WO2023080015A1 - Substrate treatment apparatus and substrate treatment method - Google Patents

Substrate treatment apparatus and substrate treatment method Download PDF

Info

Publication number
WO2023080015A1
WO2023080015A1 PCT/JP2022/039687 JP2022039687W WO2023080015A1 WO 2023080015 A1 WO2023080015 A1 WO 2023080015A1 JP 2022039687 W JP2022039687 W JP 2022039687W WO 2023080015 A1 WO2023080015 A1 WO 2023080015A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
substrate processing
nozzle
mist
Prior art date
Application number
PCT/JP2022/039687
Other languages
French (fr)
Japanese (ja)
Inventor
京成 後藤
淳 野上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023080015A1 publication Critical patent/WO2023080015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a substrate processing apparatus and a substrate processing method.
  • the present disclosure provides a technology capable of suppressing charging of the substrate and adhesion of particles.
  • a substrate processing apparatus includes a holding unit that rotatably holds a substrate, and a first discharge unit that discharges a mist-like weakly acidic first liquid toward a processing surface of the rotating substrate. and a second ejection part for ejecting a weakly alkaline second liquid toward the processing surface to form a liquid film containing the second liquid on the processing surface.
  • FIG. 1 is a plan view showing a substrate processing apparatus according to an embodiment
  • FIG. FIG. 2 is a cross-sectional view showing part of the substrate processing apparatus according to the embodiment.
  • FIG. 3 is a flow chart showing the substrate processing method according to the embodiment.
  • FIG. 4A is a process chart showing the substrate processing method according to the embodiment.
  • FIG. 4B is a process chart showing the substrate processing method according to the embodiment.
  • FIG. 4C is a process chart showing the substrate processing method according to the embodiment.
  • FIG. 4D is a process chart showing the substrate processing method according to the embodiment.
  • FIG. 5 is a diagram for explaining the relationship between the pH of the chemical solution and the amount of charge on the substrate.
  • FIG. 6 is a diagram showing the results of measuring the charge amount of the substrate.
  • FIG. 7 is a diagram showing the results of measuring the number of particles.
  • FIG. 1 A substrate processing apparatus 1 according to an embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. The substrate processing apparatus 1 is of a single-wafer type that processes substrates W one by one.
  • the substrate processing apparatus 1 supplies a cleaning liquid to the upper surface Wa of the substrate W to clean the substrate W.
  • the substrate W is, for example, a semiconductor wafer, and has a surface on which a thermal oxide film (eg, SiO 2 ) is exposed.
  • the substrate may have a surface on which a nitride film (eg, Si 3 N 4 ) is exposed, or may have a surface on which silicon (Si) is exposed.
  • the substrate processing apparatus 1 includes a processing container 10 , a holding section 20 , a first discharge section 30 , a second discharge section 40 , a driving section 50 , a cup 60 and a control section 90 .
  • the processing container 10 accommodates the holding part 20 inside.
  • the substrates W are carried into the processing container 10 by a transport device (not shown), and are cleaned with a cleaning liquid inside the processing container 10 .
  • the cleaned substrate W is carried out of the processing container 10 by the transport device.
  • the holding part 20 horizontally holds the substrate W inside the processing container 10 .
  • the holding unit 20 is, for example, a vacuum chuck that holds the central portion of the lower surface Wb of the substrate W by suction.
  • the holding part 20 may be an electrostatic chuck, a mechanical chuck, or the like.
  • the holding unit 20 is provided so as to be rotatable together with the substrate W around the rotation axis Ax while holding the substrate W. As shown in FIG.
  • the holding portion 20 is rotated by a rotation driving portion 21 such as a motor. That is, the rotation driving section 21 rotates the substrate W held by the holding section 20 about the rotation axis Ax.
  • the first discharge section 30 discharges the cleaning liquid onto the upper surface Wa of the substrate W held by the holding section 20 .
  • the first discharge section 30 has a liquid supplier 31 , a gas supplier 32 and a nozzle 33 .
  • the liquid supplier 31 has a liquid supply source 31a, a flow controller 31b, an on-off valve 31c, and a supply line 31d.
  • the liquid supply source 31a delivers the first liquid to the supply line 31d.
  • the first liquid is a weakly acidic liquid.
  • the first liquid may be a liquid having a hydrogen ion exponent (pH) of 4 or more and 5 or less, for example.
  • As the first liquid for example, carbonated water ( CO2 water) or ozone water can be used.
  • the flow controller 31b is provided between the liquid supply source 31a and the on-off valve 31c in the supply line 31d, and adjusts the flow rate of the first liquid flowing through the supply line 31d.
  • the on-off valve 31c is provided between the flow controller 31b and the nozzle 33 in the supply line 31d, and opens and closes the flow path of the supply line 31d.
  • the gas supplier 32 has a gas supply source 32a, a flow controller 32b, an on-off valve 32c and a supply line 32d.
  • Gas supply source 32a delivers gas to supply line 32d.
  • the gas is an inert gas such as nitrogen gas.
  • the flow controller 32b is provided between the gas supply source 32a and the on-off valve 32c in the supply line 32d, and adjusts the flow rate of the gas flowing through the supply line 32d.
  • the on-off valve 32c is provided between the flow controller 32b and the nozzle 33 in the supply line 32d, and opens and closes the flow path of the supply line 32d.
  • the nozzle 33 is arranged above the substrate W with the discharge port 33a facing downward.
  • the nozzle 33 ejects the first cleaning liquid from the ejection port 33a toward the upper surface Wa of the substrate W held by the holding unit 20 .
  • the nozzle 33 merges the first liquid supplied from the liquid supply source 31a through the supply line 31d and the gas supplied from the gas supply source 32a through the supply line 32d, and discharges them.
  • the first liquid is misted by the gas and discharged toward the upper surface Wa of the rotating substrate W.
  • the nozzle 33 merges the first liquid with the flow of gas to make the first liquid into mist, and sprays the two fluids containing the mist-shaped first liquid and gas onto the upper surface Wa of the rotating substrate W. It is a two-fluid nozzle that discharges toward the target.
  • the nozzle 33 is not limited to a two-fluid nozzle as long as it can eject the mist-like first liquid.
  • the second ejection section 40 ejects the second liquid onto the upper surface Wa of the substrate W held by the holding section 20 .
  • the second discharge section 40 has a liquid supplier 41 and a nozzle 43 .
  • the liquid supplier 41 has a liquid supply source 41a, a flow controller 41b, an on-off valve 41c, and a supply line 41d.
  • the liquid supply source 41a delivers the second liquid to the supply line 41d.
  • the second liquid is a weakly alkaline liquid.
  • the second liquid may be a liquid with a pH of 8 or more and 10 or less, for example.
  • aqueous ammonia NH 4 OH
  • the flow controller 41b is provided between the liquid supply source 41a and the on-off valve 41c in the supply line 41d, and adjusts the flow rate of the second liquid flowing through the supply line 41d.
  • the on-off valve 41c is provided between the flow controller 41b and the nozzle 43 in the supply line 41d, and opens and closes the flow path of the supply line 41d.
  • the nozzle 43 is arranged above the substrate W with the discharge port 43a directed obliquely downward.
  • the nozzle 43 ejects the second liquid from the ejection port 43a toward the upper surface Wa of the substrate W held by the holder 20 .
  • the second liquid is discharged in the form of bundles rather than in the form of mist.
  • the second liquid is supplied to the upper surface Wa of the rotating substrate W, and spreads over the entire upper surface Wa of the substrate W by centrifugal force to form a liquid film. That is, the nozzle 43 ejects the second liquid toward the upper surface Wa of the substrate W to form a liquid film containing the second liquid on the upper surface Wa of the substrate W. As shown in FIG.
  • the drive unit 50 moves the nozzles 33 and 43 in directions including the radial direction of the substrate W.
  • the drive section 50 has a guide rail 51 , a first drive section 52 and a second drive section 53 .
  • the guide rail 51 extends in the horizontal direction (X direction) inside the processing container 10 and is fixed inside the processing container 10 .
  • the first driving section 52 has a moving section 52a and an arm 52b.
  • the moving part 52a moves in the horizontal direction (X direction) along the guide rail 51.
  • the arm 52b expands and contracts in each of the horizontal direction (the Y direction perpendicular to the X direction) and the vertical direction (the Z direction).
  • the first drive unit 52 can move the nozzle 33 in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the second driving section 53 has a moving section 53a and an arm 53b.
  • the moving part 53a moves in the horizontal direction (X direction) along the guide rail 51.
  • the arm 53b extends and contracts in each of the horizontal direction (the Y direction orthogonal to the X direction) and the vertical direction (the Z direction).
  • the second drive unit 53 can move the nozzle 43 in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the cup 60 is provided inside the processing container 10 .
  • the cup 60 is provided so as to surround the periphery of the substrate W held by the holding portion 20 .
  • the cup 60 includes one or more cup bodies having an annular planar shape. Each cup has a cylindrical shape with an upper and a lower opening, and the substrate W held by the holder 20 is arranged inside each cup.
  • the cup 60 receives liquid (for example, cleaning liquid, second liquid) that scatters from the substrate W. As shown in FIG.
  • the control unit 90 is, for example, a computer, and includes a CPU (Central Processing Unit) 91 and a storage medium 92 such as a memory.
  • the storage medium 92 stores programs for controlling various processes executed in the substrate processing apparatus 1 .
  • the control unit 90 controls the operation of the substrate processing apparatus 1 by causing the CPU 91 to execute programs stored in the storage medium 92 .
  • the substrate processing apparatus 1 includes two ejection units (the first ejection unit 30 and the second ejection unit 40). may be provided with a discharge part.
  • Another ejection part may include, for example, an ejection part that ejects liquid toward the upper surface Wa of the substrate W, like the second ejection part 40 .
  • the liquid may be the same liquid as the second liquid, or may be a liquid different from the second liquid (for example, a dry liquid).
  • the drying liquid include organic solvents such as IPA (isopropyl alcohol).
  • the substrate processing apparatus 1 may also include a bottom surface cleaning unit (not shown) for cleaning the bottom surface Wb of the substrate W held by the holding part 20 .
  • the bottom surface cleaning unit includes, for example, a cleaning body such as a brush or sponge that is pressed against the bottom surface Wb of the substrate W, a nozzle that discharges cleaning liquid, and a driving section that moves the cleaning body and the nozzle.
  • the lower surface cleaning unit cleans the lower surface Wb of the substrate W by moving the cleaning body and the nozzle with the drive section and pressing the cleaning body against the lower surface Wb of the substrate W while supplying the cleaning liquid to the lower surface Wb.
  • one or more suction pads capable of holding a portion other than the central portion of the lower surface Wb of the substrate W may be provided. While the substrate W is being held by the suction pads, the portion of the lower surface Wb of the substrate W that the holding portion 20 contacts (that is, the central portion) can be cleaned. On the other hand, while the substrate W is being held by the holding portion 20, it is possible to clean the portion of the bottom surface of the substrate W that the suction pads come into contact with.
  • a plurality of (for example, three) lifting pins may be provided around the holding portion 20 .
  • the lifting pin is provided so as to be liftable by a lifting mechanism (not shown).
  • the substrate W can be transferred between the lifting pins and a transfer device (not shown) provided outside the processing container 10 .
  • the substrate W can be transferred between the lifting pins and the holding section 20 or the suction pad described above.
  • Substrate processing method An example of a substrate processing method performed in the substrate processing apparatus 1 according to the embodiment will be described with reference to FIGS. 3, 4A, 4B, 4C, and 4D.
  • the substrate processing method is carried out by controlling each unit of the substrate processing apparatus 1 by the control unit 90 .
  • a transport device loads the substrate W into the processing container 10 (step S1). After placing the substrate W on the holding unit 20 , the transport device exits from the inside of the processing container 10 .
  • the holding part 20 holds the substrate W.
  • the rotation driving section 21 rotates the substrate W together with the holding section 20 .
  • the nozzle 43 ejects the second liquid L2 toward the upper surface Wa of the rotating substrate W (step S2).
  • the second liquid L2 spreads over the entire upper surface Wa of the substrate W by centrifugal force to form a liquid film.
  • the nozzle 33 ejects the mist-like weakly acidic first liquid L1 toward the upper surface Wa of the rotating substrate W, and the nozzle 43 rotates.
  • the weakly alkaline second liquid L2 is discharged toward the upper surface Wa of the substrate W (step S3).
  • the mist-like weakly acidic first liquid L1 acts on the upper surface Wa of the substrate W to clean the upper surface Wa of the substrate W and suppress the substrate W from being charged. The reason why charging of the substrate W is suppressed will be described later. Adhesion of particles can be suppressed by using the weakly alkaline second liquid L2, but the amount of charge on the substrate W increases.
  • the amount of charge on the substrate W can be reduced by using the weakly acidic first liquid L1 in addition to the weakly alkaline second liquid L2. That is, the amount of charge on the substrate W can be reduced while suppressing the adhesion of particles to the upper surface Wa of the substrate W.
  • particles When ejecting the mist-like first liquid L1 from the nozzle 33, particles may be generated when the first liquid L1 and the gas flow through the supply lines 31d and 32d, respectively, and may be ejected from the nozzle 33 together with the particles. be.
  • the mist-like first liquid L ⁇ b>1 ejected from the nozzle 33 may scatter particles adhering to the inner wall surface of the cup 60 . In this case, if the upper surface Wa of the substrate W is exposed, particles will adhere to the exposed surface. is covered with the liquid film of the second liquid L2. Therefore, adhesion of particles to the upper surface Wa of the substrate W can be further suppressed.
  • the weakly acidic first liquid L1 and the weakly alkaline second liquid L2 are discharged at the same time, a salt is generated by the neutralization reaction.
  • the first liquid L1 is carbonated water or ozone water and the second liquid L2 is ammonia water so as not to precipitate salts. By suppressing precipitation of salts, generation of particles can be suppressed.
  • step S3 the nozzle 33 ejects the mist-like first liquid L1 toward the upper surface Wa of the substrate W while moving in the radial direction of the substrate W.
  • the nozzle 33 may move from the center of the substrate W toward the periphery, or may move from the periphery of the substrate W toward the center.
  • the nozzle 33 may reciprocate between the center of the substrate W and the periphery. By moving the nozzle 33 in the radial direction of the substrate W, the entire radial direction of the substrate W can be cleaned with the mist-like first liquid L1.
  • the nozzle 33 may eject the mist-like first liquid L1 toward the upper surface Wa of the substrate W without moving.
  • step S3 the nozzle 43 ejects the second liquid L2 to the center of the substrate W without moving.
  • the centrifugal force can spread the second liquid L2 over the entire radial direction of the substrate W, and the entire radial direction of the substrate W can be covered with the liquid film of the second liquid L2.
  • the nozzle 43 may discharge the second liquid L2 toward the upper surface Wa of the substrate W while moving in the radial direction of the substrate W.
  • the nozzles 33 stop discharging the first liquid L1, and the nozzles 43 discharge the second liquid L2 toward the upper surface Wa of the rotating substrate W (step S4).
  • the second liquid L2 spreads over the entire upper surface Wa of the substrate W by centrifugal force to form a liquid film.
  • step S5 the rotation driving unit 21 rotates the substrate W to The second liquid L2 remaining on the upper surface of W is shaken off, and the substrate W is dried (step S5).
  • the rotation driving unit 21 stops rotating the substrate W.
  • a nozzle (not shown) may supply the drying liquid to the upper surface Wa of the substrate W that is rotating. The dry liquid spreads over the entire upper surface Wa of the substrate W due to centrifugal force, and washes away the second liquid L2 remaining on the upper surface Wa of the substrate W.
  • a nozzle may supply the drying liquid to the upper surface Wa of the substrate W that is rotating. The dry liquid spreads over the entire upper surface Wa of the substrate W due to centrifugal force, and washes away the second liquid L2 remaining on the upper surface Wa of the substrate W.
  • a liquid film of the drying liquid is formed on the upper surface Wa of the substrate W.
  • the liquid film of the drying liquid is shaken off from the upper surface Wa of the substrate W by the rotation of the substrate W, and the substrate W is dried.
  • the holding unit 20 releases the holding of the substrate W, then the transport device receives the substrate W from the holding unit 20, and carries the received substrate W out of the processing container 10 (step S6). After that, the process ends.
  • step S3 the first liquid L1 and the second liquid L2 are simultaneously ejected toward the upper surface Wa of the substrate W.
  • the present invention is limited to this. not.
  • the mist-like first liquid L1 and second liquid L2 may be discharged in order.
  • the mist-like first liquid L1 may be ejected without ejecting the second liquid L2, and then the second liquid L2 may be ejected without ejecting the mist-like first liquid L1. .
  • the second liquid L2 may be ejected without ejecting the mist-like first liquid L1, and then the mist-like first liquid L1 may be ejected without ejecting the second liquid L2. . Further, the mist-like first liquid L1 and the second liquid L2 may be alternately and repeatedly ejected. However, from the viewpoint of shortening the processing time, it is preferable to simultaneously eject the mist-like first liquid L1 and the second liquid L2.
  • the substrate processing method according to the embodiment may have a step of cleaning the lower surface Wb of the substrate W held by the holding part 20 by a lower surface cleaning unit (not shown). This step may be performed at least one timing before step S2, at the same time as step S2, and at the same time as step S3, for example.
  • the lower surface cleaning unit cleans the lower surface Wb of the substrate W by moving the cleaning body and the nozzle with the drive section and pressing the cleaning body against the lower surface Wb of the substrate W while supplying the cleaning liquid to the lower surface Wb.
  • the reason why the mist-like weakly acidic first liquid L1 can suppress charging of the substrate W will be described with reference to FIG.
  • the charging of the substrate W is determined based on the pH of the cleaning liquid supplied to the processing surface of the substrate W and the isoelectric point of the processing surface.
  • the pH of the cleaning liquid When the pH of the cleaning liquid is lower than the isoelectric point of the processing surface, the substrate W tends to be positively (+) charged, and the greater the difference between the pH of the cleaning liquid and the isoelectric point of the processing surface, the greater the amount of positive charge. .
  • the pH of the cleaning solution is higher than the isoelectric point of the surface to be treated, the substrate W tends to be negatively (-) charged. growing.
  • a thermal oxide film which is an example of the processing surface of the substrate W, has an isoelectric point (pH) of 1.5 to 3.7.
  • Carbonated water which is an example of the first liquid L1
  • is weakly acidic and has a pH of 4.5
  • Ammonia water which is an example of the second liquid L2
  • is weakly alkaline and has a pH of 9.7, for example. That is, the difference between the pH of carbonated water and the isoelectric point of the thermal oxide film is smaller than the difference between the pH of ammonia water and the isoelectric point of the thermal oxide film. Therefore, it is considered that charging of the substrate W can be suppressed more effectively by supplying carbonated water to the thermal oxide film than by supplying ammonia water to the thermal oxide film.
  • Example 1 a substrate having a thermal oxide film formed on its upper surface was prepared, then steps S1, S3, S5, and S6 shown in FIG. 3 were performed, and then the charge amount of the substrate was measured.
  • step S 3 two fluids containing carbonated water and nitrogen gas in the form of mist are discharged from the nozzle 33 toward the upper surface of the rotating substrate, and ammonia water is discharged from the nozzle 43 .
  • the carbonated water and the ammonia water used had similar specific resistances. Specifically, carbonated water with a specific resistance of 0.06 M ⁇ cm was used, and ammonia water with a specific resistance of 0.067 M ⁇ cm was used.
  • the substrate was prepared under the same conditions as in Example 1, except that two fluids containing carbonated water and nitrogen gas in the form of mist were discharged from the nozzle 33 in step S3, and the carbonated water was discharged from the nozzle 43. processed.
  • Example 1B the substrate was processed under the same conditions as in Example 1, except that ammonia water was discharged from the nozzles 33 and 43 in step S3.
  • FIG. 6 is a diagram showing the results of measuring the amount of negative charge (>0) at the center of the substrates treated in Example 1, Reference Examples 1A and 1B.
  • FIG. 6 shows relative charge amounts at the center of the substrate in Example 1 and Reference Example 1B when the charge amount at the center of the substrate in Reference Example 1A is set to 1.
  • FIG. 6 shows relative charge amounts at the center of the substrate in Example 1 and Reference Example 1B when the charge amount at the center of the substrate in Reference Example 1A is set to 1.
  • step S3 two fluids containing carbonated water and nitrogen gas in the form of mist in addition to ammonia water are discharged toward the upper surface of the rotating substrate, thereby discharging only ammonia water. It was shown that the charge amount of the substrate can be suppressed more than the case.
  • Example 2 a substrate having a thermal oxide film formed on its upper surface was prepared, then steps S1, S3, S5, and S6 shown in FIG. 3 were performed, and then the number of particles adhering to the upper surface of the substrate was measured. .
  • step S 3 two fluids containing carbonated water and nitrogen gas in the form of mist are discharged from the nozzle 33 toward the upper surface of the rotating substrate, and ammonia water is discharged from the nozzle 43 .
  • the same carbonated water and ammonia water as in Example 1 were used.
  • a substrate was prepared under the same conditions as in Example 2, except that two fluids containing misted carbonated water and nitrogen gas were discharged from the nozzle 33 in step S3, and the carbonated water was discharged from the nozzle 43. processed.
  • FIG. 7 is a diagram showing the results of measuring the number of particles adhering to the top surfaces of the substrates processed in Example 2 and Reference Example 2.
  • FIG. FIG. 7 shows the relative number of particles in Example 2 when the number of particles in Reference Example 2 is 1.
  • FIG. 7 shows the relative number of particles in Example 2 when the number of particles in Reference Example 2 is 1.
  • step S3 two fluids including carbonated water and nitrogen gas in the form of mist are discharged from the nozzle 33 toward the upper surface of the rotating substrate, and ammonia water is discharged from the nozzle 43. showed that adhesion of particles can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A substrate treatment apparatus according to an aspect of the present disclosure comprises: a holding part that rotatably holds a substrate; a first discharge part that discharges a first liquid which is weakly acidic and in mist form toward a treatment surface of the rotating substrate; and a second discharge part that discharges a second liquid which is weakly alkaline toward the treatment surface and forms a liquid film including the second liquid on the treatment surface.

Description

基板処理装置及び基板処理方法SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
 本開示は、基板処理装置及び基板処理方法に関する。 The present disclosure relates to a substrate processing apparatus and a substrate processing method.
 半導体デバイスの製造においては、種々の製造プロセスの前後で基板の洗浄が行われる。基板を洗浄する方法としては、回転する基板上に不活性ガスと純水との二流体を吐出しながら、該基板上に純水を供給して基板上に液膜を形成する技術が知られている(例えば、特許文献1参照)。  In the manufacture of semiconductor devices, substrates are cleaned before and after various manufacturing processes. As a method for cleaning a substrate, there is known a technique of supplying pure water onto a rotating substrate while discharging two fluids of an inert gas and pure water onto the substrate to form a liquid film on the substrate. (See, for example, Patent Document 1).
特開2003-203892号公報Japanese Patent Application Laid-Open No. 2003-203892
 本開示は、基板の帯電及びパーティクルの付着を抑制できる技術を提供する。 The present disclosure provides a technology capable of suppressing charging of the substrate and adhesion of particles.
 本開示の一態様による基板処理装置は、基板を回転可能に保持する保持部と、回転する前記基板の処理面に向けてミスト状にした弱酸性の第1液体を吐出する第1吐出部と、前記処理面に向けて弱アルカリ性の第2液体を吐出し、前記処理面に前記第2液体を含む液膜を形成する第2吐出部と、を備える。 A substrate processing apparatus according to one aspect of the present disclosure includes a holding unit that rotatably holds a substrate, and a first discharge unit that discharges a mist-like weakly acidic first liquid toward a processing surface of the rotating substrate. and a second ejection part for ejecting a weakly alkaline second liquid toward the processing surface to form a liquid film containing the second liquid on the processing surface.
 本開示によれば、基板の帯電及びパーティクルの付着を抑制できる。 According to the present disclosure, charging of the substrate and adhesion of particles can be suppressed.
図1は、実施形態に係る基板処理装置を示す平面図である。1 is a plan view showing a substrate processing apparatus according to an embodiment; FIG. 図2は、実施形態に係る基板処理装置の一部を示す断面図である。FIG. 2 is a cross-sectional view showing part of the substrate processing apparatus according to the embodiment. 図3は、実施形態に係る基板処理方法を示すフローチャートである。FIG. 3 is a flow chart showing the substrate processing method according to the embodiment. 図4Aは、実施形態に係る基板処理方法を示す工程図である。FIG. 4A is a process chart showing the substrate processing method according to the embodiment. 図4Bは、実施形態に係る基板処理方法を示す工程図である。FIG. 4B is a process chart showing the substrate processing method according to the embodiment. 図4Cは、実施形態に係る基板処理方法を示す工程図である。FIG. 4C is a process chart showing the substrate processing method according to the embodiment. 図4Dは、実施形態に係る基板処理方法を示す工程図である。FIG. 4D is a process chart showing the substrate processing method according to the embodiment. 図5は、薬液のpHと基板の帯電量との関係を説明する図である。FIG. 5 is a diagram for explaining the relationship between the pH of the chemical solution and the amount of charge on the substrate. 図6は、基板の帯電量を測定した結果を示す図である。FIG. 6 is a diagram showing the results of measuring the charge amount of the substrate. 図7は、パーティクルの数を測定した結果を示す図である。FIG. 7 is a diagram showing the results of measuring the number of particles.
 以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。 Non-limiting exemplary embodiments of the present disclosure will now be described with reference to the accompanying drawings. In all the attached drawings, the same or corresponding members or parts are denoted by the same or corresponding reference numerals, and overlapping descriptions are omitted.
 〔基板処理装置〕
 図1及び図2を参照し、実施形態に係る基板処理装置1について説明する。基板処理装置1は、基板Wを一枚ずつ処理する枚葉式である。基板処理装置1は、基板Wの上面Waに洗浄液を供給し、基板Wを洗浄する。基板Wは、例えば半導体ウエハであり、熱酸化膜(例えばSiO)が露出した表面を有する。ただし、基板は、窒化膜(例えばSi)が露出した表面を有していてもよく、シリコン(Si)が露出した表面を有していてもよい。
[Substrate processing equipment]
A substrate processing apparatus 1 according to an embodiment will be described with reference to FIGS. 1 and 2. FIG. The substrate processing apparatus 1 is of a single-wafer type that processes substrates W one by one. The substrate processing apparatus 1 supplies a cleaning liquid to the upper surface Wa of the substrate W to clean the substrate W. As shown in FIG. The substrate W is, for example, a semiconductor wafer, and has a surface on which a thermal oxide film (eg, SiO 2 ) is exposed. However, the substrate may have a surface on which a nitride film (eg, Si 3 N 4 ) is exposed, or may have a surface on which silicon (Si) is exposed.
 基板処理装置1は、処理容器10、保持部20、第1吐出部30、第2吐出部40、駆動部50、カップ60及び制御部90を備える。 The substrate processing apparatus 1 includes a processing container 10 , a holding section 20 , a first discharge section 30 , a second discharge section 40 , a driving section 50 , a cup 60 and a control section 90 .
 処理容器10は、保持部20を内部に収容する。基板Wは、搬送装置(図示せず)によって処理容器10の内部に搬入され、処理容器10の内部において洗浄液で洗浄される。洗浄された基板Wは、搬送装置によって処理容器10の外部に搬出される。 The processing container 10 accommodates the holding part 20 inside. The substrates W are carried into the processing container 10 by a transport device (not shown), and are cleaned with a cleaning liquid inside the processing container 10 . The cleaned substrate W is carried out of the processing container 10 by the transport device.
 保持部20は、処理容器10の内部において基板Wを水平に保持する。保持部20は、例えば基板Wの下面Wbの中心部を吸着保持する真空チャックである。保持部20は、静電チャック、メカニカルチャック等であってもよい。保持部20は、基板Wを保持した状態で、基板Wと共に回転軸線Axを中心に回転可能に設けられる。保持部20は、モータ等の回転駆動部21によって回転される。すなわち、回転駆動部21は、保持部20に保持されている基板Wを、回転軸線Axを中心に回転させる。 The holding part 20 horizontally holds the substrate W inside the processing container 10 . The holding unit 20 is, for example, a vacuum chuck that holds the central portion of the lower surface Wb of the substrate W by suction. The holding part 20 may be an electrostatic chuck, a mechanical chuck, or the like. The holding unit 20 is provided so as to be rotatable together with the substrate W around the rotation axis Ax while holding the substrate W. As shown in FIG. The holding portion 20 is rotated by a rotation driving portion 21 such as a motor. That is, the rotation driving section 21 rotates the substrate W held by the holding section 20 about the rotation axis Ax.
 第1吐出部30は、保持部20に保持されている基板Wの上面Waに洗浄液を吐出する。第1吐出部30は、液供給器31、ガス供給器32及びノズル33を有する。 The first discharge section 30 discharges the cleaning liquid onto the upper surface Wa of the substrate W held by the holding section 20 . The first discharge section 30 has a liquid supplier 31 , a gas supplier 32 and a nozzle 33 .
 液供給器31は、液供給源31a、流量制御器31b、開閉弁31c及び供給ライン31dを有する。液供給源31aは、供給ライン31dに第1液体を送り出す。第1液体は、弱酸性の液体である。第1液体は、例えば水素イオン指数(pH)が4以上5以下の液体であってよい。第1液体としては、例えば炭酸水(CO水)、オゾン水を利用できる。流量制御器31bは、供給ライン31dにおける液供給源31aと開閉弁31cとの間に設けられ、供給ライン31dを流れる第1液体の流量を調整する。開閉弁31cは、供給ライン31dにおける流量制御器31bとノズル33との間に設けられ、供給ライン31dの流路を開閉する。 The liquid supplier 31 has a liquid supply source 31a, a flow controller 31b, an on-off valve 31c, and a supply line 31d. The liquid supply source 31a delivers the first liquid to the supply line 31d. The first liquid is a weakly acidic liquid. The first liquid may be a liquid having a hydrogen ion exponent (pH) of 4 or more and 5 or less, for example. As the first liquid, for example, carbonated water ( CO2 water) or ozone water can be used. The flow controller 31b is provided between the liquid supply source 31a and the on-off valve 31c in the supply line 31d, and adjusts the flow rate of the first liquid flowing through the supply line 31d. The on-off valve 31c is provided between the flow controller 31b and the nozzle 33 in the supply line 31d, and opens and closes the flow path of the supply line 31d.
 ガス供給器32は、ガス供給源32a、流量制御器32b、開閉弁32c及び供給ライン32dを有する。ガス供給源32aは、供給ライン32dにガスを送り出す。ガスは、窒素ガス等の不活性ガスである。流量制御器32bは、供給ライン32dにおけるガス供給源32aと開閉弁32cとの間に設けられ、供給ライン32dを流れるガスの流量を調整する。開閉弁32cは、供給ライン32dにおける流量制御器32bとノズル33との間に設けられ、供給ライン32dの流路を開閉する。 The gas supplier 32 has a gas supply source 32a, a flow controller 32b, an on-off valve 32c and a supply line 32d. Gas supply source 32a delivers gas to supply line 32d. The gas is an inert gas such as nitrogen gas. The flow controller 32b is provided between the gas supply source 32a and the on-off valve 32c in the supply line 32d, and adjusts the flow rate of the gas flowing through the supply line 32d. The on-off valve 32c is provided between the flow controller 32b and the nozzle 33 in the supply line 32d, and opens and closes the flow path of the supply line 32d.
 ノズル33は、吐出口33aを下に向けて基板Wの上方に配置される。ノズル33は、吐出口33aから保持部20に保持されている基板Wの上面Waに向けて第1洗浄液を吐出する。ノズル33は、液供給源31aから供給ライン31dを介して供給される第1液体と、ガス供給源32aから供給ライン32dを介して供給されるガスとを合流させて吐出する。第1液体は、ガスによってミスト状にされ、回転する基板Wの上面Waに向けて吐出される。すなわち、ノズル33は、ガスの流れに第1液体を合流させることにより第1液体をミスト状にし、ミスト状にした第1液体とガスとを含む二流体を、回転する基板Wの上面Waに向けて吐出する二流体ノズルである。ただし、ノズル33は、ミスト状にした第1液体を吐出できればよく、二流体ノズルに限定されない。 The nozzle 33 is arranged above the substrate W with the discharge port 33a facing downward. The nozzle 33 ejects the first cleaning liquid from the ejection port 33a toward the upper surface Wa of the substrate W held by the holding unit 20 . The nozzle 33 merges the first liquid supplied from the liquid supply source 31a through the supply line 31d and the gas supplied from the gas supply source 32a through the supply line 32d, and discharges them. The first liquid is misted by the gas and discharged toward the upper surface Wa of the rotating substrate W. As shown in FIG. That is, the nozzle 33 merges the first liquid with the flow of gas to make the first liquid into mist, and sprays the two fluids containing the mist-shaped first liquid and gas onto the upper surface Wa of the rotating substrate W. It is a two-fluid nozzle that discharges toward the target. However, the nozzle 33 is not limited to a two-fluid nozzle as long as it can eject the mist-like first liquid.
 第2吐出部40は、保持部20に保持されている基板Wの上面Waに第2液体を吐出する。第2吐出部40は、液供給器41及びノズル43を有する。 The second ejection section 40 ejects the second liquid onto the upper surface Wa of the substrate W held by the holding section 20 . The second discharge section 40 has a liquid supplier 41 and a nozzle 43 .
 液供給器41は、液供給源41a、流量制御器41b、開閉弁41c及び供給ライン41dを有する。液供給源41aは、供給ライン41dに第2液体を送り出す。第2液体は、弱アルカリ性の液体である。第2液体は、例えばpHが8以上10以下の液体であってよい。第2液体としては、例えばアンモニア水(NHOH)を利用できる。流量制御器41bは、供給ライン41dにおける液供給源41aと開閉弁41cとの間に設けられ、供給ライン41dを流れる第2液体の流量を調整する。開閉弁41cは、供給ライン41dにおける流量制御器41bとノズル43との間に設けられ、供給ライン41dの流路を開閉する。 The liquid supplier 41 has a liquid supply source 41a, a flow controller 41b, an on-off valve 41c, and a supply line 41d. The liquid supply source 41a delivers the second liquid to the supply line 41d. The second liquid is a weakly alkaline liquid. The second liquid may be a liquid with a pH of 8 or more and 10 or less, for example. For example, aqueous ammonia (NH 4 OH) can be used as the second liquid. The flow controller 41b is provided between the liquid supply source 41a and the on-off valve 41c in the supply line 41d, and adjusts the flow rate of the second liquid flowing through the supply line 41d. The on-off valve 41c is provided between the flow controller 41b and the nozzle 43 in the supply line 41d, and opens and closes the flow path of the supply line 41d.
 ノズル43は、吐出口43aを斜め下に向けて基板Wの上方に配置される。ノズル43は、吐出口43aから保持部20に保持されている基板Wの上面Waに向けて第2液体を吐出する。第2液体は、第1液体とは異なり、ミスト状ではなく束状で吐出される。第2液体は、回転する基板Wの上面Waに供給され、遠心力によって基板Wの上面Wa全体に濡れ広がり、液膜を形成する。すなわち、ノズル43は、基板Wの上面Waに向けて第2液体を吐出し、基板Wの上面Waに第2液体を含む液膜を形成する。 The nozzle 43 is arranged above the substrate W with the discharge port 43a directed obliquely downward. The nozzle 43 ejects the second liquid from the ejection port 43a toward the upper surface Wa of the substrate W held by the holder 20 . Unlike the first liquid, the second liquid is discharged in the form of bundles rather than in the form of mist. The second liquid is supplied to the upper surface Wa of the rotating substrate W, and spreads over the entire upper surface Wa of the substrate W by centrifugal force to form a liquid film. That is, the nozzle 43 ejects the second liquid toward the upper surface Wa of the substrate W to form a liquid film containing the second liquid on the upper surface Wa of the substrate W. As shown in FIG.
 駆動部50は、ノズル33及びノズル43を基板Wの径方向を含む方向に移動させる。駆動部50は、ガイドレール51、第1駆動部52及び第2駆動部53を有する。 The drive unit 50 moves the nozzles 33 and 43 in directions including the radial direction of the substrate W. The drive section 50 has a guide rail 51 , a first drive section 52 and a second drive section 53 .
 ガイドレール51は、処理容器10の内部において水平方向(X方向)に延び、処理容器10の内部に固定される。 The guide rail 51 extends in the horizontal direction (X direction) inside the processing container 10 and is fixed inside the processing container 10 .
 第1駆動部52は、移動部52a及びアーム52bを有する。移動部52aは、ガイドレール51に沿って水平方向(X方向)に移動する。アーム52bは、水平方向(X方向と直交するY方向)及び上下方向(Z方向)の各々に伸縮する。これにより、第1駆動部52は、X軸方向、Y軸方向及びZ軸方向にノズル33を移動させることができる。 The first driving section 52 has a moving section 52a and an arm 52b. The moving part 52a moves in the horizontal direction (X direction) along the guide rail 51. As shown in FIG. The arm 52b expands and contracts in each of the horizontal direction (the Y direction perpendicular to the X direction) and the vertical direction (the Z direction). Thereby, the first drive unit 52 can move the nozzle 33 in the X-axis direction, the Y-axis direction, and the Z-axis direction.
 第2駆動部53は、移動部53a及びアーム53bを有する。移動部53aは、ガイドレール51に沿って水平方向(X方向)に移動する。アーム53bは、水平方向(X方向と直交するY方向)及び上下方向(Z方向)の各々に伸縮する。これにより、第2駆動部53は、X軸方向、Y軸方向及びZ軸方向にノズル43を移動させることができる。 The second driving section 53 has a moving section 53a and an arm 53b. The moving part 53a moves in the horizontal direction (X direction) along the guide rail 51. As shown in FIG. The arm 53b extends and contracts in each of the horizontal direction (the Y direction orthogonal to the X direction) and the vertical direction (the Z direction). Thereby, the second drive unit 53 can move the nozzle 43 in the X-axis direction, the Y-axis direction, and the Z-axis direction.
 カップ60は、処理容器10の内部に設けられる。カップ60は、保持部20に保持されている基板Wの周縁を囲むように設けられる。カップ60は、円環状の平面形状を有する1又は複数のカップ体を含む。各カップ体は、上方及び下方が開口した筒状の形状を有し、各カップ体の内側に保持部20に保持されている基板Wが配置される。カップ60は、基板Wから飛散する液(例えば、洗浄液、第2液体)を受け止める。 The cup 60 is provided inside the processing container 10 . The cup 60 is provided so as to surround the periphery of the substrate W held by the holding portion 20 . The cup 60 includes one or more cup bodies having an annular planar shape. Each cup has a cylindrical shape with an upper and a lower opening, and the substrate W held by the holder 20 is arranged inside each cup. The cup 60 receives liquid (for example, cleaning liquid, second liquid) that scatters from the substrate W. As shown in FIG.
 制御部90は、例えばコンピュータであり、CPU(Central Processing Unit)91と、メモリ等の記憶媒体92を備える。記憶媒体92には、基板処理装置1において実行される各種の処理を制御するプログラムが格納される。制御部90は、記憶媒体92に記憶されたプログラムをCPU91に実行させることにより、基板処理装置1の動作を制御する。 The control unit 90 is, for example, a computer, and includes a CPU (Central Processing Unit) 91 and a storage medium 92 such as a memory. The storage medium 92 stores programs for controlling various processes executed in the substrate processing apparatus 1 . The control unit 90 controls the operation of the substrate processing apparatus 1 by causing the CPU 91 to execute programs stored in the storage medium 92 .
 なお、図1及び図2の例では、基板処理装置1が2つの吐出部(第1吐出部30及び第2吐出部40)を備える場合を示したが、更に1つ又は2つ以上の別の吐出部を備えていてもよい。別の吐出部は、例えば第2吐出部40と同様に、基板Wの上面Waに向けて液体を吐出する吐出部を含んでよい。該液体は、第2液体と同じ液体であってもよく、第2液体と異なる液体(例えば乾燥液)であってもよい。乾燥液としては、例えばIPA(イソプロピルアルコール)等の有機溶剤が挙げられる。 In the examples of FIGS. 1 and 2, the substrate processing apparatus 1 includes two ejection units (the first ejection unit 30 and the second ejection unit 40). may be provided with a discharge part. Another ejection part may include, for example, an ejection part that ejects liquid toward the upper surface Wa of the substrate W, like the second ejection part 40 . The liquid may be the same liquid as the second liquid, or may be a liquid different from the second liquid (for example, a dry liquid). Examples of the drying liquid include organic solvents such as IPA (isopropyl alcohol).
 また、基板処理装置1は、保持部20に保持されている基板Wの下面Wbを洗浄するための下面洗浄ユニット(図示せず)を備えていてもよい。下面洗浄ユニットは、例えば基板Wの下面Wbに押し当てられるブラシ、スポンジ等の洗浄体と、洗浄液を吐出するノズルと、洗浄体及びノズルを移動させる駆動部とを備える。下面洗浄ユニットは、駆動部が洗浄体及びノズルを移動させて、基板Wの下面Wbに洗浄液を供給しながら洗浄体を押し当てることにより基板Wの下面Wbを洗浄する。 The substrate processing apparatus 1 may also include a bottom surface cleaning unit (not shown) for cleaning the bottom surface Wb of the substrate W held by the holding part 20 . The bottom surface cleaning unit includes, for example, a cleaning body such as a brush or sponge that is pressed against the bottom surface Wb of the substrate W, a nozzle that discharges cleaning liquid, and a driving section that moves the cleaning body and the nozzle. The lower surface cleaning unit cleans the lower surface Wb of the substrate W by moving the cleaning body and the nozzle with the drive section and pressing the cleaning body against the lower surface Wb of the substrate W while supplying the cleaning liquid to the lower surface Wb.
 また、基板Wの下面Wbの中心部以外の箇所を保持可能な1又は複数の吸着パッド(図示せず)が設けられてもよい。基板Wを吸着パッドにより保持している間に、基板Wの下面Wbのうち保持部20が接触する箇所(すなわち中心部)を洗浄できる。一方、基板Wを保持部20により保持している間に、基板Wの下面のうち吸着パッドが接触する箇所を洗浄できる。 Also, one or more suction pads (not shown) capable of holding a portion other than the central portion of the lower surface Wb of the substrate W may be provided. While the substrate W is being held by the suction pads, the portion of the lower surface Wb of the substrate W that the holding portion 20 contacts (that is, the central portion) can be cleaned. On the other hand, while the substrate W is being held by the holding portion 20, it is possible to clean the portion of the bottom surface of the substrate W that the suction pads come into contact with.
 また、保持部20の周囲には複数(例えば3つ)の昇降ピン(図示せず)が設けられてもよい。昇降ピンは、昇降機構(図示せず)により昇降可能に設けられる。これにより、昇降ピンと、処理容器10の外部に設けられる搬送装置(図示せず)との間で、基板Wの受け渡しを行うことができる。また、昇降ピンと、保持部20又は上述の吸着パッドとの間で、基板Wの受け渡しを行うことができる。 Also, a plurality of (for example, three) lifting pins (not shown) may be provided around the holding portion 20 . The lifting pin is provided so as to be liftable by a lifting mechanism (not shown). Thereby, the substrate W can be transferred between the lifting pins and a transfer device (not shown) provided outside the processing container 10 . In addition, the substrate W can be transferred between the lifting pins and the holding section 20 or the suction pad described above.
 〔基板処理方法〕
 図3、図4A、図4B、図4C及び図4Dを参照し、実施形態に係る基板処理装置1において実施される基板処理方法の一例について説明する。基板処理方法は、制御部90が基板処理装置1の各部を制御することにより実施される。
[Substrate processing method]
An example of a substrate processing method performed in the substrate processing apparatus 1 according to the embodiment will be described with reference to FIGS. 3, 4A, 4B, 4C, and 4D. The substrate processing method is carried out by controlling each unit of the substrate processing apparatus 1 by the control unit 90 .
 まず、搬送装置(図示せず)が、基板Wを処理容器10の内部に搬入する(ステップS1)。搬送装置は、保持部20に基板Wを載置した後、処理容器10の内部から退出する。保持部20は、基板Wを保持する。その後、回転駆動部21が保持部20と共に基板Wを回転させる。 First, a transport device (not shown) loads the substrate W into the processing container 10 (step S1). After placing the substrate W on the holding unit 20 , the transport device exits from the inside of the processing container 10 . The holding part 20 holds the substrate W. As shown in FIG. After that, the rotation driving section 21 rotates the substrate W together with the holding section 20 .
 次に、図4Aに示されるように、ノズル43が、回転している基板Wの上面Waに向けて第2液体L2を吐出する(ステップS2)。第2液体L2は、遠心力によって基板Wの上面Wa全体に濡れ広がり、液膜を形成する。 Next, as shown in FIG. 4A, the nozzle 43 ejects the second liquid L2 toward the upper surface Wa of the rotating substrate W (step S2). The second liquid L2 spreads over the entire upper surface Wa of the substrate W by centrifugal force to form a liquid film.
 次に、図4Bに示されるように、ノズル33が、回転している基板Wの上面Waに向けてミスト状にした弱酸性の第1液体L1を吐出し、かつ、ノズル43が、回転している基板Wの上面Waに向けて弱アルカリ性の第2液体L2を吐出する(ステップS3)。ミスト状にした弱酸性の第1液体L1は、基板Wの上面Waに作用して基板Wの上面Waを洗浄し、かつ基板Wの帯電を抑制する。基板Wの帯電が抑制される理由については後述する。弱アルカリ性の第2液体L2を用いるとパーティクルの付着を抑制できるが、基板Wの帯電量が増える。そこで、弱アルカリ性の第2液体L2に加えて、弱酸性の第1液体L1も用いることで、基板Wの帯電量を減らすことができる。すなわち、基板Wの上面Waへのパーティクルの付着を抑制しつつ、基板Wの帯電量を減らすことができる。 Next, as shown in FIG. 4B, the nozzle 33 ejects the mist-like weakly acidic first liquid L1 toward the upper surface Wa of the rotating substrate W, and the nozzle 43 rotates. The weakly alkaline second liquid L2 is discharged toward the upper surface Wa of the substrate W (step S3). The mist-like weakly acidic first liquid L1 acts on the upper surface Wa of the substrate W to clean the upper surface Wa of the substrate W and suppress the substrate W from being charged. The reason why charging of the substrate W is suppressed will be described later. Adhesion of particles can be suppressed by using the weakly alkaline second liquid L2, but the amount of charge on the substrate W increases. Therefore, the amount of charge on the substrate W can be reduced by using the weakly acidic first liquid L1 in addition to the weakly alkaline second liquid L2. That is, the amount of charge on the substrate W can be reduced while suppressing the adhesion of particles to the upper surface Wa of the substrate W.
 ノズル33からミスト状にした第1液体L1を吐出する際には、第1液体L1及びガスがそれぞれ供給ライン31d,32dを流れる際にパーティクルを発生させ、パーティクルと共にノズル33から吐出される場合がある。また、ノズル33から吐出されるミスト状にした第1液体L1は、カップ60の内壁面に付着したパーティクルをまき散らす場合がある。この場合、基板Wの上面Waが露出していると露出面にパーティクルが付着するが、実施形態では第1液体L1と第2液体L2を同時に吐出するので、前述したように基板Wの上面Waが第2液体L2の液膜に覆われている。そのため、基板Wの上面Waへのパーティクルの付着をより抑制できる。弱酸性の第1液体L1と弱アルカリ性の第2液体L2を同時に吐出する場合、中和反応により塩が生成される。塩が析出しないように、第1液体L1と第2液体L2の組み合わせとしては、第1液体L1が炭酸水又はオゾン水であって第2液体L2がアンモニア水であることが好ましい。塩の析出を抑制することで、パーティクルの発生を抑制できる。 When ejecting the mist-like first liquid L1 from the nozzle 33, particles may be generated when the first liquid L1 and the gas flow through the supply lines 31d and 32d, respectively, and may be ejected from the nozzle 33 together with the particles. be. In addition, the mist-like first liquid L<b>1 ejected from the nozzle 33 may scatter particles adhering to the inner wall surface of the cup 60 . In this case, if the upper surface Wa of the substrate W is exposed, particles will adhere to the exposed surface. is covered with the liquid film of the second liquid L2. Therefore, adhesion of particles to the upper surface Wa of the substrate W can be further suppressed. When the weakly acidic first liquid L1 and the weakly alkaline second liquid L2 are discharged at the same time, a salt is generated by the neutralization reaction. As for the combination of the first liquid L1 and the second liquid L2, it is preferable that the first liquid L1 is carbonated water or ozone water and the second liquid L2 is ammonia water so as not to precipitate salts. By suppressing precipitation of salts, generation of particles can be suppressed.
 ステップS3では、ノズル33が、基板Wの径方向に移動しながら基板Wの上面Waに向けてミスト状にした第1液体L1を吐出する。ノズル33は、基板Wの中心から周縁に向かって移動してもよく、基板Wの周縁から中心に向かって移動してもよい。ノズル33は、基板Wの中心と周縁との間で往復移動してもよい。ノズル33を基板Wの径方向に移動することで、ミスト状にした第1液体L1で基板Wの径方向全体を洗浄できる。なお、ノズル33は、移動することなく基板Wの上面Waに向けてミスト状にした第1液体L1を吐出してもよい。 In step S3, the nozzle 33 ejects the mist-like first liquid L1 toward the upper surface Wa of the substrate W while moving in the radial direction of the substrate W. The nozzle 33 may move from the center of the substrate W toward the periphery, or may move from the periphery of the substrate W toward the center. The nozzle 33 may reciprocate between the center of the substrate W and the periphery. By moving the nozzle 33 in the radial direction of the substrate W, the entire radial direction of the substrate W can be cleaned with the mist-like first liquid L1. The nozzle 33 may eject the mist-like first liquid L1 toward the upper surface Wa of the substrate W without moving.
 ステップS3では、ノズル43が、移動することなく基板Wの中心に第2液体L2を吐出する。遠心力によって第2液体L2を基板Wの径方向全体に広げることができ、基板Wの径方向全体を第2液体L2の液膜で覆うことができる。ただし、ノズル43は、基板Wの径方向に移動しながら基板Wの上面Waに向けて第2液体L2を吐出してもよい。 In step S3, the nozzle 43 ejects the second liquid L2 to the center of the substrate W without moving. The centrifugal force can spread the second liquid L2 over the entire radial direction of the substrate W, and the entire radial direction of the substrate W can be covered with the liquid film of the second liquid L2. However, the nozzle 43 may discharge the second liquid L2 toward the upper surface Wa of the substrate W while moving in the radial direction of the substrate W. FIG.
 次に、図4Cに示されるように、ノズル33が第1液体L1の吐出を停止すると共に、ノズル43が、回転している基板Wの上面Waに向けて第2液体L2を吐出する(ステップS4)。第2液体L2は、遠心力によって基板Wの上面Wa全体に濡れ広がり、液膜を形成する。 Next, as shown in FIG. 4C, the nozzles 33 stop discharging the first liquid L1, and the nozzles 43 discharge the second liquid L2 toward the upper surface Wa of the rotating substrate W (step S4). The second liquid L2 spreads over the entire upper surface Wa of the substrate W by centrifugal force to form a liquid film.
 次に、図4Dに示されるように、ノズル33からの第1液体L1の吐出及びノズル43からの第2液体L2の吐出を停止した状態で、回転駆動部21が基板Wを回転させ、基板Wの上面に残る第2液体L2を振り切り、基板Wを乾燥させる(ステップS5)。基板Wを乾燥させた後、回転駆動部21が基板Wの回転を停止する。なお、ステップS5では、図示しないノズルが、回転している基板Wの上面Waに乾燥液を供給してもよい。乾燥液は、遠心力によって基板Wの上面Wa全体に濡れ広がり、基板Wの上面Waに残る第2液体L2を洗い流す。その結果、基板Wの上面Waに、乾燥液の液膜が形成される。乾燥液の液膜は基板Wの回転により基板Wの上面Waから振り切られ、基板Wが乾燥する。 Next, as shown in FIG. 4D, in a state in which ejection of the first liquid L1 from the nozzles 33 and ejection of the second liquid L2 from the nozzles 43 are stopped, the rotation driving unit 21 rotates the substrate W to The second liquid L2 remaining on the upper surface of W is shaken off, and the substrate W is dried (step S5). After drying the substrate W, the rotation driving unit 21 stops rotating the substrate W. As shown in FIG. In step S5, a nozzle (not shown) may supply the drying liquid to the upper surface Wa of the substrate W that is rotating. The dry liquid spreads over the entire upper surface Wa of the substrate W due to centrifugal force, and washes away the second liquid L2 remaining on the upper surface Wa of the substrate W. As shown in FIG. As a result, a liquid film of the drying liquid is formed on the upper surface Wa of the substrate W. As shown in FIG. The liquid film of the drying liquid is shaken off from the upper surface Wa of the substrate W by the rotation of the substrate W, and the substrate W is dried.
 最後に、保持部20が基板Wの保持を解除し、続いて搬送装置が保持部20から基板Wを受け取り、受け取った基板Wを処理容器10の外部に搬出する(ステップS6)。その後、処理が終了する。 Finally, the holding unit 20 releases the holding of the substrate W, then the transport device receives the substrate W from the holding unit 20, and carries the received substrate W out of the processing container 10 (step S6). After that, the process ends.
 なお、実施形態に係る基板処理方法では、ステップS3において、基板Wの上面Waに向けてミスト状にした第1液体L1と第2液体L2とを同時に吐出する場合を説明したが、これに限定されない。ステップS3において、ミスト状にした第1液体L1と第2液体L2とを順番に吐出してもよい。例えば、まず第2液体L2を吐出することなくミスト状にした第1液体L1を吐出し、次いでミスト状にした第1液体L1を吐出することなく第2液体L2を吐出するようにしてもよい。例えば、まずミスト状にした第1液体L1を吐出することなく第2液体L2を吐出し、次いで第2液体L2を吐出することなくミスト状にした第1液体L1を吐出するようにしてもよい。また、ミスト状にした第1液体L1と第2液体L2とを交互に繰り返し吐出するようにしてもよい。ただし、処理時間を短縮するという観点から、ミスト状にした第1液体L1と第2液体L2とを同時に吐出することが好ましい。 In the substrate processing method according to the embodiment, in step S3, the first liquid L1 and the second liquid L2 are simultaneously ejected toward the upper surface Wa of the substrate W. However, the present invention is limited to this. not. In step S3, the mist-like first liquid L1 and second liquid L2 may be discharged in order. For example, first, the mist-like first liquid L1 may be ejected without ejecting the second liquid L2, and then the second liquid L2 may be ejected without ejecting the mist-like first liquid L1. . For example, first, the second liquid L2 may be ejected without ejecting the mist-like first liquid L1, and then the mist-like first liquid L1 may be ejected without ejecting the second liquid L2. . Further, the mist-like first liquid L1 and the second liquid L2 may be alternately and repeatedly ejected. However, from the viewpoint of shortening the processing time, it is preferable to simultaneously eject the mist-like first liquid L1 and the second liquid L2.
 また、実施形態に係る基板処理方法は、下面洗浄ユニット(図示せず)が、保持部20に保持されている基板Wの下面Wbを洗浄するステップを有していてもよい。該ステップは、例えばステップS2を実施する前、ステップS2と同時及びステップS3と同時の少なくとも1つ以上のタイミングに実施してよい。下面洗浄ユニットは、駆動部が洗浄体及びノズルを移動させて、基板Wの下面Wbに洗浄液を供給しながら洗浄体を押し当てることにより基板Wの下面Wbを洗浄する。 Further, the substrate processing method according to the embodiment may have a step of cleaning the lower surface Wb of the substrate W held by the holding part 20 by a lower surface cleaning unit (not shown). This step may be performed at least one timing before step S2, at the same time as step S2, and at the same time as step S3, for example. The lower surface cleaning unit cleans the lower surface Wb of the substrate W by moving the cleaning body and the nozzle with the drive section and pressing the cleaning body against the lower surface Wb of the substrate W while supplying the cleaning liquid to the lower surface Wb.
 図5を参照し、ミスト状にした弱酸性の第1液体L1が基板Wの帯電を抑制できる理由を説明する。基板Wの帯電は、基板Wの処理面に供給される洗浄液のpHと、処理面の等電点とに基づいて決まる。洗浄液のpHが処理面の等電点よりも小さい場合、基板Wは正(+)に帯電しやすく、洗浄液のpHと処理面の等電点との差が大きいほど正の帯電量が大きくなる。一方、洗浄液のpHが処理面の等電点よりも大きい場合、基板Wは負(-)に帯電しやすく、薬液のpHと処理面の等電点との差が大きいほど負の帯電量が大きくなる。 The reason why the mist-like weakly acidic first liquid L1 can suppress charging of the substrate W will be described with reference to FIG. The charging of the substrate W is determined based on the pH of the cleaning liquid supplied to the processing surface of the substrate W and the isoelectric point of the processing surface. When the pH of the cleaning liquid is lower than the isoelectric point of the processing surface, the substrate W tends to be positively (+) charged, and the greater the difference between the pH of the cleaning liquid and the isoelectric point of the processing surface, the greater the amount of positive charge. . On the other hand, when the pH of the cleaning solution is higher than the isoelectric point of the surface to be treated, the substrate W tends to be negatively (-) charged. growing.
 基板Wの処理面の一例である熱酸化膜は、等電点(pH)が1.5~3.7である。第1液体L1の一例である炭酸水は、弱酸性を有し、例えばpHが4.5である。第2液体L2の一例であるアンモニア水は、弱アルカリ性を有し、例えばpHが9.7である。すなわち、炭酸水のpHと熱酸化膜の等電点との差は、アンモニア水のpHと熱酸化膜の等電点との差よりも小さい。そのため、炭酸水を熱酸化膜に供給することにより、アンモニア水を熱酸化膜に供給するよりも基板Wの帯電を抑制できると考えられる。また、炭酸水のpHと熱酸化膜の等電点との差は、純水のpH(pH=7.0)と熱酸化膜の等電点との差よりも小さい。そのため、炭酸水を熱酸化膜に供給することにより、純水を熱酸化膜に供給するよりも基板Wの帯電を抑制できると考えられる。 A thermal oxide film, which is an example of the processing surface of the substrate W, has an isoelectric point (pH) of 1.5 to 3.7. Carbonated water, which is an example of the first liquid L1, is weakly acidic, and has a pH of 4.5, for example. Ammonia water, which is an example of the second liquid L2, is weakly alkaline and has a pH of 9.7, for example. That is, the difference between the pH of carbonated water and the isoelectric point of the thermal oxide film is smaller than the difference between the pH of ammonia water and the isoelectric point of the thermal oxide film. Therefore, it is considered that charging of the substrate W can be suppressed more effectively by supplying carbonated water to the thermal oxide film than by supplying ammonia water to the thermal oxide film. Also, the difference between the pH of carbonated water and the isoelectric point of the thermal oxide film is smaller than the difference between the pH of pure water (pH=7.0) and the isoelectric point of the thermal oxide film. Therefore, it is considered that charging of the substrate W can be suppressed more effectively by supplying carbonated water to the thermal oxide film than by supplying pure water to the thermal oxide film.
 〔実施例〕
 実施形態の効果を確認するために行った実施例について説明する。
〔Example〕
An example conducted to confirm the effect of the embodiment will be described.
 実施例1では、熱酸化膜が上面に形成された基板を準備し、次いで図3に示されるステップS1、S3、S5、S6を実施し、次いで基板の帯電量を測定した。ステップS3では、回転している基板の上面に向けて、ノズル33からミスト状にした炭酸水と窒素ガスとを含む二流体を吐出し、かつノズル43からアンモニア水を吐出した。炭酸水とアンモニア水とは、比抵抗が同程度のものを用いた。具体的には、炭酸水としては比抵抗が0.06MΩ・cmのものを用い、アンモニア水としては比抵抗が0.067MΩ・cmのものを用いた。 In Example 1, a substrate having a thermal oxide film formed on its upper surface was prepared, then steps S1, S3, S5, and S6 shown in FIG. 3 were performed, and then the charge amount of the substrate was measured. In step S 3 , two fluids containing carbonated water and nitrogen gas in the form of mist are discharged from the nozzle 33 toward the upper surface of the rotating substrate, and ammonia water is discharged from the nozzle 43 . The carbonated water and the ammonia water used had similar specific resistances. Specifically, carbonated water with a specific resistance of 0.06 MΩ·cm was used, and ammonia water with a specific resistance of 0.067 MΩ·cm was used.
 参考例1Aでは、ステップS3においてノズル33からミスト状にした炭酸水と窒素ガスとを含む二流体を吐出し、かつノズル43から炭酸水を吐出したこと以外、実施例1と同じ条件で、基板を処理した。 In Reference Example 1A, the substrate was prepared under the same conditions as in Example 1, except that two fluids containing carbonated water and nitrogen gas in the form of mist were discharged from the nozzle 33 in step S3, and the carbonated water was discharged from the nozzle 43. processed.
 参考例1Bでは、ステップS3においてノズル33及びノズル43からアンモニア水を吐出したこと以外、実施例1と同じ条件で、基板を処理した。 In Reference Example 1B, the substrate was processed under the same conditions as in Example 1, except that ammonia water was discharged from the nozzles 33 and 43 in step S3.
 図6は、実施例1、参考例1A及び参考例1Bで処理した基板の中心における負の帯電量(>0)を測定した結果を示す図である。図6においては、参考例1Aにおける基板の中心の帯電量を1とした場合の実施例1及び参考例1Bにおける基板の中心の帯電量を相対的に示している。 FIG. 6 is a diagram showing the results of measuring the amount of negative charge (>0) at the center of the substrates treated in Example 1, Reference Examples 1A and 1B. FIG. 6 shows relative charge amounts at the center of the substrate in Example 1 and Reference Example 1B when the charge amount at the center of the substrate in Reference Example 1A is set to 1. In FIG.
 図6に示されるように、参考例1Bでは基板の中心の帯電量が参考例1Aの約7.5倍に増加しているのに対し、実施例1では基板の中心の帯電量は小さく、参考例1Aと略同じであることが分かる。この結果から、ステップS3において、回転している基板の上面に向けて、アンモニア水に加えてミスト状にした炭酸水と窒素ガスとを含む二流体を吐出することにより、アンモニア水のみを吐出する場合よりも基板の帯電量を抑制できることが示された。 As shown in FIG. 6, in Reference Example 1B, the charge amount at the center of the substrate was increased to about 7.5 times that of Reference Example 1A, whereas in Example 1, the charge amount at the center of the substrate was small, It can be seen that it is substantially the same as Reference Example 1A. Based on this result, in step S3, two fluids containing carbonated water and nitrogen gas in the form of mist in addition to ammonia water are discharged toward the upper surface of the rotating substrate, thereby discharging only ammonia water. It was shown that the charge amount of the substrate can be suppressed more than the case.
 実施例2では、熱酸化膜が上面に形成された基板を準備し、次いで図3に示されるステップS1、S3、S5、S6を実施し、次いで基板の上面に付着したパーティクルの数を測定した。ステップS3では、回転している基板の上面に向けて、ノズル33からミスト状にした炭酸水と窒素ガスとを含む二流体を吐出し、かつノズル43からアンモニア水を吐出した。炭酸水及びアンモニア水は、実施例1と同じものを用いた。 In Example 2, a substrate having a thermal oxide film formed on its upper surface was prepared, then steps S1, S3, S5, and S6 shown in FIG. 3 were performed, and then the number of particles adhering to the upper surface of the substrate was measured. . In step S 3 , two fluids containing carbonated water and nitrogen gas in the form of mist are discharged from the nozzle 33 toward the upper surface of the rotating substrate, and ammonia water is discharged from the nozzle 43 . The same carbonated water and ammonia water as in Example 1 were used.
 参考例2では、ステップS3においてノズル33からミスト状にした炭酸水と窒素ガスとを含む二流体を吐出し、かつノズル43から炭酸水を吐出したこと以外、実施例2と同じ条件で、基板を処理した。 In Reference Example 2, a substrate was prepared under the same conditions as in Example 2, except that two fluids containing misted carbonated water and nitrogen gas were discharged from the nozzle 33 in step S3, and the carbonated water was discharged from the nozzle 43. processed.
 図7は、実施例2及び参考例2で処理した基板の上面に付着したパーティクルの数を測定した結果を示す図である。図7においては、参考例2におけるパーティクルの数を1とした場合の実施例2におけるパーティクルの数を相対的に示している。 FIG. 7 is a diagram showing the results of measuring the number of particles adhering to the top surfaces of the substrates processed in Example 2 and Reference Example 2. FIG. FIG. 7 shows the relative number of particles in Example 2 when the number of particles in Reference Example 2 is 1. In FIG.
 図7に示されるように、実施例2ではパーティクルの数が参考例2の0.44倍であることが分かる。この結果から、ステップS3において、回転している基板の上面に向けて、ノズル33からミスト状にした炭酸水と窒素ガスとを含む二流体を吐出し、かつノズル43からアンモニア水を吐出することにより、パーティクルの付着を抑制できることが示された。 As shown in FIG. 7, it can be seen that the number of particles in Example 2 is 0.44 times that of Reference Example 2. Based on this result, in step S3, two fluids including carbonated water and nitrogen gas in the form of mist are discharged from the nozzle 33 toward the upper surface of the rotating substrate, and ammonia water is discharged from the nozzle 43. showed that adhesion of particles can be suppressed.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The above-described embodiments may be omitted, substituted or modified in various ways without departing from the scope and spirit of the appended claims.
 本国際出願は、2021年11月8日に出願した日本国特許出願第2021-182035号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2021-182035 filed on November 8, 2021, and the entire content of that application is incorporated into this international application.
 1  基板処理装置
 20 保持部
 30 第1吐出部
 40 第2吐出部
 L1 第1液体
 L2 第2液体
 W  基板
 Wa 上面
Reference Signs List 1 substrate processing apparatus 20 holding section 30 first discharge section 40 second discharge section L1 first liquid L2 second liquid W substrate Wa upper surface

Claims (12)

  1.  基板を回転可能に保持する保持部と、
     回転する前記基板の処理面に向けてミスト状にした弱酸性の第1液体を吐出する第1吐出部と、
     前記処理面に向けて弱アルカリ性の第2液体を吐出し、前記処理面に前記第2液体を含む液膜を形成する第2吐出部と、
     を備える、
     基板処理装置。
    a holding part that rotatably holds the substrate;
    a first ejection unit that ejects a mist-like weakly acidic first liquid toward the processing surface of the rotating substrate;
    a second ejection unit that ejects a weakly alkaline second liquid toward the processing surface to form a liquid film containing the second liquid on the processing surface;
    comprising
    Substrate processing equipment.
  2.  前記第1吐出部は、前記第1液体と不活性ガスを同時に吐出する二流体ノズルである、
     請求項1に記載の基板処理装置。
    The first ejection part is a two-fluid nozzle that ejects the first liquid and an inert gas at the same time,
    The substrate processing apparatus according to claim 1.
  3.  前記第1吐出部を前記基板の径方向に移動させる駆動部を備える、
     請求項1に記載の基板処理装置。
    A drive unit that moves the first discharge unit in a radial direction of the substrate,
    The substrate processing apparatus according to claim 1.
  4.  前記処理面に前記第1液体と前記第2液体を同時に供給するように前記第1吐出部及び前記第2吐出部を制御する制御部を備える、
     請求項1に記載の基板処理装置。
    a control unit that controls the first ejection unit and the second ejection unit so as to simultaneously supply the first liquid and the second liquid to the processing surface;
    The substrate processing apparatus according to claim 1.
  5.  前記第1液体は、炭酸水又はオゾン水であり、
     前記第2液体は、アンモニア水である、
     請求項1に記載の基板処理装置。
    the first liquid is carbonated water or ozone water,
    The second liquid is aqueous ammonia,
    The substrate processing apparatus according to claim 1.
  6.  前記処理面は、熱酸化膜が露出した面を含む、
     請求項1乃至5のいずれか一項に記載の基板処理装置。
    The treated surface includes a surface where the thermal oxide film is exposed,
    The substrate processing apparatus according to any one of claims 1 to 5.
  7.  回転する基板の処理面に向けてミスト状にした弱酸性の第1液体を吐出することと、
     前記処理面に向けて弱アルカリ性の第2液体を吐出し、前記処理面に前記第2液体を含む液膜を形成することと、
     を有する、
     基板処理方法。
    discharging a mist-like weakly acidic first liquid toward a processing surface of a rotating substrate;
    discharging a weakly alkaline second liquid toward the processing surface to form a liquid film containing the second liquid on the processing surface;
    having
    Substrate processing method.
  8.  前記第1液体を吐出することは、二流体ノズルにより前記第1液体と不活性ガスを同時に吐出することを含む、
     請求項7に記載の基板処理方法。
    Ejecting the first liquid includes simultaneously ejecting the first liquid and an inert gas with a two-fluid nozzle,
    The substrate processing method according to claim 7.
  9.  前記第1液体を吐出することは、前記基板の径方向に沿って前記第1液体の吐出位置を移動することを含む、
     請求項7に記載の基板処理方法。
    Ejecting the first liquid includes moving an ejection position of the first liquid along a radial direction of the substrate,
    The substrate processing method according to claim 7.
  10.  前記第1液体を吐出すること及び前記液膜を形成することを同時に行うことを含む、
     請求項7に記載の基板処理方法。
    simultaneously performing discharging the first liquid and forming the liquid film;
    The substrate processing method according to claim 7.
  11.  前記第1液体は、炭酸水又はオゾン水であり、
     前記第2液体は、アンモニア水である、
     請求項7に記載の基板処理方法。
    the first liquid is carbonated water or ozone water,
    The second liquid is aqueous ammonia,
    The substrate processing method according to claim 7.
  12.  前記処理面は、熱酸化膜が露出した面を含む、
     請求項7乃至11のいずれか一項に記載の基板処理方法。
    The treated surface includes a surface where the thermal oxide film is exposed,
    The substrate processing method according to any one of claims 7 to 11.
PCT/JP2022/039687 2021-11-08 2022-10-25 Substrate treatment apparatus and substrate treatment method WO2023080015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021182035 2021-11-08
JP2021-182035 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023080015A1 true WO2023080015A1 (en) 2023-05-11

Family

ID=86240956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039687 WO2023080015A1 (en) 2021-11-08 2022-10-25 Substrate treatment apparatus and substrate treatment method

Country Status (2)

Country Link
TW (1) TW202331886A (en)
WO (1) WO2023080015A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138197A (en) * 1998-11-02 2000-05-16 Tokyo Electron Ltd Processing apparatus and method of processing
JP2020184581A (en) * 2019-05-08 2020-11-12 株式会社荏原製作所 Substrate processing apparatus and substrate processing method
JP2021174959A (en) * 2020-04-30 2021-11-01 株式会社Screenホールディングス Substrate processing apparatus, substrate processing method, method for generating data for learning, learning method, learning device, method for creating learned model, and learned model

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138197A (en) * 1998-11-02 2000-05-16 Tokyo Electron Ltd Processing apparatus and method of processing
JP2020184581A (en) * 2019-05-08 2020-11-12 株式会社荏原製作所 Substrate processing apparatus and substrate processing method
JP2021174959A (en) * 2020-04-30 2021-11-01 株式会社Screenホールディングス Substrate processing apparatus, substrate processing method, method for generating data for learning, learning method, learning device, method for creating learned model, and learned model

Also Published As

Publication number Publication date
TW202331886A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP5712061B2 (en) Substrate processing method and substrate processing unit
US10737301B2 (en) Substrate cleaning apparatus
US20060213536A1 (en) Substrate cleaning apparatus and substrate cleaning method
CN107086190B (en) Substrate cleaning apparatus and substrate processing apparatus
CN108028191B (en) Substrate processing method and substrate processing apparatus
TW201739529A (en) Substrate washing device
KR20120016011A (en) Liquid processing apparatus, liquid processing method and storage medium
US20140373877A1 (en) Liquid processing apparatus and liquid processing method
US20100108095A1 (en) Substrate processing apparatus and substrate cleaning method
JP2007036152A (en) Wafer cleaning/drying method and wafer cleaning/drying equipment
JP2006086415A (en) Substrate washing device
WO2023080015A1 (en) Substrate treatment apparatus and substrate treatment method
US9640384B2 (en) Substrate cleaning apparatus and substrate cleaning method
TW202335069A (en) Substrate processing method and substrate processing method
CN114682547A (en) Substrate cleaning device and substrate cleaning method
TWI576170B (en) Wafer cleaning system and method of cleaning a wafer using a wafer cleaning system
CN112439737A (en) Apparatus and method for processing substrate
US11482429B2 (en) Substrate processing apparatus and substrate processing method
US20190262875A1 (en) Substrate Processing Apparatus, Substrate Processing Method and Computer-Readable Recording Medium
WO2023022210A1 (en) Substrate cleaning device, substrate cleaning method, and substrate polishing device
JP7186671B2 (en) Cover for rocking part of substrate processing apparatus, rocking part of substrate processing apparatus, and substrate processing apparatus
JP7470785B2 (en) Cleaning device and cleaning method
US20240162052A1 (en) Substrate processing apparatus, substrate processing method, and substrate
TWI839585B (en) Substrate processing device and substrate processing method
CN117423644B (en) Wafer cleaning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889835

Country of ref document: EP

Kind code of ref document: A1