WO2023080003A1 - Light source device and head-up display device - Google Patents

Light source device and head-up display device Download PDF

Info

Publication number
WO2023080003A1
WO2023080003A1 PCT/JP2022/039552 JP2022039552W WO2023080003A1 WO 2023080003 A1 WO2023080003 A1 WO 2023080003A1 JP 2022039552 W JP2022039552 W JP 2022039552W WO 2023080003 A1 WO2023080003 A1 WO 2023080003A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source device
display panel
polarization conversion
Prior art date
Application number
PCT/JP2022/039552
Other languages
French (fr)
Japanese (ja)
Inventor
利昌 永井
智貴 山本
寿紀 杉山
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2023080003A1 publication Critical patent/WO2023080003A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/14Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing polarised light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • the present invention relates to the technology of light source devices and head-up display devices.
  • Patent Document 1 discloses a light source device that is compact and lightweight, has a high light utilization rate, and can be modularized and easily used as a planar light source.
  • the light source device of Patent Document 1 includes: a light source section including a plurality of semiconductor light source elements; a collimator including a plurality of collimator elements arranged on the light emission axis of each of the plurality of semiconductor light source elements; A polarization conversion element is provided, and a light guide is provided on the output side of the polarization conversion element.
  • the plurality of semiconductor light source elements and the plurality of collimator elements are arranged in a first direction (X direction) perpendicular to the light emission axis, and the polarization conversion element extends in the first direction and emits light in the first direction. It includes a polarizing beam splitter and a phase plate positioned symmetrically with respect to a plane formed by a second direction corresponding to the axis.
  • the light source device of Patent Document 1 is used, for example, in a head-up display (head-up display, sometimes referred to as "HUD") for vehicles.
  • the HUD projects various types of information such as driving information such as vehicle speed and engine speed and navigation information onto a windshield (in other words, a windshield) and displays them.
  • driving information such as vehicle speed and engine speed and navigation information
  • a windshield in other words, a windshield
  • the driver can obtain information necessary for driving without moving his/her line of sight to a dashboard or the like incorporated in the dashboard. Therefore, the HUD contributes to safe driving of automobiles and the like.
  • a light source for example, an LED element
  • a collimator for example, a collimator
  • a polarization conversion element for example, a light guide
  • a diffusion plate for example, a diffusion plate
  • a display panel for example, a liquid crystal display
  • the display panel is a liquid crystal display (LCD)
  • the LCD panel can only use, for example, linearly polarized light as backlight (light source light for generating projection light). Therefore, if it is desired to improve the light utilization efficiency, it is necessary to use a polarization conversion element.
  • the polarization conversion element converts random polarized light in the approximately parallel light from the collimator into linear polarized light.
  • the light guide controls the distribution of the linearly polarized light and guides it toward the display panel.
  • the light guide is a resin molded product with a large thickness, and there is inherent residual stress due to this.
  • residual stress portion residual stress portion
  • the phase difference changes the polarization state.
  • light beams passing through each part of the light guide are emitted as light beams with different polarization states according to the difference in residual stress of each part.
  • the light enters the LCD panel. Therefore, a loss of polarization occurs on the LCD panel.
  • This polarization loss can cause a decrease in image light brightness, uneven brightness, and uneven color in the HUD. If the luminance is lowered, the HUD product will be defective, resulting in a poor manufacturing yield.
  • One of the objects of the present invention is to provide a light source device etc. capable of improving the manufacturing yield. Another object is to be able to reduce the polarization loss that occurs in response to residual stress in the lightguide.
  • a representative embodiment of the present invention has the configuration shown below.
  • a light source device includes a light source, a collimator arranged on the exit side of the light source and adjusting a traveling direction of light incident from the light source, and a light guide that guides the light emitted from the light guide toward the display panel; and a polarization conversion element to align.
  • FIG. 1 is a schematic diagram showing a configuration example of a vehicle equipped with a head-up display device (HUD device) according to an embodiment of the invention
  • FIG. 2 is a schematic diagram showing a configuration example of a video display unit and the like that constitute the HUD device of FIG. 1
  • FIG. 3 is a schematic diagram showing a more detailed configuration example of the image display unit of FIG. 2
  • FIG. 4 is a perspective view showing an appearance example of a HUD device including the video display unit of FIG. 3
  • 2 is a functional block diagram showing a configuration example of a control system of the HUD device of FIG. 1
  • FIG. FIG. 6 is a functional block diagram showing a configuration example related to a vehicle information acquisition unit shown in FIG.
  • FIG. 5 1 is a diagram showing a configuration of a light source device according to Embodiment 1;
  • FIG. 4A and 4B are diagrams showing configuration examples of an LED substrate and a collimator, which constitute the light source device of the first embodiment;
  • FIG. 3 is a cross-sectional view showing a configuration example of a collimator that constitutes the light source device of Embodiment 1.
  • FIG. 3A and 3B are diagrams showing a configuration example of a light guide that constitutes the light source device of the first embodiment;
  • FIG. 2 is a perspective view showing a configuration example of a polarization conversion element that constitutes the light source device of Embodiment 1.
  • FIG. 4 is a cross-sectional view showing a configuration example of a polarization conversion element that constitutes the light source device of Embodiment 1.
  • FIG. FIG. 4 is a diagram showing a configuration of a light source device of a modified example of Embodiment 1;
  • FIG. 10 is a diagram showing the configuration of a light source device according to Embodiment 2;
  • FIG. 10 is a diagram showing the configuration of a light source device according to Embodiment 3;
  • FIG. 10 is a diagram showing the configuration of a light source device according to Embodiment 4; It is a figure which shows the structure of the light source device of a comparative example.
  • the main body as hardware for them is the processor or the controller composed of the processor etc. , devices, computers, systems, etc.
  • a computer executes processing according to a program read out on a memory by a processor while appropriately using resources such as a memory and a communication interface.
  • the processor is composed of, for example, a semiconductor device such as a CPU or GPU.
  • a processor is composed of devices and circuits capable of performing predetermined operations.
  • the processing can be implemented not only by software program processing but also by dedicated circuits. FPGA, ASIC, CPLD, etc. can be applied to the dedicated circuit.
  • Embodiment 1 A light source device and the like according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 12 and the like.
  • the HUD device of Embodiment 1 includes the light source device of Embodiment 1 and a display panel.
  • the light source device 100 of Embodiment 1 shown in FIG. 150 is not between the collimator 140 and the light guide 160 (in other words, before the light guide 160), but between the light guide 160 and the diffusion plate 170 (or the display panel 64) (in other words, the light guide 160). (after)).
  • the polarization conversion element 150 downstream of the light guide 160 converts randomly polarized light from the light guide 160 into linearly polarized light. Therefore, even if residual stress exists in the light guide 160 , the influence of the residual stress, ie, the change in polarization state, is dealt with by conversion into linearly polarized light in the polarization conversion element 150 . Incident light to the LCD panel 64 becomes light in which the effect of residual stress, that is, the change in polarization state is eliminated. In other words, the light source device 100 of Embodiment 1 can eliminate the influence of the residual stress of the light guide 160 on the polarized light.
  • the polarization conversion element 150 may be arranged near the LCD panel 64 (at a position closer to the LCD panel 64 than the light guide 160).
  • a diffusion plate 170 or the like may be arranged between the polarization conversion element 150 and the LCD panel 64 .
  • a thin lens or a Fresnel lens which will be described later (Embodiment 2, etc.) may be arranged as an optical element.
  • the function of this optical element is to control the light distribution to the lens 63 (FIG. 3) in the rear stage of the LCD panel 64 (control of the incident angle and area of light rays).
  • This optical element may be placed either forward or backward with respect to the diffusion plate 170 .
  • a member in which this optical element and the diffusion plate 170 are integrated may be used.
  • FIG. 1 is a schematic diagram showing a configuration example of a vehicle 2 equipped with a head-up display device (HUD device) 1 according to Embodiment 1. As shown in FIG. A HUD device 1 in FIG. 1 is mounted on a vehicle 2 .
  • the vehicle 2 is typically an automobile, but is not necessarily limited to this, and may be a railroad vehicle or the like depending on the case.
  • the HUD device 1 acquires vehicle information 4 from various sensors installed in each part of the vehicle 2 .
  • Various sensors detect various events occurring in the vehicle 2, and periodically detect the values of various parameters related to driving conditions.
  • the vehicle information 4 includes, for example, speed information and gear information of the vehicle 2, steering angle information, lamp lighting information, external light information, distance information, infrared information, engine ON/OFF information, camera image information, acceleration gyro information, It includes GPS (Global Positioning System) information, navigation information, vehicle-to-vehicle communication information, road-to-vehicle communication information, and the like.
  • the camera image information includes in-vehicle camera image information and exterior camera image information. GPS information includes current time information in addition to latitude and longitude.
  • the HUD device 1 projects an image onto the display area 5 of the windshield 3 using the image display unit 12 (Fig. 2). As a result, the HUD device 1 allows the driver of the vehicle 2 (driver's viewpoint) 6 to visually recognize the scenery superimposed as the virtual image 9 corresponding to the projected image.
  • FIG. 2 is a schematic diagram showing a configuration example of part of the vehicle 2 in FIG.
  • the image display unit 12 is housed in the housing of the HUD device 1 .
  • the image display unit 12 of FIG. 2 has an image display device 35, a reflection mirror M1, and a reflection mirror M2.
  • Reflecting mirror M1 is a first mirror arranged at a later stage on the optical path.
  • Reflecting mirror M2 is a second mirror arranged in the front stage on the optical path.
  • the image light (in other words, projection light) emitted from the image display device 35 is reflected through the reflection mirrors M2 and M1 and emitted from the opening 71 (FIG. 3) of the housing.
  • Image light emitted from the image display unit 12 travels through the opening 7 of the dashboard of the vehicle 2 toward the display area 5 of the windshield 3 .
  • the image light is reflected by the display area 5 of the windshield 3 and goes to the viewpoint 6.
  • - ⁇ A driver can visually recognize the image light as a virtual image 9 from a viewpoint 6 .
  • FIG. 3 shows a more detailed configuration example of the video display unit 12 of FIG.
  • the image display unit 12 of FIG. 3 includes an image display device 35, a condenser lens 63, a reflection mirror M2, and a reflection mirror M1 with a drive mechanism 62.
  • An opening 71 is provided in the housing 61 .
  • the optical system for projecting the image light onto the display area 5 includes a condensing lens 63, a reflecting mirror M2, and a reflecting mirror M1.
  • the video display device 35 includes, for example, the light source device 100 of Embodiment 1 (details will be described later) and a display panel 64 .
  • the image display device 35 is a projector (projection-type image display device) that projects an image formed on the display panel 64 using light emitted from the light source device 100 (in other words, light source light).
  • the light source device 100 typically includes an LED (Light Emitting Diode) light source.
  • the display panel 64 is typically a liquid crystal display (LCD).
  • the display panel 64 creates an image based on the image data instructed and input from the control device, and displays it on the display screen of the display panel 64 .
  • the display panel 64 modulates the transmittance of the light from the light source device 100 for each pixel according to the image data, thereby forming an image to be projected onto the display area 5 and generating image light (in other words, projection light).
  • the direction of emission of image light from the image display device 35 is the vertically upward direction (Z direction).
  • the dashed-dotted arrow indicates the optical axis of the image light.
  • a condenser lens 63 is installed as a lens between the display panel 64 of the image display device 35 and the reflection mirror M2.
  • This condensing lens 63 is a lens for adjusting the optical distance necessary for forming the virtual image 9, and has the function of enlarging the projection light from the display panel 64 and causing it to enter the second mirror M2.
  • the reflecting mirror M1 and the reflecting mirror M2 are, for example, free-form surface mirrors or mirrors having an asymmetrical shape with respect to the optical axis.
  • the reflection mirror M2 reflects the image light emitted from the image display device 35 and condensed through the condensing lens 63 toward the reflection mirror M1.
  • Reflecting mirror M1 is, for example, a concave mirror (in other words, a magnifying glass).
  • the reflection mirror M1 reflects and expands the image light reflected by the reflection mirror M2 toward the windshield 3 through the opening 71 at an angle set by the drive mechanism 62, and projects it onto the display area 5.
  • the driver 6 sees the image projected on the display area 5 as a virtual image 9 beyond the transparent windshield 3, which is superimposed on the scenery outside the vehicle (for example, roads, buildings, people, etc.). Observe in shape.
  • the virtual image 9, which is a projected image includes various information such as road signs, the current speed of the vehicle, and various information added to objects on the landscape.
  • an augmented reality (AR) function or the like is realized that displays an object on the landscape with various information added.
  • the positions of the display area 5 and the virtual image 9 on the windshield 3 can be adjusted by adjusting the installation angle of the reflection mirror M1 with the driving mechanism 62. It's becoming A driving mechanism 62 for changing the installation angle of the reflecting mirror M1 is attached to the reflecting mirror M1.
  • the drive mechanism 62 is a mechanism including a stepping motor and the like.
  • the driving mechanism 62 changes the installation angle of the reflecting mirror M1 based on the control from the control device or based on the user's manual operation. As a result, the position of the virtual image 9 visually recognized by the driver 6 in the display area 5 can be adjusted, for example, in the vertical direction.
  • the area of the display area 5 can be expanded, and more information can be projected onto the display area 5.
  • FIG. 4 is a perspective view showing the appearance of a mounting example of the HUD device 1 including the video display unit 12 of FIG.
  • An opening 71 is formed in the housing 61 .
  • the opening 71 is provided with a transparent cover member 71a called a glare trap (anti-dazzle) or the like.
  • a reflecting mirror M1 is installed so as to reflect the light from the reflecting mirror M2 toward the cover member 71a of the opening 71. As shown in FIG.
  • FIG. 5 is a functional block diagram showing a configuration example of main parts of the control system in the HUD device 1 of FIG.
  • FIG. 6 is a functional block diagram showing a configuration example of the vehicle information acquiring section 15, which is a part involved in acquiring the vehicle information 4 in FIG.
  • the HUD device 1 of FIG. 5 includes a control device 10, a video display unit 12, a speaker 11, and a solar radiation sensor 66.
  • the control device 10 is composed of, for example, an electronic control unit (ECU).
  • the video display unit 12 has the configuration shown in FIGS. 2 and 3. FIG.
  • the control device 10 corresponds to a controller that controls the entire HUD device 1 and each part, and mainly controls the display of the projected image (virtual image 9) in the HUD device 1, the control of the audio output, and the like.
  • the control device 10 is configured by, for example, a wiring board. This wiring board is mounted, for example, in the housing 61 shown in FIGS.
  • the control device 10 includes a vehicle information acquisition unit 15, a microcontroller (MCU) 16, a nonvolatile memory 17, a volatile memory 18, an audio driver 19, a display driver 20, and a communication device mounted on the wiring board. A part 21 and the like are provided.
  • the MCU 16 includes a processor such as a CPU (Central Processing Unit), memory, and various peripheral functions. Therefore, each block in the control device 10 except for the MCU 16 may be mounted in the MCU 16 as appropriate.
  • the vehicle information acquisition unit 15 acquires vehicle information 4 based on a communication protocol compatible with, for example, a CAN (Controller Area Network) interface or a LIN (Local Interconnect Network) interface.
  • a communication protocol compatible with, for example, a CAN (Controller Area Network) interface or a LIN (Local Interconnect Network) interface.
  • the vehicle information 4 is generated by an information acquisition device such as various sensors connected to the vehicle information acquisition unit 15.
  • FIG. 6 shows an example of various information acquisition devices. Note that the various information acquisition devices in FIG. 6 can be deleted, added to other types of devices, or replaced with other types of devices as appropriate.
  • the vehicle speed sensor 41 detects the speed of the vehicle 2 in FIG. 1 and generates speed information as a detection result.
  • the shift position sensor 42 detects the current gear and generates gear information as a detection result.
  • the steering wheel steering angle sensor 43 detects the current steering wheel steering angle and generates steering wheel steering angle information as a detection result.
  • the headlight sensor 44 detects ON/OFF of the headlight and generates lamp lighting information as a detection result.
  • the illuminance sensor 45 and the chromaticity sensor 46 detect outside light and generate outside light information as detection results.
  • the ranging sensor 47 detects the distance between the vehicle 2 and an external object, and generates distance information as a detection result.
  • the infrared sensor 48 detects the presence or absence of an object in the short distance of the vehicle 2, the distance, and the like, and generates infrared information as a detection result.
  • the engine start sensor 49 detects ON/OFF of the engine and generates ON/OFF information as a detection result.
  • the acceleration sensor 50 and the gyro sensor 51 detect the acceleration and angular velocity of the vehicle 2, and generate acceleration gyro information representing the attitude and behavior of the vehicle 2 as detection results.
  • the temperature sensor 52 detects the temperature inside and outside the vehicle and generates temperature information as a detection result.
  • the temperature sensor 52 can detect the ambient temperature of the HUD device 1 .
  • a temperature sensor may be separately mounted in the HUD device 1 .
  • the road-to-vehicle communication radio transmitter/receiver 53 generates road-to-vehicle communication information through road-to-vehicle communication between the vehicle 2 and roads, signs, signals, and the like.
  • the vehicle-to-vehicle communication radio transmitter/receiver 54 generates vehicle-to-vehicle communication information through vehicle-to-vehicle communication between the vehicle 2 and other vehicles in the vicinity.
  • the in-vehicle camera 55 and the exterior camera 56 generate in-vehicle camera image information and exterior camera image information by photographing the interior and exterior of the vehicle.
  • the in-vehicle camera 55 is, for example, a DMS (Driver Monitoring System) camera that captures the posture of the driver 6 in FIG. 2 and the position and movement of the eyes. In this case, it is possible to grasp the fatigue state of the driver 6, the position of the line of sight, etc. by analyzing the imaged video.
  • DMS Driver Monitoring System
  • the vehicle exterior camera 56 photographs the surrounding conditions such as the front and rear of the vehicle 2, for example.
  • the vehicle exterior camera 56 includes, for example, a drive recorder that records a video of the driving situation.
  • the GPS receiver 57 generates GPS information obtained by receiving GPS signals from GPS satellites. For example, the GPS receiver 57 can obtain the current time, latitude and longitude.
  • a VICS (Vehicle Information and Communication System, registered trademark) receiver 58 generates VICS information obtained by receiving VICS signals.
  • the GPS receiver 57 and VICS receiver 58 may be provided as part of the navigation system.
  • the MCU 16 receives such vehicle information 4 via the vehicle information acquisition unit 15.
  • the MCU 16 generates audio data directed to the speaker 11, image data directed to the image display device 35, and the like based on the vehicle information 4 and the like.
  • the MCU 16 includes an audio data generation section 27 , a video data generation section 28 , a distortion correction section 29 , a light source adjustment section 30 , a mirror adjustment section 31 and a protection processing section 75 . These units are mainly implemented by the CPU of the MCU 16 reading and executing programs stored in the nonvolatile memory 17 or volatile memory 18 .
  • the audio data generation unit 27 generates audio data based on the vehicle information 4 and the like as necessary.
  • the voice data is generated, for example, when performing voice guidance of the navigation system or when issuing a warning to the driver 6 by the AR function.
  • the audio driver 19 drives the speaker 11 based on the audio data and causes the speaker 11 to output audio.
  • the video data generation unit 28 Based on the vehicle information 4 and the like, the video data generation unit 28 generates video data that defines the display contents of the projection video projected onto the display area 5 shown in FIG. 2 and the like.
  • the distortion correction unit 29 generates corrected image data by applying distortion correction to the image data from the image data generation unit 28 . Specifically, the distortion corrector 29 corrects image distortion caused by the curvature of the windshield 3 when the image from the image display device 35 is projected onto the display area 5, as shown in FIG.
  • the display driver 20 drives each display element (pixel) included in the display panel 64 in the image display device 35 based on the corrected image data from the distortion correction unit 29 . Thereby, the image display device 35 creates and displays an image to be projected onto the display area 5 based on the corrected image data.
  • the light source adjustment unit 30 controls the brightness of the light source (LED elements described later) in the image display device 35, and the like.
  • the mirror adjusting section 31 changes the installation angle of the reflecting mirror M1 through driving the driving mechanism 62 in the image display unit 12 of FIG. .
  • the non-volatile memory 17 mainly stores in advance programs executed by the CPU in the MCU 16, setting parameters used in processing of each part in the MCU 16, prescribed audio data and video data, and the like.
  • the volatile memory 18 mainly stores the acquired vehicle information 4 and various data used in the processing process of each part in the MCU 16 as appropriate.
  • the communication unit 21 is a device in which a communication interface is mounted, and communicates with the outside of the HUD device 1 based on a communication protocol such as CAN or LIN.
  • the communication unit 21 may be integrated with the vehicle information acquisition unit 15 .
  • Each unit in the control device 10 of FIG. 5 may be appropriately implemented by a dedicated circuit such as an FPGA (Field Programmable Gate Array).
  • FIG. 17 shows a configuration example of a light source device as a comparative example with respect to the first embodiment.
  • This light source device corresponds to the light source device described in Patent Document 1.
  • This light source device includes, in order from the light source side, an LED substrate 91 provided with a plurality of LED elements 91A as light sources, a collimator 92, a polarization conversion element 93, a light guide 94, and a diffusion plate 95.
  • FIG. 17 also shows an LCD panel 64 as a display panel. Since FIG. 17 is a YZ cross section, only one LED element 91A and one collimator element are shown. LED elements 91A are similarly provided, and correspondingly a plurality of collimator elements are similarly provided in the X direction.
  • a collimator 92 is provided on the side of the LED substrate 91 where light from the LED elements 91A is emitted (positive side in the Y direction).
  • the collimator 92 converts the light from the LED element 91A into substantially parallel light.
  • a polarization conversion element 93 is provided on the light exit side (positive side in the Y direction) from the collimator 92 .
  • the polarization conversion element 93 converts the light having random polarization as substantially parallel light from the collimator 92 into light having linear polarization.
  • the polarization conversion element 93 is configured by combining a polarization conversion prism 931 and a wavelength plate 932 .
  • a light guide 94 is provided on the light exit side (positive side in the Y direction) from the polarization conversion element 93 .
  • the light guide 94 causes the linearly polarized light from the polarization conversion element 93 to enter from the incident portion 941 and is reflected by the reflecting portion 942 toward the Z direction different from the Y direction, that is, the direction in which the display panel 64 is located.
  • the light guide 94 has a reflecting portion 942 that performs reflection and light distribution control.
  • the reflecting portion 942 is formed by alternately repeating reflecting surfaces and connecting surfaces.
  • the exit surface of the exit portion 943 of the light guide 94 has, for example, a free curved surface shape for light distribution control.
  • the light emitted from the emitting portion 943 of the light guide 94 is directed roughly upward in the Z direction, slightly obliquely upward in this example.
  • a diffusion plate 95 is provided on the light exit side (positive side in the Z direction) of the light guide 94 .
  • the light from the light guide 94 is diffused by the diffusion plate 95 and enters the rear side of the display panel 64 .
  • the display panel 64 generates image light using this incident light as a backlight.
  • FIG. 7 is a cross-sectional view showing an example of the configuration of the light source device 100 according to Embodiment 1.
  • FIG. 7 also shows a display panel 64 (LCD panel), that is, shows a configuration example of the image display device 35 .
  • the YZ cross section is schematically shown using (X, Y, Z) as the direction in space and the coordinate system.
  • the X and Y directions are two orthogonal directions forming a horizontal plane, and the Z direction is the vertical direction.
  • the X direction is a direction perpendicular to the paper surface of FIG. 7, and is one direction (horizontal direction, left-right direction) that constitutes the main surface of the LED substrate 120 (the surface on which the LED elements 121 are arranged).
  • the other direction (vertical direction, vertical direction) constituting the main surface of the LED substrate 120 the Y direction is the direction perpendicular to the main surface of the LED substrate 120, and is the optical axis of light emitted from the LED element 121. direction.
  • the display panel 64 is connected to the control device 10 (FIG. 5) through a flexible printed circuit board 64f, for example.
  • the light source device 100 of Embodiment 1 includes an LED substrate 120 provided with a plurality of LED elements 121 as a light source, a collimator 140, a light guide 160, a polarization conversion element 150, and a diffusion plate 170. . These components have a predetermined positional relationship and are fixed to the housing 61 (FIG. 3). Since FIG. 7 is a cross-sectional view, only one LED element 121 and one collimator element 141 are shown. An LED element 121 is provided. Correspondingly, a plurality of collimator elements 141 are provided in the X direction.
  • the LED element 121 is an example of a semiconductor light source element.
  • the LED substrate 120 has a plurality of LED elements 121 arranged in the X direction on the XZ plane, which is the main surface.
  • Each LED element 121 emits light as a light source.
  • Light emission from each LED element 121 is light emission with an optical axis in the Y direction, and the light emission is incident on each collimator element 141 of the collimator 140 .
  • the collimator 140 has a collimator element 141 provided corresponding to each LED element 121 as described later (FIG. 8).
  • the collimator 140 has a plurality of collimator elements 141 arranged in the X direction.
  • Collimator 140 has a plurality of collimator elements 141 as a whole.
  • the number of collimator elements 141 is the same as the number of LED elements 121 .
  • Each collimator element 141 is installed at a predetermined position, in other words, at a predetermined relative position with respect to the associated LED element 121 .
  • the collimator 140 is an optical member that adjusts the traveling direction of light emitted from the LED element 121 and incident on the collimator 140 .
  • the collimator 140 adjusts the light emitted from the LED element 121 so that it travels toward the light guide 160 .
  • the collimator element 141 has an incident portion 14a, a reflecting portion 14b, and an emitting portion 14c. Specifically, each collimator element 141 of the collimator 140 receives the light from the LED element 121 through the incident portion 14a, and converts the light into approximately parallel light along the Y direction by the shape of the reflective portion 14b optimized for design. , exit from the exit portion 14c.
  • a light ray 130 is a light ray that constitutes the light that is emitted from the collimator 140 and travels toward the positive side in the Y direction.
  • a light guide 160 is provided with a predetermined space on the output side (positive side in the Y direction) of the collimator 140 opposite to the LED element 121 .
  • the light guide 160 has an incident portion 161 , a reflecting portion 162 and an emitting portion 163 .
  • the incident part 161 is a light guide body incident part having an incident surface on which the light from the collimator 140 is incident.
  • the reflecting portion 162 is a light guide reflecting portion having a reflecting surface that reflects the light from the incident portion 161 .
  • the emitting portion 163 is a light guide emitting portion having an emitting surface for emitting light from the reflecting portion 162 .
  • the light guide 160 allows the light in the Y direction from the collimator 140 to be incident from the incident portion 161 and reflected by the reflecting portion 162 toward the Z direction (that is, the direction in which the display panel 64 is located) different from the Y direction.
  • the light guide 160 has a function of performing light distribution control as well as its reflection.
  • the light guide 160 includes a reflecting portion 162 having functions of reflection and light distribution control.
  • the reflecting portion 162 is formed by alternately repeating a reflecting surface and a connecting surface, which will be described later (FIG. 10).
  • the light emitted from the emitting portion 163 of the light guide 160 is directed roughly upward in the Z direction, in this example slightly obliquely to the upper right.
  • a polarization conversion element 150 is provided with a predetermined space on the light exit side (positive side in the Z direction) from the light guide 160 .
  • An optical axis 700 indicated by a dashed-dotted line is the optical axis of light emitted from the light guide 160 and directed to the display panel 64 via the polarization conversion element 150.
  • the direction of light emitted from the emitting portion 163 of the light guide 160 (the direction of the optical axis 700) is perpendicular to the plane of incidence of the polarization conversion element 150.
  • the polarization conversion element 150 is arranged such that the plane of incidence is perpendicular to the direction of light emitted from the emission portion 163 of the light guide 160 (the direction of the optical axis 700).
  • the polarization conversion element 150 receives randomly polarized light from the light guide 160 in the direction of the optical axis 700 from the incident surface, and converts the light into linearly polarized light as polarization conversion. , the converted linearly polarized light is emitted in the direction of the optical axis 700 from the emission surface. All of the light emitted from the emission surface of the polarization conversion element 150 has linear polarization characteristics.
  • the polarization conversion element 150 is configured by combining a polarization conversion prism 151 and a wavelength plate 152 (see later-described FIG. 11, etc.).
  • the basic function of the polarization conversion element 150 is to convert randomly polarized light from the light source (LED element 121) into linearly polarized light in correspondence with the configuration of the polarizing plate provided in the LCD panel 64. be. Light with that linear polarization is the preferred backlight for the LCD panel 64 .
  • a diffusion plate 170 is arranged with a predetermined space on the light exit side from the polarization conversion element 150 .
  • the diffusion plate 170 is a diffusion element having a diffusion function of diffusing the light from the polarization conversion element 150 to make the intensity uniform.
  • the diffusion plate 170 receives the linearly polarized light (substantially parallel light) from the polarization conversion element 150 , diffuses the light, and emits the light toward the LCD panel 64 . More specifically, the diffuser plate 170 is arranged with its main surface inclined with respect to the polarization conversion element 150 .
  • the diffuser plate 170 is not perpendicular to the optical axis 700 of the light from the polarization conversion element 150, but is arranged slightly downward on the positive side in the Y direction in the drawing.
  • the diffuser plate 170 has a shape that realizes a diffusion function, for example, by molding with a mold.
  • a display panel 64 is provided on the emission side of the diffusion plate 170 with a predetermined space therebetween.
  • the display panel 64 is also substantially the same as the diffuser plate 170 , and is arranged with its main surface inclined with respect to the polarization conversion element 150 .
  • the light from the polarization conversion element 150 is diffused through the diffuser plate 170 to make the intensity uniform, and the light is incident on the rear side of the display panel 64 .
  • the display panel 64 generates image light based on the incident light.
  • the direction of the light emitted from the light guide 160 and incident on the display panel 64 via the polarization conversion element 150 is an optical axis slightly tilted to the right with respect to the illustrated Z direction. 700 direction.
  • This is a design example for suppressing external light reflection in the optical system of the HUD device, and is not limited to this.
  • the direction of the light emitted from the light guide 160 and incident on the display panel 64 via the polarization conversion element 150 may be the vertical direction (Z direction) or may be slightly oblique left with respect to the Z direction. may be tilted toward (a modified example to be described later).
  • the exit surface of the exit portion 163 of the light guide 160 in FIG. 7 does not need to have a free curved surface shape for the light distribution control function as in the comparative example (FIG. 17). It is configured.
  • the light distribution control function is, for example, a function of controlling light distribution to the lens 63 arranged behind the display panel 64 .
  • a free curved surface shape for the light distribution control function is implemented, for example, on the diffusion plate 170 .
  • diffusion plate 170 in Embodiment 1 is an optical element having a light distribution control function in addition to a diffusion function, and has a shape for realizing those functions.
  • the diffusing plate 170 is not limited in mounting details as long as those shapes are mounted on the entrance surface and the exit surface.
  • the diffuser plate 170 may have, for example, a free curved surface shape for light distribution control function on the entrance surface and a shape for diffusion function on the exit surface, or vice versa.
  • FIG. 8 shows an XY plan view as an explanatory diagram showing an arrangement configuration example of the plurality of LED elements 121 of the LED substrate 120 of FIG. 7 and the plurality of collimator elements 141 of the collimator 140.
  • the configuration example of FIG. 8 shows five portions of the plurality of LED elements 121 and the plurality of collimator elements 141 arranged in one row in the X direction. , 121-5 as the plurality of LED elements 121 and 141-1, . . . , 141-5 as the plurality of collimator elements 141 .
  • These multiple LED elements 121 and multiple collimator elements 141 are arranged at a predetermined pitch in the X direction.
  • the dashed-dotted arrow indicates the direction of the optical axis of light emitted from each LED element 121, and corresponds to the Y direction.
  • each LED element 121 is provided so as to protrude on the positive side in the Y direction from the XZ plane on which the LED element 121 is provided.
  • a plurality of collimator elements 141 are arranged such that the central position of each LED element 121 corresponds to the central position of the collimator element 141 .
  • each output part 14 c of the plurality of collimator elements 141 can be mounted like a substrate common to the plurality of collimator elements 141 .
  • two or more LED elements 121 or collimator elements 141 may be arranged in the Z direction.
  • FIG. 9 shows a YZ plane view as a cross-sectional view showing an example of the configuration of the collimator element 141 of the collimator 140 of FIG.
  • Light emitted from the LED element 121 includes light beams diverging in each direction with the Y direction as the optical axis 901, as shown.
  • An optical axis 901 is an axis passing through the center of the LED element 121 and the center of the collimator element 141 .
  • An axis 902 indicated by a dashed arrow with respect to the optical axis 901 is a radial axis of the collimator element 141 .
  • the incident portion 14a of the collimator element 141 is a concave portion that is open facing the LED element 121 side (negative side in the Y direction) and has a concave curved surface.
  • the light emitting surface of the LED element 121 and the opening surface of the recess are arranged close to each other.
  • the light-emitting surface of the LED element 121 may be placed inside the recess.
  • the incident portion 14a guides the light from the LED element 121 to the reflecting portion 14b and the emitting portion 14c. Some of the rays that have entered the concave portion of the incident portion 14a go to the emitting portion 14c via the bottom surface of the concave portion.
  • the bottom surface of the recess has, for example, a convex curved surface on the incident side (negative side in the Y direction) as an incident surface, as shown in the drawing. Another part of the light rays that have entered the concave portion of the incident portion 14a travels to the reflecting portion 14b via the side surface of the concave portion.
  • the reflecting portion 14b of the collimator element 141 has a rotationally symmetrical shape with the optical axis 901 as the central axis of rotation, for example, a roughly parabolic shape (or conical shape).
  • the reflecting portion 14b includes an outer peripheral surface having a predetermined shape as a reflecting surface.
  • the reflecting portion 14b reflects the light from the incident portion 14a toward a predetermined focal point and guides it to the emitting portion 14c. Light from the incident portion 14a is totally reflected by the reflecting surface of the reflecting portion 14b and travels to the emitting portion 14c.
  • the shape of the reflecting portion 14b is optimized and designed for light collection and light distribution control.
  • the light from the incident portion 14a and the light from the reflecting portion 14b are emitted in the Y direction as light rays 130 from the emission surface of the emission portion 14c.
  • the output surface of the output portion 14c has a flat or curved shape.
  • the exit surface of the exit portion 14c may have a convex curved surface on the exit side (the positive side in the Y direction) at a location facing the entrance surface of the entrance portion 14a.
  • Light rays emitted from the emission surface of the emission portion 14c are substantially parallel rays as shown.
  • the collimator element 141 achieves a predetermined light collecting function and the like by means of the shapes of the incident portion 14a, the reflecting portion 14b, and the emitting portion 14c.
  • the plurality of collimator elements 141 in the collimator 140 may have different optical characteristics such as different shapes of the reflecting portions 14b for each collimator element 141.
  • the shape of the reflecting portion 14b may be different between the collimator element 141 on the central side and the collimator element 141 on the peripheral side in the X direction.
  • focal areas areas with different curvatures of the reflecting surface
  • the optical system of the light source device 100 can be optimized, and the light utilization efficiency can be improved.
  • FIG. 10 is an explanatory diagram showing a configuration example of the light guide 160.
  • FIG. 10A is a perspective view showing an overview of the outer shape of the light guide 160.
  • FIG. The light guide 160 has a roughly triangular prism shape as shown, and has an incident portion 161 , a reflecting portion 162 and an emitting portion 163 . When looking at the YZ cross section, it has a roughly triangular shape.
  • a fixing portion 165 for fixing the light guide 160 is also provided on the side portion 164 of the light guide 160 .
  • the light guide 160 is formed by resin molding using translucent resin such as acrylic.
  • the incident surface of the incident part 161 is roughly arranged on the XZ plane, and is not limited to a flat surface, and may have a curved surface shape (for example, a free curved surface shape) for light distribution control as shown in the figure. good.
  • the reflecting surface of the reflecting portion 162 is arranged so as to be inclined with respect to the Y direction and the Z direction.
  • Output portion 163 has a plane as an output surface.
  • the plane, which is the emission surface may be arranged on the XY plane, or may be inclined with respect to the XY plane as shown in FIG. state).
  • exit surface of the exit portion 163 is flat in Embodiment 1, it is not limited to this, and may have a curved surface shape (for example, a free curved surface shape) for light distribution control as a modification.
  • FIG. 10 is an explanatory diagram of the details of the reflector 162 in particular.
  • (B) shows a part of the reflecting surface of the reflecting section 162 .
  • a plurality of reflecting surfaces 162a and a plurality of connecting surfaces 162b are alternately formed in a sawtooth shape.
  • the plurality of reflecting surfaces 162a of the reflecting section 162 are schematically shown to be rougher than they actually are for the sake of clarity. is provided.
  • the light incident from the incident portion 161 is totally reflected by the reflecting surfaces (plurality of reflecting surfaces 162 a ) of the reflecting portion 162 and travels toward the emitting portion 163 .
  • Each reflecting surface 162a (a line segment rising to the right in the drawing) is formed at a predetermined angle (for example, an angle greater than 0 degree and 43 degrees or less, reflecting surface elevation angle) with respect to the horizontal plane (XY plane). It is Each connecting surface 162b (a line segment extending substantially horizontally in the drawing) forms a predetermined angle (a relative angle between the reflecting surface 162a and the connecting surface 162b. For example, 90 degrees or more) with respect to the adjacent reflecting surface 162a. 180 degrees or less.).
  • FIG. 11 is an explanatory diagram showing a configuration example of the polarization conversion element 150, and particularly shows a perspective view of the incident side (incident surface arranged on the XY plane) viewed obliquely from above.
  • 12 shows a YZ plane view as a cross-sectional view of the polarization conversion element 150.
  • the polarization conversion element 150 as a whole has a rectangular entrance surface 150a (XY plane) and an exit surface 150b (XY plane) that are relatively long in the X direction and short in the Y direction. , is a roughly rectangular parallelepiped (in other words, plate-shaped) element.
  • the polarization conversion element 150 is arranged slightly tilted with respect to the Z direction.
  • the polarization conversion prism 151 is configured by combining a translucent member and a polarizing beam splitter (PBS) film.
  • PBS polarizing beam splitter
  • polarization conversion element 150 includes translucent members 1101, 1102, 1103, 1104, and 1105, PBS film 1111 and reflection film 1112, and wavelength plate 152, which constitute polarization conversion prism 151 described above. It is configured with The wave plate 152 is an optical element that performs predetermined polarization conversion, such as half-wave ( ⁇ /2) polarization conversion, in other words, a half wave plate.
  • the polarization conversion element 150 may be accommodated in a holder (not shown).
  • the holder is a component for fixing a plurality of components such as translucent members in the arrangement relationship shown in FIG. 11 .
  • Each translucent member, PBS film 1111 and reflective film 1112 are arranged symmetrically with respect to the XZ plane 1100 in FIG.
  • the angle ⁇ is the angle of arrangement of the PBS film 1111 and the like with respect to the Z direction, and is designed as a predetermined angle.
  • the translucent member 1101 is a right-angled triangular prism-shaped block.
  • Translucent members 1102 and 1104 are parallelogram-shaped blocks.
  • the translucent member 1103 is a triangular prism-shaped block.
  • a PBS film 1111 is provided between the translucent members 1102 and 1104 and the translucent member 1103 .
  • a reflective film 1112 is provided between the translucent members 1101 and 1105 and the translucent members 1102 and 1104 .
  • Wave plate 152 is provided in output side peripheral portion 1212 .
  • the PBS film 1111 (specifically, an electric multilayer film) converts incident light into P-polarized light (polarized light with an electric field oscillating parallel to the plane of incidence) and S-polarized light (polarized light with an electric field perpendicular to the plane of incidence) that is reflected light. is an element that separates the oscillating polarized light) and the Randomly polarized light is converted into linearly polarized light by the action of the PBS film 1111 .
  • the polarization conversion prism 151 is arranged to face the exit surface of the exit portion 163 of the light guide 160 .
  • Light (randomly polarized light) from the exit surface of the light guide 160 is directed in the Z direction to the center of the incident side (translucent members 1102, 1104), which is a predetermined area of the incident surface 150a of the polarization conversion prism 151. area corresponding to ).
  • Note that light with random polarization is also indicated by circled x marks.
  • Light with linear polarization is also indicated by circled arrows.
  • Part of the light incident on the incident surface 150a passes through the polarization conversion prism 151 (the translucent members 1102 and 1104, the PBS film 1111, and the translucent member 1103) as it is. .
  • Light passing through the PBS film 1111 is converted from random polarized light to linear polarized light. This linearly polarized light is emitted in the Z direction from the central portion 1211 on the emission side, which is a predetermined area (area corresponding to the translucent member 1103) on the emission surface 150b of the polarization conversion prism 151.
  • the other light among the light incident on the incident surface 150a is reflected inside the polarization conversion prism 151 (the translucent members 1102 and 1104, the PBS film 1111, and the reflective film 1112), and then is reflected by the wavelength plate on the exit surface 150b.
  • 152 is emitted in the Z direction from the emission side peripheral portion 1212, which is a predetermined area.
  • the exit-side peripheral portion 1212 is arranged outside the exit-side central portion 1211 in the Y direction.
  • Light reflected by the PBS film 1111 remains randomly polarized.
  • the light reflected by the PBS film 1111 is reflected by the reflective film 1112 from the Y direction to the Z direction.
  • the light reflected by the reflective film 1112 enters and passes through the wavelength plate 152, thereby being converted from random polarized light into linear polarized light.
  • the light emitted in the Z direction from a predetermined region (the output-side central portion 1211 and the output-side peripheral portion 1212) of the output surface 150b of the polarization conversion element 150 passes through a predetermined region (the incident side) of the incident surface 150a. While being expanded in the Y direction from the central portion), all of the light becomes linearly polarized light.
  • the polarization conversion element 150 Even if the incident light of the polarization conversion element 150 undergoes a polarization change according to the residual stress of the light guide 160, the random polarized light in the incident light is transformed into the linearly polarized light as described above by the function of the polarization conversion element 150. is converted to The emitted light having this linear polarization passes through the diffusion plate 170 and enters the LCD panel, which is the display panel 64, and functions as a suitable backlight for the LCD panel.
  • Embodiment 1 it is possible to provide a light source device and the like capable of improving the manufacturing yield. According to Embodiment 1, the manufacturing yield of the HUD device and the light guide can be improved, and the manufacturing cost can be reduced. According to Embodiment 1, by devising the layout of the light source device and the like, it is possible to reduce the polarization loss that occurs according to the residual stress of the light guide. According to Embodiment 1, from the reduction of polarization loss, the brightness of the HUD image is increased, the in-plane uniformity of image brightness is improved (in other words, the brightness unevenness is reduced), and the uniformity of image chromaticity is improved (in other words, reduction of color unevenness) can be realized. According to Embodiment 1, even if residual stress due to resin molding is inherent in the light guide, it is allowed to some extent, so the specification of the light guide does not have to be too strict, and the manufacturing yield can be improved. .
  • FIG. 13 shows the configuration of a light source device 100 according to a modification of the first embodiment.
  • This modified example differs from the first embodiment in the arrangement direction of the polarization conversion element 150 and the direction of the optical axis of the light incident on the display panel 64 from the light source device 100 .
  • the polarization conversion element 150 in FIG. 13 is arranged such that the negative side of the Y-axis is slightly inclined downward when the Y-axis is horizontal.
  • the light from the light guide 160 to the display panel 64 is emitted in a slightly upward right direction with respect to the Z-axis (vertical direction).
  • the light from the light guide 160 to the display panel 64 is emitted in a slightly upper left direction with respect to the Z-axis (vertical direction).
  • the basic effect is the same in any form.
  • the above-described lens 63 and second mirror M2 are arranged in front of the projected light from the display panel 64 .
  • FIG. 14 is a YZ plane view showing the configuration of the light source device 100 according to the second embodiment.
  • the second embodiment is different from the first embodiment in that a thin lens 180, which is a light distribution control element, is additionally provided.
  • the thin lens 180 is provided on the optical path between the polarization conversion element 150 and the display panel 64 at a position slightly spaced in front of the diffusion plate 170 .
  • Polarization conversion element 150 in the second embodiment is arranged between light guide 160 and thin lens 180 .
  • the thin lens 180 is a light distribution control element, and has a light distribution control function of controlling light distribution to the lens 63 (FIG. 3) in the rear stage of the LCD panel 64 .
  • the light distribution control function of the thin lens 180 is, in other words, a function of adjusting the direction of incidence of each light ray on a predetermined area of the entrance surface of the lens 63 .
  • Diffusion plate 170 has a shape for light distribution control function in addition to diffusion function.
  • the light distribution control function that combines the thin lens 180 and the diffusion plate 170 adjusts the incident light to the LCD panel 64 so that it is suitable. is adjusted so that the incident light of
  • thin lens 180 and diffuser plate 170 which are light distribution control elements, are provided with light distribution control elements based on a free-form surface shape, which was performed by output portion 943 of light guide 94 in the comparative example (FIG. 17). functions are also implemented.
  • the exit portion 163 of the light guide 160 according to Embodiment 2 does not need to have a free-form surface shape on the exit surface, and is formed, for example, in a planar shape.
  • the polarization conversion element 150 arranged behind the light guide 160 changes the direction ( In other words, the range of the incident angle) is limited, and it is desirable to set the direction perpendicular to the incident surface 150a (the direction of the optical axis 700 in FIG. 7, the Z direction in FIG. 12).
  • the direction perpendicular to the incident surface 150a the direction of the optical axis 700 in FIG. 7, the Z direction in FIG. 12.
  • light rays 1251 and 1252 that are not incident perpendicular to the plane of incidence 150a in FIG. 12 do not become efficient light rays. Therefore, when the light distribution is controlled by the free-form surface shape as in the comparative example at the output portion 163 of the light guide 160, the light whose light distribution is controlled is transferred to the polarization conversion element arranged behind the light guide 160. 150 cannot be efficiently incident on the area of the incident surface 150a.
  • thin lens 180 and diffuser plate 170 (at least one of them is sufficient, but in Embodiment 2, both of them are used), which are light distribution control elements, have a light distribution control function based on a free-form surface shape. are also mounted together, and the light emitting surface of the light emitting portion 163 of the light guide 160 has a planar shape.
  • both the thin lens 180 and the diffusion plate 170 are equipped with a light distribution control function based on a free-form surface shape.
  • a predetermined light distribution control function is realized by a combination of the free curved surface shape of the thin lens 180 and the free curved surface shape of the diffusion plate 170 .
  • the free curved surface shape of the diffusion plate 170 is formed, for example, on one surface of the diffusion plate 170 by molding using a mold.
  • Embodiment 2 According to the light source device 100 of Embodiment 2, the same effects as those of Embodiment 1 can be obtained. Although thin lens 180 is required in Embodiment 2, formation of a free-form surface shape on the exit surface of light guide 160 is not required.
  • a Fresnel lens may be applied instead of the thin lens 180, which is the light distribution control element.
  • the thin lens 180 or the like, which is the light distribution control element may be arranged behind the diffusion plate 170 and before the display panel 64 .
  • FIG. 15 is a YZ plane view showing the configuration of the light source device 100 according to the third embodiment.
  • Embodiment 3 corresponds to a modification of Embodiment 2, and differs from Embodiments 1 and 2 in that diffusion sheet 175 is applied instead of diffusion plate 170 and a thin light distribution control element is used.
  • a diffusion sheet 175 is arranged in front of the lens 180 .
  • the thin lens 180 which is the light distribution control element, is arranged behind the diffusion sheet 175, which is the diffusion element.
  • Diffusion sheet 175 is a thin sheet having a predetermined diffusion function.
  • a diffusion sheet 175 is attached to the incident surface of the thin lens 180, for example. According to the light source device 100 of Embodiment 3, the same effects as those of Embodiment 2 can be obtained.
  • FIG. 16 is a YZ plane view showing the configuration of the light source device 100 according to the fourth embodiment.
  • Embodiment 4 is provided as one element in which the diffusion element and the light distribution control element described above are integrated ("diffusion function integrated thin lens", in other words, "diffusion/light distribution control element"). .
  • a diffusion/light distribution control element 190 (thin lens integrated with diffusion function) is provided between the polarization conversion element 150 and the display panel 64 .
  • the polarization conversion element 150 in Embodiment 4 is arranged between the light guide 160 and its diffusion/light distribution control element 190 .
  • the diffusion/light distribution control element 190 is an element having a shape such as a free-form surface for realizing both the above-described diffusion function and light distribution control function, based on a thin lens.
  • the entrance surface may have the shape
  • the exit surface may have the shape
  • the entrance surface and the exit surface may have the same shape.
  • the shape may be implemented by dividing the
  • the diffusion/light distribution control element 190 in FIG. 16 has a plane-based shape for the diffusion function (for example, a porous shape obtained by a print transfer method) on the entrance surface, and the above-mentioned lens on the exit surface.
  • 63 has a shape for light distribution control function. That is, the shape of the exit surface of the diffusion/light distribution control element 190 in FIG. 16 is the same as the shape of the exit surface of the thin lens 180 in FIGS.
  • the same effects as those of the first embodiment and the like can be obtained, and the constituent elements arranged between the polarization conversion element 150 and the LCD panel 64 are combined into a single diffusion/light distribution control element. Element 190 can suffice.
  • REFERENCE SIGNS LIST 1 HUD device head-up display device
  • 2 vehicle 3 windshield
  • 5 display area 10 control device
  • 35 image display device 35 image display device
  • 63 lens 64 display panel
  • 100 light source device DESCRIPTION OF SYMBOLS
  • 120... LED board 121... LED element, 140... Collimator, 141... Collimator element, 150... Polarization conversion element, 151... Polarization conversion prism, 152... Wave plate, 160... Light guide, 170... Diffusion plate.

Abstract

Provided is a light source device which can improve a manufacturing yield. Also, provided is a light source device which can reduce polarization loss that occurs depending on residual stress in a light guide body. A light source device (100) of the present invention comprises: an LED element (121) as a slight source; a collimator (140) that is disposed on an emission side of the light source, and adjusts a traveling direction of light incident from the light source; a light guide body (160) that is disposed on an emission side of the collimator (140), and guides light incident from the collimator (140) toward a display panel (64); and a polarization conversion element (150) that is disposed between the light guide body (160) and the display panel (64) on an emission side of the light guide body (160), and makes polarization properties of light incident from the light guide body (160) uniform.

Description

光源装置およびヘッドアップディスプレイ装置Light source device and head-up display device
 本発明は、光源装置およびヘッドアップディスプレイ装置の技術に関する。 The present invention relates to the technology of light source devices and head-up display devices.
 特許文献1には、小型・軽量で、光利用率が高く、モジュール化されて面状の光源として容易に利用可能な光源装置が開示されている。特許文献1の光源装置は、複数の半導体光源素子を含む光源部と、複数の各々の半導体光源素子の発光軸上に配置された複数の各々のコリメータ素子を含むコリメータと、コリメータの出射側に配置された偏光変換素子と、偏光変換素子の出射側に配置された導光体とを備えている。また、複数の半導体光源素子および複数のコリメータ素子は、発光軸に対して直交する第1方向(X方向)に配列され、偏光変換素子は、第1方向に延在し、第1方向と発光軸に対応する第2方向とが成す平面に対して対称の位置に配置されている偏光ビームスプリッタおよび位相板を含む。 Patent Document 1 discloses a light source device that is compact and lightweight, has a high light utilization rate, and can be modularized and easily used as a planar light source. The light source device of Patent Document 1 includes: a light source section including a plurality of semiconductor light source elements; a collimator including a plurality of collimator elements arranged on the light emission axis of each of the plurality of semiconductor light source elements; A polarization conversion element is provided, and a light guide is provided on the output side of the polarization conversion element. Also, the plurality of semiconductor light source elements and the plurality of collimator elements are arranged in a first direction (X direction) perpendicular to the light emission axis, and the polarization conversion element extends in the first direction and emits light in the first direction. It includes a polarizing beam splitter and a phase plate positioned symmetrically with respect to a plane formed by a second direction corresponding to the axis.
国際公開第2018/229961号WO2018/229961
 特許文献1の光源装置は、例えば車載用のヘッドアップディスプレイ(Head Up Display、「HUD」と記載する場合がある)に用いられる。HUDは、車速やエンジン回転数などの走行情報やナビゲーション情報などの各種情報をウィンドシールド(言い換えるとフロントガラス)などに投射して表示する。HUDを用いると、運転者は、ダッシュボードに組み込まれる計器盤などに視線を移動することなく、運転に必要な情報を得ることができる。このため、HUDは、自動車等の安全運転に寄与している。 The light source device of Patent Document 1 is used, for example, in a head-up display (head-up display, sometimes referred to as "HUD") for vehicles. The HUD projects various types of information such as driving information such as vehicle speed and engine speed and navigation information onto a windshield (in other words, a windshield) and displays them. By using the HUD, the driver can obtain information necessary for driving without moving his/her line of sight to a dashboard or the like incorporated in the dashboard. Therefore, the HUD contributes to safe driving of automobiles and the like.
 ところで、従来技術例のHUD装置は、光源側から順に、光源(例えばLED素子)、コリメータ、偏光変換素子、導光体(ライトガイド)、拡散板、および表示パネル(例えば液晶ディスプレイ)が配置されている。表示パネルが液晶ディスプレイ(LCD)である場合、LCDパネルは、バックライト(投射光の生成のための光源光)として例えば直線偏光のみが利用可能である。そのため、光利用効率を向上したい場合には、偏光変換素子の使用が必要となる。偏光変換素子は、コリメータからの略平行光におけるランダム偏光を、直線偏光に変換する。導光体は、その直線偏光を有する光を配光制御して表示パネルの方へ導く。 By the way, in the conventional HUD device, a light source (for example, an LED element), a collimator, a polarization conversion element, a light guide, a diffusion plate, and a display panel (for example, a liquid crystal display) are arranged in this order from the light source side. ing. If the display panel is a liquid crystal display (LCD), the LCD panel can only use, for example, linearly polarized light as backlight (light source light for generating projection light). Therefore, if it is desired to improve the light utilization efficiency, it is necessary to use a polarization conversion element. The polarization conversion element converts random polarized light in the approximately parallel light from the collimator into linear polarized light. The light guide controls the distribution of the linearly polarized light and guides it toward the display panel.
 一方、導光体は、厚みが大きい樹脂成型品であり、それによる残留応力が内在する。偏光変換素子からの直線偏光の光が、導光体を透過する際に、残留応力がある部分(残留応力部)を透過する場合には、その残留応力部を透過する光には、位相差が生じる。そのため、その位相差によって、偏光状態が変化する。言い換えると、導光体の各部を透過する光線は、各部の残留応力の違いに応じて、異なる偏光状態の光線として出射する。その光がLCDパネルに入射する。よって、LCDパネル上では、偏光の損失が発生する。 On the other hand, the light guide is a resin molded product with a large thickness, and there is inherent residual stress due to this. When the linearly polarized light from the polarization conversion element passes through a portion with residual stress (residual stress portion) when passing through the light guide, the light passing through the residual stress portion has a phase difference. occurs. Therefore, the phase difference changes the polarization state. In other words, light beams passing through each part of the light guide are emitted as light beams with different polarization states according to the difference in residual stress of each part. The light enters the LCD panel. Therefore, a loss of polarization occurs on the LCD panel.
 この偏光損失は、HUDとしては、映像光輝度の低下や、輝度ムラ・色ムラを引き起こし得る。その輝度低下などが起こった場合、HUD製品としては不良品となるので、製造歩留まりが悪くなる。 This polarization loss can cause a decrease in image light brightness, uneven brightness, and uneven color in the HUD. If the luminance is lowered, the HUD product will be defective, resulting in a poor manufacturing yield.
 上記輝度低下などを起こさないようにするためには、導光体としても、残留応力の仕様を厳しく検査する必要が生じるので、製造歩留まりが悪くなる。 In order to prevent the above-mentioned decrease in luminance, etc., it is necessary to strictly inspect the specifications of residual stress even as a light guide, resulting in poor manufacturing yield.
 本発明の目的の一つは、製造歩留まりを向上させることが可能な光源装置等を提供することである。他の目的は、導光体の残留応力に応じて生じる偏光損失を低減できることである。 One of the objects of the present invention is to provide a light source device etc. capable of improving the manufacturing yield. Another object is to be able to reduce the polarization loss that occurs in response to residual stress in the lightguide.
 本発明のうち代表的な実施の形態は以下に示す構成を有する。実施の形態の光源装置は、光源と、前記光源の出射側に配置され、前記光源から入射された光の進行方向を調整するコリメータと、前記コリメータの出射側に配置され、前記コリメータから入射された光を表示パネルの方へ導く導光体と、前記導光体の出射側において前記導光体と前記表示パネルとの間に配置され、前記導光体から入射された光の偏光特性を揃える偏光変換素子と、を備える。 A representative embodiment of the present invention has the configuration shown below. A light source device according to an embodiment includes a light source, a collimator arranged on the exit side of the light source and adjusting a traveling direction of light incident from the light source, and a light guide that guides the light emitted from the light guide toward the display panel; and a polarization conversion element to align.
 本発明のうち代表的な実施の形態によれば、光源装置およびヘッドアップディスプレイ装置に関して、製造歩留まりを向上させることが可能になる。本発明のうち代表的な実施の形態によれば、導光体の残留応力に応じて生じる偏光損失を低減できる。上記した以外の課題、構成および効果等については、発明を実施するための形態において示される。 According to the representative embodiments of the present invention, it is possible to improve the manufacturing yield of light source devices and head-up display devices. According to representative embodiments of the present invention, polarization loss caused by residual stress in the light guide can be reduced. Problems, configurations, effects, etc. other than those described above will be described in the mode for carrying out the invention.
本発明の一実施の形態によるヘッドアップディスプレイ装置(HUD装置)を搭載した車両の構成例を示す概略図である。1 is a schematic diagram showing a configuration example of a vehicle equipped with a head-up display device (HUD device) according to an embodiment of the invention; FIG. 図1のHUD装置を構成する映像表示ユニットなどの構成例を示す概略図である。2 is a schematic diagram showing a configuration example of a video display unit and the like that constitute the HUD device of FIG. 1; FIG. 図2の映像表示ユニットのより詳細な構成例を示す概略図である。FIG. 3 is a schematic diagram showing a more detailed configuration example of the image display unit of FIG. 2; 図3の映像表示ユニットを含んだHUD装置の外観例を示す斜視図である。FIG. 4 is a perspective view showing an appearance example of a HUD device including the video display unit of FIG. 3; 図1のHUD装置の制御系の構成例を示す機能ブロック図である。2 is a functional block diagram showing a configuration example of a control system of the HUD device of FIG. 1; FIG. 図5の車両情報取得部に係わる構成例を示す機能ブロック図である。FIG. 6 is a functional block diagram showing a configuration example related to a vehicle information acquisition unit shown in FIG. 5; 実施の形態1の光源装置の構成を示す図である。1 is a diagram showing a configuration of a light source device according to Embodiment 1; FIG. 実施の形態1の光源装置を構成する、LED基板およびコリメータの構成例を示す図である。4A and 4B are diagrams showing configuration examples of an LED substrate and a collimator, which constitute the light source device of the first embodiment; FIG. 実施の形態1の光源装置を構成する、コリメータの構成例を示す断面図である。3 is a cross-sectional view showing a configuration example of a collimator that constitutes the light source device of Embodiment 1. FIG. 実施の形態1の光源装置を構成する、導光体の構成例を示す図である。3A and 3B are diagrams showing a configuration example of a light guide that constitutes the light source device of the first embodiment; FIG. 実施の形態1の光源装置を構成する、偏光変換素子の構成例を示す斜視図である。2 is a perspective view showing a configuration example of a polarization conversion element that constitutes the light source device of Embodiment 1. FIG. 実施の形態1の光源装置を構成する、偏光変換素子の構成例を示す断面図である。4 is a cross-sectional view showing a configuration example of a polarization conversion element that constitutes the light source device of Embodiment 1. FIG. 実施の形態1の変形例の光源装置の構成を示す図である。FIG. 4 is a diagram showing a configuration of a light source device of a modified example of Embodiment 1; 実施の形態2の光源装置の構成を示す図である。FIG. 10 is a diagram showing the configuration of a light source device according to Embodiment 2; 実施の形態3の光源装置の構成を示す図である。FIG. 10 is a diagram showing the configuration of a light source device according to Embodiment 3; 実施の形態4の光源装置の構成を示す図である。FIG. 10 is a diagram showing the configuration of a light source device according to Embodiment 4; 比較例の光源装置の構成を示す図である。It is a figure which shows the structure of the light source device of a comparative example.
 以下、図面を参照しながら本発明の実施の形態を詳細に説明する。図面において、同一部には原則として同一符号を付し、繰り返しの説明を省略する。図面において、各構成要素の表現は、発明の理解を容易にするために、実際の位置、大きさ、形状、および範囲等を表していない場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, in principle, the same parts are denoted by the same reference numerals, and repeated explanations are omitted. In the drawings, the representation of each component may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention.
 説明上、プログラムによる処理について説明する場合に、プログラムや機能や処理部等を主体として説明する場合があるが、それらについてのハードウェアとしての主体は、プロセッサ、あるいはそのプロセッサ等で構成されるコントローラ、装置、計算機、システム等である。計算機は、プロセッサによって、適宜にメモリや通信インタフェース等の資源を用いながら、メモリ上に読み出されたプログラムに従った処理を実行する。これにより、所定の機能や処理部等が実現される。プロセッサは、例えばCPUやGPU等の半導体デバイス等で構成される。プロセッサは、所定の演算が可能な装置や回路で構成される。処理は、ソフトウェアプログラム処理に限らず、専用回路でも実装可能である。専用回路は、FPGA、ASIC、CPLD等が適用可能である。 For the purpose of explanation, when explaining the processing by the program, there are cases where the program, function, processing unit, etc. are mainly explained, but the main body as hardware for them is the processor or the controller composed of the processor etc. , devices, computers, systems, etc. A computer executes processing according to a program read out on a memory by a processor while appropriately using resources such as a memory and a communication interface. As a result, predetermined functions, processing units, and the like are realized. The processor is composed of, for example, a semiconductor device such as a CPU or GPU. A processor is composed of devices and circuits capable of performing predetermined operations. The processing can be implemented not only by software program processing but also by dedicated circuits. FPGA, ASIC, CPLD, etc. can be applied to the dedicated circuit.
 <実施の形態1>
 図1~図12等を用いて、本発明の実施の形態1の光源装置などについて説明する。実施の形態1のHUD装置は、実施の形態1の光源装置と、表示パネルとを備えて構成される。
<Embodiment 1>
A light source device and the like according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 12 and the like. The HUD device of Embodiment 1 includes the light source device of Embodiment 1 and a display panel.
 図7等に示される実施の形態1の光源装置100は、光源(LED基板120)、コリメータ140、導光体160、偏光変換素子150、および拡散板170を備え、レイアウトして、偏光変換素子150が、コリメータ140と導光体160との間(言い換えると導光体160の前段)ではなく、導光体160と拡散板170(もしくは表示パネル64)との間(言い換えると導光体160の後段)に配置されている。 The light source device 100 of Embodiment 1 shown in FIG. 150 is not between the collimator 140 and the light guide 160 (in other words, before the light guide 160), but between the light guide 160 and the diffusion plate 170 (or the display panel 64) (in other words, the light guide 160). (after)).
 実施の形態1の光源装置100は、導光体160の後段の偏光変換素子150によって、導光体160からのランダム偏光の光を、直線偏光の光に変換する。よって、導光体160において、残留応力が内在していたとしても、その残留応力の影響、すなわち偏光状態の変化は、偏光変換素子150での直線偏光への変換によって対処される。LCDパネル64への入射光は、残留応力の影響、すなわち偏光状態の変化が解消された光となる。言い換えると、実施の形態1の光源装置100は、導光体160の残留応力による偏光への影響を無くすことができる。 In the light source device 100 of Embodiment 1, the polarization conversion element 150 downstream of the light guide 160 converts randomly polarized light from the light guide 160 into linearly polarized light. Therefore, even if residual stress exists in the light guide 160 , the influence of the residual stress, ie, the change in polarization state, is dealt with by conversion into linearly polarized light in the polarization conversion element 150 . Incident light to the LCD panel 64 becomes light in which the effect of residual stress, that is, the change in polarization state is eliminated. In other words, the light source device 100 of Embodiment 1 can eliminate the influence of the residual stress of the light guide 160 on the polarized light.
 特に、偏光変換素子150は、LCDパネル64の近く(導光体160よりはLCDパネル64寄りの位置)に配置されてもよい。偏光変換素子150とLCDパネル64との間には、拡散板170などが配置されてもよい。偏光変換素子150とLCDパネル64との間には、光学素子として、後述(実施の形態2等)の薄肉レンズまたはフレネルレンズが配置されてもよい。この光学素子(薄肉レンズまたはフレネルレンズ)の機能は、LCDパネル64の後段のレンズ63(図3)への配光制御(光線入射角度・領域の制御)である。この光学素子は、拡散板170に対し前後のいずれに配置されてもよい。この光学素子と拡散板170とが一体化された部材でもよい。 In particular, the polarization conversion element 150 may be arranged near the LCD panel 64 (at a position closer to the LCD panel 64 than the light guide 160). A diffusion plate 170 or the like may be arranged between the polarization conversion element 150 and the LCD panel 64 . Between the polarization conversion element 150 and the LCD panel 64, a thin lens or a Fresnel lens, which will be described later (Embodiment 2, etc.), may be arranged as an optical element. The function of this optical element (thin lens or Fresnel lens) is to control the light distribution to the lens 63 (FIG. 3) in the rear stage of the LCD panel 64 (control of the incident angle and area of light rays). This optical element may be placed either forward or backward with respect to the diffusion plate 170 . A member in which this optical element and the diffusion plate 170 are integrated may be used.
 [HUD装置および車両]
 図1は、実施の形態1のヘッドアップディスプレイ装置(HUD装置)1を搭載した車両2の構成例を示す概略図である。図1のHUD装置1は、車両2に搭載されている。車両2は、代表的には、自動車であるが、必ずしもこれに限定されず、場合によっては鉄道車両等であってもよい。
[HUD device and vehicle]
FIG. 1 is a schematic diagram showing a configuration example of a vehicle 2 equipped with a head-up display device (HUD device) 1 according to Embodiment 1. As shown in FIG. A HUD device 1 in FIG. 1 is mounted on a vehicle 2 . The vehicle 2 is typically an automobile, but is not necessarily limited to this, and may be a railroad vehicle or the like depending on the case.
 HUD装置1は、車両2の各部に設置された各種センサなどから車両情報4を取得する。各種センサは、例えば、車両2で生じた各種イベントを検出したり、走行状況に係る各種パラメータの値を定期的に検出したりする。車両情報4には、例えば、車両2の速度情報やギア情報、ハンドル操舵角情報、ランプ点灯情報、外光情報、距離情報、赤外線情報、エンジンON/OFF情報、カメラ映像情報、加速度ジャイロ情報、GPS(Global Positioning System)情報、ナビゲーション情報、車車間通信情報、および路車間通信情報などが含まれる。カメラ映像情報は、車内カメラ映像情報や車外カメラ映像情報がある。GPS情報の中には緯度および経度の他に現在時刻情報なども含まれる。 The HUD device 1 acquires vehicle information 4 from various sensors installed in each part of the vehicle 2 . Various sensors, for example, detect various events occurring in the vehicle 2, and periodically detect the values of various parameters related to driving conditions. The vehicle information 4 includes, for example, speed information and gear information of the vehicle 2, steering angle information, lamp lighting information, external light information, distance information, infrared information, engine ON/OFF information, camera image information, acceleration gyro information, It includes GPS (Global Positioning System) information, navigation information, vehicle-to-vehicle communication information, road-to-vehicle communication information, and the like. The camera image information includes in-vehicle camera image information and exterior camera image information. GPS information includes current time information in addition to latitude and longitude.
 HUD装置1は、このような車両情報4に基づいて、映像表示ユニット12(図2)を用いて、ウィンドシールド3の表示領域5へ映像を投影する。これによって、HUD装置1は、投影映像がそれに対応する虚像9として重畳された風景を、車両2の運転者(運転者の視点)6に視認させる。 Based on such vehicle information 4, the HUD device 1 projects an image onto the display area 5 of the windshield 3 using the image display unit 12 (Fig. 2). As a result, the HUD device 1 allows the driver of the vehicle 2 (driver's viewpoint) 6 to visually recognize the scenery superimposed as the virtual image 9 corresponding to the projected image.
 図2は、図1の車両2の一部や、HUD装置1を構成する映像表示ユニット12などの構成例を示す概略図である。映像表示ユニット12は、HUD装置1の筐体に収容されている。図2の映像表示ユニット12は、映像表示装置35と、反射ミラーM1と、反射ミラーM2とを有する。反射ミラーM1は光路上で後段に配置された第1ミラーである。反射ミラーM2は光路上で前段に配置された第2ミラーである。映像表示装置35から出射された映像光(言い換えると投射光)は、反射ミラーM2、および反射ミラーM1を通じて反射されて、筐体の開口部71(図3)から出射する。映像表示ユニット12から出射した映像光は、車両2のダッシュボードの開口部7を経由して、ウィンドシールド3の表示領域5へ向かう。その映像光は、ウィンドシールド3の表示領域5で反射されて、視点6へ向かう。運転者は、視点6からその映像光を虚像9として視認できる。 FIG. 2 is a schematic diagram showing a configuration example of part of the vehicle 2 in FIG. The image display unit 12 is housed in the housing of the HUD device 1 . The image display unit 12 of FIG. 2 has an image display device 35, a reflection mirror M1, and a reflection mirror M2. Reflecting mirror M1 is a first mirror arranged at a later stage on the optical path. Reflecting mirror M2 is a second mirror arranged in the front stage on the optical path. The image light (in other words, projection light) emitted from the image display device 35 is reflected through the reflection mirrors M2 and M1 and emitted from the opening 71 (FIG. 3) of the housing. Image light emitted from the image display unit 12 travels through the opening 7 of the dashboard of the vehicle 2 toward the display area 5 of the windshield 3 . The image light is reflected by the display area 5 of the windshield 3 and goes to the viewpoint 6. - 特許庁A driver can visually recognize the image light as a virtual image 9 from a viewpoint 6 .
 [映像表示ユニット]
 図3は、図2の映像表示ユニット12のより詳細な構成例を示す。図3の映像表示ユニット12は、映像表示装置35、集光レンズ63、反射ミラーM2、および駆動機構62付きの反射ミラーM1を備える。図3の映像表示装置35、集光レンズ63、反射ミラーM2、および駆動機構62付きの反射ミラーM1は、図示しない制御装置と共に、筐体61内に収容されている。筐体61には、開口部71が設けられている。図3の構成例では、映像光を表示領域5に投射するための光学系として、集光レンズ63、反射ミラーM2および反射ミラーM1を有する。
[Image display unit]
FIG. 3 shows a more detailed configuration example of the video display unit 12 of FIG. The image display unit 12 of FIG. 3 includes an image display device 35, a condenser lens 63, a reflection mirror M2, and a reflection mirror M1 with a drive mechanism 62. FIG. The image display device 35, the condenser lens 63, the reflection mirror M2, and the reflection mirror M1 with the driving mechanism 62 shown in FIG. An opening 71 is provided in the housing 61 . In the configuration example of FIG. 3, the optical system for projecting the image light onto the display area 5 includes a condensing lens 63, a reflecting mirror M2, and a reflecting mirror M1.
 映像表示装置35は、例えば、実施の形態1の光源装置100(詳しくは後述する)と、表示パネル64とを備える。映像表示装置35は、光源装置100から出射される光(言い換えると、光源光)を用いて、表示パネル64に形成された映像を投射する、プロジェクタ(投射型映像表示装置)である。光源装置100は、代表的には、LED(Light Emitting Diode)光源を含んで構成される。 The video display device 35 includes, for example, the light source device 100 of Embodiment 1 (details will be described later) and a display panel 64 . The image display device 35 is a projector (projection-type image display device) that projects an image formed on the display panel 64 using light emitted from the light source device 100 (in other words, light source light). The light source device 100 typically includes an LED (Light Emitting Diode) light source.
 表示パネル64は、代表的には、液晶パネル(Liquid Crystal Display:LCD)である。表示パネル64は、制御装置から指示され入力された映像データに基づいて、映像を作成し、当該表示パネル64の表示画面に表示する。表示パネル64は、映像データに応じて、光源装置100からの光の透過率を画素毎に変調することで、表示領域5へ投影するための映像を形成し、映像光(言い換えると投射光)として出射する。図3の構成例では、映像表示装置35からの映像光の出射の方向は鉛直上方向(Z方向)である。一点鎖線矢印は映像光の光軸を示している。 The display panel 64 is typically a liquid crystal display (LCD). The display panel 64 creates an image based on the image data instructed and input from the control device, and displays it on the display screen of the display panel 64 . The display panel 64 modulates the transmittance of the light from the light source device 100 for each pixel according to the image data, thereby forming an image to be projected onto the display area 5 and generating image light (in other words, projection light). emitted as In the configuration example of FIG. 3, the direction of emission of image light from the image display device 35 is the vertically upward direction (Z direction). The dashed-dotted arrow indicates the optical axis of the image light.
 映像表示装置35の表示パネル64と、反射ミラーM2との間には、レンズとして集光レンズ63が設置されている。この集光レンズ63は、虚像9の形成のために必要な光学距離を調整するためのレンズであり、表示パネル64からの投射光を拡大して第2ミラーM2に入射させる機能を有する。 A condenser lens 63 is installed as a lens between the display panel 64 of the image display device 35 and the reflection mirror M2. This condensing lens 63 is a lens for adjusting the optical distance necessary for forming the virtual image 9, and has the function of enlarging the projection light from the display panel 64 and causing it to enter the second mirror M2.
 反射ミラーM1および反射ミラーM2は、例えば、自由曲面ミラーや、光軸非対称の形状を有するミラーである。反射ミラーM2は、映像表示装置35から出射され集光レンズ63を通じて集光された映像光を、反射ミラーM1へ向けて反射する。反射ミラーM1は、例えば、凹面鏡(言い換えると拡大鏡)である。反射ミラーM1は、反射ミラーM2で反射された映像光を、駆動機構62で設定された角度で、開口部71を介してウィンドシールド3へ向けて反射および拡大し、表示領域5へ投影する。 The reflecting mirror M1 and the reflecting mirror M2 are, for example, free-form surface mirrors or mirrors having an asymmetrical shape with respect to the optical axis. The reflection mirror M2 reflects the image light emitted from the image display device 35 and condensed through the condensing lens 63 toward the reflection mirror M1. Reflecting mirror M1 is, for example, a concave mirror (in other words, a magnifying glass). The reflection mirror M1 reflects and expands the image light reflected by the reflection mirror M2 toward the windshield 3 through the opening 71 at an angle set by the drive mechanism 62, and projects it onto the display area 5.
 これにより、運転者6(図2)は、表示領域5に投射された映像を、透明のウィンドシールド3の先の虚像9として、車外の風景(例えば道路や建物、人など)に重畳される形で視認する。投影映像である虚像9は、例えば、道路標識や、自車の現速度や、風景上の対象物に付加される各種情報など、様々なものがある。これにより、風景上の対象物に各種情報を付加して表示するような拡張現実(AR)機能などが実現される。 As a result, the driver 6 (FIG. 2) sees the image projected on the display area 5 as a virtual image 9 beyond the transparent windshield 3, which is superimposed on the scenery outside the vehicle (for example, roads, buildings, people, etc.). Observe in shape. The virtual image 9, which is a projected image, includes various information such as road signs, the current speed of the vehicle, and various information added to objects on the landscape. As a result, an augmented reality (AR) function or the like is realized that displays an object on the landscape with various information added.
 なお、図2、図3の映像表示ユニット12の構成例では、駆動機構62により反射ミラーM1の設置角度を調整することで、ウィンドシールド3上の表示領域5および虚像9の位置を調整可能となっている。反射ミラーM1には、反射ミラーM1の設置角度を変更するための駆動機構62が取り付けられている。駆動機構62は、ステッピングモータ等を含む機構である。駆動機構62は、制御装置からの制御に基づいて、あるいは、ユーザの手動操作に基づいて、反射ミラーM1の設置角度を変更する。これにより、運転者6が表示領域5に視認する虚像9の位置を例えば上下方向に調整可能となっている。 2 and 3, the positions of the display area 5 and the virtual image 9 on the windshield 3 can be adjusted by adjusting the installation angle of the reflection mirror M1 with the driving mechanism 62. It's becoming A driving mechanism 62 for changing the installation angle of the reflecting mirror M1 is attached to the reflecting mirror M1. The drive mechanism 62 is a mechanism including a stepping motor and the like. The driving mechanism 62 changes the installation angle of the reflecting mirror M1 based on the control from the control device or based on the user's manual operation. As a result, the position of the virtual image 9 visually recognized by the driver 6 in the display area 5 can be adjusted, for example, in the vertical direction.
 また、例えば、反射ミラーM1の面積をより大きくすること等により、表示領域5の面積を拡大でき、より多くの情報を表示領域5へ投影可能になる。 Further, for example, by increasing the area of the reflecting mirror M1, the area of the display area 5 can be expanded, and more information can be projected onto the display area 5.
 図4は、図3の映像表示ユニット12を含んだHUD装置1の実装例の外観を示す斜視図である。筐体61には、開口部71が形成されている。開口部71には、グレアトラップ(眩惑防止)等と呼ばれる透明色のカバー部材71aが設置されている。筐体61内には、反射ミラーM2からの光を開口部71のカバー部材71aに向けて反射するように反射ミラーM1が設置されている。 FIG. 4 is a perspective view showing the appearance of a mounting example of the HUD device 1 including the video display unit 12 of FIG. An opening 71 is formed in the housing 61 . The opening 71 is provided with a transparent cover member 71a called a glare trap (anti-dazzle) or the like. Inside the housing 61, a reflecting mirror M1 is installed so as to reflect the light from the reflecting mirror M2 toward the cover member 71a of the opening 71. As shown in FIG.
 [HUD装置の制御系]
 図5は、図1のHUD装置1における制御系の主要部の構成例を示す機能ブロック図である。また、図6は、図5の車両情報4の取得に関わる箇所である車両情報取得部15に係わる構成例を示す機能ブロック図である。
[Control system of HUD device]
FIG. 5 is a functional block diagram showing a configuration example of main parts of the control system in the HUD device 1 of FIG. FIG. 6 is a functional block diagram showing a configuration example of the vehicle information acquiring section 15, which is a part involved in acquiring the vehicle information 4 in FIG.
 図5のHUD装置1は、制御装置10と、映像表示ユニット12と、スピーカ11と、日射センサ66とを備える。制御装置10は、例えば電子制御ユニット(Electronic Control Unit:ECU)で構成されている。映像表示ユニット12は、図2や図3の構成を有する。 The HUD device 1 of FIG. 5 includes a control device 10, a video display unit 12, a speaker 11, and a solar radiation sensor 66. The control device 10 is composed of, for example, an electronic control unit (ECU). The video display unit 12 has the configuration shown in FIGS. 2 and 3. FIG.
 制御装置10は、HUD装置1の全体および各部を制御するコントローラに相当し、主に、HUD装置1における投影映像(虚像9)の表示の制御や、音声出力の制御などを行う。制御装置10は、例えば、配線基板などによって構成されている。この配線基板は、例えば、図3や図4の筐体61内に搭載されている。制御装置10は、この配線基板上に実装されている、車両情報取得部15、マイクロコントローラ(MCU)16、不揮発性メモリ17、揮発性メモリ18、音声用ドライバ19、表示用ドライバ20、および通信部21等を備える。 The control device 10 corresponds to a controller that controls the entire HUD device 1 and each part, and mainly controls the display of the projected image (virtual image 9) in the HUD device 1, the control of the audio output, and the like. The control device 10 is configured by, for example, a wiring board. This wiring board is mounted, for example, in the housing 61 shown in FIGS. The control device 10 includes a vehicle information acquisition unit 15, a microcontroller (MCU) 16, a nonvolatile memory 17, a volatile memory 18, an audio driver 19, a display driver 20, and a communication device mounted on the wiring board. A part 21 and the like are provided.
 MCU16は、広く知られているように、CPU(Central Processing Unit)のようなプロセッサや、メモリに加え、各種周辺機能を備えている。したがって、この制御装置10内のMCU16を除く各ブロックは、適宜、MCU16内に搭載されてもよい。 As is widely known, the MCU 16 includes a processor such as a CPU (Central Processing Unit), memory, and various peripheral functions. Therefore, each block in the control device 10 except for the MCU 16 may be mounted in the MCU 16 as appropriate.
 車両情報取得部15は、例えば、CAN(Controller Area Network)インタフェースやLIN(Local Interconnect Network)インタフェースなどに対応した通信プロトコルに基づいて、車両情報4を取得する。 The vehicle information acquisition unit 15 acquires vehicle information 4 based on a communication protocol compatible with, for example, a CAN (Controller Area Network) interface or a LIN (Local Interconnect Network) interface.
 図6のように、車両情報4は、車両情報取得部15に接続される各種センサなどの情報取得デバイスによって生成される。図6には、各種情報取得デバイスの一例を示している。なお、図6の各種情報取得デバイスに関しては、適宜、削除や、他の種類のデバイスの追加や、他の種類のデバイスへの置換が可能である。 As shown in FIG. 6, the vehicle information 4 is generated by an information acquisition device such as various sensors connected to the vehicle information acquisition unit 15. FIG. 6 shows an example of various information acquisition devices. Note that the various information acquisition devices in FIG. 6 can be deleted, added to other types of devices, or replaced with other types of devices as appropriate.
 例えば、車速センサ41は、図1の車両2の速度を検出し、検出結果となる速度情報を生成する。シフトポジションセンサ42は、現在のギアを検出し、検出結果となるギア情報を生成する。ハンドル操舵角センサ43は、現在のハンドル操舵角を検出し、検出結果となるハンドル操舵角情報を生成する。ヘッドライトセンサ44は、ヘッドライトのON/OFFを検出し、検出結果となるランプ点灯情報を生成する。 For example, the vehicle speed sensor 41 detects the speed of the vehicle 2 in FIG. 1 and generates speed information as a detection result. The shift position sensor 42 detects the current gear and generates gear information as a detection result. The steering wheel steering angle sensor 43 detects the current steering wheel steering angle and generates steering wheel steering angle information as a detection result. The headlight sensor 44 detects ON/OFF of the headlight and generates lamp lighting information as a detection result.
 照度センサ45および色度センサ46は、外光を検出し、検出結果となる外光情報を生成する。測距センサ47は、車両2と外部の物体との間の距離を検出し、検出結果となる距離情報を生成する。赤外線センサ48は、車両2の近距離における物体の有無や距離などを検出し、検出結果となる赤外線情報を生成する。エンジン始動センサ49は、エンジンのON/OFFを検出し、検出結果となるON/OFF情報を生成する。 The illuminance sensor 45 and the chromaticity sensor 46 detect outside light and generate outside light information as detection results. The ranging sensor 47 detects the distance between the vehicle 2 and an external object, and generates distance information as a detection result. The infrared sensor 48 detects the presence or absence of an object in the short distance of the vehicle 2, the distance, and the like, and generates infrared information as a detection result. The engine start sensor 49 detects ON/OFF of the engine and generates ON/OFF information as a detection result.
 加速度センサ50およびジャイロセンサ51は、車両2の加速度および角速度を検出し、検出結果として、車両2の姿勢や挙動を表す加速度ジャイロ情報を生成する。温度センサ52は、車内外の温度を検出し、検出結果となる温度情報を生成する。例えば、温度センサ52によって、HUD装置1の周囲温度を検出可能である。HUD装置1内に、別途、温度センサを搭載してもよい。 The acceleration sensor 50 and the gyro sensor 51 detect the acceleration and angular velocity of the vehicle 2, and generate acceleration gyro information representing the attitude and behavior of the vehicle 2 as detection results. The temperature sensor 52 detects the temperature inside and outside the vehicle and generates temperature information as a detection result. For example, the temperature sensor 52 can detect the ambient temperature of the HUD device 1 . A temperature sensor may be separately mounted in the HUD device 1 .
 路車間通信用無線送受信機53は、車両2と、道路、標識、信号等との間の路車間通信によって、路車間通信情報を生成する。車車間通信用無線送受信機54は、車両2と周辺の他の車両との間の車車間通信によって、車車間通信情報を生成する。車内用カメラ55および車外用カメラ56は、車内および車外を撮影することで、車内のカメラ映像情報および車外のカメラ映像情報を生成する。具体的には、車内用カメラ55は、例えば、図2の運転者6の姿勢や、眼の位置、動きなどを撮影するDMS(Driver Monitoring System)用のカメラなどである。この場合、撮像された映像を解析することで、運転者6の疲労状況や視線の位置などが把握できる。 The road-to-vehicle communication radio transmitter/receiver 53 generates road-to-vehicle communication information through road-to-vehicle communication between the vehicle 2 and roads, signs, signals, and the like. The vehicle-to-vehicle communication radio transmitter/receiver 54 generates vehicle-to-vehicle communication information through vehicle-to-vehicle communication between the vehicle 2 and other vehicles in the vicinity. The in-vehicle camera 55 and the exterior camera 56 generate in-vehicle camera image information and exterior camera image information by photographing the interior and exterior of the vehicle. Specifically, the in-vehicle camera 55 is, for example, a DMS (Driver Monitoring System) camera that captures the posture of the driver 6 in FIG. 2 and the position and movement of the eyes. In this case, it is possible to grasp the fatigue state of the driver 6, the position of the line of sight, etc. by analyzing the imaged video.
 一方、車外用カメラ56は、例えば、車両2の前方や後方などの周囲の状況を撮影する。この場合、撮像された映像を解析することで、周辺に存在する他の車両や人などの障害物の有無、建物や地形、雨や積雪、凍結、凹凸などといった路面状況、および道路標識などを把握可能になる。また、車外用カメラ56には、例えば、走行中の状況を映像で記録するドライブレコーダなども含まれる。 On the other hand, the vehicle exterior camera 56 photographs the surrounding conditions such as the front and rear of the vehicle 2, for example. In this case, by analyzing the captured images, it is possible to detect the presence of obstacles such as other vehicles and people in the surrounding area, buildings and topography, road conditions such as rain, snow, ice, unevenness, road signs, etc. become comprehensible. In addition, the vehicle exterior camera 56 includes, for example, a drive recorder that records a video of the driving situation.
 GPS受信機57は、GPS衛星からGPS信号を受信することで得られるGPS情報を生成する。例えば、GPS受信機57によって、現在時刻、緯度および経度を取得可能である。VICS(Vehicle Information and Communication System、登録商標)受信機58は、VICS信号を受信することで得られるVICS情報を生成する。GPS受信機57やVICS受信機58は、ナビゲーションシステムの一部として設けられてもよい。 The GPS receiver 57 generates GPS information obtained by receiving GPS signals from GPS satellites. For example, the GPS receiver 57 can obtain the current time, latitude and longitude. A VICS (Vehicle Information and Communication System, registered trademark) receiver 58 generates VICS information obtained by receiving VICS signals. The GPS receiver 57 and VICS receiver 58 may be provided as part of the navigation system.
 図5において、MCU16は、このような車両情報4を、車両情報取得部15を介して受信する。MCU16は、車両情報4などに基づいて、スピーカ11に向けた音声データや、映像表示装置35に向けた映像データなどを生成する。MCU16は、音声データ生成部27と、映像データ生成部28と、歪み補正部29と、光源調整部30と、ミラー調整部31と、保護処理部75とを備える。これらの各部は、主に、不揮発性メモリ17または揮発性メモリ18に格納されるプログラムをMCU16のCPUが読み出して実行することで実現される。 In FIG. 5, the MCU 16 receives such vehicle information 4 via the vehicle information acquisition unit 15. The MCU 16 generates audio data directed to the speaker 11, image data directed to the image display device 35, and the like based on the vehicle information 4 and the like. The MCU 16 includes an audio data generation section 27 , a video data generation section 28 , a distortion correction section 29 , a light source adjustment section 30 , a mirror adjustment section 31 and a protection processing section 75 . These units are mainly implemented by the CPU of the MCU 16 reading and executing programs stored in the nonvolatile memory 17 or volatile memory 18 .
 音声データ生成部27は、必要に応じて、車両情報4などに基づいた音声データを生成する。音声データは、例えば、ナビゲーションシステムの音声案内を行う場合や、AR機能によって運転者6に警告を発する場合などに生成される。音声用ドライバ19は、音声データに基づいてスピーカ11を駆動し、スピーカ11に音声を出力させる。 The audio data generation unit 27 generates audio data based on the vehicle information 4 and the like as necessary. The voice data is generated, for example, when performing voice guidance of the navigation system or when issuing a warning to the driver 6 by the AR function. The audio driver 19 drives the speaker 11 based on the audio data and causes the speaker 11 to output audio.
 映像データ生成部28は、車両情報4などに基づいて、図2等の表示領域5に投影される投影映像の表示内容を定める映像データを生成する。歪み補正部29は、映像データ生成部28からの映像データに対して歪み補正を加えた補正後の映像データを生成する。具体的には、歪み補正部29は、図2に示したように、映像表示装置35からの映像を表示領域5に投影した場合にウィンドシールド3の曲率によって生じる映像の歪みを補正する。 Based on the vehicle information 4 and the like, the video data generation unit 28 generates video data that defines the display contents of the projection video projected onto the display area 5 shown in FIG. 2 and the like. The distortion correction unit 29 generates corrected image data by applying distortion correction to the image data from the image data generation unit 28 . Specifically, the distortion corrector 29 corrects image distortion caused by the curvature of the windshield 3 when the image from the image display device 35 is projected onto the display area 5, as shown in FIG.
 表示用ドライバ20は、歪み補正部29からの補正後の映像データに基づいて、映像表示装置35内の表示パネル64に含まれる各表示素子(画素)を駆動する。これによって、映像表示装置35は、補正後の映像データに基づいて、表示領域5へ投影するための映像を作成、表示する。 The display driver 20 drives each display element (pixel) included in the display panel 64 in the image display device 35 based on the corrected image data from the distortion correction unit 29 . Thereby, the image display device 35 creates and displays an image to be projected onto the display area 5 based on the corrected image data.
 光源調整部30は、映像表示装置35内の光源(後述のLED素子)の輝度などを制御する。ミラー調整部31は、ウィンドシールド3における表示領域5の位置を調整する必要がある場合に、図3の映像表示ユニット12内の駆動機構62の駆動を介して反射ミラーM1の設置角度を変更する。 The light source adjustment unit 30 controls the brightness of the light source (LED elements described later) in the image display device 35, and the like. When the position of the display area 5 on the windshield 3 needs to be adjusted, the mirror adjusting section 31 changes the installation angle of the reflecting mirror M1 through driving the driving mechanism 62 in the image display unit 12 of FIG. .
 不揮発性メモリ17は、主に、MCU16内のCPUで実行されるプログラムや、MCU16内の各部の処理で使用する設定パラメータや、規定の音声データおよび映像データなどを予め記憶する。 The non-volatile memory 17 mainly stores in advance programs executed by the CPU in the MCU 16, setting parameters used in processing of each part in the MCU 16, prescribed audio data and video data, and the like.
 揮発性メモリ18は、主に、取得された車両情報4や、MCU16内の各部の処理過程で使用される各種データを適宜記憶する。通信部21は、通信インタフェースが実装された装置であり、HUD装置1の外部との間で、CANやLINなどに従った通信プロトコルに基づいて通信を行う。通信部21は、車両情報取得部15と一体であってもよい。なお、図5の制御装置10内の各部は、適宜、FPGA(Field Programmable Gate Array)などの専用回路によって実装されてもよい。 The volatile memory 18 mainly stores the acquired vehicle information 4 and various data used in the processing process of each part in the MCU 16 as appropriate. The communication unit 21 is a device in which a communication interface is mounted, and communicates with the outside of the HUD device 1 based on a communication protocol such as CAN or LIN. The communication unit 21 may be integrated with the vehicle information acquisition unit 15 . Each unit in the control device 10 of FIG. 5 may be appropriately implemented by a dedicated circuit such as an FPGA (Field Programmable Gate Array).
 [比較例]
 図17は、実施の形態1に対する比較例の光源装置の構成例を示す。この光源装置は、特許文献1に記載の光源装置と対応している。この光源装置は、光源側から順に、光源として複数のLED素子91Aが設けられたLED基板91と、コリメータ92と、偏光変換素子93と、導光体94と、拡散板95とを備えている。図17では、表示パネルであるLCDパネル64も併せて図示している。なお、図17はY-Z断面であるため、1個のLED素子91Aおよび1個のコリメータ素子のみが図示されているが、LED基板91の主面(X-Z面)ではX方向に複数のLED素子91Aが同様に設けられており、それに対応してX方向に複数のコリメータ素子が同様に設けられている。
[Comparative example]
FIG. 17 shows a configuration example of a light source device as a comparative example with respect to the first embodiment. This light source device corresponds to the light source device described in Patent Document 1. This light source device includes, in order from the light source side, an LED substrate 91 provided with a plurality of LED elements 91A as light sources, a collimator 92, a polarization conversion element 93, a light guide 94, and a diffusion plate 95. . FIG. 17 also shows an LCD panel 64 as a display panel. Since FIG. 17 is a YZ cross section, only one LED element 91A and one collimator element are shown. LED elements 91A are similarly provided, and correspondingly a plurality of collimator elements are similarly provided in the X direction.
 LED基板91のLED素子91Aからの光の出射側(Y方向の正側)には、コリメータ92が設けられている。コリメータ92は、LED素子91Aからの光を略平行光に変換する。コリメータ92からの光の出射側(Y方向の正側)には、偏光変換素子93が設けられている。偏光変換素子93は、コリメータ92からの略平行光としてランダム偏光を有する光を、直線偏光を有する光に変換する。偏光変換素子93は、偏光変換プリズム931と波長板932とを組み合わせて構成されている。 A collimator 92 is provided on the side of the LED substrate 91 where light from the LED elements 91A is emitted (positive side in the Y direction). The collimator 92 converts the light from the LED element 91A into substantially parallel light. A polarization conversion element 93 is provided on the light exit side (positive side in the Y direction) from the collimator 92 . The polarization conversion element 93 converts the light having random polarization as substantially parallel light from the collimator 92 into light having linear polarization. The polarization conversion element 93 is configured by combining a polarization conversion prism 931 and a wavelength plate 932 .
 偏光変換素子93からの光の出射側(Y方向の正側)には、導光体94が設けられている。導光体94は、偏光変換素子93からの直線偏光の光を、入射部941から入射し、反射部942によって、Y方向とは異なるZ方向、すなわち表示パネル64がある方向へ向けて反射させながら配光制御を行う。導光体94は、反射および配光制御を行う反射部942を備えている。反射部942は、反射面と連接面とが交互に繰り返して形成されている。 A light guide 94 is provided on the light exit side (positive side in the Y direction) from the polarization conversion element 93 . The light guide 94 causes the linearly polarized light from the polarization conversion element 93 to enter from the incident portion 941 and is reflected by the reflecting portion 942 toward the Z direction different from the Y direction, that is, the direction in which the display panel 64 is located. light distribution control. The light guide 94 has a reflecting portion 942 that performs reflection and light distribution control. The reflecting portion 942 is formed by alternately repeating reflecting surfaces and connecting surfaces.
 導光体94の出射部943の出射面は、例えば、配光制御のための自由曲面形状を有する。 The exit surface of the exit portion 943 of the light guide 94 has, for example, a free curved surface shape for light distribution control.
 導光体94の出射部943から出射した光は、概略的にZ方向の上方、本例ではやや斜め右上方向に向かう。導光体94から光の出射側(Z方向の正側)には、拡散板95が設けられている。導光体94からの光は、拡散板95によって拡散され、表示パネル64の背面側に入射する。表示パネル64は、この入射光をバックライトとして映像光を生成する。 The light emitted from the emitting portion 943 of the light guide 94 is directed roughly upward in the Z direction, slightly obliquely upward in this example. A diffusion plate 95 is provided on the light exit side (positive side in the Z direction) of the light guide 94 . The light from the light guide 94 is diffused by the diffusion plate 95 and enters the rear side of the display panel 64 . The display panel 64 generates image light using this incident light as a backlight.
 [光源装置]
 次に、実施の形態1の光源装置として、図3の光源装置100の詳細な構成例について説明する。図7は、実施の形態1に係わる光源装置100の構成の一例を示す断面図である。図7では、光源装置100に加え、表示パネル64(LCDパネル)も図示しており、すなわち映像表示装置35としての構成例を示している。図7では、空間内の方向、座標系として、図示の(X,Y,Z)を用いて、Y-Z断面を模式で示している。XおよびY方向は、水平面を構成する直交する2つの方向であり、Z方向は鉛直方向である。X方向は、図7の紙面に垂直な方向であり、LED基板120の主面(LED素子121が配置された面)を構成する一方の方向(横方向、左右方向)であり、Z方向は、LED基板120の主面を構成する他方の方向(縦方向、上下方向)であり、Y方向は、LED基板120の主面に対し垂直な方向であり、LED素子121からの発光の光軸の方向である。表示パネル64は例えばフレキシブルプリント回路基板64fを通じて制御装置10(図5)と接続されている。
[Light source device]
Next, a detailed configuration example of the light source device 100 of FIG. 3 will be described as the light source device of the first embodiment. FIG. 7 is a cross-sectional view showing an example of the configuration of the light source device 100 according to Embodiment 1. As shown in FIG. In addition to the light source device 100 , FIG. 7 also shows a display panel 64 (LCD panel), that is, shows a configuration example of the image display device 35 . In FIG. 7, the YZ cross section is schematically shown using (X, Y, Z) as the direction in space and the coordinate system. The X and Y directions are two orthogonal directions forming a horizontal plane, and the Z direction is the vertical direction. The X direction is a direction perpendicular to the paper surface of FIG. 7, and is one direction (horizontal direction, left-right direction) that constitutes the main surface of the LED substrate 120 (the surface on which the LED elements 121 are arranged). , the other direction (vertical direction, vertical direction) constituting the main surface of the LED substrate 120, the Y direction is the direction perpendicular to the main surface of the LED substrate 120, and is the optical axis of light emitted from the LED element 121. direction. The display panel 64 is connected to the control device 10 (FIG. 5) through a flexible printed circuit board 64f, for example.
 実施の形態1の光源装置100は、光源として複数のLED素子121が設けられたLED基板120と、コリメータ140と、導光体160と、偏光変換素子150と、拡散板170とを備えている。これらの構成要素は、所定の位置関係を有して筐体61(図3)に対し固定されている。なお、図7では断面図であるため1個のLED素子121および1個のコリメータ素子141のみが図示されているが、LED基板120の主面(X-Z面)にはX方向に複数のLED素子121が設けられている。それに対応してX方向に複数のコリメータ素子141が設けられている。LED素子121は、半導体光源素子の例である。 The light source device 100 of Embodiment 1 includes an LED substrate 120 provided with a plurality of LED elements 121 as a light source, a collimator 140, a light guide 160, a polarization conversion element 150, and a diffusion plate 170. . These components have a predetermined positional relationship and are fixed to the housing 61 (FIG. 3). Since FIG. 7 is a cross-sectional view, only one LED element 121 and one collimator element 141 are shown. An LED element 121 is provided. Correspondingly, a plurality of collimator elements 141 are provided in the X direction. The LED element 121 is an example of a semiconductor light source element.
 LED基板120は、後述(図8)のように、主面であるX-Z面において、X方向に複数のLED素子121が配列されている。各LED素子121は、光源として発光する。各LED素子121からの発光は、Y方向を光軸とした発光であり、その発光がコリメータ140の各コリメータ素子141に入射される。 As will be described later (FIG. 8), the LED substrate 120 has a plurality of LED elements 121 arranged in the X direction on the XZ plane, which is the main surface. Each LED element 121 emits light as a light source. Light emission from each LED element 121 is light emission with an optical axis in the Y direction, and the light emission is incident on each collimator element 141 of the collimator 140 .
 コリメータ140は、後述(図8)のように、LED素子121ごとに対応させて設けられたコリメータ素子141を有する。コリメータ140は、X方向に複数のコリメータ素子141が配列されている。コリメータ140は、全体で複数のコリメータ素子141を有する。複数のコリメータ素子141の個数は、複数のLED素子121の個数と同じである。各コリメータ素子141は、対応付けられたLED素子121に対して所定の位置、言い換えると所定の相対位置に設置されている。 The collimator 140 has a collimator element 141 provided corresponding to each LED element 121 as described later (FIG. 8). The collimator 140 has a plurality of collimator elements 141 arranged in the X direction. Collimator 140 has a plurality of collimator elements 141 as a whole. The number of collimator elements 141 is the same as the number of LED elements 121 . Each collimator element 141 is installed at a predetermined position, in other words, at a predetermined relative position with respect to the associated LED element 121 .
 コリメータ140は、LED素子121から出射されて当該コリメータ140に入射する光の進行方向を調整する光学部材である。コリメータ140は、LED素子121から出射した光が導光体160へ向かうように調整する。コリメータ素子141は、入射部14a、反射部14b、出射部14cを有する。具体的に、コリメータ140の各コリメータ素子141は、LED素子121からの光を入射部14aから入射し、最適化設計された反射部14bの形状によって、Y方向に沿った略平行光に変換し、出射部14cから出射する。光線130は、コリメータ140から出射されたY方向の正側へ向かう光を構成する光線である。 The collimator 140 is an optical member that adjusts the traveling direction of light emitted from the LED element 121 and incident on the collimator 140 . The collimator 140 adjusts the light emitted from the LED element 121 so that it travels toward the light guide 160 . The collimator element 141 has an incident portion 14a, a reflecting portion 14b, and an emitting portion 14c. Specifically, each collimator element 141 of the collimator 140 receives the light from the LED element 121 through the incident portion 14a, and converts the light into approximately parallel light along the Y direction by the shape of the reflective portion 14b optimized for design. , exit from the exit portion 14c. A light ray 130 is a light ray that constitutes the light that is emitted from the collimator 140 and travels toward the positive side in the Y direction.
 コリメータ140におけるLED素子121とは反対側である出射側(Y方向で正側)には、所定の空間を空けて、導光体160が設けられている。導光体160は、入射部161、反射部162、および出射部163を有する。入射部161は、コリメータ140からの光を入射する入射面を有する導光体入射部である。反射部162は、入射部161からの光を反射する反射面を有する導光体反射部である。出射部163は、反射部162からの光を出射する出射面を有する導光体出射部である。 A light guide 160 is provided with a predetermined space on the output side (positive side in the Y direction) of the collimator 140 opposite to the LED element 121 . The light guide 160 has an incident portion 161 , a reflecting portion 162 and an emitting portion 163 . The incident part 161 is a light guide body incident part having an incident surface on which the light from the collimator 140 is incident. The reflecting portion 162 is a light guide reflecting portion having a reflecting surface that reflects the light from the incident portion 161 . The emitting portion 163 is a light guide emitting portion having an emitting surface for emitting light from the reflecting portion 162 .
 導光体160は、コリメータ140からのY方向の光を、入射部161から入射し、反射部162によって、Y方向とは異なるZ方向(すなわち表示パネル64がある方向)へ向けて反射するように導く。導光体160は、その反射とともに配光制御を行う機能を有する。導光体160は、反射および配光制御の機能を有する反射部162を備える。反射部162は、後述(図10)の反射面と連接面とが交互に繰り返して形成されている。 The light guide 160 allows the light in the Y direction from the collimator 140 to be incident from the incident portion 161 and reflected by the reflecting portion 162 toward the Z direction (that is, the direction in which the display panel 64 is located) different from the Y direction. lead to The light guide 160 has a function of performing light distribution control as well as its reflection. The light guide 160 includes a reflecting portion 162 having functions of reflection and light distribution control. The reflecting portion 162 is formed by alternately repeating a reflecting surface and a connecting surface, which will be described later (FIG. 10).
 導光体160の出射部163から出射した光は、概略的にZ方向の上方、本例ではやや斜め右上方向に向かう。導光体160からの光の出射側(Z方向で正側)には、所定の空間を空けて、偏光変換素子150が設けられている。一点鎖線で示す光軸700は、導光体160から出射して偏光変換素子150を経由して表示パネル64へ向かう光の光軸であり、Z方向に対しやや右に所定の角度で傾いている。 The light emitted from the emitting portion 163 of the light guide 160 is directed roughly upward in the Z direction, in this example slightly obliquely to the upper right. A polarization conversion element 150 is provided with a predetermined space on the light exit side (positive side in the Z direction) from the light guide 160 . An optical axis 700 indicated by a dashed-dotted line is the optical axis of light emitted from the light guide 160 and directed to the display panel 64 via the polarization conversion element 150. there is
 図示のように、導光体160の出射部163から出射される光の方向(光軸700の方向)は、偏光変換素子150の入射面に対し垂直な方向である。言い換えると、偏光変換素子150は、導光体160の出射部163から出射される光の方向(光軸700の方向)に対し入射面が垂直になるように配置されている。 As shown, the direction of light emitted from the emitting portion 163 of the light guide 160 (the direction of the optical axis 700) is perpendicular to the plane of incidence of the polarization conversion element 150. FIG. In other words, the polarization conversion element 150 is arranged such that the plane of incidence is perpendicular to the direction of light emitted from the emission portion 163 of the light guide 160 (the direction of the optical axis 700).
 偏光変換素子150(後述の図11や図12)は、光軸700の方向で、導光体160からのランダム偏光を有する光を、入射面から入射し、偏光変換として直線偏光に変換して、その変換後の直線偏光を有する光を、出射面から同じく光軸700の方向に出射する。偏光変換素子150の出射面から出射される光は、すべて、偏光特性が直線偏光に揃えられる。 The polarization conversion element 150 (FIGS. 11 and 12 to be described later) receives randomly polarized light from the light guide 160 in the direction of the optical axis 700 from the incident surface, and converts the light into linearly polarized light as polarization conversion. , the converted linearly polarized light is emitted in the direction of the optical axis 700 from the emission surface. All of the light emitted from the emission surface of the polarization conversion element 150 has linear polarization characteristics.
 偏光変換素子150は、偏光変換プリズム151と、波長板152とを組み合わせて構成されている(後述の図11等)。偏光変換素子150の基本的な機能は、LCDパネル64に備える偏光板の構成と対応させて、光源(LED素子121)からのランダム偏光を有する光を、直線偏光を有する光に変換することである。その直線偏光を有する光が、LCDパネル64にとっての好適なバックライトとなる。 The polarization conversion element 150 is configured by combining a polarization conversion prism 151 and a wavelength plate 152 (see later-described FIG. 11, etc.). The basic function of the polarization conversion element 150 is to convert randomly polarized light from the light source (LED element 121) into linearly polarized light in correspondence with the configuration of the polarizing plate provided in the LCD panel 64. be. Light with that linear polarization is the preferred backlight for the LCD panel 64 .
 偏光変換素子150からの光の出射側には、所定の空間を空けて、拡散板170が配置されている。拡散板170は、偏光変換素子150からの光を拡散させて強度を均一化する拡散機能を有する拡散素子である。拡散板170は、偏光変換素子150からの直線偏光を有する光(略平行光)を入射し、LCDパネル64へ向けて拡散して出射する。より詳しくは、拡散板170は、偏光変換素子150に対し、主面がより傾いて配置されている。拡散板170は、偏光変換素子150からの光の光軸700に対し、垂直ではなく、図示のY方向の正側でやや下側に傾いて配置されている。拡散板170は、例えば金型での成型によって、拡散機能を実現する形状が作製されている。 A diffusion plate 170 is arranged with a predetermined space on the light exit side from the polarization conversion element 150 . The diffusion plate 170 is a diffusion element having a diffusion function of diffusing the light from the polarization conversion element 150 to make the intensity uniform. The diffusion plate 170 receives the linearly polarized light (substantially parallel light) from the polarization conversion element 150 , diffuses the light, and emits the light toward the LCD panel 64 . More specifically, the diffuser plate 170 is arranged with its main surface inclined with respect to the polarization conversion element 150 . The diffuser plate 170 is not perpendicular to the optical axis 700 of the light from the polarization conversion element 150, but is arranged slightly downward on the positive side in the Y direction in the drawing. The diffuser plate 170 has a shape that realizes a diffusion function, for example, by molding with a mold.
 拡散板170の出射側には、所定の空間を空けて、表示パネル64が設けられている。表示パネル64も、拡散板170と概略同程度で、偏光変換素子150に対し、主面がより傾いて配置されている。偏光変換素子150からの光は、拡散板170を経由して拡散されて強度が均一化され、その光が、表示パネル64の背面側に入射する。表示パネル64は、その入射光に基づいて映像光を生成する。 A display panel 64 is provided on the emission side of the diffusion plate 170 with a predetermined space therebetween. The display panel 64 is also substantially the same as the diffuser plate 170 , and is arranged with its main surface inclined with respect to the polarization conversion element 150 . The light from the polarization conversion element 150 is diffused through the diffuser plate 170 to make the intensity uniform, and the light is incident on the rear side of the display panel 64 . The display panel 64 generates image light based on the incident light.
 なお、図7の構成例では、導光体160から出射して偏光変換素子150を経由して表示パネル64へ入射する光の方向は、図示のZ方向に対しやや斜め右に傾いた光軸700の方向となっている。これは、HUD装置の光学系での外光反射抑制のための設計例であり、これに限定されない。設計に応じて、導光体160から出射して偏光変換素子150を経由して表示パネル64へ入射する光の方向は、鉛直方向(Z方向)としてもよいし、Z方向に対しやや斜め左に傾いた方向としてもよい(後述の変形例)。 In the configuration example of FIG. 7, the direction of the light emitted from the light guide 160 and incident on the display panel 64 via the polarization conversion element 150 is an optical axis slightly tilted to the right with respect to the illustrated Z direction. 700 direction. This is a design example for suppressing external light reflection in the optical system of the HUD device, and is not limited to this. Depending on the design, the direction of the light emitted from the light guide 160 and incident on the display panel 64 via the polarization conversion element 150 may be the vertical direction (Z direction) or may be slightly oblique left with respect to the Z direction. may be tilted toward (a modified example to be described later).
 実施の形態1で、図7の導光体160の出射部163の出射面は、比較例(図17)のように配光制御機能のための自由曲面形状を有する必要は無く、例えば平面で構成されている。配光制御機能は、例えば表示パネル64の後段に配置されたレンズ63への配光を制御する機能である。実施の形態1で、この配光制御機能を実装する場合、その配光制御機能のための自由曲面形状が、例えば拡散板170に実装される。言い換えると、実施の形態1での拡散板170は、拡散機能に加え配光制御機能を有する光学素子であり、それらの機能を実現するための形状を有する。その拡散板170は、入射面と出射面にそれらの形状が実装されればよく、実装詳細は限定されない。拡散板170は、例えば、入射面に配光制御機能のための自由曲面形状が形成され、出射面に拡散機能のための形状が形成されてもよいし、その逆としてもよい。 In Embodiment 1, the exit surface of the exit portion 163 of the light guide 160 in FIG. 7 does not need to have a free curved surface shape for the light distribution control function as in the comparative example (FIG. 17). It is configured. The light distribution control function is, for example, a function of controlling light distribution to the lens 63 arranged behind the display panel 64 . In Embodiment 1, when this light distribution control function is implemented, a free curved surface shape for the light distribution control function is implemented, for example, on the diffusion plate 170 . In other words, diffusion plate 170 in Embodiment 1 is an optical element having a light distribution control function in addition to a diffusion function, and has a shape for realizing those functions. The diffusing plate 170 is not limited in mounting details as long as those shapes are mounted on the entrance surface and the exit surface. The diffuser plate 170 may have, for example, a free curved surface shape for light distribution control function on the entrance surface and a shape for diffusion function on the exit surface, or vice versa.
 [LED基板]
 図8は、図7のLED基板120の複数のLED素子121と、コリメータ140の複数のコリメータ素子141との配置の構成例を示す説明図としてX-Y平面図を示す。図8の構成例では、X方向に1列として配列されている複数のLED素子121および複数のコリメータ素子141のうち5個の部分を示している。複数のLED素子121として、121-1,……,121-5を有し、複数のコリメータ素子141として、141-1,……,141-5を有する。これらの複数のLED素子121および複数のコリメータ素子141は、X方向に所定のピッチで配列されている。一点鎖線の矢印は、各LED素子121からの発光の光軸の方向であり、Y方向と対応している。
[LED board]
FIG. 8 shows an XY plan view as an explanatory diagram showing an arrangement configuration example of the plurality of LED elements 121 of the LED substrate 120 of FIG. 7 and the plurality of collimator elements 141 of the collimator 140. As shown in FIG. The configuration example of FIG. 8 shows five portions of the plurality of LED elements 121 and the plurality of collimator elements 141 arranged in one row in the X direction. , 121-5 as the plurality of LED elements 121 and 141-1, . . . , 141-5 as the plurality of collimator elements 141 . These multiple LED elements 121 and multiple collimator elements 141 are arranged at a predetermined pitch in the X direction. The dashed-dotted arrow indicates the direction of the optical axis of light emitted from each LED element 121, and corresponds to the Y direction.
 LED基板120の主面として、LED素子121が設けられているX-Z面から、Y方向の正側にそれぞれのLED素子121が出るように設けられている。各LED素子121の中心位置に対し、コリメータ素子141の中心位置を対応させるように、複数のコリメータ素子141が配置されている。なお、複数のコリメータ素子141の各出射部14cは、複数のコリメータ素子141で共通の基板のようにして実装可能である。なお、このようなLED基板120およびコリメータ140の構成例に限定されず可能である。例えば、Z方向にも2つ以上のLED素子121やコリメータ素子141が配列された構成としてもよい。 As the main surface of the LED substrate 120, each LED element 121 is provided so as to protrude on the positive side in the Y direction from the XZ plane on which the LED element 121 is provided. A plurality of collimator elements 141 are arranged such that the central position of each LED element 121 corresponds to the central position of the collimator element 141 . In addition, each output part 14 c of the plurality of collimator elements 141 can be mounted like a substrate common to the plurality of collimator elements 141 . In addition, it is possible without being limited to such a configuration example of the LED substrate 120 and the collimator 140 . For example, two or more LED elements 121 or collimator elements 141 may be arranged in the Z direction.
 [コリメータ]
 図9は、図7のコリメータ140のコリメータ素子141の構成の一例を示す断面図としてY-Z面図を示す。LED素子121からの発光は、図示のように、Y方向を光軸901として、発散する各方向の光線を含む。光軸901は、LED素子121の中心とコリメータ素子141の中心とを通る軸である。また、光軸901に対し、破線矢印で示す軸902は、コリメータ素子141の径方向の軸である。
[Collimator]
FIG. 9 shows a YZ plane view as a cross-sectional view showing an example of the configuration of the collimator element 141 of the collimator 140 of FIG. Light emitted from the LED element 121 includes light beams diverging in each direction with the Y direction as the optical axis 901, as shown. An optical axis 901 is an axis passing through the center of the LED element 121 and the center of the collimator element 141 . An axis 902 indicated by a dashed arrow with respect to the optical axis 901 is a radial axis of the collimator element 141 .
 コリメータ素子141の入射部14aは、LED素子121側(Y方向で負側)に対向して開口した凹部となっており、凹形状の曲面を有している。LED素子121の発光面と、この凹部の開口面とは、近接して配置されている。LED素子121の発光面がこの凹部内に入り込んで配置されてもよい。入射部14aは、LED素子121からの光を、反射部14bおよび出射部14cへ導く。入射部14aの凹部に入った光線のうち一部は、凹部の底面を経由して出射部14cへ向かう。凹部の底面は、図示のように例えば入射側(Y方向で負側)に凸形状の曲面を入射面として有している。入射部14aの凹部に入った光線のうち他の一部は、凹部の側面を経由して反射部14bへ向かう。 The incident portion 14a of the collimator element 141 is a concave portion that is open facing the LED element 121 side (negative side in the Y direction) and has a concave curved surface. The light emitting surface of the LED element 121 and the opening surface of the recess are arranged close to each other. The light-emitting surface of the LED element 121 may be placed inside the recess. The incident portion 14a guides the light from the LED element 121 to the reflecting portion 14b and the emitting portion 14c. Some of the rays that have entered the concave portion of the incident portion 14a go to the emitting portion 14c via the bottom surface of the concave portion. The bottom surface of the recess has, for example, a convex curved surface on the incident side (negative side in the Y direction) as an incident surface, as shown in the drawing. Another part of the light rays that have entered the concave portion of the incident portion 14a travels to the reflecting portion 14b via the side surface of the concave portion.
 コリメータ素子141の反射部14bは、形状として、光軸901を回転中心軸とした回転対称形状、例えば概略的に放物面形状(または円錐形状)を有する。反射部14bは、反射面として所定の形状の外周面を含んでいる。反射部14bは、入射部14aからの光を、所定の焦点へ向けて反射させて、出射部14cへ導く。入射部14aからの光は、反射部14bの反射面で全反射されて、出射部14cに進む。反射部14bは、集光や配光制御のために形状が最適化設計されている。 The reflecting portion 14b of the collimator element 141 has a rotationally symmetrical shape with the optical axis 901 as the central axis of rotation, for example, a roughly parabolic shape (or conical shape). The reflecting portion 14b includes an outer peripheral surface having a predetermined shape as a reflecting surface. The reflecting portion 14b reflects the light from the incident portion 14a toward a predetermined focal point and guides it to the emitting portion 14c. Light from the incident portion 14a is totally reflected by the reflecting surface of the reflecting portion 14b and travels to the emitting portion 14c. The shape of the reflecting portion 14b is optimized and designed for light collection and light distribution control.
 入射部14aからの光および反射部14bからの光は、出射部14cの出射面から光線130としてY方向に出射する。出射部14cの出射面は、平面または曲面の形状を有する。出射部14cの出射面は、入射部14aの入射面に対向する箇所に、出射側(Y方向で正側)に凸形状の曲面を有してもよい。出射部14cの出射面から出射する光線は、図示のように略平行光となっている。コリメータ素子141は、このような入射部14a、反射部14b、および出射部14cの形状によって、所定の集光機能などが実現されている。 The light from the incident portion 14a and the light from the reflecting portion 14b are emitted in the Y direction as light rays 130 from the emission surface of the emission portion 14c. The output surface of the output portion 14c has a flat or curved shape. The exit surface of the exit portion 14c may have a convex curved surface on the exit side (the positive side in the Y direction) at a location facing the entrance surface of the entrance portion 14a. Light rays emitted from the emission surface of the emission portion 14c are substantially parallel rays as shown. The collimator element 141 achieves a predetermined light collecting function and the like by means of the shapes of the incident portion 14a, the reflecting portion 14b, and the emitting portion 14c.
 なお、コリメータ140における複数のコリメータ素子141(図8)は、コリメータ素子141ごとに反射部14bの形状が異なる等、異なる光学特性を有してもよい。例えば、1列における複数のコリメータ素子141において、X方向で中央側のコリメータ素子141と周辺側のコリメータ素子141とで、反射部14bの形状を異ならせてもよい。例えば、反射部14bの形状として、位置毎に異なる焦点を形成するための焦点エリア(反射面の曲率が異なるエリア)を設けてもよい。これにより、光源装置100の光学系を最適化し、光の利用効率を向上させることができる。 It should be noted that the plurality of collimator elements 141 (FIG. 8) in the collimator 140 may have different optical characteristics such as different shapes of the reflecting portions 14b for each collimator element 141. For example, in a plurality of collimator elements 141 in one row, the shape of the reflecting portion 14b may be different between the collimator element 141 on the central side and the collimator element 141 on the peripheral side in the X direction. For example, as the shape of the reflecting portion 14b, focal areas (areas with different curvatures of the reflecting surface) for forming different focal points for each position may be provided. As a result, the optical system of the light source device 100 can be optimized, and the light utilization efficiency can be improved.
 [導光体]
 図10は、導光体160の構成例を示す説明図である。図10の(A)は、導光体160の外形の概要を示す斜視図である。導光体160は、図示のように概略的に三角柱形状を有し、入射部161と、反射部162と、出射部163とを有する。Y-Z断面を見た場合には、概略的に三角形形状を有する。導光体160の側面部164には、導光体160の固定のための固定部165も設けられている。導光体160は、例えばアクリル等の透光性の樹脂を用いて樹脂成型によって形成されている。
[Light guide]
FIG. 10 is an explanatory diagram showing a configuration example of the light guide 160. As shown in FIG. FIG. 10A is a perspective view showing an overview of the outer shape of the light guide 160. FIG. The light guide 160 has a roughly triangular prism shape as shown, and has an incident portion 161 , a reflecting portion 162 and an emitting portion 163 . When looking at the YZ cross section, it has a roughly triangular shape. A fixing portion 165 for fixing the light guide 160 is also provided on the side portion 164 of the light guide 160 . The light guide 160 is formed by resin molding using translucent resin such as acrylic.
 入射部161の入射面は、概略的に、X-Z面に配置されており、平面に限らず、図示のように配光制御のための曲面形状(例えば自由曲面形状)を有してもよい。反射部162の反射面は、Y方向およびZ方向に対して斜面となるように配置されている。出射部163は、出射面として平面を有する。出射面である平面は、X-Y面に配置されてもよいし、図7のように、X-Y面に対して所定の傾き(図7ではY方向に対し正側がZ方向上側に傾いた状態)を有してもよい。 The incident surface of the incident part 161 is roughly arranged on the XZ plane, and is not limited to a flat surface, and may have a curved surface shape (for example, a free curved surface shape) for light distribution control as shown in the figure. good. The reflecting surface of the reflecting portion 162 is arranged so as to be inclined with respect to the Y direction and the Z direction. Output portion 163 has a plane as an output surface. The plane, which is the emission surface, may be arranged on the XY plane, or may be inclined with respect to the XY plane as shown in FIG. state).
 出射部163の出射面は、実施の形態1では平面であるが、これに限らず、変形例としては、配光制御のための曲面形状(例えば自由曲面形状)を有してもよい。 Although the exit surface of the exit portion 163 is flat in Embodiment 1, it is not limited to this, and may have a curved surface shape (for example, a free curved surface shape) for light distribution control as a modification.
 図10の(B)は、特に反射部162の詳細の説明図である。(B)では、反射部162の一部の反射面を示している。この反射面を拡大して見ると、図示のように、複数の反射面162aと複数の連接面162bとが交互に鋸歯状に形成されている。なお、図7等では、反射部162の複数の反射面162aを、わかりやすいように実際よりも粗くして模式で図示しているが、実際にはより多数(例えば130個)の反射面162aが設けられている。入射部161から入射した光は、反射部162の反射面(複数の反射面162a)で全反射されて、出射部163へ向かう。 (B) of FIG. 10 is an explanatory diagram of the details of the reflector 162 in particular. (B) shows a part of the reflecting surface of the reflecting section 162 . When this reflecting surface is enlarged, as shown, a plurality of reflecting surfaces 162a and a plurality of connecting surfaces 162b are alternately formed in a sawtooth shape. In FIG. 7 and the like, the plurality of reflecting surfaces 162a of the reflecting section 162 are schematically shown to be rougher than they actually are for the sake of clarity. is provided. The light incident from the incident portion 161 is totally reflected by the reflecting surfaces (plurality of reflecting surfaces 162 a ) of the reflecting portion 162 and travels toward the emitting portion 163 .
 それぞれの反射面162a(図面では右上がりの線分)は、水平面(X-Y面)に対してそれぞれの所定の角度(例えば0度より大きく43度以下の角度。反射面仰角。)で形成されている。それぞれの連接面162b(図面では概略水平に延在する線分)は、隣り合う反射面162aに対し、それぞれの所定の角度(反射面162aと連接面162bとの相対角度。例えば90度以上で180度以下。)で形成されている。 Each reflecting surface 162a (a line segment rising to the right in the drawing) is formed at a predetermined angle (for example, an angle greater than 0 degree and 43 degrees or less, reflecting surface elevation angle) with respect to the horizontal plane (XY plane). It is Each connecting surface 162b (a line segment extending substantially horizontally in the drawing) forms a predetermined angle (a relative angle between the reflecting surface 162a and the connecting surface 162b. For example, 90 degrees or more) with respect to the adjacent reflecting surface 162a. 180 degrees or less.).
 [偏光変換素子]
 図11は、偏光変換素子150の構成例を示す説明図であり、特に入射側(X-Y面に配置されている入射面)を斜め上から見た斜視図を示す。また、図12は、偏光変換素子150の断面図としてY-Z面図を示す。図11のように、偏光変換素子150は、全体では、相対的にX方向に長くY方向に短い長方形状の入射面150a(X-Y面)および出射面150b(X-Y面)を有する、概略的に直方体形状(言い換えると板形状)の素子である。なお、図7では偏光変換素子150はZ方向に対しやや傾いて配置されているが、図11,図12では簡略化してZ方向に配置されている場合を示す。偏光変換プリズム151は、透光性部材と偏光ビームスプリッタ(Polarizing Beam Splitter:PBS)の膜とを組み合わせて構成されている。
[Polarization conversion element]
FIG. 11 is an explanatory diagram showing a configuration example of the polarization conversion element 150, and particularly shows a perspective view of the incident side (incident surface arranged on the XY plane) viewed obliquely from above. 12 shows a YZ plane view as a cross-sectional view of the polarization conversion element 150. As shown in FIG. As shown in FIG. 11, the polarization conversion element 150 as a whole has a rectangular entrance surface 150a (XY plane) and an exit surface 150b (XY plane) that are relatively long in the X direction and short in the Y direction. , is a roughly rectangular parallelepiped (in other words, plate-shaped) element. In FIG. 7, the polarization conversion element 150 is arranged slightly tilted with respect to the Z direction. The polarization conversion prism 151 is configured by combining a translucent member and a polarizing beam splitter (PBS) film.
 図11で、偏光変換素子150は、前述の偏光変換プリズム151を構成する、透光性部材1101,1102,1103,1104,1105、PBS膜1111および反射膜1112と、前述の波長板152とを有して構成されている。波長板152は、所定の偏光変換、例えば半波長(λ/2)の偏光変換を行う光学素子であり、言い換えると、半波長板(λ/2板、Half wave plate)である。なお、偏光変換素子150は、図示しないホルダー内に収容されていてもよい。ホルダーは、透光性部材等の複数の部品を図11のような配置関係で固定するための部品である。 In FIG. 11, polarization conversion element 150 includes translucent members 1101, 1102, 1103, 1104, and 1105, PBS film 1111 and reflection film 1112, and wavelength plate 152, which constitute polarization conversion prism 151 described above. It is configured with The wave plate 152 is an optical element that performs predetermined polarization conversion, such as half-wave (λ/2) polarization conversion, in other words, a half wave plate. Incidentally, the polarization conversion element 150 may be accommodated in a holder (not shown). The holder is a component for fixing a plurality of components such as translucent members in the arrangement relationship shown in FIG. 11 .
 各透光性部材、PBS膜1111および反射膜1112は、図11のX-Z平面1100に対し対称形状で配置されている。角度εは、Z方向に対するPBS膜1111等の配置の角度であり、所定の角度として設計されている。透光性部材1101は、直角三角柱形状のブロックである。透光性部材1102,1104は、平行四辺形形状のブロックである。透光性部材1103は、三角柱形状のブロックである。PBS膜1111は、透光性部材1102,1104と透光性部材1103との間に設けられている。反射膜1112は、透光性部材1101,1105と透光性部材1102,1104との間に設けられている。波長板152は、出射側周辺部1212に設けられている。 Each translucent member, PBS film 1111 and reflective film 1112 are arranged symmetrically with respect to the XZ plane 1100 in FIG. The angle ε is the angle of arrangement of the PBS film 1111 and the like with respect to the Z direction, and is designed as a predetermined angle. The translucent member 1101 is a right-angled triangular prism-shaped block. Translucent members 1102 and 1104 are parallelogram-shaped blocks. The translucent member 1103 is a triangular prism-shaped block. A PBS film 1111 is provided between the translucent members 1102 and 1104 and the translucent member 1103 . A reflective film 1112 is provided between the translucent members 1101 and 1105 and the translucent members 1102 and 1104 . Wave plate 152 is provided in output side peripheral portion 1212 .
 PBS膜1111(詳しくは電体多層膜)は、入射光を、透過光であるP偏光(入射面に平行に電界が振動する偏光)と、反射光であるS偏光(入射面に垂直に電界が振動する偏光)とに分離する素子である。PBS膜1111の作用により、ランダム偏光が直線偏光に変換される。 The PBS film 1111 (specifically, an electric multilayer film) converts incident light into P-polarized light (polarized light with an electric field oscillating parallel to the plane of incidence) and S-polarized light (polarized light with an electric field perpendicular to the plane of incidence) that is reflected light. is an element that separates the oscillating polarized light) and the Randomly polarized light is converted into linearly polarized light by the action of the PBS film 1111 .
 偏光変換プリズム151は、導光体160の出射部163の出射面に対向して配置されている。導光体160の出射面からの光(ランダム偏光を有する光)は、Z方向で、偏光変換プリズム151の入射面150aのうち所定の領域である入射側中央部(透光性部材1102,1104に対応した領域)に入射する。なお、ランダム偏光を有する光を、丸付きの×印でも示している。直線偏光を有する光を、丸付きの矢印でも示している。 The polarization conversion prism 151 is arranged to face the exit surface of the exit portion 163 of the light guide 160 . Light (randomly polarized light) from the exit surface of the light guide 160 is directed in the Z direction to the center of the incident side (translucent members 1102, 1104), which is a predetermined area of the incident surface 150a of the polarization conversion prism 151. area corresponding to ). Note that light with random polarization is also indicated by circled x marks. Light with linear polarization is also indicated by circled arrows.
 入射面150aに入射した光のうち一部の光(例えば図12の光線1201)は、偏光変換プリズム151(透光性部材1102,1104、PBS膜1111、透光性部材1103)をそのまま透過する。PBS膜1111を透過する光は、ランダム偏光から直線偏光に変換される。この直線偏光を有する光は、偏光変換プリズム151の出射面150bにおける所定の領域(透光性部材1103に対応した領域)である出射側中央部1211からZ方向に出射する。 Part of the light incident on the incident surface 150a (for example, the light ray 1201 in FIG. 12) passes through the polarization conversion prism 151 (the translucent members 1102 and 1104, the PBS film 1111, and the translucent member 1103) as it is. . Light passing through the PBS film 1111 is converted from random polarized light to linear polarized light. This linearly polarized light is emitted in the Z direction from the central portion 1211 on the emission side, which is a predetermined area (area corresponding to the translucent member 1103) on the emission surface 150b of the polarization conversion prism 151. FIG.
 一方、入射面150aに入射した光のうち他の光は、偏光変換プリズム151内(透光性部材1102,1104、PBS膜1111、反射膜1112)で反射された後、出射面150bにおける波長板152を有する所定の領域である出射側周辺部1212からZ方向に出射する。出射側周辺部1212は、出射側中央部1211に対しY方向で外側に配置されている。PBS膜1111で反射する光は、ランダム偏光のままである。PBS膜1111で反射された光は、反射膜1112によってY方向からZ方向に反射される。反射膜1112で反射された光は、波長板152に入射して通過することで、ランダム偏光から直線偏光に変換される。 On the other hand, the other light among the light incident on the incident surface 150a is reflected inside the polarization conversion prism 151 (the translucent members 1102 and 1104, the PBS film 1111, and the reflective film 1112), and then is reflected by the wavelength plate on the exit surface 150b. 152 is emitted in the Z direction from the emission side peripheral portion 1212, which is a predetermined area. The exit-side peripheral portion 1212 is arranged outside the exit-side central portion 1211 in the Y direction. Light reflected by the PBS film 1111 remains randomly polarized. The light reflected by the PBS film 1111 is reflected by the reflective film 1112 from the Y direction to the Z direction. The light reflected by the reflective film 1112 enters and passes through the wavelength plate 152, thereby being converted from random polarized light into linear polarized light.
 上記のように、偏光変換素子150の出射面150bの所定の領域(出射側中央部1211および出射側周辺部1212)からZ方向に出射される光は、入射面150aの所定の領域(入射側中央部)よりもY方向に拡大されつつ、すべて直線偏光を有する光となる。 As described above, the light emitted in the Z direction from a predetermined region (the output-side central portion 1211 and the output-side peripheral portion 1212) of the output surface 150b of the polarization conversion element 150 passes through a predetermined region (the incident side) of the incident surface 150a. While being expanded in the Y direction from the central portion), all of the light becomes linearly polarized light.
 偏光変換素子150の入射光に、導光体160の残留応力に応じた偏光変化が生じていたとしても、その入射光におけるランダム偏光は、偏光変換素子150の機能によって、上記のように直線偏光に変換される。この直線偏光を有する出射光は、拡散板170を経由して、表示パネル64であるLCDパネルに入射し、LCDパネルとって好適なバックライトとして機能する。 Even if the incident light of the polarization conversion element 150 undergoes a polarization change according to the residual stress of the light guide 160, the random polarized light in the incident light is transformed into the linearly polarized light as described above by the function of the polarization conversion element 150. is converted to The emitted light having this linear polarization passes through the diffusion plate 170 and enters the LCD panel, which is the display panel 64, and functions as a suitable backlight for the LCD panel.
 [効果等]
 以上のように、実施の形態1によれば、製造歩留まりを向上させることが可能な光源装置等を提供できる。実施の形態1によれば、HUD装置および導光体の製造歩留まりを向上でき、製造コストを低減できる。実施の形態1によれば、光源装置のレイアウト等を工夫したことにより、導光体の残留応力に応じて生じる偏光損失を低減できる。実施の形態1によれば、偏光損失の低減から、HUD映像の高輝度化、映像輝度の面内均一性の向上(言い換えると輝度ムラの低減)、映像色度の均一性の向上(言い換えると色ムラの低減)などが実現できる。実施の形態1によれば、導光体に樹脂成型による残力応力が内在していたとしてもある程度許容されるので、導光体の仕様をあまり厳しくしなくてもよく、製造歩留まりを向上できる。
[Effects, etc.]
As described above, according to Embodiment 1, it is possible to provide a light source device and the like capable of improving the manufacturing yield. According to Embodiment 1, the manufacturing yield of the HUD device and the light guide can be improved, and the manufacturing cost can be reduced. According to Embodiment 1, by devising the layout of the light source device and the like, it is possible to reduce the polarization loss that occurs according to the residual stress of the light guide. According to Embodiment 1, from the reduction of polarization loss, the brightness of the HUD image is increased, the in-plane uniformity of image brightness is improved (in other words, the brightness unevenness is reduced), and the uniformity of image chromaticity is improved (in other words, reduction of color unevenness) can be realized. According to Embodiment 1, even if residual stress due to resin molding is inherent in the light guide, it is allowed to some extent, so the specification of the light guide does not have to be too strict, and the manufacturing yield can be improved. .
 [変形例]
 図13は、実施の形態1の変形例に係わる光源装置100の構成を示す。この変形例は、実施の形態1に対し異なる構成点としては、偏光変換素子150の配置の向き、光源装置100から表示パネル64に入射する光の光軸の向きを有する。図13での偏光変換素子150は、Y軸を水平方向とした場合に、Y軸の負側が下側にやや傾いたように配置されている。前述の実施の形態1では、導光体160から表示パネル64への光が、Z軸(鉛直方向)に対しやや右斜め上方向に出射されている。それに対し、この変形例では、導光体160から表示パネル64への光が、Z軸(鉛直方向)に対し、やや左斜め上方向に出射されている。いずれの形態でも基本的な効果は同様である。いずれの形態でも、表示パネル64からの投射光が向かう先に前述のレンズ63や第2ミラーM2が配置されている。
[Modification]
FIG. 13 shows the configuration of a light source device 100 according to a modification of the first embodiment. This modified example differs from the first embodiment in the arrangement direction of the polarization conversion element 150 and the direction of the optical axis of the light incident on the display panel 64 from the light source device 100 . The polarization conversion element 150 in FIG. 13 is arranged such that the negative side of the Y-axis is slightly inclined downward when the Y-axis is horizontal. In Embodiment 1 described above, the light from the light guide 160 to the display panel 64 is emitted in a slightly upward right direction with respect to the Z-axis (vertical direction). On the other hand, in this modified example, the light from the light guide 160 to the display panel 64 is emitted in a slightly upper left direction with respect to the Z-axis (vertical direction). The basic effect is the same in any form. In either form, the above-described lens 63 and second mirror M2 are arranged in front of the projected light from the display panel 64 .
 <実施の形態2>
 図14は、実施の形態2の光源装置100の構成を示すY-Z面図である。実施の形態2は、実施の形態1に対して異なる構成点として、配光制御素子である薄肉レンズ180が追加で設けられている。この薄肉レンズ180は、図14では、偏光変換素子150と表示パネル64との間の光路上で、拡散板170の手前に少し空間を空けた位置に設けられている。実施の形態2での偏光変換素子150は、導光体160と薄肉レンズ180との間に配置されている。
<Embodiment 2>
FIG. 14 is a YZ plane view showing the configuration of the light source device 100 according to the second embodiment. The second embodiment is different from the first embodiment in that a thin lens 180, which is a light distribution control element, is additionally provided. In FIG. 14, the thin lens 180 is provided on the optical path between the polarization conversion element 150 and the display panel 64 at a position slightly spaced in front of the diffusion plate 170 . Polarization conversion element 150 in the second embodiment is arranged between light guide 160 and thin lens 180 .
 薄肉レンズ180は、配光制御素子であり、配光制御機能として、LCDパネル64よりも後段のレンズ63(図3)への配光を制御する機能を有する。薄肉レンズ180の配光制御機能は、言い換えると、レンズ63の入射面の所定の領域への各光線の入射の方向を調整する機能である。拡散板170は、拡散機能に加え、配光制御機能のための形状を有する。 The thin lens 180 is a light distribution control element, and has a light distribution control function of controlling light distribution to the lens 63 (FIG. 3) in the rear stage of the LCD panel 64 . The light distribution control function of the thin lens 180 is, in other words, a function of adjusting the direction of incidence of each light ray on a predetermined area of the entrance surface of the lens 63 . Diffusion plate 170 has a shape for light distribution control function in addition to diffusion function.
 図14の構成例では、薄肉レンズ180と拡散板170とを組み合わせた配光制御機能によって、LCDパネル64への入射光が好適になるように調整され、その結果、LCDパネル64からレンズ63への入射光が好適になるように調整される。 In the configuration example of FIG. 14, the light distribution control function that combines the thin lens 180 and the diffusion plate 170 adjusts the incident light to the LCD panel 64 so that it is suitable. is adjusted so that the incident light of
 また、実施の形態2では、配光制御素子である薄肉レンズ180および拡散板170には、比較例(図17)の導光体94の出射部943で担っていた自由曲面形状による配光制御機能も併せて実装されている。すなわち、実施の形態2での導光体160の出射部163は、出射面に自由曲面形状を設ける必要が無く、例えば平面形状として形成されている。 In the second embodiment, thin lens 180 and diffuser plate 170, which are light distribution control elements, are provided with light distribution control elements based on a free-form surface shape, which was performed by output portion 943 of light guide 94 in the comparative example (FIG. 17). functions are also implemented. In other words, the exit portion 163 of the light guide 160 according to Embodiment 2 does not need to have a free-form surface shape on the exit surface, and is formed, for example, in a planar shape.
 実施の形態2等において、導光体160の後に配置された偏光変換素子150は、前述(図11や図12)のように、入射面150a(入射側中央部)に入射する光の方向(言い換えると入射角度)の範囲に制限があり、入射面150aに対し垂直な方向(図7での光軸700の方向、図12でのZ方向)とすることが望ましい。例えば図12で入射面150aに対し垂直な入射ではない光線1251や光線1252は、効率的な光線にはならない。そのため、導光体160の出射部163で比較例のような自由曲面形状による配光制御がされた場合に、その配光制御された光は、導光体160の後に配置された偏光変換素子150の入射面150aの領域に効率的に入射することはできない。 In Embodiment 2 and the like, the polarization conversion element 150 arranged behind the light guide 160 changes the direction ( In other words, the range of the incident angle) is limited, and it is desirable to set the direction perpendicular to the incident surface 150a (the direction of the optical axis 700 in FIG. 7, the Z direction in FIG. 12). For example, light rays 1251 and 1252 that are not incident perpendicular to the plane of incidence 150a in FIG. 12 do not become efficient light rays. Therefore, when the light distribution is controlled by the free-form surface shape as in the comparative example at the output portion 163 of the light guide 160, the light whose light distribution is controlled is transferred to the polarization conversion element arranged behind the light guide 160. 150 cannot be efficiently incident on the area of the incident surface 150a.
 そこで、実施の形態2等では、配光制御素子である薄肉レンズ180、および拡散板170(少なくとも一方でよいが、実施の形態2では両方とする)には、自由曲面形状による配光制御機能も併せて実装されており、導光体160の出射部163の出射面は平面形状とされている。実施の形態2では、薄肉レンズ180と拡散板170との両方に自由曲面形状による配光制御機能が実装されている。言い換えると、薄肉レンズ180の自由曲面形状と、拡散板170の自由曲面形状とを合わせた形状により、所定の配光制御機能が実現されている。なお、拡散板170の自由曲面形状は、例えば、拡散板170の一方の面に、金型による成型などの方法で形成される。 Therefore, in Embodiment 2 and the like, thin lens 180 and diffuser plate 170 (at least one of them is sufficient, but in Embodiment 2, both of them are used), which are light distribution control elements, have a light distribution control function based on a free-form surface shape. are also mounted together, and the light emitting surface of the light emitting portion 163 of the light guide 160 has a planar shape. In Embodiment 2, both the thin lens 180 and the diffusion plate 170 are equipped with a light distribution control function based on a free-form surface shape. In other words, a predetermined light distribution control function is realized by a combination of the free curved surface shape of the thin lens 180 and the free curved surface shape of the diffusion plate 170 . The free curved surface shape of the diffusion plate 170 is formed, for example, on one surface of the diffusion plate 170 by molding using a mold.
 実施の形態2の光源装置100によれば、実施の形態1と同様の効果が得られる。実施の形態2では、薄肉レンズ180が必要となるが、導光体160の出射面における自由曲面形状の形成が不要となる。 According to the light source device 100 of Embodiment 2, the same effects as those of Embodiment 1 can be obtained. Although thin lens 180 is required in Embodiment 2, formation of a free-form surface shape on the exit surface of light guide 160 is not required.
 実施の形態2の変形例として、配光制御素子である薄肉レンズ180の代わりに、フレネルレンズを適用してもよい。また、変形例として、配光制御素子である薄肉レンズ180等の配置位置は、拡散板170よりも後、表示パネル64よりも前の位置としてもよい。 As a modification of the second embodiment, a Fresnel lens may be applied instead of the thin lens 180, which is the light distribution control element. As a modification, the thin lens 180 or the like, which is the light distribution control element, may be arranged behind the diffusion plate 170 and before the display panel 64 .
 <実施の形態3>
 図15は、実施の形態3の光源装置100の構成を示すY-Z面図である。実施の形態3は、実施の形態2の変形例に相当し、実施の形態1および2に対し異なる構成点として、拡散板170の代わりに拡散シート175を適用し、配光制御素子である薄肉レンズ180の手前に拡散シート175が配置されている。言い換えると、実施の形態3では、拡散素子である拡散シート175よりも後に、配光制御素子である薄肉レンズ180が配置されている。拡散シート175は、所定の拡散機能を有する薄いシートである。図15の構成例では、薄肉レンズ180の入射面に対し、拡散シート175が貼り付け等の態様で設けられている。実施の形態3の光源装置100によれば、実施の形態2と同様の効果が得られる。
<Embodiment 3>
FIG. 15 is a YZ plane view showing the configuration of the light source device 100 according to the third embodiment. Embodiment 3 corresponds to a modification of Embodiment 2, and differs from Embodiments 1 and 2 in that diffusion sheet 175 is applied instead of diffusion plate 170 and a thin light distribution control element is used. A diffusion sheet 175 is arranged in front of the lens 180 . In other words, in Embodiment 3, the thin lens 180, which is the light distribution control element, is arranged behind the diffusion sheet 175, which is the diffusion element. Diffusion sheet 175 is a thin sheet having a predetermined diffusion function. In the configuration example of FIG. 15, a diffusion sheet 175 is attached to the incident surface of the thin lens 180, for example. According to the light source device 100 of Embodiment 3, the same effects as those of Embodiment 2 can be obtained.
 実施の形態3の変形例として、拡散シート175等の拡散素子を、保持部材とともに、薄肉レンズ180に対し手前に距離を空けて設けることも可能である。 As a modification of the third embodiment, it is possible to provide a diffusion element such as the diffusion sheet 175 together with the holding member at a distance in front of the thin lens 180 .
 <実施の形態4>
 図16は、実施の形態4の光源装置100の構成を示すY-Z面図である。実施の形態4は、前述の拡散素子と配光制御素子とが一体化された1つの素子(「拡散機能一体化薄肉レンズ」、言い換えると「拡散・配光制御素子」)として設けられている。
<Embodiment 4>
FIG. 16 is a YZ plane view showing the configuration of the light source device 100 according to the fourth embodiment. Embodiment 4 is provided as one element in which the diffusion element and the light distribution control element described above are integrated ("diffusion function integrated thin lens", in other words, "diffusion/light distribution control element"). .
 図16では、偏光変換素子150と表示パネル64との間に、拡散・配光制御素子190(拡散機能一体化薄肉レンズ)が設けられている。実施の形態4での偏光変換素子150は、導光体160とその拡散・配光制御素子190との間に配置されている。 In FIG. 16, a diffusion/light distribution control element 190 (thin lens integrated with diffusion function) is provided between the polarization conversion element 150 and the display panel 64 . The polarization conversion element 150 in Embodiment 4 is arranged between the light guide 160 and its diffusion/light distribution control element 190 .
 拡散・配光制御素子190は、薄肉レンズをベースとして、前述の拡散機能および配光制御機能の両方を実現するための自由曲面などの形状が実装されている素子である。実装の詳細は各種が可能であり限定しない。例えば、拡散・配光制御素子190の入射面と出射面とにおいて、入射面にその形状が実装されてもよいし、出射面にその形状が実装されてもよいし、入射面と出射面とに分担してその形状が実装されてもよい。一例として、図16での拡散・配光制御素子190は、入射面に、平面をベースとして拡散機能のための形状(例えばプリント転写方法による多孔形状)を有し、出射面に、前述のレンズ63への配光制御機能のための形状を有する。すなわち、図16での拡散・配光制御素子190の出射面の形状と、図14や図15の薄肉レンズ180の出射面の形状とは同様である。 The diffusion/light distribution control element 190 is an element having a shape such as a free-form surface for realizing both the above-described diffusion function and light distribution control function, based on a thin lens. Various implementation details are possible and non-limiting. For example, with respect to the entrance surface and the exit surface of the diffusion/light distribution control element 190, the entrance surface may have the shape, the exit surface may have the shape, or the entrance surface and the exit surface may have the same shape. The shape may be implemented by dividing the As an example, the diffusion/light distribution control element 190 in FIG. 16 has a plane-based shape for the diffusion function (for example, a porous shape obtained by a print transfer method) on the entrance surface, and the above-mentioned lens on the exit surface. 63 has a shape for light distribution control function. That is, the shape of the exit surface of the diffusion/light distribution control element 190 in FIG. 16 is the same as the shape of the exit surface of the thin lens 180 in FIGS.
 実施の形態4によれば、実施の形態1等と同様の効果が得られるとともに、偏光変換素子150とLCDパネル64との間に配置される構成要素を1つの素子である拡散・配光制御素子190で済ませることができる。 According to the fourth embodiment, the same effects as those of the first embodiment and the like can be obtained, and the constituent elements arranged between the polarization conversion element 150 and the LCD panel 64 are combined into a single diffusion/light distribution control element. Element 190 can suffice.
 以上、本発明の実施の形態を具体的に説明したが、本発明は前述の実施の形態に限定されず、要旨を逸脱しない範囲で種々変更可能である。実施の形態の構成要素について、必須構成要素を除き、追加、削除、置換などが可能である。各構成要素について、特に限定しない場合、単数としても複数としてもよい。各種の構成例を組み合わせた形態も可能である。 Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Addition, deletion, replacement, etc. are possible for the components of the embodiments, except for essential components. Unless otherwise specified, each component may be singular or plural. A configuration in which various configuration examples are combined is also possible.
 本実施の形態に係る技術では、偏光損失を低減でき、光利用効率が高くなり、映像の高輝度化が実現できる。これにより、フロントガラス等に投射された行き先や速度などのナビゲーション情報表示の他に、対向車や歩行者を検知した際のアラート情報表示などの走行に必要な情報の映像をより視認でき、安全運転の支援に寄与する情報表示装置(ヘッドアップディスプレイ装置)を提供することにより交通事故を防止することが可能となる。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3すべての人に健康と福祉を」に貢献する。 With the technology according to the present embodiment, it is possible to reduce polarization loss, increase light utilization efficiency, and achieve high brightness images. As a result, in addition to navigation information such as the destination and speed projected on the windshield, it is also possible to view images of information necessary for driving, such as alert information when oncoming vehicles or pedestrians are detected, making it possible to make the vehicle safer. Traffic accidents can be prevented by providing an information display device (head-up display device) that contributes to driving assistance. In this way, we will contribute to "3 good health and well-being for all" in the Sustainable Development Goals (SDGs) advocated by the United Nations.
 1…HUD装置(ヘッドアップディスプレイ装置)、2…車両、3…ウィンドシールド、5…表示領域、10…制御装置、35…映像表示装置、63…レンズ、64…表示パネル、100…光源装置、120…LED基板、121…LED素子、140…コリメータ、141…コリメータ素子、150…偏光変換素子、151…偏光変換プリズム、152…波長板、160…導光体、170…拡散板。 REFERENCE SIGNS LIST 1 HUD device (head-up display device), 2 vehicle, 3 windshield, 5 display area, 10 control device, 35 image display device, 63 lens, 64 display panel, 100 light source device, DESCRIPTION OF SYMBOLS 120... LED board, 121... LED element, 140... Collimator, 141... Collimator element, 150... Polarization conversion element, 151... Polarization conversion prism, 152... Wave plate, 160... Light guide, 170... Diffusion plate.

Claims (10)

  1.  光源と、
     前記光源の出射側に配置され、前記光源から入射された光の進行方向を調整するコリメータと、
     前記コリメータの出射側に配置され、前記コリメータから入射された光を表示パネルの方へ導く導光体と、
     前記導光体の出射側において前記導光体と前記表示パネルとの間に配置され、前記導光体から入射された光の偏光特性を揃える偏光変換素子と、
     を備える、光源装置。
    a light source;
    a collimator arranged on the emission side of the light source and adjusting the traveling direction of the light incident from the light source;
    a light guide disposed on the output side of the collimator and guiding the light incident from the collimator toward the display panel;
    a polarization conversion element disposed between the light guide and the display panel on the exit side of the light guide and for aligning polarization characteristics of light incident from the light guide;
    A light source device.
  2.  請求項1記載の光源装置において、
     前記偏光変換素子と前記表示パネルとの間に配置された拡散素子を備える、
     光源装置。
    The light source device according to claim 1,
    a diffusing element disposed between the polarization conversion element and the display panel;
    Light source device.
  3.  請求項2記載の光源装置において、
     前記偏光変換素子と前記表示パネルとの間において前記拡散素子よりも前または後に配置され、前記表示パネルへ出射する光の配光を制御する配光制御素子を備える、
     光源装置。
    In the light source device according to claim 2,
    a light distribution control element disposed before or after the diffusion element between the polarization conversion element and the display panel, the light distribution control element controlling the distribution of light emitted to the display panel;
    Light source device.
  4.  請求項3記載の光源装置において、
     前記配光制御素子は、薄肉レンズまたはフレネルレンズで構成される、
     光源装置。
    In the light source device according to claim 3,
    The light distribution control element is composed of a thin lens or a Fresnel lens,
    Light source device.
  5.  請求項1記載の光源装置において、
     前記偏光変換素子と前記表示パネルとの間に配置され、前記表示パネルへ出射する光を拡散し配光を制御する拡散・配光制御素子を備える、
     光源装置。
    The light source device according to claim 1,
    A diffusion/light distribution control element disposed between the polarization conversion element and the display panel for diffusing light emitted to the display panel and controlling light distribution,
    Light source device.
  6.  請求項3記載の光源装置において、
     前記導光体は、出射面が平面であり、
     前記配光制御素子は、前記表示パネルの出射側に配置されたレンズへの配光制御のための自由曲面形状を有する、
     光源装置。
    In the light source device according to claim 3,
    The light guide has a plane exit surface,
    The light distribution control element has a free-form surface shape for light distribution control to a lens arranged on the output side of the display panel,
    Light source device.
  7.  請求項5記載の光源装置において、
     前記導光体は、出射面が平面であり、
     前記拡散・配光制御素子は、前記表示パネルの出射側に配置されたレンズへの配光制御のための自由曲面形状を有する、
     光源装置。
    In the light source device according to claim 5,
    The light guide has a plane exit surface,
    The diffusion/light distribution control element has a free-form surface shape for light distribution control to a lens arranged on the output side of the display panel,
    Light source device.
  8.  請求項1~7のいずれか一項に記載の光源装置において、
     前記偏光変換素子は、偏光変換プリズムと、波長板とを有して構成され、前記導光体からのランダム偏光を有する光を、前記偏光変換プリズムおよび前記波長板を通じて、直線偏光を有する光に変換する、
     光源装置。
    In the light source device according to any one of claims 1 to 7,
    The polarization conversion element includes a polarization conversion prism and a wavelength plate, and converts the randomly polarized light from the light guide into linearly polarized light through the polarization conversion prism and the wavelength plate. Convert,
    Light source device.
  9.  請求項1~7のいずれか一項に記載の光源装置において、
     前記導光体は、前記コリメータから入射された第1方向に進む光を、前記第1方向とは異なる第2方向に進む光として出射するように反射させる反射部を有し、
     前記偏光変換素子は、前記第2方向からの光を入射し、偏光変換後の光を前記第2方向に出射する、
     光源装置。
    In the light source device according to any one of claims 1 to 7,
    The light guide has a reflecting portion that reflects light incident from the collimator and traveling in a first direction so as to be emitted as light traveling in a second direction different from the first direction,
    The polarization conversion element receives light from the second direction and emits light after polarization conversion in the second direction.
    Light source device.
  10.  映像光を車両のウィンドシールドの表示領域へ投射することで虚像を形成するヘッドアップディスプレイ装置であって、
     光源装置と、
     前記光源装置の出射側に配置され、前記光源装置からの光を変調することで映像を作成して前記映像光として出射する表示パネルと、
     前記表示パネルからの映像光を前記表示領域へ投射する光学系と、
     を備え、
     前記光源装置は、
     光源と、
     前記光源の出射側に配置され、前記光源から入射された光の進行方向を調整するコリメータと、
     前記コリメータの出射側に配置され、前記コリメータから入射された光を前記表示パネルの方へ導く導光体と、
     前記導光体の出射側において前記導光体と前記表示パネルとの間に配置され、前記導光体から入射された光の偏光特性を揃える偏光変換素子と、
     を備える、
     ヘッドアップディスプレイ装置。
    A head-up display device that forms a virtual image by projecting image light onto a display area of a windshield of a vehicle,
    a light source device;
    a display panel that is arranged on the emission side of the light source device and that modulates the light from the light source device to create an image and emit it as the image light;
    an optical system that projects image light from the display panel onto the display area;
    with
    The light source device
    a light source;
    a collimator arranged on the emission side of the light source and adjusting the traveling direction of the light incident from the light source;
    a light guide disposed on the output side of the collimator and guiding the light incident from the collimator toward the display panel;
    a polarization conversion element disposed between the light guide and the display panel on the exit side of the light guide and for aligning polarization characteristics of light incident from the light guide;
    comprising
    Head-up display device.
PCT/JP2022/039552 2021-11-08 2022-10-24 Light source device and head-up display device WO2023080003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021181886A JP2023069769A (en) 2021-11-08 2021-11-08 Light source device and head-up display device
JP2021-181886 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023080003A1 true WO2023080003A1 (en) 2023-05-11

Family

ID=86240947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039552 WO2023080003A1 (en) 2021-11-08 2022-10-24 Light source device and head-up display device

Country Status (2)

Country Link
JP (1) JP2023069769A (en)
WO (1) WO2023080003A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003330110A (en) * 2002-05-10 2003-11-19 Mitsubishi Electric Corp Projection type display device
JP2017188311A (en) * 2016-04-06 2017-10-12 日立マクセル株式会社 Light source device and electronic apparatus using the same
WO2018229961A1 (en) * 2017-06-16 2018-12-20 マクセル株式会社 Light source device and headup display device
US20200033600A1 (en) * 2017-04-06 2020-01-30 Lg Electronics Inc. Head-up display device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003330110A (en) * 2002-05-10 2003-11-19 Mitsubishi Electric Corp Projection type display device
JP2017188311A (en) * 2016-04-06 2017-10-12 日立マクセル株式会社 Light source device and electronic apparatus using the same
US20200033600A1 (en) * 2017-04-06 2020-01-30 Lg Electronics Inc. Head-up display device for vehicle
WO2018229961A1 (en) * 2017-06-16 2018-12-20 マクセル株式会社 Light source device and headup display device

Also Published As

Publication number Publication date
JP2023069769A (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP7206361B2 (en) head-up display device
WO2017203916A1 (en) Head-up display device
CN113272714B (en) Vehicle information display device and vehicle information display system
US20220219538A1 (en) Information display system and vehicle information display system using the same
WO2023080003A1 (en) Light source device and head-up display device
US20220113539A1 (en) Windshield display device
WO2023243213A1 (en) Head-up display apparatus
JP6729327B2 (en) Head-up display device, display method, and program
US20230176373A1 (en) Light source apparatus and head up display apparatus
WO2024004297A1 (en) Head-up display device
WO2020203767A1 (en) Information display system and vehicle information display system using this
JP2024007661A (en) Head-up display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889823

Country of ref document: EP

Kind code of ref document: A1