WO2017203916A1 - Head-up display device - Google Patents

Head-up display device Download PDF

Info

Publication number
WO2017203916A1
WO2017203916A1 PCT/JP2017/016181 JP2017016181W WO2017203916A1 WO 2017203916 A1 WO2017203916 A1 WO 2017203916A1 JP 2017016181 W JP2017016181 W JP 2017016181W WO 2017203916 A1 WO2017203916 A1 WO 2017203916A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
head
mirror
virtual image
light
Prior art date
Application number
PCT/JP2017/016181
Other languages
French (fr)
Japanese (ja)
Inventor
望 下田
一臣 金子
平田 浩二
杉山 寿紀
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2017203916A1 publication Critical patent/WO2017203916A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/28Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/22Display screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/26Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using acoustic output
    • B60K35/265Voice
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/50Instruments characterised by their means of attachment to or integration in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/80Arrangements for controlling instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a technology for a head-up display device, and more particularly to a technology effective when applied to a head-up display device that projects an image on a transparent glass element or the like.
  • HUD head-up display
  • Patent Document 1 Japanese Patent Laying-Open No. 2015-194707
  • Patent Document 1 includes a device that displays an image and a projection optical system that projects the image displayed on the display device.
  • a display device that reduces screen distortion and realizes downsizing in the entire viewpoint area is described.
  • the projection optical system has a first mirror and a second mirror in the order of the optical path of the observer from the display device.
  • the incident angle in the image major axis direction of the first mirror, the incident angle in the image minor axis direction of the first mirror, the interval between the image display surface of the display device and the first mirror, and the virtual image visually recognized by the observer It is described that the size of the HUD device can be reduced by configuring so that the relationship with the width in the horizontal direction satisfies a predetermined relationship.
  • an object of the present invention is to provide a head-up display device that realizes further downsizing of the device.
  • a head-up display device is a head-up display device that displays a virtual image according to the video to a driver by projecting the video on a windshield of a vehicle. And a display device that forms the image on the display device, and a virtual image that displays the virtual image in front of the vehicle by reflecting light emitted from the video display device with the windshield And an optical system.
  • the virtual image optical system includes a concave mirror and an optical element, and the optical element is disposed between the video display device and the concave mirror, and includes a shape of the concave mirror and a shape of the optical element.
  • the concave mirror and the optical element are each positioned and held by a holding member made of a predetermined material, so as to correct distortion of the virtual image obtained corresponding to the viewpoint position of the driver.
  • the holding member is housed in the housing.
  • (A) is the figure which showed the outline
  • HUD head-up display
  • FIG. 1 is a diagram showing an outline of an example of an operation concept of the head-up display device according to the first embodiment of the present invention.
  • an image displayed by the image display device 30 arranged in the housing 50 is displayed by the concave mirror 41. Reflected and projected onto the windshield 3 of the vehicle 2.
  • the member to be projected is not limited to the windshield 3 and may be another member such as a combiner as long as the image is projected.
  • the video display device 30 is configured by, for example, a projector having a backlight, an LCD (Liquid Crystal Display), or the like.
  • a self-luminous VFD (Vacuum Fluorescent Display) or the like may be used.
  • An image may be displayed on a screen by a projection device.
  • a microlens array in which microlenses are two-dimensionally arranged may be used.
  • the concave mirror 41 is constituted by, for example, a free-form surface mirror or a mirror having an optical axis asymmetric shape. More specifically, the shape of the concave mirror 41 is set so that, for example, the upper region (that is, the light beam reflected here is reflected below the windshield 3) in order to reduce the distortion of the virtual image. In the case where the distance from the viewpoint of the driver 5 is shortened), the radius of curvature is relatively decreased so that the enlargement ratio is increased. On the other hand, in the area below the concave mirror 41 (that is, the light beam reflected here is reflected above the windshield 3, the distance from the viewpoint of the driver 5 is relatively long), the enlargement ratio is small. The radius of curvature is relatively increased. By disposing the video display device 30 so as to be inclined with respect to the optical axis of the concave mirror 41, the difference in image magnification as described above may be corrected to reduce the generated distortion itself.
  • the driver 5 views the image projected as a virtual image in front of the transparent windshield 3 by viewing the image projected on the windshield 3.
  • the display position of the virtual image viewed by the driver 5 may be adjusted in the vertical direction.
  • the content displayed as a virtual image is not specifically limited, For example, vehicle information, navigation information, the image
  • the mirror for forming a virtual image is configured by only one concave mirror 41 as shown in FIG. .
  • a distortion correction lens 43 having at least one concave surface (having negative refractive power) is disposed as a transmissive optical element.
  • a plurality of distortion correction lenses 43 may be provided.
  • a distortion mirror may be reduced by disposing a curved mirror instead of the distortion correction lens 43 and controlling the incident position of the light beam on the concave mirror 41 simultaneously with the folding of the optical path.
  • the optical distance between the concave mirror 41 and the image display device 30 is changed, thereby changing the virtual image. It is also possible to adopt a configuration in which the display position is continuously changed from far to near.
  • the image light emitted from the image display device 30 toward the concave mirror 41 is reflected by the surface of the distortion correction lens 43 disposed in the middle, and the image display device 30. It is known that the light is reflected again and superimposed on the original image light. For this reason, in this embodiment, for example, an antireflection film is formed on the surface of the distortion correction lens 43 to suppress reflection. Furthermore, the shape of the distortion correction lens surface of at least one of the image light incident surface and the light exit surface of the distortion correction lens 43 is designed so that the reflected light returning to the image display device 30 is not extremely concentrated on a part thereof. It is preferable to do. Further, in the video display device 30, the deterioration of image quality can be reduced by arranging a polarizing plate for absorbing the reflected light from the distortion correction lens 43 as described above.
  • FIG. 2 is a diagram showing an outline of an example of a mounting form of the head-up display device according to the embodiment of the present invention.
  • FIG. 2A is a perspective view showing an example of an external appearance centering on the housing 50 of the HUD device 1.
  • FIG. 2B is a perspective view showing a state in which the HUD device 1 shown in FIG.
  • the HUD device 1 has a configuration in which an optical component holding member 53 is housed in an exterior case 54 and the upper portion is covered with an exterior lid portion 51.
  • Each member of the exterior case 54 and the exterior lid portion 51 constitutes the housing 50 in the HUD device 1 shown in FIG.
  • the video display device 30 is attached to the opening of the outer case 54.
  • the exterior lid 51 has an opening for emitting image light toward the windshield 3, and the opening is covered with an antiglare plate 52 (glare trap).
  • the optical component holding member 53 is a member that holds the concave mirror 41 and the distortion correction lens 43 in the HUD device 1 shown in FIG. Although details will be described later, in the present embodiment, since the member holds the optical component, the member is formed of a material having characteristics of high heat resistance, high rigidity, and high dimensional accuracy.
  • an attaching / detaching mechanism such as a screw hole, an opening for entering image light, and the like are further formed so that the image display device 30 can be attached / detached.
  • the video display device 30 is modularized so that it can be attached / removed integrally with the outer case 54 with screws or the like. Accordingly, for example, it is possible to configure so that only the video display device 30 can be exchanged without removing or disassembling the HUD device 1 itself, and the exchangeability of the video display device 30 which is the most fragile member can be improved. It can be greatly improved. Further, by adopting a configuration in which the video display device 30 is attached to the outside of the housing 50 of the HUD device 1, it is possible to improve heat dissipation and to obtain effects of reducing failure and deterioration due to heat.
  • the configuration of a direct optical system that does not use an optical path folding mirror is adopted. Therefore, for example, a technique used in the prior art to suppress the temperature increase inside the housing 50 by using a cold mirror (a mirror that transmits infrared rays and reflects only visible light) as the optical path folding mirror. Can not take. Therefore, for example, an optical member such as a heat insulating film that cuts and reflects infrared rays is placed on the anti-glare plate 52 (image light emission surface side) or in front of the image display device 30 (LCD panel) (image light emission surface side). ) May be provided. As another infrared ray cutting means, for example, it is possible to use a polarizing plate that passes an S wave perpendicular to the incident surface and does not pass a P wave parallel to the incident surface.
  • FIG. 3 is a diagram showing an outline of an example of the mounting form of the video display device 30.
  • a state in which the modularized video display device 30 is disassembled into parts is shown in a perspective view.
  • a display element 33 such as an LCD panel displays video by modulating light from the backlight based on a video signal input from the main board 70 via the flexible cable 34.
  • the displayed video is output to the virtual image optical system (in this embodiment, the distortion correction lens 43 and the concave mirror 41 in FIG. 2) through the opening of the exterior case 54 in FIG. 2, and the virtual image that the driver 5 can visually recognize. Is generated.
  • a relatively inexpensive and highly reliable LED (Light Emitting Diode) light source 31a is used as a solid light source.
  • the LED light source 31a is a surface-emitting type in order to increase the output. In the example of FIG. 3, it is mounted as an LED substrate. In this case, for example, the utilization efficiency of the divergent light is improved by using a technical device as will be described later.
  • the light emission efficiency with respect to the input power of the LED varies depending on the light emission color, but is about 20-30%, and most of the remainder is converted into heat.
  • the frame 35 to which the LED light source 31a is attached is provided with a heat radiation fin (heat sink 31b) made of a member having high thermal conductivity (for example, a metal member such as aluminum) to dissipate heat to the outside.
  • a heat radiation fin heat sink 31b
  • a member having high thermal conductivity for example, a metal member such as aluminum
  • the light guide 32b is used in the example of FIG.
  • a plurality of light funnels 32a made up of collimating lenses or the like are provided in order to take the divergent light from the LED light source 31a into parallel light.
  • the opening that takes in the divergent light from the LED light source 31a is a flat surface and is optically connected by inserting a medium between the LED light source 31a or condensing in a convex shape. Give action.
  • the diverging light is made as parallel light as possible, and the incident angle of the light incident on the interface of the light funnel 32a is reduced.
  • the divergence angle can be further reduced after passing through the light funnel 32a, it becomes easy to control the light source light directed to the display element 33 after being reflected by the light guide 32b.
  • polarization conversion is performed using a PBS (Polarizing Beam Beam Splitter) at the joint portion of the light funnel 32a and the light guide 32b to convert it into a desired polarization direction.
  • PBS Polarizing Beam Beam Splitter
  • the efficiency of the incident light to the display element 33 can be improved.
  • the direction of polarization rotates and passes through the display element 33, for example, it is possible to suppress the occurrence of a problem such as coloring during black display.
  • the light flux from the LED light source 31a with a reduced divergence angle is controlled by the light guide 32b, and is all provided on the slope of the light guide 32b (the surface on the exterior member 36a side in the example of FIG. 3). Reflects on the reflecting surface. Then, after being diffused by the diffusion plate 32c (diffuser) disposed between the display element 33 and the surface (outgoing surface) facing the total reflection surface in the light guide 32b, the light is transmitted to the display element 33 (LCD panel). Incident. In the example of FIG. 3, the light flux from the LED light source 31 a is diverged by disposing the diffusion plate 32 c between the light guide 32 b and the display element 33.
  • the configuration is not limited to this. In place of the arrangement of the diffusion plate 32c, for example, a similar effect can be obtained by providing a fine uneven shape on the exit surface of the light guide 32b to provide a diffusion effect.
  • FIG. 4 is a diagram showing an outline of an example of a mounting form of the light guide 32b.
  • the cross-sectional shape of the portion including the light guide 32b and the light funnel 32a is schematically shown.
  • the light flux (arrow in the figure) whose divergence angle is reduced by the light funnel 32a enters the incident surface 32b_1 of the light guide 32b via the joint portion 32d.
  • the divergence angle in the vertical direction (vertical direction in FIG. 4) is controlled by the effect of the cross-sectional shape of the incident surface, and the light propagates efficiently in the light guide 32b.
  • the light source light incident from the incident surface 32b_1 is totally reflected by the total reflection prism provided on the opposing surface 32b_2 and travels toward the output surface 32b_3.
  • the shape of the total reflection prism is different between the vicinity of the incident surface 32b_1 ("B portion” in the figure) and the vicinity of the emission surface 32b_3 ("A portion” in the figure). That is, it is divided into steps according to the divergence angles of the light beams incident on the respective surfaces, thereby controlling the angle of total reflection on the facing surface 32b_2.
  • the light beam emitted from the emission surface 32b_3 and incident on the display element 33 in the subsequent stage is divided using the above-described division size on the opposite surface 32b_2 as a variable so that the light quantity distribution in the emission surface 32b_3 is uniform.
  • the arrival position and the amount of energy after reflection of the light beam are controlled.
  • FIG. 5 is a functional block diagram showing an outline of an overall configuration example of the head-up display device according to the first embodiment of the present invention.
  • the HUD device 1 mounted on the vehicle 2 includes various parts such as a vehicle information acquisition unit 10, a control unit 20, a video display device 30, a concave mirror 41, a mirror driving unit 42, and a speaker 60.
  • the shape of the vehicle 2 is displayed like a passenger car.
  • the shape of the vehicle 2 is not particularly limited, and can be applied as appropriate to general vehicles.
  • the vehicle information acquisition unit 10 includes information acquisition devices such as various sensors, which will be described later, installed in each part of the vehicle 2, detects various events occurring in the vehicle 2, and relates to the driving situation at predetermined intervals.
  • the vehicle information 4 is acquired and output by detecting and acquiring values of various parameters.
  • the vehicle information 4 includes, for example, speed information, gear information, steering wheel steering angle information, lamp lighting information, external light information, distance information, infrared information, engine ON / OFF information, and camera video information of the vehicle 2 as illustrated. (Inside / outside the vehicle), acceleration gyro information, GPS (Global Positioning System) information, navigation information, vehicle-to-vehicle communication information, road-to-vehicle communication information, and the like may be included.
  • the control unit 20 has a function of controlling the operation of the HUD device 1 and is implemented by, for example, a CPU (Central Processing Unit) and software executed thereby. It may be implemented by hardware such as a microcomputer or FPGA (Field Programmable Gate Array). As shown in FIG. 1, the control unit 20 forms a video to be displayed as a virtual image by driving the video display device 30 on the basis of the vehicle information 4 acquired from the vehicle information acquisition unit 10, and forms the concave surface. The light is projected onto the windshield 3 by being reflected by the mirror 41.
  • a CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • the video display device 30 is a modular device including, for example, a projector and an LCD, and forms a video for displaying a virtual image based on an instruction from the control unit 20. This is projected and displayed.
  • the mirror driving unit 42 adjusts the angle of the concave mirror 41 based on an instruction from the control unit 20 and adjusts the position of the virtual image display region in the vertical direction.
  • the speaker 60 performs audio output related to the HUD device 1. For example, voice guidance of the navigation system or voice output when notifying the driver 5 of a warning or the like can be performed.
  • FIG. 6 is a diagram showing an outline of an example of a hardware configuration related to acquisition of vehicle information 4 in the head-up display device of the present embodiment.
  • the vehicle information 4 is acquired by an information acquisition device such as various sensors connected to the ECU 21 under the control of an ECU (Electronic Control Unit) 21, for example.
  • ECU Electronic Control Unit
  • a vehicle speed sensor 101 for example, a vehicle speed sensor 101, a shift position sensor 102, a steering wheel steering angle sensor 103, a headlight sensor 104, an illuminance sensor 105, a chromaticity sensor 106, a distance measuring sensor 107, an infrared sensor 108, an engine start sensor 109, acceleration sensor 110, gyro sensor 111, temperature sensor 112, road-to-vehicle communication wireless receiver 113, vehicle-to-vehicle communication wireless receiver 114, camera (inside the vehicle) 115, camera (outside the vehicle) 116, GPS receiver 117, and
  • Each device includes a VICS (Vehicle Information and Communication System: a road traffic information communication system, registered trademark (hereinafter the same)) receiver 118 and the like. It is not always necessary to include all these devices, and other types of devices may be included.
  • the vehicle information 4 that can be acquired by the provided device can be used as appropriate.
  • the vehicle speed sensor 101 acquires speed information of the vehicle 2.
  • the shift position sensor 102 acquires current gear information of the vehicle 2.
  • the steering wheel angle sensor 103 acquires steering wheel angle information.
  • the headlight sensor 104 acquires lamp lighting information related to ON / OFF of the headlight.
  • the illuminance sensor 105 and the chromaticity sensor 106 acquire external light information.
  • the distance measuring sensor 107 acquires distance information between the vehicle 2 and an external object.
  • the infrared sensor 108 acquires infrared information related to the presence / absence and distance of an object at a short distance of the vehicle 2.
  • the engine start sensor 109 detects engine ON / OFF information.
  • the acceleration sensor 110 and the gyro sensor 111 acquire acceleration gyro information including acceleration and angular velocity as information on the posture and behavior of the vehicle 2.
  • the temperature sensor 112 acquires temperature information inside and outside the vehicle.
  • the road-to-vehicle communication wireless receiver 113 and the vehicle-to-vehicle communication wireless receiver 114 are respectively road-to-vehicle communication information received by road-to-vehicle communication between the vehicle 2 and roads, signs, signals, etc.
  • the vehicle-to-vehicle communication information received by the vehicle-to-vehicle communication with another vehicle is acquired.
  • the camera (inside the vehicle) 115 and the camera (outside the vehicle) 116 respectively capture the moving image of the situation inside and outside the vehicle and acquire camera video information (inside / outside the vehicle).
  • the camera (inside the vehicle) 115 captures, for example, the posture of the driver 5, the position of the eyes, the movement, and the like. By analyzing the obtained moving image, for example, it is possible to grasp the fatigue status of the driver 5, the position of the line of sight, and the like.
  • the camera (outside the vehicle) 116 captures a situation around the vehicle 2 such as the front or rear. By analyzing the obtained video, for example, it is possible to grasp the presence or absence of moving objects such as other vehicles and people around the building, topography, road surface conditions (rain, snow, freezing, unevenness, etc.) It is.
  • the GPS receiver 117 and the VICS receiver 118 obtain GPS information obtained by receiving the GPS signal and VICS information obtained by receiving the VICS signal, respectively. It may be implemented as a part of a car navigation system that acquires and uses these pieces of information.
  • FIG. 7 is a functional block diagram showing details of a configuration example of the head-up display device of the present embodiment.
  • the example of FIG. 7 shows a case where the video display device 30 is a projector, and the video display device 30 includes, for example, each unit such as a light source 31, an illumination optical system 32, and a display element 33.
  • the light source 31 is a member that generates illumination light for projection and constitutes a backlight.
  • a high-pressure mercury lamp, a xenon lamp, an LED light source, a laser light source, or the like can be used. It is desirable to use a solid light source with a long product life. For example, it is desirable to perform polarization conversion using an PBS provided with optical means for reducing the divergence angle of light for an LED light source with little change in light output with respect to changes in ambient temperature.
  • the light source 31 is configured by the LED light source 31a and the heat sink 31b.
  • the light source 31 is arranged or controlled so that the incident direction of light with respect to the display element 33 described later efficiently enters the entrance pupil of the concave mirror 41.
  • the illumination optical system 32 is an optical system that collects the illumination light generated by the light source 31 and irradiates the display element 33 with more uniform illumination light.
  • the illumination optical system 32 is configured by the light funnel 32a, the light guide 32b, and the diffusion plate 32c.
  • the display element 33 is an element that generates an image to be projected.
  • a transmissive liquid crystal panel, a reflective liquid crystal panel, a DMD (Digital Micromirror Device) (registered trademark) panel, or the like can be used.
  • a polarizing plate is disposed on each of the light incident surface (that is, the light source 31 and the illumination optical system 32 side) and the light emitting surface (that is, the distortion correction lens 43 and the concave mirror 41 side in FIG. 1) of the display element 33 to display an image. It is desirable to increase the light contrast ratio.
  • a high contrast ratio can be obtained by using an iodine-based polarizing plate having a high degree of polarization as the polarizing plate provided on the light incident surface.
  • a dye-based polarizing plate provided on the light emitting surface high reliability can be obtained even when external light is incident or the ambient temperature is high.
  • a specific polarization may be blocked and an image may not be visible.
  • a ⁇ / 4 plate is arranged in front of the polarizing plate arranged on the light exit surface of the LCD panel (that is, the distortion correcting lens 43 and the concave mirror 41 side), and the image is aligned in a specific polarization direction. It is desirable to convert light to circularly polarized light.
  • control unit 20 includes each unit such as an ECU 21, an audio output unit 22, a nonvolatile memory 23, a memory 24, a light source adjustment unit 25, a distortion correction unit 26, a display element driving unit 27, and a mirror adjustment unit 28.
  • each unit such as an ECU 21, an audio output unit 22, a nonvolatile memory 23, a memory 24, a light source adjustment unit 25, a distortion correction unit 26, a display element driving unit 27, and a mirror adjustment unit 28.
  • the ECU 21 acquires the vehicle information 4 via the vehicle information acquisition unit 10, and records, stores, and reads the acquired information in the nonvolatile memory 23 and the memory 24 as necessary.
  • the nonvolatile memory 23 may store setting information such as setting values and parameters for various controls.
  • the ECU 21 generates video data related to a virtual image displayed as the HUD device 1 by executing a dedicated program.
  • the audio output unit 22 outputs audio information via the speaker 60 as necessary.
  • the light source adjustment unit 25 adjusts the light emission amount of the light source 31 of the video display device 30. When there are a plurality of light sources 31, they may be controlled individually.
  • the distortion correction unit 26 corrects distortion generated when the video generated by the ECU 21 is projected onto the windshield 3 of the vehicle 2 by the video display device 30 by image processing.
  • This distortion may include, for example, distortion of an image caused by the curvature of the windshield 3, distortion caused by a minute positional shift when the module of the image display device 30 is attached, and the like.
  • the display element drive unit 27 sends a drive signal corresponding to the video data corrected by the distortion correction unit 26 to the display element 33 to generate an image to be projected.
  • the mirror adjustment unit 28 changes the angle of the concave mirror 41 via the mirror driving unit 42 to move the virtual image display area up and down.
  • FIG. 8 is a diagram showing an outline of a configuration example of an optical system that displays a virtual image in the HUD device 1 and miniaturization of the device.
  • FIG. 8A is a diagram showing an outline of the basic configuration of the virtual image optical system in the HUD device 1, and schematically shows the shape of the vertical section of the HUD device 1.
  • the illustration of the distortion correction lens 43 for correcting aberration and distortion is omitted.
  • the concave mirror 41 is simply displayed as a plane mirror.
  • an LCD panel is used as the display element 33 of the video display device 30, and a configuration in which a light source 31 that is a backlight and a concave mirror 41 are arranged as a basic configuration is housed in the housing 50. It shows the state being done.
  • Each element of the basic configuration is arranged at a position where an image displayed on the display element 33 is reflected by the concave mirror 41 and visually recognized as a virtual image.
  • image lights generated from the images at the upper, middle, and lower ends of the screen of the display element 33 are indicated by dotted arrows as image lights R 1 , R 2 , and R 3 , respectively.
  • image lights R 1 , R 2 , and R 3 are indicated by dotted arrows as image lights R 1 , R 2 , and R 3 , respectively.
  • FIGS. 8A to 8C show states where the horizontal distance Z at the center of each of the concave mirror 41 and the display element 33 is changed as a parameter in consideration of the above design constraints.
  • FIG. 8A to FIG. 8C show a configuration in which the distance Z gradually decreases from Z 1 to Z 3 as shown in the figure, and accordingly, the concave mirror 41 is displaced from the horizontal plane. The angle also gradually increases from ⁇ 1 to ⁇ 3 . Similarly, the vertical dimension of the concave mirror 41 is also gradually increased.
  • the height and depth of the HUD device 1 change, and the volume also changes accordingly. That is, when the distance Z is reduced, as shown in FIG. 8C, the height of the HUD device 1 is slightly increased while the depth can be greatly reduced. As a result, by configuring the distance Z to be small, the volume of the HUD device 1 (housing 50) can be further reduced and downsized.
  • the distance Z is decreased (distance Z 3 ) as shown in FIG. 8C
  • the distance from the upper end of the display element 33 to the upper end of the concave mirror 41 (corresponding to the image light R 1 ) is displayed.
  • the difference between the distance from the lower end of the element 33 to the lower end of the concave mirror 41 (corresponding to the image light R 3) increases. That is, when the distance Z is reduced, the volume of the HUD device 1 can be reduced, but the distortion and aberration of the virtual image generated in the concave mirror 41 are increased.
  • at least the arrangement position of the display element 33 or the like is moved in the direction of the arrow shown in FIG. 8C within a range that does not interfere with the image light (particularly the image light R 3 ). It is desirable that the distance from the concave mirror 41 be as uniform as possible.
  • the distortion and aberration are arranged by disposing the distortion correction lens 43 for correcting the distortion of the virtual image and the aberration generated in the virtual image between the display element 33 and the concave mirror 41. Perform the correction.
  • FIG. 9 is a diagram showing an outline of an example of distortion and aberration correction by the distortion correction lens 43.
  • a display element 33 object point
  • F focal length f
  • the concave mirror 41 is regarded as a convex lens having the same positive refractive power, and the relationship between an object point and a convex lens (indicated in the figure as the concave mirror 41 for convenience of explanation) and a generated virtual image is shown. ing.
  • the distortion correction lens 43 is disposed in order to reduce distortion and aberration generated in the concave mirror 41.
  • the optical element is a transmissive optical lens, but is not limited to a lens and may be a concave mirror.
  • the distortion correction lens 43 is (1) When the image light from the display element 33 enters the reflection surface of the distortion correction lens 43 as a telecentric light beam, the refractive power of the distortion correction lens 43 (optical lens or concave mirror) becomes almost zero (2) When the image light from the display element 33 diverges and enters the distortion correction lens 43, the distortion correction lens 43 has a positive refractive power. (3) The image light from the display element 33 is condensed to correct the distortion.
  • the distortion correcting lens 43 When entering the lens 43, the distortion correcting lens 43 has a negative refractive power so as to control the direction (angle and position) of the light beam incident on the concave mirror 41. Thereby, the distortion aberration of the virtual image generated by the concave mirror 41 is corrected. Further, when the distortion correction lens 43 is formed of a transmission type optical lens, a virtual image is generated due to the interaction between the light incident surface (display element 33 side) and the light output surface (concave mirror 41 side). Aberrations related to image performance are corrected.
  • the distance a from the display element 33 to the concave mirror 41 and the distance b from the concave mirror 41 to the virtual image are, as described above, between the upper and lower ends of the virtual image due to the inclination and curvature of the windshield 3. Will be different. Thereby, the image magnification of the virtual image visually recognized by the driver 5 is different between the upper end portion and the lower end portion.
  • the image magnification M at the lower end is made substantially equal to b / a.
  • the average curvature radius of the cross-sectional shape in the vertical direction of the distortion correction lens 43 and the average curvature radius of the cross-sectional shape in the horizontal direction are set to different values.
  • the distortion aberration caused by the optical path difference caused by the difference between the curvature radius in the vertical direction and the curvature radius in the horizontal direction of the windshield 3 and the aberration that deteriorates the imaging performance of the virtual image are corrected.
  • correction of aberrations caused by the optical path difference caused by the difference between the curvature radius in the vertical direction and the curvature radius in the horizontal direction of the windshield 3 is as follows. It is most important in securing the imaging performance of virtual images.
  • a free curved surface shape that can define the surface shape as a function of absolute coordinates (x, y) from the optical axis is used.
  • the free-form surface shape is represented by the following equation.
  • the distortion correction lens 43 controls its cross-sectional shape and arrangement position, the distortion and aberration of the virtual image generated by the concave mirror 41 can be corrected.
  • each member such as the exterior lid portion 51, the exterior case 54, and the optical component holding member 53 constituting the housing 50 is made resistant to heat. Problems may arise when formed using materials that do not have high rigidity and dimensional accuracy.
  • the positional relationship between the concave mirror 41 and the distortion correction lens 43 is designed due to the effects of processing accuracy and work accuracy when the HUD device 1 is manufactured and attached to the vehicle 2, and expansion and deformation due to heat during use. This may cause a deviation. As a result, the accuracy of correcting distortion and aberration by using the distortion correction lens 43 also decreases.
  • At least the optical component holding member 53 that holds the concave mirror 41 and the distortion correction lens 43 is provided with high heat resistance, high rigidity, and high dimensions. It is formed of a material having the characteristic of accuracy. Specifically, for example, unsaturated polyester resin such as BMC (Bulk Molding Compound), polycarbonate with glass filler, or the like is used.
  • BMC is used in this embodiment because BMC has thermosetting properties and can be complicatedly formed by a mold.
  • the members constituting the housing 50 such as the outer case 54 and the outer lid portion 51 that store the optical component holding member 53 mainly have a dustproof function. Therefore, it is not always necessary to use the material as described above, and an appropriate material can be used in consideration of the manufacturing cost.
  • the concave mirror 41 and the distortion correction lens 43 By holding the concave mirror 41 and the distortion correction lens 43 by the optical component holding member 53 formed of the material as described above, the concave mirror 41 and the distortion can be obtained even under severe use environment such as high temperature and vibration in the vehicle 2.
  • the positional relationship with the correction lens 43 can be maintained with high accuracy.
  • the concave mirror 41 and the distortion correction lens 43 are configured and held as a single unit. It is difficult. Therefore, in this embodiment, the concave mirror 41 and the distortion correction lens 43 are individually held by the optical component holding member 53.
  • the optical holding member 53 realizes and maintains the positional relationship between the concave mirror 41 and the distortion correction lens 43 with high accuracy even if the positional relationship between the concave mirror 41 and the distortion correcting lens 43 is in the three-dimensional torsional relationship as described above. Is possible. That is, the concave mirror 41 and the distortion correction lens 43 are held by the optical holding member 53 which is a single intervening part formed of a material having characteristics of high heat resistance, high rigidity, and high dimensional accuracy. It is possible to maintain the positional relationship with high accuracy. In the present embodiment, the shape of the optical holding member 53 having such characteristics is also optimized so that it can be molded as a single part by resin mold molding. .
  • the video display device 30 is modularized so that it can be easily attached and detached. As a result, there is a possibility that a slight positional deviation may occur when the video display device 30 is mounted. This deviation is corrected or corrected by, for example, image processing in the distortion correcting unit 26 of the control unit 20 shown in FIG. Adjustments can be made.
  • FIG. 10 is a flowchart outlining an example of the initial operation of the head-up display device of the present embodiment.
  • the HUD device 1 first starts the vehicle information acquisition unit 10 based on an instruction from the control unit 20.
  • vehicle information is acquired (S02).
  • the control unit 20 calculates a suitable brightness level based on external light information acquired by the illuminance sensor 105, the chromaticity sensor 106, and the like in the vehicle information 4 (S03), and the light source adjustment unit 25 calculates the light source 31. Is set so that the calculated brightness level is obtained (S04). For example, when the outside light is bright, the brightness level is set high, and when the outside light is dark, the brightness level is set low.
  • the ECU 21 determines and generates a video (for example, an initial image) to be displayed as a virtual image (S05), and performs a process of correcting the distortion by the distortion correction unit 26 for the generated video (S06).
  • the display element 33 is driven and controlled by the element driving unit 27 to form a projected image (S07).
  • video is projected on the windshield 3, and the driver
  • a HUD-ON signal is output.
  • the controller 20 determines whether or not this signal has been received (S08). . If not received, the HUD-ON signal is further waited for a predetermined time (S09), and the HUD-ON signal waiting process (S09) is repeated until it is determined in step S08 that the HUD-ON signal has been received. If it is determined in step S08 that the HUD-ON signal has been received, normal operation of the HUD device 1 described later is started (S10), and a series of initial operations are terminated.
  • FIG. 11 is a flowchart showing an outline of an example of normal operation of the head-up display device of the present embodiment. Also in the normal operation, the basic processing flow is substantially the same as the initial operation shown in FIG. First, the HUD device 1 acquires vehicle information by the vehicle information acquisition unit 10 based on an instruction from the control unit 20 (S21). And the control part 20 performs a brightness level adjustment process based on the external light information acquired by the illumination intensity sensor 105, the chromaticity sensor 106, etc. among the vehicle information 4 (S22).
  • FIG. 12 is a flowchart showing an outline of an example of brightness level adjustment processing of the head-up display device of the present embodiment.
  • a suitable brightness level is calculated based on the acquired outside light information (S221). Then, by comparing with the currently set brightness level, it is determined whether or not the brightness level needs to be changed (S222). If no change is necessary, the brightness level adjustment process is terminated. On the other hand, when the change is necessary, the light source adjustment unit 25 controls the light emission amount of the light source 31 to set the brightness level after the change (S223), and the brightness level adjustment process is ended. .
  • step S222 even when there is a difference between the preferred brightness level calculated in step S221 and the currently set brightness level, the brightness level is only when the difference is equal to or greater than a predetermined threshold. It may be determined that the change is necessary.
  • the ECU 21 then changes the video to be displayed as a virtual image from the current one as necessary based on the latest vehicle information 4 acquired in step S21, and determines and generates the changed video.
  • the pattern which changes a display content based on the vehicle information 4 can have many things according to the content of the acquired vehicle information 4, those combinations, etc. For example, when the speed information changes, the value of the speed display that is displayed at all times is changed, the guidance arrow graphic is displayed / erased based on the navigation information, and the arrow shape and display position are changed. There may be various patterns, such as when performing.
  • adjustment / correction processing is performed to maintain visibility, appropriateness of display contents, and the like according to the traveling state of the vehicle 2.
  • the angle of the concave mirror 41 is changed via the mirror driving unit 42 to perform mirror adjustment processing for moving the virtual image display area up and down (S24).
  • a vibration correction process for correcting the display position of the image in the display area with respect to the vibration of the vehicle 2 is performed (S25).
  • the distortion correction unit 26 performs distortion correction processing on the adjusted / corrected image (S26), and then the display element driving unit 27 drives and controls the display element 33 to form a projected image ( S27).
  • a HUD-OFF signal is output to the HUD device 1. It is determined whether or not this signal has been received (S28). If the HUD-OFF signal has not been received, the process returns to step S21, and a series of normal operations are repeated until the HUD-OFF signal is received. If it is determined that the HUD-OFF signal has been received, a series of normal operations is terminated.
  • a direct optical system including only the concave mirror 41 is used without using an optical path folding mirror in the virtual image optical system. Then, in order to correct the distortion and aberration of the virtual image generated by the concave mirror 41, a distortion correction lens 43 is arranged between the concave mirror 41 and the display element 33. By taking such a configuration, the HUD device 1 can be further reduced in size.
  • the concave mirror 41 and the distortion correction lens 43 are further held by an optical component holding member 53 formed of a material having high heat resistance, high rigidity, and high dimensional accuracy. Thereby, the positional relationship between the concave mirror 41 and the distortion correction lens 43 can be maintained with high accuracy.
  • the light source 31, the illumination optical system 32, and the display element 33 are modularized as the video display device 30 and are configured to be detachable. As a result, it is possible to improve the replacement performance of the video display device 30 that is likely to fail, and to improve the heat dissipation.
  • the concave mirror 41 and the distortion correction lens 43 are held by the optical component holding member 53 and are housed in the outer case 54 and the outer lid portion 51. Have taken.
  • the optical component holding member 53 is formed of a material having high heat resistance, high rigidity, and high dimensional accuracy such as BMC.
  • the shape seen from the side surface of the optical component holding member 53 is generally concave (or U-shaped). In this shape, it can be said that it is a shape which is easy to produce the shape of the shape which bends in a dent part, and cannot ensure high rigidity.
  • the members that hold the optical components of the concave mirror 41 and the distortion correction lens 43 are formed as members that also function as an exterior case.
  • FIG. 13 is a diagram showing an outline of an example of a mounting form of the head-up display device according to the second embodiment of the present invention.
  • the optical component holding member 53 and the exterior case 54 in the example of FIG. 2B are integrated physically and functionally.
  • a component holding outer case 55 is used. That is, the concave mirror 41 and the distortion correcting lens 43 are directly held on the optical component holding outer case 55 having a function as an outer case.
  • the optical component holding outer case 55 is formed of a material having characteristics of high heat resistance, high rigidity, and high dimensional accuracy, such as BMC, like the optical component holding member 53 in FIG.
  • the same effect as that obtained by the configuration of the HUD device 1 of the first embodiment, such as maintaining the positional relationship between the concave mirror 41 and the distortion correction lens 43 with high accuracy, can be obtained, and the number of parts can be further reduced. To simplify the configuration.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .
  • the present invention can be used for a head-up display device that projects an image on a transparent glass element or the like.
  • Steering wheel angle sensor 104 ... Headlight sensor, 105 ... Illuminance sensor, 106 ... Chromaticity sensor, 107 ... Ranging sensor, 108 ... Infrared sensor, 109 ... Engine start 110, acceleration sensor, 111 ... gyro sensor, 112 ... temperature sensor, 113 ... wireless receiver for road-to-vehicle communication, 114 ... wireless receiver for vehicle-to-vehicle communication, 115 ... camera (inside the vehicle), 116 ... camera (outside the vehicle) 117 ... GPS receiver, 118 ... VICS receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Instrument Panels (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

The present invention further reduces the size of a head-up display device. This head-up display device has: a video display device 30 that has a light source and a display element, and forms a video on the display element; and a virtual image optical system that displays a virtual image ahead of a vehicle by reflecting light emitted from the video display device 30 on a windshield or a combiner. The virtual image optical system includes a concave mirror 41 and a distortion correcting lens 43. The distortion correcting lens 43 is disposed between the video display device 30 and the concave mirror 41, and is configured such that the distortion of a virtual image corresponding to the viewpoint of a driver is corrected due to the shape of the concave mirror 41 and the shape of the distortion correcting lens 43. The concave mirror 41 and the distortion correcting lens 43 are positioned and held by an optical component holding member 53 formed from a prescribed material. The optical component holding member 53 is stored in a housing comprising an outer case 54 and an outer cover part 51.

Description

ヘッドアップディスプレイ装置Head-up display device
 本発明は、ヘッドアップディスプレイ装置の技術に関し、特に、透明のガラス素子等に画像を投影するヘッドアップディスプレイ装置に適用して有効な技術に関するものである。 The present invention relates to a technology for a head-up display device, and more particularly to a technology effective when applied to a head-up display device that projects an image on a transparent glass element or the like.
 例えば、自動車等の車両において、通常は、車速やエンジン回転数等の情報は、ダッシュボード内の計器盤(インパネ)に表示される。また、カーナビゲーション等の画面は、ダッシュボードに組み込まれもしくはダッシュボード上に設置されたディスプレイに表示される。運転者がこれらの情報を視認する場合に視線を大きく移動させることが必要となることから、視線の移動量を低減させる技術として、車速等の情報やカーナビゲーションに係る指示等の情報をフロントガラス(ウィンドシールド)等に投射して表示するヘッドアップディスプレイ(Head Up Display、以下では「HUD」と記載する場合がある)装置が知られている。 For example, in vehicles such as automobiles, information such as vehicle speed and engine speed is usually displayed on an instrument panel in the dashboard. In addition, a screen such as a car navigation is displayed on a display that is incorporated in the dashboard or installed on the dashboard. Since it is necessary for the driver to move his / her line of sight when visually recognizing such information, information such as vehicle speed and information related to car navigation is used as a technology to reduce the amount of movement of the line of sight. 2. Description of the Related Art A head-up display (Head-Up-Display, which may be referred to as “HUD” below) that projects and displays on a (wind shield) or the like is known.
 HUDに関連する技術として、例えば、特開2015-194707号公報(特許文献1)には、画像を表示するデバイスと、表示デバイスに表示された画像を投射する投射光学系とを備え、観察者の視点領域全域で画面歪みを小さくするとともに小型化を実現する表示装置が記載されている。ここでは、投射光学系は、表示デバイスから観察者の光路の順に、第1ミラーと第2ミラーを有する。そして、第1ミラーにおける画像長軸方向の入射角と、第1ミラーにおける画像短軸方向の入射角、および表示デバイスの画像表示面と第1ミラーとの間隔と、観察者によって視認される虚像の水平方向の幅との関係が、所定の関係性を満たすように構成することで、HUD装置の小型化を実現する旨が記載されている。 As a technology related to HUD, for example, Japanese Patent Laying-Open No. 2015-194707 (Patent Document 1) includes a device that displays an image and a projection optical system that projects the image displayed on the display device. A display device that reduces screen distortion and realizes downsizing in the entire viewpoint area is described. Here, the projection optical system has a first mirror and a second mirror in the order of the optical path of the observer from the display device. The incident angle in the image major axis direction of the first mirror, the incident angle in the image minor axis direction of the first mirror, the interval between the image display surface of the display device and the first mirror, and the virtual image visually recognized by the observer It is described that the size of the HUD device can be reduced by configuring so that the relationship with the width in the horizontal direction satisfies a predetermined relationship.
特開2015-194707号公報JP 2015-194707 A
 特許文献1に記載されたような従来技術では、装置の構成を小型化することが可能であるとされるが、小型化にも制約がある。すなわち、特許文献1に記載された技術では、観察者と表示デバイスの間に2枚のミラーを配置する必要がある。このとき、第1ミラーでの反射光束が第2ミラーで遮られないようにするためにはミラーの配置の自由度は制限される。すなわち、2枚のミラーを近接配置するには制約があり、ある程度離間させて配置する必要が生じるため、その分が装置構成の小型化の支障となる。 In the prior art described in Patent Document 1, it is said that the configuration of the apparatus can be reduced in size, but there is a restriction on the reduction in size. That is, in the technique described in Patent Document 1, it is necessary to arrange two mirrors between the observer and the display device. At this time, in order to prevent the reflected light beam from the first mirror from being blocked by the second mirror, the degree of freedom of mirror arrangement is limited. That is, there is a restriction in arranging the two mirrors close to each other, and it is necessary to arrange them apart from each other to some extent, and this amount hinders downsizing of the apparatus configuration.
 そこで本発明の目的は、装置のさらなる小型化を実現するヘッドアップディスプレイ装置を提供することにある。 Therefore, an object of the present invention is to provide a head-up display device that realizes further downsizing of the device.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 本発明の代表的な実施の形態によるヘッドアップディスプレイ装置は、車両のウィンドシールドに映像を投射することで、運転者に対して前記映像に係る虚像を表示するヘッドアップディスプレイ装置であって、光源および表示素子を有し、前記表示素子に前記映像を形成する映像表示装置と、前記映像表示装置から出射された光を前記ウィンドシールドで反射させることで前記虚像を前記車両の前方に表示する虚像光学系と、を有する。 A head-up display device according to a representative embodiment of the present invention is a head-up display device that displays a virtual image according to the video to a driver by projecting the video on a windshield of a vehicle. And a display device that forms the image on the display device, and a virtual image that displays the virtual image in front of the vehicle by reflecting light emitted from the video display device with the windshield And an optical system.
 そして、前記虚像光学系は、凹面ミラーと光学素子とを含み、前記光学素子は、前記映像表示装置と前記凹面ミラーとの間に配置され、前記凹面ミラーの形状と前記光学素子の形状とにより、前記運転者の視点位置に対応して得られる前記虚像の歪みを補正するよう構成されており、前記凹面ミラーおよび前記光学素子は、所定の材料により形成された保持部材にそれぞれ位置決めされて保持され、前記保持部材は、筐体内に収納されている。 The virtual image optical system includes a concave mirror and an optical element, and the optical element is disposed between the video display device and the concave mirror, and includes a shape of the concave mirror and a shape of the optical element. The concave mirror and the optical element are each positioned and held by a holding member made of a predetermined material, so as to correct distortion of the virtual image obtained corresponding to the viewpoint position of the driver. The holding member is housed in the housing.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 すなわち、本発明の代表的な実施の形態によれば、ヘッドアップディスプレイ装置のさらなる小型化を実現することが可能となる。 That is, according to the representative embodiment of the present invention, it is possible to further reduce the size of the head-up display device.
本発明の実施の形態1であるヘッドアップディスプレイ装置の動作概念の例について概要を示した図である。It is the figure which showed the outline | summary about the example of the operation | movement concept of the head-up display apparatus which is Embodiment 1 of this invention. (a)、(b)は、本発明の実施の形態1であるヘッドアップディスプレイ装置の実装形態の例について概要を示した図である。(A), (b) is the figure which showed the outline | summary about the example of the mounting form of the head-up display apparatus which is Embodiment 1 of this invention. 本発明の実施の形態1における映像表示装置の実装形態の例について概要を示した図である。It is the figure which showed the outline | summary about the example of the mounting form of the video display apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における導光体の実装形態の例について概要を示した図である。It is the figure which showed the outline | summary about the example of the mounting form of the light guide in Embodiment 1 of this invention. 本発明の実施の形態1であるヘッドアップディスプレイ装置の全体の構成例について概要を示した機能ブロック図である。It is the functional block diagram which showed the outline | summary about the structural example of the whole head-up display apparatus which is Embodiment 1 of this invention. 本発明の実施の形態1におけるにおける車両情報の取得に係るハードウェア構成の例について概要を示した図である。It is the figure which showed the outline | summary about the example of the hardware constitutions which concern on acquisition of the vehicle information in Embodiment 1 of this invention. 本発明の実施の形態1における構成例について詳細を示した機能ブロック図である。It is the functional block diagram which showed the detail about the structural example in Embodiment 1 of this invention. (a)~(c)は、本発明の実施の形態1における虚像を表示する光学系の構成例と装置の小型化について概要を示した図である。(A)-(c) is the figure which showed the outline | summary about the structural example of the optical system which displays the virtual image in Embodiment 1 of this invention, and size reduction of an apparatus. 本発明の実施の形態1における歪み補正レンズによる歪みおよび収差の補正の例について概要を示した図である。It is the figure which showed the outline | summary about the example of correction | amendment of the distortion and aberration by the distortion correction lens in Embodiment 1 of this invention. 本発明の実施の形態1における初期動作の例について概要を示したフローチャートである。It is the flowchart which showed the outline | summary about the example of the initial stage operation in Embodiment 1 of this invention. 本発明の実施の形態1における通常動作の例について概要を示したフローチャートである。It is the flowchart which showed the outline | summary about the example of the normal operation | movement in Embodiment 1 of this invention. 本発明の実施の形態1における明るさレベル調整処理の例について概要を示したフローチャートである。It is the flowchart which showed the outline | summary about the example of the brightness level adjustment process in Embodiment 1 of this invention. 本発明の実施の形態2であるヘッドアップディスプレイ装置の実装形態の例について概要を示した図である。It is the figure which showed the outline | summary about the example of the mounting form of the head-up display apparatus which is Embodiment 2 of this invention.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。一方で、ある図において符号を付して説明した部位について、他の図の説明の際に再度の図示はしないが同一の符号を付して言及する場合がある。また、以下に示す各実施の形態では、ヘッドアップディスプレイ(HUD)装置が自動車等の車両に設置される場合を例として説明するが、電車や航空機等の他の乗り物にも適用可能である。また、乗り物以外の用途に用いるHUD装置にも適用可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted. On the other hand, parts described with reference numerals in some drawings may be referred to with the same reference numerals although not illustrated again in the description of other drawings. In each embodiment described below, a case where a head-up display (HUD) device is installed in a vehicle such as an automobile will be described as an example, but the present invention can also be applied to other vehicles such as trains and airplanes. Moreover, it is applicable also to the HUD apparatus used for uses other than a vehicle.
 (実施の形態1)
 <概要>
 図1は、本発明の実施の形態1であるヘッドアップディスプレイ装置の動作概念の例について概要を示した図である。本実施の形態のHUD装置1では、筐体50内(もしくは後述するように筐体50に対して着脱可能な箇所)に配置された映像表示装置30によって表示された映像を、凹面ミラー41により反射させて、車両2のウィンドシールド3に投射する。
(Embodiment 1)
<Overview>
FIG. 1 is a diagram showing an outline of an example of an operation concept of the head-up display device according to the first embodiment of the present invention. In the HUD device 1 of the present embodiment, an image displayed by the image display device 30 arranged in the housing 50 (or a place that can be attached to and detached from the housing 50 as will be described later) is displayed by the concave mirror 41. Reflected and projected onto the windshield 3 of the vehicle 2.
 ここで、被投射部材はウィンドシールド3に限られず、映像が投射される部材であれば、コンバイナなど他の部材とすることができる。また、映像表示装置30は、例えば、バックライトを有するプロジェクタやLCD(Liquid Crystal Display)等により構成される。自発光型のVFD(Vacuum Fluorescent Display)等であってもよい。投射装置によりスクリーンに映像を表示するものであってもよい。このようなスクリーンとしては、例えば、マイクロレンズを2次元状に配置したマイクロレンズアレイにより構成してもよい。 Here, the member to be projected is not limited to the windshield 3 and may be another member such as a combiner as long as the image is projected. The video display device 30 is configured by, for example, a projector having a backlight, an LCD (Liquid Crystal Display), or the like. A self-luminous VFD (Vacuum Fluorescent Display) or the like may be used. An image may be displayed on a screen by a projection device. As such a screen, for example, a microlens array in which microlenses are two-dimensionally arranged may be used.
 凹面ミラー41は、例えば、自由曲面ミラーや光軸非対称の形状を有するミラー等により構成される。より具体的には、凹面ミラー41の形状は、虚像の歪みを低減するために、例えば、その上部の領域(すなわち、ここで反射した光線はウィンドシールド3の下方で反射するため、相対的に運転者5の視点との距離が短くなる)では、拡大率が大きくなるように相対的に曲率半径を小さくする。一方、凹面ミラー41の下部の領域(すなわち、ここで反射した光線はウィンドシールド3の上方で反射するため、相対的に運転者5の視点との距離が長くなる)では、拡大率が小さくなるように相対的に曲率半径を大きくする。映像表示装置30を凹面ミラー41の光軸に対して傾斜させて配置することで、上記のような像倍率の違いを補正して、発生する歪みそのものを低減するようにしてもよい。 The concave mirror 41 is constituted by, for example, a free-form surface mirror or a mirror having an optical axis asymmetric shape. More specifically, the shape of the concave mirror 41 is set so that, for example, the upper region (that is, the light beam reflected here is reflected below the windshield 3) in order to reduce the distortion of the virtual image. In the case where the distance from the viewpoint of the driver 5 is shortened), the radius of curvature is relatively decreased so that the enlargement ratio is increased. On the other hand, in the area below the concave mirror 41 (that is, the light beam reflected here is reflected above the windshield 3, the distance from the viewpoint of the driver 5 is relatively long), the enlargement ratio is small. The radius of curvature is relatively increased. By disposing the video display device 30 so as to be inclined with respect to the optical axis of the concave mirror 41, the difference in image magnification as described above may be corrected to reduce the generated distortion itself.
 運転者5は、ウィンドシールド3に投射された映像を見ることで、透明のウィンドシールド3を通してその前方に虚像として上記映像を視認する。凹面ミラー41の角度を調整することで、映像をウィンドシールド3に投射する位置を調整することにより、運転者5が見る虚像の表示位置を上下方向に調整可能としてもよい。なお、虚像として表示する内容は特に限定されず、例えば、車両情報やナビゲーション情報、図示しないカメラ映像(監視カメラやアラウンドビュアー等)で撮影した前方の風景の映像などを適宜表示することができる。 The driver 5 views the image projected as a virtual image in front of the transparent windshield 3 by viewing the image projected on the windshield 3. By adjusting the angle of the concave mirror 41 and adjusting the position at which the image is projected onto the windshield 3, the display position of the virtual image viewed by the driver 5 may be adjusted in the vertical direction. In addition, the content displayed as a virtual image is not specifically limited, For example, vehicle information, navigation information, the image | video of the front scenery image | photographed with the camera image (a monitoring camera, an around viewer, etc.) which is not illustrated can be displayed suitably.
 運転者5が視認する虚像の大きさを実用的なレベルに大きくするには、凹面ミラー41から虚像までの距離を大きくする必要があり、結果として、HUD装置1の寸法が大きくならざるを得なかった。また、映像が投射されるウィンドシールド3は運転者5から見て通常前後に傾斜して配置されているため、虚像の上部と下部で像倍率を整合させることが困難であった。 In order to increase the size of the virtual image visually recognized by the driver 5 to a practical level, it is necessary to increase the distance from the concave mirror 41 to the virtual image. As a result, the size of the HUD device 1 must be increased. There wasn't. In addition, since the windshield 3 on which the image is projected is normally tilted forward and backward as viewed from the driver 5, it is difficult to match the image magnification between the upper and lower portions of the virtual image.
 これに対し、上述した特許文献1に記載されたような従来技術では、凹面ミラー41に加えて、運転者5と表示デバイス(本実施の形態では映像表示装置30)の間に光路折り返しミラーを設け、像倍率が部分的に異なる領域での光路差を小さくしている。これにより、凹面ミラー41から虚像までの距離を確保しつつ、像倍率の部分的な変化(像の歪み)の軽減と装置の容積の低減を可能とするとされている。 On the other hand, in the related art as described in Patent Document 1 described above, in addition to the concave mirror 41, an optical path folding mirror is provided between the driver 5 and the display device (the video display device 30 in the present embodiment). The optical path difference in the region where the image magnification is partially different is reduced. Accordingly, it is possible to reduce a partial change in image magnification (image distortion) and to reduce the volume of the apparatus while securing a distance from the concave mirror 41 to the virtual image.
 一方で、凹面ミラー41と光路折り返しミラーの2枚のミラーを必要とすることで、ミラーの配置の自由度は制限され、2枚のミラーをある程度離間させて配置する必要が生じることから、装置の小型化の支障となっている。また、運転者5が視認する虚像において発生する収差の補正については、特許文献1においてもその必要性や具体的な手段等について一切記載も考慮もされていない。 On the other hand, since the two mirrors of the concave mirror 41 and the optical path folding mirror are required, the degree of freedom of the mirror arrangement is limited, and the two mirrors need to be arranged apart from each other. This is an obstacle to downsizing. In addition, regarding the correction of the aberration generated in the virtual image visually recognized by the driver 5, neither the necessity nor specific means are described or considered in Patent Document 1.
 これに対し、本実施の形態のHUD装置1では、装置のさらなる小型化を実現するため、図1に示すように、虚像を形成するためのミラーを凹面ミラー41のみの1枚の構成とする。さらに、運転者5と映像表示装置30との間に、透過型の光学素子として、例えば、少なくとも一方の面が凹面(負屈折力を有する)の歪み補正レンズ43を配置する。これにより、HUD装置1の大型化や複雑化を抑制しつつ、運転者5が視認する虚像の歪みと収差を実用上問題のないレベルまで軽減して視認性を向上させることを可能とする。すなわち、歪み補正レンズ43によって凹面ミラー41への光線の出射方向を制御することで、凹面ミラー41の形状と合わせて歪曲収差の補正を行う。 On the other hand, in the HUD device 1 of the present embodiment, in order to realize further downsizing of the device, the mirror for forming a virtual image is configured by only one concave mirror 41 as shown in FIG. . Further, between the driver 5 and the video display device 30, for example, a distortion correction lens 43 having at least one concave surface (having negative refractive power) is disposed as a transmissive optical element. Thereby, it is possible to improve the visibility by reducing the distortion and aberration of the virtual image visually recognized by the driver 5 to a level having no practical problem while suppressing the increase in size and complexity of the HUD device 1. That is, by controlling the emission direction of the light beam to the concave mirror 41 by the distortion correction lens 43, the distortion aberration is corrected in accordance with the shape of the concave mirror 41.
 また、収差補正能力をさらに高めるために、歪み補正レンズ43を複数枚設けてもよい。もしくは、歪み補正レンズ43に代えて曲面ミラーを配置して、光路の折り返しと同時に凹面ミラー41への光線の入射位置を制御することで、歪曲収差を低減するようにしてもよい。このように、収差補正能力をさらに向上させるたに最適設計された光学素子を凹面ミラー41と映像表示装置30の間に設けても、本発明の技術的思想または範囲を逸脱するものではないことは言うまでもない。 In order to further improve the aberration correction capability, a plurality of distortion correction lenses 43 may be provided. Alternatively, a distortion mirror may be reduced by disposing a curved mirror instead of the distortion correction lens 43 and controlling the incident position of the light beam on the concave mirror 41 simultaneously with the folding of the optical path. Thus, even if an optical element optimally designed to further improve the aberration correction capability is provided between the concave mirror 41 and the image display device 30, it does not depart from the technical idea or scope of the present invention. Needless to say.
 さらに、歪み補正レンズ43等からなる光学素子の光軸方向の厚さを変化させることで、本来の収差補正の他に、凹面ミラー41と映像表示装置30の光学的な距離を変えて、虚像の表示位置を遠方から近方まで連続的に変化させる構成とすることも可能である。 Further, by changing the thickness in the optical axis direction of the optical element including the distortion correction lens 43 and the like, in addition to the original aberration correction, the optical distance between the concave mirror 41 and the image display device 30 is changed, thereby changing the virtual image. It is also possible to adopt a configuration in which the display position is continuously changed from far to near.
 一方、HUD装置1の画質を低下させる要因として、映像表示装置30から凹面ミラー41に向かって出射された映像光が、途中に配置された歪み補正レンズ43の表面で反射して映像表示装置30に戻り、再度反射して本来の映像光に重畳されてしまうことが知られている。このため、本実施の形態では、例えば、歪み補正レンズ43の表面に反射防止膜を成膜して反射を抑える。またさらに、歪み補正レンズ43における映像光の入射面と出射面の少なくともいずれか一方について、歪み補正レンズ面の形状を、映像表示装置30に戻る反射光がその一部分に極端に集中しないように設計することが好ましい。また、映像表示装置30において、上記のような歪み補正レンズ43からの反射光を吸収するための偏光板を配置することでも画質の低下を軽減することができる。 On the other hand, as a factor that degrades the image quality of the HUD device 1, the image light emitted from the image display device 30 toward the concave mirror 41 is reflected by the surface of the distortion correction lens 43 disposed in the middle, and the image display device 30. It is known that the light is reflected again and superimposed on the original image light. For this reason, in this embodiment, for example, an antireflection film is formed on the surface of the distortion correction lens 43 to suppress reflection. Furthermore, the shape of the distortion correction lens surface of at least one of the image light incident surface and the light exit surface of the distortion correction lens 43 is designed so that the reflected light returning to the image display device 30 is not extremely concentrated on a part thereof. It is preferable to do. Further, in the video display device 30, the deterioration of image quality can be reduced by arranging a polarizing plate for absorbing the reflected light from the distortion correction lens 43 as described above.
 <HUD装置の実装形態>
 図2は、本発明の一実施の形態であるヘッドアップディスプレイ装置の実装形態の例について概要を示した図である。図2(a)は、HUD装置1の筐体50を中心とした外観の例を示した斜視図である。また、図2(b)は、図2(a)に示したHUD装置1を各部品に分解した状態を示した斜視図である。
<Mounting form of HUD device>
FIG. 2 is a diagram showing an outline of an example of a mounting form of the head-up display device according to the embodiment of the present invention. FIG. 2A is a perspective view showing an example of an external appearance centering on the housing 50 of the HUD device 1. FIG. 2B is a perspective view showing a state in which the HUD device 1 shown in FIG.
 図2(b)に示すように、HUD装置1は、外装ケース54に光学部品保持部材53が収納され、さらに外装蓋部51により上部が覆われる構成を有する。外装ケース54および外装蓋部51の各部材は、図1に示したHUD装置1における筐体50を構成する。そして、外装ケース54の開口部には映像表示装置30が装着される。 As shown in FIG. 2B, the HUD device 1 has a configuration in which an optical component holding member 53 is housed in an exterior case 54 and the upper portion is covered with an exterior lid portion 51. Each member of the exterior case 54 and the exterior lid portion 51 constitutes the housing 50 in the HUD device 1 shown in FIG. The video display device 30 is attached to the opening of the outer case 54.
 外装蓋部51は、映像光をウィンドシールド3に向かって出射するための開口部を有し、当該開口部は防眩板52(グレアトラップ)によって覆われている。 The exterior lid 51 has an opening for emitting image light toward the windshield 3, and the opening is covered with an antiglare plate 52 (glare trap).
 光学部品保持部材53は、図1に示したHUD装置1における凹面ミラー41および歪み補正レンズ43を保持する部材である。詳細は後述するが、本実施の形態では、当該部材は光学部品を保持することから、高耐熱、高剛性、高寸法精度の特性を有する材料により形成する。 The optical component holding member 53 is a member that holds the concave mirror 41 and the distortion correction lens 43 in the HUD device 1 shown in FIG. Although details will be described later, in the present embodiment, since the member holds the optical component, the member is formed of a material having characteristics of high heat resistance, high rigidity, and high dimensional accuracy.
 外装ケース54には、後述する制御部等が実装されるメイン基板70や、凹面ミラー41の傾斜角度を変化させるためのモータ等からなるミラー駆動部42等の他の部品が取り付けられていてもよい。本実施の形態では、さらに、映像表示装置30を取り付け/取り外しすることができるように、ネジ穴等の着脱機構や、映像光が入射するための開口部等が形成されている。 Even if other parts such as a main board 70 on which a control unit and the like to be described later are mounted and a mirror driving unit 42 including a motor for changing the inclination angle of the concave mirror 41 are attached to the exterior case 54. Good. In the present embodiment, an attaching / detaching mechanism such as a screw hole, an opening for entering image light, and the like are further formed so that the image display device 30 can be attached / detached.
 本実施の形態では、映像表示装置30はモジュール化され、外装ケース54に対してネジ等により一体的に取り付け/取り外しが可能なように構成されている。これにより、例えば、HUD装置1自体を取り外したり分解したりすることなく、映像表示装置30のみを交換できるように構成することも可能となり、最も壊れやすい部材である映像表示装置30の交換性を大きく向上させることができる。また、映像表示装置30を、HUD装置1の筐体50の外部に取り付ける構成とすることで、放熱性を向上させ、熱による故障や劣化の低減という効果も得ることができる。 In the present embodiment, the video display device 30 is modularized so that it can be attached / removed integrally with the outer case 54 with screws or the like. Accordingly, for example, it is possible to configure so that only the video display device 30 can be exchanged without removing or disassembling the HUD device 1 itself, and the exchangeability of the video display device 30 which is the most fragile member can be improved. It can be greatly improved. Further, by adopting a configuration in which the video display device 30 is attached to the outside of the housing 50 of the HUD device 1, it is possible to improve heat dissipation and to obtain effects of reducing failure and deterioration due to heat.
 本実施の形態では、上述したように、光路折り返しミラーを用いないダイレクト光学系の構成をとっている。したがって、例えば、光路折り返しミラーにコールドミラー(赤外線を透過して可視光のみ反射するミラー)を用いることで、筐体50の内部の温度上昇を抑制するというような従来技術で行われていた手法をとることができない。そこで、例えば、赤外線をカット・反射する断熱フィルム等の光学部材を、防眩板52の上(映像光の出射面側)や映像表示装置30(LCDパネル)の前方(映像光の出射面側)に設けるようにしてもよい。他の赤外線カット手段としては、例えば、入射面に垂直なS波を通し、入射面に平行なP波を通さない偏光板を用いることも可能である。 In this embodiment, as described above, the configuration of a direct optical system that does not use an optical path folding mirror is adopted. Therefore, for example, a technique used in the prior art to suppress the temperature increase inside the housing 50 by using a cold mirror (a mirror that transmits infrared rays and reflects only visible light) as the optical path folding mirror. Can not take. Therefore, for example, an optical member such as a heat insulating film that cuts and reflects infrared rays is placed on the anti-glare plate 52 (image light emission surface side) or in front of the image display device 30 (LCD panel) (image light emission surface side). ) May be provided. As another infrared ray cutting means, for example, it is possible to use a polarizing plate that passes an S wave perpendicular to the incident surface and does not pass a P wave parallel to the incident surface.
 図3は、映像表示装置30の実装形態の例について概要を示した図である。ここでは、モジュール化された映像表示装置30を各部品に分解した状態を斜視図により示している。映像表示装置30は、LCDパネル等の表示素子33が、フレキシブルケーブル34を介してメイン基板70から入力された映像信号に基づいて、バックライトからの光を変調することで映像を表示する。表示された映像は、図2における外装ケース54の開口部を通して虚像光学系(本実施の形態では、図2における歪み補正レンズ43および凹面ミラー41)に出力され、運転者5が視認可能な虚像が生成される。 FIG. 3 is a diagram showing an outline of an example of the mounting form of the video display device 30. Here, a state in which the modularized video display device 30 is disassembled into parts is shown in a perspective view. In the video display device 30, a display element 33 such as an LCD panel displays video by modulating light from the backlight based on a video signal input from the main board 70 via the flexible cable 34. The displayed video is output to the virtual image optical system (in this embodiment, the distortion correction lens 43 and the concave mirror 41 in FIG. 2) through the opening of the exterior case 54 in FIG. 2, and the virtual image that the driver 5 can visually recognize. Is generated.
 バックライトにおける光源素子には、例えば、固体光源として比較的安価で信頼性の高いLED(Light Emitting Diode)光源31aを用いる。LED光源31aは、高出力化するために面発光型とする。図3の例ではLED基板として実装している。この場合、例えば、後述するような技術的な工夫を用いて発散光の利用効率を向上させる。 As the light source element in the backlight, for example, a relatively inexpensive and highly reliable LED (Light Emitting Diode) light source 31a is used as a solid light source. The LED light source 31a is a surface-emitting type in order to increase the output. In the example of FIG. 3, it is mounted as an LED substrate. In this case, for example, the utilization efficiency of the divergent light is improved by using a technical device as will be described later.
 LEDの入力電力に対する発光効率は、発光色によっても異なるが、20~30%程度であり、残りはほとんどが熱に変換される。このため、LED光源31aを取り付けるフレーム35には、熱伝導率の高い部材(例えば、アルミニウム等の金属部材)からなる放熱用のフィン(ヒートシンク31b)を設けて熱を外部に放散させる。これにより、LED光源31aの発光効率そのものを向上させる効果を得ることができる。特に、現在市場に出回っている赤色を発光色とするLEDは、ジャンクション温度が高くなると発光効率が大幅に低下し、同時に映像の色度も変化する。したがって、LED光源31aの温度低減を優先させるため、ヒートシンク31bにおける放熱フィンの面積を大きくして冷却効率を高めた構成とするのが望ましい。 The light emission efficiency with respect to the input power of the LED varies depending on the light emission color, but is about 20-30%, and most of the remainder is converted into heat. For this reason, the frame 35 to which the LED light source 31a is attached is provided with a heat radiation fin (heat sink 31b) made of a member having high thermal conductivity (for example, a metal member such as aluminum) to dissipate heat to the outside. Thereby, the effect which improves the luminous efficiency itself of the LED light source 31a can be acquired. In particular, red LEDs that are currently on the market that emit red light have a significantly reduced luminous efficiency when the junction temperature increases, and the chromaticity of the image also changes. Therefore, in order to prioritize the temperature reduction of the LED light source 31a, it is desirable to increase the cooling efficiency by increasing the area of the radiation fins in the heat sink 31b.
 LED光源31aからの発散光を効率よく表示素子33に導くため、図3の例では、導光体32bを用いている。この場合、塵などの付着を防止するため、例えば、外装部材36a、36bによって導光体32bや表示素子33等の全体を覆い、映像表示装置30としてモジュール化するのが望ましい。 In order to efficiently guide the divergent light from the LED light source 31a to the display element 33, the light guide 32b is used in the example of FIG. In this case, in order to prevent adhesion of dust or the like, for example, it is desirable to cover the entire light guide 32b, the display element 33, and the like with exterior members 36a and 36b, and modularize the video display device 30.
 また、図3の例では、LED光源31aからの発散光を取り込んで平行光とするため、コリメートレンズ等からなる複数のライトファネル32aを設けている。各ライトファネル32aにおいてLED光源31aからの発散光を取り込む開口部は、例えば、平面とした上でLED光源31aとの間に媒質を挿入して光学的に接続する、もしくは、凸面形状として集光作用を持たせる。これにより、発散光を可能な限り平行光として、ライトファネル32aの界面に入射する光の入射角を小さくする。その結果、ライトファネル32aを通過後、さらに発散角を小さくすることができるため、導光体32bで反射した後に表示素子33に向かう光源光の制御が容易となる。 Further, in the example of FIG. 3, a plurality of light funnels 32a made up of collimating lenses or the like are provided in order to take the divergent light from the LED light source 31a into parallel light. In each light funnel 32a, for example, the opening that takes in the divergent light from the LED light source 31a is a flat surface and is optically connected by inserting a medium between the LED light source 31a or condensing in a convex shape. Give action. Thereby, the diverging light is made as parallel light as possible, and the incident angle of the light incident on the interface of the light funnel 32a is reduced. As a result, since the divergence angle can be further reduced after passing through the light funnel 32a, it becomes easy to control the light source light directed to the display element 33 after being reflected by the light guide 32b.
 さらにLED光源31aからの発散光の利用効率を向上させるため、ライトファネル32aと導光体32bの接合部分においてPBS(Polarizing Beam Splitter)を用いて偏光変換を行い、所望の偏光方向に変換する。これにより、表示素子33への入射光の効率を向上させることができる。このように光源光の偏光方向を揃えた場合には、さらに導光体32bの素材として複屈折が少ない材料を用いるのが望ましい。これにより、偏波の方向が回転して表示素子33を通過する場合において、例えば、黒表示時に色付き等の問題が発生するのを抑制することができる。 Further, in order to improve the utilization efficiency of the divergent light from the LED light source 31a, polarization conversion is performed using a PBS (Polarizing Beam Beam Splitter) at the joint portion of the light funnel 32a and the light guide 32b to convert it into a desired polarization direction. Thereby, the efficiency of the incident light to the display element 33 can be improved. In this way, when the polarization direction of the light source light is aligned, it is desirable to use a material with less birefringence as the material of the light guide 32b. Thereby, when the direction of polarization rotates and passes through the display element 33, for example, it is possible to suppress the occurrence of a problem such as coloring during black display.
 このように、発散角が低減されたLED光源31aからの光束は、導光体32bにより制御され、導光体32bの斜面(図3の例では外装部材36a側の面)に設けられた全反射面において反射する。そして、導光体32bにおいて当該全反射面に対向する面(出射面)と表示素子33との間に配置された拡散板32c(ディフューザー)により拡散された後、表示素子33(LCDパネル)に入射する。なお、図3の例では、導光体32bと表示素子33との間に拡散板32cを配置することでLED光源31aからの光束を発散させているが、このような構成に限られない。拡散板32cの配置に代えて、例えば、導光体32bの出射面に微細な凹凸形状を設けて拡散効果を持たせることでも同様の効果を得ることができる。 In this way, the light flux from the LED light source 31a with a reduced divergence angle is controlled by the light guide 32b, and is all provided on the slope of the light guide 32b (the surface on the exterior member 36a side in the example of FIG. 3). Reflects on the reflecting surface. Then, after being diffused by the diffusion plate 32c (diffuser) disposed between the display element 33 and the surface (outgoing surface) facing the total reflection surface in the light guide 32b, the light is transmitted to the display element 33 (LCD panel). Incident. In the example of FIG. 3, the light flux from the LED light source 31 a is diverged by disposing the diffusion plate 32 c between the light guide 32 b and the display element 33. However, the configuration is not limited to this. In place of the arrangement of the diffusion plate 32c, for example, a similar effect can be obtained by providing a fine uneven shape on the exit surface of the light guide 32b to provide a diffusion effect.
 図4は、導光体32bの実装形態の例について概要を示した図である。ここでは、導光体32bおよびライトファネル32aを含む部分についての断面形状を模式的に示している。ライトファネル32aにより発散角が低減された光束(図中の矢印)は、接合部32dを経由して導光体32bの入射面32b_1に入射する。このとき、入射面の断面形状の効果により、垂直方向(図4における上下方向)の発散角が制御され、導光体32b内を効率よく伝播する。 FIG. 4 is a diagram showing an outline of an example of a mounting form of the light guide 32b. Here, the cross-sectional shape of the portion including the light guide 32b and the light funnel 32a is schematically shown. The light flux (arrow in the figure) whose divergence angle is reduced by the light funnel 32a enters the incident surface 32b_1 of the light guide 32b via the joint portion 32d. At this time, the divergence angle in the vertical direction (vertical direction in FIG. 4) is controlled by the effect of the cross-sectional shape of the incident surface, and the light propagates efficiently in the light guide 32b.
 入射面32b_1から入射した光源光は、対向面32b_2に設けられた全反射プリズムによって全反射して出射面32b_3に向かう。全反射プリズムは、入射面32b_1の近傍(図中の「B部」)と、出射面32b_3の近傍(図中の「A部」)でその形状(拡大図参照)がそれぞれ異なる。すなわち、それぞれの面に入射する光束の発散角に応じて階段状に分割されて形成されており、これにより対向面32b_2における全反射の角度を制御している。一方、出射面32b_3から出射して後段の表示素子33へ入射する光束について、出射面32b_3内での光量分布が均一となるよう、対向面32b_2における上記の分割の寸法を変数として、分割された光束の反射後の到達位置とエネルギー量を制御する。 The light source light incident from the incident surface 32b_1 is totally reflected by the total reflection prism provided on the opposing surface 32b_2 and travels toward the output surface 32b_3. The shape of the total reflection prism is different between the vicinity of the incident surface 32b_1 ("B portion" in the figure) and the vicinity of the emission surface 32b_3 ("A portion" in the figure). That is, it is divided into steps according to the divergence angles of the light beams incident on the respective surfaces, thereby controlling the angle of total reflection on the facing surface 32b_2. On the other hand, the light beam emitted from the emission surface 32b_3 and incident on the display element 33 in the subsequent stage is divided using the above-described division size on the opposite surface 32b_2 as a variable so that the light quantity distribution in the emission surface 32b_3 is uniform. The arrival position and the amount of energy after reflection of the light beam are controlled.
 <HUD装置の機能的構成>
 図5は、本発明の実施の形態1であるヘッドアップディスプレイ装置の全体の構成例について概要を示した機能ブロック図である。車両2に搭載されたHUD装置1は、例えば、車両情報取得部10、制御部20、映像表示装置30、凹面ミラー41、ミラー駆動部42、およびスピーカ60等の各部からなる。なお、図5の例では、車両2の形状を乗用車のように表示しているが、特にこれに限られず、車両一般に適宜適用することができる。
<Functional configuration of HUD device>
FIG. 5 is a functional block diagram showing an outline of an overall configuration example of the head-up display device according to the first embodiment of the present invention. The HUD device 1 mounted on the vehicle 2 includes various parts such as a vehicle information acquisition unit 10, a control unit 20, a video display device 30, a concave mirror 41, a mirror driving unit 42, and a speaker 60. In the example of FIG. 5, the shape of the vehicle 2 is displayed like a passenger car. However, the shape of the vehicle 2 is not particularly limited, and can be applied as appropriate to general vehicles.
 車両情報取得部10は、車両2の各部に設置された後述するような各種のセンサ等の情報取得デバイスからなり、車両2で生じた各種イベントを検知したり、所定の間隔で走行状況に係る各種パラメータの値を検知・取得したりすることで車両情報4を取得して出力する。車両情報4には、図示するように、例えば、車両2の速度情報やギア情報、ハンドル操舵角情報、ランプ点灯情報、外光情報、距離情報、赤外線情報、エンジンON/OFF情報、カメラ映像情報(車内/車外)、加速度ジャイロ情報、GPS(Global Positioning System)情報、ナビゲーション情報、車車間通信情報、および路車間通信情報等が含まれ得る。 The vehicle information acquisition unit 10 includes information acquisition devices such as various sensors, which will be described later, installed in each part of the vehicle 2, detects various events occurring in the vehicle 2, and relates to the driving situation at predetermined intervals. The vehicle information 4 is acquired and output by detecting and acquiring values of various parameters. The vehicle information 4 includes, for example, speed information, gear information, steering wheel steering angle information, lamp lighting information, external light information, distance information, infrared information, engine ON / OFF information, and camera video information of the vehicle 2 as illustrated. (Inside / outside the vehicle), acceleration gyro information, GPS (Global Positioning System) information, navigation information, vehicle-to-vehicle communication information, road-to-vehicle communication information, and the like may be included.
 制御部20は、HUD装置1の動作を制御する機能を有し、例えば、CPU(Central Processing Unit)とこれにより実行されるソフトウェアにより実装される。マイコンやFPGA(Field Programmable Gate Array)等のハードウェアにより実装されていてもよい。制御部20は、図1にも示したように、車両情報取得部10から取得した車両情報4等に基づいて、虚像として表示する映像を映像表示装置30を駆動して形成し、これを凹面ミラー41によって反射させることでウィンドシールド3に投射する。 The control unit 20 has a function of controlling the operation of the HUD device 1 and is implemented by, for example, a CPU (Central Processing Unit) and software executed thereby. It may be implemented by hardware such as a microcomputer or FPGA (Field Programmable Gate Array). As shown in FIG. 1, the control unit 20 forms a video to be displayed as a virtual image by driving the video display device 30 on the basis of the vehicle information 4 acquired from the vehicle information acquisition unit 10, and forms the concave surface. The light is projected onto the windshield 3 by being reflected by the mirror 41.
 映像表示装置30は、上述したように、例えば、プロジェクタやLCDを含んで構成されるモジュール化されたデバイスであり、制御部20からの指示に基づいて虚像を表示するための映像を形成してこれを投射したり表示したりする。ミラー駆動部42は、制御部20からの指示に基づいて凹面ミラー41の角度を調整し、虚像の表示領域の位置を上下方向に調整する。スピーカ60は、HUD装置1に係る音声出力を行う。例えば、ナビゲーションシステムの音声案内や運転者5に警告等を通知する際の音声出力等を行うことができる。 As described above, the video display device 30 is a modular device including, for example, a projector and an LCD, and forms a video for displaying a virtual image based on an instruction from the control unit 20. This is projected and displayed. The mirror driving unit 42 adjusts the angle of the concave mirror 41 based on an instruction from the control unit 20 and adjusts the position of the virtual image display region in the vertical direction. The speaker 60 performs audio output related to the HUD device 1. For example, voice guidance of the navigation system or voice output when notifying the driver 5 of a warning or the like can be performed.
 図6は、本実施の形態のヘッドアップディスプレイ装置における車両情報4の取得に係るハードウェア構成の例について概要を示した図である。ここでは主に車両情報取得部10および制御部20の一部のハードウェア構成について示す。車両情報4の取得は、例えば、ECU(Electronic Control Unit)21の制御の下、ECU21に接続された各種のセンサ等の情報取得デバイスにより行われる。 FIG. 6 is a diagram showing an outline of an example of a hardware configuration related to acquisition of vehicle information 4 in the head-up display device of the present embodiment. Here, a part of the hardware configuration of the vehicle information acquisition unit 10 and the control unit 20 will be mainly shown. The vehicle information 4 is acquired by an information acquisition device such as various sensors connected to the ECU 21 under the control of an ECU (Electronic Control Unit) 21, for example.
 これらの情報取得デバイスとして、例えば、車速センサ101、シフトポジションセンサ102、ハンドル操舵角センサ103、ヘッドライトセンサ104、照度センサ105、色度センサ106、測距センサ107、赤外線センサ108、エンジン始動センサ109、加速度センサ110、ジャイロセンサ111、温度センサ112、路車間通信用無線受信機113、車車間通信用無線受信機114、カメラ(車内)115、カメラ(車外)116、GPS受信機117、およびVICS(Vehicle Information and Communication System:道路交通情報通信システム、登録商標(以下同様))受信機118等の各デバイスを有する。必ずしもこれら全てのデバイスを備えている必要はなく、また、他の種類のデバイスを備えていてもよい。備えているデバイスによって取得できる車両情報4を適宜用いることができる。 As these information acquisition devices, for example, a vehicle speed sensor 101, a shift position sensor 102, a steering wheel steering angle sensor 103, a headlight sensor 104, an illuminance sensor 105, a chromaticity sensor 106, a distance measuring sensor 107, an infrared sensor 108, an engine start sensor 109, acceleration sensor 110, gyro sensor 111, temperature sensor 112, road-to-vehicle communication wireless receiver 113, vehicle-to-vehicle communication wireless receiver 114, camera (inside the vehicle) 115, camera (outside the vehicle) 116, GPS receiver 117, and Each device includes a VICS (Vehicle Information and Communication System: a road traffic information communication system, registered trademark (hereinafter the same)) receiver 118 and the like. It is not always necessary to include all these devices, and other types of devices may be included. The vehicle information 4 that can be acquired by the provided device can be used as appropriate.
 車速センサ101は、車両2の速度情報を取得する。シフトポジションセンサ102は、車両2の現在のギア情報を取得する。ハンドル操舵角センサ103は、ハンドル操舵角情報を取得する。ヘッドライトセンサ104は、ヘッドライトのON/OFFに係るランプ点灯情報を取得する。照度センサ105および色度センサ106は、外光情報を取得する。測距センサ107は、車両2と外部の物体との間の距離情報を取得する。赤外線センサ108は、車両2の近距離における物体の有無や距離等に係る赤外線情報を取得する。エンジン始動センサ109は、エンジンON/OFF情報を検知する。 The vehicle speed sensor 101 acquires speed information of the vehicle 2. The shift position sensor 102 acquires current gear information of the vehicle 2. The steering wheel angle sensor 103 acquires steering wheel angle information. The headlight sensor 104 acquires lamp lighting information related to ON / OFF of the headlight. The illuminance sensor 105 and the chromaticity sensor 106 acquire external light information. The distance measuring sensor 107 acquires distance information between the vehicle 2 and an external object. The infrared sensor 108 acquires infrared information related to the presence / absence and distance of an object at a short distance of the vehicle 2. The engine start sensor 109 detects engine ON / OFF information.
 加速度センサ110およびジャイロセンサ111は、車両2の姿勢や挙動の情報として、加速度や角速度からなる加速度ジャイロ情報を取得する。温度センサ112は車内外の温度情報を取得する。路車間通信用無線受信機113および車車間通信用無線受信機114は、それぞれ、車両2と道路や標識、信号等との間の路車間通信により受信した路車間通信情報、および車両2と周辺の他の車両との間の車車間通信により受信した車車間通信情報を取得する。 The acceleration sensor 110 and the gyro sensor 111 acquire acceleration gyro information including acceleration and angular velocity as information on the posture and behavior of the vehicle 2. The temperature sensor 112 acquires temperature information inside and outside the vehicle. The road-to-vehicle communication wireless receiver 113 and the vehicle-to-vehicle communication wireless receiver 114 are respectively road-to-vehicle communication information received by road-to-vehicle communication between the vehicle 2 and roads, signs, signals, etc. The vehicle-to-vehicle communication information received by the vehicle-to-vehicle communication with another vehicle is acquired.
 カメラ(車内)115およびカメラ(車外)116は、それぞれ、車内および車外の状況の動画像を撮影してカメラ映像情報(車内/車外)を取得する。カメラ(車内)115では、例えば、運転者5の姿勢や、眼の位置、動き等を撮影する。得られた動画像を解析することにより、例えば、運転者5の疲労状況や視線の位置等を把握することが可能である。また、カメラ(車外)116では、車両2の前方や後方等の周囲の状況を撮影する。得られた動画像を解析することにより、例えば、周辺の他の車両や人等の移動物の有無、建物や地形、路面状況(雨や積雪、凍結、凹凸等)等を把握することが可能である。 The camera (inside the vehicle) 115 and the camera (outside the vehicle) 116 respectively capture the moving image of the situation inside and outside the vehicle and acquire camera video information (inside / outside the vehicle). The camera (inside the vehicle) 115 captures, for example, the posture of the driver 5, the position of the eyes, the movement, and the like. By analyzing the obtained moving image, for example, it is possible to grasp the fatigue status of the driver 5, the position of the line of sight, and the like. In addition, the camera (outside the vehicle) 116 captures a situation around the vehicle 2 such as the front or rear. By analyzing the obtained video, for example, it is possible to grasp the presence or absence of moving objects such as other vehicles and people around the building, topography, road surface conditions (rain, snow, freezing, unevenness, etc.) It is.
 GPS受信機117およびVICS受信機118は、それぞれ、GPS信号を受信して得られるGPS情報およびVICS信号を受信して得られるVICS情報を取得する。これらの情報を取得して利用するカーナビゲーションシステムの一部として実装されていてもよい。 The GPS receiver 117 and the VICS receiver 118 obtain GPS information obtained by receiving the GPS signal and VICS information obtained by receiving the VICS signal, respectively. It may be implemented as a part of a car navigation system that acquires and uses these pieces of information.
 図7は、本実施の形態のヘッドアップディスプレイ装置の構成例について詳細を示した機能ブロック図である。図7の例では、映像表示装置30がプロジェクタである場合を示しており、映像表示装置30は、例えば、光源31、照明光学系32、および表示素子33等の各部を有する。 FIG. 7 is a functional block diagram showing details of a configuration example of the head-up display device of the present embodiment. The example of FIG. 7 shows a case where the video display device 30 is a projector, and the video display device 30 includes, for example, each unit such as a light source 31, an illumination optical system 32, and a display element 33.
 光源31は、投射用の照明光を発生してバックライトを構成する部材であり、例えば、高圧水銀ランプやキセノンランプ、LED光源、レーザー光源等を用いることができる。製品寿命が長い固体光源を採用するのが望ましい。例えば、周囲の温度変化に対する光出力の変化が少ないLED光源に対して、光の発散角を低減する光学手段を設けたPBSを用いて偏光変換を行うのが望ましい。本実施の形態では、図3に示したように、LED光源31aおよびヒートシンク31bにより光源31を構成している。光源31は、後述する表示素子33に対する光の入射方向が、凹面ミラー41の入射瞳に効率よく入射するように配置もしくは制御される。 The light source 31 is a member that generates illumination light for projection and constitutes a backlight. For example, a high-pressure mercury lamp, a xenon lamp, an LED light source, a laser light source, or the like can be used. It is desirable to use a solid light source with a long product life. For example, it is desirable to perform polarization conversion using an PBS provided with optical means for reducing the divergence angle of light for an LED light source with little change in light output with respect to changes in ambient temperature. In the present embodiment, as shown in FIG. 3, the light source 31 is configured by the LED light source 31a and the heat sink 31b. The light source 31 is arranged or controlled so that the incident direction of light with respect to the display element 33 described later efficiently enters the entrance pupil of the concave mirror 41.
 照明光学系32は、光源31で発生した照明光を集光し、より均一化して表示素子33に照射する光学系である。本実施の形態では、図3に示したように、ライトファネル32a、導光体32b、および拡散板32cにより照明光学系32を構成している。 The illumination optical system 32 is an optical system that collects the illumination light generated by the light source 31 and irradiates the display element 33 with more uniform illumination light. In the present embodiment, as shown in FIG. 3, the illumination optical system 32 is configured by the light funnel 32a, the light guide 32b, and the diffusion plate 32c.
 表示素子33は、投射する映像を生成する素子であり、例えば、透過型液晶パネル、反射型液晶パネル、DMD(Digital Micromirror Device)(登録商標)パネル等を用いることができる。表示素子33の光入射面(すなわち、光源31および照明光学系32側)と光出射面(すなわち、図1における歪み補正レンズ43および凹面ミラー41側)には、それぞれ偏光板を配置して映像光のコントラスト比を高めるのが望ましい。光入射面に設ける偏光板には、偏光度が高いヨウ素系のものを用いることで高いコントラスト比を得ることができる。一方、光出射面に設ける偏光板には、染料系のものを用いることで外光が入射した場合や環境温度が高い場合でも高い信頼性を得ることができる。 The display element 33 is an element that generates an image to be projected. For example, a transmissive liquid crystal panel, a reflective liquid crystal panel, a DMD (Digital Micromirror Device) (registered trademark) panel, or the like can be used. A polarizing plate is disposed on each of the light incident surface (that is, the light source 31 and the illumination optical system 32 side) and the light emitting surface (that is, the distortion correction lens 43 and the concave mirror 41 side in FIG. 1) of the display element 33 to display an image. It is desirable to increase the light contrast ratio. A high contrast ratio can be obtained by using an iodine-based polarizing plate having a high degree of polarization as the polarizing plate provided on the light incident surface. On the other hand, by using a dye-based polarizing plate provided on the light emitting surface, high reliability can be obtained even when external light is incident or the ambient temperature is high.
 表示素子33としてLCDパネルを用いる場合、特に、運転者5が偏光サングラスを着用している場合には、特定の偏波が遮蔽されて映像が見えなくなるという不具合が発生し得る。これを防ぐために、LCDパネルの光出射面に配置した偏光板のさらに前方(すなわち、歪み補正レンズ43および凹面ミラー41側)にλ/4板を配置して、特定の偏光方向に揃った映像光を円偏光に変換するのが望ましい。 When an LCD panel is used as the display element 33, in particular, when the driver 5 is wearing polarized sunglasses, a specific polarization may be blocked and an image may not be visible. In order to prevent this, a λ / 4 plate is arranged in front of the polarizing plate arranged on the light exit surface of the LCD panel (that is, the distortion correcting lens 43 and the concave mirror 41 side), and the image is aligned in a specific polarization direction. It is desirable to convert light to circularly polarized light.
 制御部20は、より詳細には、ECU21、音声出力部22、不揮発性メモリ23、メモリ24、光源調整部25、歪み補正部26、表示素子駆動部27、およびミラー調整部28等の各部を有する。 More specifically, the control unit 20 includes each unit such as an ECU 21, an audio output unit 22, a nonvolatile memory 23, a memory 24, a light source adjustment unit 25, a distortion correction unit 26, a display element driving unit 27, and a mirror adjustment unit 28. Have.
 ECU21は、図6に示したように、車両情報取得部10を介して車両情報4を取得するとともに、取得した情報を必要に応じて不揮発性メモリ23やメモリ24に記録、格納したり読み出したりする。不揮発性メモリ23には、各種制御のための設定値やパラメータ等の設定情報が格納されていてもよい。また、ECU21は、専用のプログラムを実行させる等により、HUD装置1として表示する虚像に係る映像データを生成する。音声出力部22は、必要に応じてスピーカ60を介して音声情報を出力する。光源調整部25は、映像表示装置30の光源31の発光量を調整する。光源31が複数ある場合にはそれぞれ個別に制御するようにしてもよい。 As shown in FIG. 6, the ECU 21 acquires the vehicle information 4 via the vehicle information acquisition unit 10, and records, stores, and reads the acquired information in the nonvolatile memory 23 and the memory 24 as necessary. To do. The nonvolatile memory 23 may store setting information such as setting values and parameters for various controls. In addition, the ECU 21 generates video data related to a virtual image displayed as the HUD device 1 by executing a dedicated program. The audio output unit 22 outputs audio information via the speaker 60 as necessary. The light source adjustment unit 25 adjusts the light emission amount of the light source 31 of the video display device 30. When there are a plurality of light sources 31, they may be controlled individually.
 歪み補正部26は、ECU21が生成した映像について、映像表示装置30によって車両2のウィンドシールド3に投射した場合に生じる歪みを画像処理により補正する。この歪みには、例えば、ウィンドシールド3の曲率によって生じる映像の歪みや、映像表示装置30のモジュールを取り付けた際の微小な位置ズレに伴って生じる歪み等が含まれ得る。表示素子駆動部27は、歪み補正部26による補正後の映像データに応じた駆動信号を表示素子33に対して送り、投射する映像を生成させる。ミラー調整部28は、虚像の表示領域自体の位置を調整する必要がある場合に、ミラー駆動部42を介して凹面ミラー41の角度を変更し、虚像の表示領域を上下に移動させる。 The distortion correction unit 26 corrects distortion generated when the video generated by the ECU 21 is projected onto the windshield 3 of the vehicle 2 by the video display device 30 by image processing. This distortion may include, for example, distortion of an image caused by the curvature of the windshield 3, distortion caused by a minute positional shift when the module of the image display device 30 is attached, and the like. The display element drive unit 27 sends a drive signal corresponding to the video data corrected by the distortion correction unit 26 to the display element 33 to generate an image to be projected. When the position of the virtual image display area itself needs to be adjusted, the mirror adjustment unit 28 changes the angle of the concave mirror 41 via the mirror driving unit 42 to move the virtual image display area up and down.
 <虚像光学系の構成>
 図8は、HUD装置1における虚像を表示する光学系の構成例と装置の小型化について概要を示した図である。図8(a)は、HUD装置1における虚像光学系の基本構成の概要を示した図であり、HUD装置1の垂直断面の形状を模式的に示している。ここでは、説明の簡略化のために、収差および歪曲収差補正用の歪み補正レンズ43の図示は省略している。また、凹面ミラー41は簡易的に平面ミラーとして表示している。
<Configuration of virtual image optical system>
FIG. 8 is a diagram showing an outline of a configuration example of an optical system that displays a virtual image in the HUD device 1 and miniaturization of the device. FIG. 8A is a diagram showing an outline of the basic configuration of the virtual image optical system in the HUD device 1, and schematically shows the shape of the vertical section of the HUD device 1. Here, for the sake of simplification of explanation, the illustration of the distortion correction lens 43 for correcting aberration and distortion is omitted. The concave mirror 41 is simply displayed as a plane mirror.
 そして、図8の例では、映像表示装置30の表示素子33としてLCDパネルを用い、さらにバックライトである光源31と、凹面ミラー41を配置した構成を基本構成として、これらが筐体50に収納されている状態を示している。基本構成の各要素は、表示素子33に表示された映像が凹面ミラー41によって反射されて虚像として視認されるような位置に配置されている。また、表示素子33の画面上端、中央、および下端の映像から発生した映像光を、それぞれ映像光R、R、およびRとして点線の矢印で示している。ここで、図示するように、各映像光がそれぞれ凹面ミラー41で反射した際に、表示素子33に干渉して映像光が遮られないように各要素を配置することが設計上の制約となる。 In the example of FIG. 8, an LCD panel is used as the display element 33 of the video display device 30, and a configuration in which a light source 31 that is a backlight and a concave mirror 41 are arranged as a basic configuration is housed in the housing 50. It shows the state being done. Each element of the basic configuration is arranged at a position where an image displayed on the display element 33 is reflected by the concave mirror 41 and visually recognized as a virtual image. In addition, image lights generated from the images at the upper, middle, and lower ends of the screen of the display element 33 are indicated by dotted arrows as image lights R 1 , R 2 , and R 3 , respectively. Here, as shown in the drawing, when each image light is reflected by the concave mirror 41, it is a design constraint to arrange each element so that the image light is not blocked by interfering with the display element 33. .
 図8(a)~(c)は、上記の設計制約を考慮した上で、凹面ミラー41と表示素子33のそれぞれの中央の水平方向の距離Zをパラメータとして変化させた状態をそれぞれ示している。図8(a)から図8(c)に向かって、図示するように距離ZがZからZへと徐々に小さくなる構成を示しており、これに伴って凹面ミラー41の水平面からの角度もαからαへと徐々に大きくなっている。同様に、凹面ミラー41の垂直方向の寸法も徐々に大きくなっている。 FIGS. 8A to 8C show states where the horizontal distance Z at the center of each of the concave mirror 41 and the display element 33 is changed as a parameter in consideration of the above design constraints. . FIG. 8A to FIG. 8C show a configuration in which the distance Z gradually decreases from Z 1 to Z 3 as shown in the figure, and accordingly, the concave mirror 41 is displaced from the horizontal plane. The angle also gradually increases from α 1 to α 3 . Similarly, the vertical dimension of the concave mirror 41 is also gradually increased.
 距離Zのパラメータを変化させると、HUD装置1(より具体的には筐体50)の高さと奥行きが変化し、これに伴って容積も変化する。すなわち、距離Zを小さくすると、図8(c)に示すように、HUD装置1の高さがやや高くなる一方で、奥行きを大きく低減することができる。結果として、距離Zが小さくなるように構成することで、HUD装置1(筐体50)の容積をより小さくして小型化することができる。 When the parameter of the distance Z is changed, the height and depth of the HUD device 1 (more specifically, the housing 50) change, and the volume also changes accordingly. That is, when the distance Z is reduced, as shown in FIG. 8C, the height of the HUD device 1 is slightly increased while the depth can be greatly reduced. As a result, by configuring the distance Z to be small, the volume of the HUD device 1 (housing 50) can be further reduced and downsized.
 一方、例えば、図8(c)に示すように距離Zを小さくする(距離Z)と、表示素子33の上端から凹面ミラー41の上端までの距離(映像光Rに対応)と、表示素子33の下端から凹面ミラー41の下端までの距離(映像光Rに対応)との差分は大きくなる。すなわち、距離Zを小さくすると、HUD装置1の容積は小さくすることができるが、凹面ミラー41において発生する虚像の歪みや収差は大きくなってしまう。これに対して、少なくとも、表示素子33等の配置位置を、映像光(特に映像光R)に干渉しない範囲で図8(c)に示した矢印図形の方向に移動させ、表示素子33と凹面ミラー41との距離が可能な限り均一になるように配置するのが望ましい。 On the other hand, for example, when the distance Z is decreased (distance Z 3 ) as shown in FIG. 8C, the distance from the upper end of the display element 33 to the upper end of the concave mirror 41 (corresponding to the image light R 1 ) is displayed. the difference between the distance from the lower end of the element 33 to the lower end of the concave mirror 41 (corresponding to the image light R 3) increases. That is, when the distance Z is reduced, the volume of the HUD device 1 can be reduced, but the distortion and aberration of the virtual image generated in the concave mirror 41 are increased. On the other hand, at least the arrangement position of the display element 33 or the like is moved in the direction of the arrow shown in FIG. 8C within a range that does not interfere with the image light (particularly the image light R 3 ). It is desirable that the distance from the concave mirror 41 be as uniform as possible.
 さらに本実施の形態では、上述したように、表示素子33と凹面ミラー41との間に、虚像の歪みと虚像で発生する収差を補正するための歪み補正レンズ43を配置することで歪みと収差の補正を行う。 Furthermore, in the present embodiment, as described above, the distortion and aberration are arranged by disposing the distortion correction lens 43 for correcting the distortion of the virtual image and the aberration generated in the virtual image between the display element 33 and the concave mirror 41. Perform the correction.
 図9は、歪み補正レンズ43による歪みおよび収差の補正の例について概要を示した図である。図示するように、凹面ミラー41の光軸上の点Oに対して、焦点F(焦点距離f)の内側に表示素子33(物点)を配置することで、凹面ミラー41による虚像(図中では矢印図形で表記)を得ることができる。なお、図中では説明の便宜上、凹面ミラー41を同じ正の屈折力を持つ凸レンズとみなし、物点と凸レンズ(図中では説明の便宜上、凹面ミラー41として表記)および発生する虚像の関係を示している。 FIG. 9 is a diagram showing an outline of an example of distortion and aberration correction by the distortion correction lens 43. As shown in the figure, a display element 33 (object point) is placed inside the focal point F (focal length f) with respect to a point O on the optical axis of the concave mirror 41, thereby providing a virtual image (in the figure) by the concave mirror 41. Then, it can be obtained by an arrow figure). In the figure, for convenience of explanation, the concave mirror 41 is regarded as a convex lens having the same positive refractive power, and the relationship between an object point and a convex lens (indicated in the figure as the concave mirror 41 for convenience of explanation) and a generated virtual image is shown. ing.
 本実施の形態では、上述したように、凹面ミラー41で発生する歪みと収差を低減するために歪み補正レンズ43を配置する。本実施の形態では、この光学素子は透過型の光学レンズとするが、レンズに限らず凹面ミラーであってもよい。歪み補正レンズ43は、
(1)表示素子33からの映像光がテレセントリックな光束として歪み補正レンズ43の反射面へ入射する場合は、歪み補正レンズ43(光学レンズもしくは凹面ミラー)の屈折力はほぼゼロとなる
(2)表示素子33からの映像光が発散して歪み補正レンズ43に入射する場合には、歪み補正レンズ43は正の屈折力を持つ
(3)表示素子33からの映像光が集光して歪み補正レンズ43に入射する場合には、歪み補正レンズ43は負の屈折力を持つ
ようにして、凹面ミラー41に入射する光束の方向(角度と位置)を制御する。これにより、凹面ミラー41で発生する虚像の歪曲収差を補正する。さらに、歪み補正レンズ43が透過型の光学レンズにより構成されている場合は、光入射面(表示素子33側)と、光出射面(凹面ミラー41側)の相互作用により、虚像に発生する結像性能に関する収差を補正する。
In the present embodiment, as described above, the distortion correction lens 43 is disposed in order to reduce distortion and aberration generated in the concave mirror 41. In this embodiment, the optical element is a transmissive optical lens, but is not limited to a lens and may be a concave mirror. The distortion correction lens 43 is
(1) When the image light from the display element 33 enters the reflection surface of the distortion correction lens 43 as a telecentric light beam, the refractive power of the distortion correction lens 43 (optical lens or concave mirror) becomes almost zero (2) When the image light from the display element 33 diverges and enters the distortion correction lens 43, the distortion correction lens 43 has a positive refractive power. (3) The image light from the display element 33 is condensed to correct the distortion. When entering the lens 43, the distortion correcting lens 43 has a negative refractive power so as to control the direction (angle and position) of the light beam incident on the concave mirror 41. Thereby, the distortion aberration of the virtual image generated by the concave mirror 41 is corrected. Further, when the distortion correction lens 43 is formed of a transmission type optical lens, a virtual image is generated due to the interaction between the light incident surface (display element 33 side) and the light output surface (concave mirror 41 side). Aberrations related to image performance are corrected.
 このとき、表示素子33から凹面ミラー41までの距離aと、凹面ミラー41から虚像までの距離bは、上述したように、ウィンドシールド3の傾斜や曲率により、虚像の上端部と下端部とで異なることになる。これにより、運転者5が視認する虚像の像倍率は、上端部と下端部とで異なるものとなる。 At this time, the distance a from the display element 33 to the concave mirror 41 and the distance b from the concave mirror 41 to the virtual image are, as described above, between the upper and lower ends of the virtual image due to the inclination and curvature of the windshield 3. Will be different. Thereby, the image magnification of the virtual image visually recognized by the driver 5 is different between the upper end portion and the lower end portion.
 これに対し、本実施の形態では、表示素子33を凹面ミラー41の光軸に対して図9に示すように傾けることで、虚像上端部の像倍率M’=b’/a’と、虚像下端部の像倍率M=b/aとを略一致させる。これにより、ウィンドシールド3の傾斜等による歪曲収差を低減させる。 On the other hand, in the present embodiment, the display element 33 is tilted with respect to the optical axis of the concave mirror 41 as shown in FIG. 9, so that the image magnification M ′ = b ′ / a ′ at the upper end of the virtual image and the virtual image are obtained. The image magnification M at the lower end is made substantially equal to b / a. Thereby, distortion due to the inclination of the windshield 3 or the like is reduced.
 そして、本実施の形態ではさらに、歪み補正レンズ43の垂直方向の断面形状の平均曲率半径と、水平方向の断面形状の平均曲率半径とを異なる値とする。これにより、ウィンドシールド3の垂直方向の曲率半径と水平方向の曲率半径との相違により生じる光路差によって発生する歪曲収差と、虚像の結像性能を低下させる収差を補正する。ウィンドシールド3に直接映像光を反射させて虚像を得るHUD装置1においては、ウィンドシールド3の垂直方向の曲率半径と水平方向の曲率半径との相違により生じる光路差によって発生する収差の補正が、虚像の結像性能確保において最も重要となる。 In the present embodiment, the average curvature radius of the cross-sectional shape in the vertical direction of the distortion correction lens 43 and the average curvature radius of the cross-sectional shape in the horizontal direction are set to different values. Thereby, the distortion aberration caused by the optical path difference caused by the difference between the curvature radius in the vertical direction and the curvature radius in the horizontal direction of the windshield 3 and the aberration that deteriorates the imaging performance of the virtual image are corrected. In the HUD device 1 that obtains a virtual image by directly reflecting video light on the windshield 3, correction of aberrations caused by the optical path difference caused by the difference between the curvature radius in the vertical direction and the curvature radius in the horizontal direction of the windshield 3 is as follows. It is most important in securing the imaging performance of virtual images.
 具体的には、歪み補正レンズ43の形状として自由曲面形状を用いることで、上述したようなウィンドシールド3の曲率半径の違いによる虚像の結像性能低下を低減させる。従来の光学設計では、光軸からの距離rの関数としてレンズ面やミラー面の形状を定義する非球面形状が用いられてきた。非球面形状は、以下の式のように表される。 Specifically, by using a free-form surface shape as the shape of the distortion correction lens 43, a decrease in the imaging performance of the virtual image due to the difference in the radius of curvature of the windshield 3 as described above is reduced. Conventional optical designs have used aspherical shapes that define the shape of lens surfaces and mirror surfaces as a function of distance r from the optical axis. The aspherical shape is expressed as the following equation.
Figure JPOXMLDOC01-appb-M000001
 これに対し、本実施の形態では、光軸からの絶対座標(x,y)の関数として面の形状を定義することが可能な自由曲面形状を用いる。自由曲面形状は、以下の式のように表される。
Figure JPOXMLDOC01-appb-M000001
On the other hand, in the present embodiment, a free curved surface shape that can define the surface shape as a function of absolute coordinates (x, y) from the optical axis is used. The free-form surface shape is represented by the following equation.
Figure JPOXMLDOC01-appb-M000002
 このように、歪み補正レンズ43を用い、その断面形状や配置位置を制御することで、凹面ミラー41で発生する虚像の歪みと収差を補正することができる。しかし、そのためには、凹面ミラー41および歪み補正レンズ43という光学部材について、高い位置決め精度が確保されていることが前提となる。
Figure JPOXMLDOC01-appb-M000002
In this way, by using the distortion correction lens 43 and controlling its cross-sectional shape and arrangement position, the distortion and aberration of the virtual image generated by the concave mirror 41 can be corrected. However, for that purpose, it is a premise that high positioning accuracy is secured for the optical members such as the concave mirror 41 and the distortion correction lens 43.
 この点、例えば、図2(b)に示したHUD装置1の構成において、筐体50を構成する外装蓋部51や外装ケース54、および光学部品保持部材53等の各部材を、耐熱性や剛性、寸法精度が高くない材料を用いて形成した場合には問題が生じ得る。例えば、HUD装置1の製造時や車両2への取り付け時の加工精度や作業精度、使用中の熱による膨張や変形等の影響により、凹面ミラー41と歪み補正レンズ43との位置関係に設計からのズレが生じ得る。その結果、歪み補正レンズ43を用いることによる歪みや収差の補正の精度も低下することになる。 In this regard, for example, in the configuration of the HUD device 1 shown in FIG. 2B, each member such as the exterior lid portion 51, the exterior case 54, and the optical component holding member 53 constituting the housing 50 is made resistant to heat. Problems may arise when formed using materials that do not have high rigidity and dimensional accuracy. For example, the positional relationship between the concave mirror 41 and the distortion correction lens 43 is designed due to the effects of processing accuracy and work accuracy when the HUD device 1 is manufactured and attached to the vehicle 2, and expansion and deformation due to heat during use. This may cause a deviation. As a result, the accuracy of correcting distortion and aberration by using the distortion correction lens 43 also decreases.
 そこで本実施の形態では、図2(b)に示したHUD装置1の構成において、少なくとも、凹面ミラー41と歪み補正レンズ43を保持する光学部品保持部材53を、高耐熱、高剛性、高寸法精度という特性を有する材料により形成する。具体的には、例えば、BMC(Bulk Molding Compound)等の不飽和ポリエステル樹脂や、ガラスフィラー入りのポリカーボネート等を用いる。特に、BMCは、熱硬化性を有し、金型による複雑な成形も可能であることから、本実施の形態ではBMCを用いるものとする。なお、この場合、光学部品保持部材53を収納する外装ケース54および外装蓋部51等の筐体50を構成する部材については、主に防塵の機能を有することになる。したがって、必ずしも上記のような材料を用いる必要はなく、製造コスト等を考慮して適当な材料を用いることができる。 Therefore, in the present embodiment, in the configuration of the HUD device 1 shown in FIG. 2B, at least the optical component holding member 53 that holds the concave mirror 41 and the distortion correction lens 43 is provided with high heat resistance, high rigidity, and high dimensions. It is formed of a material having the characteristic of accuracy. Specifically, for example, unsaturated polyester resin such as BMC (Bulk Molding Compound), polycarbonate with glass filler, or the like is used. In particular, BMC is used in this embodiment because BMC has thermosetting properties and can be complicatedly formed by a mold. In this case, the members constituting the housing 50 such as the outer case 54 and the outer lid portion 51 that store the optical component holding member 53 mainly have a dustproof function. Therefore, it is not always necessary to use the material as described above, and an appropriate material can be used in consideration of the manufacturing cost.
 上記のような材料により形成された光学部品保持部材53によって凹面ミラー41と歪み補正レンズ43を保持することにより、車両2における高温や振動等の過酷な使用環境下においても、凹面ミラー41と歪み補正レンズ43との間の位置関係を高精度で維持することができる。なお、凹面ミラー41と歪み補正レンズ43との相対的な位置関係は、3次元的に複雑なねじれの関係にあるため、凹面ミラー41と歪み補正レンズ43のみで一体として構成して保持することは困難である。したがって、本実施の形態では、凹面ミラー41と歪み補正レンズ43とをそれぞれ個別に光学部品保持部材53により保持する構成とする。 By holding the concave mirror 41 and the distortion correction lens 43 by the optical component holding member 53 formed of the material as described above, the concave mirror 41 and the distortion can be obtained even under severe use environment such as high temperature and vibration in the vehicle 2. The positional relationship with the correction lens 43 can be maintained with high accuracy. In addition, since the relative positional relationship between the concave mirror 41 and the distortion correction lens 43 is a three-dimensional complicated torsional relationship, the concave mirror 41 and the distortion correction lens 43 are configured and held as a single unit. It is difficult. Therefore, in this embodiment, the concave mirror 41 and the distortion correction lens 43 are individually held by the optical component holding member 53.
 そして、この光学保持部材53は、凹面ミラー41と歪み補正レンズ43との間の位置関係が上記のような3次元的なねじれの関係にあっても、これを高い精度で実現および維持することを可能とする。すなわち、凹面ミラー41と歪み補正レンズ43を、高耐熱、高剛性、高寸法精度という特性を有する材料で形成された単一の介在部品である光学保持部材53で保持することで、相対的な位置関係を高精度で維持することを実現する。そして、本実施の形態では、このような特性を有する光学保持部材53を、樹脂金型成形で単一の部品として成形することが可能となるように、その形状についても最適化がされている。 The optical holding member 53 realizes and maintains the positional relationship between the concave mirror 41 and the distortion correction lens 43 with high accuracy even if the positional relationship between the concave mirror 41 and the distortion correcting lens 43 is in the three-dimensional torsional relationship as described above. Is possible. That is, the concave mirror 41 and the distortion correction lens 43 are held by the optical holding member 53 which is a single intervening part formed of a material having characteristics of high heat resistance, high rigidity, and high dimensional accuracy. It is possible to maintain the positional relationship with high accuracy. In the present embodiment, the shape of the optical holding member 53 having such characteristics is also optimized so that it can be molded as a single part by resin mold molding. .
 また、本実施の形態では、上述したように、映像表示装置30をモジュール化して着脱が容易となるように構成している。これにより、映像表示装置30の装着の際に微小な位置ズレが生じる可能性があるが、このズレは、例えば、図7に示した制御部20の歪み補正部26における画像処理等により補正・調整を行うことが可能なものである。 In the present embodiment, as described above, the video display device 30 is modularized so that it can be easily attached and detached. As a result, there is a possibility that a slight positional deviation may occur when the video display device 30 is mounted. This deviation is corrected or corrected by, for example, image processing in the distortion correcting unit 26 of the control unit 20 shown in FIG. Adjustments can be made.
 <HUD装置の処理内容>
 図10は、本実施の形態のヘッドアップディスプレイ装置の初期動作の例について概要を示したフローチャートである。停止中の車両2においてイグニッションスイッチがONされることでHUD装置1の電源がONされると(S01)、HUD装置1は、制御部20からの指示に基づいて、まず、車両情報取得部10により車両情報を取得する(S02)。そして、制御部20は、車両情報4のうち、照度センサ105や色度センサ106等により取得した外光情報に基づいて好適な明るさレベルを算出し(S03)、光源調整部25により光源31の発光量を制御して、算出した明るさレベルとなるように設定する(S04)。例えば、外光が明るい場合には明るさレベルを高くし、暗い場合には明るさレベルを低く設定する。
<Processing content of HUD device>
FIG. 10 is a flowchart outlining an example of the initial operation of the head-up display device of the present embodiment. When the ignition switch is turned on in the stopped vehicle 2 and the power of the HUD device 1 is turned on (S01), the HUD device 1 first starts the vehicle information acquisition unit 10 based on an instruction from the control unit 20. Thus, vehicle information is acquired (S02). Then, the control unit 20 calculates a suitable brightness level based on external light information acquired by the illuminance sensor 105, the chromaticity sensor 106, and the like in the vehicle information 4 (S03), and the light source adjustment unit 25 calculates the light source 31. Is set so that the calculated brightness level is obtained (S04). For example, when the outside light is bright, the brightness level is set high, and when the outside light is dark, the brightness level is set low.
 その後、ECU21により、虚像として表示する映像(例えば、初期画像)を決定、生成し(S05)、生成した映像に対して歪み補正部26により歪みを補正する処理を実施した後(S06)、表示素子駆動部27により表示素子33を駆動・制御して、投射する映像を形成させる(S07)。これにより、映像がウィンドシールド3に投射され、運転者5は虚像を視認することができるようになる。 Thereafter, the ECU 21 determines and generates a video (for example, an initial image) to be displayed as a virtual image (S05), and performs a process of correcting the distortion by the distortion correction unit 26 for the generated video (S06). The display element 33 is driven and controlled by the element driving unit 27 to form a projected image (S07). Thereby, an image | video is projected on the windshield 3, and the driver | operator 5 comes to be able to visually recognize a virtual image.
 HUD装置1全体で、上述した一連の初期動作も含む各部の起動・始動が完了すると、HUD-ON信号が出力されるが、制御部20ではこの信号を受けたか否かを判定する(S08)。受けていなければ、さらにHUD-ON信号を一定時間待ち受け(S09)、ステップS08でHUD-ON信号を受けたと判定されるまで、HUD-ON信号の待ち受け処理(S09)を繰り返す。ステップS08でHUD-ON信号を受けたと判定された場合は、後述するHUD装置1の通常動作を開始し(S10)、一連の初期動作を終了する。 When the HUD device 1 as a whole completes starting and starting of each part including the series of initial operations described above, a HUD-ON signal is output. The controller 20 determines whether or not this signal has been received (S08). . If not received, the HUD-ON signal is further waited for a predetermined time (S09), and the HUD-ON signal waiting process (S09) is repeated until it is determined in step S08 that the HUD-ON signal has been received. If it is determined in step S08 that the HUD-ON signal has been received, normal operation of the HUD device 1 described later is started (S10), and a series of initial operations are terminated.
 図11は、本実施の形態のヘッドアップディスプレイ装置の通常動作の例について概要を示したフローチャートである。通常動作においても、基本的な処理の流れは上述の図10に示した初期動作と概ね同様である。まず、HUD装置1は、制御部20からの指示に基づいて、車両情報取得部10により車両情報を取得する(S21)。そして、制御部20は、車両情報4のうち、照度センサ105や色度センサ106等により取得した外光情報に基づいて明るさレベル調整処理を行う(S22)。 FIG. 11 is a flowchart showing an outline of an example of normal operation of the head-up display device of the present embodiment. Also in the normal operation, the basic processing flow is substantially the same as the initial operation shown in FIG. First, the HUD device 1 acquires vehicle information by the vehicle information acquisition unit 10 based on an instruction from the control unit 20 (S21). And the control part 20 performs a brightness level adjustment process based on the external light information acquired by the illumination intensity sensor 105, the chromaticity sensor 106, etc. among the vehicle information 4 (S22).
 図12は、本実施の形態のヘッドアップディスプレイ装置の明るさレベル調整処理の例について概要を示したフローチャートである。明るさレベル調整処理を開始すると、まず、取得した外光情報に基づいて好適な明るさレベルを算出する(S221)。そして、現状設定されている明るさレベルと比較することにより、明るさレベルの変更の要否を判定する(S222)。変更が不要である場合にはそのまま明るさレベル調整処理を終了する。一方、変更が必要である場合には、光源調整部25により光源31の発光量を制御して、変更後の明るさレベルとなるように設定し(S223)、明るさレベル調整処理を終了する。なお、ステップS222において、ステップS221で算出した好適な明るさレベルと、現状設定されている明るさレベルとの間に差分がある場合でも、差分が所定の閾値以上である場合にのみ明るさレベルの変更が必要であると判定するようにしてもよい。 FIG. 12 is a flowchart showing an outline of an example of brightness level adjustment processing of the head-up display device of the present embodiment. When the brightness level adjustment process is started, first, a suitable brightness level is calculated based on the acquired outside light information (S221). Then, by comparing with the currently set brightness level, it is determined whether or not the brightness level needs to be changed (S222). If no change is necessary, the brightness level adjustment process is terminated. On the other hand, when the change is necessary, the light source adjustment unit 25 controls the light emission amount of the light source 31 to set the brightness level after the change (S223), and the brightness level adjustment process is ended. . In step S222, even when there is a difference between the preferred brightness level calculated in step S221 and the currently set brightness level, the brightness level is only when the difference is equal to or greater than a predetermined threshold. It may be determined that the change is necessary.
 図11に戻り、その後、ECU21により、ステップS21で取得した最新の車両情報4に基づいて、虚像として表示する映像を現状のものから必要に応じて変更し、変更後の映像を決定、生成する(S23)。なお、車両情報4に基づいて表示内容を変更するパターンは、取得した車両情報4の内容やそれらの組み合わせ等に応じて多数のものがあり得る。例えば、速度情報が変化したことにより、常時表示されている速度表示の数値を変更する場合や、ナビゲーション情報に基づいて案内の矢印図形を表示/消去したり、矢印の形状や表示位置等を変更したりする場合等、様々なパターンがあり得る。 Returning to FIG. 11, the ECU 21 then changes the video to be displayed as a virtual image from the current one as necessary based on the latest vehicle information 4 acquired in step S21, and determines and generates the changed video. (S23). In addition, the pattern which changes a display content based on the vehicle information 4 can have many things according to the content of the acquired vehicle information 4, those combinations, etc. For example, when the speed information changes, the value of the speed display that is displayed at all times is changed, the guidance arrow graphic is displayed / erased based on the navigation information, and the arrow shape and display position are changed. There may be various patterns, such as when performing.
 その後、本実施の形態では、車両2の走行状況に応じて視認性や表示内容の適切性等を維持するための調整・補正処理を行う。まず、虚像の表示領域自体の位置を調整する必要がある場合に、ミラー駆動部42を介して凹面ミラー41の角度を変更し、虚像の表示領域を上下に移動させるミラー調整処理を行う(S24)。その後さらに、車両2の振動に対して表示領域内における映像の表示位置を補正する振動補正処理を行う(S25)。その後、調整・補正した映像に対して歪み補正部26により歪みを補正する処理を実施した後(S26)、表示素子駆動部27により表示素子33を駆動・制御して投射する映像を形成させる(S27)。 Thereafter, in the present embodiment, adjustment / correction processing is performed to maintain visibility, appropriateness of display contents, and the like according to the traveling state of the vehicle 2. First, when it is necessary to adjust the position of the virtual image display area itself, the angle of the concave mirror 41 is changed via the mirror driving unit 42 to perform mirror adjustment processing for moving the virtual image display area up and down (S24). ). Thereafter, a vibration correction process for correcting the display position of the image in the display area with respect to the vibration of the vehicle 2 is performed (S25). Thereafter, the distortion correction unit 26 performs distortion correction processing on the adjusted / corrected image (S26), and then the display element driving unit 27 drives and controls the display element 33 to form a projected image ( S27).
 上述した一連の通常動作を実行している際に、車両2の停止等に伴って電源OFF等がなされると、HUD装置1に対してHUD-OFF信号が出力されるが、制御部20ではこの信号を受けたか否かを判定する(S28)。HUD-OFF信号を受けていなければ、ステップS21に戻って、HUD-OFF信号を受けるまで一連の通常動作を繰り返す。HUD-OFF信号を受けたと判定された場合は、一連の通常動作を終了する。 When the power is turned off when the vehicle 2 is stopped during the series of normal operations described above, a HUD-OFF signal is output to the HUD device 1. It is determined whether or not this signal has been received (S28). If the HUD-OFF signal has not been received, the process returns to step S21, and a series of normal operations are repeated until the HUD-OFF signal is received. If it is determined that the HUD-OFF signal has been received, a series of normal operations is terminated.
 以上に説明したように、本発明の実施の形態1であるHUD装置1によれば、虚像光学系において光路折り返しミラーを用いずに凹面ミラー41のみのダイレクト光学系とする。そして、凹面ミラー41で発生する虚像の歪みと収差を補正するため、凹面ミラー41と表示素子33との間に歪み補正レンズ43を配置する。このような構成をとることにより、HUD装置1のさらなる小型化を可能とする。 As described above, according to the HUD device 1 according to the first embodiment of the present invention, a direct optical system including only the concave mirror 41 is used without using an optical path folding mirror in the virtual image optical system. Then, in order to correct the distortion and aberration of the virtual image generated by the concave mirror 41, a distortion correction lens 43 is arranged between the concave mirror 41 and the display element 33. By taking such a configuration, the HUD device 1 can be further reduced in size.
 そして、本実施の形態ではさらに、凹面ミラー41と歪み補正レンズ43を、高耐熱、高剛性、高寸法精度の材料により形成された光学部品保持部材53によって保持する。これにより、凹面ミラー41と歪み補正レンズ43との間の位置関係を高精度に維持することができる。また、光源31や照明光学系32、表示素子33(LCDパネル等)を映像表示装置30としてモジュール化し、着脱可能な構成とする。これにより、故障等し易い映像表示装置30の交換性能を向上させるとともに、放熱性も向上させることができる。 In the present embodiment, the concave mirror 41 and the distortion correction lens 43 are further held by an optical component holding member 53 formed of a material having high heat resistance, high rigidity, and high dimensional accuracy. Thereby, the positional relationship between the concave mirror 41 and the distortion correction lens 43 can be maintained with high accuracy. Further, the light source 31, the illumination optical system 32, and the display element 33 (LCD panel or the like) are modularized as the video display device 30 and are configured to be detachable. As a result, it is possible to improve the replacement performance of the video display device 30 that is likely to fail, and to improve the heat dissipation.
 (実施の形態2)
 上述した実施の形態1では、図2(b)に示すように、凹面ミラー41と歪み補正レンズ43を光学部品保持部材53によって保持し、これを外装ケース54および外装蓋部51に収納する構成をとっている。このとき、凹面ミラー41と歪み補正レンズ43の位置関係を高精度に維持するため、少なくとも光学部品保持部材53については、BMC等の高耐熱、高剛性、高寸法精度の材料によって形成する。
(Embodiment 2)
In the first embodiment described above, as shown in FIG. 2B, the concave mirror 41 and the distortion correction lens 43 are held by the optical component holding member 53 and are housed in the outer case 54 and the outer lid portion 51. Have taken. At this time, in order to maintain the positional relationship between the concave mirror 41 and the distortion correction lens 43 with high accuracy, at least the optical component holding member 53 is formed of a material having high heat resistance, high rigidity, and high dimensional accuracy such as BMC.
 一方で、図2(b)に示すような光学部品保持部材53では、その形状によっては十分な剛性を確保できない場合も生じ得る。例えば、図2(b)に示すように、光学部品保持部材53の両端部において凹面ミラー41と歪み補正レンズ43をそれぞれ略垂直方向に保持する場合、光学部品保持部材53の側面から見た形状は、概ね凹形状(もしくはコの字型)となる。この形状では、凹み部分において折れ曲がるような形の歪みが生じ易く、高い剛性を確保しにくい形状であるといえる。 On the other hand, in the optical component holding member 53 as shown in FIG. 2B, there may be a case where sufficient rigidity cannot be ensured depending on the shape. For example, as shown in FIG. 2B, when holding the concave mirror 41 and the distortion correcting lens 43 in the substantially vertical direction at both ends of the optical component holding member 53, the shape seen from the side surface of the optical component holding member 53. Is generally concave (or U-shaped). In this shape, it can be said that it is a shape which is easy to produce the shape of the shape which bends in a dent part, and cannot ensure high rigidity.
 これに対し、高い剛性を実現するために、例えば、図2(b)に示すような光学部品保持部材53において側面を壁状とする等の補強を行っていくと、光学部品保持部材53は徐々に凹面ミラー41と歪み補正レンズ43の保持だけではなく、これらを収納する外装ケースとしての機能も持つことが可能な状態となる。そこで、本発明の実施の形態2であるHUD装置1では、凹面ミラー41と歪み補正レンズ43の光学部品を保持する部材について、外装ケースとしての機能も兼ねた部材として形成する。 On the other hand, in order to realize high rigidity, for example, when the optical component holding member 53 as shown in FIG. Gradually, not only the concave mirror 41 and the distortion correction lens 43 are held, but also a function as an outer case for housing them can be achieved. Therefore, in the HUD device 1 according to the second embodiment of the present invention, the members that hold the optical components of the concave mirror 41 and the distortion correction lens 43 are formed as members that also function as an exterior case.
 図13は、本発明の実施の形態2であるヘッドアップディスプレイ装置の実装形態の例について概要を示した図である。ここでは、上述の実施の形態1に示した構成と同様のHUD装置1において、図2(b)の例における光学部品保持部材53と外装ケース54とを物理的・機能的に一体とした光学部品保持外装ケース55を用いている。すなわち、外装ケースとしての機能を有する光学部品保持外装ケース55に対して、凹面ミラー41と歪み補正レンズ43をそれぞれ直接保持する構成としている。そして、光学部品保持外装ケース55は、図2(b)における光学部品保持部材53と同様に、BMC等の高耐熱、高剛性、高寸法精度という特性を有する材料によって形成する。 FIG. 13 is a diagram showing an outline of an example of a mounting form of the head-up display device according to the second embodiment of the present invention. Here, in the HUD device 1 having the same configuration as that shown in the first embodiment, the optical component holding member 53 and the exterior case 54 in the example of FIG. 2B are integrated physically and functionally. A component holding outer case 55 is used. That is, the concave mirror 41 and the distortion correcting lens 43 are directly held on the optical component holding outer case 55 having a function as an outer case. The optical component holding outer case 55 is formed of a material having characteristics of high heat resistance, high rigidity, and high dimensional accuracy, such as BMC, like the optical component holding member 53 in FIG.
 これにより、凹面ミラー41と歪み補正レンズ43の位置関係を高精度に維持する等、実施の形態1のHUD装置1の構成により得られる効果と同様の効果を奏しつつ、さらに、部品点数を減らして構成をシンプルにすることができる。 As a result, the same effect as that obtained by the configuration of the HUD device 1 of the first embodiment, such as maintaining the positional relationship between the concave mirror 41 and the distortion correction lens 43 with high accuracy, can be obtained, and the number of parts can be further reduced. To simplify the configuration.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記の実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. . Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 本発明は、透明のガラス素子等に画像を投影するヘッドアップディスプレイ装置に利用可能である。 The present invention can be used for a head-up display device that projects an image on a transparent glass element or the like.
1…HUD装置、2…車両、3…ウィンドシールド、4…車両情報、5…運転者、
10…車両情報取得部、
20…制御部、21…ECU、22…音声出力部、23…不揮発性メモリ、24…メモリ、25…光源調整部、26…歪み補正部、27…表示素子駆動部、28…ミラー調整部、
30…映像表示装置、31…光源、31a…LED光源、31b…ヒートシンク、32…照明光学系、32a…ライトファネル、32b…導光体、32b_1…入射面、33…表示素子、33b_2…対向面、32b_3…出射面、32c…拡散板、32d…接合部、33…表示素子、34…フレキシブルケーブル、35…フレーム、36a、36b…外装部材、
41…凹面ミラー、42…ミラー駆動部、43…歪み補正レンズ、
50…筐体、51…外装蓋部、52…防眩板、53…光学部品保持部材、54…外装ケース、55…光学部品保持外装ケース、
60…スピーカ、
70…メイン基板、
101…車速センサ、102…シフトポジションセンサ、103…ハンドル操舵角センサ、104…ヘッドライトセンサ、105…照度センサ、106…色度センサ、107…測距センサ、108…赤外線センサ、109…エンジン始動センサ、110…加速度センサ、111…ジャイロセンサ、112…温度センサ、113…路車間通信用無線受信機、114…車車間通信用無線受信機、115…カメラ(車内)、116…カメラ(車外)、117…GPS受信機、118…VICS受信機
DESCRIPTION OF SYMBOLS 1 ... HUD apparatus, 2 ... Vehicle, 3 ... Wind shield, 4 ... Vehicle information, 5 ... Driver,
10 ... Vehicle information acquisition unit,
DESCRIPTION OF SYMBOLS 20 ... Control part, 21 ... ECU, 22 ... Audio | voice output part, 23 ... Nonvolatile memory, 24 ... Memory, 25 ... Light source adjustment part, 26 ... Distortion correction part, 27 ... Display element drive part, 28 ... Mirror adjustment part,
DESCRIPTION OF SYMBOLS 30 ... Image display apparatus, 31 ... Light source, 31a ... LED light source, 31b ... Heat sink, 32 ... Illumination optical system, 32a ... Light funnel, 32b ... Light guide, 32b_1 ... Incident surface, 33 ... Display element, 33b_2 ... Opposite surface 32b_3... Exit surface, 32c... Diffuser plate, 32d... Junction, 33... Display element, 34 .. flexible cable, 35 ... frame, 36a, 36b.
41 ... concave mirror, 42 ... mirror drive unit, 43 ... distortion correction lens,
DESCRIPTION OF SYMBOLS 50 ... Housing | casing, 51 ... Exterior lid part, 52 ... Anti-glare board, 53 ... Optical component holding member, 54 ... Exterior case, 55 ... Optical component holding exterior case,
60 ... Speaker,
70 ... main board,
DESCRIPTION OF SYMBOLS 101 ... Vehicle speed sensor, 102 ... Shift position sensor, 103 ... Steering wheel angle sensor, 104 ... Headlight sensor, 105 ... Illuminance sensor, 106 ... Chromaticity sensor, 107 ... Ranging sensor, 108 ... Infrared sensor, 109 ... Engine start 110, acceleration sensor, 111 ... gyro sensor, 112 ... temperature sensor, 113 ... wireless receiver for road-to-vehicle communication, 114 ... wireless receiver for vehicle-to-vehicle communication, 115 ... camera (inside the vehicle), 116 ... camera (outside the vehicle) 117 ... GPS receiver, 118 ... VICS receiver

Claims (14)

  1.  車両用のヘッドアップディスプレイ装置であって、
     光源および表示素子を有し、前記表示素子に映像表示して映像投射光を生成して出射する映像表示装置と、
     前記映像表示装置から出射された前記映像投射光を前記車両のウィンドシールドまたはコンバイナにて反射させることにより、虚像を前記車両の前方に表示する虚像光学系と、
     を有し、
     前記虚像光学系は、ミラーと光学素子とを含み、
     前記光学素子は、前記映像表示装置と前記ミラーとの間に配置され、前記ミラーの形状と前記光学素子の形状とにより、前記虚像の歪みを補正するよう構成されており、
     前記ミラーおよび前記光学素子は、所定の材料により形成された保持部材にそれぞれ位置決めされて保持され、
     前記保持部材は、筐体内に収納されている、ヘッドアップディスプレイ装置。
    A head-up display device for a vehicle,
    A video display device that has a light source and a display element, displays video on the display element, and generates and emits video projection light;
    A virtual image optical system that displays a virtual image in front of the vehicle by reflecting the video projection light emitted from the video display device with a windshield or a combiner of the vehicle;
    Have
    The virtual image optical system includes a mirror and an optical element,
    The optical element is arranged between the video display device and the mirror, and is configured to correct distortion of the virtual image by the shape of the mirror and the shape of the optical element,
    The mirror and the optical element are each positioned and held by a holding member formed of a predetermined material,
    The holding member is a head-up display device housed in a housing.
  2.  請求項1に記載のヘッドアップディスプレイ装置において、
     前記ミラーは、凹面ミラーである、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 1,
    The head-up display device, wherein the mirror is a concave mirror.
  3.  請求項1に記載のヘッドアップディスプレイ装置において、
     前記光学素子は、前記運転者の視点位置に対応して得られる前記虚像の歪みを補正するよう構成された、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 1,
    The head-up display device, wherein the optical element is configured to correct distortion of the virtual image obtained corresponding to the viewpoint position of the driver.
  4.  車両用のヘッドアップディスプレイ装置であって、
     光源および表示素子を有し、前記表示素子に映像表示光を生成する映像表示装置と、
     前記映像表示装置から出射された光をウィンドシールドまたはコンバイナで反射させることで虚像を前記車両の前方に表示する虚像光学系と、
     を有し、
     前記虚像光学系は、ミラーと光学素子とを含み、
     前記光学素子は、前記映像表示装置と前記ミラーとの間に配置され、前記ミラーの形状と前記光学素子の形状とにより、前記虚像の歪みを補正するよう構成されており、
     前記ミラーおよび前記光学素子は、所定の材料により形成されて筐体の少なくとも一部を構成する外装ケースにそれぞれ位置決めされて保持されている、ヘッドアップディスプレイ装置。
    A head-up display device for a vehicle,
    A video display device having a light source and a display element, and generating video display light on the display element;
    A virtual image optical system that displays a virtual image in front of the vehicle by reflecting light emitted from the video display device with a windshield or a combiner;
    Have
    The virtual image optical system includes a mirror and an optical element,
    The optical element is arranged between the video display device and the mirror, and is configured to correct distortion of the virtual image by the shape of the mirror and the shape of the optical element,
    The head-up display device, wherein the mirror and the optical element are each positioned and held by an outer case that is formed of a predetermined material and forms at least a part of the housing.
  5.  請求項4に記載のヘッドアップディスプレイ装置において、
     前記ミラーは、凹面ミラーである、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 4,
    The head-up display device, wherein the mirror is a concave mirror.
  6.  請求項4に記載のヘッドアップディスプレイ装置において、
     前記光学素子は、前記運転者の視点位置に対応して得られる前記虚像の歪みを補正するよう構成された、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 4,
    The head-up display device, wherein the optical element is configured to correct distortion of the virtual image obtained corresponding to the viewpoint position of the driver.
  7.  請求項1または4に記載のヘッドアップディスプレイ装置において、
     前記所定の材料は、BMCもしくはガラスフィラー入りのポリカーボネートである、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 1 or 4,
    The head-up display device, wherein the predetermined material is BMC or polycarbonate with a glass filler.
  8.  請求項1または4に記載のヘッドアップディスプレイ装置において、
     前記映像表示装置は、前記筐体に対して一体的に着脱可能である、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 1 or 4,
    The video display device is a head-up display device that is detachable integrally with the housing.
  9.  請求項1または4に記載のヘッドアップディスプレイ装置において、
     前記筐体において前記虚像光学系からの光が通過する開口部、もしくは前記表示素子における前記虚像光学系側に赤外線を反射する光学部材、もしくはS波のみを通す偏光板を設けた、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 1 or 4,
    A head-up display provided with an opening through which light from the virtual image optical system passes in the housing, an optical member that reflects infrared light on the virtual image optical system side of the display element, or a polarizing plate that passes only S waves. apparatus.
  10.  請求項1または4に記載のヘッドアップディスプレイ装置において、
     前記映像表示装置は、前記ミラーの光軸に対して傾斜して配置されている、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 1 or 4,
    The video display device is a head-up display device arranged to be inclined with respect to the optical axis of the mirror.
  11.  請求項1に記載のヘッドアップディスプレイ装置において、
     3次元的なねじれの関係にある前記ミラーと前記光学素子が、単一の前記保持部材に保持されている、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 1,
    A head-up display device in which the mirror and the optical element having a three-dimensional twist relationship are held by a single holding member.
  12.  請求項4に記載のヘッドアップディスプレイ装置において、
     3次元的なねじれの関係にある前記ミラーと前記光学素子が、前記外装ケースに保持されている、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 4,
    A head-up display device in which the mirror and the optical element having a three-dimensional twist relationship are held in the outer case.
  13.  請求項4に記載のヘッドアップディスプレイ装置において、
     前記保持部材または前記外装ケースに保持されている前記ミラーは、角度調整機構を持ち、
     前記ミラーは、前記角度調整機構によって前記ミラーの角度を調整し、ウィンドシールドに投射する位置を調整し、前記運転者が見る虚像の位置を上下方向に調整可能とする、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 4,
    The mirror held by the holding member or the outer case has an angle adjustment mechanism,
    The said mirror adjusts the angle of the said mirror by the said angle adjustment mechanism, adjusts the position projected on a windshield, and makes it possible to adjust the position of the virtual image which the driver sees up and down.
  14.  請求項1または2に記載のヘッドアップディスプレイ装置において、
     前記光学素子の垂直方向の断面形状の平均曲率半径と、水平方向の断面形状の平均曲率半径とで異なる値とした、ヘッドアップディスプレイ装置。
    The head-up display device according to claim 1 or 2,
    A head-up display device in which the average curvature radius of the vertical cross-sectional shape of the optical element is different from the average curvature radius of the horizontal cross-sectional shape.
PCT/JP2017/016181 2016-05-27 2017-04-24 Head-up display device WO2017203916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016106819A JP2019132868A (en) 2016-05-27 2016-05-27 Head-up display device
JP2016-106819 2016-05-27

Publications (1)

Publication Number Publication Date
WO2017203916A1 true WO2017203916A1 (en) 2017-11-30

Family

ID=60411712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016181 WO2017203916A1 (en) 2016-05-27 2017-04-24 Head-up display device

Country Status (2)

Country Link
JP (1) JP2019132868A (en)
WO (1) WO2017203916A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064691A1 (en) * 2017-09-28 2019-04-04 マクセル株式会社 Head-up display device
JP2019132901A (en) * 2018-01-29 2019-08-08 株式会社ダイセル Molded product and manufacturing method of molded product
CN111479718A (en) * 2018-01-10 2020-07-31 Jvc建伍株式会社 Display device and method for setting display device
CN111586263A (en) * 2020-03-27 2020-08-25 广东技术师范大学 Imaging quality detection method for automobile HUD virtual image
CN113135217A (en) * 2020-01-17 2021-07-20 丰田合成株式会社 Steering wheel
CN113227881A (en) * 2018-11-27 2021-08-06 康宁公司 Head-up display mirror with improved surface and edge quality and method of forming same
CN113661432A (en) * 2019-06-26 2021-11-16 Jvc建伍株式会社 Head-up display device
US20210364734A1 (en) * 2020-05-19 2021-11-25 Hyundai Mobis Co., Ltd. Vehicle head-up display device having external light blocking function
US20220179259A1 (en) * 2019-03-28 2022-06-09 Maxell, Ltd. Head-up display
US11872886B2 (en) 2022-03-25 2024-01-16 Panasonic Intellectual Property Management Co., Ltd. Display system for switching between modes that associate emitting states with reflective states

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299934A (en) * 1989-04-07 1990-12-12 Hughes Aircraft Co Head-up-display of vehicle
JP2004226469A (en) * 2003-01-20 2004-08-12 Denso Corp Head-up display device for vehicle
JP2005202145A (en) * 2004-01-15 2005-07-28 Olympus Corp On-vehicle head-up display, vehicle having the same, and manufacturing method of vehicle having the same
JP2011022210A (en) * 2009-07-13 2011-02-03 Fujifilm Corp Display device
JP2015007763A (en) * 2013-05-27 2015-01-15 旭化成イーマテリアルズ株式会社 Video display system, and setting method of video display device
JP2016009155A (en) * 2014-06-26 2016-01-18 日本精機株式会社 Head-up display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299934A (en) * 1989-04-07 1990-12-12 Hughes Aircraft Co Head-up-display of vehicle
JP2004226469A (en) * 2003-01-20 2004-08-12 Denso Corp Head-up display device for vehicle
JP2005202145A (en) * 2004-01-15 2005-07-28 Olympus Corp On-vehicle head-up display, vehicle having the same, and manufacturing method of vehicle having the same
JP2011022210A (en) * 2009-07-13 2011-02-03 Fujifilm Corp Display device
JP2015007763A (en) * 2013-05-27 2015-01-15 旭化成イーマテリアルズ株式会社 Video display system, and setting method of video display device
JP2016009155A (en) * 2014-06-26 2016-01-18 日本精機株式会社 Head-up display device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064691A1 (en) * 2017-09-28 2019-04-04 マクセル株式会社 Head-up display device
CN111479718B (en) * 2018-01-10 2023-10-24 Jvc建伍株式会社 Display device and method for setting display device
CN111479718A (en) * 2018-01-10 2020-07-31 Jvc建伍株式会社 Display device and method for setting display device
JP2019132901A (en) * 2018-01-29 2019-08-08 株式会社ダイセル Molded product and manufacturing method of molded product
CN111194417A (en) * 2018-01-29 2020-05-22 株式会社大赛璐 Molded article and method for producing molded article
US11747526B2 (en) 2018-01-29 2023-09-05 Daicel Corporation Molded article and method for manufacturing molded article
CN113227881A (en) * 2018-11-27 2021-08-06 康宁公司 Head-up display mirror with improved surface and edge quality and method of forming same
US11860463B2 (en) * 2019-03-28 2024-01-02 Maxell, Ltd. Head-up display
US20220179259A1 (en) * 2019-03-28 2022-06-09 Maxell, Ltd. Head-up display
CN113661432A (en) * 2019-06-26 2021-11-16 Jvc建伍株式会社 Head-up display device
CN113661432B (en) * 2019-06-26 2023-07-14 Jvc建伍株式会社 Head-up display device
CN113135217B (en) * 2020-01-17 2023-01-06 丰田合成株式会社 Steering wheel
CN113135217A (en) * 2020-01-17 2021-07-20 丰田合成株式会社 Steering wheel
CN111586263A (en) * 2020-03-27 2020-08-25 广东技术师范大学 Imaging quality detection method for automobile HUD virtual image
CN111586263B (en) * 2020-03-27 2024-05-14 广东技术师范大学 Imaging quality detection method for HUD virtual image of automobile
US20210364734A1 (en) * 2020-05-19 2021-11-25 Hyundai Mobis Co., Ltd. Vehicle head-up display device having external light blocking function
US11872886B2 (en) 2022-03-25 2024-01-16 Panasonic Intellectual Property Management Co., Ltd. Display system for switching between modes that associate emitting states with reflective states

Also Published As

Publication number Publication date
JP2019132868A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP7206361B2 (en) head-up display device
WO2017203916A1 (en) Head-up display device
JP6600099B2 (en) Head-up display device
WO2017187514A1 (en) Information display device
JP7117066B2 (en) Vehicle information display device and vehicle information display system
WO2020149078A1 (en) Vehicular information display system and information display device
US20230118416A1 (en) Information display device
JP2018180291A (en) Display device for vehicles
JP2018163260A (en) Image display device, virtual image display device, and movable body
WO2021220785A1 (en) Light source device and head-up display device
WO2023080003A1 (en) Light source device and head-up display device
WO2024105899A1 (en) Head-up display device and vehicle
WO2023243213A1 (en) Head-up display apparatus
JP2022135583A (en) Head-up display for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17802514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP