to enhance the anisotropic light diffusibility.
  • the dispersed phase area in the TD cross section of the first layer is preferably 1 ⁇ m 2 or more, more preferably 1.5 ⁇ m 2 or more in the surface layer portion and/or the back layer portion in the thickness direction. is more preferable, and 2 ⁇ m 2 or more is even more preferable. Among them, it is preferably 2.5 ⁇ m 2 or more, more preferably 3 ⁇ m 2 or more, still more preferably 3.5 ⁇ m 2 or more, and even more preferably 4 ⁇ m 2 or more. Also, it is preferably 100 ⁇ m 2 or less, more preferably 80 ⁇ m 2 or less, even more preferably 50 ⁇ m 2 or less, and even more preferably 30 ⁇ m 2 or less.
  • the dispersed phase area is calculated by calculating the average dispersion diameter in the TD direction and the average dispersion diameter in the thickness direction in the TD cross section of the present light diffusion film by the method described later, and assuming that the dispersed phase (II) is elliptical. is the value
  • TD cross section refers to a cross section obtained by cutting the present light diffusion film in the TD direction at the center of the MD direction and having sides in the TD direction and the thickness direction of the film as shown in FIG. .
  • MD cross section refers to a cross section in which the present light diffusion film is cut in the MD direction at the center of the TD direction, and as shown in FIG. Say.
  • the light diffusion film preferably has a dispersed structure in which the island portions of the sea-island structure in the first layer extend in the MD direction and are dispersed in the sea portions.
  • the ratio of the average dispersion diameter in the MD direction to the average dispersion diameter in the TD direction of the dispersed phase (II) is the central part in the thickness direction and the surface part in the thickness direction and/or in the back layer, it is preferably 1.1 or more and 120 or less, more preferably 2 or more or 60 or less, more preferably 3 or more or 30 or less, especially 5 or more Alternatively, it is more preferably 25 or less.
  • the size of the dispersed component (dispersed phase (II)) in the MD direction of the film is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, even more preferably 15 ⁇ m or more, and 20 ⁇ m or more at the central portion in the thickness direction. is particularly preferred.
  • it is preferably 60 ⁇ m or less.
  • the average dispersion diameter in the MD direction is preferably 1.5 ⁇ m or more, more preferably 2.5 ⁇ m or more, and is preferably 5 ⁇ m or more in the surface layer portion and/or the back layer portion in the thickness direction. More preferably, it is 10 ⁇ m or more, even more preferably 15 ⁇ m or more. On the other hand, from the viewpoint of morphology control, it is preferably 60 ⁇ m or less.
  • the average dispersion diameter in the direction perpendicular to the MD direction (TD direction) of the film is preferably 0.5 to 10 ⁇ m at the central portion in the thickness direction, especially 0.8 ⁇ m or more or 7 ⁇ m. It is more preferably 1 ⁇ m or more or 5 ⁇ m or less.
  • the average dispersion diameter in the TD direction is preferably 0.4 to 10 ⁇ m, more preferably 0.5 ⁇ m or more or 7 ⁇ m or less in the surface layer and / or back layer in the thickness direction. Among them, it is more preferably 0.6 ⁇ m or more or 5 ⁇ m or less.
  • the average dispersion diameter in the thickness direction of the film is preferably 0.1 to 10 ⁇ m, more preferably 0.5 ⁇ m or more or 7 ⁇ m or less, at the central portion in the thickness direction.
  • the thickness is more preferably 1 ⁇ m or more or 5 ⁇ m or less.
  • the average dispersion diameter in the thickness direction of the film is preferably 0.1 to 10 ⁇ m, more preferably 0.2 ⁇ m or more or 7 ⁇ m or less, in the surface layer portion and/or the back layer portion in the thickness direction.
  • the thickness is more preferably 0.3 ⁇ m or more or 5 ⁇ m or less.
  • any of the above average dispersion diameters can be obtained by photographing the cross section of the corresponding portion with a transmission electron microscope (TEM) or scanning electron microscope (SEM), and measuring the dispersion diameter in the photographing range using the free software "ImageJ". It is a value calculated as an average of all dispersion diameters within a range that can be analyzed and confirmed.
  • the photographing range may be appropriately adjusted depending on the size of the dispersed phase (II), but is preferably a range in which 10 or more dispersed phases (II) can be observed.
  • the discharge amount Q (kg / h) and the screw rotation speed N (rpm)
  • the ratio Q/N (kg/h/rpm)
  • the apparent viscosity ratio ⁇ 240, ⁇ / 240, ⁇ of the resins ⁇ and ⁇ forming the first layer at 240°C and a shear rate of 100 (1/s) is 1.5 to 15. is preferably 1.8 or more or 10 or less, more preferably 2 or more or 5 or less.
  • the light diffusion film may have a second layer on at least one surface of the first layer.
  • the provision of the second layer can suppress damage to other layers.
  • the first layer has a sea-island structure consisting of the continuous phase (I) and the dispersed phase (II)
  • shear stress is generally likely to be applied to the front and back layers during film formation.
  • the dispersion diameter of the surface layer portion and/or the back layer portion tends to be small.
  • the present light diffusion film includes the second layer, the shear stress applied to the front and back sides of the first layer during film production can be reduced, so that the dispersed phase (II) on the front and back sides of the first layer
  • the dispersion diameter can be increased, and both excellent anisotropic light diffusibility and low reflectivity can be achieved.
  • the second layer preferably has a continuous phase (Ib) composed of at least one selected from the thermoplastic resins exemplified for the first layer.
  • continuous phase (Ib) means a phase in which individual domains are connected without isolation from a macroscopic point of view, but it does not matter if there is a part that is not connected.
  • the continuous phase (Ib) of the second layer is preferably formed from a resin having an average refractive index of 1.45 to 1.53. More preferably, it is formed from a resin having a viscosity of 1.51 or more.
  • the continuous phase (Ib) contained in the second layer is preferably formed from a resin having a glass transition temperature of 90° C. or higher from the viewpoint of enhancing the heat resistance of the present light diffusion film.
  • the glass transition temperature of the resin constituting the continuous phase (Ib) contained in the second layer is preferably 90° C. or higher, more preferably 100° C. or higher, and more preferably 110° C. or higher. is more preferable, and 120° C. or higher is even more preferable.
  • the temperature is preferably 350° C. or lower, more preferably 300° C. or lower, and even more preferably 250° C. or lower.
  • the second layer preferably has a surface hardness of HB or higher, more preferably F or higher.
  • a resin having high hardness as the main component resin constituting the second layer.
  • it is not limited to this method.
  • the continuous phase (Ib) of the second layer is preferably formed from a polycarbonate resin or polymethyl methacrylate containing the structural unit (a) derived from the dihydroxy compound.
  • a polycarbonate resin or polymethyl methacrylate containing the structural unit (a) derived from the dihydroxy compound from the viewpoint of transparency, stretchability, heat resistance, low reflectivity, anisotropic light diffusibility, realization of high hardness, etc., it is preferable to form a polycarbonate resin containing the structural unit (a) derived from the above dihydroxy compound. Especially preferred.
  • a resin containing 50 mol% or more of the structural unit (a) derived from a dihydroxy compound is particularly preferable, and a resin containing 55 mol% or more of the structural unit (a) is more preferable, and a resin containing 60 mol% or more of the structural unit (a). is more preferred.
  • the continuous phase (Ib) of the second layer contains the same thermoplastic resin as the thermoplastic resin forming the continuous phase (I) of the first layer.
  • the first layer has a sea-island structure with the continuous phase (I) and the dispersed phase (II)
  • the composition of the resin constituting the continuous phase (I) of the first layer and the continuous phase (Ib) of the second layer When the resin is of the same type, reflection is less likely to occur at the interface between the first layer and the second layer, so that both excellent anisotropic light diffusion and low reflectivity can be achieved.
  • thermoplastic resin of the same type as the thermoplastic resin forming the continuous phase (I) of the first layer means that a polymer composed of the same or similar monomers is used as the base resin.
  • the monomers constituting the main repeating units of the thermoplastic resin component may be the same or of the same type, including the case where the degrees of polymerization are different.
  • the monomer ratio in addition to the case where the monomer ratio is different, it includes the case where the copolymerizable monomer is different, and also includes the case where the degree of polymerization is different as described above. .
  • the second layer preferably does not substantially have a dispersed phase, particularly a dispersed phase having a refractive index different from that of the continuous phase (Ib).
  • the phrase “substantially does not have a dispersed phase having a refractive index different from that of the continuous phase (Ib)” means that the cross-sectional area of the second layer in the TD direction (total area including the continuous phase and the dispersed phase) is It means that the area ratio of the phase (Ib) and the dispersed phase having a different refractive index is 20 area% or less, more preferably 10 area% or less, and most preferably 5 area% or less. It means that there is The dispersed phase having the same refractive index as that of the continuous phase (Ib) travels straight at the interface between the continuous phase (Ib) and the dispersed phase, so there is no risk that the reflectance will increase. can.
  • the second layer is laminated on at least one side of the first layer, e.g. Adjacent lamination is particularly preferred.
  • the terms “upper side” and “upper side” refer to the surface that was in contact with the cast surface
  • the terms “lower side” and “lower side” refer to the side that was in contact with the cast surface. indicates the opposite surface.
  • the present light diffusion film can be used so that either the upper surface side (upper side) or the lower surface side (lower side) is arranged on the display surface side (viewing side), and the display It can be used so that either the upper surface side (upper side) or the lower surface side (lower side) is arranged on the surface side opposite to the surface side (viewing side). In other words, the present light diffusion film can be used without distinguishing between the upper surface side (upper side) and the lower surface side (lower side).
  • the present light diffusion film is usually used by laminating with an adhesive layer, but when the second layer is provided, the interface between the adhesive layer and the first layer having a dispersed phase with a high refractive index is eliminated. and the reflectance can be reduced.
  • any one of the following aspects is more preferable for the present light diffusion film.
  • - Having at least a first layer capable of scattering incident light in the direction of travel of the light, and having a ratio of the 60° brightness ratio to the front brightness ratio (60° brightness ratio/front brightness ratio) of 0.30 or more and 0.60 It is below.
  • - Having at least a first layer capable of scattering incident light in the direction of travel of the light, and having a ratio of the 60° brightness ratio to the front brightness ratio (60° brightness ratio/front brightness ratio) of 0.30 or more and 0.50 It is below.
  • - comprising a first layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II), wherein the dispersed phase volume at the central portion in the thickness direction of the first layer is 20 ⁇ m 3 or more and 120 ⁇ m 3 or less;
  • the ratio of the average dispersion diameter in the MD to the average dispersion diameter in the TD of the phase (II) is 3 or more at the central portion in the thickness direction.
  • - comprising a first layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II), wherein the dispersed phase volume at the central portion in the thickness direction of the first layer is 20 ⁇ m 3 or more and 120 ⁇ m 3 or less;
  • the area of the dispersed diameter in the TD cross section at the central portion in the thickness direction of the phase (II) is 2 ⁇ m 2 or more.
  • It has a sea-island structure with a continuous phase (I) and a dispersed phase (II), and at least one of the continuous phase (I) and the dispersed phase (II) contains a thermoplastic resin having an average refractive index of 1.53 or less.
  • thermoplastic resin having a laminated structure comprising at least a first layer and a second layer, the first layer having a sea-island structure with a continuous phase (I) and a dispersed phase (II), and the second layer , a continuous phase (Ib) laminated on at least one surface side of the first layer and containing the same thermoplastic resin as the thermoplastic resin forming the continuous phase (I) of the first layer .
  • the first layer having a sea-island structure with a continuous phase (I) and a dispersed phase (II), and the second layer , which is laminated on at least one side of the first layer, has a continuous phase (Ib) containing a resin having a glass transition temperature of 90° C. or higher, and has a surface hardness of HB or higher.
  • the present light diffusion film may have a single layer structure consisting of only the first layer, or may have a multilayer structure including the first layer and the second layer. When it has a multilayer structure, it may have other layers in addition to the first layer and the second layer.
  • Examples of the multilayer structure include, for example, a second layer/first layer, two types of two layers, a second layer/first layer/second layer, a first layer/second layer/ Two kinds of three layers of the first layer; hard coat layer / second layer / first layer, second layer / first layer / hard coat layer, adhesive layer / second layer / first layer layer, second layer/first layer/adhesive layer 3 types 3 layers; hard coat layer/second layer/first layer/hard coat layer, adhesive layer/second layer/first layer Layer/adhesive layer, hard coat layer/second layer/first layer/second layer, adhesive layer/second layer/first layer/second layer, hard coat layer/first layer / second layer / first layer, adhesive layer / first layer / second layer / first layer 3 types 4 layers; hard coat layer / second layer / first layer / second layer / hard coat layer, adhesive layer / second layer / first layer / second layer / adhesive layer, hard coat layer / first layer / second layer / first Layer/hard
  • the present light diffusion film has a multilayer structure
  • at least one layer may be a layer having anisotropic light diffusing properties
  • the other layers may be layers having no anisotropic light diffusing properties.
  • all layers may be composed of an anisotropic light diffusion layer.
  • the anisotropic light diffusion layer serves as an intermediate layer.
  • the thickness of the first layer is preferably 10 to 90% of the thickness of the entire light diffusion film, more preferably 20% or more or 80% or less. , more preferably 30% or more or 70% or less.
  • the thickness of the second layer is preferably 5 to 90% of the thickness of the entire light diffusion film, especially 10% or more or 80% or less, especially 15% % or more or 70% or less.
  • the thickness ratio between the first layer and the second layer is preferably in the range of 0.1 to 30, especially 0 It is more preferably in the range of 0.2 or more or 20 or less, more preferably in the range of 0.3 or more or 10 or less, and more preferably in the range of 0.4 or more or 5 or less. preferable.
  • the first layer has a sea-island structure with the continuous phase (I) and the dispersed phase (II)
  • the first layer Since the shear stress applied to the front and back surfaces can be reduced, the dispersion diameter of the dispersed phase on the front and back surfaces of the first layer can be increased, and excellent anisotropic light diffusion and low reflectivity can be achieved.
  • the thickness of the light diffusion film is preferably 10-1000 ⁇ m.
  • excellent anisotropic light can be obtained by setting the film thickness to be suitable for the dispersion structure formed in the present light diffusion film. From the viewpoint of obtaining diffusibility, it is preferably 15 to 500 ⁇ m, more preferably 20 ⁇ m or more or 300 ⁇ m or less, and even more preferably 25 ⁇ m or more or 100 ⁇ m or less.
  • the light diffusion film is preferably oriented in at least one direction.
  • the first layer has a sea-island structure composed of the continuous phase (I) and the dispersed phase (II), as described above, it has a unique dispersed structure with island portions extending in the MD direction. It is preferred to have a dispersed structure in which the island portions are dispersed in the sea portion. In order to form such a dispersed structure, it is more preferable to be oriented in one direction.
  • the unidirectional orientation of the present light-diffusing film means that the island portions of the first layer are elongated in the MD direction in the cross-sectional view (MD cross-section) of the anisotropic light-diffusing film. You can check by checking.
  • the method for producing the present light diffusion film includes, for example, a mixed resin composition containing at least two thermoplastic resins, A method of forming a film by melting can be mentioned.
  • film-forming methods include a T-die casting method, a calendering method, and an inflation method. Among these methods, the T die casting method is preferable from the viewpoint of film formation stability and production efficiency.
  • a film insert method a melt extrusion method, an extrusion lamination method, a heat press method, a solution casting method, etc., can be used.
  • the melt extrusion method is particularly preferably used.
  • the resin compositions used for the first layer and the second layer are heated and melted in separate extruders, and laminated in a molten state by a method such as a coextrusion multilayer die method or a feed block method.
  • a co-extrusion method can be mentioned in which the mixture is formed into a film by inflation, T-die casting, or the like.
  • the extrusion temperature of the film is preferably in the range of approximately 220°C to 300°C, more preferably in the range of 230°C to 280°C, although it depends on the flow characteristics of each resin.
  • the extrusion temperature is 220° C. or higher, the film can be sufficiently formed so that the molten resin can flow.
  • the diameter of the resin forming the dispersed phase (II) in the mixed resin composition can be controlled.
  • the orientation direction may be either the take-off (flow) direction (MD) of the film or the direction perpendicular to the MD (TD). From the viewpoint of controlling the diameter of the dispersed resin in the T die casting method, it is preferable to orient in the MD. That is, in the present light diffusion film, it is preferable that the axis (S axis) parallel to the orientation direction is MD, and the axis (P axis) perpendicular to the orientation direction and parallel to the film surface is TD. It will be.
  • the method for orientation is not particularly limited.
  • the method for orientation is not particularly limited.
  • Examples include a method of applying a draft to the MD, and a method of applying a draft to the MD by increasing the take-up speed when forming a film by the inflation method.
  • the method of drafting the sheet formed by the T-die casting method as described above in the MD is preferable from the viewpoint of controlling the diameter of the dispersed resin.
  • the draft is a process of stretching in the MD direction at a casting speed during film production.
  • the stretching method is not particularly limited as long as it is stretched in at least one direction, and may be a method of monoaxial stretching in the MD or TD direction or a method of biaxial stretching in the MD and TD directions. may
  • the present light-diffusing film can be in a form in which an adhesive layer is provided on one side or both sides, that is, in the form of a so-called anisotropic light-diffusing film with an adhesive layer (referred to as "this anisotropic light-diffusing film with an adhesive layer"). . That is, the anisotropic light-diffusing film with an adhesive layer has an adhesive layer on at least one surface of the light-diffusing film.
  • the pressure-sensitive adhesive layer preferably contains at least one or more selected from rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, and vinyl-based pressure-sensitive adhesives. preferably included as Among them, it is preferable to contain an acrylic pressure-sensitive adhesive, and it is particularly preferable to contain it as a main component.
  • the main component means a pressure-sensitive adhesive component that accounts for 50% by mass or more of the pressure-sensitive adhesive components constituting the pressure-sensitive adhesive layer, and more than 60% by mass, more than 70% by mass, and more than 70% by mass. It means an adhesive component that accounts for 80% by mass or more, of which 90% by mass or more (including 100% by mass).
  • the acrylic pressure-sensitive adhesive has a refractive index of about 1.49, by using it as a main component of the pressure-sensitive adhesive layer laminated on the light-diffusing film, reflection at the interface between the light-diffusing film and the pressure-sensitive adhesive layer can be reduced. can be reduced.
  • Examples of methods for forming an adhesive layer on the light diffusion film include a method of laminating an adhesive sheet formed into a film shape with a laminator or the like, and a method of coating the light diffusion film with an adhesive.
  • This light diffusion film can be used for image display devices such as personal computers, televisions (TV), mobile terminals (PDA), mobile phones, smartphones, etc.
  • image display devices such as personal computers, televisions (TV), mobile terminals (PDA), mobile phones, smartphones, etc.
  • LCD liquid crystal display devices
  • ELD electroluminescence displays
  • PDP Plasma Display Panel
  • CRT Cathode Tube Display
  • SED Surface Electrolytic Display
  • Electronic Paper Transparent Screen
  • LED Diffusion Plate Head-Up Display
  • TV Diffusion Plate etc.
  • the present light diffusion film is particularly used by bonding between the display surface of the image display device and the antireflection film, or between the antireflection film and the polarizing plate. preferably.
  • the light diffusion film may be used as a film having both the light diffusion properties and the necessary properties of the various constituent members, as a substitute for the various films of the constituent members.
  • the orientation direction of the rod-shaped island phase of the film is parallel to the length direction of the cold cathode tube of the large liquid crystal TV.
  • the anisotropic light-diffusing film of the present invention is used in a projection type image display device, it is preferable to arrange the anisotropic light-diffusing film of the present invention as a screen in front.
  • Image light projected from an image display engine such as a CRT, LCD, or DMD of a projection type image display device is projected onto a screen by an optical system such as a reflecting mirror.
  • an optical system such as a reflecting mirror.
  • Resin A-1 isosorbide-based polycarbonate resin (average refractive index: 1.506, Tg: 120 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 740 Pa s, 1,4-cyclohexanedimethanol 31 .1 mol%, isosorbide 68.9 mol%)
  • Resin A-2 isosorbide-based polycarbonate resin (average refractive index: 1.516, Tg: 126 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 830 Pa s, tricyclodecanedimethanol 33.3 mol %, isosorbide 66.7 mol%)
  • Resin A-3 isosorbide-based polycarbonate resin (average refractive index: 1.502, Tg: 98 ° C., apparent viscosity (240 ° C.
  • Resin B-1 Amorphous polyethylene terephthalate resin (average refractive index: 1.539, Tg: 109°C, apparent viscosity (240°C, 100 (1/s)): 1000 Pa s, acid component: 100 mol of terephthalic acid %, diol components: ethylene glycol 51.5 mol%, diethylene glycol 5.4 mol%, spiroglycol 43.1 mol%)
  • Resin B-2 Amorphous polyester resin (average refractive index: 1.552, Tg: 119 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 2500 Pa s, acid component: terephthalic acid 100 mol% , diol components: 1,4-cyclohexanedimethanol 65.7 mol%, 2,2,4,4-tetramethyl-1,3-cyclobutanediol 34.3 mol%)
  • Resin B-3 Amorphous polyester resin (average refractive index: 1.539, Tg:
  • Resin C-1 acrylonitrile-styrene copolymer (AS resin) (average refractive index: 1.567, Tg: 108 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 1240 Pa s)
  • Resin C-2 cyclic polyolefin resin (average refractive index: 1.534, Tg: 138 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 3800 Pa s)
  • Resin C-3 cyclic polyolefin resin (average refractive index: 1.530, Tg: 100 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 410 Pa s)
  • Resin C-4 polystyrene resin (average refractive index: 1.589, Tg: 100 ° C., apparent viscosity (240 ° C., 100 (1 / / s)
  • the glass transition temperature (Tg) of the resin used in each test example was determined according to JIS K7121: 2012 using a differential scanning calorimeter (for example, "DSC 8500” manufactured by PerkinElmer Japan). Measurement was performed under conditions of a temperature range of 0 to 200°C and a heating rate of 10°C/min.
  • Test Example 2 the central part in the thickness direction of the first layer (intermediate layer) of the film (the area corresponding to ⁇ 15% of the thickness of the light diffusion film from the center) and the front and back parts in the thickness direction (from the front or back to the main 35% of the thickness of the light diffusion film) was photographed with a transmission electron microscope (TEM), the maximum dispersion diameter and the minimum dispersion diameter in the photographed range were measured, and the average dispersion diameter was calculated. The table shows the minimum and maximum values in parenthesis together with the average dispersion diameter.
  • the average dispersed diameter was calculated in the same manner as in Test Example 2 except that a scanning electron microscope (SEM) was used.
  • SEM scanning electron microscope
  • Test Example 4 the central part in the thickness direction of the first layer (intermediate layer) of the film (the area corresponding to ⁇ 15% of the thickness of the light diffusion film from the center) and the front and back parts in the thickness direction (from the front or back to the main 35% of the thickness of the light diffusion film) is photographed with a scanning electron microscope (SEM), and the dispersion diameter in the photographing range is analyzed using the free software "ImageJ". An average dispersion diameter in the thickness direction was calculated as an average.
  • SEM scanning electron microscope
  • Test Example 2 the central part in the thickness direction of the first layer (intermediate layer) of the film (the area corresponding to ⁇ 15% of the thickness of the light diffusion film from the center) and the front and back parts in the thickness direction (from the front or back to the main 35% of the thickness of the light diffusion film) is photographed with a transmission electron microscope (TEM), the maximum dispersion diameter and the minimum dispersion diameter in the photographed range are measured, and the dispersion diameter as the average value was calculated, and the dispersion diameter ratio (MD dispersion diameter/TD dispersion diameter) was calculated from the average value.
  • the table shows the minimum and maximum values in parenthesis together with the dispersion diameter or dispersion diameter ratio as an average value.
  • the average dispersed diameter was calculated in the same manner as in Test Example 2 except that a scanning electron microscope (SEM) was used.
  • SEM scanning electron microscope
  • the central part in the thickness direction of the first layer (intermediate layer) of the film (the area corresponding to ⁇ 15% of the thickness of the light diffusion film from the center) and the front and back parts in the thickness direction (from the front or back to the main 35% of the thickness of the light diffusion film) is photographed with a scanning electron microscope (SEM), and the dispersion diameter in the photographed range is analyzed using the free software "ImageJ", and the range that can be confirmed.
  • the average dispersion diameter in the MD direction and the TD direction was calculated as the average of all the dispersion diameters of , and the dispersion diameter ratio (MD average dispersion diameter/TD average dispersion diameter) was calculated.
  • the average refractive index of the raw material used in each test example was measured according to JIS K7124 using an Abbe refractometer manufactured by Atago Co., Ltd., using a sodium D line (589 nm) as a light source.
  • the absolute value of the difference in refractive index between the continuous phase (I) and the dispersed phase (II) was defined as the refractive index difference.
  • the refractive index of the dispersed phase (II) was calculated from the compounding ratio in the dispersed phase (II) and the average refractive index of each resin.
  • Luminous reflectance R SCI and R SCE In Test Example 1, a spectrophotometer ("SC-T", manufactured by Suga Test Instruments Co., Ltd.) was used, with a white calibration standard plate attached to the main unit as a reference, a black background, a D65/2 light source, and a measurement range of ⁇ 5 mm. The luminous reflectance R SCI and the luminous reflectance R SCE were measured according to the method to obtain the luminous reflectance R SCI and the luminous reflectance R SCE .
  • SC-T spectrophotometer
  • Test Example 2 a spectrophotometer ("CM-600d", manufactured by Konica Minolta Co., Ltd.) was used, with a white calibration standard plate attached to the main unit as a reference, a black background (R SCI : 5.1), D65/2 Luminous reflectance R SCI and luminous reflectance R SCE were measured by a reflection method with a light source and a measurement range of ⁇ 8 mm to obtain luminous reflectance R SCI and luminous reflectance R SCE .
  • a film (PET film) made of polyethylene terephthalate having a thickness of 100 ⁇ m was laminated on both sides of the film prepared in each Test Example with an adhesive layer interposed therebetween.
  • Luminous reflectance R SCI and luminous reflectance R SCE were measured respectively to obtain luminous reflectance R SCI and luminous reflectance R SCE .
  • the adhesive layer was formed from a 150 ⁇ m-thick acrylic optical transparent adhesive sheet (“Clearfit (registered trademark)” manufactured by Mitsubishi Chemical Corporation).
  • the luminous reflectance R SCI and the luminous reflectance R SCE in the state where the PET film and the adhesive layer were laminated were 16.88 and 4.38 , respectively.
  • luminous reflectance R SCI and luminous reflectance R SCE were measured in the same manner as in Test Example 2 to obtain luminous reflectance R SCI and luminous reflectance R SCE .
  • Total light transmittance The total light transmittance of the film produced in each test example was measured according to JIS K7361-1.
  • the films 1 of Examples and Comparative Examples were fixed to a backlight unit 2, and light was made incident from the normal N direction of the film surface (thick arrow in FIG. 1).
  • the measured value (luminance C) was confirmed when the backlight unit 2 was tilted so that the luminance meter 3 was positioned in a direction tilted 60° from the normal N direction of the film surface to the light diffusion direction y.
  • the measured value (luminance B) when the backlight unit 2 is arranged so that the luminance meter 3 is positioned in the direction of the normal line N was confirmed, and the ratio (C/B) of the luminance C and the luminance B was calculated. .
  • a blank sample is fixed to the backlight unit, light is incident from the normal N direction of the film surface, and the measured value (luminance A) when the backlight unit is arranged so that the luminance meter is positioned in the normal N direction After confirmation, the ratio (B/A) of the luminance B and the luminance A was calculated.
  • a single layer sample of Resin A was used as a blank sample. The blank sample had a total light transmittance of 92% and a haze of 0.21%.
  • Tensile strength was measured according to the method described in JIS K7161-1, with a test length of 50 mm, a test width of 15 mm, a test speed of 200 mm/min, and a test temperature of room temperature. Also, the tensile strength ratio ⁇ MD / ⁇ TD was calculated from the tensile strength ⁇ MD in the MD direction and the tensile strength ⁇ TD in the TD direction.
  • ⁇ Test Example 1>> ⁇ Test Example 1-1> After sufficiently mixing 60% by mass of resin A-1 and 40% by mass of resin B-1, while feeding with a constant mass feeder, extrusion kneading at 240 ° C. with a ⁇ 25 mm twin screw extruder (discharge rate Q ( kg/h) and the screw rotation speed N (rpm): Q/N 0.016 (kg/h/rpm)), and cooled and solidified at a casting speed of 0.8 m/min to form an anisotropic light with a thickness of 69 ⁇ m. A diffusion film was produced.
  • a film with a thickness of 160 ⁇ m was produced by The resulting film was cut out, tilted at 90°, passed through a tenter heated to a stretching temperature of 150°C, and stretched 3 times in the MD to produce an anisotropic light diffusion film with a thickness of 68 ⁇ m.
  • the continuous phase (I) made of resin B-3 had a shape extending in the MD direction, made of resin B-5 and resin B-6. It was confirmed to have a sea-island structure in which the dispersed phase (II) is dispersed.
  • Each of the anisotropic light diffusion films obtained in Test Examples 1-1 to 1-4 has a sea-island structure in which the dispersed phase (II) having a shape extending in the MD direction is dispersed in the continuous phase (I).
  • the continuous phase (I) contained a thermoplastic resin having an average refractive index of 1.53 or less. From the above test examples and the results of the tests conducted by the present inventors so far, it has been found that the If at least one of them contains a thermoplastic resin having an average refractive index of 1.53 or less, it can be considered that both anisotropic light diffusibility and low reflectivity can be achieved.
  • test Examples 1-3 and 1-4 had dispersion diameters in the TD direction and thickness direction as compared with the films obtained in Test Examples 1-5 to 1-7. It was large, and the ratio of dispersion diameter (MD dispersion diameter/TD dispersion diameter) and refractive index difference were more appropriate.
  • Test Examples 1-1 and 1-2 also contain a thermoplastic resin having an average refractive index of 1.53 or less, and the refractive index difference between the continuous phase (I) and the dispersed phase (II) is about the same.
  • the dispersion diameters in the thickness direction, the MD direction and the TD direction and the ratio of the dispersion diameters are approximately the same as those in Test Examples 1-3 and 1-4. Therefore, the anisotropic light diffusing films obtained in Test Examples 1-1 to 1-4 have further excellent anisotropic light diffusibility for diffusing light in a specific direction and low reflectivity. can be considered to exist.
  • the second layer-forming composition resin A-1 was preheated using an oven so as to be held at 110 ° C.
  • a cross section of the obtained anisotropic light-diffusing film was observed with a transmission electron microscope.
  • a first layer having a sea-island structure in which the dispersed phase (I) is dispersed was confirmed. It was also confirmed that the second layer did not have a dispersed phase. At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
  • a cross section of the obtained anisotropic light-diffusing film was observed with a transmission electron microscope.
  • a first layer having a sea-island structure in which the dispersed phase (I) is dispersed was confirmed. It was also confirmed that the second layer did not have a dispersed phase.
  • 60% by mass of Resin A-3 and 40% by mass of Resin B-2 were thoroughly mixed and preheated using an oven to hold at 90° C. for 6 hours.
  • the same procedure as in Test Example 2-2 was performed except that resin A-3 was preheated in an oven so as to be held at 90° C. for 6 hours, and then supplied to the extruder.
  • an anisotropic light diffusion film (second layer/first layer/second layer: 19.5 ⁇ m/34 ⁇ m/19.5 ⁇ m) having a thickness of 73 ⁇ m was produced.
  • the continuous phase (II) made of the resin A-3 was composed of the resin B-2 exhibiting a shape extending in the MD direction.
  • a first layer having a sea-island structure in which the dispersed phase (I) is dispersed was confirmed. It was also confirmed that the second layer did not have a dispersed phase.
  • Example 2-4 An anisotropic light diffusion film having a thickness of 69 ⁇ m (first 2 layers/first layer/second layer: 18.5 ⁇ m/32 ⁇ m/18.5 ⁇ m).
  • a cross section of the obtained anisotropic light-diffusing film was observed with a transmission electron microscope.
  • a first layer having a sea-island structure in which the dispersed phase (I) is dispersed was confirmed. It was also confirmed that the second layer did not have a dispersed phase.
  • the continuous phase (II) made of the resin A-3 was composed of the resin B-2 exhibiting a shape extending in the MD direction.
  • a first layer having a sea-island structure in which the dispersed phase (I) is dispersed was confirmed. It was also confirmed that the second layer did not have a dispersed phase.
  • Test Example 2-5 also has a second layer, and the refractive index difference between the continuous phase (I) and the dispersed phase (II) is about the same.
  • the dispersion diameters in the thickness direction, the MD direction and the TD direction and the ratio of the dispersion diameters (MD dispersion diameter/TD dispersion diameter) are estimated to be approximately the same as in Test Examples 2-1 to 2-4.
  • the composition for forming the first layer 60% by mass of resin A-4 and 40% by mass of resin B-2 are thoroughly mixed, and preheated using an oven so as to be held at 110 ° C. for 17 hours.
  • the composition for forming the second layer resin A-4 was preheated using an oven so as to be held at 110° C.
  • the continuous phase (I) composed of resin A-4 was composed of resin B-2, which exhibited a shape extending in the MD direction.
  • a first layer having a sea-island structure in which the dispersed phase (II) is dispersed was confirmed. It was also confirmed that the second layer did not have a dispersed phase. At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
  • Example 3-2> As the composition for forming the first layer, 60% by mass of Resin A-1 and 40% by mass of Resin B-2 were thoroughly mixed and preheated using an oven to hold at 110° C. for 17 hours. On the other hand, as the second layer-forming composition, Resin A-1 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder, except that it was supplied to the extruder. Similarly, an 81 ⁇ m-thick anisotropic light diffusion film (second layer/first layer/second layer: 25.5 ⁇ m/30 ⁇ m/25.5 ⁇ m) was produced.
  • the continuous phase (I) made of the resin A-1 was made of the resin B-2 exhibiting a shape extending in the MD direction.
  • a first layer having a sea-island structure in which the dispersed phase (II) is dispersed was confirmed. It was also confirmed that the second layer did not have a dispersed phase.
  • Example 3-3 As the composition for forming the first layer, 60% by mass of Resin A-1 and 40% by mass of Resin B-2 were thoroughly mixed and preheated using an oven to hold at 110° C. for 17 hours. On the other hand, as the second layer-forming composition, resin A-4 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder Same as Test Example 3-1. Then, an anisotropic light diffusion film (second layer/first layer/second layer: 23.5 ⁇ m/29 ⁇ m/23.5 ⁇ m) having a thickness of 76 ⁇ m was produced.
  • second layer/first layer/second layer 23.5 ⁇ m/29 ⁇ m/23.5 ⁇ m
  • the continuous phase (I) made of the resin A-1 was made of the resin B-2 exhibiting a shape extending in the MD direction.
  • a first layer having a sea-island structure in which the dispersed phase (II) is dispersed was confirmed. It was also confirmed that the second layer did not have a dispersed phase.
  • Example 3-4 As the first layer-forming composition, 59% by weight of Resin A-4 and 41% by weight of Resin C-1 were thoroughly mixed and preheated using an oven to hold at 85° C. for 17 hours. On the other hand, as the second layer-forming composition, resin A-4 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder Same as Test Example 3-1. Then, an anisotropic light diffusion film (second layer/first layer/second layer: 19 ⁇ m/29 ⁇ m/19 ⁇ m) having a thickness of 67 ⁇ m was produced.
  • ⁇ Test Example 3-5> As the composition for forming the first layer, 55% by weight of Resin A-4 and 45% by weight of Resin B-4 were thoroughly mixed and preheated using an oven to hold at 110° C. for 17 hours. On the other hand, as the second layer-forming composition, resin A-4 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder Same as Test Example 3-1. Then, an anisotropic light diffusion film (second layer/first layer/second layer: 18 ⁇ m/29 ⁇ m/18 ⁇ m) having a thickness of 65 ⁇ m was produced.
  • Resin A-1 and 41% by weight of Resin C-1 were thoroughly mixed and preheated using an oven to hold at 85° C. for 17 hours.
  • resin A-1 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder Same as Test Example 3-1. Then, an anisotropic light diffusion film (second layer/first layer/second layer: 25.5 ⁇ m/29 ⁇ m/25.5 ⁇ m) having a thickness of 80 ⁇ m was produced.
  • Example 3-7 As the composition for forming the first layer, 55% by mass of Resin A-1 and 45% by mass of Resin B-4 were thoroughly mixed and preheated using an oven to hold at 110° C. for 17 hours. On the other hand, as the second layer-forming composition, resin A-1 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder Same as Test Example 3-1. Then, an anisotropic light diffusion film (second layer/first layer/second layer: 22.5 ⁇ m/28 ⁇ m/22.5 ⁇ m) having a thickness of 73 ⁇ m was produced.
  • the second layer-forming composition resin A-3 was preheated using an oven so as to be held at 90° C.
  • FIGS. 2 and 3 show the MD cross section and TD cross section of the anisotropic light diffusion film of Test Example 4-1, respectively. Arrows in the figure indicate the interface between the first layer and the second layer.
  • ⁇ Test Example 4-2> In the same manner as in Test Example 4-2 except that 58% by mass of resin A-3, 5% by mass of resin B-3, and 37% by mass of resin B-4 were used as the first layer-forming composition, the thickness was 82 ⁇ m. of the anisotropic light diffusion film (second layer/first layer/second layer: 24.5 ⁇ m/33 ⁇ m/24.5 ⁇ m).
  • FIGS. 4 and 5 show the MD cross section and TD cross section of the anisotropic light diffusion film of Test Example 4-2, respectively. Arrows in the figure indicate the interface between the first layer and the second layer.
  • extruder cylinder temperature: 250 ° C.
  • FIGS. 6 and 7 show MD cross sections and TD cross sections of the anisotropic light diffusion film of Test Example 4-3, respectively. Arrows in the figure indicate the interface between the first layer and the second layer.
  • FIGS. 8 and 9 show the MD cross section and TD cross section of the anisotropic light diffusion film of Test Example 4-4, respectively. Arrows in the figure indicate the interface between the first layer and the second layer.
  • resin A-1 was preheated using an oven so as to be held at 110° C. for 17 hours, and then supplied to an extruder (cylinder temperature: 230° C.) and melted. bottom.
  • resin C-3 is preheated using an oven so as to be held at 70 ° C. for 17 hours, and then supplied to an extruder (cylinder temperature: 230 ° C.) and melted. bottom.
  • FIGS. 10 and 11 show the MD cross section and TD cross section of the anisotropic light diffusion film of Test Example 4-7, respectively. Arrows in the figure indicate the interface between the first layer and the second layer.
  • FIGS. 12 and 13 show the MD cross section and TD cross section of the anisotropic light diffusion film of Test Example 4-8, respectively.
  • All of the anisotropic light diffusion films obtained in Test Examples 4-1 to 4-6 have a 60° luminance ratio/front luminance ratio within the preferred range of the present invention, a high 60° luminance ratio, and all light rays It also has excellent transmittance and low reflectivity. Therefore, by adjusting the 60° luminance ratio/front luminance ratio, it can be said that the front luminance and the anisotropic light diffusion property are well balanced, and the brightness and visibility at a wide viewing angle are improved when mounted on a display.
  • all of the anisotropic light diffusion films obtained in Test Examples 4-1 to 4-6 are formed by dispersing the dispersed phase (II) exhibiting a shape extending in the MD direction in the continuous phase (I). It has a sea-island structure and high haze, so it contains a large amount of dispersion components and is excellent in anisotropic light diffusion.
  • the tensile strength is within the preferred range of the present invention, and the anisotropy of the tensile strength is small, so it is thought that interfacial separation between the continuous phase (I) and the dispersed phase (II) is unlikely to occur. It can be said that the reflection is small, ie, the low reflectivity is excellent, and the total light transmittance is high.
  • the average dispersion diameter in the MD direction with respect to the average dispersion diameter in the TD direction at the center in the thickness direction of the first layer is within the preferred range of the present invention, and the anisotropic light diffusibility is excellent.
  • the dispersed phase volume in the central part in the thickness direction and the dispersed phase area in the TD cross section are within the preferable range of the present invention, the dispersed diameter in the TD direction and the thickness direction are moderately large, so per dispersed phase.
  • the dispersion diameter in the TD direction and the thickness direction does not become too large, it has strong diffusivity in the vicinity of the direction inclined 60° from the normal N direction of the light diffusion film surface to the light diffusion direction. It can be said that an ideal island component can be formed and an optimum dispersion structure can be obtained to further enhance the anisotropic light diffusibility.
  • the 60° luminance ratio/front luminance ratio is smaller than the preferred range of the present invention, and the low reflectivity is Test Examples 4-1 to 4- 6, but inferior in 60° luminance ratio and total light transmittance.
  • the anisotropic light diffusion films of Test Examples 4-7 to 4-9 have low anisotropic light diffusion properties and low transmittance, and are insufficient in brightness and visibility when mounted on a display.
  • the anisotropic light diffusion film obtained in Test Example 4-7 had a sea-island structure in which the dispersed phase (II) having a shape extending in the MD direction was dispersed in the continuous phase (I). Since the haze is high, it contains many dispersed components, but the tensile strength is low and the anisotropy of the tensile strength is large. It is considered that the control of the diameter is difficult and the anisotropic light diffusing property tends to be low.
  • the volume of the dispersed phase at the central portion in the thickness direction is larger than the preferred range of the present invention, the dispersion diameters in the TD direction and the thickness direction become too large, and the light diffuses from the normal N direction of the surface of the light diffusion film.
  • An ideal island component having a strong diffusivity cannot be formed in the vicinity of a direction inclined 60° to the direction, and it can be considered that the anisotropic light diffusibility is inferior to that of Test Examples 4-1 to 4-6. can.
  • the anisotropic light diffusion film obtained in Test Example 4-8 has low anisotropy in tensile strength, so interfacial separation between the continuous phase (I) and the dispersed phase (II) is unlikely to occur, and the interfacial reflection is small. Although it has excellent low reflectivity, the haze is low, so the dispersion component is small. /TD average dispersion diameter) is smaller than the preferred range of the present invention, and it can be said that the anisotropic light diffusing property is inferior.
  • the dispersion diameter in the TD direction and the thickness direction is small, so that the reflection per dispersed phase is large, and the present light diffusion
  • An ideal island component with strong diffusivity could not be formed in the vicinity of the direction inclined 60° from the normal N direction of the film surface to the light diffusion direction, which was different from Test Examples 4-1 to 4-6. It can be considered that the directional light diffusion is inferior.
  • the anisotropic light diffusion film obtained in Test Example 4-9 has a large anisotropy of tensile strength, so interfacial separation between the continuous phase (I) and the dispersed phase (II) is likely to occur, and the interfacial reflection is large and low. It can be said that the reflectivity is inferior. Moreover, since the refractive index difference between the continuous phase (I) and the dispersed phase (II) is very small, it can be said that the anisotropic light diffusibility is inferior.
  • the dispersion diameter in the TD direction and the thickness direction is small, so that the reflection per dispersed phase is large, and the present light diffusion
  • An ideal island component with strong diffusivity could not be formed in the vicinity of the direction inclined 60° from the normal N direction of the film surface to the light diffusion direction, which was different from Test Examples 4-1 to 4-6. It can be considered that the directional light diffusion is inferior.
  • this light diffusion film has excellent brightness and visibility when mounted on a display, it is particularly useful for image display devices such as personal computers, televisions, mobile terminals (PDA), mobile phones, smartphones, transparent screens, and LED diffusion plates. And it can be used as a component (diffusion member) such as a head-up display.

Abstract

An anisotropic light-diffusing film according to an aspect of the present invention has at least one first layer capable of scattering incident light in the traveling direction of the light, and the ratio (60° brightness ratio / front brightness ratio) between a 60° brightness ratio and a front brightness ratio which are obtained by the following methods is 0.30-0.60 inclusive. <60° brightness ratio> In the light-diffusing film, the ratio (C/B) between a brightness C in a direction inclined at 60° in a light diffusion direction from the direction of a normal N to a film surface and a front brightness B in the direction of the normal N to the film surface is defined as the 60° brightness ratio. <Front brightness ratio> The ratio (B/A) between the front brightness B of the light-diffusing film and a front brightness A in the direction of a normal N to a film surface in a blank sample satisfying conditions (1) and (2) is defined as the front brightness ratio. [Blank sample] Condition (1): The total light transmittance measured in conformity with JIS K7361-1 is 90% or more. Condition (2): The haze measured in conformity with JIS K7136 is 1% or less.

Description

異方性光拡散フィルム、粘着剤層付き異方性光拡散フィルム及び画像表示装置Anisotropic light diffusion film, anisotropic light diffusion film with adhesive layer, and image display device
 本発明は、異方性光拡散フィルムに関するものである。
 本願は、2021年11月2日に日本に出願された特願2021-179414号、2021年12月27日に日本に出願された特願2021-212116号、2021年12月27日に日本に出願された特願2021-212117号、2022年3月18日に、日本に出願された特願2022-043572号、特願2022-043573号、特願2022-043574号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an anisotropic light diffusion film.
This application is based on Japanese Patent Application No. 2021-179414 filed in Japan on November 2, 2021, Japanese Patent Application No. 2021-212116 filed in Japan on December 27, 2021, and Japan on December 27, 2021. Claiming priority based on Japanese Patent Application No. 2021-212117 filed, March 18, 2022, Japanese Patent Application No. 2022-043572, Japanese Patent Application No. 2022-043573, and Japanese Patent Application No. 2022-043574. , the contents of which are hereby incorporated by reference.
 液晶ディスプレイ(Liquid Crystal Display)に用いられる光学フィルムとして光拡散フィルムが用いられている。
 光拡散フィルムは、液晶表示装置において、光源の光を面状に散乱させることによって均一な面状の光源を得るための拡散板として使用されており、特にリアプロジェクションテレビなどの投射型画像表示装置のスクリーンなどとして用いられている。
A light diffusion film is used as an optical film used in a liquid crystal display.
A light diffusion film is used as a diffuser plate in a liquid crystal display device to obtain a uniform planar light source by planarly scattering the light from the light source. It is used as a screen for
 従来、光拡散フィルムとしては、フィルムの片面又は両面を粗面化したものや、フィルムの表面に、アクリル樹脂等の透明な有機微粒子をコーティングして得られる散乱粒子含有層を設けたものなどが使用されている。
 例えば特許文献1には、輝度ムラ解消、輝度の角度依存性の抑制を十分に満足させることができる優れた光拡散フィルムとして、マトリックス樹脂内部に有機粒子の拡散素子を含有して構成される内部拡散フィルムの少なくとも片面に光拡散層が形成され、かつ、該光拡散層が少なくともバインダー樹脂と粒子とから構成されている光拡散フィルムが開示されている。
Conventionally, as a light diffusion film, one or both surfaces of the film are roughened, or the surface of the film is provided with a scattering particle-containing layer obtained by coating transparent organic fine particles such as acrylic resin. It is used.
For example, in Patent Document 1, as an excellent light diffusion film that can sufficiently satisfy the elimination of luminance unevenness and the suppression of the angle dependence of luminance, an internal structure containing a diffusion element of organic particles inside a matrix resin A light diffusion film is disclosed in which a light diffusion layer is formed on at least one surface of the diffusion film, and the light diffusion layer is composed of at least a binder resin and particles.
 また、近年、光を均等に散乱するのではなく、特定の方向に光を散乱する異方性光拡散フィルムが求められている。
 このような異方性光拡散フィルムの用途としては、大型液晶テレビのディスプレイ表面や、拡散板、リアプロジェクションテレビなどの投射型画像表示装置のスクリーンなどが挙げられる。
Further, in recent years, an anisotropic light diffusion film that scatters light in a specific direction instead of scattering light evenly has been desired.
Applications of such an anisotropic light diffusion film include the display surface of large-sized liquid crystal televisions, diffusion plates, screens of projection type image display devices such as rear projection televisions, and the like.
 例えば特許文献2には、投射型画像表示装置のスクリーンとして好適であり、解像度、コントラスト、及び明るさのすべての性能に優れた異方性散乱フィルムとして、少なくとも2種以上の非相溶性の樹脂を含む散乱フィルムであって、非相溶性の樹脂の相分離構造が、少なくとも1種の樹脂からなる海相と少なくとも1種の樹脂からなる島相からなる海-島構造であり、島相がフィルムの少なくとも表層部で一方向に配向した棒状であって、島相の配向方向と平行な散乱面と島相の配向方向と直交する散乱面とで散乱光強度が異なることを特徴とする異方性散乱フィルムが開示されている。 For example, in Patent Document 2, as an anisotropic scattering film suitable as a screen of a projection type image display device and excellent in all performances of resolution, contrast, and brightness, at least two or more incompatible resins wherein the phase-separated structure of the immiscible resin is a sea-island structure comprising a sea phase comprising at least one resin and an island phase comprising at least one resin, wherein the island phase comprises The film has a rod-like shape oriented in one direction at least on the surface layer, and is characterized in that the scattered light intensity is different between the scattering plane parallel to the orientation direction of the island phase and the scattering plane perpendicular to the orientation direction of the island phase. An anisotropic scattering film is disclosed.
 また、特許文献3には、ギラツキや輝度の急激な変化を抑え、光拡散性を含む光学特性のバランスが最適化された異方性光学フィルムとして、光の入射光角度により透過光量が変化する異方性光学フィルムであって、該異方性光学フィルムは、少なくとも1層の異方性光拡散層を有し、該異方性光拡散層は、複数のルーバーロッド構造体と、マトリックス領域と、を有し、該ルーバーロッド構造体の柱軸方向に直交する断面形状が、二本の略平行線の各両端を、略円弧にて結んだ略角丸長方形であることを特徴とする異方性光学フィルムが開示されている。 In addition, Patent Document 3 describes an anisotropic optical film that suppresses glare and abrupt changes in luminance and has an optimized balance of optical properties including light diffusion properties. An anisotropic optical film, the anisotropic optical film having at least one anisotropic light-diffusing layer, the anisotropic light-diffusing layer having a plurality of louver rod structures and a matrix region. and an anisotropic optical system characterized in that the cross-sectional shape of the louver rod structure perpendicular to the direction of the columnar axis is a substantially rounded rectangle formed by connecting both ends of two substantially parallel lines with a substantially circular arc. A film is disclosed.
国際公開第2008/129946号WO2008/129946 特開2007-010798号公報Japanese Patent Application Laid-Open No. 2007-010798 特開2017-181829号公報JP 2017-181829 A
 例えば大型液晶テレビのバックライトユニットとしては、光源が液晶パネルの背面に配置される直下型方式、又は、光源が液晶パネルの側面の近傍に配置されるエッジライト方式が主流となっている。 For example, as backlight units for large-sized LCD TVs, the mainstream is the direct type, in which the light source is arranged on the back of the liquid crystal panel, or the edge-light type, in which the light source is arranged near the side of the liquid crystal panel.
 大型液晶ディスプレイに用いられるバックライトユニットとしては、画面の明るさ及び画面内の明るさの均一性に優れるといった観点から、光源として冷陰極線管を用いた直下型冷陰極線管バックライトユニットが主に用いられる。光源に線状光源である冷陰極線管を使用した場合、表示画面を明るくするために、冷陰極線管を複数本並行に配置する場合がある。この場合、隣り合う冷陰極線管同士の光が干渉して縞状に明るさの斑が発生しやすい。 Backlight units used in large-sized liquid crystal displays are mainly direct type cold cathode ray tube backlight units that use cold cathode ray tubes as the light source from the viewpoint of excellent brightness of the screen and uniformity of brightness within the screen. Used. When a cold cathode ray tube, which is a linear light source, is used as a light source, a plurality of cold cathode ray tubes may be arranged in parallel in order to brighten the display screen. In this case, light from adjacent cold cathode ray tubes interferes with each other, and stripe-like spots of brightness tend to occur.
 また近年、大型液晶ディスプレイにおいてもエッジライト型のバックライトユニットが用いられるようになってきた。かかるエッジライト型のバックライトユニットとしては、光源として発光ダイオード(LED)を用いたエッジライト型LEDバックライトユニットがよく用いられているが、画面内の明るさの均一性を向上させるために導光板などの部材が必要となってくる。 In recent years, edge-light type backlight units have also come to be used in large liquid crystal displays. As such an edge light type backlight unit, an edge light type LED backlight unit using light emitting diodes (LEDs) as a light source is often used. Parts such as a light plate are required.
 そしてさらに近年は、消費電力の削減や導光板の省略によるコストダウン等の理由から、光源としてLEDを用いた直下型バックライトユニット(直下型LEDバックライトユニット)が用いられるようになってきた。このような直下型LEDバックライトユニットは、一般的に、反射板とほぼ同一平面上にLED光源が配される態様となる。直下型LEDバックライトユニットにおいては、消費電力、製造コストを抑制するために、できるだけLED間の距離を広くとり、使用するLED個数を少なくする配置が望ましい。しかしながら、LED間の距離が広くなり過ぎると、表示装置においてLED間に対応する箇所が暗くなるなどの輝度斑が生じやすくなるという問題がある。 Furthermore, in recent years, direct backlight units using LEDs as light sources (direct LED backlight units) have come to be used for reasons such as reducing power consumption and reducing costs by omitting the light guide plate. Such a direct type LED backlight unit generally has an aspect in which the LED light sources are arranged substantially on the same plane as the reflector. In the direct type LED backlight unit, it is desirable to increase the distance between LEDs and reduce the number of used LEDs as much as possible in order to reduce power consumption and manufacturing costs. However, if the distance between the LEDs becomes too large, there is a problem that luminance spots, such as darkening of the corresponding portions between the LEDs, tend to occur in the display device.
 そこで、前記光の干渉による明るさの斑や輝度斑を抑制するために、光を均等に拡散する従来公知の光拡散フィルムをディスプレイ表面や拡散板に使用する方法が採用されているが、この方法は視聴者が画面を見る方向以外にも光が拡散してしまうため、視聴者の目に映る明るさが不足するという問題がある。 Therefore, in order to suppress unevenness in brightness and unevenness in brightness due to the interference of light, a method of using a conventionally known light diffusion film that diffuses light evenly as a display surface or a diffusion plate has been adopted. This method has the problem that the light is diffused in a direction other than the direction in which the viewer views the screen, so that the brightness reflected in the viewer's eyes is insufficient.
 画面の明るさを得るために、冷陰極線管やLEDの出力を上げたり、プリズムシートなどの輝度向上用光学フィルムを使用したりするなどの方法が考えられる。
 しかし、モアレ縞等の画像欠陥や消費電力の増加や部材コストの増加などの新たな問題が生じやすくなる。
In order to obtain brightness of the screen, methods such as increasing the output of cold cathode ray tubes and LEDs and using optical films for improving brightness such as prism sheets are conceivable.
However, new problems, such as image defects such as moire fringes, increased power consumption, and increased member costs, tend to occur.
 これに対して、光を特定の方向に拡散させることができる異方性拡散フィルムであれば、視聴者が画面を見る方向以外に光が散乱しないようにすることも可能であるから、このような問題を解決できることが期待できる。 On the other hand, an anisotropic diffusion film capable of diffusing light in a specific direction can prevent light from scattering in directions other than the direction in which the viewer views the screen. You can expect to be able to solve these problems.
 また、屋外での利用が想定されているモバイル機器等では、外光を反射して視認性が悪くなるといった問題も起きている。そのため、外光を反射し難い低反射性を備えた拡散フィルムは有用である。 In addition, mobile devices that are expected to be used outdoors have a problem of poor visibility due to reflection of external light. Therefore, a diffuser film with low reflectivity that hardly reflects outside light is useful.
 そこで、本発明の一態様は、ディスプレイに実装したときの明るさや視認性に優れる光拡散フィルムを提供することを目的とする。また、本発明の別の一態様は、光を特定の方向に拡散させる異方光拡散性及び低反射性を兼備した異方性光拡散フィルムを提供することを目的とする。 Therefore, an object of one aspect of the present invention is to provide a light diffusion film that is excellent in brightness and visibility when mounted on a display. Another object of the present invention is to provide an anisotropic light diffusion film having both an anisotropic light diffusion property for diffusing light in a specific direction and low reflectivity.
 本発明者は、光を特定の方向に拡散させることができる異方性光拡散フィルムであれば、視聴者が画面を見る方向以外に光が散乱しないようにすることができ、広い視野角での視聴者の目に映る明るさを改善できると考えた。一方で、異方光拡散性を高くしすぎると、画面を正面から見たときの視認性が悪くなることを発見し、60°輝度比と正面輝度比のバランスを調整することで、ディスプレイに実装したときの明るさや視認性が良くなることを見出した。また、本発明者が鋭意検討したところ、海島構造を有する異方性光拡散フィルムにおいて、連続相(I)及び分散相(II)を構成する成分及びその量等を調整すると、異方光拡散性及び低反射性を両立できることを見出した。 The inventor of the present invention believes that an anisotropic light diffusion film that can diffuse light in a specific direction can prevent light from scattering in directions other than the direction in which the viewer views the screen, enabling viewing at a wide viewing angle. I thought it would be possible to improve the brightness reflected in the human eye. On the other hand, we discovered that if the anisotropic light diffusion is too high, the visibility of the screen when viewed from the front deteriorates. It was found that the brightness and visibility were improved when mounted. Further, as a result of intensive studies by the present inventors, in an anisotropic light diffusion film having a sea-island structure, the anisotropic light diffusion property and the It has been found that both low reflectivity can be achieved.
 すなわち、本発明の要旨は以下のとおりである。
 [1]入射光を光の進行方向に散乱可能な第1の層を少なくとも有する光拡散フィルムであって、
 下記方法で求められる60°輝度比と正面輝度比との比率(60°輝度比/正面輝度比)が0.30以上0.60以下である、異方性光拡散フィルム。
That is, the gist of the present invention is as follows.
[1] A light diffusion film having at least a first layer capable of scattering incident light in the direction of travel of the light,
An anisotropic light-diffusing film having a ratio of 60° brightness ratio to front brightness ratio (60° brightness ratio/front brightness ratio) determined by the following method of 0.30 or more and 0.60 or less.
 <60°輝度比>
 前記光拡散フィルムにおいて、フィルム面の法線N方向から光拡散方向に60°傾いた方向の輝度Cと、フィルム面の法線N方向の正面輝度Bとの比率(C/B)を60°輝度比とする。
 <正面輝度比>
 前記光拡散フィルムの正面輝度Bと、下記(1)及び(2)の条件を満たすブランクサンプルにおける、フィルム面の法線N方向の正面輝度Aとの比率(B/A)を正面輝度比とする。
 [ブランクサンプル]
 (1)JIS K7361-1に準拠して測定される全光線透過率が90%以上である。
 (2)JIS K7136に準拠して測定されるヘーズが1%以下である。
<60° luminance ratio>
In the light diffusion film, the ratio (C/B) of the luminance C in the direction inclined 60° from the normal N direction of the film surface to the light diffusion direction and the front luminance B in the normal N direction of the film surface is 60° Let it be the luminance ratio.
<Front luminance ratio>
The ratio (B/A) of the front luminance B of the light diffusion film and the front luminance A in the normal N direction of the film surface in the blank sample satisfying the following conditions (1) and (2) is defined as the front luminance ratio. do.
[Blank sample]
(1) The total light transmittance measured according to JIS K7361-1 is 90% or more.
(2) The haze measured according to JIS K7136 is 1% or less.
 [2]前記60°輝度比が27%以上である、上記[1]に記載の異方性光拡散フィルム。
 [3]前記正面輝度比が80%以上である、上記[1]又は[2]に記載の異方性光拡散フィルム。
 [4]表面硬度がB以上である、上記[1]~[3]のいずれか1つに記載の異方性光拡散フィルム。
 [5]算術平均高さRaが10μm以下である、上記[1]~[4]のいずれか1つに記載の異方性光拡散フィルム。
[2] The anisotropic light-diffusing film according to [1] above, wherein the 60° luminance ratio is 27% or more.
[3] The anisotropic light-diffusing film according to [1] or [2] above, wherein the front luminance ratio is 80% or more.
[4] The anisotropic light-diffusing film according to any one of [1] to [3] above, which has a surface hardness of B or higher.
[5] The anisotropic light-diffusing film according to any one of [1] to [4] above, which has an arithmetic mean height Ra of 10 μm or less.
 [6]JIS K7136に準拠して測定されるヘーズが40%以上である、上記[1]~[5]のいずれか1つに記載の異方性光拡散フィルム。
 [7]全光線透過率が94%以上である、上記[1]~[6]のいずれか1つに記載の異方性光拡散フィルム。
 [8]正反射光除去方式(Specular Component Exclude方式)の視感反射率RSCEと、正反射光込み方式(Specular Component Include方式)の視感反射率RSCIとの比率(RSCE/RSCI)が50%以上である、上記[1]~[7]のいずれか1つに記載の異方性光拡散フィルム。
[6] The anisotropic light-diffusing film according to any one of [1] to [5] above, which has a haze of 40% or more as measured according to JIS K7136.
[7] The anisotropic light-diffusing film of any one of [1] to [6] above, which has a total light transmittance of 94% or more.
[8] The ratio of the luminous reflectance R SCE of the specular component exclude method to the luminous reflectance R SCI of the specular component include method (R SCE /R SCI ) is 50% or more, the anisotropic light-diffusing film according to any one of the above [1] to [7].
 [9]前記第1の層が、連続相(I)及び分散相(II)による海島構造を有する、上記[1]~[8]のいずれか1つに記載の異方性光拡散フィルム。
 [10]前記第1の層の厚み方向の中央部における分散相体積が20μm以上120μm以下である、上記[9]に記載の異方性光拡散フィルム。
 [11]前記分散相(II)のTD方向の平均分散径に対する、MD方向の平均分散径の比率(MD平均分散径/TD平均分散径)が厚み方向の中央部において3以上である、上記[9]又は[10]に記載の異方性光拡散フィルム。
 [12]前記分散相(II)の厚み方向の中央部におけるTD断面での分散径の面積が2μm以上である、上記[9]~[11]のいずれか1つに記載の異方性光拡散フィルム。
[9] The anisotropic light-diffusing film according to any one of [1] to [8] above, wherein the first layer has a sea-island structure with the continuous phase (I) and the dispersed phase (II).
[10] The anisotropic light-diffusing film according to [9] above, wherein the volume of the dispersed phase at the central portion in the thickness direction of the first layer is 20 µm 3 or more and 120 µm 3 or less.
[11] The above, wherein the ratio of the average dispersion diameter in the MD direction to the average dispersion diameter in the TD direction of the dispersed phase (II) (MD average dispersion diameter/TD average dispersion diameter) is 3 or more at the center in the thickness direction. The anisotropic light-diffusing film of [9] or [10].
[12] The anisotropic light diffusion according to any one of the above [9] to [11], wherein the dispersed phase (II) has a dispersion diameter area of 2 μm 3 or more in the TD cross section at the central portion in the thickness direction. the film.
 [13]MD方向の引張強度σMD及びTD方向引張強度σTDがいずれも50MPa以上である、上記[9]~[12]のいずれか1つに記載の異方性光拡散フィルム。
 [14]前記第1の層が、下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位(a)を含むポリカーボネート樹脂を含む、上記[1]~[13]のいずれか1つに記載の異方性光拡散フィルム。
[13] The anisotropic light-diffusing film according to any one of [9] to [12] above, wherein both the tensile strength σMD in the MD direction and the tensile strength σTD in the TD direction are 50 MPa or more.
[14] Any one of the above [1] to [13], wherein the first layer contains a polycarbonate resin containing a structural unit (a) derived from a dihydroxy compound represented by the following general formula (1): The anisotropic light diffusion film described in .
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 [15]前記ポリカーボネート樹脂が、前記構造単位(a)以外のその他のジヒドロキシ化合物に由来する構造単位(b)をさらに含む、上記[14]に記載の異方性光拡散フィルム。
 [16]前記構造単位(b)が、脂肪族ジヒドロキシ化合物に由来する構造単位及び/又は脂環式ジヒドロキシ化合物に由来する構造単位である、上記[15]に記載の異方性光拡散フィルム。
 [17]前記脂環式ジヒドロキシ化合物が、シクロヘキサンジメタノール、トリシクロデカンジメタノール、アダマンタンジオール及びペンタシクロペンタデカンジメタノールから選ばれるいずれか1種又は2種以上である、上記[16]に記載の異方性光拡散フィルム。
[15] The anisotropic light-diffusing film of [14] above, wherein the polycarbonate resin further contains a structural unit (b) derived from a dihydroxy compound other than the structural unit (a).
[16] The anisotropic light-diffusing film of [15] above, wherein the structural unit (b) is a structural unit derived from an aliphatic dihydroxy compound and/or a structural unit derived from an alicyclic dihydroxy compound.
[17] The above-mentioned [16], wherein the alicyclic dihydroxy compound is one or more selected from cyclohexanedimethanol, tricyclodecanedimethanol, adamantanediol, and pentacyclopentadecanedimethanol. Anisotropic light diffusion film.
 [18]前記第1の層が、非晶性ポリエステル樹脂を含む、上記[1]~[17]のいずれか1つに記載の異方性光拡散フィルム。
 [19]前記非晶性ポリエステル樹脂が、脂環式構造を有するジオール成分を含む、上記[18]に記載の異方性光拡散フィルム。
 [20]前記脂環式構造を有するジオール成分が、スピログリコール、イソソルバイド、及び2,2,4,4-テトラメチル-1,3-シクロブタンジオールから選ばれるいずれか1種又は2種以上である、上記[19]に記載の異方性光拡散フィルム。
[18] The anisotropic light diffusion film according to any one of [1] to [17] above, wherein the first layer contains an amorphous polyester resin.
[19] The anisotropic light-diffusing film of the above [18], wherein the amorphous polyester resin contains a diol component having an alicyclic structure.
[20] The diol component having an alicyclic structure is one or more selected from spiroglycol, isosorbide, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol. , the anisotropic light diffusion film according to [19] above.
 [21]前記第1の層が、2種以上の非晶性ポリエステル樹脂を含む、上記[1]~[20]のいずれか1つに記載の異方性光拡散フィルム。
 [22]前記第1の層が、非晶性ポリエステル樹脂と、ポリカーボネート樹脂(但し、下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位(a)を含むポリカーボネート樹脂を除く。)とを含む、上記[1]~[21]のいずれか1つに記載の異方性光拡散フィルム。
[21] The anisotropic light-diffusing film of any one of [1] to [20] above, wherein the first layer contains two or more kinds of amorphous polyester resins.
[22] The first layer comprises an amorphous polyester resin and a polycarbonate resin (excluding a polycarbonate resin containing a structural unit (a) derived from a dihydroxy compound represented by the following general formula (1)). The anisotropic light diffusion film according to any one of [1] to [21] above, comprising:
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 [23]前記第1の層の少なくとも一方の面に第2の層を有する、上記[1]~[22]のいずれか1つに記載の異方性光拡散フィルム。
 [24]前記第2の層が実質的に分散相を有しない、上記[23]に記載の異方性光拡散フィルム。
[23] The anisotropic light-diffusing film according to any one of [1] to [22] above, which has a second layer on at least one surface of the first layer.
[24] The anisotropic light-diffusing film of [23] above, wherein the second layer has substantially no dispersed phase.
 [25]連続相(I)及び分散相(II)による海島構造を有する第1の層を備え、JIS K7136に準拠して測定されるヘーズが40%以上であり、MD方向及びTD方向の引張強度比(σMD/σTD)が0.75~1.25である、異方性光拡散フィルム。
 [26]連続相(I)及び分散相(II)による海島構造を有する第1の層を備え、JIS K7136に準拠して測定されるヘーズが40%以上であり、MD方向の引張強度σMD及びTD方向引張強度σTDがいずれも50MPa以上である、異方性光拡散フィルム。
 [27]連続相(I)及び分散相(II)による海島構造を有する第1の層を備え、前記第1の層の厚み方向の中央部における分散相体積が20μm以上120μm以下であり、分散相(II)のTD方向の平均分散径に対する、MD方向の平均分散径の比率(MD平均分散径/TD平均分散径)が厚み方向の中央部において3以上である、異方性光拡散フィルム。
 [28]連続相(I)及び分散相(II)による海島構造を有する第1の層を備え、前記第1の層の厚み方向の中央部における分散相体積が20μm以上120μm以下であり、分散相(II)の厚み方向の中央部におけるTD断面での分散径の面積が2μm以上である、異方性光拡散フィルム。
 [29]連続相(I)及び分散相(II)による海島構造を有し、前記連続相(I)及び分散相(II)の少なくとも一方が、平均屈折率1.53以下の熱可塑性樹脂を含む、異方性光拡散フィルム。
[25] It has a first layer having a sea-island structure with a continuous phase (I) and a dispersed phase (II), has a haze of 40% or more as measured in accordance with JIS K7136, and is tensile in the MD and TD directions. An anisotropic light-diffusing film having an intensity ratio (σ MDTD ) of 0.75 to 1.25.
[26] It has a first layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II), has a haze of 40% or more as measured according to JIS K7136, and has a tensile strength σ MD in the MD direction. and an anisotropic light-diffusing film having a TD tensile strength σ TD of 50 MPa or more.
[27] A first layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II) is provided, and the volume of the dispersed phase at the central portion in the thickness direction of the first layer is 20 μm 3 or more and 120 μm 3 or less. , the ratio of the average dispersion diameter in the MD direction to the average dispersion diameter in the TD direction of the dispersed phase (II) (MD average dispersion diameter / TD average dispersion diameter) is 3 or more at the center in the thickness direction. .
[28] A first layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II), wherein the volume of the dispersed phase at the central portion in the thickness direction of the first layer is 20 μm 3 or more and 120 μm 3 or less. , an anisotropic light diffusion film, wherein the area of the dispersion diameter in the TD cross section at the central portion in the thickness direction of the dispersed phase (II) is 2 μm 2 or more.
[29] It has a sea-island structure with a continuous phase (I) and a dispersed phase (II), and at least one of the continuous phase (I) and the dispersed phase (II) contains a thermoplastic resin having an average refractive index of 1.53 or less. An anisotropic light diffusing film, including.
 [30]少なくとも第1の層及び第2の層を備える積層構成を有し、前記第1の層は、連続相(I)及び分散相(II)による海島構造を有し、前記第2の層は、前記第1の層の少なくとも一方の面側に積層され、かつ、前記第1の層の連続相(I)を形成する熱可塑性樹脂と同種の熱可塑性樹脂を含む連続相(Ib)を有する、異方性光拡散フィルム。
 [31]少なくとも第1の層及び第2の層を備える積層構成を有し、前記第1の層は、連続相(I)及び分散相(II)による海島構造を有し、前記第2の層は、前記第1の層の少なくとも一方の面側に積層され、ガラス転移温度が90℃以上である樹脂を含む連続相(Ib)を有し、かつ、表面硬度がHB以上である、異方性光拡散フィルム。
[30] Having a laminated structure comprising at least a first layer and a second layer, the first layer having a sea-island structure with a continuous phase (I) and a dispersed phase (II), and the second The layer is laminated on at least one surface side of the first layer, and a continuous phase (Ib) containing a thermoplastic resin of the same type as the thermoplastic resin forming the continuous phase (I) of the first layer An anisotropic light diffusion film having
[31] Having a laminated structure comprising at least a first layer and a second layer, the first layer having a sea-island structure with a continuous phase (I) and a dispersed phase (II), and the second The layer is laminated on at least one surface side of the first layer, has a continuous phase (Ib) containing a resin having a glass transition temperature of 90 ° C. or higher, and has a surface hardness of HB or higher. Anisotropic light diffusion film.
 [32]上記[1]~[31]のいずれか1つに記載の異方性光拡散フィルムの少なくとも一方の面に粘着剤層を有する、粘着剤層付き異方性光拡散フィルム。
 [33]前記粘着剤層がアクリル系粘着剤を含む、上記[32]に記載の粘着剤層付き異方性光拡散フィルム。
[32] An anisotropic light-diffusing film with an adhesive layer, comprising an adhesive layer on at least one surface of the anisotropic light-diffusing film of any one of [1] to [31] above.
[33] The anisotropic light-diffusing film with an adhesive layer according to the above [32], wherein the adhesive layer contains an acrylic adhesive.
 [34]上記[1]~[31]のいずれか1つに記載の異方性光拡散フィルムを備える画像表示装置。
 [35]画面の大きさが32インチ以上である、上記[34]に記載の画像表示装置。
[34] An image display device comprising the anisotropic light diffusion film according to any one of [1] to [31] above.
[35] The image display device according to [34], having a screen size of 32 inches or more.
 本発明の一態様に係る異方性光拡散フィルムは、異方光拡散性、透過性及び低反射性に優れているため、ディスプレイに実装したときの明るさや視認性に優れる。本発明の別の一態様に係る異方性光拡散フィルムは、異方光拡散性及び低反射性を兼備することができる。 The anisotropic light-diffusing film according to one aspect of the present invention is excellent in anisotropic light-diffusing properties, transmittance, and low reflectivity, and is therefore excellent in brightness and visibility when mounted on a display. An anisotropic light-diffusing film according to another aspect of the present invention can have both anisotropic light-diffusing properties and low reflectivity.
60°輝度比の測定方法を示す図である。It is a figure which shows the measuring method of 60 degree luminance ratio. 試験例4-1の異方性光拡散フィルムの断面図(MD断面)である。FIG. 4 is a cross-sectional view (MD cross section) of an anisotropic light diffusion film of Test Example 4-1. 試験例4-1の異方性光拡散フィルムの断面図(TD断面)である。FIG. 4 is a cross-sectional view (TD cross section) of an anisotropic light diffusion film of Test Example 4-1. 試験例4-2の異方性光拡散フィルムの断面図(MD断面)である。FIG. 10 is a cross-sectional view (MD cross section) of an anisotropic light-diffusing film of Test Example 4-2. 試験例4-2の異方性光拡散フィルムの断面図(TD断面)である。FIG. 10 is a cross-sectional view (TD cross section) of an anisotropic light-diffusing film of Test Example 4-2. 試験例4-3の異方性光拡散フィルムの断面図(MD断面)である。FIG. 10 is a cross-sectional view (MD cross section) of an anisotropic light-diffusing film of Test Example 4-3. 試験例4-3の異方性光拡散フィルムの断面図(TD断面)である。FIG. 10 is a cross-sectional view (TD cross section) of an anisotropic light-diffusing film of Test Example 4-3. 試験例4-4の異方性光拡散フィルムの断面図(MD断面)である。FIG. 10 is a cross-sectional view (MD cross section) of an anisotropic light-diffusing film of Test Example 4-4. 試験例4-4の異方性光拡散フィルムの断面図(TD断面)である。FIG. 10 is a cross-sectional view (TD cross section) of an anisotropic light-diffusing film of Test Example 4-4. 試験例4-7の異方性光拡散フィルムの断面図(MD断面)である。FIG. 10 is a cross-sectional view (MD cross section) of an anisotropic light-diffusing film of Test Example 4-7. 試験例4-7の異方性光拡散フィルムの断面図(TD断面)である。FIG. 10 is a cross-sectional view (TD cross section) of an anisotropic light-diffusing film of Test Example 4-7. 試験例4-8の異方性光拡散フィルムの断面図(MD断面)である。FIG. 10 is a cross-sectional view (MD cross section) of an anisotropic light-diffusing film of Test Example 4-8. 試験例4-8の異方性光拡散フィルムの断面図(TD断面)である。FIG. 10 is a cross-sectional view (TD cross section) of an anisotropic light-diffusing film of Test Example 4-8.
 以下、本発明の実施形態の一例について詳細に説明する。但し、本発明は、下記実施形態に限定されるものではない。 An example of an embodiment of the present invention will be described in detail below. However, the present invention is not limited to the following embodiments.
 <<異方性光拡散フィルム>>
 本発明の一実施形態に係る異方性光拡散フィルム(以下、「本光拡散フィルム」ともいう。)は、入射光を光の進行方向に散乱可能な第1の層(以下、単に「第1の層」ともいう。)を少なくとも有するフィルムである。
 なお、本発明において「入射光を光の進行方向に散乱可能」とは、正面輝度比が70%以上であり、かつ、60度輝度比が20%以上であることをいう。
<<Anisotropic light diffusion film>>
An anisotropic light diffusion film (hereinafter also referred to as "this light diffusion film") according to one embodiment of the present invention includes a first layer (hereinafter simply referred to as "first (also referred to as "layer").
In the present invention, "capable of scattering incident light in the traveling direction of light" means that the front luminance ratio is 70% or more and the 60-degree luminance ratio is 20% or more.
 <本光拡散フィルムの物性>
 (1)60°輝度比/正面輝度比
 本光拡散フィルムは、下記方法で求められる正面輝度比に対する、60°輝度比の比率(60°輝度比/正面輝度比)が0.30以上0.60以下であるのが好ましい。
 60°輝度比/正面輝度比は、0.32以上がより好ましく、0.34以上がさらに好ましく、0.36以上がよりさらに好ましい。また、0.55以下がより好ましく、0.50以下がさらに好ましく、中でも、0.48以下がより好ましく、0.46以下がさらに好ましく、0.44以下がよりさらに好ましい。
 60°輝度比/正面輝度比が上記範囲内であることは、正面から見た場合、及び広い視野角で見た場合の両方で良好な明るさと視認性を持つことを表している。よって、60°輝度比/正面輝度比が上記範囲内であると、異方光拡散性と正面輝度のバランスが良いといえる。
<Physical properties of the present light diffusion film>
(1) 60° luminance ratio/front luminance ratio In the present light diffusion film, the ratio of the 60° luminance ratio (60° luminance ratio/front luminance ratio) to the front luminance ratio obtained by the following method is 0.30 or more and 0.30. It is preferably 60 or less.
The 60° luminance ratio/front luminance ratio is more preferably 0.32 or more, still more preferably 0.34 or more, and even more preferably 0.36 or more. It is more preferably 0.55 or less, more preferably 0.50 or less, more preferably 0.48 or less, still more preferably 0.46 or less, and even more preferably 0.44 or less.
The fact that the 60° luminance ratio/front luminance ratio is within the above range means that the display has good brightness and visibility both when viewed from the front and when viewed at a wide viewing angle. Therefore, when the 60° luminance ratio/front luminance ratio is within the above range, it can be said that the anisotropic light diffusibility and the front luminance are well balanced.
 なお、60°輝度比及び正面輝度比は、それぞれ下記の方法で求められる。 The 60° luminance ratio and the front luminance ratio are obtained by the following methods.
 (60°輝度比)
 本光拡散フィルムにおいて、フィルム面の法線N方向の正面輝度Bに対する(100%)、フィルム面の法線N方向から光拡散方向に60°傾いた方向の輝度Cの比率(C/B)を60°輝度比(%)とする。
 なお、測定方法の一例を図1に示す。本光拡散フィルム1をバックライトユニット2に固定し、フィルム面の法線N方向から光を入射させる(図1における太矢印)。輝度計3がフィルム面の法線N方向から光拡散方向yに60°傾いた方向に位置するように、バックライトユニット2を傾けたときの測定値が輝度Cとなる。また、輝度計3が法線N方向に位置するようにバックライトユニット2を配置したときの測定値が輝度Bとなる。
(60° brightness ratio)
In this light diffusion film, the ratio (C/B) of the luminance C in the direction inclined 60° from the normal N direction of the film surface to the front luminance B in the normal N direction of the film surface (100%) is the 60° luminance ratio (%).
An example of the measuring method is shown in FIG. The light diffusion film 1 is fixed to the backlight unit 2, and light is made to enter from the normal N direction of the film surface (thick arrow in FIG. 1). The luminance C is the measured value when the backlight unit 2 is tilted so that the luminance meter 3 is positioned in a direction tilted 60° from the normal N direction of the film surface to the light diffusion direction y. Further, the luminance B is the measured value when the backlight unit 2 is arranged so that the luminance meter 3 is positioned in the normal N direction.
 (正面輝度比)
 下記(1)及び(2)の条件を満たすブランクサンプルにおける、フィルム面の法線N方向の正面輝度Aに対する(100%)、本光拡散フィルムの正面輝度Bの比率(B/A)を正面輝度比(%)とする。
 [ブランクサンプル]
 (1)JIS K7361-1に準拠して測定される全光線透過率が90%以上である。
 (2)JIS K7136に準拠して測定されるヘーズが1%以下である。
 なお、正面輝度Aは、上記ブランクサンプルをバックライトユニットに固定し、フィルム面の法線N方向から光を入射させ、輝度計が法線N方向に位置するようにバックライトユニットを配置したときの測定値である。
(front luminance ratio)
The ratio (B/A) of the front luminance B of this light diffusion film to the front luminance A in the normal N direction of the film surface (100%) in a blank sample that satisfies the following conditions (1) and (2). Brightness ratio (%).
[Blank sample]
(1) The total light transmittance measured according to JIS K7361-1 is 90% or more.
(2) The haze measured according to JIS K7136 is 1% or less.
The front luminance A is obtained when the blank sample is fixed to the backlight unit, light is incident from the normal N direction of the film surface, and the backlight unit is arranged so that the luminance meter is positioned in the normal N direction. is the measured value.
 (2)60°輝度比
 本光拡散フィルムの60°輝度比は、27%以上であるのが好ましく、30%以上であるのがより好ましく、32%以上であるのがさらに好ましい。一方、60°輝度比の上限は特に限定されないが、99%以下が好ましく、95%以下がより好ましい。
 60°輝度比が上記範囲内であると、フィルムの異方光拡散性が良好となり、視聴者が画面を見る方向以外に光が散乱しないようにすることができ、効率的に広い視野角での視聴者の目に映る明るさを改善できる。
(2) 60° Brightness Ratio The 60° brightness ratio of the present light diffusion film is preferably 27% or more, more preferably 30% or more, and even more preferably 32% or more. On the other hand, although the upper limit of the 60° luminance ratio is not particularly limited, it is preferably 99% or less, more preferably 95% or less.
When the 60° luminance ratio is within the above range, the anisotropic light diffusing property of the film is good, and it is possible to prevent light from scattering in a direction other than the direction in which the viewer views the screen. can improve the brightness seen by viewers.
 (3)正面輝度比
 本光拡散フィルムの正面輝度比は、50%以上であるのが好ましく、60%以上であるのがより好ましく、70%以上であるのがさらに好ましく、80%以上であるのがよりさらに好ましい。一方、正面輝度比の上限は特に限定されないが、99%以下が好ましく、95%以下がより好ましく、90%以下がさらに好ましい。
 正面輝度比が上記範囲内であると、正面から見た時の輝度の低下を抑え、正面から見た時の画面の視認性を向上することができる。また、装置に組み込んだ際の消費電力を抑えることができる。
(3) Front luminance ratio The front luminance ratio of the present light diffusion film is preferably 50% or more, more preferably 60% or more, further preferably 70% or more, and 80% or more. is even more preferred. On the other hand, the upper limit of the front luminance ratio is not particularly limited, but is preferably 99% or less, more preferably 95% or less, and even more preferably 90% or less.
When the front luminance ratio is within the above range, the decrease in luminance when viewed from the front can be suppressed, and the visibility of the screen when viewed from the front can be improved. In addition, power consumption can be suppressed when incorporated into an apparatus.
 (4)ヘーズ
 本光拡散フィルムのヘーズは、10%以上が好ましく、20%以上がより好ましく、25%以上がさらに好ましく、30%以上がよりさらに好ましい。さらにその中でも、40%以上が好ましく、45%以上がより好ましく、50%以上がさらに好ましく、60%以上がよりさらに好ましく、70%以上がとりわけ好ましい。一方、ヘーズの上限は特に限定されないが、99%以下が好ましく、95%以下がより好ましく、90%以下がさらに好ましい。
 本光拡散フィルムが、液晶成分、有機微粒子、異方性無機フィラー又は海島構造における分散相(以下、「分散成分」ともいう)を含む構成である場合、フィルム中に分散成分が多く存在していると、ヘーズが高くなりやすい。よって、ヘーズが上記範囲内であると、フィルムの異方光拡散性が高くなりやすい。
 なお、本発明におけるヘーズは、JIS K7136に準拠し、実施例に記載の方法で測定することができる。
(4) Haze The haze of the present light diffusion film is preferably 10% or more, more preferably 20% or more, still more preferably 25% or more, and even more preferably 30% or more. Furthermore, among them, 40% or more is preferable, 45% or more is more preferable, 50% or more is still more preferable, 60% or more is still more preferable, and 70% or more is particularly preferable. On the other hand, the upper limit of the haze is not particularly limited, but is preferably 99% or less, more preferably 95% or less, and even more preferably 90% or less.
When the present light diffusion film has a structure containing a liquid crystal component, organic fine particles, an anisotropic inorganic filler, or a dispersed phase in a sea-island structure (hereinafter also referred to as a "dispersed component"), a large amount of the dispersed component is present in the film. haze tends to increase. Therefore, when the haze is within the above range, the anisotropic light diffusibility of the film tends to be high.
The haze in the present invention can be measured according to JIS K7136 by the method described in Examples.
 (5)全光線透過率
 本光拡散フィルムは、全光線透過率が85%以上であるのが好ましく、86%以上であるのがより好ましく、87%以上であるのがさらに好ましく、90%以上であるのがよりさらに好ましく、92%以上であるのがとりわけ好ましい。さらにその中でも、94%以上であるのが好ましく、94.5%以上であるのがより好ましく、95%以上であるのがさらに好ましく、96%以上であるのがよりさらに好ましい。一方、全光線透過率の上限は特に限定されないが、99%以下が好ましい。
 本光拡散フィルムが分散成分を含む構成である場合、フィルム中のマトリックス成分と分散成分との界面剥離に起因する反射等が少ないと、全光線透過率が高くなりやすい。よって、全光線透過率が上記範囲内であると、フィルムが低反射性となり、ディスプレイに実装したときの視認性が良好になる。
 なお、本発明における全光線透過率は、JIS K7361-1に準拠し、実施例に記載の方法で測定することができる。
(5) Total light transmittance The light diffusion film preferably has a total light transmittance of 85% or more, more preferably 86% or more, even more preferably 87% or more, and 90% or more. is even more preferable, and 92% or more is particularly preferable. Furthermore, among them, it is preferably 94% or more, more preferably 94.5% or more, still more preferably 95% or more, and even more preferably 96% or more. On the other hand, although the upper limit of the total light transmittance is not particularly limited, it is preferably 99% or less.
In the case where the present light diffusion film contains a dispersive component, the total light transmittance tends to be high if there is little reflection due to interfacial peeling between the matrix component and the dispersive component in the film. Therefore, when the total light transmittance is within the above range, the film has low reflectivity and good visibility when mounted on a display.
The total light transmittance in the present invention can be measured according to JIS K7361-1 by the method described in Examples.
 (6)反射率
 本光拡散フィルムは、分光測色計を用いて測定される正反射光込み方式(Specular Component Include方式)の反射率、すなわち視感反射率RSCIが32以下であるのが好ましく、29以下であるのがより好ましく、26以下であるのがさらに好ましく、22以下であることがよりさらに好ましい。さらにその中でも、20以下であるのが好ましく、18以下であるのがより好ましく、16以下であるのがさらに好ましく、14以下であるのがよりさらに好ましい。一方、視感反射率RSCIの下限は特に限定されないが、異方光拡散性の観点から、5以上であるのが好ましく、5.5以上であるのがより好ましい。
 視感反射率RSCIが上記範囲内にあることで、フィルムが低反射性になりやすい。
(6) Reflectance The present light diffusion film has a reflectance of Specular Component Include method measured using a spectrophotometer, that is, a luminous reflectance R SCI of 32 or less. It is preferably 29 or less, even more preferably 26 or less, and even more preferably 22 or less. Furthermore, among them, it is preferably 20 or less, more preferably 18 or less, still more preferably 16 or less, and even more preferably 14 or less. On the other hand, the lower limit of the luminous reflectance R SCI is not particularly limited, but from the viewpoint of anisotropic light diffusion, it is preferably 5 or more, more preferably 5.5 or more.
When the luminous reflectance R SCI is within the above range, the film tends to have low reflectivity.
 本光拡散フィルムは、上記視感反射率RSCIに対する(100%)、分光測色計を用いて測定される正反射光除去方式(Specular Component Exclude方式)の反射率、すなわち視感反射率RSCEの比率(RSCE/RSCI)が40%以上であるのが好ましく、45%以上であるのがより好ましく、50%以上であるのがさらに好ましく、55%以上であるのがよりさらに好ましく、60%以上であるのがとりわけ好ましい。一方、当該比率(RSCE/RSCI)の上限は特に限定されず、100%以下であればよい。
 当該比率(RSCE/RSCI)が上記範囲内であると、フィルムの光拡散性が良好となる。
 なお、本発明における視感反射率RSCI及び視感反射率RSCEは、視感反射率RSCIが5.1の黒バックを使用し、実施例に記載の方法で測定することができる。
This light diffusion film has a specular component exclude method (Specular Component Exclude method) reflectance measured using a spectrophotometer (100%) with respect to the luminous reflectance R SCI , that is, the luminous reflectance R The SCE ratio (R SCE /R SCI ) is preferably 40% or more, more preferably 45% or more, still more preferably 50% or more, and even more preferably 55% or more. , above 60%. On the other hand, the upper limit of the ratio (R SCE /R SCI ) is not particularly limited as long as it is 100% or less.
When the ratio (R SCE /R SCI ) is within the above range, the film has good light diffusing properties.
The luminous reflectance R SCI and the luminous reflectance R SCE in the present invention can be measured by the method described in Examples using a black background having a luminous reflectance R SCI of 5.1.
 (7)熱寸法変化率
 本光拡散フィルムは、JIS K7133:1999に準拠して、110℃×60分の試験条件で測定されるMD方向の加熱寸法変化率が、0.5%以下であるのが好ましく、0.4%以下であるのがさらに好ましく、0.3%以下であるのがさらに好ましい。
 熱寸法変化率が上記範囲内であると、本光拡散フィルムが110℃以下で十分な耐熱性を有すると考えることができる。このようなフィルムであると、車両に搭載する画像表示装置の構成部材として好適に使用できる。
(7) Thermal dimensional change rate The light diffusion film has a heat dimensional change rate in the MD direction measured under test conditions of 110°C for 60 minutes in accordance with JIS K7133: 1999, which is 0.5% or less. is preferred, 0.4% or less is more preferred, and 0.3% or less is even more preferred.
When the thermal dimensional change rate is within the above range, it can be considered that the present light diffusion film has sufficient heat resistance at 110° C. or less. Such a film can be suitably used as a constituent member of an image display device mounted on a vehicle.
 (8)表面硬度
 本光拡散フィルムは、JIS K5600に基づき、フィルム層の表面に対して、温度23℃±2℃、相対湿度50%±10℃、荷重750gfの条件にて測定される表面硬度が、B以上であるのが好ましく、HB以上であるのがさらに好ましく、中でもF以上であるのがさらに好ましい。
 表面硬度が上記範囲内であると、本光拡散フィルムの傷付きを防止できる。
(8) Surface hardness The surface hardness of the light diffusion film is measured on the surface of the film layer in accordance with JIS K5600 under the conditions of a temperature of 23°C ± 2°C, a relative humidity of 50% ± 10°C, and a load of 750 gf. is preferably B or higher, more preferably HB or higher, and even more preferably F or higher.
When the surface hardness is within the above range, the present light diffusion film can be prevented from being scratched.
 (9)表面粗さ
 本光拡散フィルムは、算術平均高さRaが10μm以下であるのが好ましく、5μm以下であるのがより好ましく、3μm以下であるのがさらに好ましく、1μm以下であるのがよりさらに好ましい。一方、算術平均粗さRaの下限は特に限定されず、0μmであればよく、0.01μm以上であるのが好ましく、0.05μm以上であるのがより好ましく、0.1μm以上であるのがさらに好ましい。
 算術平均高さRaが上記範囲内であると、本光拡散フィルムをディスプレイに実装したときに粘着層界面との間に気泡が発生しにくい。また、本光拡散フィルムを捲回体としたときの取扱性が良好となる。
 なお、本発明における算術平均高さRaは、JIS B0601:2001に準拠し、実施例に記載の方法で測定することができる。
(9) Surface roughness The light diffusion film preferably has an arithmetic mean height Ra of 10 µm or less, more preferably 5 µm or less, even more preferably 3 µm or less, and preferably 1 µm or less. Even more preferable. On the other hand, the lower limit of the arithmetic mean roughness Ra is not particularly limited. More preferred.
When the arithmetic mean height Ra is within the above range, when the present light diffusion film is mounted on a display, air bubbles are less likely to occur between the film and the adhesive layer interface. In addition, when the present light diffusion film is used as a wound body, the handleability is improved.
The arithmetic mean height Ra in the present invention can be measured according to JIS B0601:2001 by the method described in Examples.
 (10)引張強度
 本光拡散フィルムが分散成分を含む構成である場合、MD方向及びTD方向の引張強度比(σMD/σTD)が0.75~1.25であるのが好ましく、中でも0.80以上或いは1.20以下であるのがより好ましく、その中でも0.85以上或いは1.15以下であるのがさらに好ましく、その中でも0.90以上或いは1.10以下であるのがさらに好ましい。
 MD方向及びTD方向の引張強度比(σMD/σTD)が上記範囲内であることは、引張強度の異方性が小さいということであり、フィルム中のマトリックス成分と分散成分との界面剥離が生じにくいことを表している。よって、MD方向及びTD方向の引張強度比(σMD/σTD)が上記範囲内であると、マトリックス成分と分散成分との界面剥離に起因する反射がMD方向及びTD方向のいずれにおいても起こりにくくなり、フィルムが低反射性になりやすく、全光線透過率も高くなりやすい。
 なお、本発明において「MD方向」とは、シート乃至フィルムを製造する際のシート乃至フィルムの引取り(流れ)方向を示し、「TD方向」はその直交方向を示す。
(10) Tensile strength When the present light diffusion film has a structure containing a dispersed component, the tensile strength ratio (σ MDTD ) in the MD direction and the TD direction is preferably 0.75 to 1.25, especially It is more preferably 0.80 or more and 1.20 or less, more preferably 0.85 or more and 1.15 or less, and more preferably 0.90 or more and 1.10 or less. preferable.
When the tensile strength ratio (σ MDTD ) in the MD direction and the TD direction is within the above range, the anisotropy of the tensile strength is small. This means that it is difficult for Therefore, when the tensile strength ratio (σ MDTD ) in the MD direction and the TD direction is within the above range, reflection due to interfacial separation between the matrix component and the dispersion component occurs in both the MD direction and the TD direction. The film tends to have low reflectivity and high total light transmittance.
In the present invention, the "MD direction" indicates the take-up (flow) direction of the sheet or film when manufacturing the sheet or film, and the "TD direction" indicates the orthogonal direction.
 本光拡散フィルムが分散成分を含む構成である場合、MD方向の引張強度σMD及びTD方向引張強度σTDがいずれも50MPa以上であるのが好ましく、55MPa以上であるのがより好ましく、60MPa以上であるのがさらに好ましい。一方、引張強度の上限は特に限定されないが、200MPa以下が好ましい。
 MD方向の引張強度σMD及びTD方向引張強度σTDが上記範囲内であることは、フィルム中のマトリックス成分と分散成分との界面剥離が生じにくいことを表している。よって、MD方向の引張強度σMD及びTD方向引張強度σTDが上記範囲内であると、マトリックス成分と分散成分との界面剥離に起因する反射が起こりにくくなり、フィルムが低反射性になりやすく、全光線透過率も高くなりやすい。
When the present light diffusion film has a structure containing a dispersed component, both the tensile strength σMD in the MD direction and the tensile strength σTD in the TD direction are preferably 50 MPa or more, more preferably 55 MPa or more, and 60 MPa or more. is more preferable. On the other hand, although the upper limit of the tensile strength is not particularly limited, it is preferably 200 MPa or less.
When the tensile strength σMD in the MD direction and the tensile strength σTD in the TD direction are within the above ranges, it means that interfacial separation between the matrix component and the dispersed component in the film is unlikely to occur. Therefore, when the tensile strength σMD in the MD direction and the tensile strength σTD in the TD direction are within the above ranges, reflection due to interfacial peeling between the matrix component and the dispersed component is less likely to occur, and the film tends to have low reflectivity. , the total light transmittance tends to be high.
 なお、本光拡散フィルムの引張強度は、JIS K7161-1に準拠し、実施例に記載の方法で測定することができる。 The tensile strength of the light diffusion film can be measured according to JIS K7161-1 by the method described in Examples.
 <第1の層>
 以下、第1の層について説明する。第1の層は、入射光を光の進行方向に散乱可能な構造を有する。
<First layer>
The first layer will be described below. The first layer has a structure capable of scattering incident light in the traveling direction of the light.
 光拡散フィルムとしては、マトリックス樹脂中に液晶成分、有機微粒子又は異方性無機フィラー等の分散成分を添加したもの(例えば、上記特許文献1、特開2010-079197、国際公開第2015/182517等);フィルム表面に凹凸構造を設けたもの(例えば、特開2013-114846等);連続相(I)及び分散相(II)による海島構造を形成したもの(例えば、上記特許文献2等)等が知られている。
 マトリックス樹脂中に液晶成分、有機微粒子又は異方性無機フィラー等の分散成分を添加した光拡散フィルムは、分散成分のアスペクト比を制御しにくいため、異方光拡散性を高めることが難しく、60°輝度比/正面輝度比を上記範囲内とすることは難しいと考えられる。
 表面に凹凸構造を設けた光拡散フィルムは、凹凸構造を調整することで、60°輝度比/正面輝度比を上記範囲内とすることができる。しかし、このような光拡散フィルムは、ディスプレイに実装したときにモアレと呼ばれる縞模様が発生してしまう場合があるほか、製法的に生産速度を上げにくい場合がある。
 連続相(I)及び分散相(II)による海島構造を形成した光拡散フィルムは、連続相(I)及び分散相(II)を構成する成分及びその量を調整することで、60°輝度比/正面輝度比を上記範囲内とすることができる。このような光拡散フィルムは、モアレの発生も少なく、生産性も良好であると考えられる。
 以上の観点から、第1の層は、表面に凹凸構造を有するか、連続相(I)及び分散相(II)による海島構造を有することが好ましく、連続相(I)及び分散相(II)による海島構造を有することがより好ましい。以下、第1の層の好ましい形態について説明する。
As the light diffusion film, a liquid crystal component, organic fine particles, anisotropic inorganic filler, or other dispersing component is added to the matrix resin (for example, the above-mentioned Patent Document 1, JP-A-2010-079197, International Publication No. 2015/182517, etc. ); those having an uneven structure on the film surface (for example, JP-A-2013-114846, etc.); It has been known.
It is difficult to improve the anisotropic light diffusibility of a light diffusion film in which a dispersing component such as a liquid crystal component, organic fine particles, or an anisotropic inorganic filler is added to a matrix resin, because it is difficult to control the aspect ratio of the dispersing component. It is considered difficult to keep the luminance ratio/front luminance ratio within the above range.
A light diffusion film having an uneven structure on its surface can have a 60° luminance ratio/front luminance ratio within the above range by adjusting the uneven structure. However, such a light diffusion film may cause a striped pattern called moire when mounted on a display, and it may be difficult to increase the production speed due to the manufacturing method.
A light diffusion film having a sea-island structure with a continuous phase (I) and a dispersed phase (II) has a 60° luminance ratio by adjusting the components and amounts of the continuous phase (I) and the dispersed phase (II). /front luminance ratio can be set within the above range. It is considered that such a light diffusion film causes less moiré and has good productivity.
From the above viewpoints, the first layer preferably has an uneven structure on the surface or has a sea-island structure with the continuous phase (I) and the dispersed phase (II), and the continuous phase (I) and the dispersed phase (II) It is more preferable to have a sea-island structure by Preferred forms of the first layer are described below.
 1.第1実施形態
 本発明の第一の好ましい実施形態に係る第1の層は、表面に凹凸構造を有する。
 第1の層の凹凸構造は、本光拡散フィルムの60°輝度比/正面輝度比が上記範囲内となるような構造であれば特に限定されない。表面に凹凸構造を有する第1の層として、例えば以下のものが挙げられる。
 (1)金属や樹脂等からなる金型母材の表面に凹凸を形成し、この金型から樹脂フィルム等に形状を転写したもの(例えば、特開2006-047608、特開2007-140477、特開2008-302591、特開2012-063670、特開2015-004857等)
 (2)透明基板上にプリズム形状を有するシートを積層したもの(例えば、特開2006-059542等)
 (3)有機ビーズを含むコート層を表面に設けたもの(例えば、特開2003-202416等)
 (4)樹脂層を印刷等でパターニングし、熱処理したもの(例えば、特開2000-105550等)
 (5)樹脂層にサンドブラストやエッチングを行ったもの(例えば、特開2000-105550、特開2016-051116等)
 上記(1)~(5)において、凹凸の間隔や突起高さに異方性を持たせると、フィルムに異方光拡散性を付与でき、60°輝度比/正面輝度比を上記範囲内にすることができる。
1. First Embodiment A first layer according to a first preferred embodiment of the present invention has an uneven structure on its surface.
The concave-convex structure of the first layer is not particularly limited as long as the 60° luminance ratio/front luminance ratio of the present light diffusion film is within the above range. Examples of the first layer having an uneven structure on its surface include the following.
(1) Concavities and convexities are formed on the surface of a mold base material made of metal, resin, etc., and the shape is transferred from this mold to a resin film, etc. JP 2008-302591, JP 2012-063670, JP 2015-004857, etc.)
(2) Laminated sheet having a prism shape on a transparent substrate (for example, JP-A-2006-059542, etc.)
(3) Those having a coating layer containing organic beads on the surface (for example, JP-A-2003-202416, etc.)
(4) A resin layer patterned by printing or the like and heat-treated (for example, JP-A-2000-105550, etc.)
(5) Sandblasted or etched resin layer (for example, JP-A-2000-105550, JP-A-2016-051116, etc.)
In the above (1) to (5), if anisotropy is given to the distance between the irregularities and the height of the protrusions, the anisotropic light diffusion property can be imparted to the film, and the 60 ° luminance ratio / front luminance ratio is within the above range. can do.
 2.第2実施形態
 本発明の第二の好ましい実施形態に係る第1の層は、連続相(I)及び分散相(II)による海島構造を有する。
 なお、連続相(I)とは、海島構造における海を構成する相であり、分散相(II)とは、海島構造における島を構成する相である。
 連続相と分散相を区別するには、透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)によって分散構造を観察すればよい。
2. Second Embodiment A first layer according to a second preferred embodiment of the present invention has a sea-island structure with a continuous phase (I) and a dispersed phase (II).
The continuous phase (I) is the phase that forms the sea in the island-sea structure, and the dispersed phase (II) is the phase that forms the islands in the island-sea structure.
In order to distinguish between the continuous phase and the dispersed phase, the dispersed structure can be observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
 第1の層は、海島構造の島部分すなわち分散相(II)がMD方向に延ばされた形状を呈し、海部分すなわち連続相(I)の中に分散してなる分散構造を有するのが好ましい。このような分散構造を有することで、フィルムの異方光拡散性が高くなる。 The first layer has a dispersed structure in which the island portions of the sea-island structure, ie, the dispersed phase (II), are extended in the MD direction, and the sea portion, ie, the continuous phase (I) is dispersed. preferable. By having such a dispersion structure, the anisotropic light diffusibility of the film is enhanced.
 第1の層は、連続相(I)及び分散相(II)の少なくとも一方が、平均屈折率1.53以下の熱可塑性樹脂を含むことが好ましい。
 当該熱可塑性樹脂の平均屈折率は、1.52以下がより好ましく、1.51以下がさらに好ましい。一方、平均屈折率の下限は特に限定されないが、1.45以上であるのが好ましい。
 連続相(I)及び分散相(II)の少なくとも一方に、平均屈折率が上記範囲内である熱可塑性樹脂を含むことで、フィルムの内部反射が抑えられ、低反射性になりやすい。また、一般的な接着層との屈折率差が大きくなりにくいので、接着層との界面反射も抑えることができる。
At least one of the continuous phase (I) and the dispersed phase (II) of the first layer preferably contains a thermoplastic resin having an average refractive index of 1.53 or less.
The average refractive index of the thermoplastic resin is more preferably 1.52 or less, even more preferably 1.51 or less. On the other hand, although the lower limit of the average refractive index is not particularly limited, it is preferably 1.45 or more.
When at least one of the continuous phase (I) and the dispersed phase (II) contains a thermoplastic resin having an average refractive index within the above range, the internal reflection of the film is suppressed and the reflectivity tends to be low. In addition, since the refractive index difference with a general adhesive layer is unlikely to increase, interfacial reflection with the adhesive layer can also be suppressed.
 平均屈折率1.53以下の熱可塑性樹脂は、連続相(I)を構成する樹脂成分であるのが好ましい。
 中でも、連続相(I)を構成する樹脂成分のうち50質量%以上を平均屈折率1.53以下の熱可塑性樹脂が占めるのが好ましく、その中でも60質量%以上、その中でも70質量%以上、その中でも80質量%以上、その中でも90質量%以上(100質量%を含む)を占めるのがさらに好ましい。
The thermoplastic resin having an average refractive index of 1.53 or less is preferably a resin component that constitutes the continuous phase (I).
Among them, it is preferable that the thermoplastic resin having an average refractive index of 1.53 or less accounts for 50% by mass or more of the resin components constituting the continuous phase (I). Among them, it accounts for 80% by mass or more, more preferably 90% by mass or more (including 100% by mass).
 また、連続相(I)及び分散相(II)の屈折率差は、0.010~0.080が好ましく、中でも0.015以上或いは0.075以下がより好ましく、その中でも0.020以上或いは0.070以下がさらに好ましい。
 連続相(I)及び分散相(II)の屈折率差が上記範囲内であると、フィルムの内部反射が抑えられ、低反射性になりやすい。また、高い全光線透過率を有しつつ、異方光拡散性を高くできる。
 なお、連続相(I)及び分散相(II)の屈折率差は、連続相(I)及び分散相(II)を形成する原料樹脂の屈折率の差の絶対値として算出される。
 また、連続相(I)又は分散相(II)の各相を形成する原料樹脂が2種以上の場合には、原料樹脂の配合比と各樹脂の平均屈折率より、各相の屈折率を算出するものとする。
Further, the refractive index difference between the continuous phase (I) and the dispersed phase (II) is preferably 0.010 to 0.080, more preferably 0.015 or more or 0.075 or less, and more preferably 0.020 or more or 0.070 or less is more preferable.
When the refractive index difference between the continuous phase (I) and the dispersed phase (II) is within the above range, the internal reflection of the film is suppressed and the reflectivity tends to be low. In addition, the anisotropic light diffusibility can be enhanced while maintaining a high total light transmittance.
The refractive index difference between the continuous phase (I) and the dispersed phase (II) is calculated as the absolute value of the refractive index difference between the raw material resins forming the continuous phase (I) and the dispersed phase (II).
In addition, when two or more raw material resins form each phase of the continuous phase (I) or the dispersed phase (II), the refractive index of each phase can be determined from the compounding ratio of the raw material resins and the average refractive index of each resin. shall be calculated.
 [連続相(I)及び分散相(II)]
 第1の層における連続相(I)及び分散相(II)は、少なくとも2種の熱可塑性樹脂を使用することで形成できる。
 上記熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂;ポリエチレン、ポリプレピレン、シクロポリオレフィン、ポリメチルペンテン等のポリオレフィン;アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体;酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂;ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂;ポリアクリル酸エステル等のアクリル樹脂及びその共重合体、ポリメタクリル酸エステル等のメタクリル樹脂及びその共重合体等のアクリル系樹脂;ポリスチレン系樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂等を挙げることができる。
[Continuous Phase (I) and Dispersed Phase (II)]
The continuous phase (I) and dispersed phase (II) in the first layer can be formed by using at least two thermoplastic resins.
Examples of the thermoplastic resin include polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate and polybutylene terephthalate; polyolefins such as polyethylene, polypropylene, cyclopolyolefin and polymethylpentene; acetylcellulose and nitrocellulose. Cellulose derivatives such as , acetylbutyl cellulose, ethyl cellulose, methyl cellulose; vinyl resins such as vinyl acetate and its copolymers, vinyl chloride and its copolymers, vinylidene chloride and its copolymers; acetals such as polyvinyl formal and polyvinyl butyral Acrylic resins such as acrylic resins such as polyacrylates and copolymers thereof, methacrylic resins such as polymethacrylates and copolymers thereof; acrylic resins such as polystyrene resins; polyamide resins; be able to.
 上記熱可塑性樹脂のうち、いずれか1種が平均屈折率1.53以下の熱可塑性樹脂(「樹脂α」とも称する)であるのが好ましい。
 前記少なくとも2種の熱可塑性樹脂として、より具体的には、樹脂αと、これに非相溶な熱可塑性樹脂(「樹脂β」とも称する)との組み合わせを挙げることができる。
 なお、「非相溶」とは、少なくとも2つの樹脂成分が完全には混和していない状態を意味し、部分的に混和していてもかまわない状態を表す意であって、透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)による巨視的な観察を行うと、海島構造によるミクロ相分離構造が観察される状態をいう。
It is preferable that one of the above thermoplastic resins is a thermoplastic resin having an average refractive index of 1.53 or less (also referred to as "resin α").
More specifically, the at least two thermoplastic resins include a combination of resin α and a thermoplastic resin incompatible therewith (also referred to as “resin β”).
The term "incompatible" means a state in which at least two resin components are not completely mixed, and may be partially mixed. (TEM) or scanning electron microscope (SEM), micro-phase separation structure due to sea-island structure is observed.
 これら2種の樹脂α、βを含む材料によって連続相(I)及び分散相(II)を形成することにより、本光拡散フィルム面の法線N方向から光拡散方向に60°傾いた方向付近に強い拡散性を持つ理想的な島成分を形成することができ、最適な分散構造が形成されることで、優れた異方光拡散性を発現することができる。 By forming the continuous phase (I) and the dispersed phase (II) with materials containing these two types of resins α and β, the vicinity of the direction inclined 60° from the normal N direction of the surface of the light diffusion film to the light diffusion direction An ideal island component having strong diffusivity can be formed, and an optimum dispersion structure can be formed to exhibit excellent anisotropic light diffusibility.
 また、第1の層は、上記樹脂α、βに加えて第3成分となる樹脂γを含んでもよい。樹脂γは、樹脂αに非相溶な熱可塑性樹脂であり、樹脂βとともに分散相(II)を構成し、分散相(II)中で樹脂βと相溶又は相分離するものが好ましい。樹脂γを含むことで、本光拡散フィルムの異方光拡散性を調整できる。 In addition, the first layer may contain a resin γ as a third component in addition to the resins α and β. The resin γ is a thermoplastic resin incompatible with the resin α, and preferably forms the dispersed phase (II) together with the resin β and is compatible with or phase-separated from the resin β in the dispersed phase (II). By containing the resin γ, the anisotropic light diffusibility of the present light diffusion film can be adjusted.
 以下、樹脂α、樹脂β及び樹脂γについて詳細に説明する。 The resin α, resin β, and resin γ will be described in detail below.
 [樹脂α]
 前記平均屈折率1.53以下の樹脂αとしては、例えばポリメタクリル酸メチル、ポリプロピレン、ポリウレタンなどを挙げることができ、とりわけ、透明性、延伸性、耐熱性、低反射性及び異方光拡散性の観点から、一般式(1)で表されるジヒドロキシ化合物に由来する構造単位(a)を含むポリカーボネート樹脂が好ましい。当該構造単位(a)を含むポリカーボネート樹脂は、第1の層の連続相(I)における主成分であるのが好ましい。
 なお、本発明において「主成分」とは、連続相(I)又は分散相(II)を構成する樹脂のうち最も含有量の多い樹脂を意味し、例えば連続相(I)又は分散相(II)を構成する樹脂のうち50質量%以上、特に70質量%以上、中でも80質量%以上(100質量%を含む)を占める樹脂成分をいう。
[Resin α]
Examples of the resin α having an average refractive index of 1.53 or less include polymethyl methacrylate, polypropylene, polyurethane, and the like. From the viewpoint of above, a polycarbonate resin containing a structural unit (a) derived from a dihydroxy compound represented by general formula (1) is preferred. The polycarbonate resin containing the structural unit (a) is preferably the main component in the continuous phase (I) of the first layer.
In the present invention, the "main component" means the resin with the highest content among the resins constituting the continuous phase (I) or the dispersed phase (II), for example, the continuous phase (I) or the dispersed phase (II ), a resin component that accounts for 50% by mass or more, particularly 70% by mass or more, especially 80% by mass or more (including 100% by mass).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記一般式(1)で表されるジヒドロキシ化合物としては、例えば立体異性体の関係にある、イソソルバイド、イソマンニド及びイソイデッドが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらのジヒドロキシ化合物は、フェノール性水酸基を有しないため、通常、炭酸ジエステルを用いたエステル交換反応により製造される。
Examples of the dihydroxy compound represented by the general formula (1) include isosorbide, isomannide and isoide, which are stereoisomers. These may be used individually by 1 type, and may be used in combination of 2 or more type.
Since these dihydroxy compounds do not have a phenolic hydroxyl group, they are usually produced by transesterification using diester carbonate.
 これらのジヒドロキシ化合物のうち、中でも植物由来の資源として豊富に存在し、容易に入手可能な種々のデンプンから製造されるソルビトールを脱水縮合して得られるイソソルバイドが、透明性、延伸性、耐熱性及び異方光拡散性の面から最も好ましい。 Among these dihydroxy compounds, isosorbide, which is obtained by dehydration condensation of sorbitol produced from various easily available starches, which exists abundantly as a plant-derived resource, has transparency, stretchability, heat resistance and It is most preferable from the aspect of anisotropic light diffusion.
 ポリカーボネート樹脂における上記構造単位(a)は、ジヒドロキシ化合物に由来する全構造単位のうち35mol%以上が好ましく、より好ましくは40mol%以上、さらに好ましく45mol%以上である。また、90mol%以下が好ましく、より好ましくは85mol%以下、さらに好ましくは80mol%以下である。
 構造単位(a)の比率が上記下限値以上であれば、ポリカーボネート樹脂の分子量の増大が容易になる。一方、当該比率が上記上限値以下であれば、ポリカーボネート樹脂が着色しにくい。
The structural unit (a) in the polycarbonate resin accounts for preferably 35 mol% or more, more preferably 40 mol% or more, and even more preferably 45 mol% or more of all structural units derived from the dihydroxy compound. Also, it is preferably 90 mol % or less, more preferably 85 mol % or less, and still more preferably 80 mol % or less.
If the ratio of the structural unit (a) is at least the above lower limit, it becomes easy to increase the molecular weight of the polycarbonate resin. On the other hand, if the said ratio is below the said upper limit, polycarbonate resin will be hard to color.
 構造単位(a)を含むポリカーボネート樹脂は、上記構造単位(a)以外のその他のジヒドロキシ化合物に由来する構造単位(b)をさらに含んでもよい。 The polycarbonate resin containing the structural unit (a) may further contain a structural unit (b) derived from a dihydroxy compound other than the structural unit (a).
 上記構造単位(b)としては、脂肪族ジヒドロキシ化合物に由来する構造単位(b1)及び/又は脂環式ジヒドロキシ化合物に由来する構造単位(b2)が挙げられる。
 脂肪族ジヒドロキシ化合物及び脂環式ジヒドロキシ化合物として、具体的には、以下のものが挙げられる。
Examples of the structural unit (b) include a structural unit (b1) derived from an aliphatic dihydroxy compound and/or a structural unit (b2) derived from an alicyclic dihydroxy compound.
Specific examples of the aliphatic dihydroxy compound and the alicyclic dihydroxy compound include the following.
 (脂肪族ジヒドロキシ化合物)
 前記脂肪族ジヒドロキシ化合物として、例えば1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、2-エチル-1,6-ヘキサンジオール、2,2,4-トリメチル-1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール、水素化ジリノレイルグリコール、水素化ジオレイルグリコール等が挙げられる。
 これらの脂肪族ジヒドロキシ化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(Aliphatic dihydroxy compound)
Examples of the aliphatic dihydroxy compound include 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 2-ethyl -1,6-hexanediol, 2,2,4-trimethyl-1,6-hexanediol, 1,9-nonanediol, 1,10-decanediol, hydrogenated dilinoleyl glycol, hydrogenated dioleyl glycol, etc. are mentioned.
These aliphatic dihydroxy compounds may be used singly or in combination of two or more.
 前記構造単位(a)と脂肪族ジヒドロキシ化合物に由来する構造単位(b1)とのモル比率は、任意の割合で選択できる。前記モル比率を調整することで、柔軟性の改善、成形性の改善をすることができる。
 したがって、かかる観点から、前記構造単位(a)と、前記脂肪族ジヒドロキシ化合物に由来する構造単位(b1)とのモル比率は、35:65~99:1であるのが好ましく、40:60~90:10であるのがより好ましく、45:55~80:20であるのがさらに好ましい。
The molar ratio between the structural unit (a) and the structural unit (b1) derived from the aliphatic dihydroxy compound can be selected at any ratio. Flexibility and moldability can be improved by adjusting the molar ratio.
Therefore, from such a viewpoint, the molar ratio of the structural unit (a) and the structural unit (b1) derived from the aliphatic dihydroxy compound is preferably 35:65 to 99:1, and 40:60 to More preferably 90:10, even more preferably 45:55 to 80:20.
 (脂環式ジヒドロキシ化合物)
 脂環式ジヒドロキシ化合物としては、5員環構造又は6員環構造を含む化合物が挙げられる。脂環式ジヒドロキシ化合物が5員環構造又は6員環構造であることにより、耐熱性向上等の利点がある。
 前記6員環構造は、共有結合によって椅子形もしくは舟形に固定されていてもよい。
 脂環式ジヒドロキシ化合物に含まれる炭素数は、通常70以下であり、好ましくは50以下、さらに好ましくは30以下である。炭素数が70以下の脂環式ジヒドロキシ化合物であれば、合成・精製しやすく、また安価で入手しやすいため好ましい。
(Alicyclic dihydroxy compound)
Alicyclic dihydroxy compounds include compounds containing a 5- or 6-membered ring structure. When the alicyclic dihydroxy compound has a 5-membered ring structure or a 6-membered ring structure, there are advantages such as improved heat resistance.
The six-membered ring structure may be fixed in a chair or boat shape by a covalent bond.
The number of carbon atoms contained in the alicyclic dihydroxy compound is usually 70 or less, preferably 50 or less, more preferably 30 or less. An alicyclic dihydroxy compound having 70 or less carbon atoms is preferred because it is easy to synthesize and purify, and is inexpensive and readily available.
 5員環構造又は6員環構造を含む前記脂環式ジヒドロキシ化合物としては、具体的には、下記一般式(2)又は(3)で表される脂環式ジヒドロキシ化合物が挙げられる。
 HOCH-R-CHOH・・・(2)
 HO-R10-OH・・・(3)
 (ただし、一般式(2)及び(3)中、R及びR10は、それぞれ独立に置換若しくは無置換の炭素数4~炭素数20のシクロアルキル構造を含む二価の基を表す。)
Specific examples of the alicyclic dihydroxy compound containing a 5-membered ring structure or 6-membered ring structure include alicyclic dihydroxy compounds represented by the following general formula (2) or (3).
HOCH 2 —R 9 —CH 2 OH (2)
HO—R 10 —OH (3)
(In general formulas (2) and (3), R 9 and R 10 each independently represent a substituted or unsubstituted divalent group containing a cycloalkyl structure having 4 to 20 carbon atoms.)
 前記一般式(2)で表される脂環式ジヒドロキシ化合物としては、シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、デカリンジメタノール、トリシクロテトラデカンジメタノール、ノルボルナンジメタノール、アダマンタンジメタノール等が挙げられる。 Examples of the alicyclic dihydroxy compound represented by the general formula (2) include cyclohexanedimethanol, tricyclodecanedimethanol, pentacyclopentadecanedimethanol, decalindimethanol, tricyclotetradecanedimethanol, norbornanedimethanol, and adamantanediethanol. Methanol etc. are mentioned.
 前記一般式(3)で表される脂環式ジヒドロキシ化合物としては、トリシクロデカンジオール、ペンタシクロペンタデカンジオール、デカリンジオール、トリシクロテトラデカンジオール、ノルボルナンジオール、アダマンタンジオール等が挙げられる。 The alicyclic dihydroxy compounds represented by the general formula (3) include tricyclodecanediol, pentacyclopentadecanediol, decalindiol, tricyclotetradecanediol, norbornanediol, and adamantanediol.
 これらの脂環式ジヒドロキシ化合物は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 These alicyclic dihydroxy compounds may be used singly or in combination of two or more.
 前記構造単位(b3)としては、入手のしやすさ、取扱いの容易さの観点から、シクロヘキサンジメタノール、トリシクロデカンジメタノール、アダマンタンジオール及びペンタシクロペンタデカンジメタノールから選ばれるいずれか1種以上の化合物由来の構造単位が特に好ましい。 The structural unit (b3) is any one or more selected from cyclohexanedimethanol, tricyclodecanedimethanol, adamantanediol and pentacyclopentadecanedimethanol from the viewpoint of availability and ease of handling. Structural units derived from compounds are particularly preferred.
 前記構造単位(a)と脂環式ジヒドロキシ化合物に由来する構造単位(b2)とのモル比率は、35:65~99:1であるのが好ましく、40:60~90:10であるのがより好ましく、45:55~80:20であるのがさらに好ましい。
 モル比率が前記範囲であれば、ポリカーボネート樹脂が着色しにくく、かつ、分子量の増大が容易となる。
The molar ratio of the structural unit (a) and the structural unit (b2) derived from the alicyclic dihydroxy compound is preferably 35:65 to 99:1, more preferably 40:60 to 90:10. More preferably, it is 45:55 to 80:20.
When the molar ratio is within the above range, the polycarbonate resin is less likely to be colored and the molecular weight can be easily increased.
 (樹脂αのガラス転移温度(Tg))
 樹脂αのガラス転移温度(Tg)は、耐熱性の観点から、90℃以上であるのが好ましく、中でも100℃以上、その中でも110℃以上であるのがより好ましい。他方、成形性の観点から、350℃以下であるのが好ましく、中でも300℃以下、その中でも250℃以下であるのがより好ましい。
 なお、本発明において、樹脂のガラス転移温度は、JIS K7121:2012に準じて、示差走査熱量計(例えば、パーキンエルマージャパン社製「DSC8500」)を用いて、温度範囲0~200℃、加熱速度10℃/分の条件で測定される値をいう。
(Glass transition temperature (Tg) of resin α)
From the viewpoint of heat resistance, the glass transition temperature (Tg) of the resin α is preferably 90° C. or higher, more preferably 100° C. or higher, and more preferably 110° C. or higher. On the other hand, from the viewpoint of moldability, the temperature is preferably 350° C. or lower, more preferably 300° C. or lower, and more preferably 250° C. or lower.
In the present invention, the glass transition temperature of the resin is determined according to JIS K7121:2012 using a differential scanning calorimeter (for example, "DSC8500" manufactured by PerkinElmer Japan Co., Ltd.) with a temperature range of 0 to 200 ° C. and a heating rate of A value measured at 10°C/min.
 (樹脂αの見かけ粘度η240,α
 樹脂αの240℃、せん断速度100(1/s)における見かけ粘度η240,αは、成形性の観点から、100(Pa・s)~10000(Pa・s)であるのが好ましく、中でも200(Pa・s)以上或いは5000(Pa・s)以下であるのがより好ましく、その中でも300(Pa・s)以上或いは1000(Pa・s)以下であるのがさらに好ましい。
(Apparent viscosity of resin α η 240,α )
The apparent viscosity η 240,α of the resin α at 240° C. and a shear rate of 100 (1/s) is preferably 100 (Pa s) to 10000 (Pa s), especially 200 (Pa s) from the viewpoint of moldability. (Pa·s) or more and 5000 (Pa·s) or less is more preferable, and among them, 300 (Pa·s) or more and 1000 (Pa·s) or less is more preferable.
 (樹脂αの含有量)
 第1の層における樹脂αの含有量は、10~90質量%が好ましく、中でも20質量%以上或いは80質量%以下がより好ましく、その中でも30質量%以上或いは70質量%以下がさらに好ましく、その中でも40質量%以上或いは65質量%以下がよりさらに好ましい。
 樹脂αの含有量が上記範囲内であると、第1の層において分散相(II)が適度に形成され、異方光拡散性が良好になる。
(Content of resin α)
The content of resin α in the first layer is preferably 10 to 90% by mass, more preferably 20% by mass or more or 80% by mass or less, and more preferably 30% by mass or more or 70% by mass or less. Among them, 40% by mass or more or 65% by mass or less is more preferable.
When the content of the resin α is within the above range, the dispersed phase (II) is appropriately formed in the first layer, and the anisotropic light diffusibility is improved.
 [樹脂β]
 樹脂βとしては、非晶性ポリエステル樹脂及び非晶性スチレン系樹脂からなる群から選ばれる少なくとも1種の樹脂を挙げることができる。当該樹脂βは、第1の層の分散相(II)における主成分であるのが好ましい。
[Resin β]
Examples of the resin β include at least one resin selected from the group consisting of amorphous polyester resins and amorphous styrene resins. The resin β is preferably the main component in the dispersed phase (II) of the first layer.
 (非晶性ポリエステル樹脂)
 当該非晶性ポリエステル樹脂としては、例えば、ポリエチレンテレフタレートなどのポリアルキレンテレフタレート樹脂又はポリエチレン-2,6-ナフタレートなどのポリアルキレン-2,6-ナフタレート樹脂等を、酸変性及び/又はジオール変性した非晶性共重合ポリエステルが挙げられる。中でも、分散構造の最適化の観点から、脂環式構造を有するジオール成分により変性された非晶性ポリエステル樹脂、すなわち、脂環式構造を有するジオール成分を含む非晶性ポリエステル樹脂が好ましい。
 なお、「非晶性」とは、DSC測定における融解ピークをもたないことをいう。
(amorphous polyester resin)
As the amorphous polyester resin, for example, a polyalkylene terephthalate resin such as polyethylene terephthalate or a polyalkylene-2,6-naphthalate resin such as polyethylene-2,6-naphthalate is acid-modified and/or diol-modified. A crystalline copolyester may be mentioned. Among them, from the viewpoint of optimizing the dispersion structure, an amorphous polyester resin modified with a diol component having an alicyclic structure, that is, an amorphous polyester resin containing a diol component having an alicyclic structure is preferred.
In addition, "amorphous" means having no melting peak in DSC measurement.
 また、中でも、分散構造の最適化の観点から、スピログリコール、イソソルバイド、及び2,2,4,4-テトラメチル-1,3-シクロブタンジオールから選ばれる少なくとも1種の脂環構造を有するジオール成分を含む非晶性ポリエステル樹脂が特に好ましい。
 なお、脂環式構造を有するジオール成分を含有する非晶性ポリエステル樹脂としては、市販の各種原料を好ましく使用することができ、例えば、商品名:「ALTESTER(登録商標)」(三菱ガス化学(株)製、スピログリコールを使用)、商品名:「TRITAN(登録商標)」(EASTMANChemical(株)製、2,2,4,4-テトラメチル-1,3-シクロブタンジオールを使用)、及び商品名:「ECOZEN(登録商標)」(SKChemical(株)製、イソソルバイドを使用)などを挙げることができる。
In addition, among others, from the viewpoint of optimizing the dispersion structure, a diol component having at least one alicyclic structure selected from spiroglycol, isosorbide, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol Amorphous polyester resins containing are particularly preferred.
As the amorphous polyester resin containing a diol component having an alicyclic structure, various commercially available raw materials can be preferably used. manufactured by EASTMAN Chemical Co., Ltd., using spiroglycol), trade name: "TRITAN (registered trademark)" (manufactured by EASTMAN Chemical Co., Ltd., using 2,2,4,4-tetramethyl-1,3-cyclobutanediol), and commercial products Name: "ECOZEN (registered trademark)" (manufactured by SK Chemicals, using isosorbide).
 (非晶性スチレン系樹脂)
 前記非晶性スチレン系樹脂としては、スチレン樹脂、アクリロニトリル・スチレン共重合体(AS樹脂)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂)を挙げることができる。
(amorphous styrene resin)
Examples of the amorphous styrene resin include styrene resin, acrylonitrile/styrene copolymer (AS resin), and acrylonitrile/butadiene/styrene copolymer (ABS resin).
 (樹脂βの平均屈折率)
 樹脂βの平均屈折率は、異方光拡散性及び低反射性の観点から、1.53以上が好ましく、1.54以上がより好ましく、1.55以上がさらに好ましい。一方、低反射性の観点から、1.60以下が好ましく、1.58以下がより好ましい。
(Average refractive index of resin β)
The average refractive index of the resin β is preferably 1.53 or higher, more preferably 1.54 or higher, and even more preferably 1.55 or higher, from the viewpoint of anisotropic light diffusion and low reflectivity. On the other hand, from the viewpoint of low reflectivity, it is preferably 1.60 or less, more preferably 1.58 or less.
 (樹脂βのガラス転移温度(Tg))
 樹脂βのガラス転移温度(Tg)は、耐熱性の観点から、70℃以上であるのが好ましく、中でも80℃以上、その中でも90℃以上であるのがより好ましい。他方、成形性の観点から、350℃以下であるのが好ましく、中でも300℃以下、その中でも250℃以下であるのがより好ましい。
(Glass transition temperature (Tg) of resin β)
From the viewpoint of heat resistance, the glass transition temperature (Tg) of the resin β is preferably 70° C. or higher, more preferably 80° C. or higher, and more preferably 90° C. or higher. On the other hand, from the viewpoint of moldability, the temperature is preferably 350° C. or lower, more preferably 300° C. or lower, and more preferably 250° C. or lower.
 (樹脂βの見かけ粘度η240,β
 樹脂βの240℃、せん断速度100(1/s)における見かけ粘度η240,βは、上記樹脂αの見かけ粘度η240,αよりも大きいことが好ましく、具体的には、成形性の観点から、400(Pa・s)~10000(Pa・s)であるのが好ましく、中でも600(Pa・s)以上或いは9000(Pa・s)以下であるのがより好ましく、その中でも800(Pa・s)以上或いは8000(Pa・s)以下であるのがさらに好ましい。
(Apparent viscosity η 240, β of resin β)
The apparent viscosity η 240,β of the resin β at a shear rate of 100 (1/s) at 240° C. is preferably higher than the apparent viscosity η 240,α of the resin α. , preferably 400 (Pa s) to 10000 (Pa s), more preferably 600 (Pa s) or more or 9000 (Pa s) or less, among which 800 (Pa s) ) or more or 8000 (Pa·s) or less.
 [樹脂γ]
 樹脂γとしては、上記樹脂βで例示した非晶性ポリエステル樹脂、及び上記樹脂αで例示した以外のポリカーボネート系樹脂から選ばれる少なくとも1種を挙げることができる。
[Resin γ]
Examples of the resin γ include at least one selected from the amorphous polyester resins exemplified for the resin β and the polycarbonate resins other than those exemplified for the resin α.
 樹脂γとしてのポリカーボネート樹脂は、主鎖に炭酸エステル結合(-O-(C=O)-O-)を有する高分子化合物であればよく、特に限定されない。例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン系ポリカーボネート(ビスフェノールA系ポリカーボネート)等の4,4’-ジオキシジアリールアルカン系ポリカーボネートが挙げられる。 The polycarbonate resin as the resin γ is not particularly limited as long as it is a polymer compound having a carbonate ester bond (-O-(C=O)-O-) in its main chain. Examples thereof include 4,4'-dioxydiarylalkane-based polycarbonates such as 2,2-bis(4-hydroxyphenyl)propane-based polycarbonates (bisphenol A-based polycarbonates).
 第1の層が第3成分である樹脂γを含む場合、樹脂β、γの好ましい態様として以下の組み合わせが挙げられ、これらの樹脂β、γが分散相(II)を構成するのが好ましい。
 (1)樹脂β、γがいずれも非晶性ポリエステル樹脂である。すなわち、第1の層が、2種以上の非晶性ポリエステル樹脂を含む。
 (2)樹脂βが非晶性ポリエステル樹脂であり、樹脂γが上記樹脂αで例示した以外のポリカーボネート樹脂である。すなわち、第1の層が、非晶性ポリエステル樹脂と、ポリカーボネート樹脂(但し、上記構造単位(a)を含むポリカーボネート樹脂を除く。)とを含む。
When the first layer contains the resin γ as the third component, preferred embodiments of the resins β and γ include the following combinations, and these resins β and γ preferably constitute the dispersed phase (II).
(1) Resins β and γ are both amorphous polyester resins. That is, the first layer contains two or more amorphous polyester resins.
(2) The resin β is an amorphous polyester resin, and the resin γ is a polycarbonate resin other than those exemplified for the resin α. That is, the first layer contains an amorphous polyester resin and a polycarbonate resin (excluding the polycarbonate resin containing the structural unit (a)).
 上記(1)の場合、樹脂β(分散相(II)中の非晶性ポリエステル樹脂のうち含有量が多い方の樹脂)と樹脂γ(分散相(II)中の非晶性ポリエステル樹脂のうち含有量が少ない方の樹脂)の含有質量比は50:50~95:5が好ましく、50:50~90:10がより好ましく、50:50~85:15がさらに好ましく、50:50~80:20がよりさらに好ましい。 In the case of (1) above, resin β (the resin with the higher content among the amorphous polyester resins in the dispersed phase (II)) and resin γ (among the amorphous polyester resins in the dispersed phase (II) The content mass ratio of the resin having a smaller content is preferably 50:50 to 95:5, more preferably 50:50 to 90:10, further preferably 50:50 to 85:15, and 50:50 to 80 :20 is even more preferred.
 上記(2)の場合、樹脂βと樹脂γの含有質量比は50:50~95:5が好ましく、50:50~90:10がより好ましく、50:50~85:15がさらに好ましく、50:50~80:20がよりさらに好ましい。 In the case of (2) above, the content mass ratio of the resin β and the resin γ is preferably 50:50 to 95:5, more preferably 50:50 to 90:10, further preferably 50:50 to 85:15. :50 to 80:20 is even more preferable.
 (樹脂γの平均屈折率)
 樹脂γの平均屈折率は、樹脂βよりも高いのが好ましく、具体的には、1.55以上が好ましく、1.56以上がより好ましく、1.57以上がさらに好ましく、1.58以上がよりさらに好ましい。一方、低反射性の観点から、1.64以下が好ましく、1.62以下がより好ましく、1.60以下がさらに好ましい。
(Average refractive index of resin γ)
The average refractive index of the resin γ is preferably higher than that of the resin β. Even more preferable. On the other hand, from the viewpoint of low reflectivity, it is preferably 1.64 or less, more preferably 1.62 or less, and even more preferably 1.60 or less.
 (樹脂γのガラス転移温度(Tg))
 樹脂γのガラス転移温度(Tg)は、耐熱性の観点から、70℃以上であるのが好ましく、中でも80℃以上、その中でも90℃以上であるのがより好ましい。他方、成形性の観点から、350℃以下であるのが好ましく、中でも300℃以下、その中でも250℃以下であるのがより好ましい。
(Glass transition temperature (Tg) of resin γ)
From the viewpoint of heat resistance, the glass transition temperature (Tg) of resin γ is preferably 70° C. or higher, more preferably 80° C. or higher, and more preferably 90° C. or higher. On the other hand, from the viewpoint of moldability, the temperature is preferably 350° C. or lower, more preferably 300° C. or lower, and more preferably 250° C. or lower.
 (樹脂γの見かけ粘度η240,γ
 樹脂γの240℃、せん断速度100(1/s)における見かけ粘度η240,γは、上記樹脂βの見かけ粘度η240,βよりも大きいことが好ましく、具体的には、成形性の観点から、400(Pa・s)~10000(Pa・s)であるのが好ましく、中でも600(Pa・s)以上或いは9000(Pa・s)以下であるのがより好ましく、その中でも800(Pa・s)以上或いは8000(Pa・s)以下であるのがさらに好ましい。
(Apparent viscosity η 240, γ of resin γ)
The apparent viscosity η 240,γ of the resin γ at a shear rate of 100 (1/s) at 240° C. is preferably higher than the apparent viscosity η 240,β of the resin β. , preferably 400 (Pa s) to 10000 (Pa s), more preferably 600 (Pa s) or more or 9000 (Pa s) or less, among which 800 (Pa s) ) or more or 8000 (Pa·s) or less.
 [分散相体積及び分散径]
 第1の層の分散相体積は、厚み方向の中央部において、20μm以上であるのが好ましく、30μm以上であるのがより好ましく、40μm以上であるのがさらに好ましい。その中でも、50μm以上であるのが好ましく、60μm以上であるのがより好ましく、70μm以上であるのがさらに好ましい。また、120μm以下であるのが好ましく、110μm以下であるのがより好ましく、100μm以下であるのがさらに好ましく、90μm以下であるのがよりさらに好ましい。
 第1の層の分散相体積が上記下限値以上であると、TD方向及び厚み方向の分散径が適度に大きいので、分散相1個あたりの反射を低減できる。また、MD方向の分散径も適度に大きいので、異方光拡散性も良好となる。一方、分散相体積が上記上限値以下であると、TD方向及び厚み方向の分散径が大きくなりすぎないので、本光拡散フィルム面の法線N方向から光拡散方向に60°傾いた方向付近に強い拡散性を持つ理想的な島成分を形成することができ、異方光拡散性を高めるために最適な分散構造が得られる。
[Dispersed phase volume and dispersion diameter]
The dispersed phase volume of the first layer is preferably 20 μm 3 or more, more preferably 30 μm 3 or more, and even more preferably 40 μm 3 or more at the central portion in the thickness direction. Among them, it is preferably 50 μm 3 or more, more preferably 60 μm 3 or more, and even more preferably 70 μm 3 or more. Also, it is preferably 120 μm 3 or less, more preferably 110 μm 3 or less, even more preferably 100 μm 3 or less, and even more preferably 90 μm 3 or less.
When the volume of the dispersed phase in the first layer is equal to or greater than the above lower limit, the dispersed diameters in the TD direction and the thickness direction are appropriately large, so that the reflection per dispersed phase can be reduced. In addition, since the dispersion diameter in the MD direction is moderately large, the anisotropic light diffusibility is also improved. On the other hand, when the dispersed phase volume is equal to or less than the above upper limit, the dispersion diameter in the TD direction and the thickness direction does not become too large, so the vicinity of the direction inclined 60° from the normal N direction of the light diffusion film surface to the light diffusion direction. An ideal island component with strong diffusivity can be formed, and an optimum dispersion structure can be obtained to enhance the anisotropic light diffusibility.
 また、同様の観点から、第1の層の分散相体積は、厚み方向の表層部及び/又は裏層部において、10μm以上であるのが好ましく、15μm以上であるのがより好ましく、20μm以上であるのがさらに好ましい。その中でも、25μm以上であるのが好ましく、30μm以上であるのがより好ましく、35μm以上であるのがさらに好ましい。また、120μm以下であるのが好ましく、110μm以下であるのがより好ましく、100μm以下であるのがさらに好ましく、90μm以下であるのがよりさらに好ましい。 From the same point of view, the dispersed phase volume of the first layer is preferably 10 μm 3 or more, more preferably 15 μm 3 or more, and 20 μm in the surface layer and/or back layer in the thickness direction. More preferably, it is 3 or more. Among them, it is preferably 25 μm 3 or more, more preferably 30 μm 3 or more, and even more preferably 35 μm 3 or more. Also, it is preferably 120 μm 3 or less, more preferably 110 μm 3 or less, even more preferably 100 μm 3 or less, and even more preferably 90 μm 3 or less.
 なお、上記分散相体積は、後述する方法によりMD方向の平均分散径、TD方向の平均分散径及び厚み方向の平均分散径を算出し、分散相(II)を楕円形と仮定して算出した値である。 The dispersed phase volume was calculated by calculating the average dispersed diameter in the MD direction, the average dispersed diameter in the TD direction, and the average dispersed diameter in the thickness direction by the method described later, and assuming that the dispersed phase (II) was elliptical. value.
 本発明における「厚み方向の中央部」とは、本光拡散フィルムの厚さ方向における中心から本光拡散フィルムの厚さの±15%にあたる領域をいい、「厚み方向の表層部及び/又は裏層部」とは、本光拡散フィルムの厚さ方向において、表面又は裏面から本光拡散フィルムの厚さの35%にあたる領域をいう。 In the present invention, the “central portion in the thickness direction” refers to an area corresponding to ±15% of the thickness of the light diffusion film from the center in the thickness direction of the light diffusion film, and the “surface layer and / or back in the thickness direction "Layer portion" refers to a region corresponding to 35% of the thickness of the light diffusion film from the front surface or back surface in the thickness direction of the light diffusion film.
 第1の層のTD断面における分散相面積は、厚み方向の中央部において、2μm以上であるのが好ましく、2.5μm以上であるのがより好ましく、3μm以上であるのがさらに好ましい。その中でも、3.5μm以上であるのが好ましく、4μm以上であるのがより好ましい。また、100μm以下であるのが好ましく、80μm以下であるのがより好ましく、50μm以下であるのがさらに好ましく、30μm以下であるのがよりさらに好ましい。
 第1の層のTD断面における分散相面積が上記下限値以上であると、TD方向及び厚み方向の分散径が適度に大きいので、分散相1個あたりの反射を低減できる。一方、TD断面における分散相面積が上記上限値以下であると、TD方向及び厚み方向の分散径が大きくなりすぎないので、本光拡散フィルム面の法線N方向から光拡散方向に60°傾いた方向付近に強い拡散性を持つ理想的な島成分を形成することができ、異方光拡散性を高めるために最適な分散構造が得られる。
The dispersed phase area in the TD cross section of the first layer is preferably 2 μm 2 or more, more preferably 2.5 μm 2 or more, and even more preferably 3 μm 2 or more at the central portion in the thickness direction. . Among them, it is preferably 3.5 μm 2 or more, more preferably 4 μm 2 or more. Also, it is preferably 100 μm 2 or less, more preferably 80 μm 2 or less, even more preferably 50 μm 2 or less, and even more preferably 30 μm 2 or less.
When the dispersed phase area in the TD cross section of the first layer is at least the above lower limit, the dispersion diameters in the TD direction and the thickness direction are appropriately large, so that the reflection per dispersed phase can be reduced. On the other hand, when the dispersed phase area in the TD cross section is equal to or less than the above upper limit, the dispersion diameter in the TD direction and the thickness direction does not become too large, so the light diffusion film is tilted at 60° from the normal N direction of the surface of the light diffusion film to the light diffusion direction. An ideal island component with strong diffusivity can be formed in the vicinity of the polar direction, and an optimum dispersion structure can be obtained to enhance the anisotropic light diffusibility.
 また、同様の観点から、第1の層のTD断面における分散相面積は、厚み方向の表層部及び/又は裏層部において、1μm以上であるのが好ましく、1.5μm以上であるのがより好ましく、2μm以上であるのがさらに好ましい。その中でも、2.5μm以上であるのが好ましく、3μm以上であるのがより好ましく、3.5μm以上であるのがさらに好ましく、4μm以上であるのがよりさらに好ましい。また、100μm以下であるのが好ましく、80μm以下であるのがより好ましく、50μm以下であるのがさらに好ましく、30μm以下であるのがよりさらに好ましい。 From the same point of view, the dispersed phase area in the TD cross section of the first layer is preferably 1 μm 2 or more, more preferably 1.5 μm 2 or more in the surface layer portion and/or the back layer portion in the thickness direction. is more preferable, and 2 μm 2 or more is even more preferable. Among them, it is preferably 2.5 μm 2 or more, more preferably 3 μm 2 or more, still more preferably 3.5 μm 2 or more, and even more preferably 4 μm 2 or more. Also, it is preferably 100 μm 2 or less, more preferably 80 μm 2 or less, even more preferably 50 μm 2 or less, and even more preferably 30 μm 2 or less.
 なお、上記分散相面積は、後述する方法により本光拡散フィルムのTD断面におけるTD方向の平均分散径及び厚み方向の平均分散径を算出し、分散相(II)を楕円形と仮定して算出した値である。
 本発明において「TD断面」とは、本光拡散フィルムをMD方向の中央でTD方向に切断して、図3に示すように、フィルムのTD方向及び厚み方向が辺となるような断面をいう。
 また、本発明において「MD断面」とは、本光拡散フィルムをTD方向の中央でMD方向に切断して、図2に示すように、フィルムのMD方向及び厚み方向が辺となるような断面をいう。
The dispersed phase area is calculated by calculating the average dispersion diameter in the TD direction and the average dispersion diameter in the thickness direction in the TD cross section of the present light diffusion film by the method described later, and assuming that the dispersed phase (II) is elliptical. is the value
In the present invention, the term “TD cross section” refers to a cross section obtained by cutting the present light diffusion film in the TD direction at the center of the MD direction and having sides in the TD direction and the thickness direction of the film as shown in FIG. .
Further, in the present invention, the term "MD cross section" refers to a cross section in which the present light diffusion film is cut in the MD direction at the center of the TD direction, and as shown in FIG. Say.
 本光拡散フィルムは、第1の層における海島構造の島部分がMD方向に延ばされた形状を呈し、海部分の中に分散してなる分散構造を有するのが好ましい。かかる観点から、分散相(II)のTD方向の平均分散径に対する、MD方向の平均分散径の比率(MD平均分散径/TD平均分散径)は、厚み方向の中央部並びに厚み方向の表層部及び/又は裏層部において1.1以上120以下であるのが好ましく、中でも2以上或いは60以下であるのがより好ましく、その中でも3以上或いは30以下であるのがさらに好ましく、その中でも5以上或いは25以下であるのがよりさらに好ましい。 The light diffusion film preferably has a dispersed structure in which the island portions of the sea-island structure in the first layer extend in the MD direction and are dispersed in the sea portions. From this point of view, the ratio of the average dispersion diameter in the MD direction to the average dispersion diameter in the TD direction of the dispersed phase (II) (MD average dispersion diameter / TD average dispersion diameter) is the central part in the thickness direction and the surface part in the thickness direction and/or in the back layer, it is preferably 1.1 or more and 120 or less, more preferably 2 or more or 60 or less, more preferably 3 or more or 30 or less, especially 5 or more Alternatively, it is more preferably 25 or less.
 第1の層において、前記理想的な島成分を形成し、最適な分散構造とする観点から、フィルムのMD方向の分散成分(分散相(II))の大きさ、すなわちMD方向の平均分散径は、厚み方向の中央部において、3μm以上であるのが好ましく、5μm以上であるのがより好ましく、10μm以上であるのがさらに好ましく、15μm以上であるのがよりさらに好ましく、20μm以上であるのがとりわけ好ましい。
 他方、モルフォロジー制御の観点から、60μm以下であるのが好ましい。
In the first layer, from the viewpoint of forming the ideal island component and obtaining an optimum dispersed structure, the size of the dispersed component (dispersed phase (II)) in the MD direction of the film, that is, the average dispersion diameter in the MD direction is preferably 3 μm or more, more preferably 5 μm or more, still more preferably 10 μm or more, even more preferably 15 μm or more, and 20 μm or more at the central portion in the thickness direction. is particularly preferred.
On the other hand, from the viewpoint of morphology control, it is preferably 60 μm or less.
 また、MD方向の平均分散径は、厚み方向の表層部及び/又は裏層部において、1.5μm以上であるのが好ましく、2.5μm以上であるのがより好ましく、5μm以上であるのがさらに好ましく、10μm以上であるのがよりさらに好ましく、15μm以上であるのがとりわけ好ましい。
 他方、モルフォロジー制御の観点から、60μm以下であるのが好ましい。
In addition, the average dispersion diameter in the MD direction is preferably 1.5 μm or more, more preferably 2.5 μm or more, and is preferably 5 μm or more in the surface layer portion and/or the back layer portion in the thickness direction. More preferably, it is 10 μm or more, even more preferably 15 μm or more.
On the other hand, from the viewpoint of morphology control, it is preferably 60 μm or less.
 さらに、同様の観点から、フィルムのMD方向と直交する方向(TD方向)の平均分散径は、厚み方向の中央部において、0.5~10μmであるのが好ましく、中でも0.8μm以上或いは7μm以下であるのがより好ましく、その中でも1μm以上或いは5μm以下であるのがさらに好ましい。
 また、TD方向の平均分散径は、厚み方向の表層部及び/又は裏層部において、0.4~10μmであるのが好ましく、中でも0.5μm以上或いは7μm以下であるのがより好ましく、その中でも0.6μm以上或いは5μm以下であるのがより好ましい。
Furthermore, from the same point of view, the average dispersion diameter in the direction perpendicular to the MD direction (TD direction) of the film is preferably 0.5 to 10 μm at the central portion in the thickness direction, especially 0.8 μm or more or 7 μm. It is more preferably 1 μm or more or 5 μm or less.
In addition, the average dispersion diameter in the TD direction is preferably 0.4 to 10 μm, more preferably 0.5 μm or more or 7 μm or less in the surface layer and / or back layer in the thickness direction. Among them, it is more preferably 0.6 μm or more or 5 μm or less.
 さらに、同様の観点から、フィルムの厚み方向の平均分散径は、厚み方向の中央部において、0.1~10μmであるのが好ましく、中でも0.5μm以上或いは7μm以下であるのがより好ましく、その中でも1μm以上或いは5μm以下であるのがさらに好ましい。
 また、フィルム厚み方向の平均分散径は、厚み方向の表層部及び/又は裏層部において、0.1~10μmであることが好ましく、中でも0.2μm以上或いは7μm以下であることがより好ましく、その中でも0.3μm以上或いは5μm以下であることがさらに好ましい。
Furthermore, from the same viewpoint, the average dispersion diameter in the thickness direction of the film is preferably 0.1 to 10 μm, more preferably 0.5 μm or more or 7 μm or less, at the central portion in the thickness direction. Among them, the thickness is more preferably 1 μm or more or 5 μm or less.
In addition, the average dispersion diameter in the thickness direction of the film is preferably 0.1 to 10 μm, more preferably 0.2 μm or more or 7 μm or less, in the surface layer portion and/or the back layer portion in the thickness direction. Among them, the thickness is more preferably 0.3 μm or more or 5 μm or less.
 なお、上記平均分散径はいずれも、該当部分の断面を任意に透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)で撮影し、撮影範囲における分散径をフリーソフトウェア「ImageJ」を用いて解析し、確認可能な範囲の分散径すべての平均として算出した値である。なお、撮影範囲は分散相(II)の大きさによって適宜調整されてよいが、分散相(II)が10個以上確認できる範囲とすることが好ましい。 Any of the above average dispersion diameters can be obtained by photographing the cross section of the corresponding portion with a transmission electron microscope (TEM) or scanning electron microscope (SEM), and measuring the dispersion diameter in the photographing range using the free software "ImageJ". It is a value calculated as an average of all dispersion diameters within a range that can be analyzed and confirmed. The photographing range may be appropriately adjusted depending on the size of the dispersed phase (II), but is preferably a range in which 10 or more dispersed phases (II) can be observed.
 第1の層における分散相(II)の大きさを上記のように調整するためには、後述するように、製造方法において、例えば吐出量Q(kg/h)とスクリュー回転数N(rpm)の比;Q/N(kg/h/rpm)を調整する手段のほか、第1の層を形成する樹脂α、βの粘度差を調整することも有効である。但し、これらの方法に限定するものではない。 In order to adjust the size of the dispersed phase (II) in the first layer as described above, in the manufacturing method, for example, the discharge amount Q (kg / h) and the screw rotation speed N (rpm) In addition to means for adjusting the ratio Q/N (kg/h/rpm), it is also effective to adjust the viscosity difference between the resins α and β forming the first layer. However, it is not limited to these methods.
 かかる観点から、第1の層を形成する樹脂α、βの、240℃、せん断速度100(1/s)における見かけ粘度比η240,β/240,αは、1.5~15であるのが好ましく、中でも1.8以上或いは10以下、その中でも2以上或いは5以下であるのがさらに好ましい。 From this point of view, the apparent viscosity ratio η 240,β / 240, α of the resins α and β forming the first layer at 240°C and a shear rate of 100 (1/s) is 1.5 to 15. is preferably 1.8 or more or 10 or less, more preferably 2 or more or 5 or less.
 <第2の層>
 本光拡散フィルムは、第1の層の少なくとも一方の面に第2の層を有していてもよい。
 第1の層が表面に凹凸構造を有する場合、第2の層を備えることで、他の層への傷つき等を抑えることができる。
 また、第1の層が連続相(I)及び分散相(II)による海島構造を有する場合、一般的に、フィルム製膜時は表裏層にせん断応力がかかりやすいため、中央部に比べて、表層部及び/又は裏層部の分散径が小さくなりやすい。そこで、本光拡散フィルムが当該第2の層を備えることで、フィルム作製時に第1の層の表裏にかかるせん断応力を低減できるので、第1の層の表裏面側の分散相(II)の分散径を大きくすることができ、優れた異方光拡散性及び低反射性を兼備することができる。
<Second layer>
The light diffusion film may have a second layer on at least one surface of the first layer.
When the first layer has an uneven structure on the surface, the provision of the second layer can suppress damage to other layers.
In addition, when the first layer has a sea-island structure consisting of the continuous phase (I) and the dispersed phase (II), shear stress is generally likely to be applied to the front and back layers during film formation. The dispersion diameter of the surface layer portion and/or the back layer portion tends to be small. Therefore, since the present light diffusion film includes the second layer, the shear stress applied to the front and back sides of the first layer during film production can be reduced, so that the dispersed phase (II) on the front and back sides of the first layer The dispersion diameter can be increased, and both excellent anisotropic light diffusibility and low reflectivity can be achieved.
 第2の層は、上記第1の層で例示した熱可塑性樹脂から選ばれる少なくとも1種からなる連続相(Ib)を有することが好ましい。
 なお、「連続相(Ib)」とは、巨視的に見て、個々のドメインが孤立せずに繋がっている相のことを意味するが、一部繋がっていない部分があってもかまわない。
The second layer preferably has a continuous phase (Ib) composed of at least one selected from the thermoplastic resins exemplified for the first layer.
The term "continuous phase (Ib)" means a phase in which individual domains are connected without isolation from a macroscopic point of view, but it does not matter if there is a part that is not connected.
 また、前記第2の層の連続相(Ib)は、平均屈折率1.45~1.53の樹脂から形成するのが好ましく、中でも1.46以上或いは1.52以下、その中でも1.47以上或いは1.51以下の樹脂から形成するのがさらに好ましい。
 連続相(Ib)を上記樹脂で形成することで、第2の層に、アクリル系粘着剤からなる粘着剤層を介して他の部材が積層された場合にも、前記第2の層と当該粘着剤層との界面での反射を抑制できる。
Further, the continuous phase (Ib) of the second layer is preferably formed from a resin having an average refractive index of 1.45 to 1.53. More preferably, it is formed from a resin having a viscosity of 1.51 or more.
By forming the continuous phase (Ib) with the above resin, even when another member is laminated on the second layer via an adhesive layer made of an acrylic adhesive, the second layer and the corresponding Reflection at the interface with the adhesive layer can be suppressed.
 前記第2の層が含有する連続相(Ib)は、本光拡散フィルムの耐熱性を高める観点から、ガラス転移温度が90℃以上の樹脂から形成するのが好ましい。
 かかる観点から、第2の層が含有する連続相(Ib)を構成する樹脂のガラス転移温度は90℃以上であるのが好ましく、100℃以上であるのがさらに好ましく、110℃以上であるのがさらに好ましく、120℃以上であるのがさらに好ましい。他方、成形性の観点から、350℃以下であるのが好ましく、300℃以下であるのがさらに好ましく、250℃以下であるのがさらに好ましい。
The continuous phase (Ib) contained in the second layer is preferably formed from a resin having a glass transition temperature of 90° C. or higher from the viewpoint of enhancing the heat resistance of the present light diffusion film.
From this point of view, the glass transition temperature of the resin constituting the continuous phase (Ib) contained in the second layer is preferably 90° C. or higher, more preferably 100° C. or higher, and more preferably 110° C. or higher. is more preferable, and 120° C. or higher is even more preferable. On the other hand, from the viewpoint of moldability, the temperature is preferably 350° C. or lower, more preferably 300° C. or lower, and even more preferably 250° C. or lower.
 前記第2の層は、本光拡散フィルムの表面硬度を高める観点から、表面硬度がHB以上であるのが好ましく、中でもF以上であるのがさらに好ましい。
 第2の層の表面硬度を高めるためには、第2の層を構成する主成分樹脂として、硬度の高い樹脂を採用するのが好ましい。但し、かかる方法に限定するものではない。
From the viewpoint of increasing the surface hardness of the light diffusion film, the second layer preferably has a surface hardness of HB or higher, more preferably F or higher.
In order to increase the surface hardness of the second layer, it is preferable to employ a resin having high hardness as the main component resin constituting the second layer. However, it is not limited to this method.
 第2の層の連続相(Ib)は、平均屈折率を考慮すると、上記ジヒドロキシ化合物に由来する構造単位(a)を含むポリカーボネート樹脂やポリメタクリル酸メチルから形成するのが好ましい。
 中でも、透明性、延伸性、耐熱性、低反射性、異方光拡散性、高硬度実現性などの観点から、上記ジヒドロキシ化合物に由来する構造単位(a)を含むポリカーボネート樹脂から形成するのが特に好ましい。この中でも特にジヒドロキシ化合物に由来する構造単位(a)を50mol%以上含む樹脂が好ましく、当該構造単位(a)を55mоl%以上含む樹脂がより好ましく、当該構造単位(a)を60mоl%以上含む樹脂がさらに好ましい。
Considering the average refractive index, the continuous phase (Ib) of the second layer is preferably formed from a polycarbonate resin or polymethyl methacrylate containing the structural unit (a) derived from the dihydroxy compound.
Among them, from the viewpoint of transparency, stretchability, heat resistance, low reflectivity, anisotropic light diffusibility, realization of high hardness, etc., it is preferable to form a polycarbonate resin containing the structural unit (a) derived from the above dihydroxy compound. Especially preferred. Among these, a resin containing 50 mol% or more of the structural unit (a) derived from a dihydroxy compound is particularly preferable, and a resin containing 55 mol% or more of the structural unit (a) is more preferable, and a resin containing 60 mol% or more of the structural unit (a). is more preferred.
 第2の層の連続相(Ib)は、上記第1の層の連続相(I)を形成する熱可塑性樹脂と同種の熱可塑性樹脂を含むことがより好ましい。第1の層が連続相(I)及び分散相(II)による海島構造を有する場合、第1の層の連続相(I)の構成樹脂と、第2の層の連続相(Ib)の構成樹脂とが同種であると、第1の層と第2の層との界面で反射を起こしにくくなるので、優れた異方光拡散性及び低反射性を兼備することができる。
 なお、「第1の層の連続相(I)を形成する熱可塑性樹脂と同種の熱可塑性樹脂」とは、同一又は同系の単量体からなる重合体をベースレジンとするという意味である。
 この際、熱可塑性樹脂成分の主たる繰り返し単位を構成する単量体が同一又は同種であればよく、重合度が異なる場合を含む。
 また、共重合性単量体を有する場合には、単量体比率が異なる場合の他、その共重合性単量体が異なる場合も含み、さらに、前記と同じく、重合度が異なる場合も含む。
More preferably, the continuous phase (Ib) of the second layer contains the same thermoplastic resin as the thermoplastic resin forming the continuous phase (I) of the first layer. When the first layer has a sea-island structure with the continuous phase (I) and the dispersed phase (II), the composition of the resin constituting the continuous phase (I) of the first layer and the continuous phase (Ib) of the second layer When the resin is of the same type, reflection is less likely to occur at the interface between the first layer and the second layer, so that both excellent anisotropic light diffusion and low reflectivity can be achieved.
The term "thermoplastic resin of the same type as the thermoplastic resin forming the continuous phase (I) of the first layer" means that a polymer composed of the same or similar monomers is used as the base resin.
In this case, the monomers constituting the main repeating units of the thermoplastic resin component may be the same or of the same type, including the case where the degrees of polymerization are different.
In addition, in the case of having a copolymerizable monomer, in addition to the case where the monomer ratio is different, it includes the case where the copolymerizable monomer is different, and also includes the case where the degree of polymerization is different as described above. .
 第2の層は、反射率の観点から、分散相、特に連続相(Ib)と屈折率の異なる分散相を実質的に有しないことが好ましい。
 当該「連続相(Ib)と屈折率の異なる分散相を実質的に有しない」とは、第2の層のTD方向の断面積(連続相及び分散相を含む全面積)に対して、連続相(Ib)と屈折率の異なる分散相の面積割合が、20面積%以下であることを意味し、より好ましくは、10面積%以下であることを意味し、最も好ましくは5面積%以下であることを意味する。
 連続相(Ib)と屈折率が同じである分散相は、連続相(Ib)と分散相の界面で光が直進するため、反射率が高くなるおそれがないことから、特に制限なく設けることができる。
From the viewpoint of reflectance, the second layer preferably does not substantially have a dispersed phase, particularly a dispersed phase having a refractive index different from that of the continuous phase (Ib).
The phrase “substantially does not have a dispersed phase having a refractive index different from that of the continuous phase (Ib)” means that the cross-sectional area of the second layer in the TD direction (total area including the continuous phase and the dispersed phase) is It means that the area ratio of the phase (Ib) and the dispersed phase having a different refractive index is 20 area% or less, more preferably 10 area% or less, and most preferably 5 area% or less. It means that there is
The dispersed phase having the same refractive index as that of the continuous phase (Ib) travels straight at the interface between the continuous phase (Ib) and the dispersed phase, so there is no risk that the reflectance will increase. can.
 前記第2の層は、第1の層の少なくとも一方の面側、例えば第1の層の上面側に積層され、とりわけ、前記第1の層と第2の層が他の層を介さずに隣接して積層されることが特に好ましい。
 なお、本明細書において、「上面側」「上側」とは、キャスト面に接触していた側の表面を示し、「下面側」「下側」とは、キャスト面に接触していた側とは逆側の表面を示す。
 なお、本光拡散フィルムは、ディスプレイ表面側(視認側)に、前記上面側(上側)又は前記下面側(下側)のいずれかが配置されるようにして使用することができ、また、ディスプレイ表面側(視認側)と反対面側に、前記上面側(上側)又は前記下面側(下側)のいずれかが配置されるようにして使用することができる。
 言い換えると、本光拡散フィルムにおいては、上面側(上側)又は下面側(下側)は区別することなく使用することができる。
The second layer is laminated on at least one side of the first layer, e.g. Adjacent lamination is particularly preferred.
In this specification, the terms “upper side” and “upper side” refer to the surface that was in contact with the cast surface, and the terms “lower side” and “lower side” refer to the side that was in contact with the cast surface. indicates the opposite surface.
In addition, the present light diffusion film can be used so that either the upper surface side (upper side) or the lower surface side (lower side) is arranged on the display surface side (viewing side), and the display It can be used so that either the upper surface side (upper side) or the lower surface side (lower side) is arranged on the surface side opposite to the surface side (viewing side).
In other words, the present light diffusion film can be used without distinguishing between the upper surface side (upper side) and the lower surface side (lower side).
 本光拡散フィルムは、通常、粘着剤層と積層して使用されるが、前記第2の層を備えると、屈折率の高い分散相を有する第1の層と粘着剤層との界面をなくすことができ、反射率を低減することができる。 The present light diffusion film is usually used by laminating with an adhesive layer, but when the second layer is provided, the interface between the adhesive layer and the first layer having a dispersed phase with a high refractive index is eliminated. and the reflectance can be reduced.
 <好適な態様>
 本光拡散フィルムは、以下のいずれかの態様がより好適である。
 ・入射光を光の進行方向に散乱可能な第1の層を少なくとも有し、60°輝度比と正面輝度比との比率(60°輝度比/正面輝度比)が0.30以上0.60以下である。
 ・入射光を光の進行方向に散乱可能な第1の層を少なくとも有し、60°輝度比と正面輝度比との比率(60°輝度比/正面輝度比)が0.30以上0.50以下である。
 ・連続相(I)及び分散相(II)による海島構造を有する第1の層を備え、JIS K7136に準拠して測定されるヘーズが40%以上であり、MD方向及びTD方向の引張強度比(σMD/σTD)が0.75~1.25である。
 ・連続相(I)及び分散相(II)による海島構造を有する第1の層を備え、JIS K7136に準拠して測定されるヘーズが40%以上であり、MD方向の引張強度σMD及びTD方向引張強度σTDがいずれも50MPa以上である。
 ・連続相(I)及び分散相(II)による海島構造を有する第1の層を備え、前記第1の層の厚み方向の中央部における分散相体積が20μm以上120μm以下であり、分散相(II)のTD方向の平均分散径に対する、MD方向の平均分散径の比率(MD平均分散径/TD平均分散径)が厚み方向の中央部において3以上である。
 ・連続相(I)及び分散相(II)による海島構造を有する第1の層を備え、前記第1の層の厚み方向の中央部における分散相体積が20μm以上120μm以下であり、分散相(II)の厚み方向の中央部におけるTD断面での分散径の面積が2μm以上である。
 ・連続相(I)及び分散相(II)による海島構造を有し、前記連続相(I)及び分散相(II)の少なくとも一方が、平均屈折率1.53以下の熱可塑性樹脂を含む。
 ・少なくとも第1の層及び第2の層を備える積層構成を有し、前記第1の層は、連続相(I)及び分散相(II)による海島構造を有し、前記第2の層は、前記第1の層の少なくとも一方の面側に積層され、かつ、前記第1の層の連続相(I)を形成する熱可塑性樹脂と同種の熱可塑性樹脂を含む連続相(Ib)を有する。
 ・少なくとも第1の層及び第2の層を備える積層構成を有し、前記第1の層は、連続相(I)及び分散相(II)による海島構造を有し、前記第2の層は、前記第1の層の少なくとも一方の面側に積層され、ガラス転移温度が90℃以上である樹脂を含む連続相(Ib)を有し、かつ、表面硬度がHB以上である。
<Preferred embodiment>
Any one of the following aspects is more preferable for the present light diffusion film.
- Having at least a first layer capable of scattering incident light in the direction of travel of the light, and having a ratio of the 60° brightness ratio to the front brightness ratio (60° brightness ratio/front brightness ratio) of 0.30 or more and 0.60 It is below.
- Having at least a first layer capable of scattering incident light in the direction of travel of the light, and having a ratio of the 60° brightness ratio to the front brightness ratio (60° brightness ratio/front brightness ratio) of 0.30 or more and 0.50 It is below.
・Equipped with a first layer having a sea-island structure with a continuous phase (I) and a dispersed phase (II), a haze measured in accordance with JIS K7136 of 40% or more, and a tensile strength ratio in the MD direction and the TD direction (σ MDTD ) is 0.75 to 1.25.
・Equipped with a first layer having a sea-island structure with a continuous phase (I) and a dispersed phase (II), a haze measured in accordance with JIS K7136 of 40% or more, and tensile strength in the MD direction σ MD and TD All of them have a directional tensile strength σ TD of 50 MPa or more.
- comprising a first layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II), wherein the dispersed phase volume at the central portion in the thickness direction of the first layer is 20 µm 3 or more and 120 µm 3 or less; The ratio of the average dispersion diameter in the MD to the average dispersion diameter in the TD of the phase (II) (MD average dispersion diameter/TD average dispersion diameter) is 3 or more at the central portion in the thickness direction.
- comprising a first layer having a sea-island structure composed of a continuous phase (I) and a dispersed phase (II), wherein the dispersed phase volume at the central portion in the thickness direction of the first layer is 20 µm 3 or more and 120 µm 3 or less; The area of the dispersed diameter in the TD cross section at the central portion in the thickness direction of the phase (II) is 2 μm 2 or more.
- It has a sea-island structure with a continuous phase (I) and a dispersed phase (II), and at least one of the continuous phase (I) and the dispersed phase (II) contains a thermoplastic resin having an average refractive index of 1.53 or less.
- having a laminated structure comprising at least a first layer and a second layer, the first layer having a sea-island structure with a continuous phase (I) and a dispersed phase (II), and the second layer , a continuous phase (Ib) laminated on at least one surface side of the first layer and containing the same thermoplastic resin as the thermoplastic resin forming the continuous phase (I) of the first layer .
- having a laminated structure comprising at least a first layer and a second layer, the first layer having a sea-island structure with a continuous phase (I) and a dispersed phase (II), and the second layer , which is laminated on at least one side of the first layer, has a continuous phase (Ib) containing a resin having a glass transition temperature of 90° C. or higher, and has a surface hardness of HB or higher.
 <本光拡散フィルムの構成>
 本光拡散フィルムは、第1の層のみからなる単層構造であってもよく、第1の層及び第2の層を含む多層構造であってもよい。多層構造である場合、前記第1の層及び第2の層以外に他の層を有していてもよい。
 多層構造の例として、例えば、第2の層/第1の層の2種2層の他、第2の層/第1の層/第2の層、第1の層/第2の層/第1の層の2種3層;ハードコート層/第2の層/第1の層、第2の層/第1の層/ハードコート層、粘着剤層/第2の層/第1の層、第2の層/第1の層/粘着層の3種3層;ハードコート層/第2の層/第1の層/ハードコート層、粘着剤層/第2の層/第1の層/粘着剤層、ハードコート層/第2の層/第1の層/第2の層、粘着剤層/第2の層/第1の層/第2の層、ハードコート層/第1の層/第2の層/第1の層、粘着剤層/第1の層/第2の層/第1の層の3種4層;ハードコート層/第2の層/第1の層/第2の層/ハードコート層、粘着剤層/第2の層/第1の層/第2の層/粘着剤層、ハードコート層/第1の層/第2の層/第1の層/ハードコート層、粘着剤層/第1の層/第2の層/第1の層/粘着剤層の3種5層;ハードコート層/第2の層/第1の層/粘着剤層の4種4層、粘着剤層/第2の層/第1の層/第2の層/ハードコート層、粘着剤層/第1の層/第2の層/第1の層/ハードコート層の4種5層等の積層構成が挙げられる。とりわけ、第2の層/第1の層/第2の層の2種3層又はハードコート層/第2の層/第1の層/第2の層、粘着剤層/第2の層/第1の層/第2の層の3種4層が好ましい。
<Structure of the present light diffusion film>
The present light diffusion film may have a single layer structure consisting of only the first layer, or may have a multilayer structure including the first layer and the second layer. When it has a multilayer structure, it may have other layers in addition to the first layer and the second layer.
Examples of the multilayer structure include, for example, a second layer/first layer, two types of two layers, a second layer/first layer/second layer, a first layer/second layer/ Two kinds of three layers of the first layer; hard coat layer / second layer / first layer, second layer / first layer / hard coat layer, adhesive layer / second layer / first layer layer, second layer/first layer/adhesive layer 3 types 3 layers; hard coat layer/second layer/first layer/hard coat layer, adhesive layer/second layer/first layer Layer/adhesive layer, hard coat layer/second layer/first layer/second layer, adhesive layer/second layer/first layer/second layer, hard coat layer/first layer / second layer / first layer, adhesive layer / first layer / second layer / first layer 3 types 4 layers; hard coat layer / second layer / first layer / second layer / hard coat layer, adhesive layer / second layer / first layer / second layer / adhesive layer, hard coat layer / first layer / second layer / first Layer/hard coat layer, adhesive layer/first layer/second layer/first layer/adhesive layer 3 types 5 layers; hard coat layer/second layer/first layer/adhesive 4 types of layers 4 layers, adhesive layer / second layer / first layer / second layer / hard coat layer, adhesive layer / first layer / second layer / first layer / hard Laminated structures, such as 4 types and 5 layers of a coat layer, are mentioned. In particular, the second layer/first layer/second layer two kinds three layers or hard coat layer/second layer/first layer/second layer, adhesive layer/second layer/ Four layers of three kinds of first layer/second layer are preferable.
 また、本光拡散フィルムが多層構造の場合には、少なくとも一層が異方光拡散性を有する層であればよく、他の層は、異方光拡散性を有しない層であってもよく、また、全層が異方性光拡散層の構成であってもよい。
 なお、異方光拡散層以外の層が含まれる場合は、異方光拡散層が中間層になるように構成するのが好ましい。
Further, when the present light diffusion film has a multilayer structure, at least one layer may be a layer having anisotropic light diffusing properties, and the other layers may be layers having no anisotropic light diffusing properties. Further, all layers may be composed of an anisotropic light diffusion layer.
When a layer other than the anisotropic light diffusion layer is included, it is preferable that the anisotropic light diffusion layer serves as an intermediate layer.
 第1の層の厚さ(複数存在する場合は各層)は、本光拡散フィルム全体の厚さの10~90%であるのが好ましく、中でも20%以上或いは80%以下であるのがより好ましく、その中でも30%以上或いは70%以下であるのがさらに好ましい。
 他方、第2の層の厚さ(複数存在する場合は各層)は、本光拡散フィルム全体の厚さの5~90%であるのが好ましく、中でも10%以上或いは80%以下、その中でも15%以上或いは70%以下であるのがさらに好ましい。
The thickness of the first layer (each layer if multiple layers exist) is preferably 10 to 90% of the thickness of the entire light diffusion film, more preferably 20% or more or 80% or less. , more preferably 30% or more or 70% or less.
On the other hand, the thickness of the second layer (each layer if multiple layers exist) is preferably 5 to 90% of the thickness of the entire light diffusion film, especially 10% or more or 80% or less, especially 15% % or more or 70% or less.
 また、本光拡散フィルムは、前記第1の層と前記第2の層との厚み比率(第2の層/第1の層)が0.1~30の範囲にあることが好ましく、中でも0.2以上或いは20以下の範囲にあるのがより好ましく、その中でも0.3以上或いは10以下の範囲にあるのがさらに好ましく、その中でも0.4以上或いは5以下の範囲にあるのがよりさらに好ましい。
 第1の層が連続相(I)及び分散相(II)による海島構造を有する場合、前記第1の層と前記第2の層の厚み比率を上記範囲とすることで、第1の層の表裏にかかるせん断応力を低減できるので、前記第1の層の表裏面側の分散相の分散径を大きくすることができ、優れた異方光拡散性及び低反射性を兼備することができる。
In addition, in the present light diffusion film, the thickness ratio between the first layer and the second layer (second layer/first layer) is preferably in the range of 0.1 to 30, especially 0 It is more preferably in the range of 0.2 or more or 20 or less, more preferably in the range of 0.3 or more or 10 or less, and more preferably in the range of 0.4 or more or 5 or less. preferable.
When the first layer has a sea-island structure with the continuous phase (I) and the dispersed phase (II), by setting the thickness ratio of the first layer and the second layer to the above range, the first layer Since the shear stress applied to the front and back surfaces can be reduced, the dispersion diameter of the dispersed phase on the front and back surfaces of the first layer can be increased, and excellent anisotropic light diffusion and low reflectivity can be achieved.
 本光拡散フィルムの厚みは、10~1000μmが好ましい。中でも、第1の層が連続相(I)及び分散相(II)による海島構造を有する場合、本光拡散フィルムに形成される分散構造に適したフィルム厚みとすることで、優れた異方光拡散性を得るという観点から、15~500μmが好ましく、中でも20μm以上或いは300μm以下がより好ましく、その中でも25μm以上或いは100μm以下がさらに好ましい。 The thickness of the light diffusion film is preferably 10-1000 μm. Above all, when the first layer has a sea-island structure with the continuous phase (I) and the dispersed phase (II), excellent anisotropic light can be obtained by setting the film thickness to be suitable for the dispersion structure formed in the present light diffusion film. From the viewpoint of obtaining diffusibility, it is preferably 15 to 500 μm, more preferably 20 μm or more or 300 μm or less, and even more preferably 25 μm or more or 100 μm or less.
 <本光拡散フィルムの形態>
 本光拡散フィルムは、少なくとも一方向に配向されているのが好ましい。
 第1の層が連続相(I)及び分散相(II)による海島構造を有する場合、前述のとおり、特有の分散構造を有し、島部分がMD方向に延ばされた形状を呈し、該島部分が海部分の中に分散してなる分散構造を有するのが好ましい。このような分散構造を形成するために、一方向に配向されていることがより好ましい。
 なお、本光拡散フィルムが一方向に配向されていることは、異方性光拡散フィルムの断面図(MD断面)において、第1の層の島部分がMD方向に延ばされた形状であることを確認することによって確認することができる。
<Form of the present light diffusion film>
The light diffusion film is preferably oriented in at least one direction.
When the first layer has a sea-island structure composed of the continuous phase (I) and the dispersed phase (II), as described above, it has a unique dispersed structure with island portions extending in the MD direction. It is preferred to have a dispersed structure in which the island portions are dispersed in the sea portion. In order to form such a dispersed structure, it is more preferable to be oriented in one direction.
The unidirectional orientation of the present light-diffusing film means that the island portions of the first layer are elongated in the MD direction in the cross-sectional view (MD cross-section) of the anisotropic light-diffusing film. You can check by checking.
 <本光拡散フィルムの製造方法>
 第1の層が表面に凹凸構造を有する場合、本光拡散フィルムの製造方法としては、上記「1.第1実施形態」で説明した(1)~(5)の方法を用いることができる。
<Method for producing the present light diffusion film>
When the first layer has an uneven structure on the surface, the methods (1) to (5) described in the above "1. First Embodiment" can be used as the method for producing the present light diffusion film.
 第1の層が連続相(I)及び分散相(II)による海島構造を有する場合、本光拡散フィルムの製造方法としては、例えば少なくとも2種の熱可塑性樹脂を含有する混合樹脂組成物を、溶融してフィルム状に製膜する方法を挙げることができる。
 製膜する方法としては、例えばTダイキャスト法、カレンダー法、インフレーション法などを挙げることができる。
 これらの中でも、製膜安定性や生産効率化の観点から、Tダイキャスト法が好ましい。
 本光拡散フィルムが第1の層と第2の層を含む多層構造である場合は、フィルムインサート法、溶融押出法、押出ラミネート法、熱プレス法、溶液流延法等が挙げられ、生産性の観点から、特に溶融押出法が好適に用いられる。
 当該溶融押出法としては、第1の層及び第2の層に用いる樹脂組成物を、それぞれ別々の押出機で加熱溶融させ、共押出多層ダイス法やフィードブロック法等の方法により溶融状態で積層した後、インフレーションやTダイ・キャスト法等によりフィルム状に成形する共押出法を挙げることができる。
When the first layer has a sea-island structure with the continuous phase (I) and the dispersed phase (II), the method for producing the present light diffusion film includes, for example, a mixed resin composition containing at least two thermoplastic resins, A method of forming a film by melting can be mentioned.
Examples of film-forming methods include a T-die casting method, a calendering method, and an inflation method.
Among these methods, the T die casting method is preferable from the viewpoint of film formation stability and production efficiency.
When the present light diffusion film has a multi-layer structure including a first layer and a second layer, a film insert method, a melt extrusion method, an extrusion lamination method, a heat press method, a solution casting method, etc., can be used. From the point of view, the melt extrusion method is particularly preferably used.
As the melt extrusion method, the resin compositions used for the first layer and the second layer are heated and melted in separate extruders, and laminated in a molten state by a method such as a coextrusion multilayer die method or a feed block method. After that, a co-extrusion method can be mentioned in which the mixture is formed into a film by inflation, T-die casting, or the like.
 フィルムの押出温度は、各樹脂の流動特性にもよるが、概ね220℃~300℃が好ましく、230℃~280℃の範囲にあることがより好ましい。
 押出温度が220℃以上であれば、溶融樹脂が流動するに十分フィルム成形が可能であり、一方、300℃以下であれば、樹脂の熱分解などによるシートの特性低下が生じにくいため好ましい。
The extrusion temperature of the film is preferably in the range of approximately 220°C to 300°C, more preferably in the range of 230°C to 280°C, although it depends on the flow characteristics of each resin.
When the extrusion temperature is 220° C. or higher, the film can be sufficiently formed so that the molten resin can flow.
 また、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比;Q/N(kg/h/rpm)は0.014~1.00の範囲にあることが好ましく、0.016~0.90の範囲にあることがより好ましい。 In addition, the ratio of the discharge amount Q (kg/h) and the screw rotation speed N (rpm); It is more preferably in the range of ~0.90.
 このように、押出温度および吐出量Qを好適な範囲に調整することにより、前記混合樹脂組成物における分散相(II)を形成する樹脂の径を制御することができる。 Thus, by adjusting the extrusion temperature and the discharge rate Q within suitable ranges, the diameter of the resin forming the dispersed phase (II) in the mixed resin composition can be controlled.
 配向させる方向としては、フィルムの引き取り(流れ)方向(MD)と、MDに直交する方向(TD)のいずれでもよい。Tダイキャスト法での分散樹脂径制御の観点から、MDに配向することが好ましい。
 すなわち、本光拡散フィルムにおいて、配向方向に対して平行な軸(S軸)がMDであり、配向方向に対して垂直でフィルム面に平行な軸(P軸)がTDであることが好ましいということになる。
The orientation direction may be either the take-off (flow) direction (MD) of the film or the direction perpendicular to the MD (TD). From the viewpoint of controlling the diameter of the dispersed resin in the T die casting method, it is preferable to orient in the MD.
That is, in the present light diffusion film, it is preferable that the axis (S axis) parallel to the orientation direction is MD, and the axis (P axis) perpendicular to the orientation direction and parallel to the film surface is TD. It will be.
 また、配向させる方法としては、特に限定されない。例えば前記の通りTダイキャスト法によって製膜したシートを、MD又はTDに1軸延伸する方法や、Tダイキャスト法において製膜する際に、引き取り速度(キャストロールの速度)を速くすることによってMDにドラフトをかける方法、インフレーション法によって製膜する際に、引き取り速度を速くすることによってMDにドラフトをかける方法などを例示できる。
 中でも、前記の通りTダイキャスト法によって製膜したシートを、MDにドラフトをかける方法が、分散樹脂径制御の観点から好ましい。
 なお、前記ドラフトとは、フィルム作製時のキャスト速度によってMD方向に引き延ばす処理である。
Moreover, the method for orientation is not particularly limited. For example, by uniaxially stretching the sheet formed by the T die casting method as described above in the MD or TD, or by increasing the take-up speed (speed of the cast roll) when forming the film by the T die casting method. Examples include a method of applying a draft to the MD, and a method of applying a draft to the MD by increasing the take-up speed when forming a film by the inflation method.
Among them, the method of drafting the sheet formed by the T-die casting method as described above in the MD is preferable from the viewpoint of controlling the diameter of the dispersed resin.
The draft is a process of stretching in the MD direction at a casting speed during film production.
 前記延伸方法は、少なくとも一方向に延伸されていれば、特に制限されるものではなく、MD又はTD方向に1軸延伸する方法であっても、MD及びTD方向に2軸延伸する方法であってもよい。 The stretching method is not particularly limited as long as it is stretched in at least one direction, and may be a method of monoaxial stretching in the MD or TD direction or a method of biaxial stretching in the MD and TD directions. may
 <<粘着剤層付き異方性光拡散フィルム>>
 本光拡散フィルムは、片面又は両面に粘着剤層が設けられた形態、いわゆる粘着剤層付き異方性光拡散フィルム(「本粘着剤層付き異方性光拡散フィルム」と称する)の形態とすることができる。すなわち、本粘着剤層付き異方性光拡散フィルムは、本光拡散フィルムの少なくとも一方の面に粘着剤層を有するものである。
<<Anisotropic light diffusion film with adhesive layer>>
The present light-diffusing film can be in a form in which an adhesive layer is provided on one side or both sides, that is, in the form of a so-called anisotropic light-diffusing film with an adhesive layer (referred to as "this anisotropic light-diffusing film with an adhesive layer"). . That is, the anisotropic light-diffusing film with an adhesive layer has an adhesive layer on at least one surface of the light-diffusing film.
 前記粘着剤層は、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、及びビニル系粘着剤から選ばれる少なくとも1種又は2種以上を含むのが好ましく、中でも主成分として含むのが好ましい。中でも、アクリル系粘着剤を含むのが好ましく、中でも主成分として含むのが好ましい。
 この際、前記主成分とは、前記粘着剤層を構成する粘着剤成分のうち50質量%以上を占める粘着剤成分の意であり、中でも60質量%以上、その中でも70質量%以上、その中でも80質量%以上、その中でも90質量%以上(100質量%を含む)を占める粘着剤成分の意である。
The pressure-sensitive adhesive layer preferably contains at least one or more selected from rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, and vinyl-based pressure-sensitive adhesives. preferably included as Among them, it is preferable to contain an acrylic pressure-sensitive adhesive, and it is particularly preferable to contain it as a main component.
In this case, the main component means a pressure-sensitive adhesive component that accounts for 50% by mass or more of the pressure-sensitive adhesive components constituting the pressure-sensitive adhesive layer, and more than 60% by mass, more than 70% by mass, and more than 70% by mass. It means an adhesive component that accounts for 80% by mass or more, of which 90% by mass or more (including 100% by mass).
 前記アクリル系粘着剤は屈折率が1.49程度であるから、本光拡散フィルムに積層する粘着剤層の主成分とすることにより、本光拡散フィルムと粘着剤層との界面での反射を低減することができる。 Since the acrylic pressure-sensitive adhesive has a refractive index of about 1.49, by using it as a main component of the pressure-sensitive adhesive layer laminated on the light-diffusing film, reflection at the interface between the light-diffusing film and the pressure-sensitive adhesive layer can be reduced. can be reduced.
 本光拡散フィルムに粘着剤層を形成する方法としては、例えばフィルム状に成形した粘着シートをラミネーター等で貼り合わせる方法や、本光拡散フィルムに粘着剤をコーティングする方法などを挙げることができる。 Examples of methods for forming an adhesive layer on the light diffusion film include a method of laminating an adhesive sheet formed into a film shape with a laminator or the like, and a method of coating the light diffusion film with an adhesive.
 <<用途>>
 本光拡散フィルムは、パーソナルコンピューター、テレビジョン(TV)、モバイル端末(PDA)、携帯電話、スマホ等の画像表示装置、具体的には、液晶表示装置(LCD)、エレクトロルミッセンスディスプレイ(ELD)、プラズマディスプレイパネル(PDP)、陰極管表示装置(CRT)、表面電解ディスプレイ(SED)、電子ペーパー、透明スクリーン、LED拡散板、ヘッドアップディスプレイ及びTVなどの拡散板などの構成部材として使用することができる。
<<Usage>>
This light diffusion film can be used for image display devices such as personal computers, televisions (TV), mobile terminals (PDA), mobile phones, smartphones, etc. Specifically, liquid crystal display devices (LCD), electroluminescence displays (ELD) ), Plasma Display Panel (PDP), Cathode Tube Display (CRT), Surface Electrolytic Display (SED), Electronic Paper, Transparent Screen, LED Diffusion Plate, Head-Up Display, TV Diffusion Plate, etc. be able to.
 <<画像表示装置>>
 本光拡散フィルムを備えた画像表示装置において、本光拡散フィルムは、とりわけ、画像表示装置のディスプレイ表面と反射防止フィルムとの間、又は、反射防止フィルムと偏光板との間に貼り合わせて使用することが好ましい。
<<Image display device>>
In an image display device equipped with the present light diffusion film, the present light diffusion film is particularly used by bonding between the display surface of the image display device and the antireflection film, or between the antireflection film and the polarizing plate. preferably.
 また、本光拡散フィルムは、画像表示装置の構成部材を薄型化する観点から、光拡散特性と各種構成部材の必要特性を併せ持つフィルムとして、構成部材の各種フィルムの代替として使用してもよい。 In addition, from the viewpoint of thinning the constituent members of the image display device, the light diffusion film may be used as a film having both the light diffusion properties and the necessary properties of the various constituent members, as a substitute for the various films of the constituent members.
 本発明の異方性光拡散フィルムを32インチ以上の画面を有する大型液晶TVなどの拡散板に使用する場合、フィルムの棒状の島相の配向方向が大型液晶TVの冷陰極管の長さ方向と平行になるように配置すると、冷陰極管から発せられる線状の明かりを面状に拡散することができる。 When the anisotropic light-diffusing film of the present invention is used as a diffusion plate for a large liquid crystal TV having a screen of 32 inches or more, the orientation direction of the rod-shaped island phase of the film is parallel to the length direction of the cold cathode tube of the large liquid crystal TV. By arranging them so that the linear light emitted from the cold-cathode tubes can be diffused in a plane.
 本発明の異方性光拡散フィルムを投射型画像表示装置に使用する場合は、本発明の異方性光拡散フィルムをスクリーンとして前面に配置するのが好ましい。
 投射型画像表示装置のCRTやLCDやDMDなどの画像表示エンジンから投影された画像光は反射ミラーなどの光学系によってスクリーンに投射されるが、異方性光拡散フィルムがより散乱する方向が水平方向となるように配置したスクリーンを使用すると、画面の左右方向に光が散乱して明るさを向上させることができる。特に32インチ以上の大画面を有する場合には好ましい。
When the anisotropic light-diffusing film of the present invention is used in a projection type image display device, it is preferable to arrange the anisotropic light-diffusing film of the present invention as a screen in front.
Image light projected from an image display engine such as a CRT, LCD, or DMD of a projection type image display device is projected onto a screen by an optical system such as a reflecting mirror. By using a screen arranged in such a way as to scatter light to the left and right of the screen, the brightness can be improved. In particular, it is preferable when having a large screen of 32 inches or more.
 <<語句の説明>>
 本明細書において、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含するものである。
 また、「X以上」(Xは任意の数字)と記載した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と記載した場合、特にことわらない限り「好ましくはYより小さい」の意も包含するものである。
<<explanation of words>>
In this specification, when described as "X to Y" (X and Y are arbitrary numbers), unless otherwise specified, "X or more and Y or less" and "preferably larger than X" or "preferably It also includes the meaning of "smaller than Y".
In addition, when described as "X or more" (X is an arbitrary number), it includes the meaning of "preferably greater than X" unless otherwise specified, and is described as "Y or less" (Y is an arbitrary number). If not otherwise specified, it also includes the meaning of "preferably smaller than Y".
 本発明は、以下の実施例により更に説明する。但し、下記に示す実施例に本発明が限定解釈されるものではない。 The present invention is further illustrated by the following examples. However, the present invention is not limited to the examples shown below.
 <材料>
 各試験例で使用した材料は以下の通りである。
 (ポリカーボネート樹脂)
 ・樹脂A-1:イソソルバイド系ポリカーボネート樹脂(平均屈折率:1.506、Tg:120℃、見かけ粘度(240℃、100(1/s)):740Pa・s、1,4-シクロヘキサンジメタノール 31.1mol%、イソソルバイド 68.9mol%)
 ・樹脂A-2:イソソルバイド系ポリカーボネート樹脂(平均屈折率:1.516、Tg:126℃、見かけ粘度(240℃、100(1/s)):830Pa・s、トリシクロデカンジメタノール 33.3mol%、イソソルバイド 66.7mol%)
 ・樹脂A-3:イソソルバイド系ポリカーボネート樹脂(平均屈折率:1.502、Tg:98℃、見かけ粘度(240℃、100(1/s)):510Pa・s、1,4-シクロヘキサンジメタノール 50.5mol%、イソソルバイド 49.5mol%)
 ・樹脂A-4:イソソルバイド系ポリカーボネート樹脂(平均屈折率:1.511、Tg:126℃、見かけ粘度(240℃、100(1/s)):680Pa・s、トリシクロデカンジメタノール 33.3mol%、イソソルバイド 66.7mol%)
 ・樹脂A-5:ポリカーボネート樹脂(平均屈折率:1.585、Tg:144℃、見かけ粘度(240℃、100(1/s)):3800Pa・s))
 ・樹脂A-6:ポリカーボネート樹脂(平均屈折率:1.583、Tg:152℃、見かけ粘度(240℃、100(1/s)):9000Pa・s、ビスフェノールA系ポリカーボネート)
<Material>
The materials used in each test example are as follows.
(polycarbonate resin)
・ Resin A-1: isosorbide-based polycarbonate resin (average refractive index: 1.506, Tg: 120 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 740 Pa s, 1,4-cyclohexanedimethanol 31 .1 mol%, isosorbide 68.9 mol%)
・ Resin A-2: isosorbide-based polycarbonate resin (average refractive index: 1.516, Tg: 126 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 830 Pa s, tricyclodecanedimethanol 33.3 mol %, isosorbide 66.7 mol%)
・ Resin A-3: isosorbide-based polycarbonate resin (average refractive index: 1.502, Tg: 98 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 510 Pa s, 1,4-cyclohexanedimethanol 50 .5 mol%, isosorbide 49.5 mol%)
・ Resin A-4: isosorbide-based polycarbonate resin (average refractive index: 1.511, Tg: 126 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 680 Pa s, tricyclodecanedimethanol 33.3 mol %, isosorbide 66.7 mol%)
・ Resin A-5: polycarbonate resin (average refractive index: 1.585, Tg: 144 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 3800 Pa s))
・ Resin A-6: Polycarbonate resin (average refractive index: 1.583, Tg: 152 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 9000 Pa s, bisphenol A polycarbonate)
 (非晶性ポリエステル樹脂)
 ・樹脂B-1:非晶性ポリエチレンテレフタレート樹脂(平均屈折率:1.539、Tg:109℃、見かけ粘度(240℃、100(1/s)):1000Pa・s、酸成分:テレフタル酸 100mol%、ジオール成分:エチレングリコール 51.5mol%、ジエチレングリコール 5.4mol%、スピログリコール 43.1mol%)
 ・樹脂B-2:非晶性ポリエステル樹脂(平均屈折率:1.552、Tg:119℃、見かけ粘度(240℃、100(1/s)):2500Pa・s、酸成分:テレフタル酸 100mol%、ジオール成分:1,4-シクロヘキサンジメタノール 65.7mol%、2,2,4,4-テトラメチル-1,3-シクロブタンジオール 34.3mol%)
 ・樹脂B-3:非晶性ポリエステル樹脂(平均屈折率:1.587、Tg:130℃、見かけ粘度(240℃、100(1/s)):2800Pa・s、酸成分:2,6-ナフタレンジカルボン酸 100mol%、ジオール成分:エチレングリコール 14.3mol%、ジエチレングリコール 0.8mol%、スピログリコール 37.7mol%、1,4-シクロヘキサンジメタノール 47.2mol%)
 ・樹脂B-4:非晶性ポリエステル樹脂(平均屈折率:1.564、Tg:118℃、見かけ粘度(240℃、100(1/s)):1600Pa・s、酸成分:2,6-ナフタレンジカルボン酸 48.2mol%、テレフタル酸 51.8mol%、ジオール成分:エチレングリコール 51.2mol%、ジエチレングリコール 2.9mol%、スピログリコール 45.9mol%)
 ・樹脂B-5:ポリエチレンナフタレート樹脂(平均屈折率:1.646、Tg:120℃、見かけ粘度(270℃、100(1/s)):2350Pa・s、酸成分:2,6-ナフタレンジカルボン酸 100mol%、ジオール成分:エチレングリコール 96.4mol%、ジエチレングリコール 3.6mol%)
 ・樹脂B-6:ポリエチレンテレフタレート樹脂(平均屈折率:1.576、Tg:75℃、見かけ粘度(270℃、100(1/s)):450Pa・s、酸成分:テレフタル酸 100mol%、ジオール成分:エチレングリコール 100mol%)
(amorphous polyester resin)
Resin B-1: Amorphous polyethylene terephthalate resin (average refractive index: 1.539, Tg: 109°C, apparent viscosity (240°C, 100 (1/s)): 1000 Pa s, acid component: 100 mol of terephthalic acid %, diol components: ethylene glycol 51.5 mol%, diethylene glycol 5.4 mol%, spiroglycol 43.1 mol%)
・ Resin B-2: Amorphous polyester resin (average refractive index: 1.552, Tg: 119 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 2500 Pa s, acid component: terephthalic acid 100 mol% , diol components: 1,4-cyclohexanedimethanol 65.7 mol%, 2,2,4,4-tetramethyl-1,3-cyclobutanediol 34.3 mol%)
・ Resin B-3: Amorphous polyester resin (average refractive index: 1.587, Tg: 130 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 2800 Pa s, acid component: 2,6- Naphthalene dicarboxylic acid 100 mol%, diol component: ethylene glycol 14.3 mol%, diethylene glycol 0.8 mol%, spiroglycol 37.7 mol%, 1,4-cyclohexanedimethanol 47.2 mol%)
・ Resin B-4: Amorphous polyester resin (average refractive index: 1.564, Tg: 118 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 1600 Pa s, acid component: 2,6- Naphthalene dicarboxylic acid 48.2 mol%, terephthalic acid 51.8 mol%, diol component: ethylene glycol 51.2 mol%, diethylene glycol 2.9 mol%, spiroglycol 45.9 mol%)
・ Resin B-5: polyethylene naphthalate resin (average refractive index: 1.646, Tg: 120 ° C., apparent viscosity (270 ° C., 100 (1 / s)): 2350 Pa s, acid component: 2,6-naphthalene Dicarboxylic acid 100 mol%, diol component: ethylene glycol 96.4 mol%, diethylene glycol 3.6 mol%)
・ Resin B-6: polyethylene terephthalate resin (average refractive index: 1.576, Tg: 75 ° C., apparent viscosity (270 ° C., 100 (1 / s)): 450 Pa s, acid component: terephthalic acid 100 mol%, diol Ingredient: Ethylene glycol 100mol%)
 (その他の樹脂)
 ・樹脂C-1:アクリロニトリル・スチレン共重合体(AS樹脂)(平均屈折率:1.567、Tg:108℃、見かけ粘度(240℃、100(1/s)):1240Pa・s)
 ・樹脂C-2:環状ポリオレフィン樹脂(平均屈折率:1.534、Tg:138℃、見かけ粘度(240℃、100(1/s)):3800Pa・s)
 ・樹脂C-3:環状ポリオレフィン樹脂(平均屈折率:1.530、Tg:100℃、見かけ粘度(240℃、100(1/s)):410Pa・s)
 ・樹脂C-4:ポリスチレン樹脂(平均屈折率:1.589、Tg:100℃、見かけ粘度(240℃、100(1/s)):700Pa・s)
 ・樹脂C-5:ポリスチレン樹脂(平均屈折率:1.590、Tg:100℃、見かけ粘度(240℃、100(1/s)):500Pa・s)
(Other resins)
- Resin C-1: acrylonitrile-styrene copolymer (AS resin) (average refractive index: 1.567, Tg: 108 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 1240 Pa s)
・ Resin C-2: cyclic polyolefin resin (average refractive index: 1.534, Tg: 138 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 3800 Pa s)
・ Resin C-3: cyclic polyolefin resin (average refractive index: 1.530, Tg: 100 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 410 Pa s)
・ Resin C-4: polystyrene resin (average refractive index: 1.589, Tg: 100 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 700 Pa s)
・ Resin C-5: polystyrene resin (average refractive index: 1.590, Tg: 100 ° C., apparent viscosity (240 ° C., 100 (1 / s)): 500 Pa s)
 <各種評価>
 各試験例で作製したフィルム等の評価は、次のようにして行った。
<Various evaluations>
Evaluation of the films and the like produced in each test example was performed as follows.
 (1)ガラス転移温度
 各試験例で用いた樹脂のガラス転移温度(Tg)は、JIS K7121:2012に準じて、示差走査熱量計(例えば、パーキンエルマージャパン社製「DSC 8500」)を用い、温度範囲0~200℃、加熱速度10℃/分の条件で測定した。
(1) Glass transition temperature The glass transition temperature (Tg) of the resin used in each test example was determined according to JIS K7121: 2012 using a differential scanning calorimeter (for example, "DSC 8500" manufactured by PerkinElmer Japan). Measurement was performed under conditions of a temperature range of 0 to 200°C and a heating rate of 10°C/min.
 (2)見かけ粘度
 各試験例で用いた樹脂の見かけ粘度は、高化式フローテスター 島津製作所社製「CFT-5000」を用いてノズル:Φ1×10mm、温度:240℃又は270℃として測定した。
(2) Apparent viscosity The apparent viscosity of the resin used in each test example was measured using a Koka flow tester Shimadzu Corporation "CFT-5000" nozzle: Φ1 × 10 mm, temperature: 240 ° C. or 270 ° C. .
 (3)分散相(II)のフィルム厚み方向の平均分散径の評価
 試験例1では、フィルムの断面を透過型電子顕微鏡(TEM)で撮影し、撮影した範囲における最大分散径及び最小分散径を計測し、平均値としての分散径を算出した。表には、平均値としての分散径と共に括弧内に最小値と最大値を示した。
 試験例2では、フィルムの第1の層(中間層)の厚み方向の中央部(中心から本光拡散フィルムの厚さの±15%にあたる領域)及び厚み方向の表裏部(表面又は裏面から本光拡散フィルムの厚さの35%)における断面を透過型電子顕微鏡(TEM)で撮影し、撮影した範囲における最大分散径及び最小分散径を計測し、平均値としての分散径を算出した。表には、平均値としての分散径と共に括弧内に最小値と最大値を示した。
 試験例3では、走査型電子顕微鏡(SEM)を用いたこと以外は試験例2と同じ方法で平均分散径を算出した。
 試験例4では、フィルムの第1の層(中間層)の厚み方向の中央部(中心から本光拡散フィルムの厚さの±15%にあたる領域)及び厚み方向の表裏部(表面又は裏面から本光拡散フィルムの厚さの35%)における断面を走査型電子顕微鏡(SEM)で撮影し、撮影範囲における分散径をフリーソフトウェア「ImageJ」を用いて解析し、確認可能な範囲の分散径すべての平均として厚み方向の平均分散径を算出した。
(3) Evaluation of the average dispersion diameter in the film thickness direction of the dispersed phase (II) In Test Example 1, the cross section of the film was photographed with a transmission electron microscope (TEM), and the maximum dispersion diameter and the minimum dispersion diameter in the photographed range were determined. It was measured and the dispersion diameter was calculated as an average value. The table shows the minimum and maximum values in parenthesis together with the average dispersion diameter.
In Test Example 2, the central part in the thickness direction of the first layer (intermediate layer) of the film (the area corresponding to ± 15% of the thickness of the light diffusion film from the center) and the front and back parts in the thickness direction (from the front or back to the main 35% of the thickness of the light diffusion film) was photographed with a transmission electron microscope (TEM), the maximum dispersion diameter and the minimum dispersion diameter in the photographed range were measured, and the average dispersion diameter was calculated. The table shows the minimum and maximum values in parenthesis together with the average dispersion diameter.
In Test Example 3, the average dispersed diameter was calculated in the same manner as in Test Example 2 except that a scanning electron microscope (SEM) was used.
In Test Example 4, the central part in the thickness direction of the first layer (intermediate layer) of the film (the area corresponding to ± 15% of the thickness of the light diffusion film from the center) and the front and back parts in the thickness direction (from the front or back to the main 35% of the thickness of the light diffusion film) is photographed with a scanning electron microscope (SEM), and the dispersion diameter in the photographing range is analyzed using the free software "ImageJ". An average dispersion diameter in the thickness direction was calculated as an average.
 (4)分散相(II)のMD方向及びTD方向の平均分散径の評価
 試験例1では、フィルムのMD断面、TD断面それぞれを透過型電子顕微鏡(TEM)で撮影し、撮影した範囲における最大分散径及び最小分散径を計測し、平均値としての分散径を算出した。表には、平均値としての分散径と共に括弧内に最小値と最大値を示した。
 試験例2では、フィルムの第1の層(中間層)の厚み方向の中央部(中心から本光拡散フィルムの厚さの±15%にあたる領域)及び厚み方向の表裏部(表面又は裏面から本光拡散フィルムの厚さの35%)におけるMD断面、TD断面それぞれを透過型電子顕微鏡(TEM)で撮影し、撮影した範囲における最大分散径及び最小分散径を計測し、平均値としての分散径を算出すると共に、該平均値から分散径比率(MD分散径/TD分散径)を算出した。表には、平均値としての分散径又は分散径比率と共に括弧内に最小値と最大値を示した。
 試験例3では、走査型電子顕微鏡(SEM)を用いたこと以外は試験例2と同じ方法で平均分散径を算出した。
 試験例4では、フィルムの第1の層(中間層)の厚み方向の中央部(中心から本光拡散フィルムの厚さの±15%にあたる領域)及び厚み方向の表裏部(表面又は裏面から本光拡散フィルムの厚さの35%)におけるMD断面、TD断面それぞれを走査型電子顕微鏡(SEM)で撮影し、撮影範囲における分散径をフリーソフトウェア「ImageJ」を用いて解析し、確認可能な範囲の分散径すべての平均としてMD方向及びTD方向の平均分散径を算出するとともに、分散径比率(MD平均分散径/TD平均分散径)を算出した。
(4) Evaluation of the average dispersion diameter in the MD direction and the TD direction of the dispersed phase (II) In Test Example 1, each of the MD cross section and the TD cross section of the film was photographed with a transmission electron microscope (TEM), and the maximum The dispersion diameter and the minimum dispersion diameter were measured, and the average dispersion diameter was calculated. The table shows the minimum and maximum values in parenthesis together with the average dispersion diameter.
In Test Example 2, the central part in the thickness direction of the first layer (intermediate layer) of the film (the area corresponding to ± 15% of the thickness of the light diffusion film from the center) and the front and back parts in the thickness direction (from the front or back to the main 35% of the thickness of the light diffusion film) is photographed with a transmission electron microscope (TEM), the maximum dispersion diameter and the minimum dispersion diameter in the photographed range are measured, and the dispersion diameter as the average value was calculated, and the dispersion diameter ratio (MD dispersion diameter/TD dispersion diameter) was calculated from the average value. The table shows the minimum and maximum values in parenthesis together with the dispersion diameter or dispersion diameter ratio as an average value.
In Test Example 3, the average dispersed diameter was calculated in the same manner as in Test Example 2 except that a scanning electron microscope (SEM) was used.
In Test Example 4, the central part in the thickness direction of the first layer (intermediate layer) of the film (the area corresponding to ± 15% of the thickness of the light diffusion film from the center) and the front and back parts in the thickness direction (from the front or back to the main 35% of the thickness of the light diffusion film) is photographed with a scanning electron microscope (SEM), and the dispersion diameter in the photographed range is analyzed using the free software "ImageJ", and the range that can be confirmed. The average dispersion diameter in the MD direction and the TD direction was calculated as the average of all the dispersion diameters of , and the dispersion diameter ratio (MD average dispersion diameter/TD average dispersion diameter) was calculated.
 (5)平均屈折率
 各試験例で用いた原料の平均屈折率は、アタゴ製アッベ屈折率計を用い、ナトリウムD線(589nm)を光源とし、JIS K7124により測定した。
(5) Average Refractive Index The average refractive index of the raw material used in each test example was measured according to JIS K7124 using an Abbe refractometer manufactured by Atago Co., Ltd., using a sodium D line (589 nm) as a light source.
 (6)屈折率差
 連続相(I)及び分散相(II)の屈折率の差の絶対値を屈折率差とした。
 また、分散相(II)が2種類の樹脂で構成される場合、分散相(II)の屈折率は、分散相(II)内での配合比と各々の樹脂の平均屈折率より算出した。
(6) Refractive Index Difference The absolute value of the difference in refractive index between the continuous phase (I) and the dispersed phase (II) was defined as the refractive index difference.
When the dispersed phase (II) is composed of two types of resins, the refractive index of the dispersed phase (II) was calculated from the compounding ratio in the dispersed phase (II) and the average refractive index of each resin.
 (7)視感反射率RSCI及びRSCE
 試験例1では、分光測色計(「SC-T」、スガ試験機株式会社製)を用い、本体付属の白色校正標準板を基準として、黒バック、D65/2光源、測定範囲Φ5mmとして反射方式にて視感反射率RSCI、視感反射率RSCE測定をそれぞれ行い、視感反射率RSCI及び視感反射率RSCEを得た。
 試験例2では、分光測色計(「CM-600d」、コニカミノルタ株式会社製)を用い、本体付属の白色校正標準板を基準として、黒バック(RSCI:5.1)、D65/2光源、測定範囲Φ8mmとして反射方式にて視感反射率RSCI、視感反射率RSCE測定をそれぞれ行い、視感反射率RSCI及び視感反射率RSCEを得た。
 試験例3では、各試験例で作製したフィルムの両面に、粘着層を介して、厚さ100μmのポリエチレンテレフタレートからなるフィルム(PETフィルム)を積層した積層フィルムの状態で試験例2と同じ方法で視感反射率RSCI、視感反射率RSCE測定をそれぞれ行い、視感反射率RSCI及び視感反射率RSCEを得た。
 この際、粘着層は、厚さ150μmのアクリル系光学用透明粘着シート(三菱ケミカル社製「クリアフィット(登録商標)」)から形成した。
 上記PETフィルムと粘着層を積層した状態の視感反射率RSCI、視感反射率RSCEはそれぞれ、視感反射率RSCI16.88、視感反射率RSCE4.38であった。
 試験例4では、試験例2と同じ方法で視感反射率RSCI、視感反射率RSCE測定をそれぞれ行い、視感反射率RSCI及び視感反射率RSCEを得た。
(7) Luminous reflectance R SCI and R SCE
In Test Example 1, a spectrophotometer ("SC-T", manufactured by Suga Test Instruments Co., Ltd.) was used, with a white calibration standard plate attached to the main unit as a reference, a black background, a D65/2 light source, and a measurement range of Φ5 mm. The luminous reflectance R SCI and the luminous reflectance R SCE were measured according to the method to obtain the luminous reflectance R SCI and the luminous reflectance R SCE .
In Test Example 2, a spectrophotometer ("CM-600d", manufactured by Konica Minolta Co., Ltd.) was used, with a white calibration standard plate attached to the main unit as a reference, a black background (R SCI : 5.1), D65/2 Luminous reflectance R SCI and luminous reflectance R SCE were measured by a reflection method with a light source and a measurement range of Φ8 mm to obtain luminous reflectance R SCI and luminous reflectance R SCE .
In Test Example 3, a film (PET film) made of polyethylene terephthalate having a thickness of 100 μm was laminated on both sides of the film prepared in each Test Example with an adhesive layer interposed therebetween. Luminous reflectance R SCI and luminous reflectance R SCE were measured respectively to obtain luminous reflectance R SCI and luminous reflectance R SCE .
At this time, the adhesive layer was formed from a 150 μm-thick acrylic optical transparent adhesive sheet (“Clearfit (registered trademark)” manufactured by Mitsubishi Chemical Corporation).
The luminous reflectance R SCI and the luminous reflectance R SCE in the state where the PET film and the adhesive layer were laminated were 16.88 and 4.38 , respectively.
In Test Example 4, luminous reflectance R SCI and luminous reflectance R SCE were measured in the same manner as in Test Example 2 to obtain luminous reflectance R SCI and luminous reflectance R SCE .
 (8)全光線透過率
 各試験例で作製したフィルムの全光線透過率は、JIS K7361-1に準拠し測定した。
(8) Total light transmittance The total light transmittance of the film produced in each test example was measured according to JIS K7361-1.
 (9)ヘーズ値
 各試験例で作製したフィルムのヘーズ値は、JIS K7136に準拠し測定した。
(9) Haze value The haze value of the film produced in each test example was measured according to JIS K7136.
 (10)輝度評価
 バックライトユニット(センチュリー社製「plus one VGA」8インチ、型番:LCD-8000V)及び輝度計(コニカミノルタ社製2次元色彩光度計、型式:CA-2000)を用いて、以下の方法により60°輝度比及び正面輝度比を求めた。
(10) Luminance evaluation Using a backlight unit (Century "plus one VGA" 8 inches, model number: LCD-8000V) and a luminance meter (two-dimensional color photometer manufactured by Konica Minolta, model: CA-2000), The 60° luminance ratio and the front luminance ratio were obtained by the following methods.
 (60°輝度比)
 図1に示すように、実施例及び比較例のフィルム1をバックライトユニット2に固定し、フィルム面の法線N方向から光を入射させた(図1における太矢印)。輝度計3がフィルム面の法線N方向から光拡散方向yに60°傾いた方向に位置するように、バックライトユニット2を傾けたときの測定値(輝度C)を確認した。
 また、輝度計3が法線N方向に位置するようにバックライトユニット2を配置したときの測定値(輝度B)を確認し、上記輝度C及び輝度Bの比率(C/B)を算出した。
(60° brightness ratio)
As shown in FIG. 1, the films 1 of Examples and Comparative Examples were fixed to a backlight unit 2, and light was made incident from the normal N direction of the film surface (thick arrow in FIG. 1). The measured value (luminance C) was confirmed when the backlight unit 2 was tilted so that the luminance meter 3 was positioned in a direction tilted 60° from the normal N direction of the film surface to the light diffusion direction y.
In addition, the measured value (luminance B) when the backlight unit 2 is arranged so that the luminance meter 3 is positioned in the direction of the normal line N was confirmed, and the ratio (C/B) of the luminance C and the luminance B was calculated. .
 (正面輝度比)
 ブランクサンプルをバックライトユニットに固定し、フィルム面の法線N方向から光を入射させ、輝度計が法線N方向に位置するようにバックライトユニットを配置したときの測定値(輝度A)を確認し、上記輝度B及び輝度Aの比率(B/A)を算出した。
 なお、ブランクサンプルとしては樹脂Aの単層サンプルを使用した。当該ブランクサンプルは全光線透過率が92%であり、ヘーズが0.21%だった。
(front luminance ratio)
A blank sample is fixed to the backlight unit, light is incident from the normal N direction of the film surface, and the measured value (luminance A) when the backlight unit is arranged so that the luminance meter is positioned in the normal N direction After confirmation, the ratio (B/A) of the luminance B and the luminance A was calculated.
A single layer sample of Resin A was used as a blank sample. The blank sample had a total light transmittance of 92% and a haze of 0.21%.
 (11)熱寸法変化率
 試験例3で、各試験例の異方光拡散フィルムを、縦横12cm×12cmの大きさに切断し、JIS K7133:1999に準拠して、110℃×60分の試験条件で加熱寸法変化率を測定し、N=3の平均値を算出した。表3に「MD方向熱収縮率(%)」として示した。
(11) Thermal dimensional change rate In Test Example 3, the anisotropic light diffusion film of each test example was cut into a size of 12 cm × 12 cm in length and width, and tested at 110 ° C. × 60 minutes in accordance with JIS K7133: 1999. The heating dimensional change rate was measured under the conditions, and the average value of N=3 was calculated. It is shown in Table 3 as "MD direction heat shrinkage (%)".
 (12)表面硬度
 試験例3及び4で、各試験例の異方光拡散フィルムについて、JIS K5600-5-4(1999)に基づき、当該サンプルの第2の層の表面に対して、温度23℃±2℃、相対湿度50%±10℃、荷重750gfの条件にて試験を実施し、表面硬度の測定を行った。
(12) Surface hardness In Test Examples 3 and 4, the anisotropic light diffusion film of each test example was subjected to a temperature of 23 against the surface of the second layer of the sample based on JIS K5600-5-4 (1999). The test was conducted under the conditions of ±2° C., relative humidity of 50%±10° C., and load of 750 gf, and the surface hardness was measured.
 (13)表面粗さ
 ISO1997記載の方法に準じて、粗さ曲線用カットオフ値:0.8mm、カットオフ値:2.5μm、フィルター:GAUSS、Profile:R、N:5として接触式表面粗さ(算術平均高さRa)を測定した。
(13) Surface roughness According to the method described in ISO1997, cutoff value for roughness curve: 0.8 mm, cutoff value: 2.5 μm, filter: GAUSS, Profile: R, N: contact type surface roughness as 5 height (arithmetic mean height Ra) was measured.
 (14)引張強度
 JIS K7161-1記載の方法に準じて、試験長:50mm、試験幅:15mm、試験速度:200mm/min、試験温度:室温として引張強度を測定した。
 また、MD方向の引張強度σMD、TD方向の引張強度σTDより引張強度比σMD/σTDを算出した。
(14) Tensile strength Tensile strength was measured according to the method described in JIS K7161-1, with a test length of 50 mm, a test width of 15 mm, a test speed of 200 mm/min, and a test temperature of room temperature.
Also, the tensile strength ratio σ MDTD was calculated from the tensile strength σ MD in the MD direction and the tensile strength σ TD in the TD direction.
 <<試験例1>>
 <試験例1-1>
 樹脂A-1 60質量%及び樹脂B-1 40質量%を十分混合した後、定質量フィーダーにて供給しながら、Φ25mmの二軸押出機にて、240℃で押出混錬(吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=0.016(kg/h/rpm))し、キャスト速度0.8m/minで冷却固化して、厚み69μmの異方性光拡散フィルムを作製した。
 得られた異方性光拡散フィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-1からなる分散相(II)が分散してなる海島構造を有していることが確認された。
<<Test Example 1>>
<Test Example 1-1>
After sufficiently mixing 60% by mass of resin A-1 and 40% by mass of resin B-1, while feeding with a constant mass feeder, extrusion kneading at 240 ° C. with a Φ 25 mm twin screw extruder (discharge rate Q ( kg/h) and the screw rotation speed N (rpm): Q/N = 0.016 (kg/h/rpm)), and cooled and solidified at a casting speed of 0.8 m/min to form an anisotropic light with a thickness of 69 µm. A diffusion film was produced.
Observation of the cross section of the obtained anisotropic light-diffusing film with a transmission electron microscope revealed that a dispersed phase composed of resin B-1 extending in the MD direction was present in the continuous phase (I) composed of resin A-1. It was confirmed that (II) has a sea-island structure in which (II) is dispersed.
 <試験例1-2>
 樹脂A-2 60質量%及び樹脂B-1 40質量%を用いた以外は試験例1-1と同様にして、厚み73μmの異方性光拡散フィルムを作製した。
 得られた異方性光拡散フィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-2からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-1からなる分散相(II)が分散してなる海島構造を有していることが確認された。
<Test Example 1-2>
An anisotropic light diffusion film having a thickness of 73 μm was produced in the same manner as in Test Example 1-1, except that 60% by mass of Resin A-2 and 40% by mass of Resin B-1 were used.
When the cross section of the obtained anisotropic light diffusion film was observed with a transmission electron microscope, it was found that a dispersed phase made of resin B-1 exhibiting a shape extending in the MD direction was present in the continuous phase (I) made of resin A-2. It was confirmed that (II) has a sea-island structure in which (II) is dispersed.
 <試験例1-3>
 樹脂A-1 60質量%及び樹脂B-2 40質量%を用いた以外は試験例1-1と同様にして、厚み72μmの異方性光拡散フィルムを作製した。
 得られた異方性光拡散フィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-2からなる分散相(II)が分散してなる海島構造を有していることが確認された。
<Test Example 1-3>
An anisotropic light diffusion film having a thickness of 72 μm was produced in the same manner as in Test Example 1-1, except that 60% by mass of Resin A-1 and 40% by mass of Resin B-2 were used.
Observation of the cross section of the obtained anisotropic light-diffusing film with a transmission electron microscope revealed that a dispersed phase made of resin B-2, which had a shape extending in the MD direction, was present in the continuous phase (I) made of resin A-1. It was confirmed that (II) has a sea-island structure in which (II) is dispersed.
 <試験例1-4>
 樹脂A-2 60質量%及び樹脂B-2 40質量%を用いた以外は試験例1-1と同様にして、厚み69μmの異方性光拡散フィルムを作製した。
 得られた異方性光拡散フィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-2からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-2からなる分散相(II)が分散してなる海島構造を有していることが確認された。
<Test Example 1-4>
An anisotropic light diffusion film having a thickness of 69 μm was produced in the same manner as in Test Example 1-1 except that 60% by mass of Resin A-2 and 40% by mass of Resin B-2 were used.
Observation of the cross section of the obtained anisotropic light-diffusing film with a transmission electron microscope revealed that a dispersed phase composed of resin B-2 exhibiting a shape extending in the MD direction was present in the continuous phase (I) composed of resin A-2. It was confirmed that (II) has a sea-island structure in which (II) is dispersed.
 <試験例1-5>
 樹脂A-5 60質量%及び樹脂B-5 40質量%を十分混合した後、定質量フィーダーにて供給しながら、Φ25mm二軸押出機にて、280℃で押出混錬(吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=0.043(kg/h/rpm))し、キャスト速度1.9m/minで冷却固化して、厚み60μmの異方性光拡散フィルムを作製した。
 得られたフィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-5からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-5からなる分散相(II)が分散してなる海島構造を有していることが確認された。
<Test Example 1-5>
After thoroughly mixing 60% by mass of resin A-5 and 40% by mass of resin B-5, while feeding with a constant mass feeder, extrusion kneading at 280 ° C. with a Φ 25 mm twin screw extruder (discharge amount Q (kg /h) and the screw rotation speed N (rpm) ratio: Q/N = 0.043 (kg/h/rpm)), and cooled and solidified at a casting speed of 1.9 m/min to form an anisotropic light diffusion film with a thickness of 60 μm. A film was produced.
When the cross section of the obtained film was observed with a transmission electron microscope, it was found that the dispersed phase (II) made of resin B-5, which had a shape extending in the MD direction, was present in the continuous phase (I) made of resin A-5. was confirmed to have a sea-island structure in which
 <試験例1-6>
 樹脂B-3 60質量%、樹脂B-5 28質量%及び樹脂B-6 12質量%を十分混合した後、定質量フィーダーにて供給しながら、Φ25mm二軸押出機にて、280℃で押出混錬(吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=0.043(kg/h/rpm))し、キャスト速度1.5m/minで冷却固化して、厚み160μmのフィルムを作製した。
 得られたフィルムを切り出して、90°傾けた後、延伸温度150℃に昇温したテンターにて通紙し、MDに3倍延伸して、厚み68μmの異方性光拡散フィルムを作製した。
 得られたフィルムの断面を透過型電子顕微鏡で観察したところ、樹脂B-3からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-5及び樹脂B-6からなる分散相(II)が分散してなる海島構造を有していることが確認された。
<Test Example 1-6>
After thoroughly mixing 60% by mass of resin B-3, 28% by mass of resin B-5 and 12% by mass of resin B-6, extruding at 280 ° C. with a Φ 25 mm twin screw extruder while feeding with a constant mass feeder. Knead (ratio of discharge rate Q (kg/h) and screw rotation speed N (rpm): Q/N = 0.043 (kg/h/rpm)), and cool and solidify at a casting speed of 1.5 m/min. A film with a thickness of 160 μm was produced by
The resulting film was cut out, tilted at 90°, passed through a tenter heated to a stretching temperature of 150°C, and stretched 3 times in the MD to produce an anisotropic light diffusion film with a thickness of 68 µm.
When the cross section of the obtained film was observed with a transmission electron microscope, it was found that the continuous phase (I) made of resin B-3 had a shape extending in the MD direction, made of resin B-5 and resin B-6. It was confirmed to have a sea-island structure in which the dispersed phase (II) is dispersed.
 <試験例1-7>
 樹脂B-1 60質量%及び樹脂B-6 40質量%を十分混合した後、定質量フィーダーにて供給しながら、Φ25mm二軸押出機にて280℃で押出混錬(吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=0.046(kg/h/rpm))し、キャスト速度4.7m/minで冷却固化して、厚み62μmのフィルムを作製した。
 得られたフィルムの断面を透過型電子顕微鏡で観察したところ、樹脂B-1からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-6からなる分散相(II)が分散してなる海島構造を有していることが確認された。
<Test Example 1-7>
After sufficiently mixing 60% by mass of resin B-1 and 40% by mass of resin B-6, while feeding with a constant mass feeder, extrusion kneading at 280 ° C. with a Φ 25 mm twin screw extruder (discharge Q (kg / h) and the screw rotation speed N (rpm): Q/N = 0.046 (kg/h/rpm)), and cooled and solidified at a casting speed of 4.7 m/min to produce a film with a thickness of 62 µm. .
When the cross section of the obtained film was observed with a transmission electron microscope, it was found that the dispersed phase (II) made of resin B-6, which had a shape extending in the MD direction, was present in the continuous phase (I) made of resin B-1. was confirmed to have a sea-island structure in which
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 試験例1-1~試験例1-4で得られた異方性光拡散フィルムはいずれも、連続相(I)中に、MD方向に延びた形状を呈する分散相(II)が分散してなる海島構造を有しており、前記連続相(I)は、平均屈折率1.53以下の熱可塑性樹脂を含んでいるものであった。
 上記試験例並びにこれまで本発明者が行ってきた試験結果から、連続相(I)及び分散相(II)による海島構造を有し、かつ、前記連続相(I)及び分散相(II)の少なくとも一方が、平均屈折率1.53以下の熱可塑性樹脂を含めば、異方光拡散性及び低反射性を兼備することができるものと考えることができる。
Each of the anisotropic light diffusion films obtained in Test Examples 1-1 to 1-4 has a sea-island structure in which the dispersed phase (II) having a shape extending in the MD direction is dispersed in the continuous phase (I). The continuous phase (I) contained a thermoplastic resin having an average refractive index of 1.53 or less.
From the above test examples and the results of the tests conducted by the present inventors so far, it has been found that the If at least one of them contains a thermoplastic resin having an average refractive index of 1.53 or less, it can be considered that both anisotropic light diffusibility and low reflectivity can be achieved.
 また、試験例1-3及び試験例1-4で得られた異方性光拡散フィルムは、試験例1-5~1-7で得られたフィルムに比べて、TD方向及び厚み方向の分散径が大きく、かつ、分散径の比率(MD分散径/TD分散径)及び屈折率差がより適当であった。試験例1-1及び試験例1-2も平均屈折率1.53以下の熱可塑性樹脂を含むものであり、連続相(I)と分散相(II)との屈折率差も同程度であることから、厚み方向、MD方向及びTD方向の分散径並びに分散径の比率(MD分散径/TD分散径)は試験例1-3及び試験例1-4と同程度になると推測される。よって、試験例1-1~試験例1-4で得られた異方性光拡散フィルムは、光を特定の方向に拡散させる異方光拡散性、及び、低反射性がさらに優れたものとなっている、と考えることができる。 In addition, the anisotropic light diffusion films obtained in Test Examples 1-3 and 1-4 had dispersion diameters in the TD direction and thickness direction as compared with the films obtained in Test Examples 1-5 to 1-7. It was large, and the ratio of dispersion diameter (MD dispersion diameter/TD dispersion diameter) and refractive index difference were more appropriate. Test Examples 1-1 and 1-2 also contain a thermoplastic resin having an average refractive index of 1.53 or less, and the refractive index difference between the continuous phase (I) and the dispersed phase (II) is about the same. Therefore, it is estimated that the dispersion diameters in the thickness direction, the MD direction and the TD direction and the ratio of the dispersion diameters (MD dispersion diameter/TD dispersion diameter) are approximately the same as those in Test Examples 1-3 and 1-4. Therefore, the anisotropic light diffusing films obtained in Test Examples 1-1 to 1-4 have further excellent anisotropic light diffusibility for diffusing light in a specific direction and low reflectivity. can be considered to exist.
 <<試験例2>>
 <試験例2-1>
 第1の層形成用組成物として、樹脂A-1 60質量%及び樹脂B-2 40質量%を十分混合し、これらを、オーブンを用いて110℃で6時間保持するように予備加熱した後、押出機(シリンダー温度:240℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=5.6×10-3(kg/h/rpm))へ供給して溶融した。
 また、第2の層形成用組成物として、樹脂A-1をオーブンを用いて110℃で6時間保持するように予備加熱した後、押出機(シリンダー温度:240℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=6.8×10-3(kg/h/rpm))へ供給して溶融した。
 その後、キャスト速度3.6m/minで冷却固化して、厚み68μmの第1の層を中間層とし、合計厚み22μmの第2の層を表裏層とする、厚み90μmの異方光拡散フィルム(第2の層/第1の層/第2の層:11μm/68μm/11μm)を作製した。
<<Test Example 2>>
<Test Example 2-1>
As the composition for forming the first layer, 60% by mass of resin A-1 and 40% by mass of resin B-2 are sufficiently mixed, and preheated using an oven to hold at 110 ° C. for 6 hours. , extruder (cylinder temperature: 240 ° C., ratio of discharge rate Q (kg / h) and screw rotation speed N (rpm): Q / N = 5.6 × 10 -3 (kg / h / rpm)) and melted.
In addition, as the second layer-forming composition, resin A-1 was preheated using an oven so as to be held at 110 ° C. for 6 hours, and then extruded (cylinder temperature: 240 ° C., discharge amount Q (kg / h) and the ratio of screw rotation speed N (rpm): Q/N=6.8×10 −3 (kg/h/rpm)) and melted.
After that, it is cooled and solidified at a casting speed of 3.6 m / min, and an anisotropic light diffusion film with a thickness of 90 μm with a first layer having a thickness of 68 μm as an intermediate layer and a second layer having a total thickness of 22 μm as front and back layers ( second layer/first layer/second layer: 11 μm/68 μm/11 μm).
 なお、得られた異方性光拡散フィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(II)中に、MD方向に延びた形状を呈する、樹脂B-2からなる分散相(I)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
 この際、第1の層は、分散相が含まれており、第2の層との界面まで分散相が確認できるため、第1の層と第2の層の界面を確認することができた。
A cross section of the obtained anisotropic light-diffusing film was observed with a transmission electron microscope. A first layer having a sea-island structure in which the dispersed phase (I) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
 <試験例2-2>
 第1の層形成に際して、押出機(シリンダー温度:240℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=2.4×10-1(kg/h/rpm))へ供給して溶融したこと、及び、第2の層形成に際して、押出機(シリンダー温度:240℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=6.8×10-3(kg/h/rpm))へ供給し、キャスト速度2.0m/minで冷却固化した以外は、実施例1と同様にして、厚み75μmの異方光拡散フィルム(第2の層/第1の層/第2の層:20μm/35μm/20μm)を作製した。
<Test Example 2-2>
When forming the first layer, the extruder (cylinder temperature: 240 ° C., ratio of discharge rate Q (kg / h) and screw rotation speed N (rpm): Q / N = 2.4 × 10 -1 (kg / h / rpm)), and when forming the second layer, the extruder (cylinder temperature: 240 ° C., the ratio of the discharge rate Q (kg / h) and the screw rotation speed N (rpm): Q /N = 6.8 × 10 -3 (kg / h / rpm)) and cooled and solidified at a casting speed of 2.0 m / min. A diffusion film (second layer/first layer/second layer: 20 μm/35 μm/20 μm) was prepared.
 なお、得られた異方性光拡散フィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(II)中に、MD方向に延びた形状を呈する、樹脂B-2からなる分散相(I)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
A cross section of the obtained anisotropic light-diffusing film was observed with a transmission electron microscope. A first layer having a sea-island structure in which the dispersed phase (I) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
 <試験例2-3>
 第1の層形成用組成物として、樹脂A-3 60質量%及び樹脂B-2 40質量%を十分混合し、これらを、オーブンを用いて90℃で6時間保持するように予備加熱した。また、第2の層形成用組成物として、樹脂A-3をオーブンを用いて90℃で6時間保持するように予備加熱した後、押出機に供給した以外は試験例2-2と同様にして、厚み73μmの異方光拡散フィルム(第2の層/第1の層/第2の層:19.5μm/34μm/19.5μm)を作製した。
<Test Example 2-3>
As the composition for forming the first layer, 60% by mass of Resin A-3 and 40% by mass of Resin B-2 were thoroughly mixed and preheated using an oven to hold at 90° C. for 6 hours. Further, as the second layer-forming composition, the same procedure as in Test Example 2-2 was performed except that resin A-3 was preheated in an oven so as to be held at 90° C. for 6 hours, and then supplied to the extruder. Thus, an anisotropic light diffusion film (second layer/first layer/second layer: 19.5 μm/34 μm/19.5 μm) having a thickness of 73 μm was produced.
 なお、得られた異方性光拡散フィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-3からなる連続相(II)中に、MD方向に延びた形状を呈する、樹脂B-2からなる分散相(I)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
When the cross section of the obtained anisotropic light diffusion film was observed with a transmission electron microscope, it was found that the continuous phase (II) made of the resin A-3 was composed of the resin B-2 exhibiting a shape extending in the MD direction. A first layer having a sea-island structure in which the dispersed phase (I) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
 <試験例2-4>
 第1の層形成用組成物として、樹脂A-1 66質量%及び樹脂B-2 36質量%を用いた以外は試験例2-2と同様にして、厚み69μmの異方光拡散フィルム(第2の層/第1の層/第2の層:18.5μm/32μm/18.5μm)を作製した。
<Test Example 2-4>
An anisotropic light diffusion film having a thickness of 69 μm (first 2 layers/first layer/second layer: 18.5 μm/32 μm/18.5 μm).
 なお、得られた異方性光拡散フィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(II)中に、MD方向に延びた形状を呈する、樹脂B-2からなる分散相(I)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
A cross section of the obtained anisotropic light-diffusing film was observed with a transmission electron microscope. A first layer having a sea-island structure in which the dispersed phase (I) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
 <試験例2-5>
 第1の層形成用組成物として、樹脂A-3 60質量%及び樹脂B-2 40質量%を十分混合し、これらを、オーブンを用いて90℃で6時間保持するように予備加熱した。また、第2の層形成に際して、樹脂A-1を押出機(シリンダー温度:230℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=7.0×10-3(kg/h/rpm))へ供給しキャスト速度2.2m/minで冷却固化した以外は試験例2-2と同様にして、厚み68μmの異方光拡散フィルム(第2の層/第1の層/第2の層:18.5μm/31μm/18.5μm)を作製した。
<Test Example 2-5>
As the composition for forming the first layer, 60% by mass of Resin A-3 and 40% by mass of Resin B-2 were thoroughly mixed and preheated using an oven to hold at 90° C. for 6 hours. Further, when forming the second layer, resin A-1 was extruded (cylinder temperature: 230 ° C., ratio of discharge amount Q (kg / h) and screw rotation speed N (rpm): Q / N = 7.0 × 10 -3 (kg/h/rpm)) and cooled and solidified at a casting speed of 2.2 m/min in the same manner as in Test Example 2-2, an anisotropic light diffusion film (second layer /first layer/second layer: 18.5 μm/31 μm/18.5 μm).
 なお、得られた異方性光拡散フィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-3からなる連続相(II)中に、MD方向に延びた形状を呈する、樹脂B-2からなる分散相(I)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
When the cross section of the obtained anisotropic light diffusion film was observed with a transmission electron microscope, it was found that the continuous phase (II) made of the resin A-3 was composed of the resin B-2 exhibiting a shape extending in the MD direction. A first layer having a sea-island structure in which the dispersed phase (I) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
 <試験例2-6>
 樹脂A-5 60質量%及び樹脂B-5 40質量%を十分混合し、これらを、オーブンを用いて120℃で6時間保持するように予備加熱した後、定質量フィーダーにて供給しながら、押出機(シリンダー温度:280℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=4.3×10-2(kg/h/rpm))へ供給して溶融した。その後、キャスト速度1.9m/minで冷却固化して厚み72μmのフィルムを作製した。
<Test Example 2-6>
60% by mass of resin A-5 and 40% by mass of resin B-5 were thoroughly mixed, preheated in an oven to hold at 120° C. for 6 hours, and then supplied by a constant mass feeder. Supplied to the extruder (cylinder temperature: 280 ° C., ratio of discharge rate Q (kg / h) and screw rotation speed N (rpm): Q / N = 4.3 × 10 -2 (kg / h / rpm)) melted. After that, it was cooled and solidified at a casting speed of 1.9 m/min to prepare a film having a thickness of 72 μm.
 なお、得られたフィルムの断面を透過型電子顕微鏡で観察したところ、樹脂A-5からなる連続相(II)中に、MD方向に延びた形状を呈する、樹脂B-5からなる分散相(I)が分散してなる海島構造を有していることが確認された。 When the cross section of the obtained film was observed with a transmission electron microscope, it was found that the dispersed phase ( It was confirmed that I) has a dispersed sea-island structure.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 試験例2-1~2-4で得られた異方性光拡散フィルムはいずれも、分散相(I)の大きさが厚み方向中央部と厚み方向表裏部で大きく変わらない結果となった。試験例2-5も第2の層を備えており、連続相(I)と分散相(II)との屈折率差も同程度であることから、厚み方向中央部と厚み方向表裏部のそれぞれにおける、厚み方向、MD方向及びTD方向の分散径並びに分散径の比率(MD分散径/TD分散径)は試験例2-1~2-4と同程度になると推測される。
 上記試験例並びにこれまで本発明者が行ってきた試験結果から、2つの層の連続相を同種の熱可塑性樹脂から形成することで、異方光拡散性及び低反射性を兼備することができるものと考えることができる。
 試験例2-1~2-5で得られた異方性光拡散フィルムはいずれも、高輝度性と異方光拡散性を兼ね備えていた。また、低反射性も備えていた。
In all of the anisotropic light-diffusing films obtained in Test Examples 2-1 to 2-4, the size of the dispersed phase (I) was not significantly different between the central portion in the thickness direction and the front and back portions in the thickness direction. Test Example 2-5 also has a second layer, and the refractive index difference between the continuous phase (I) and the dispersed phase (II) is about the same. , the dispersion diameters in the thickness direction, the MD direction and the TD direction and the ratio of the dispersion diameters (MD dispersion diameter/TD dispersion diameter) are estimated to be approximately the same as in Test Examples 2-1 to 2-4.
From the above test examples and the results of tests conducted by the present inventors so far, by forming the continuous phase of the two layers from the same type of thermoplastic resin, it is possible to achieve both anisotropic light diffusion and low reflectivity. can be thought of as
All of the anisotropic light diffusion films obtained in Test Examples 2-1 to 2-5 had both high brightness and anisotropic light diffusion. It also had low reflectivity.
 <<試験例3>>
 <試験例3-1>
 第1の層形成用組成物として、樹脂A-4 60質量%及び樹脂B-2 40質量%を十分混合し、これらを、オーブンを用いて110℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:230~240℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=2.4×10-1(kg/h/rpm))へ供給して溶融した。
 他方、第2の層形成用組成物として、樹脂A-4を、オーブンを用いて110℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:230~240℃)へ供給して溶融した。
 その後、キャスト速度2.0m/minで冷却固化して、厚み29μmの第1の層を中間層とし、合計厚み33μmの第2の層を表裏層とする、厚み62μmの異方光拡散フィルム(第2の層/第1の層/第2の層:16.5μm/29μm/16.5μm)を作製した。
<<Test Example 3>>
<Test Example 3-1>
As the composition for forming the first layer, 60% by mass of resin A-4 and 40% by mass of resin B-2 are thoroughly mixed, and preheated using an oven so as to be held at 110 ° C. for 17 hours. , extruder (cylinder temperature: 230 to 240 ° C., ratio of discharge rate Q (kg / h) and screw rotation speed N (rpm): Q / N = 2.4 × 10 -1 (kg / h / rpm)) and melted.
On the other hand, as the composition for forming the second layer, resin A-4 was preheated using an oven so as to be held at 110° C. for 17 hours, and then supplied to an extruder (cylinder temperature: 230 to 240° C.). melted.
After that, it is cooled and solidified at a casting speed of 2.0 m / min, and an anisotropic light diffusion film with a thickness of 62 μm (with a first layer having a thickness of 29 μm as an intermediate layer and a second layer having a total thickness of 33 μm as front and back layers) second layer/first layer/second layer: 16.5 μm/29 μm/16.5 μm).
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-4からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-2からなる分散相(II)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
 この際、第1の層は、分散相が含まれており、第2の層との界面まで分散相が確認できるため、第1の層と第2の層の界面を確認することができた。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that the continuous phase (I) composed of resin A-4 was composed of resin B-2, which exhibited a shape extending in the MD direction. A first layer having a sea-island structure in which the dispersed phase (II) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
 <試験例3-2>
 第1の層形成用組成物として、樹脂A-1 60質量%及び樹脂B-2 40質量%を十分混合し、これらを、オーブンを用いて110℃で17時間保持するように予備加熱した。
 他方、第2の層形成用組成物として、樹脂A-1を、オーブンを用いて110℃で17時間保持するように予備加熱した後、押出機に供給した以外は、試験例3-1と同様にして、厚み81μmの異方光拡散フィルム(第2の層/第1の層/第2の層:25.5μm/30μm/25.5μm)を作製した。
<Test Example 3-2>
As the composition for forming the first layer, 60% by mass of Resin A-1 and 40% by mass of Resin B-2 were thoroughly mixed and preheated using an oven to hold at 110° C. for 17 hours.
On the other hand, as the second layer-forming composition, Resin A-1 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder, except that it was supplied to the extruder. Similarly, an 81 μm-thick anisotropic light diffusion film (second layer/first layer/second layer: 25.5 μm/30 μm/25.5 μm) was produced.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-2からなる分散相(II)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that the continuous phase (I) made of the resin A-1 was made of the resin B-2 exhibiting a shape extending in the MD direction. A first layer having a sea-island structure in which the dispersed phase (II) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
 <試験例3-3>
 第1の層形成用組成物として、樹脂A-1 60質量%及び樹脂B-2 40質量%を十分混合し、これらを、オーブンを用いて110℃で17時間保持するように予備加熱した。
 他方、第2の層形成用組成物として、樹脂A-4をオーブンを用いて110℃で17時間保持するように予備加熱した後、押出機に供給した以外は、試験例3-1と同様にして、厚み76μmの異方光拡散フィルム(第2の層/第1の層/第2の層:23.5μm/29μm/23.5μm)を作製した。
<Test Example 3-3>
As the composition for forming the first layer, 60% by mass of Resin A-1 and 40% by mass of Resin B-2 were thoroughly mixed and preheated using an oven to hold at 110° C. for 17 hours.
On the other hand, as the second layer-forming composition, resin A-4 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder Same as Test Example 3-1. Then, an anisotropic light diffusion film (second layer/first layer/second layer: 23.5 μm/29 μm/23.5 μm) having a thickness of 76 μm was produced.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-2からなる分散相(II)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that the continuous phase (I) made of the resin A-1 was made of the resin B-2 exhibiting a shape extending in the MD direction. A first layer having a sea-island structure in which the dispersed phase (II) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
 <試験例3-4>
 第1の層形成用組成物として、樹脂A-4 59質量%及び樹脂C-1 41質量%を十分混合し、これらを、オーブンを用いて85℃で17時間保持するように予備加熱した。
 他方、第2の層形成用組成物として、樹脂A-4をオーブンを用いて110℃で17時間保持するように予備加熱した後、押出機に供給した以外は、試験例3-1と同様にして、厚み67μmの異方光拡散フィルム(第2の層/第1の層/第2の層:19μm/29μm/19μm)を作製した。
<Test Example 3-4>
As the first layer-forming composition, 59% by weight of Resin A-4 and 41% by weight of Resin C-1 were thoroughly mixed and preheated using an oven to hold at 85° C. for 17 hours.
On the other hand, as the second layer-forming composition, resin A-4 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder Same as Test Example 3-1. Then, an anisotropic light diffusion film (second layer/first layer/second layer: 19 μm/29 μm/19 μm) having a thickness of 67 μm was produced.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-4からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂C-1からなる分散相(II)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that the continuous phase (I) composed of resin A-4 was composed of resin C-1, which exhibited a shape extending in the MD direction. A first layer having a sea-island structure in which the dispersed phase (II) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
 <試験例3-5>
 第1の層形成用組成物として、樹脂A-4 55質量%及び樹脂B-4 45質量%を十分混合し、これらを、オーブンを用いて110℃で17時間保持するように予備加熱した。
 他方、第2の層形成用組成物として、樹脂A-4をオーブンを用いて110℃で17時間保持するように予備加熱した後、押出機に供給した以外は、試験例3-1と同様にして、厚み65μmの異方光拡散フィルム(第2の層/第1の層/第2の層:18μm/29μm/18μm)を作製した。
<Test Example 3-5>
As the composition for forming the first layer, 55% by weight of Resin A-4 and 45% by weight of Resin B-4 were thoroughly mixed and preheated using an oven to hold at 110° C. for 17 hours.
On the other hand, as the second layer-forming composition, resin A-4 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder Same as Test Example 3-1. Then, an anisotropic light diffusion film (second layer/first layer/second layer: 18 μm/29 μm/18 μm) having a thickness of 65 μm was produced.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-4からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-4からなる分散相(II)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that the continuous phase (I) made of resin A-4 was made of resin B-4, which exhibited a shape extending in the MD direction. A first layer having a sea-island structure in which the dispersed phase (II) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
 <試験例3-6>
 第1の層形成用組成物として、樹脂A-1 59質量%及び樹脂C-1 41質量%を十分混合し、これらを、オーブンを用いて85℃で17時間保持するように予備加熱した。
 他方、第2の層形成用組成物として、樹脂A-1をオーブンを用いて110℃で17時間保持するように予備加熱した後、押出機に供給した以外は、試験例3-1と同様にして、厚み80μmの異方光拡散フィルム(第2の層/第1の層/第2の層:25.5μm/29μm/25.5μm)を作製した。
<Test Example 3-6>
As the composition for forming the first layer, 59% by weight of Resin A-1 and 41% by weight of Resin C-1 were thoroughly mixed and preheated using an oven to hold at 85° C. for 17 hours.
On the other hand, as the second layer-forming composition, resin A-1 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder Same as Test Example 3-1. Then, an anisotropic light diffusion film (second layer/first layer/second layer: 25.5 μm/29 μm/25.5 μm) having a thickness of 80 μm was produced.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂C-1からなる分散相(II)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that the continuous phase (I) made of resin A-1 was made of resin C-1, which exhibited a shape extending in the MD direction. A first layer having a sea-island structure in which the dispersed phase (II) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
 <試験例3-7>
 第1の層形成用組成物として、樹脂A-1 55質量%及び樹脂B-4 45質量%を十分混合し、これらを、オーブンを用いて110℃で17時間保持するように予備加熱した。
 他方、第2の層形成用組成物として、樹脂A-1をオーブンを用いて110℃で17時間保持するように予備加熱した後、押出機に供給した以外は、試験例3-1と同様にして、厚み73μmの異方光拡散フィルム(第2の層/第1の層/第2の層:22.5μm/28μm/22.5μm)を作製した。
<Test Example 3-7>
As the composition for forming the first layer, 55% by mass of Resin A-1 and 45% by mass of Resin B-4 were thoroughly mixed and preheated using an oven to hold at 110° C. for 17 hours.
On the other hand, as the second layer-forming composition, resin A-1 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to the extruder Same as Test Example 3-1. Then, an anisotropic light diffusion film (second layer/first layer/second layer: 22.5 μm/28 μm/22.5 μm) having a thickness of 73 μm was produced.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-4からなる分散相(II)が分散してなる海島構造を有する、第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that the continuous phase (I) made of resin A-1 was made of resin B-4, which exhibited a shape extending in the MD direction. A first layer having a sea-island structure in which the dispersed phase (II) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
 <試験例3-8>
 樹脂A-5 60質量%及び樹脂B-5 40質量%を十分混合し、これらを、オーブンを用いて120℃で6時間保持するように予備加熱した後、定質量フィーダーにて供給しながら、押出機(シリンダー温度:280℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=4.3×10-2(kg/h/rpm))へ供給して溶融した。その後、キャスト速度1.9m/min冷却固化して厚み72μmのフィルムを作製した。
<Test Example 3-8>
60% by mass of resin A-5 and 40% by mass of resin B-5 were thoroughly mixed, preheated in an oven to hold at 120° C. for 6 hours, and then supplied by a constant mass feeder. Supplied to the extruder (cylinder temperature: 280 ° C., ratio of discharge rate Q (kg / h) and screw rotation speed N (rpm): Q / N = 4.3 × 10 -2 (kg / h / rpm)) melted. After that, it was cooled and solidified at a casting speed of 1.9 m/min to prepare a film having a thickness of 72 μm.
 なお、得られたフィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-5からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-5からなる分散相(II)が分散してなる海島構造を有していることが確認された。 When the cross section of the obtained film was observed with a scanning electron microscope, it was found that the dispersed phase ( It was confirmed that II) has a dispersed sea-island structure.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 試験例3-1~3-7で得られた異方性光拡散フィルムはいずれも表面硬度と耐熱性を備えていた。また、試験例3-1~3-7で得られた異方性光拡散フィルムは、分散相(I)の大きさが厚み方向中央部と厚み方向表裏部で大きく変わらず、異方光拡散性及び低反射性にも優れていた。
 他方、試験例3-8は、低反射性に劣り、かつ、第2の層のガラス転移温度が高いにもかかわらず、表面硬度は低いものであった。
All of the anisotropic light diffusion films obtained in Test Examples 3-1 to 3-7 had surface hardness and heat resistance. In addition, in the anisotropic light diffusion films obtained in Test Examples 3-1 to 3-7, the size of the dispersed phase (I) did not change greatly between the central portion in the thickness direction and the front and back portions in the thickness direction. It was also excellent in low reflectivity.
On the other hand, Test Example 3-8 was inferior in low reflectivity and had low surface hardness although the glass transition temperature of the second layer was high.
 <<試験例4>>
 <試験例4-1>
 第1の層形成用組成物として、樹脂A-3 58質量%及び樹脂B-4 42質量%を十分混合し、オーブンを用いて90℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:220℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=2.4×10-1(kg/h/rpm))へ供給して溶融した。
 また、第2の層形成用組成物として、樹脂A-3を、オーブンを用いて90℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:220℃)へ供給して溶融した。
 その後、キャスト速度2.2m/minで冷却固化して、厚み83μmの異方光拡散フィルム(第2の層/第1の層/第2の層:24.5μm/34μm/24.5μm)を作製した。
<<Test Example 4>>
<Test Example 4-1>
As the first layer-forming composition, 58% by mass of resin A-3 and 42% by mass of resin B-4 are thoroughly mixed, preheated using an oven to hold at 90 ° C. for 17 hours, and then extruded. (Cylinder temperature: 220 ° C., ratio of discharge rate Q (kg / h) and screw rotation speed N (rpm): Q / N = 2.4 × 10 -1 (kg / h / rpm)) and melted bottom.
In addition, as the second layer-forming composition, resin A-3 was preheated using an oven so as to be held at 90° C. for 17 hours, and then supplied to an extruder (cylinder temperature: 220° C.) and melted. bottom.
After that, it is cooled and solidified at a casting speed of 2.2 m/min to form an anisotropic light diffusion film having a thickness of 83 μm (second layer/first layer/second layer: 24.5 μm/34 μm/24.5 μm). made.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-3からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-4からなる分散相(II)が分散する第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
 この際、第1の層は、分散相が含まれており、第2の層との界面まで分散相が確認できるため、第1の層と第2の層の界面を確認することができた。
 試験例4-1の異方光拡散フィルムのMD断面、TD断面をそれぞれ図2、図3に示す。図中の矢印は、第1の層と第2の層との界面を示している。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that the continuous phase (I) made of the resin A-3 was made of the resin B-4 exhibiting a shape extending in the MD direction. A first layer in which the dispersed phase (II) is dispersed was confirmed.
It was also confirmed that the second layer did not have a dispersed phase.
At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
FIGS. 2 and 3 show the MD cross section and TD cross section of the anisotropic light diffusion film of Test Example 4-1, respectively. Arrows in the figure indicate the interface between the first layer and the second layer.
 <試験例4-2>
 第1の層形成用組成物として、樹脂A-3 58質量%、樹脂B-3 5質量%及び樹脂B-4 37質量%を用いた以外は試験例4-2と同様にして、厚み82μmの異方光拡散フィルム(第2の層/第1の層/第2の層:24.5μm/33μm/24.5μm)を作製した。
<Test Example 4-2>
In the same manner as in Test Example 4-2 except that 58% by mass of resin A-3, 5% by mass of resin B-3, and 37% by mass of resin B-4 were used as the first layer-forming composition, the thickness was 82 μm. of the anisotropic light diffusion film (second layer/first layer/second layer: 24.5 μm/33 μm/24.5 μm).
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-3からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-3及び樹脂B-4からなる分散相(II)が分散する第1の層が確認された。分散相(II)中にさらに分散する成分が観察されなかったので、樹脂B-3及び樹脂B-4は分散相(II)中で相溶していると考えられる。
 また、第2の層は、分散相を有していないことが確認された。
 この際、第1の層は、分散相が含まれており、第2の層との界面まで分散相が確認できるため、第1の層と第2の層の界面を確認することができた。
 試験例4-2の異方光拡散フィルムのMD断面、TD断面をそれぞれ図4、図5に示す。図中の矢印は、第1の層と第2の層との界面を示している。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, resin B-3 and resin A first layer in which the dispersed phase (II) composed of B-4 was dispersed was confirmed. It is believed that Resin B-3 and Resin B-4 are compatible in dispersed phase (II) since no further dispersed components were observed in dispersed phase (II).
It was also confirmed that the second layer did not have a dispersed phase.
At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
FIGS. 4 and 5 show the MD cross section and TD cross section of the anisotropic light diffusion film of Test Example 4-2, respectively. Arrows in the figure indicate the interface between the first layer and the second layer.
 <試験例4-3>
 第1の層形成用組成物として、樹脂A-4 60質量%、樹脂A-6 20質量%及び樹脂B-2 20質量%を十分混合し、オーブンを用いて110℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:C2~C9:265℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=2.4×10-1(kg/h/rpm))へ供給して溶融した。
 また、第2の層形成用組成物として、樹脂A-4を、オーブンを用いて110℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:250℃)へ供給して溶融した。
 その後、キャスト速度2.2m/minで冷却固化して、厚み72μmの異方光拡散フィルム(第2の層/第1の層/第2の層:21μm/30μm/21μm)を作製した。
<Test Example 4-3>
As the composition for forming the first layer, 60% by mass of resin A-4, 20% by mass of resin A-6 and 20% by mass of resin B-2 are sufficiently mixed and kept at 110 ° C. for 17 hours using an oven. After preheating to , extruder (cylinder temperature: C2 to C9: 265 ° C., ratio of discharge amount Q (kg / h) and screw rotation speed N (rpm): Q / N = 2.4 × 10 -1 ( kg/h/rpm)) and melted.
In addition, as the second layer-forming composition, resin A-4 was preheated using an oven so as to be held at 110 ° C. for 17 hours, and then supplied to an extruder (cylinder temperature: 250 ° C.) and melted. bottom.
After that, it was cooled and solidified at a casting speed of 2.2 m/min to produce an anisotropic light diffusion film having a thickness of 72 μm (second layer/first layer/second layer: 21 μm/30 μm/21 μm).
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-4からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂A-6及び樹脂B-2からなる分散相(II)が分散する第1の層が確認された。分散相(II)中にさらに分散する成分が観察されたので、樹脂A-6及び樹脂B-2は分散相(II)中で相分離していると考えられる。
 また、第2の層は、分散相を有していないことが確認された。
 この際、第1の層は、分散相が含まれており、第2の層との界面まで分散相が確認できるため、第1の層と第2の層の界面を確認することができた。
 試験例4-3の異方光拡散フィルムのMD断面、TD断面をそれぞれ図6、図7に示す。図中の矢印は、第1の層と第2の層との界面を示している。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, resin A-6 and resin A first layer in which the dispersed phase (II) composed of B-2 was dispersed was confirmed. It is believed that resin A-6 and resin B-2 are phase-separated in dispersed phase (II), since a component further dispersed in dispersed phase (II) was observed.
It was also confirmed that the second layer did not have a dispersed phase.
At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
FIGS. 6 and 7 show MD cross sections and TD cross sections of the anisotropic light diffusion film of Test Example 4-3, respectively. Arrows in the figure indicate the interface between the first layer and the second layer.
 <試験例4-4>
 第1の層形成用組成物として、樹脂A-1 55質量%、樹脂A-6 20質量%及び樹脂B-2 25質量%を十分混合し、押出機(シリンダー温度:C2~C5:260℃、C5~C9:230℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=2.4×10-1(kg/h/rpm))へ供給して溶融した。
 また、第2の層形成用組成物として、樹脂A-1を、オーブンを用いて110℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:230℃)へ供給して溶融した。
 その後、キャスト速度2.2m/minで冷却固化して、厚み78μmの異方光拡散フィルム(第2の層/第1の層/第2の層:23.5μm/31μm/23.5μm)を作製した。
<Test Example 4-4>
As the composition for forming the first layer, 55% by mass of resin A-1, 20% by mass of resin A-6 and 25% by mass of resin B-2 are thoroughly mixed and extruded (cylinder temperature: C2 to C5: 260 ° C. , C5-C9: 230°C, ratio of discharge rate Q (kg/h) and screw rotation speed N (rpm): Q/N = 2.4 × 10 -1 (kg/h/rpm)) melted.
In addition, as the second layer-forming composition, resin A-1 was preheated using an oven so as to be held at 110° C. for 17 hours, and then supplied to an extruder (cylinder temperature: 230° C.) and melted. bottom.
After that, it was cooled and solidified at a casting speed of 2.2 m/min to form an anisotropic light diffusion film having a thickness of 78 μm (second layer/first layer/second layer: 23.5 μm/31 μm/23.5 μm). made.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂A-6及び樹脂B-2からなる分散相(II)が分散する第1の層が確認された。分散相(II)中にさらに分散する成分が観察されたので、樹脂A-6及び樹脂B-2は分散相(II)中で相分離していると考えられる。
 また、第2の層は、分散相を有していないことが確認された。
 この際、第1の層は、分散相が含まれており、第2の層との界面まで分散相が確認できるため、第1の層と第2の層の界面を確認することができた。
 試験例4-4の異方光拡散フィルムのMD断面、TD断面をそれぞれ図8、図9に示す。図中の矢印は、第1の層と第2の層との界面を示している。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, resin A-6 and resin A first layer in which the dispersed phase (II) composed of B-2 was dispersed was confirmed. It is believed that resin A-6 and resin B-2 are phase-separated in dispersed phase (II), since a component further dispersed in dispersed phase (II) was observed.
It was also confirmed that the second layer did not have a dispersed phase.
At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
FIGS. 8 and 9 show the MD cross section and TD cross section of the anisotropic light diffusion film of Test Example 4-4, respectively. Arrows in the figure indicate the interface between the first layer and the second layer.
 <試験例4-5>
 第1の層形成用組成物として、樹脂A-1 59質量%、樹脂B-1 16質量%及び樹脂B-3 25質量%を十分混合し、押出機(シリンダー温度:230℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=2.4×10-1(kg/h/rpm))へ供給して溶融した。
 また、第2の層形成用組成物として、樹脂A-1を、オーブンを用いて110℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:230℃)へ供給して溶融した。
 その後、キャスト速度2.2m/minで冷却固化して、厚み78μmの異方光拡散フィルム(第2の層/第1の層/第2の層:25.5μm/27μm/25.5μm)を作製した。
<Test Example 4-5>
As the composition for forming the first layer, 59% by mass of resin A-1, 16% by mass of resin B-1 and 25% by mass of resin B-3 are sufficiently mixed and extruded (cylinder temperature: 230 ° C., discharge amount Q (kg/h) and screw rotation speed N (rpm) ratio: Q/N=2.4×10 −1 (kg/h/rpm)) and melted.
In addition, as the second layer-forming composition, resin A-1 was preheated using an oven so as to be held at 110° C. for 17 hours, and then supplied to an extruder (cylinder temperature: 230° C.) and melted. bottom.
After that, it was cooled and solidified at a casting speed of 2.2 m/min to form an anisotropic light diffusion film having a thickness of 78 μm (second layer/first layer/second layer: 25.5 μm/27 μm/25.5 μm). made.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-1及び樹脂B-3からなる分散相(II)が分散する第1の層が確認された。分散相(II)中にさらに分散する成分が観察されたので、樹脂B-1及び樹脂B-3は分散相(II)中で相分離していると考えられる。
 また、第2の層は、分散相を有していないことが確認された。
 この際、第1の層は、分散相が含まれており、第2の層との界面まで分散相が確認できるため、第1の層と第2の層の界面を確認することができた。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that resin B-1 and resin A first layer in which the dispersed phase (II) composed of B-3 was dispersed was confirmed. It is believed that resin B-1 and resin B-3 are phase-separated in dispersed phase (II), since a component further dispersed in dispersed phase (II) was observed.
It was also confirmed that the second layer did not have a dispersed phase.
At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
 <試験例4-6>
 第1の層形成用組成物として、樹脂A-1 61質量%、樹脂B-3 23質量%及び樹脂C-2 16質量%を十分混合し、押出機(シリンダー温度240℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=2.4×10-1(kg/h/rpm))へ供給して溶融した。
 また、第2の層形成用組成物として、樹脂A-1を、オーブンを用いて110℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:230℃)へ供給して溶融した。
 その後、キャスト速度2.2m/minで冷却固化して、厚み76μmの異方光拡散フィルム(第2の層/第1の層/第2の層:25μm/26μm/25μm)を作製した。
<Test Example 4-6>
As the composition for forming the first layer, 61% by mass of resin A-1, 23% by mass of resin B-3 and 16% by mass of resin C-2 are sufficiently mixed, extruder (cylinder temperature 240 ° C., discharge amount Q ( (kg/h) and the screw rotation speed N (rpm): Q/N=2.4×10 −1 (kg/h/rpm)) and melted.
In addition, as the second layer-forming composition, resin A-1 was preheated using an oven so as to be held at 110° C. for 17 hours, and then supplied to an extruder (cylinder temperature: 230° C.) and melted. bottom.
After that, it was cooled and solidified at a casting speed of 2.2 m/min to produce an anisotropic light diffusion film having a thickness of 76 μm (second layer/first layer/second layer: 25 μm/26 μm/25 μm).
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-1からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂B-3及び樹脂C-2からなる分散相(II)が分散する第1の層が確認された。分散相(II)中にさらに分散する成分が観察されたので、樹脂B-3及び樹脂C-2は分散相(II)中で相分離していると考えられる。
 また、第2の層は、分散相を有していないことが確認された。
 この際、第1の層は、分散相が含まれており、第2の層との界面まで分散相が確認できるため、第1の層と第2の層の界面を確認することができた。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, resin B-3 and resin A first layer in which dispersed phase (II) consisting of C-2 was dispersed was confirmed. It is believed that resin B-3 and resin C-2 are phase-separated in dispersed phase (II), since a component further dispersed in dispersed phase (II) was observed.
It was also confirmed that the second layer did not have a dispersed phase.
At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
 <試験例4-7>
 第1の層形成用組成物として、樹脂C-3 56質量%及び樹脂C-4 44質量%を十分混合し、オーブンを用いて70℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:230℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=2.4×10-1(kg/h/rpm))へ供給して溶融した。
 また、第2の層形成用組成物として、樹脂C-3を、オーブンを用いて70℃で17時間保持するように予備加熱した後、押出機(シリンダー温度:230℃)へ供給して溶融した。
 その後、キャスト速度2.2m/minで冷却固化して、厚み77μmの異方光拡散フィルム(第2の層/第1の層/第2の層:22.5μm/32μm/22.5μm)を作製した。
<Test Example 4-7>
As the first layer-forming composition, 56% by mass of resin C-3 and 44% by mass of resin C-4 were thoroughly mixed, preheated using an oven to hold at 70 ° C. for 17 hours, and then extruded. (Cylinder temperature: 230 ° C., ratio of discharge rate Q (kg / h) and screw rotation speed N (rpm): Q / N = 2.4 × 10 -1 (kg / h / rpm)) and melted bottom.
In addition, as the second layer-forming composition, resin C-3 is preheated using an oven so as to be held at 70 ° C. for 17 hours, and then supplied to an extruder (cylinder temperature: 230 ° C.) and melted. bottom.
After that, it was cooled and solidified at a casting speed of 2.2 m/min to form an anisotropic light diffusion film having a thickness of 77 μm (second layer/first layer/second layer: 22.5 μm/32 μm/22.5 μm). made.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ樹脂C-3からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂C-4からなる分散相(II)が分散する第1の層が確認された。
 また、第2の層は、分散相を有していないことが確認された。
 この際、第1の層は、分散相が含まれており、第2の層との界面まで分散相が確認できるため、第1の層と第2の層の界面を確認することができた。
 試験例4-7の異方光拡散フィルムのMD断面、TD断面をそれぞれ図10、図11に示す。図中の矢印は、第1の層と第2の層との界面を示している。
A cross section of the obtained anisotropic light-diffusing film was observed with a scanning electron microscope. A first layer was identified in which phase (II) was dispersed.
It was also confirmed that the second layer did not have a dispersed phase.
At this time, the first layer contains a dispersed phase, and the dispersed phase can be confirmed up to the interface with the second layer, so the interface between the first layer and the second layer was confirmed. .
FIGS. 10 and 11 show the MD cross section and TD cross section of the anisotropic light diffusion film of Test Example 4-7, respectively. Arrows in the figure indicate the interface between the first layer and the second layer.
 <試験例4-8>
 第1の層形成用組成物として、樹脂C-3 95質量%及び樹脂C-4 5質量%を用いた以外は試験例4-7と同様にして、厚み75μmの異方光拡散フィルム(第2の層/第1の層/第2の層:21.5μm/32μm/21.5μm)を作製した。
<Test Example 4-8>
An anisotropic light diffusion film having a thickness of 75 μm (first 2 layers/first layer/second layer: 21.5 μm/32 μm/21.5 μm).
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂C-3からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂C-4からなる分散相(II)が分散してなる海島構造を有していることが確認された。
 第1の層の分散相が少ないため、第1の層と第2の層の界面は確認できなかった。
 試験例4-8の異方光拡散フィルムのMD断面、TD断面をそれぞれ図12、図13に示す。
When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that the continuous phase (I) made of resin C-3 was made of resin C-4, which exhibited a shape extending in the MD direction. It was confirmed to have a sea-island structure in which the dispersed phase (II) is dispersed.
Since the dispersed phase in the first layer was small, the interface between the first layer and the second layer could not be confirmed.
FIGS. 12 and 13 show the MD cross section and TD cross section of the anisotropic light diffusion film of Test Example 4-8, respectively.
 <試験例4-9>
 第1の層形成用組成物として、樹脂A-5 60質量%及び樹脂C-4 40質量%を十分混合し、押出機(シリンダー温度:250℃、吐出量Q(kg/h)とスクリュー回転数N(rpm)の比:Q/N=2.4×10-1(kg/h/rpm))へ供給して溶融した。
 その後、キャスト速度3.0m/minで冷却固化して、厚み60μmの異方光拡散フィルム(第1の層:60μm)を作製した。
<Test Example 4-9>
As the composition for forming the first layer, 60% by mass of resin A-5 and 40% by mass of resin C-4 are sufficiently mixed, and an extruder (cylinder temperature: 250 ° C., discharge rate Q (kg / h) and screw rotation A ratio of several N (rpm): Q/N=2.4×10 −1 (kg/h/rpm)) and melted.
Then, it was cooled and solidified at a casting speed of 3.0 m/min to produce an anisotropic light diffusion film (first layer: 60 μm) with a thickness of 60 μm.
 なお、得られた異方性光拡散フィルムの断面を走査型電子顕微鏡で観察したところ、樹脂A-5からなる連続相(I)中に、MD方向に延びた形状を呈する、樹脂C-4からなる分散相(II)が分散する第1の層が確認された。厚み方向における表裏部の分散相は小さすぎて観察ができなかったため、表裏部の分散径の測定は行わなかった。 When the cross section of the obtained anisotropic light diffusion film was observed with a scanning electron microscope, it was found that the continuous phase (I) made of resin A-5 was made of resin C-4, which exhibited a shape extending in the MD direction. A first layer in which the dispersed phase (II) is dispersed was confirmed. Since the dispersed phases in the front and back portions in the thickness direction were too small to be observed, the diameters of the dispersed phases in the front and back portions were not measured.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 試験例4-1~4-6で得られた異方光拡散フィルムはいずれも、60°輝度比/正面輝度比が本発明の好適な範囲内であり、60°輝度比が高く、全光線透過率及び低反射性にも優れる。よって、60°輝度比/正面輝度比を調整することで、正面輝度と異方光拡散性のバランスに優れ、ディスプレイに実装したときに広い視野角での明るさや視認性が良くなるといえる。 All of the anisotropic light diffusion films obtained in Test Examples 4-1 to 4-6 have a 60° luminance ratio/front luminance ratio within the preferred range of the present invention, a high 60° luminance ratio, and all light rays It also has excellent transmittance and low reflectivity. Therefore, by adjusting the 60° luminance ratio/front luminance ratio, it can be said that the front luminance and the anisotropic light diffusion property are well balanced, and the brightness and visibility at a wide viewing angle are improved when mounted on a display.
 また、試験例4-1~4-6で得られた異方光拡散フィルムはいずれも、連続相(I)中に、MD方向に延びた形状を呈する分散相(II)が分散してなる海島構造を有しており、ヘーズが高いため分散成分を多く含み、異方光拡散性に優れる。また、引張強度が本発明の好適な範囲内であり、引張強度の異方性も小さいことから連続相(I)と分散相(II)の界面剥離が生じにくくなっていると考えられ、界面反射が小さい、すなわち低反射性に優れ、全光線透過率も高いといえる。 In addition, all of the anisotropic light diffusion films obtained in Test Examples 4-1 to 4-6 are formed by dispersing the dispersed phase (II) exhibiting a shape extending in the MD direction in the continuous phase (I). It has a sea-island structure and high haze, so it contains a large amount of dispersion components and is excellent in anisotropic light diffusion. In addition, the tensile strength is within the preferred range of the present invention, and the anisotropy of the tensile strength is small, so it is thought that interfacial separation between the continuous phase (I) and the dispersed phase (II) is unlikely to occur. It can be said that the reflection is small, ie, the low reflectivity is excellent, and the total light transmittance is high.
 さらに、試験例4-1~4-6で得られた異方光拡散フィルムはいずれも、第1の層の厚み方向の中央部におけるTD方向の平均分散径に対する、MD方向の平均分散径の比率(MD平均分散径/TD平均分散径)が本発明の好適な範囲内であり、異方光拡散性に優れる。また、厚み方向の中央部における分散相体積及びTD断面における分散相面積が本発明の好適な範囲内であることから、TD方向及び厚み方向の分散径が適度に大きいので、分散相1個あたりの反射を低減できるうえに、TD方向及び厚み方向の分散径が大きくなりすぎないので、本光拡散フィルム面の法線N方向から光拡散方向に60°傾いた方向付近に強い拡散性を持つ理想的な島成分を形成することができ、異方光拡散性をより高めるために最適な分散構造が得られるといえる。 Furthermore, in all of the anisotropic light diffusion films obtained in Test Examples 4-1 to 4-6, the average dispersion diameter in the MD direction with respect to the average dispersion diameter in the TD direction at the center in the thickness direction of the first layer The ratio (MD average dispersion diameter/TD average dispersion diameter) is within the preferred range of the present invention, and the anisotropic light diffusibility is excellent. In addition, since the dispersed phase volume in the central part in the thickness direction and the dispersed phase area in the TD cross section are within the preferable range of the present invention, the dispersed diameter in the TD direction and the thickness direction are moderately large, so per dispersed phase In addition, since the dispersion diameter in the TD direction and the thickness direction does not become too large, it has strong diffusivity in the vicinity of the direction inclined 60° from the normal N direction of the light diffusion film surface to the light diffusion direction. It can be said that an ideal island component can be formed and an optimum dispersion structure can be obtained to further enhance the anisotropic light diffusibility.
 試験例4-7~4-9で得られた異方光拡散フィルムは、60°輝度比/正面輝度比が本発明の好適な範囲より小さく、低反射性は試験例4-1~4-6と同程度であるものの、60°輝度比及び全光線透過率においては劣っている。つまり、試験例4-7~4-9の異方光拡散フィルムは、異方光拡散性及び透過性が低く、ディスプレイに実装したときの明るさや視認性が十分ではないといえる。 In the anisotropic light diffusion films obtained in Test Examples 4-7 to 4-9, the 60° luminance ratio/front luminance ratio is smaller than the preferred range of the present invention, and the low reflectivity is Test Examples 4-1 to 4- 6, but inferior in 60° luminance ratio and total light transmittance. In other words, it can be said that the anisotropic light diffusion films of Test Examples 4-7 to 4-9 have low anisotropic light diffusion properties and low transmittance, and are insufficient in brightness and visibility when mounted on a display.
 試験例4-7で得られた異方光拡散フィルムは、連続相(I)中に、MD方向に延びた形状を呈する分散相(II)が分散してなる海島構造を有しており、ヘーズが高いため分散成分を多く含むが、引張強度が低く、引張強度の異方性も大きいことから連続相(I)と分散相(II)の界面剥離が生じやすく、そのような構成は分散径の制御が難しく異方光拡散性も低くなりやすいと考えられる。また、厚み方向の中央部における分散相体積が本発明の好適な範囲より大きいため、TD方向及び厚み方向の分散径が大きくなりすぎてしまい、本光拡散フィルム面の法線N方向から光拡散方向に60°傾いた方向付近に強い拡散性を持つ理想的な島成分を形成することができず、試験例4-1~4-6に比べて異方光拡散性が劣ると考えることができる。
 試験例4-8で得られた異方光拡散フィルムは、引張強度の異方性が小さいことから連続相(I)と分散相(II)の界面剥離が生じにくく、界面反射が小さい、すなわち低反射性に優れるが、ヘーズが低いため分散成分が少なく、また、第1の層の厚み方向の中央部におけるTD方向の平均分散径に対する、MD方向の平均分散径の比率(MD平均分散径/TD平均分散径)が本発明の好適な範囲より小さく、異方光拡散性が劣るといえる。また、厚み方向の中央部における分散相体積が本発明の好適な範囲より小さいことから、TD方向及び厚み方向の分散径が小さいので、分散相1個あたりの反射が大きいうえに、本光拡散フィルム面の法線N方向から光拡散方向に60°傾いた方向付近に強い拡散性を持つ理想的な島成分を形成することができず、試験例4-1~4-6に比べて異方光拡散性が劣ると考えることができる。
 試験例4-9で得られた異方光拡散フィルムは、引張強度の異方性が大きいことから連続相(I)と分散相(II)の界面剥離が生じやすく、界面反射が大きく、低反射性に劣るといえる。また、連続相(I)と分散相(II)の屈折率差が非常に小さいため、異方光拡散性が劣るといえる。また、厚み方向の中央部における分散相体積が本発明の好適な範囲より小さいことから、TD方向及び厚み方向の分散径が小さいので、分散相1個あたりの反射が大きいうえに、本光拡散フィルム面の法線N方向から光拡散方向に60°傾いた方向付近に強い拡散性を持つ理想的な島成分を形成することができず、試験例4-1~4-6に比べて異方光拡散性が劣ると考えることができる。
The anisotropic light diffusion film obtained in Test Example 4-7 had a sea-island structure in which the dispersed phase (II) having a shape extending in the MD direction was dispersed in the continuous phase (I). Since the haze is high, it contains many dispersed components, but the tensile strength is low and the anisotropy of the tensile strength is large. It is considered that the control of the diameter is difficult and the anisotropic light diffusing property tends to be low. In addition, since the volume of the dispersed phase at the central portion in the thickness direction is larger than the preferred range of the present invention, the dispersion diameters in the TD direction and the thickness direction become too large, and the light diffuses from the normal N direction of the surface of the light diffusion film. An ideal island component having a strong diffusivity cannot be formed in the vicinity of a direction inclined 60° to the direction, and it can be considered that the anisotropic light diffusibility is inferior to that of Test Examples 4-1 to 4-6. can.
The anisotropic light diffusion film obtained in Test Example 4-8 has low anisotropy in tensile strength, so interfacial separation between the continuous phase (I) and the dispersed phase (II) is unlikely to occur, and the interfacial reflection is small. Although it has excellent low reflectivity, the haze is low, so the dispersion component is small. /TD average dispersion diameter) is smaller than the preferred range of the present invention, and it can be said that the anisotropic light diffusing property is inferior. In addition, since the volume of the dispersed phase at the central portion in the thickness direction is smaller than the preferred range of the present invention, the dispersion diameter in the TD direction and the thickness direction is small, so that the reflection per dispersed phase is large, and the present light diffusion An ideal island component with strong diffusivity could not be formed in the vicinity of the direction inclined 60° from the normal N direction of the film surface to the light diffusion direction, which was different from Test Examples 4-1 to 4-6. It can be considered that the directional light diffusion is inferior.
The anisotropic light diffusion film obtained in Test Example 4-9 has a large anisotropy of tensile strength, so interfacial separation between the continuous phase (I) and the dispersed phase (II) is likely to occur, and the interfacial reflection is large and low. It can be said that the reflectivity is inferior. Moreover, since the refractive index difference between the continuous phase (I) and the dispersed phase (II) is very small, it can be said that the anisotropic light diffusibility is inferior. In addition, since the volume of the dispersed phase at the central portion in the thickness direction is smaller than the preferred range of the present invention, the dispersion diameter in the TD direction and the thickness direction is small, so that the reflection per dispersed phase is large, and the present light diffusion An ideal island component with strong diffusivity could not be formed in the vicinity of the direction inclined 60° from the normal N direction of the film surface to the light diffusion direction, which was different from Test Examples 4-1 to 4-6. It can be considered that the directional light diffusion is inferior.
 本光拡散フィルムは、ディスプレイに実装したときの明るさや視認性に優れるので、とりわけ、パーソナルコンピューター、テレビジョン、モバイル端末(PDA)、携帯電話、スマホ等の画像表示装置、透明スクリーン、LED拡散板及びヘッドアップディスプレイなどの構成部材(拡散部材)として使用することができる。 Since this light diffusion film has excellent brightness and visibility when mounted on a display, it is particularly useful for image display devices such as personal computers, televisions, mobile terminals (PDA), mobile phones, smartphones, transparent screens, and LED diffusion plates. And it can be used as a component (diffusion member) such as a head-up display.

Claims (28)

  1.  入射光を光の進行方向に散乱可能な第1の層を少なくとも有する光拡散フィルムであって、
     下記方法で求められる60°輝度比と正面輝度比との比率(60°輝度比/正面輝度比)が0.30以上0.60以下である、異方性光拡散フィルム。
     <60°輝度比>
     前記光拡散フィルムにおいて、フィルム面の法線N方向から光拡散方向に60°傾いた方向の輝度Cと、フィルム面の法線N方向の正面輝度Bとの比率(C/B)を60°輝度比とする。
     <正面輝度比>
     前記光拡散フィルムの正面輝度Bと、下記(1)及び(2)の条件を満たすブランクサンプルにおける、フィルム面の法線N方向の正面輝度Aとの比率(B/A)を正面輝度比とする。
     [ブランクサンプル]
     (1)JIS K7361-1に準拠して測定される全光線透過率が90%以上である。
     (2)JIS K7136に準拠して測定されるヘーズが1%以下である。
    A light diffusion film having at least a first layer capable of scattering incident light in the direction of travel of the light,
    An anisotropic light-diffusing film having a ratio of 60° brightness ratio to front brightness ratio (60° brightness ratio/front brightness ratio) determined by the following method of 0.30 or more and 0.60 or less.
    <60° brightness ratio>
    In the light diffusion film, the ratio (C/B) of the luminance C in the direction inclined 60° from the normal N direction of the film surface to the light diffusion direction and the front luminance B in the normal N direction of the film surface is 60° Let it be the luminance ratio.
    <Front luminance ratio>
    The ratio (B/A) of the front luminance B of the light diffusion film and the front luminance A in the normal N direction of the film surface in the blank sample satisfying the following conditions (1) and (2) is defined as the front luminance ratio. do.
    [Blank sample]
    (1) The total light transmittance measured according to JIS K7361-1 is 90% or more.
    (2) The haze measured according to JIS K7136 is 1% or less.
  2.  前記60°輝度比が27%以上である、請求項1に記載の異方性光拡散フィルム。 The anisotropic light diffusion film according to claim 1, wherein the 60° luminance ratio is 27% or more.
  3.  前記正面輝度比が80%以上である、請求項1に記載の異方性光拡散フィルム。 The anisotropic light diffusion film according to claim 1, wherein the front luminance ratio is 80% or more.
  4.  表面硬度がB以上である、請求項1に記載の異方性光拡散フィルム。 The anisotropic light diffusion film according to claim 1, which has a surface hardness of B or higher.
  5.  算術平均高さRaが10μm以下である、請求項1に記載の異方性光拡散フィルム。 The anisotropic light-diffusing film according to claim 1, wherein the arithmetic mean height Ra is 10 µm or less.
  6.  JIS K7136に準拠して測定されるヘーズが40%以上である、請求項1に記載の異方性光拡散フィルム。 The anisotropic light-diffusing film according to claim 1, which has a haze of 40% or more as measured according to JIS K7136.
  7.  全光線透過率が94%以上である、請求項1に記載の異方性光拡散フィルム。 The anisotropic light diffusion film according to claim 1, which has a total light transmittance of 94% or more.
  8.  正反射光除去方式(Specular Component Exclude方式)の視感反射率RSCEと、正反射光込み方式(Specular Component Include方式)の視感反射率RSCIとの比率(RSCE/RSCI)が50%以上である、請求項1に記載の異方性光拡散フィルム。 The ratio (R SCE /R SCI ) between the luminous reflectance R SCE of the specular component exclude method and the luminous reflectance R SCI of the specular component include method (R SCE /R SCI ) is 50 % or more, the anisotropic light-diffusing film of claim 1.
  9.  前記第1の層が、連続相(I)及び分散相(II)による海島構造を有する、請求項1に記載の異方性光拡散フィルム。 The anisotropic light-diffusing film according to claim 1, wherein the first layer has a sea-island structure with a continuous phase (I) and a dispersed phase (II).
  10.  前記第1の層の厚み方向の中央部における分散相体積が20μm以上120μm以下である、請求項9に記載の異方性光拡散フィルム。 10. The anisotropic light-diffusing film according to claim 9, wherein the dispersed phase volume at the central portion in the thickness direction of the first layer is 20 μm 3 or more and 120 μm 3 or less.
  11.  前記分散相(II)のTD方向の平均分散径に対する、MD方向の平均分散径の比率(MD平均分散径/TD平均分散径)が厚み方向の中央部において3以上である、請求項9に記載の異方性光拡散フィルム。 10. The ratio of the average dispersion diameter in the MD direction to the average dispersion diameter in the TD direction of the dispersed phase (II) (MD average dispersion diameter/TD average dispersion diameter) is 3 or more at the center in the thickness direction. An anisotropic light-diffusing film as described.
  12.  前記分散相(II)の厚み方向の中央部におけるTD断面での分散径の面積が2μm以上である、請求項9に記載の異方性光拡散フィルム。 10. The anisotropic light-diffusing film according to claim 9, wherein the dispersed phase (II) has a dispersion diameter area of 2 μm 3 or more in the TD cross section at the central portion in the thickness direction.
  13.  MD方向の引張強度σMD及びTD方向引張強度σTDがいずれも50MPa以上である、請求項9に記載の異方性光拡散フィルム。 10. The anisotropic light-diffusing film according to claim 9, wherein both the tensile strength σMD in the MD direction and the tensile strength σTD in the TD direction are 50 MPa or more.
  14.  前記第1の層が、下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位(a)を含むポリカーボネート樹脂を含む、請求項1に記載の異方性光拡散フィルム。
    Figure JPOXMLDOC01-appb-C000001
    2. The anisotropic light-diffusing film according to claim 1, wherein the first layer contains a polycarbonate resin containing a structural unit (a) derived from a dihydroxy compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
  15.  前記ポリカーボネート樹脂が、前記構造単位(a)以外のその他のジヒドロキシ化合物に由来する構造単位(b)をさらに含む、請求項14に記載の異方性光拡散フィルム。 The anisotropic light-diffusing film according to claim 14, wherein the polycarbonate resin further contains a structural unit (b) derived from a dihydroxy compound other than the structural unit (a).
  16.  前記構造単位(b)が、脂肪族ジヒドロキシ化合物に由来する構造単位及び/又は脂環式ジヒドロキシ化合物に由来する構造単位である、請求項15に記載の異方性光拡散フィルム。 The anisotropic light-diffusing film according to claim 15, wherein the structural unit (b) is a structural unit derived from an aliphatic dihydroxy compound and/or a structural unit derived from an alicyclic dihydroxy compound.
  17.  前記脂環式ジヒドロキシ化合物が、シクロヘキサンジメタノール、トリシクロデカンジメタノール、アダマンタンジオール及びペンタシクロペンタデカンジメタノールから選ばれるいずれか1種又は2種以上である、請求項16に記載の異方性光拡散フィルム。 17. The anisotropic light diffusion film according to claim 16, wherein the alicyclic dihydroxy compound is one or more selected from cyclohexanedimethanol, tricyclodecanedimethanol, adamantanediol and pentacyclopentadecanedimethanol. .
  18.  前記第1の層が、非晶性ポリエステル樹脂を含む、請求項1に記載の異方性光拡散フィルム。 The anisotropic light diffusion film according to claim 1, wherein the first layer contains an amorphous polyester resin.
  19.  前記非晶性ポリエステル樹脂が、脂環式構造を有するジオール成分を含む、請求項18に記載の異方性光拡散フィルム。 The anisotropic light diffusion film according to claim 18, wherein the amorphous polyester resin contains a diol component having an alicyclic structure.
  20.  前記脂環式構造を有するジオール成分が、スピログリコール、イソソルバイド、及び2,2,4,4-テトラメチル-1,3-シクロブタンジオールから選ばれるいずれか1種又は2種以上である、請求項19に記載の異方性光拡散フィルム。 The claim that the diol component having an alicyclic structure is one or more selected from spiroglycol, isosorbide, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol. 20. The anisotropic light diffusion film according to 19.
  21.  前記第1の層が、2種以上の非晶性ポリエステル樹脂を含む、請求項1に記載の異方性光拡散フィルム。 The anisotropic light diffusion film according to claim 1, wherein the first layer contains two or more types of amorphous polyester resins.
  22.  前記第1の層が、非晶性ポリエステル樹脂と、ポリカーボネート樹脂(但し、下記一般式(1)で表されるジヒドロキシ化合物に由来する構造単位(a)を含むポリカーボネート樹脂を除く。)とを含む、請求項1に記載の異方性光拡散フィルム。
    Figure JPOXMLDOC01-appb-C000002
    The first layer contains an amorphous polyester resin and a polycarbonate resin (excluding a polycarbonate resin containing a structural unit (a) derived from a dihydroxy compound represented by the following general formula (1)). The anisotropic light-diffusing film of claim 1.
    Figure JPOXMLDOC01-appb-C000002
  23.  前記第1の層の少なくとも一方の面に第2の層を有する、請求項1に記載の異方性光拡散フィルム。 The anisotropic light diffusion film according to claim 1, having a second layer on at least one surface of the first layer.
  24.  前記第2の層が実質的に分散相を有しない、請求項23に記載の異方性光拡散フィルム。 The anisotropic light-diffusing film according to claim 23, wherein the second layer has substantially no dispersed phase.
  25.  請求項1に記載の異方性光拡散フィルムの少なくとも一方の面に粘着剤層を有する、粘着剤層付き異方性光拡散フィルム。 An anisotropic light-diffusing film with an adhesive layer, which has an adhesive layer on at least one surface of the anisotropic light-diffusing film according to claim 1.
  26.  前記粘着剤層がアクリル系粘着剤を含む、請求項25に記載の粘着剤層付き異方性光拡散フィルム。 The anisotropic light-diffusing film with an adhesive layer according to claim 25, wherein the adhesive layer contains an acrylic adhesive.
  27.  請求項1に記載の異方性光拡散フィルムを備える画像表示装置。 An image display device comprising the anisotropic light diffusion film according to claim 1.
  28.  画面の大きさが32インチ以上である、請求項27に記載の画像表示装置。
     
    28. The image display device according to claim 27, wherein the screen size is 32 inches or more.
PCT/JP2022/040850 2021-11-02 2022-11-01 Anisotropic light-diffusing film, anisotropic light-diffusing film with adhesive layer, and image display device WO2023080130A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2021179414A JP2023068370A (en) 2021-11-02 2021-11-02 Anisotropic light diffusion film and liquid crystal display unit including the same
JP2021-179414 2021-11-02
JP2021212117A JP2023096395A (en) 2021-12-27 2021-12-27 Anisotropic light diffusion film, anisotropic light diffusion film with adhesive layer, and image display device
JP2021-212117 2021-12-27
JP2021212116A JP2023096394A (en) 2021-12-27 2021-12-27 Anisotropic light diffusion film, anisotropic light diffusion film with adhesive layer, and image display device
JP2021-212116 2021-12-27
JP2022043572 2022-03-18
JP2022-043573 2022-03-18
JP2022043574 2022-03-18
JP2022-043574 2022-03-18
JP2022-043572 2022-03-18
JP2022043573 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023080130A1 true WO2023080130A1 (en) 2023-05-11

Family

ID=86241084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040850 WO2023080130A1 (en) 2021-11-02 2022-11-01 Anisotropic light-diffusing film, anisotropic light-diffusing film with adhesive layer, and image display device

Country Status (2)

Country Link
TW (1) TW202340758A (en)
WO (1) WO2023080130A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159704A (en) * 1999-09-21 2001-06-12 Daicel Chem Ind Ltd Anisotropic light scattering film
JP2002001858A (en) * 2000-06-22 2002-01-08 Daicel Chem Ind Ltd Laminated film
JP2003050306A (en) * 2001-06-01 2003-02-21 Daicel Chem Ind Ltd Anisotropic diffusion film
JP2003075643A (en) * 2001-06-22 2003-03-12 Daicel Chem Ind Ltd Polarizing element and surface light source device and liquid crystal display device using the same
JP2008241889A (en) * 2007-03-26 2008-10-09 Sekisui Chem Co Ltd Prism sheet and optical sheet
JP2009157029A (en) * 2007-12-26 2009-07-16 Hitachi Maxell Ltd Lens sheet, backlight using lens sheet, and liquid crystal display device
JP2009277553A (en) * 2008-05-15 2009-11-26 Hitachi Maxell Ltd Backlight, optical member, lenticular lens sheet, and liquid crystal display device
JP2014038171A (en) * 2012-08-14 2014-02-27 Daicel Corp Anisotropic light-diffusing laminate and projector screen
JP2014535127A (en) * 2011-09-30 2014-12-25 コーニンクレッカ フィリップス エヌ ヴェ Display backlight system
WO2015030036A1 (en) * 2013-08-28 2015-03-05 富士フイルム株式会社 Light conversion member, backlight unit comprising same and liquid crystal display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159704A (en) * 1999-09-21 2001-06-12 Daicel Chem Ind Ltd Anisotropic light scattering film
JP2002001858A (en) * 2000-06-22 2002-01-08 Daicel Chem Ind Ltd Laminated film
JP2003050306A (en) * 2001-06-01 2003-02-21 Daicel Chem Ind Ltd Anisotropic diffusion film
JP2003075643A (en) * 2001-06-22 2003-03-12 Daicel Chem Ind Ltd Polarizing element and surface light source device and liquid crystal display device using the same
JP2008241889A (en) * 2007-03-26 2008-10-09 Sekisui Chem Co Ltd Prism sheet and optical sheet
JP2009157029A (en) * 2007-12-26 2009-07-16 Hitachi Maxell Ltd Lens sheet, backlight using lens sheet, and liquid crystal display device
JP2009277553A (en) * 2008-05-15 2009-11-26 Hitachi Maxell Ltd Backlight, optical member, lenticular lens sheet, and liquid crystal display device
JP2014535127A (en) * 2011-09-30 2014-12-25 コーニンクレッカ フィリップス エヌ ヴェ Display backlight system
JP2014038171A (en) * 2012-08-14 2014-02-27 Daicel Corp Anisotropic light-diffusing laminate and projector screen
WO2015030036A1 (en) * 2013-08-28 2015-03-05 富士フイルム株式会社 Light conversion member, backlight unit comprising same and liquid crystal display device

Also Published As

Publication number Publication date
TW202340758A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
TWI400164B (en) White polyester film
US8979330B2 (en) Anisotropic light-diffusing film, anisotropic light-diffusing laminate, anisotropic light-reflecting laminate, and use thereof
JP2006072347A (en) Light reflecting film and surface light source using the same
JP2013178569A (en) Reflection sheet
JP5864128B2 (en) Laminated film
TW201213408A (en) White film and surface light source using the same
JP5623892B2 (en) Biaxially stretched white polyester film
JP5464997B2 (en) Light reflector and surface light source device
JP5141528B2 (en) Laminated film and backlight unit using the same
WO2023080130A1 (en) Anisotropic light-diffusing film, anisotropic light-diffusing film with adhesive layer, and image display device
JP4866075B2 (en) Light reflector and surface light source device using the same
JP7439752B2 (en) Laminated body and manufacturing method thereof, light guide plate unit, light source unit, display device, projection image display member, projection image display device, and display screen filter
JP2023138291A (en) Anisotropic light diffusion film, anisotropic light diffusion film with adhesive layer, and image display device
JP2023138293A (en) Anisotropic light diffusion film, anisotropic light diffusion film with adhesive layer, and image display device
KR101574190B1 (en) White polyester reflective film and method for manufacturing the same and reflective sheet using the same
JP2023138292A (en) Anisotropic light diffusion film, anisotropic light diffusion film with adhesive layer, and image display device
JP2023096395A (en) Anisotropic light diffusion film, anisotropic light diffusion film with adhesive layer, and image display device
JP2023068370A (en) Anisotropic light diffusion film and liquid crystal display unit including the same
JP6490891B2 (en) White reflective film for direct surface light source
JP6259278B2 (en) White reflective film for direct surface light source
JP2023096394A (en) Anisotropic light diffusion film, anisotropic light diffusion film with adhesive layer, and image display device
TWI477396B (en) White accumulated polyester film for a reflection sheet
JP2014038171A (en) Anisotropic light-diffusing laminate and projector screen
JP5388505B2 (en) Reflective film for liquid crystal display
JP2011069988A (en) Reflection sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889950

Country of ref document: EP

Kind code of ref document: A1