WO2023079903A1 - Dielectric filter - Google Patents

Dielectric filter Download PDF

Info

Publication number
WO2023079903A1
WO2023079903A1 PCT/JP2022/037634 JP2022037634W WO2023079903A1 WO 2023079903 A1 WO2023079903 A1 WO 2023079903A1 JP 2022037634 W JP2022037634 W JP 2022037634W WO 2023079903 A1 WO2023079903 A1 WO 2023079903A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
dielectric
conductor
conductors
dielectric filter
Prior art date
Application number
PCT/JP2022/037634
Other languages
French (fr)
Japanese (ja)
Inventor
雅司 荒井
実 松平
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023079903A1 publication Critical patent/WO2023079903A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/04Coaxial resonators

Definitions

  • the present disclosure relates to dielectric filters, and more particularly to a structure that suppresses deformation of dielectric filters during the manufacturing process.
  • Patent Document 1 discloses a laminated dielectric comprising a laminated body in which a dielectric and a conductor are laminated, and an input/output terminal and a ground terminal formed on the outer surface of the laminated body.
  • a body filter is disclosed.
  • a dielectric filter disclosed in Japanese Patent Application Laid-Open No. 2002-111310 includes a plurality of ground electrodes arranged via a dielectric layer, a plurality of resonance elements arranged between the ground electrodes, It includes a coupling electrode that couples adjacent resonant elements, and a coupling suppression electrode that suppresses capacitive coupling between the coupling electrode and the ground electrode.
  • the coupling suppressing electrode reduces the stray capacitance between the coupling electrode and the ground electrode, thereby preventing deterioration of the frequency characteristics. .
  • Patent Document 2 In Japanese Patent Laying-Open No. 2004-48714 (Patent Document 2), a reinforcing electrode mechanically connected to a ceramic layer is arranged inside a laminate in which a plurality of ceramic layers and a plurality of internal electrodes are laminated. A ceramic laminate device is disclosed. Japanese Patent Laying-Open No. 2004-48714 (Patent Document 2) describes that ceramic materials having different dielectric constants may be used for each of the ceramic layers.
  • Patent Document 1 The resonant element of the dielectric filter disclosed in Japanese Unexamined Patent Application Publication No. 2002-111310 (Patent Document 1) is a so-called distributed constant type resonator, and the capacitance between a plurality of laminated conductors and the inductance of each electrode. achieves a desired resonance frequency.
  • Patent Document 1 a plurality of resonant elements are arranged side by side in a direction orthogonal to the stacking direction of the laminate, and the conductors that constitute each resonant element are It has the structure laminated
  • the width of the conductors forming each resonant element is restricted due to the overall size of the dielectric filter. Therefore, in order to achieve a desired Q value in each resonant element, it is necessary to increase the number of laminated layers of conductors.
  • the shape of the device after manufacturing is deformed due to the difference in deformation amount between the dielectric and the conductor during crimping and firing in the manufacturing process. sometimes.
  • the difference between the deformation amount of the conductor portion and the deformation amount of the dielectric portion increases, and the degree of deformation of the device increases, resulting in dimensional defects and mounting defects.
  • the present disclosure has been made to solve the above problems, and its purpose is to suppress deformation of the dielectric filter during the manufacturing process.
  • a dielectric filter according to the present disclosure includes a body having a rectangular parallelepiped shape and a shield arranged on the side surface of the body.
  • the body includes a plurality of resonator units arranged in a first direction and crimped.
  • Each of the plurality of resonator units includes a first dielectric having a rectangular parallelepiped shape and a resonator extending in a second direction orthogonal to the first direction within the first dielectric.
  • the resonator is composed of a plurality of plate-shaped conductors extending in the second direction. Principal surfaces of adjacent conductors in the plurality of conductors face each other in the first direction.
  • each resonator In the dielectric filter according to the present disclosure, flat plate-shaped conductors forming each resonator are arranged with a gap in the arrangement direction of the resonators.
  • the width direction of each conductor can be made perpendicular to the direction in which the resonators are arranged, and the area of each conductor can be increased.
  • a desired Q value can be achieved with a smaller number of conductors than in the case where the width of the conductors is in the direction in which the resonators are arranged. Therefore, deformation of the dielectric filter during the manufacturing process can be suppressed.
  • FIG. 1 is a block diagram of a communication device having a high-frequency front-end circuit to which the filter device according to Embodiment 1 is applied;
  • FIG. 1 is an external perspective view of a filter device according to Embodiment 1.
  • FIG. 2 is a see-through perspective view showing the internal structure of the filter device of Embodiment 1.
  • FIG. FIG. 4 is a planar transparent view when the filter device of FIG. 3 is viewed from the Z-axis direction;
  • FIG. 4 is a transparent side view of the filter device of FIG. 3 when viewed from the Y-axis direction;
  • FIG. 4 is a diagram for explaining details of electrodes of a resonator;
  • FIG. 1 is a block diagram of a communication device having a high-frequency front-end circuit to which the filter device according to Embodiment 1 is applied;
  • FIG. 1 is an external perspective view of a filter device according to Embodiment 1.
  • FIG. 2 is a see-through perspective view showing the internal structure of
  • FIG. 4 is a diagram for explaining the electrode arrangement of the resonator of the first embodiment and the resonator of the comparative example;
  • FIG. 11 is a side see-through view of the filter device of Modification 1;
  • FIG. 11 is a side see-through view of a filter device of modification 2;
  • FIG. 11 is a side see-through view of a filter device of modification 3;
  • FIG. 11 is a side see-through view of a filter device of modification 4;
  • 14 is a see-through perspective view showing an internal structure of a filter device of Modification 5.
  • FIG. FIG. 8 is a see-through perspective view showing the internal structure of the filter device of Embodiment 2;
  • FIG. 14 is a side see-through view of the filter device of FIG.
  • FIG. 10 is a diagram showing a manufacturing process of the shield conductor in the filter device of Embodiment 3;
  • FIG. 11 is a side see-through view of a filter device of modification 6;
  • FIG. 12 is a see-through perspective view showing the internal structure of the filter device of Embodiment 4;
  • FIG. 11 is a side see-through view of the filter device of Embodiment 4;
  • FIG. 11 is a side see-through view of a filter device of modification 7;
  • FIG. 1 is a block diagram of communication device 10 having high-frequency front-end circuit 20 to which filter device 100 of Embodiment 1 is applied.
  • the communication device 10 is, for example, a mobile terminal typified by a smart phone, or a mobile phone base station.
  • communication device 10 includes antenna 12 , high frequency front end circuit 20 , mixer 30 , local oscillator 32 , D/A converter (DAC) 40 and RF circuit 50 .
  • High frequency front end circuit 20 also includes bandpass filters 22 and 28 , amplifier 24 and attenuator 26 .
  • the high-frequency front-end circuit 20 is a transmission circuit that transmits high-frequency signals from the antenna 12, but the high-frequency front-end circuit 20 is a reception circuit that receives high-frequency signals via the antenna 12. There may be.
  • the communication device 10 up-converts the transmission signal transmitted from the RF circuit 50 into a high-frequency signal and radiates it from the antenna 12 .
  • the modulated digital signal output from the RF circuit 50 is converted from a digital signal to an analog signal by the D/A converter 40 .
  • the mixer 30 mixes the transmission signal, which has been converted from a digital signal to an analog signal by the D/A converter 40, with an oscillation signal from the local oscillator 32 and up-converts it into a high-frequency signal.
  • a band-pass filter 28 removes unnecessary waves generated by the up-conversion and extracts only signals in a desired frequency band.
  • Attenuator 26 adjusts the strength of the transmitted signal.
  • Amplifier 24 power-amplifies the transmission signal that has passed through attenuator 26 to a predetermined level.
  • the band-pass filter 22 removes unwanted waves generated in the amplification process and allows only signal components in the frequency band specified by the communication standard to pass. A transmission signal that has passed through the bandpass filter 22 is radiated from the antenna 12 .
  • a filter device corresponding to the present disclosure can be employed as the bandpass filters 22 and 28 in the communication device 10 as described above.
  • FIG. Filter device 100 is a dielectric filter composed of a plurality of resonators that are distributed constant elements.
  • FIG. 2 is an external perspective view of the filter device 100.
  • FIG. 3 is a see-through perspective view showing the internal structure of the filter device 100.
  • FIG. 4 is a planar transparent view when the filter device 100 is viewed from the Z-axis direction.
  • FIG. 5 is a side see-through view of the filter device 100 viewed from the Y-axis direction.
  • FIG. 6 is a diagram for explaining the details of the electrodes of the resonator.
  • the filter device 100 includes a rectangular parallelepiped or substantially rectangular parallelepiped main body 110 in which a plurality of dielectric layers are laminated in the lamination direction.
  • Body 110 has top surface 111 , bottom surface 112 , side surface 113 , side surface 114 , side surface 115 and side surface 116 .
  • a direction orthogonal to the upper surface 111 and the lower surface 112 is defined as the Z-axis direction.
  • the direction orthogonal to the side surfaces 115 and 116 is the X axis
  • the direction orthogonal to the side surfaces 113 and 114 is the Y axis.
  • the upper surface 111 is the surface in the positive direction of the Z-axis
  • the lower surface 112 is the surface in the negative direction of the Z-axis.
  • the side surface 113 is the side surface in the positive direction of the X-axis
  • the side surface 114 is the side surface in the negative direction of the X-axis.
  • Side 115 is the side in the positive direction of the Y-axis and side 116 is the side in the negative direction of the Y-axis.
  • a flat plate-shaped shield conductor made of a conductive material is arranged on the outer surface of the main body 110 so as to cover each surface. Specifically, a shield conductor 121 is arranged on the upper surface 111 and a shield conductor 122 is arranged on the lower surface 112 . Shield conductors 123 to 126 are arranged on the side surfaces 113 to 116, respectively.
  • the shield conductor can be connected to a ground electrode on a mounting board (not shown) by a connection conductor such as a solder bump. That is, the shield conductor functions as a ground terminal.
  • the shield conductor is formed by coating, transferring, or sputtering a conductive paste on the surface of the main body 110 . A part of the shield conductor may be arranged inside the main body 110 .
  • the shield conductor 122 on the lower surface 112 side has cutouts in portions facing the side surfaces 115 and 116 . Notches are also formed in portions of shield conductors 125 and 126 on side surfaces 115 and 116 facing lower surface 112 .
  • the input terminal T1 is arranged in the cutout portion on the side surface 116 side, and the output terminal T2 is arranged in the cutout portion on the side surface 115 side.
  • the input terminal T1 and the output terminal T2 have a substantially L-shaped cross section when viewed from the Y-axis direction.
  • Input terminal T1 is arranged on side surface 115 and bottom surface 112 .
  • the output terminal T2 is arranged on the side surface 116 and the bottom surface 112 .
  • the input terminal T1 and the output terminal T2 are connected to corresponding electrodes arranged on the mounting substrate by connection conductors such as solder bumps.
  • a main body 110 in the filter device 100 is composed of a plurality of resonator units 131 to 135 arranged in the X-axis direction and crimped. More specifically, the resonator units 131, 132, 133, 134, and 135 are arranged in this order from the positive direction to the negative direction of the X axis.
  • Each of the resonator units 131-135 includes a dielectric 170 having a rectangular parallelepiped shape.
  • Resonator units 131 - 135 respectively include resonators 141 - 145 arranged inside the dielectric 170 .
  • the resonator units 131-135 include capacitive electrodes 151-155 and connection conductors 161-165 and 181-185, respectively.
  • the resonator units 131 to 135, the resonators 141 to 145, the capacitor electrodes 151 to 155, and the connection conductors 161 to 165 and 181 to 185 are collectively referred to as the “resonator unit 130", They may be referred to as “resonator 140", “capacitor electrode 150”, “connection conductor 160”, and “connection conductor 180”.
  • the dielectric 170 has a structure in which a plurality of dielectric layers are laminated in the X-axis direction.
  • Each dielectric layer of the dielectric 170 is made of ceramics such as low temperature co-fired ceramics (LTCC) or resin.
  • LTCC low temperature co-fired ceramics
  • a plurality of flat plate conductors provided in each dielectric layer and a plurality of vias provided between the dielectric layers constitute the resonator 140, and the distributed constant element Capacitors and inductors are constructed for coupling between.
  • the term “via” refers to a conductor that connects electrodes provided on different dielectric layers and extends in the stacking direction. Vias are formed, for example, by conductive paste, plating, and/or metal pins.
  • the resonator 140 extends in the Y-axis direction between the shield conductors 121 and 122 .
  • a positive Y-axis end (first end) of the resonator 140 is connected to the shield conductor 123 .
  • the negative Y-axis end (second end) of the resonator 140 is separated from the shield conductor 124 .
  • the resonator 140 is composed of a plurality of plate-shaped conductors spaced apart in the stacking direction (X-axis direction).
  • Each of the plurality of conductors has a rectangular shape extending in the Y-axis direction when viewed from the X-axis direction.
  • the main surfaces of adjacent conductors face each other.
  • the plurality of conductors has a substantially elliptical shape as a whole. In other words, the dimension (first width) in the Z-axis direction of the conductor (the conductor 1401 in FIG.
  • arranged at the end in the lamination direction among the plurality of conductors is the same as the conductor arranged in the layer near the center (the conductor in FIG. 6). It is narrower than the Z-axis dimension (second width) of the conductor 1402). It is generally known that high-frequency currents mainly flow near the surface of conductors due to edge effects. Therefore, when the overall cross-sectional shape of the plurality of conductors is a rectangular shape, the current concentrates on the corner portions. As described above, by making the cross-sections of the plurality of conductors substantially elliptical, the current concentration at the corners can be alleviated.
  • the conductor 1401 (first conductor) arranged on the end side is made of a pure metal material such as copper, silver or aluminum.
  • the conductor 1402 (second conductor) arranged near the center is made of a material in which a common material having a coefficient of thermal expansion similar to that of the dielectric 170 is added to metal. That is, the metal content of conductor 1401 is greater than the metal content of conductor 1402 .
  • the conductor 1401 arranged on the end portion side the loss can be reduced by using a pure metal-based material because the current tends to flow due to the edge effect as described above.
  • connection conductor 160 the connection conductor 160 at a position near the second end.
  • connection conductor 180 the connection conductor 180 at a position near the first end.
  • connection conductors 160, 180 is composed of a plurality of vias.
  • a plurality of vias forming connection conductors 160 and 180 are arranged in a zigzag pattern in the X-axis direction.
  • the resonator 140 functions as a distributed constant type TEM mode resonator having a plurality of conductors as central conductors and shield conductors 121 and 122 as outer conductors.
  • the resonator 141 is connected to the input terminal T1 via vias V10 and V11 and the plate electrode PL1.
  • the resonator 145 is connected to the output terminal T2 through vias V20, V21 and the plate electrode PL2.
  • the thickness d1 of the input terminal T1 and the output terminal T2 is thicker than the thickness d2 of the conductor forming the resonator 140 (d1>d2).
  • At least part of the input terminal T1 and the output terminal T2 is embedded in the dielectric 170 .
  • the resonators 141 to 145 are magnetically coupled to each other, and a high frequency signal input to the input terminal T1 is transmitted by the resonators 141 to 145 and output from the output terminal T2. At this time, an attenuation pole is generated depending on the degree of coupling between the resonators, so that the filter device 100 functions as a bandpass filter.
  • the capacitive electrode 150 is arranged facing the second end of the resonator 140 .
  • a cross section parallel to the ZX plane of the capacitive electrode 150 has a cross section similar to that of the resonator 140 .
  • the capacitive electrode 150 is connected to the shield conductor 124 .
  • the resonator 140 and the corresponding capacitive electrode 150 form a capacitor.
  • the gap (distance in the Y-axis direction) GP between the resonator 140 and the capacitive electrode 150 in FIG. 4 the capacitance value of the capacitor formed by the resonator 140 and the corresponding capacitive electrode 150 is adjusted. be able to.
  • Patent Document 1 A structure in which conductors forming a resonator are laminated in the lamination direction of a laminate is known. In such a configuration, as in the resonator 140X of the comparative example shown in FIG. Therefore, the width of the conductors that make up the resonator can be limited. Therefore, in order to achieve a desired Q value in each resonator, it is necessary to increase the number of laminated layers of conductors.
  • the dielectric part and the metal part will shrink due to the difference in contraction rate between the dielectric and the metal.
  • the amount of deformation is different. Therefore, as the number of layers of conductors increases, the difference between the amount of deformation in a portion with a high conductor density and the amount of deformation in a portion with a low conductor density in the stacking direction increases, resulting in a defective shape and/or surface texture (unevenness) of the entire filter. aggravation may occur. If so, there is a risk of dimensional defects or poor conduction due to poor mounting.
  • the arrangement direction of the resonators and the stacking direction of the conductors are the same. is relaxed, and the width of each conductor can be set wider than in the case of the comparative example. Therefore, in the resonator of the first embodiment, the number of layers of conductors can be reduced as compared with the resonator of the modified example. As an example, while 17 layers of conductors need to be stacked in the configuration of the comparative example, the same Q value can be achieved with 7 layers of conductors in the configuration of the first embodiment. In another example, while the configuration of the comparative example requires seven layers of conductors, the configuration of Embodiment 1 can achieve an equivalent Q value with four layers of conductors. .
  • each resonator unit such that the direction in which the resonators are arranged and the direction in which the conductors are laminated are the same as in the filter device 100 of the first embodiment, desired filter characteristics can be obtained with a small number of conductors. can be realized. This reduces the difference in conductor density in the stacking direction within the resonator unit, thereby reducing the difference in the amount of deformation during the manufacturing process, thereby suppressing shape defects and deterioration of the surface properties of the filter device.
  • the "X-axis direction” and “Y-axis direction” in Embodiment 1 respectively correspond to the “first direction” and “second direction” in the present disclosure.
  • “Top surface 111,” “bottom surface 112,” and “side surfaces 113 to 116” in Embodiment 1 respectively correspond to “first surface” to “sixth surface” in the present disclosure.
  • “Shield conductor 121” to “shield conductor 126” in Embodiment 1 respectively correspond to "first shield conductor” to “sixth shield conductor” in the present disclosure.
  • connection conductor 180 connection conductors 181 to 185)
  • connection conductor 160 connection conductors 161 to 165)
  • first connection conductor connection conductor
  • second connection conductor connection conductor
  • Modification 1 In Embodiment 1, the case where the cross-sectional shape of each resonator is substantially elliptical has been described. In Modification 1, another example of the cross-sectional shape of the resonator will be described.
  • FIG. 8 is a side see-through view of the filter device 100A of Modification 1.
  • FIG. 8 the cross-sectional shapes of resonators 141A to 145A included in resonator units 131A to 135A are different from filter device 100 of the first embodiment, and other configurations are the same as filter device 100.
  • resonators 141A to 145A in filter device 100A are composed of a plurality of conductors having the same shape. Therefore, the cross-sectional shapes of the resonators 141A to 145A are substantially rectangular.
  • the cross-sectional shape of the resonator substantially elliptical as in the first embodiment.
  • the facing area which is the shortest distance between the adjacent resonators, becomes smaller. bond between them weakens.
  • the cross-sectional shape of the resonator is appropriately selected in consideration of the influence of current concentration on the corners, the degree of coupling between adjacent resonators, size restrictions, and so on.
  • Modification 2 In filter device 100 of Embodiment 1, the case where dielectric 170 forming each resonator unit is made of the same material has been described. In Modified Example 2, a case will be described in which a dielectric having characteristics different from those of other resonator units is used as the dielectric of some of the resonator units.
  • FIG. 9 is a side see-through view of a filter device 100B of Modification 2.
  • FIG. Filter device 100B has a configuration in which resonator units 132B and 134B replace resonator units 132 and 134 in filter device 100 of the first embodiment. In filter device 100B, the description of elements that overlap with filter device 100 will not be repeated.
  • each of resonator units 131, 133, 135 includes dielectric 170 having the same dielectric constant ⁇ 1 as filter device 100, and the corresponding resonator is made of the dielectric 170 inside.
  • the resonator unit 132B includes a dielectric 170A having a dielectric constant ⁇ 2 ( ⁇ 2 ⁇ 1) different from that of the dielectric 170, and the resonator 142 is arranged inside the dielectric 170 concerned.
  • the resonator unit 134B includes a dielectric 170B having a dielectric constant ⁇ 3 ( ⁇ 3 ⁇ 1, ⁇ 2) different from the dielectrics 170 and 170A, and the resonator 144 is arranged inside the dielectric 170B. .
  • the degree of coupling between the resonators is adjusted by using a dielectric having a dielectric constant different from that of the dielectric contained in the other resonator units as the dielectric contained in some of the resonator units. be able to. Therefore, the characteristics of the filter device can be adjusted while the conductors and electrodes are designed in common with the filter device 100 .
  • each of the "resonator units 131, 133, 135" corresponds to the "first resonator unit” in the present disclosure
  • each of the “resonator units 132B, 134B” corresponds to the "second resonator unit” in the present disclosure.
  • Modification 3 In Modified Example 3, a configuration in which dielectrics having different characteristics from the dielectrics of the resonator units are arranged between the resonator units will be described.
  • FIG. 10 is a side see-through view of a filter device 100C of Modification 3.
  • dielectric 170C is arranged between adjacent resonator units. Further, for resonator units 131 and 135 connected to input terminal T1 and output terminal T2, respectively, dielectric 170C is also arranged in portions corresponding to side surfaces 115 and 116 of main body 110. An output terminal T2 is arranged for the input terminal T1.
  • the dielectric loss tangent ⁇ 2 of the dielectric 170C is smaller than the dielectric loss tangent ⁇ 1 of the dielectric 170 constituting the resonator unit ( ⁇ 1> ⁇ 2).
  • the Q value can be improved by making the dissipation factor of the dielectric between the resonator units smaller than that of the dielectric of the resonator units.
  • characteristics other than the dielectric loss tangent may be different.
  • dielectric 170 and dielectric 170C respectively correspond to “first dielectric” and “second dielectric” in the present disclosure.
  • Modification 4 In Modification 4, a configuration obtained by combining Modification 2 and Modification 3 will be described.
  • each of the resonator units 131D to 135D has a first portion in which the resonators are arranged and a second portion other than the first portion.
  • a dielectric 170 is placed in the two parts.
  • a dielectric 170C is arranged in a third portion between the resonators and a fourth portion corresponding to the side surfaces 115 and 116 .
  • the dielectric 170B placed in the resonator portion may be a dielectric having excellent temperature characteristics with little fluctuation due to temperature changes, and the dielectric 170C placed between the resonator units may have a small dielectric loss tangent and an excellent Q value.
  • the dielectric 170B placed in the resonator portion may be a dielectric having excellent temperature characteristics with little fluctuation due to temperature changes
  • the dielectric 170C placed between the resonator units may have a small dielectric loss tangent and an excellent Q value.
  • Modification 5 In Modified Example 5, a configuration in which the input terminals and the output terminals have different shapes will be described.
  • FIG. 12 is a see-through perspective view showing the internal structure of a filter device 100E of Modification 5.
  • FIG. 1A and output terminal T2A on side surfaces 115 and 116 are different from filter device 100 of the first embodiment.
  • the input terminal T1A is a plate electrode extending in the X-axis direction near the center of the side surface 115 in the Z-axis direction.
  • Input terminal T1A is connected to resonator 141 by via V10A.
  • Input terminal T 1 A faces the conductor of resonator 141 .
  • the output terminal T2A is a plate electrode extending in the X-axis direction near the center of the side surface 116 in the Z-axis direction.
  • Output terminal T2A is connected to resonator 145 by via V20A.
  • Output terminal T2A faces the conductor of resonator 145 .
  • the input terminal T1A and the output terminal T2A are arranged on the side surfaces 115 and 116 from the side surface 113 to the side surface 114 (that is, over almost the entire Y-axis direction).
  • the dimension in the Y-axis direction may be slightly shorter.
  • the shield conductors 125 and 126 are arranged so as not to overlap the input terminal T1A and the output terminal T2A.
  • the input terminal and the output terminal function as a shield when viewed from the resonator. This can reduce the influence of the electromagnetic field from the external device on the internal resonator.
  • Embodiment 2 In Embodiment 1, the configuration in which the center positions of the resonators included in the filter device in the Z-axis direction are all arranged at the same position has been described. In a second embodiment, a configuration in which a filter device includes a resonator whose arrangement position in the Z-axis direction is different from that of other resonators will be described.
  • FIG. 13 is a see-through perspective view showing the internal structure of the filter device 200 of Embodiment 2.
  • FIG. 14 is a side see-through view of the filter device 200 of FIG. 13 as seen from the Y-axis direction.
  • the positions of resonators 141 to 145 in main body 110 in the Z-axis direction are not uniform, and capacitor electrodes PC1, PC2, PC4, and PC5 are added. It has a configured configuration.
  • the description of elements that overlap with filter device 100 will not be repeated.
  • resonators 141 and 145 are arranged substantially in the center of main body 110 in the Z-axis direction.
  • the resonators 142 and 144 are arranged at positions offset from the resonators 141 and 145 in the negative direction of the Z axis.
  • the resonator 143 is arranged at a position offset from the resonators 141 and 145 in the positive direction of the Z-axis.
  • the degree of coupling between adjacent resonators is slightly reduced compared to the filter device 100 of the first embodiment.
  • the resonator 141 partially opposes the resonator 143 , a coupling path is generated between the resonators 141 and 143 without passing through the resonator 142 .
  • a coupling path occurs between the resonators 142 and 144 without the intervention of the resonator 143, and a coupling path occurs between the resonators 143 and 145 without the intervention of the resonator 144. . That is, so-called jump coupling occurs between the resonators.
  • a capacitor electrode PC1 is arranged in a portion of the resonator 141 facing the resonator 142, and a capacitor electrode PC1 is arranged in a portion of the resonator 142 facing the capacitor electrode PC1.
  • a capacitor electrode PC2 is arranged.
  • a capacitor electrode PC4 is arranged at a portion of the resonator 144 facing the resonator 145, and a capacitor electrode PC5 is arranged at a portion of the resonator 145 facing the capacitor electrode PC4. All of the capacitor electrodes PC1, PC2, PC4 and PC5 are plate electrodes.
  • capacitor electrodes are used to adjust the degree of capacitive coupling between adjacent resonators when the positions of the resonators are offset as described above. That is, these capacitor electrodes are not an essential feature, but are placed as needed depending on the desired filter characteristics. For example, capacitor electrodes may also be added between resonators 142 and 143 and/or between resonators 143 and 144 . Alternatively, the capacitor electrodes PC1, PC2, PC4, and PC5 may be omitted if desired characteristics can be obtained. Also, the dimensions and/or shape of the plate electrodes may be varied.
  • capacitor electrodes for adjusting the capacitive coupling between the resonators can also be applied to the filter devices of the first embodiment and each modification.
  • each resonator unit such that the direction in which the resonators are arranged and the direction in which the conductors are laminated are the same, it is possible to prevent the occurrence of defects in the shape of the filter device. Deterioration of surface properties can be suppressed. Furthermore, by offsetting the Z-axis position of adjacent resonators, attenuation characteristics and/or passband widths can be adjusted.
  • the "Z-axis direction” in Embodiment 2 corresponds to the "third direction” in the present disclosure.
  • Embodiment 3 In Embodiment 1, the case where the shield conductor is formed on the outer surface by sputtering or the like after forming the main body of the filter device has been described.
  • a configuration will be described in which a shield conductor is formed by arranging a dielectric block to which a conductor is attached to a main body composed of a plurality of resonator units.
  • FIG. 15A and 15B are diagrams showing the manufacturing process of the shield conductor in the filter device 300 of the third embodiment.
  • main body 110 is temporarily assembled by arranging a plurality of resonator units 131-135.
  • dielectric block 190 having conductor 195 attached to one main surface of dielectric 170F is placed on upper surface 111, lower surface 112 and side surfaces 113 and 114 of main body 110.
  • the filter device 300 is formed by pressing and baking in this state to integrate the resonator units with each other and the resonator unit and the dielectric block.
  • conductor 195 arranged in dielectric block 190 serves as shield conductors 121-124.
  • the shield conductor By forming the shield conductor by such a process, the shield conductor can be formed in the same process as the main body, so the manufacturing cost can be reduced.
  • the characteristics of each resonator can be adjusted. .
  • Modification 6 describes a configuration in which a structure for coupling between resonators is incorporated in a dielectric block for forming a shield conductor.
  • filter device 300A has a structure in which dielectric block 190A is arranged on upper surface 111 of main body 110 and dielectric block 190B is arranged on lower surface 112 thereof.
  • dielectric blocks 190 similar to those of the third embodiment are arranged on the side surfaces 113 and 114 .
  • the dielectric block 190A includes a dielectric 170G, a conductor 195, and plate electrodes 310,311. Conductor 195 is disposed on the side of dielectric 170G opposite top surface 111 of body 110 .
  • the plate electrode 310 is a strip-shaped electrode extending in the X-axis direction and couples the resonators 144 and 145 .
  • the plate electrode 311 is a strip-shaped electrode extending in the X-axis direction and couples the resonators 142 and 143 .
  • the dielectric block 190B includes a dielectric 170G, a conductor 195, and plate electrodes 312,313. Conductor 195 is disposed on a surface of dielectric 170G opposite bottom surface 112 of body 110 .
  • the plate electrode 312 is a strip-shaped electrode extending in the X-axis direction and couples the resonators 143 and 145 .
  • the plate electrode 313 is a strip-shaped electrode extending in the X-axis direction and couples the resonators 141 and 142 .
  • the degree of coupling between the resonators can be increased by the plate electrodes 310-313 arranged in the dielectric blocks 190A and 190B. Further, the plate electrode 312 can form a cross-coupling between the resonators 143 and 145, which produces an attenuation pole in the non-passband. Therefore, by appropriately adjusting the coupling between adjacent resonators and the degree of interlaced coupling, it is possible to improve the attenuation characteristics of the non-passband of the filter device 300A and/or expand the passband width. can be done.
  • interlaced coupling is not limited to the mode shown in FIG. 16, and the combination of resonators to be coupled can be appropriately selected according to desired filter characteristics.
  • resonator 141 and resonator 143 may be coupled, or resonator 141 and resonator 144 may be coupled.
  • resonator 142 and resonator 144 may be coupled, or resonator 142 and resonator 145 may be coupled.
  • Embodiment 4 In Embodiment 4, a configuration in which a plurality of flat plate conductors forming each resonator are connected to shield conductors 121 and 122 will be described.
  • FIG. 17 is a see-through perspective view showing the internal structure of the filter device 400 of Embodiment 4.
  • FIG. FIG. 18 is a transparent side view of the filter device 400 viewed from the positive direction of the X-axis.
  • resonators 141 to 145 in filter device 100 of Embodiment 1 are replaced with resonators 141B to 145B.
  • the description of elements that overlap with filter device 100 will not be repeated.
  • the resonators 141B to 145B may be collectively referred to as "resonator 140B".
  • a resonator 140B is composed of a plurality of flat plate conductors and connection conductors 160 and 180 connecting the flat plate conductors, like the resonator 140 of the first embodiment.
  • the flat conductor in the resonator 140B includes a main body portion 146 extending in the Y-axis direction and projecting portions 147 and 148 for connecting the main body portion 146 to the shield conductors 121 and 122, respectively.
  • the projecting portions 147 and 148 extend in the Z-axis direction from the position where the connection conductor 180 is arranged in the body portion 146 and are electrically connected to the shield conductors 121 and 122, respectively. That is, when viewed from the X-axis direction, the resonator 140B has a substantially cross shape.
  • the projections 147 and 148 define the ground end of the resonator 140B.
  • the distance between the second end of each resonator and the protrusions 147 and 148 is designed to be about ⁇ /4, where ⁇ is the wavelength of the high-frequency signal transmitted by the resonator.
  • a plurality of conductors constituting a resonator are cut into chip sizes by a cutting means such as a dicer or a laser while thin-film conductive sheets or dielectric sheets to which the conductive sheets are attached are superimposed. manufactured by At this time, misalignment in lamination of the conductive sheet and the dielectric sheet, or cutting misalignment in the cutting process may occur.
  • the protrusions 147 and 148 are provided on all the flat plate conductors forming the resonator 140B, some of the flat plate conductors may not be provided with the protrusions.
  • Modification 7 is a case where a dielectric block including a structure for coupling between resonators as in Modification 6 is applied to the filter device including resonators having protrusions described in Embodiment 4. will be described.
  • FIG. 19 is a side see-through view of the filter device 400A of Modification 7 when viewed from the Y-axis direction.
  • filter device 400A has a structure in which dielectric block 190C is arranged on upper surface 111 of main body 110 and dielectric block 190D is arranged on lower surface 112 thereof.
  • dielectric blocks 190 similar to those of Embodiment 3 and Modification 6 are arranged on side surfaces 113 and 114 .
  • a dielectric block 190C includes a dielectric 170G, a conductor 195, an electrode 196, a via 198, and plate electrodes 310,311.
  • Conductor 195 is disposed on the side of dielectric 170G opposite top surface 111 of body 110 .
  • Dielectric block 190D also includes dielectric 170G, conductor 195, electrode 196, via 198, and plate electrodes 312,313.
  • Conductor 195 is disposed on a surface of dielectric 170G opposite bottom surface 112 of body 110 .
  • the plate electrodes 310 and 311 in the dielectric block 190C and the plate electrodes 312 and 313 in the dielectric block 190D are strip electrodes extending in the X-axis direction, similar to the filter device 300A of the sixth modification. It is used to connect between vessels. Specifically, plate electrode 310 couples resonators 144 and 145 , and plate electrode 311 couples resonators 142 and 143 . Further, the plate electrode 312 couples the resonators 143 and 145 together, and the plate electrode 313 couples the resonators 141 and 142 together.
  • Conductors 195 of dielectric blocks 190C and 190D are connected to protrusions 147 and 148 of resonator 140B by vias 198 and electrodes 196.
  • the shield conductors 121 and 122 are formed as dielectric blocks, and the dielectric blocks include:
  • FIG. 19 illustrates a configuration in which a part of the flat plate conductors forming the resonator 140B is provided with a protrusion. A configuration in which a portion is provided may be used.

Abstract

This dielectric filter (100) comprises a main body (110) having a cuboid shape, and shields (121-126) disposed on side surfaces of the main body (110). The main body (110) includes a plurality of resonator units (131-135) that are arranged in a first direction and crimped. Each of the plurality of resonator units (131-135) includes a dielectric (170) having a cuboid shape, and resonators (141-145) extending in a second direction orthogonal to the first direction in the dielectric (170). The resonators (141-145) are formed by a plurality of plate-shaped conductors (1401, 1402) extending in the second direction. The main surfaces of adjacent conductors (1401, 1402) in the plurality of conductors face each other in the first direction.

Description

誘電体フィルタdielectric filter
 本開示は誘電体フィルタに関し、より特定的には、製造過程における誘電体フィルタの変形を抑制する構造に関する。 The present disclosure relates to dielectric filters, and more particularly to a structure that suppresses deformation of dielectric filters during the manufacturing process.
 特開2002-111310号公報(特許文献1)には、誘電体と導体とが積層された積層体と、当該積層体の外面に形成された入出力端子およびグランド端子とを備えた積層型誘電体フィルタが開示されている。特開2002-111310号公報(特許文献1)に開示された誘電体フィルタは、誘電体層を介して配置された複数のグランド電極と、当該グランド電極間に配置された複数の共振素子と、隣接する共振素子とを結合する結合電極と、結合電極とグランド電極との間の容量結合を抑制する結合抑制電極とを含んでいる。特開2002-111310号公報(特許文献1)の誘電体フィルタにおいては、結合抑制電極によって結合電極とグランド電極との間の浮遊容量が軽減されるため、周波数特性の劣化を防止することができる。 Japanese Unexamined Patent Application Publication No. 2002-111310 (Patent Document 1) discloses a laminated dielectric comprising a laminated body in which a dielectric and a conductor are laminated, and an input/output terminal and a ground terminal formed on the outer surface of the laminated body. A body filter is disclosed. A dielectric filter disclosed in Japanese Patent Application Laid-Open No. 2002-111310 (Patent Document 1) includes a plurality of ground electrodes arranged via a dielectric layer, a plurality of resonance elements arranged between the ground electrodes, It includes a coupling electrode that couples adjacent resonant elements, and a coupling suppression electrode that suppresses capacitive coupling between the coupling electrode and the ground electrode. In the dielectric filter disclosed in Japanese Patent Application Laid-Open No. 2002-111310 (Patent Document 1), the coupling suppressing electrode reduces the stray capacitance between the coupling electrode and the ground electrode, thereby preventing deterioration of the frequency characteristics. .
 特開2004-48714号公報(特許文献2)には、複数のセラミック層と複数の内部電極とが積層された積層体の内部に、セラミック層に機械的に接続された強化電極が配置されたセラミック積層デバイスが開示されている。特開2004-48714号公報(特許文献2)においては、上記の各セラミック層について、異なる誘電率を有するセラミック材料を用いてもよいことが記載されている。 In Japanese Patent Laying-Open No. 2004-48714 (Patent Document 2), a reinforcing electrode mechanically connected to a ceramic layer is arranged inside a laminate in which a plurality of ceramic layers and a plurality of internal electrodes are laminated. A ceramic laminate device is disclosed. Japanese Patent Laying-Open No. 2004-48714 (Patent Document 2) describes that ceramic materials having different dielectric constants may be used for each of the ceramic layers.
特開2002-111310号公報Japanese Patent Application Laid-Open No. 2002-111310 特開2004-48714号公報JP 2004-48714 A
 特開2002-111310号公報(特許文献1)に開示される誘電体フィルタの共振素子は、いわゆる分布定数型の共振器であり、積層された複数の導体間のキャパシタンスと、各電極のインダクタンスとによって、所望の共振周波数を実現している。 The resonant element of the dielectric filter disclosed in Japanese Unexamined Patent Application Publication No. 2002-111310 (Patent Document 1) is a so-called distributed constant type resonator, and the capacitance between a plurality of laminated conductors and the inductance of each electrode. achieves a desired resonance frequency.
 特開2002-111310号公報(特許文献1)の誘電体フィルタにおいては、複数の共振素子が、積層体の積層方向に直交する方向に並んで配置されており、各共振素子を構成する導体が積層体の積層方向に積層された構成を有している。このような構成においては、誘電体フィルタ全体のサイズの制約から、各共振素子を構成する導体の幅が制限される。そのため、各共振素子において所望のQ値を実現するためには、導体の積層数を増加することが必要となる。 In the dielectric filter disclosed in Japanese Patent Application Laid-Open No. 2002-111310 (Patent Document 1), a plurality of resonant elements are arranged side by side in a direction orthogonal to the stacking direction of the laminate, and the conductors that constitute each resonant element are It has the structure laminated|stacked in the lamination direction of a laminated body. In such a configuration, the width of the conductors forming each resonant element is restricted due to the overall size of the dielectric filter. Therefore, in order to achieve a desired Q value in each resonant element, it is necessary to increase the number of laminated layers of conductors.
 ここで、誘電体と導体とを積層した積層構造を有するデバイスにおいては、製造過程における圧着,焼成の際に、誘電体と導体との間の変形量の違いにより、製造後のデバイス形状が変形する場合がある。導体の積層数が多くなると、導体部分の変形量と誘電体部分の変形量との差が大きくなり、デバイスの変形度合いが大きくなってしまうため、寸法不良となったり実装不良の原因になったりするおそれがある。 Here, in a device having a laminated structure in which a dielectric and a conductor are laminated, the shape of the device after manufacturing is deformed due to the difference in deformation amount between the dielectric and the conductor during crimping and firing in the manufacturing process. sometimes. As the number of laminated layers of conductors increases, the difference between the deformation amount of the conductor portion and the deformation amount of the dielectric portion increases, and the degree of deformation of the device increases, resulting in dimensional defects and mounting defects. There is a risk of
 本開示は、上記のような課題を解決するためになされたものであって、その目的は、製造過程における誘電体フィルタの変形を抑制することである。 The present disclosure has been made to solve the above problems, and its purpose is to suppress deformation of the dielectric filter during the manufacturing process.
 本開示に係る誘電体フィルタは、直方体の形状を有する本体と、本体の側面に配置されたシールドとを備える。本体は、第1方向に配列して圧着された複数の共振器ユニットを含む。複数の共振器ユニットの各々は、直方体の形状を有する第1誘電体と、第1誘電体内において第1方向に直交する第2方向に延在する共振器とを含む。共振器は、第2方向に延在する平板形状の複数の導体によって構成されている。複数の導体における隣接する導体の主面は第1方向に対向している。 A dielectric filter according to the present disclosure includes a body having a rectangular parallelepiped shape and a shield arranged on the side surface of the body. The body includes a plurality of resonator units arranged in a first direction and crimped. Each of the plurality of resonator units includes a first dielectric having a rectangular parallelepiped shape and a resonator extending in a second direction orthogonal to the first direction within the first dielectric. The resonator is composed of a plurality of plate-shaped conductors extending in the second direction. Principal surfaces of adjacent conductors in the plurality of conductors face each other in the first direction.
 本開示に係る誘電体フィルタにおいては、各共振器を構成する平板形状の導体が、共振器の配列方向に離間して配列されている。このような構成によって、各導体の幅方向を、共振器の配列方向と直交する方向とすることができ、各導体の面積を大きくできる。これにより、導体の幅が共振器の配列方向となる場合に比べて、少ない導体数によって所望のQ値を実現することができる。したがって、製造過程における誘電体フィルタの変形を抑制することができる。 In the dielectric filter according to the present disclosure, flat plate-shaped conductors forming each resonator are arranged with a gap in the arrangement direction of the resonators. With such a configuration, the width direction of each conductor can be made perpendicular to the direction in which the resonators are arranged, and the area of each conductor can be increased. As a result, a desired Q value can be achieved with a smaller number of conductors than in the case where the width of the conductors is in the direction in which the resonators are arranged. Therefore, deformation of the dielectric filter during the manufacturing process can be suppressed.
実施の形態1に係るフィルタ装置が適用される高周波フロントエンド回路を有する通信装置のブロック図である。1 is a block diagram of a communication device having a high-frequency front-end circuit to which the filter device according to Embodiment 1 is applied; FIG. 実施の形態1のフィルタ装置の外形斜視図である。1 is an external perspective view of a filter device according to Embodiment 1. FIG. 実施の形態1のフィルタ装置の内部構造を示す透過斜視図である。2 is a see-through perspective view showing the internal structure of the filter device of Embodiment 1. FIG. 図3のフィルタ装置をZ軸方向から見た時の平面透過図である。FIG. 4 is a planar transparent view when the filter device of FIG. 3 is viewed from the Z-axis direction; 図3のフィルタ装置をY軸方向から見た時の側面透過図である。FIG. 4 is a transparent side view of the filter device of FIG. 3 when viewed from the Y-axis direction; 共振器の電極の詳細を説明するための図である。FIG. 4 is a diagram for explaining details of electrodes of a resonator; 実施の形態1の共振器および比較例の共振器の電極配置を説明するための図である。FIG. 4 is a diagram for explaining the electrode arrangement of the resonator of the first embodiment and the resonator of the comparative example; 変形例1のフィルタ装置の側面透過図である。FIG. 11 is a side see-through view of the filter device of Modification 1; 変形例2のフィルタ装置の側面透過図である。FIG. 11 is a side see-through view of a filter device of modification 2; 変形例3のフィルタ装置の側面透過図である。FIG. 11 is a side see-through view of a filter device of modification 3; 変形例4のフィルタ装置の側面透過図である。FIG. 11 is a side see-through view of a filter device of modification 4; 変形例5のフィルタ装置の内部構造を示す透過斜視図である。14 is a see-through perspective view showing an internal structure of a filter device of Modification 5. FIG. 実施の形態2のフィルタ装置の内部構造を示す透過斜視図である。FIG. 8 is a see-through perspective view showing the internal structure of the filter device of Embodiment 2; 図13のフィルタ装置をY軸方向から見た時の側面透過図である。FIG. 14 is a side see-through view of the filter device of FIG. 13 as seen from the Y-axis direction; 実施の形態3のフィルタ装置におけるシールド導体の製造プロセスを示す図である。FIG. 10 is a diagram showing a manufacturing process of the shield conductor in the filter device of Embodiment 3; 変形例6のフィルタ装置の側面透過図である。FIG. 11 is a side see-through view of a filter device of modification 6; 実施の形態4のフィルタ装置の内部構造を示す透過斜視図である。FIG. 12 is a see-through perspective view showing the internal structure of the filter device of Embodiment 4; 実施の形態4のフィルタ装置の側面透過図である。FIG. 11 is a side see-through view of the filter device of Embodiment 4; 変形例7のフィルタ装置の側面透過図である。FIG. 11 is a side see-through view of a filter device of modification 7;
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 [実施の形態1]
 (通信装置の基本構成)
 図1は、実施の形態1のフィルタ装置100が適用される高周波フロントエンド回路20を有する通信装置10のブロック図である。通信装置10は、たとえば、スマートフォンに代表される携帯端末、あるいは、携帯電話基地局である。
[Embodiment 1]
(Basic configuration of communication device)
FIG. 1 is a block diagram of communication device 10 having high-frequency front-end circuit 20 to which filter device 100 of Embodiment 1 is applied. The communication device 10 is, for example, a mobile terminal typified by a smart phone, or a mobile phone base station.
 図1を参照して、通信装置10は、アンテナ12と、高周波フロントエンド回路20と、ミキサ30と、局部発振器32と、D/Aコンバータ(DAC)40と、RF回路50とを備える。また、高周波フロントエンド回路20は、バンドパスフィルタ22,28と、増幅器24と、減衰器26とを含む。なお、図1においては、高周波フロントエンド回路20が、アンテナ12から高周波信号を送信する送信回路の場合について説明するが、高周波フロントエンド回路20はアンテナ12を介して高周波信号を受信する受信回路であってもよい。 Referring to FIG. 1 , communication device 10 includes antenna 12 , high frequency front end circuit 20 , mixer 30 , local oscillator 32 , D/A converter (DAC) 40 and RF circuit 50 . High frequency front end circuit 20 also includes bandpass filters 22 and 28 , amplifier 24 and attenuator 26 . In FIG. 1, the high-frequency front-end circuit 20 is a transmission circuit that transmits high-frequency signals from the antenna 12, but the high-frequency front-end circuit 20 is a reception circuit that receives high-frequency signals via the antenna 12. There may be.
 通信装置10は、RF回路50から伝達された送信信号を高周波信号にアップコンバートしてアンテナ12から放射する。RF回路50から出力された変調済みのデジタル信号は、D/Aコンバータ40によってデジタル信号からアナログ信号に変換される。ミキサ30は、D/Aコンバータ40によってデジタル信号からアナログ信号に変換された送信信号を、局部発振器32からの発振信号と混合して高周波信号へとアップコンバートする。バンドパスフィルタ28は、アップコンバートによって生じた不要波を除去して、所望の周波数帯域の信号のみを抽出する。減衰器26は、送信信号の強度を調整する。増幅器24は、減衰器26を通過した送信信号を、所定のレベルまで電力増幅する。バンドパスフィルタ22は、増幅過程で生じた不要波を除去するとともに、通信規格で定められた周波数帯域の信号成分のみを通過させる。バンドパスフィルタ22を通過した送信信号は、アンテナ12から放射される。 The communication device 10 up-converts the transmission signal transmitted from the RF circuit 50 into a high-frequency signal and radiates it from the antenna 12 . The modulated digital signal output from the RF circuit 50 is converted from a digital signal to an analog signal by the D/A converter 40 . The mixer 30 mixes the transmission signal, which has been converted from a digital signal to an analog signal by the D/A converter 40, with an oscillation signal from the local oscillator 32 and up-converts it into a high-frequency signal. A band-pass filter 28 removes unnecessary waves generated by the up-conversion and extracts only signals in a desired frequency band. Attenuator 26 adjusts the strength of the transmitted signal. Amplifier 24 power-amplifies the transmission signal that has passed through attenuator 26 to a predetermined level. The band-pass filter 22 removes unwanted waves generated in the amplification process and allows only signal components in the frequency band specified by the communication standard to pass. A transmission signal that has passed through the bandpass filter 22 is radiated from the antenna 12 .
 上記のような通信装置10におけるバンドパスフィルタ22,28として、本開示に対応したフィルタ装置を採用することができる。 A filter device corresponding to the present disclosure can be employed as the bandpass filters 22 and 28 in the communication device 10 as described above.
 (フィルタ装置の構成)
 次に図2~図6を用いて、実施の形態1のフィルタ装置100の詳細な構成について説明する。フィルタ装置100は、分布定数素子である複数の共振器により構成される誘電体フィルタである。
(Configuration of filter device)
Next, a detailed configuration of the filter device 100 according to the first embodiment will be described with reference to FIGS. 2 to 6. FIG. Filter device 100 is a dielectric filter composed of a plurality of resonators that are distributed constant elements.
 図2は、フィルタ装置100の外形斜視図である。図2においては、フィルタ装置100の外表面から見ることができる構成についてのみ示されており、内部の構成については省略されている。図3は、フィルタ装置100の内部構造を示す透過斜視図である。また、図4は、フィルタ装置100をZ軸方向から見た時の平面透過図である。図5は、フィルタ装置100をY軸方向から見た時の側面透過図である。図6は、共振器の電極の詳細を説明するための図である。 FIG. 2 is an external perspective view of the filter device 100. FIG. In FIG. 2, only the configuration that can be seen from the outer surface of the filter device 100 is shown, and the internal configuration is omitted. FIG. 3 is a see-through perspective view showing the internal structure of the filter device 100. FIG. Moreover, FIG. 4 is a planar transparent view when the filter device 100 is viewed from the Z-axis direction. FIG. 5 is a side see-through view of the filter device 100 viewed from the Y-axis direction. FIG. 6 is a diagram for explaining the details of the electrodes of the resonator.
 図2~図6を参照して、フィルタ装置100は、複数の誘電体層が積層方向に積層された、直方体または略直方体の本体110を備えている。本体110は、上面111と、下面112と、側面113と、側面114と、側面115と、側面116とを有している。上面111および下面112に直交する方向をZ軸方向とする。また、側面115,116に直交する方向をX軸とし、側面113,114に直交する方向をY軸とする。上面111はZ軸の正方向の面であり、下面112はZ軸の負方向の面である。側面113はX軸の正方向の側面であり、側面114はX軸の負方向の側面である。側面115はY軸の正方向の側面であり、側面116はY軸の負方向の側面である。 2 to 6, the filter device 100 includes a rectangular parallelepiped or substantially rectangular parallelepiped main body 110 in which a plurality of dielectric layers are laminated in the lamination direction. Body 110 has top surface 111 , bottom surface 112 , side surface 113 , side surface 114 , side surface 115 and side surface 116 . A direction orthogonal to the upper surface 111 and the lower surface 112 is defined as the Z-axis direction. The direction orthogonal to the side surfaces 115 and 116 is the X axis, and the direction orthogonal to the side surfaces 113 and 114 is the Y axis. The upper surface 111 is the surface in the positive direction of the Z-axis, and the lower surface 112 is the surface in the negative direction of the Z-axis. The side surface 113 is the side surface in the positive direction of the X-axis, and the side surface 114 is the side surface in the negative direction of the X-axis. Side 115 is the side in the positive direction of the Y-axis and side 116 is the side in the negative direction of the Y-axis.
 本体110の外面には、導電材料で形成された平板形状のシールド導体が、各面を覆うように配置されている。具体的には、上面111にはシールド導体121が配置され、下面112にはシールド導体122が配置されている。側面113~116には、それぞれシールド導体123~126が配置されている。シールド導体は、図示しない実装基板上の接地電極に、はんだバンプなどの接続導体によって接続され得る。すなわち、シールド導体は、接地端子として機能する。シールド導体は、本体110表面への導電性ペーストの塗布、転写、あるいはスパッタなどにより形成される。なお、一部のシールド導体は、本体110の内部に配置されてもよい。 A flat plate-shaped shield conductor made of a conductive material is arranged on the outer surface of the main body 110 so as to cover each surface. Specifically, a shield conductor 121 is arranged on the upper surface 111 and a shield conductor 122 is arranged on the lower surface 112 . Shield conductors 123 to 126 are arranged on the side surfaces 113 to 116, respectively. The shield conductor can be connected to a ground electrode on a mounting board (not shown) by a connection conductor such as a solder bump. That is, the shield conductor functions as a ground terminal. The shield conductor is formed by coating, transferring, or sputtering a conductive paste on the surface of the main body 110 . A part of the shield conductor may be arranged inside the main body 110 .
 下面112側のシールド導体122において、側面115,116に面した部分に切欠きが形成されている。また、側面115,116のシールド導体125,126における下面112に面した部分にも切欠きが形成されている。そして、側面116側の切欠き部分に入力端子T1が配置され、側面115側の切欠き部分に出力端子T2が配置されている。 The shield conductor 122 on the lower surface 112 side has cutouts in portions facing the side surfaces 115 and 116 . Notches are also formed in portions of shield conductors 125 and 126 on side surfaces 115 and 116 facing lower surface 112 . The input terminal T1 is arranged in the cutout portion on the side surface 116 side, and the output terminal T2 is arranged in the cutout portion on the side surface 115 side.
 入力端子T1および出力端子T2は、Y軸方向から見た場合に、略L字形状の断面を有している。入力端子T1は、側面115および下面112に配置されている。出力端子T2は、側面116および下面112に配置されている。入力端子T1および出力端子T2は、実装基板上に配置された対応する電極に、はんだバンプなどの接続導体によって接続される。 The input terminal T1 and the output terminal T2 have a substantially L-shaped cross section when viewed from the Y-axis direction. Input terminal T1 is arranged on side surface 115 and bottom surface 112 . The output terminal T2 is arranged on the side surface 116 and the bottom surface 112 . The input terminal T1 and the output terminal T2 are connected to corresponding electrodes arranged on the mounting substrate by connection conductors such as solder bumps.
 次に、フィルタ装置100の内部構造について説明する。フィルタ装置100における本体110は、X軸方向に配列して圧着された複数の共振器ユニット131~135により構成される。より具体的には、X軸の正方向から負方向に向かって、共振器ユニット131,132,133,134,135の順に配置されている。 Next, the internal structure of the filter device 100 will be described. A main body 110 in the filter device 100 is composed of a plurality of resonator units 131 to 135 arranged in the X-axis direction and crimped. More specifically, the resonator units 131, 132, 133, 134, and 135 are arranged in this order from the positive direction to the negative direction of the X axis.
 共振器ユニット131~135の各々は、直方体形状を有する誘電体170を含む。共振器ユニット131~135は、当該誘電体170の内部に配置された共振器141~145をそれぞれ含む。また、共振器ユニット131~135は、容量電極151~155、および、接続導体161~165,181~185をそれぞれ含む。なお、以降の説明において、共振器ユニット131~135、共振器141~145、容量電極151~155、および、接続導体161~165,181~185を、それぞれ包括的に「共振器ユニット130」、「共振器140」、「容量電極150」、「接続導体160」、および、「接続導体180」と称する場合がある。 Each of the resonator units 131-135 includes a dielectric 170 having a rectangular parallelepiped shape. Resonator units 131 - 135 respectively include resonators 141 - 145 arranged inside the dielectric 170 . Further, the resonator units 131-135 include capacitive electrodes 151-155 and connection conductors 161-165 and 181-185, respectively. In the following description, the resonator units 131 to 135, the resonators 141 to 145, the capacitor electrodes 151 to 155, and the connection conductors 161 to 165 and 181 to 185 are collectively referred to as the "resonator unit 130", They may be referred to as "resonator 140", "capacitor electrode 150", "connection conductor 160", and "connection conductor 180".
 誘電体170は、複数の誘電体層がX軸方向に積層された構成を有している。誘電体170の各誘電体層は、たとえば低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)などのセラミックス、あるいは樹脂により形成されている。誘電体170の内部において、各誘電体層に設けられた複数の平板導体、および、誘電体層間に設けられた複数のビアによって、共振器140を構成する分布定数素子、ならびに、当該分布定数素子間を結合するためのキャパシタおよびインダクタが構成される。本明細書において「ビア」とは、異なる誘電体層に設けられた電極同士を接続し、積層方向に延在する導体を示す。ビアは、たとえば、導電ペースト、めっき、および/または金属ピンなどによって形成される。 The dielectric 170 has a structure in which a plurality of dielectric layers are laminated in the X-axis direction. Each dielectric layer of the dielectric 170 is made of ceramics such as low temperature co-fired ceramics (LTCC) or resin. Inside the dielectric 170, a plurality of flat plate conductors provided in each dielectric layer and a plurality of vias provided between the dielectric layers constitute the resonator 140, and the distributed constant element Capacitors and inductors are constructed for coupling between. In this specification, the term “via” refers to a conductor that connects electrodes provided on different dielectric layers and extends in the stacking direction. Vias are formed, for example, by conductive paste, plating, and/or metal pins.
 共振器ユニット130において、共振器140は、シールド導体121とシールド導体122との間にY軸方向に延在している。共振器140におけるY軸の正方向の端部(第1端部)は、シールド導体123に接続されている。一方、共振器140におけるY軸の負方向の端部(第2端部)は、シールド導体124から離間している。 In the resonator unit 130 , the resonator 140 extends in the Y-axis direction between the shield conductors 121 and 122 . A positive Y-axis end (first end) of the resonator 140 is connected to the shield conductor 123 . On the other hand, the negative Y-axis end (second end) of the resonator 140 is separated from the shield conductor 124 .
 共振器140は、積層方向(X軸方向)に離間して配置された平板形状の複数の導体によって構成されている。複数の導体の各々は、X軸方向から見たときに、Y軸方向に延在する矩形形状を有している。各共振器において、隣接する導体の主面は対向している。図6に示されるように、共振器140のZX平面に平行な断面において、複数の導体は全体として略楕円形状を有している。言い換えれば、複数の導体において積層方向の端部に配置される導体(図6における導体1401)のZ軸方向の寸法(第1幅)は、中央付近の層に配置される導体(図6における導体1402)のZ軸方向の寸法(第2幅)よりも狭い。一般的に、高周波電流は、縁端効果のために、主に導体の表面付近を流れることが知られている。そのため、複数の導体の全体の断面形状が矩形形状の場合、角部分に電流が集中することになる。上記のように、複数の導体の断面を略楕円形状とすることによって、角部分における電流の集中を緩和することができる。 The resonator 140 is composed of a plurality of plate-shaped conductors spaced apart in the stacking direction (X-axis direction). Each of the plurality of conductors has a rectangular shape extending in the Y-axis direction when viewed from the X-axis direction. In each resonator, the main surfaces of adjacent conductors face each other. As shown in FIG. 6, in a cross section parallel to the ZX plane of resonator 140, the plurality of conductors has a substantially elliptical shape as a whole. In other words, the dimension (first width) in the Z-axis direction of the conductor (the conductor 1401 in FIG. 6) arranged at the end in the lamination direction among the plurality of conductors is the same as the conductor arranged in the layer near the center (the conductor in FIG. 6). It is narrower than the Z-axis dimension (second width) of the conductor 1402). It is generally known that high-frequency currents mainly flow near the surface of conductors due to edge effects. Therefore, when the overall cross-sectional shape of the plurality of conductors is a rectangular shape, the current concentrates on the corner portions. As described above, by making the cross-sections of the plurality of conductors substantially elliptical, the current concentration at the corners can be alleviated.
 共振器140において、端部側に配置される導体1401(第1導体)は銅、銀あるいはアルミなどの純金属系の材料により形成されている。一方、中央付近に配置される導体1402(第2導体)は、誘電体170と同程度の熱膨張係数を有する共材を金属に添加した材料により形成される。すなわち、導体1401の金属成分は、導体1402の金属成分よりも多い。共振器140による損失を低減するためには、導電率の高い純金属系の材料を用いることが望ましいが、これらの金属材料の熱膨張係数は誘電体170の熱膨張係数に比べて大きいため、製造過程におけるセラミックの焼成において、金属材料と誘電体170との間の熱膨張係数差に起因するクラック等の構造欠陥が生じやすくなる。そのため、誘電体170と同程度の熱膨張係数を有する共材を添加した材料を用いることで、製造過程における構造欠陥を抑制することができる。なお、端部側に配置される導体1401については、上述したように縁端効果によって電流が流れやすいため、純金属系の材料を用いることによって損失を低減することができる。 In the resonator 140, the conductor 1401 (first conductor) arranged on the end side is made of a pure metal material such as copper, silver or aluminum. On the other hand, the conductor 1402 (second conductor) arranged near the center is made of a material in which a common material having a coefficient of thermal expansion similar to that of the dielectric 170 is added to metal. That is, the metal content of conductor 1401 is greater than the metal content of conductor 1402 . In order to reduce the loss due to the resonator 140, it is desirable to use pure metallic materials with high electrical conductivity. Structural defects such as cracks due to the difference in thermal expansion coefficient between the metal material and the dielectric 170 are likely to occur during firing of the ceramic in the manufacturing process. Therefore, by using a material added with a common material having a coefficient of thermal expansion similar to that of the dielectric 170, structural defects in the manufacturing process can be suppressed. As for the conductor 1401 arranged on the end portion side, the loss can be reduced by using a pure metal-based material because the current tends to flow due to the edge effect as described above.
 図4に示されるように、共振器140を構成する複数の導体は、第2端部に近い位置において、接続導体160によって電気的に接続されている。また、共振器140を構成する複数の導体は、第1端部に近い位置において、接続導体180によって電気的に接続されている。接続導体160,180の各々は、複数のビアにより構成されている。接続導体160,180を構成する複数のビアは、X軸方向にジグザグに配置されている。 As shown in FIG. 4, the plurality of conductors forming the resonator 140 are electrically connected by a connection conductor 160 at a position near the second end. Also, the plurality of conductors forming the resonator 140 are electrically connected by a connection conductor 180 at a position near the first end. Each of the connection conductors 160, 180 is composed of a plurality of vias. A plurality of vias forming connection conductors 160 and 180 are arranged in a zigzag pattern in the X-axis direction.
 共振器において伝達される高周波信号の波長をλとすると、各共振器のY軸に沿った長さ、すなわち第1端部から第2端部までの距離は約λ/4である。共振器140は、複数の導体を中心導体とし、シールド導体121,122を外導体とする、分布定数型のTEMモード共振器として機能する。 Assuming that the wavelength of the high-frequency signal transmitted in the resonator is λ, the length of each resonator along the Y-axis, that is, the distance from the first end to the second end is about λ/4. The resonator 140 functions as a distributed constant type TEM mode resonator having a plurality of conductors as central conductors and shield conductors 121 and 122 as outer conductors.
 共振器141は、ビアV10,V11および平板電極PL1を介して、入力端子T1に接続されている。共振器145は、ビアV20,V21および平板電極PL2を介して出力端子T2に接続されている。入力端子T1および出力端子T2の厚みd1は、共振器140を構成する導体の厚みd2よりも厚い(d1>d2)。また、入力端子T1および出力端子T2は、少なくとも一部が誘電体170内に埋め込まれている。入力端子T1および出力端子T2をこのような構成とすることによって、入出力部分の導電率を高くして損失を防止するとともに、端子強度を強化することができる。 The resonator 141 is connected to the input terminal T1 via vias V10 and V11 and the plate electrode PL1. The resonator 145 is connected to the output terminal T2 through vias V20, V21 and the plate electrode PL2. The thickness d1 of the input terminal T1 and the output terminal T2 is thicker than the thickness d2 of the conductor forming the resonator 140 (d1>d2). At least part of the input terminal T1 and the output terminal T2 is embedded in the dielectric 170 . By configuring the input terminal T1 and the output terminal T2 in such a manner, the electrical conductivity of the input/output portion can be increased to prevent loss and strengthen the terminal strength.
 共振器141~145は、互いに磁気結合しており、入力端子T1に入力された高周波信号は、共振器141~145により伝達されて、出力端子T2から出力される。このとき、各共振器間の結合度合いによって減衰極が生じることにより、フィルタ装置100はバンドパスフィルタとして機能する。 The resonators 141 to 145 are magnetically coupled to each other, and a high frequency signal input to the input terminal T1 is transmitted by the resonators 141 to 145 and output from the output terminal T2. At this time, an attenuation pole is generated depending on the degree of coupling between the resonators, so that the filter device 100 functions as a bandpass filter.
 フィルタ装置100においては、共振器140の第2端部に対向して、容量電極150が配置されている。容量電極150のZX平面に平行な断面は、共振器140と同様の断面を有している。容量電極150は、シールド導体124に接続されている。これにより、共振器140と、対応する容量電極150とによってキャパシタが構成される。図4における共振器140と容量電極150との間のギャップ(Y軸方向の距離)GPを調整することによって、共振器140と対応する容量電極150とによって構成されるキャパシタのキャパシタンス値を調整することができる。 In the filter device 100 , the capacitive electrode 150 is arranged facing the second end of the resonator 140 . A cross section parallel to the ZX plane of the capacitive electrode 150 has a cross section similar to that of the resonator 140 . The capacitive electrode 150 is connected to the shield conductor 124 . As a result, the resonator 140 and the corresponding capacitive electrode 150 form a capacitor. By adjusting the gap (distance in the Y-axis direction) GP between the resonator 140 and the capacitive electrode 150 in FIG. 4, the capacitance value of the capacitor formed by the resonator 140 and the corresponding capacitive electrode 150 is adjusted. be able to.
 分布定数型の誘電体フィルタとして、上述した特開2002-111310号公報(特許文献1)のように、複数の共振器が積層体の積層方向に直交する方向に並んで配置されており、各共振器を構成する導体が積層体の積層方向に積層された構成のものが知られている。このような構成においては、図7(B)に示される比較例の共振器140Xのように、共振器の配列方向と導体の幅方向が同じ方向になるため、誘電体フィルタ全体のサイズの制約から、共振器を構成する導体の幅が制限され得る。そのため、各共振器において所望のQ値を実現するためには、導体の積層数を増加することが必要となる。 As a distributed constant type dielectric filter, a plurality of resonators are arranged side by side in a direction orthogonal to the lamination direction of the laminate, as in the above-mentioned Japanese Patent Application Laid-Open No. 2002-111310 (Patent Document 1). A structure in which conductors forming a resonator are laminated in the lamination direction of a laminate is known. In such a configuration, as in the resonator 140X of the comparative example shown in FIG. Therefore, the width of the conductors that make up the resonator can be limited. Therefore, in order to achieve a desired Q value in each resonator, it is necessary to increase the number of laminated layers of conductors.
 一方で、セラミックのような誘電体と金属の導体とを積層した構造の場合、製造過程における圧着の際に、誘電体と金属との収縮率の違いによって誘電体の部分と金属の部分での変形量が異なる。そのため、導体の積層数が増えると、積層方向において導体密度の高い部分の変形量と導体密度の低い部分の変形量の差が大きくなり、フィルタ全体の形状不良および/または表面性状(凹凸状態)の悪化が生じる可能性がある。そうすると、寸法不良となったり、実装不良による導通不良の要因となったりするおそれがある。 On the other hand, in the case of a structure in which a dielectric such as a ceramic and a metal conductor are laminated, during the crimping process in the manufacturing process, the dielectric part and the metal part will shrink due to the difference in contraction rate between the dielectric and the metal. The amount of deformation is different. Therefore, as the number of layers of conductors increases, the difference between the amount of deformation in a portion with a high conductor density and the amount of deformation in a portion with a low conductor density in the stacking direction increases, resulting in a defective shape and/or surface texture (unevenness) of the entire filter. aggravation may occur. If so, there is a risk of dimensional defects or poor conduction due to poor mounting.
 これに対して、実施の形態1のフィルタ装置100においては、図7(A)に示されるように、共振器の配列方向と導体の積層方向が同じとなっているため、導体の幅に対する制約が緩和されて、各導体の幅を比較例の場合に比べて広く設定することができる。そのため、実施の形態1の共振器においては、変形例の共振器に比べて、導体の積層数を少なくすることができる。一例においては、比較例の構成の場合には17層の導体を積層する必要があるところ、実施の形態1の構成の場合には7層の導体によって同等のQ値を実現することができる。また、別の例では、比較例の構成の場合には7層の導体が必要であるところ、実施の形態1の構成の場合には4層の導体によって同等のQ値を実現することができる。 On the other hand, in the filter device 100 according to the first embodiment, as shown in FIG. 7A, the arrangement direction of the resonators and the stacking direction of the conductors are the same. is relaxed, and the width of each conductor can be set wider than in the case of the comparative example. Therefore, in the resonator of the first embodiment, the number of layers of conductors can be reduced as compared with the resonator of the modified example. As an example, while 17 layers of conductors need to be stacked in the configuration of the comparative example, the same Q value can be achieved with 7 layers of conductors in the configuration of the first embodiment. In another example, while the configuration of the comparative example requires seven layers of conductors, the configuration of Embodiment 1 can achieve an equivalent Q value with four layers of conductors. .
 したがって、実施の形態1のフィルタ装置100のように、共振器の配列方向と導体の積層方向とが同じ方向となるように各共振器ユニットを構成することによって、少ない導体数で所望のフィルタ特性を実現することが可能となる。これにより、共振器ユニット内において、積層方向における導体密度の差が小さくなるため、製造過程における変形量の差が小さくなり、フィルタ装置の形状不良および表面性状の悪化を抑制することができる。 Therefore, by configuring each resonator unit such that the direction in which the resonators are arranged and the direction in which the conductors are laminated are the same as in the filter device 100 of the first embodiment, desired filter characteristics can be obtained with a small number of conductors. can be realized. This reduces the difference in conductor density in the stacking direction within the resonator unit, thereby reducing the difference in the amount of deformation during the manufacturing process, thereby suppressing shape defects and deterioration of the surface properties of the filter device.
 なお、実施の形態1における「X軸方向」および「Y軸方向」は、本開示における「第1方向」および「第2方向」にそれぞれ対応する。実施の形態1における「上面111」、「下面112」および「側面113~116」は、本開示における「第1面」~「第6面」にそれぞれ対応する。実施の形態1における「シールド導体121」~「シールド導体126」は、本開示における「第1シールド導体」~「第6シールド導体」にそれぞれ対応する。実施の形態1における「接続導体180(接続導体181~185)」および「接続導体160(接続導体161~165)」は、本開示における「第1接続導体」および「第2接続導体」にそれぞれ対応する。 The "X-axis direction" and "Y-axis direction" in Embodiment 1 respectively correspond to the "first direction" and "second direction" in the present disclosure. “Top surface 111,” “bottom surface 112,” and “side surfaces 113 to 116” in Embodiment 1 respectively correspond to “first surface” to “sixth surface” in the present disclosure. "Shield conductor 121" to "shield conductor 126" in Embodiment 1 respectively correspond to "first shield conductor" to "sixth shield conductor" in the present disclosure. “Connection conductor 180 (connection conductors 181 to 185)” and “connection conductor 160 (connection conductors 161 to 165)” in Embodiment 1 are respectively referred to as “first connection conductor” and “second connection conductor” in the present disclosure. handle.
 (変形例1)
 実施の形態1においては、各共振器の断面形状が略楕円形状である場合について説明した。変形例1においては、共振器の断面形状の他の例について説明する。
(Modification 1)
In Embodiment 1, the case where the cross-sectional shape of each resonator is substantially elliptical has been described. In Modification 1, another example of the cross-sectional shape of the resonator will be described.
 図8は、変形例1のフィルタ装置100Aの側面透過図である。フィルタ装置100Aにおいては、共振器ユニット131A~135Aにそれぞれ含まれる共振器141A~145Aの断面形状が実施の形態1のフィルタ装置100と異なっており、その他の構成はフィルタ装置100と同様である。フィルタ装置100Aにおいて、フィルタ装置100と重複する要素の説明は繰り返さない。 FIG. 8 is a side see-through view of the filter device 100A of Modification 1. FIG. In filter device 100A, the cross-sectional shapes of resonators 141A to 145A included in resonator units 131A to 135A are different from filter device 100 of the first embodiment, and other configurations are the same as filter device 100. FIG. In filter device 100A, the description of elements that overlap with filter device 100 will not be repeated.
 図8を参照して、フィルタ装置100Aにおける共振器141A~145Aは、同形状の複数の導体によって構成されている。そのため、共振器141A~145Aの断面形状は略矩形形状となっている。 Referring to FIG. 8, resonators 141A to 145A in filter device 100A are composed of a plurality of conductors having the same shape. Therefore, the cross-sectional shapes of the resonators 141A to 145A are substantially rectangular.
 上述のように、縁端効果による共振器の角部分への電流集中を緩和するためには、実施の形態1のように共振器の断面形状を略楕円形状とすることが好ましい。しかしながら、フィルタ装置100のように共振器の角部分を除去した場合には、当該角部分を除去しない場合に比べて、隣接する共振器同士における最短距離となる対向面積が小さくなるため、共振器間の結合が弱くなる。 As described above, in order to alleviate current concentration in the corner portions of the resonator due to the edge effect, it is preferable to make the cross-sectional shape of the resonator substantially elliptical as in the first embodiment. However, when the corner portions of the resonators are removed as in the filter device 100, compared to the case where the corner portions are not removed, the facing area, which is the shortest distance between the adjacent resonators, becomes smaller. bond between them weakens.
 フィルタ装置100Aの場合には、共振器の角部分に電流集中が生じる可能性があるものの、隣接する共振器間の結合の度合いを大きくすることができる。 In the case of the filter device 100A, current concentration may occur at the corners of the resonators, but the degree of coupling between adjacent resonators can be increased.
 共振器の断面形状は、角部分への電流集中による影響、隣接共振器間の結合度合い、および、寸法制約などを考慮して適宜選択される。 The cross-sectional shape of the resonator is appropriately selected in consideration of the influence of current concentration on the corners, the degree of coupling between adjacent resonators, size restrictions, and so on.
 (変形例2)
 実施の形態1のフィルタ装置100においては、各共振器ユニットを構成する誘電体170が同じ材料の場合について説明した。変形例2においては、一部の共振器ユニットの誘電体として、他の共振器ユニットの誘電体とは異なる特性を有する誘電体が用いられる場合について説明する。
(Modification 2)
In filter device 100 of Embodiment 1, the case where dielectric 170 forming each resonator unit is made of the same material has been described. In Modified Example 2, a case will be described in which a dielectric having characteristics different from those of other resonator units is used as the dielectric of some of the resonator units.
 図9は、変形例2のフィルタ装置100Bの側面透過図である。フィルタ装置100Bにおいては、実施の形態1のフィルタ装置100における共振器ユニット132,134が、共振器ユニット132B,134Bに置き換わった構成を有している。フィルタ装置100Bにおいて、フィルタ装置100と重複する要素の説明は繰り返さない。 FIG. 9 is a side see-through view of a filter device 100B of Modification 2. FIG. Filter device 100B has a configuration in which resonator units 132B and 134B replace resonator units 132 and 134 in filter device 100 of the first embodiment. In filter device 100B, the description of elements that overlap with filter device 100 will not be repeated.
 図9を参照して、フィルタ装置100Bにおいては、共振器ユニット131,133,135の各々は、フィルタ装置100と同じ誘電率ε1の誘電体170を含んでおり、対応する共振器が当該誘電体170の内部に配置されている。共振器ユニット132Bは、誘電体170とは異なる誘電率ε2(ε2≠ε1)の誘電体170Aを含んでおり、当該誘電体170の内部に共振器142が配置されている。また、共振器ユニット134Bは、誘電体170,170Aとは異なる誘電率ε3(ε3≠ε1,ε2)の誘電体170Bを含んでおり、当該誘電体170Bの内部に共振器144が配置されている。 Referring to FIG. 9, in filter device 100B, each of resonator units 131, 133, 135 includes dielectric 170 having the same dielectric constant ε1 as filter device 100, and the corresponding resonator is made of the dielectric 170 inside. The resonator unit 132B includes a dielectric 170A having a dielectric constant ε2 (ε2≠ε1) different from that of the dielectric 170, and the resonator 142 is arranged inside the dielectric 170 concerned. Further, the resonator unit 134B includes a dielectric 170B having a dielectric constant ε3 (ε3≠ε1, ε2) different from the dielectrics 170 and 170A, and the resonator 144 is arranged inside the dielectric 170B. .
 このように、一部の共振器ユニットに含まれる誘電体に、他の共振器ユニットに含まれる誘電体とは異なる誘電率を有する誘電体を用いることによって、共振器間の結合度合いを調整することができる。そのため、導体および電極の設計をフィルタ装置100と共通としつつ、フィルタ装置の特性を調整することができる。 In this way, the degree of coupling between the resonators is adjusted by using a dielectric having a dielectric constant different from that of the dielectric contained in the other resonator units as the dielectric contained in some of the resonator units. be able to. Therefore, the characteristics of the filter device can be adjusted while the conductors and electrodes are designed in common with the filter device 100 .
 なお、上記の説明においては、誘電体の特性として誘電率が異なる場合を例として説明したが、それに代えてあるいはそれに加えて、温度特性および誘電正接(tanδ)などの他の特性が異なる誘電体を採用してもよい。 In the above description, the case where the dielectric constants are different as the dielectric properties is explained as an example. may be adopted.
 変形例2において、「共振器ユニット131,133,135」の各々は本開示における「第1共振器ユニット」に対応し、「共振器ユニット132B,134B」の各々は本開示における「第2共振器ユニット」に対応する。 In Modified Example 2, each of the " resonator units 131, 133, 135" corresponds to the "first resonator unit" in the present disclosure, and each of the " resonator units 132B, 134B" corresponds to the "second resonator unit" in the present disclosure. Corresponds to the "equipment unit".
 (変形例3)
 変形例3においては、共振器ユニット間に、共振器ユニットの誘電体とは異なる特性を有する誘電体が配置される構成について説明する。
(Modification 3)
In Modified Example 3, a configuration in which dielectrics having different characteristics from the dielectrics of the resonator units are arranged between the resonator units will be described.
 図10は、変形例3のフィルタ装置100Cの側面透過図である。フィルタ装置100Cにおいては、隣接する共振器ユニットの間に、誘電体170Cが配置されている。また、入力端子T1および出力端子T2にそれぞれ接続される共振器ユニット131,135については、本体110の側面115,116に対応する部分にも誘電体170Cが配置されており、当該誘電体170Cに入力端子T1を出力端子T2が配置されている。 FIG. 10 is a side see-through view of a filter device 100C of Modification 3. FIG. In filter device 100C, dielectric 170C is arranged between adjacent resonator units. Further, for resonator units 131 and 135 connected to input terminal T1 and output terminal T2, respectively, dielectric 170C is also arranged in portions corresponding to side surfaces 115 and 116 of main body 110. An output terminal T2 is arranged for the input terminal T1.
 誘電体170Cの誘電正接δ2は、共振器ユニットを構成する誘電体170の誘電正接δ1よりも小さい(δ1>δ2)。このように、共振器ユニット間の誘電体の誘電正接を、共振器ユニットの誘電体よりも小さくすることによってQ値を改善することができる。なお、誘電正接以外の特性(誘電率,温度特性など)が異なる場合であってもよい。 The dielectric loss tangent δ2 of the dielectric 170C is smaller than the dielectric loss tangent δ1 of the dielectric 170 constituting the resonator unit (δ1>δ2). Thus, the Q value can be improved by making the dissipation factor of the dielectric between the resonator units smaller than that of the dielectric of the resonator units. Note that characteristics other than the dielectric loss tangent (permittivity, temperature characteristics, etc.) may be different.
 変形例3において、「誘電体170」および「誘電体170C」は、本開示における「第1誘電体」および「第2誘電体」にそれぞれ対応する。 In Modified Example 3, "dielectric 170" and "dielectric 170C" respectively correspond to "first dielectric" and "second dielectric" in the present disclosure.
 (変形例4)
 変形例4においては、概略的には上記の変形例2および変形例3を組み合わせた構成について説明する。
(Modification 4)
In Modification 4, a configuration obtained by combining Modification 2 and Modification 3 will be described.
 図11は、変形例4のフィルタ装置100Dの側面透過図である。フィルタ装置100Dにおいては、各共振器ユニット131D~135Dは、共振器が配置される第1部分およびそれ以外の第2部分を有しており、第1部分には誘電体170Bが配置され、第2部分には誘電体170が配置されている。また、共振器同士の間の第3部分および側面115,116に対応する第4部分には、誘電体170Cが配置されている。 11 is a side see-through view of a filter device 100D of Modification 4. FIG. In the filter device 100D, each of the resonator units 131D to 135D has a first portion in which the resonators are arranged and a second portion other than the first portion. A dielectric 170 is placed in the two parts. A dielectric 170C is arranged in a third portion between the resonators and a fourth portion corresponding to the side surfaces 115 and 116 .
 たとえば、共振器部分に配置された誘電体170Bに温度変化による変動が少ない温度特性に優れた誘電体を配置し、共振器ユニット間に配置された誘電体170Cに誘電正接の小さいQ値に優れた誘電体を配置することによって、温度特性および共振器特性の双方に優れたフィルタ装置を実現することができる。 For example, the dielectric 170B placed in the resonator portion may be a dielectric having excellent temperature characteristics with little fluctuation due to temperature changes, and the dielectric 170C placed between the resonator units may have a small dielectric loss tangent and an excellent Q value. By arranging such a dielectric, it is possible to realize a filter device excellent in both temperature characteristics and resonator characteristics.
 (変形例5)
 変形例5においては、入力端子および出力端子が異なる形状を有する構成について説明する。
(Modification 5)
In Modified Example 5, a configuration in which the input terminals and the output terminals have different shapes will be described.
 図12は、変形例5のフィルタ装置100Eの内部構造を示す透過斜視図である。フィルタ装置100Eにおいては、側面115,116における入力端子T1Aおよび出力端子T2Aの構成が、実施の形態1のフィルタ装置100と異なっている。 12 is a see-through perspective view showing the internal structure of a filter device 100E of Modification 5. FIG. In filter device 100E, configurations of input terminal T1A and output terminal T2A on side surfaces 115 and 116 are different from filter device 100 of the first embodiment.
 より具体的には、入力端子T1Aは、側面115におけるZ軸方向の中央付近において、X軸方向に延在する平板電極である。入力端子T1Aは、ビアV10Aによって共振器141に接続されている。入力端子T1Aは、共振器141の導体に対向している。同様に、出力端子T2Aは、側面116におけるZ軸方向の中央付近において、X軸方向に延在する平板電極である。出力端子T2Aは、ビアV20Aによって共振器145に接続されている。出力端子T2Aは、共振器145の導体に対向している。 More specifically, the input terminal T1A is a plate electrode extending in the X-axis direction near the center of the side surface 115 in the Z-axis direction. Input terminal T1A is connected to resonator 141 by via V10A. Input terminal T 1 A faces the conductor of resonator 141 . Similarly, the output terminal T2A is a plate electrode extending in the X-axis direction near the center of the side surface 116 in the Z-axis direction. Output terminal T2A is connected to resonator 145 by via V20A. Output terminal T2A faces the conductor of resonator 145 .
 図12においては、入力端子T1Aおよび出力端子T2Aは、側面115,116において側面113から側面114まで(すなわち、Y軸方向のほぼ全域にわたって)配置されているが、入力端子T1Aおよび出力端子T2AのY軸方向の寸法は、もう少し短くてもよい。 In FIG. 12, the input terminal T1A and the output terminal T2A are arranged on the side surfaces 115 and 116 from the side surface 113 to the side surface 114 (that is, over almost the entire Y-axis direction). The dimension in the Y-axis direction may be slightly shorter.
 なお、図12においては明確に示されていないが、側面115,116において、シールド導体125,126は、入力端子T1Aおよび出力端子T2Aと重ならないように配置される。 Although not clearly shown in FIG. 12, on the side surfaces 115 and 116, the shield conductors 125 and 126 are arranged so as not to overlap the input terminal T1A and the output terminal T2A.
 このように、入力端子および出力端子の電極面積を拡大することによって、実装時の安定性を向上させるとともに、電極をメッキ処理する場合のメッキ付性を向上させることができる。また、入力端子および出力端子が共振器と対向して並行に配置されているので、共振器から見た場合に、入力端子および出力端子がシールドとして機能する。これによって、内部の共振器への外部機器からの電磁界の影響を低減することができる。 In this way, by increasing the electrode area of the input terminal and the output terminal, it is possible to improve the stability during mounting and improve the plating property when the electrodes are plated. Further, since the input terminal and the output terminal are arranged in parallel to face the resonator, the input terminal and the output terminal function as a shield when viewed from the resonator. This can reduce the influence of the electromagnetic field from the external device on the internal resonator.
 [実施の形態2]
 実施の形態1においては、フィルタ装置に含まれる各共振器の中心のZ軸方向の位置が、いずれも同じ位置に配置される構成について説明した。実施の形態2においては、フィルタ装置において、Z軸方向の配置位置が他の共振器とは異なる共振器を含む構成について説明する。
[Embodiment 2]
In Embodiment 1, the configuration in which the center positions of the resonators included in the filter device in the Z-axis direction are all arranged at the same position has been described. In a second embodiment, a configuration in which a filter device includes a resonator whose arrangement position in the Z-axis direction is different from that of other resonators will be described.
 図13は、実施の形態2のフィルタ装置200の内部構造を示す透過斜視図である。また、図14は、図13のフィルタ装置200をY軸方向から見た時の側面透過図である。フィルタ装置200は、実施の形態1のフィルタ装置100と比較すると、本体110内における共振器141~145のZ軸方向の位置が均一ではなく、さらに、キャパシタ電極PC1,PC2,PC4,PC5が追加された構成を有している。なお、フィルタ装置200において、フィルタ装置100と重複する要素の説明は繰り返さない。 FIG. 13 is a see-through perspective view showing the internal structure of the filter device 200 of Embodiment 2. FIG. 14 is a side see-through view of the filter device 200 of FIG. 13 as seen from the Y-axis direction. In filter device 200, compared with filter device 100 of the first embodiment, the positions of resonators 141 to 145 in main body 110 in the Z-axis direction are not uniform, and capacitor electrodes PC1, PC2, PC4, and PC5 are added. It has a configured configuration. In filter device 200, the description of elements that overlap with filter device 100 will not be repeated.
 図13および図14を参照して、フィルタ装置200においては、共振器141,145は、本体110のZ軸方向のほぼ中央の位置に配置されている。一方、共振器142,144については、共振器141,145よりもZ軸の負方向にオフセットした位置に配置されている。また、共振器143については、共振器141,145よりもZ軸の正方向にオフセットした位置に配置されている。 Referring to FIGS. 13 and 14, in filter device 200, resonators 141 and 145 are arranged substantially in the center of main body 110 in the Z-axis direction. On the other hand, the resonators 142 and 144 are arranged at positions offset from the resonators 141 and 145 in the negative direction of the Z axis. Further, the resonator 143 is arranged at a position offset from the resonators 141 and 145 in the positive direction of the Z-axis.
 このように、共振器の一部をオフセットした位置に配置することによって、実施の形態1のフィルタ装置100と比較すると、隣接する共振器間の結合度合いが若干低下する。その一方で、共振器141は共振器143と部分的に対向するようになるため、共振器141と共振器143との間で、共振器142を介さずに結合する経路が生じる。同様に、共振器142と共振器144との間において共振器143を介さずに結合する経路が生じ、共振器143と共振器145との間において共振器144を介さずに結合する経路が生じる。すなわち、共振器間において、いわゆる飛越結合が生じる。一般的に、飛越結合が発生すると、フィルタ特性において減衰極が生じることが知られている。そのため、このように、隣接する共振器のZ軸方向の位置をオフセットさせて減衰極を追加することによって、フィルタ装置の減衰特性および/または通過帯域幅を調整することが可能となる。 By arranging a part of the resonators at offset positions in this way, the degree of coupling between adjacent resonators is slightly reduced compared to the filter device 100 of the first embodiment. On the other hand, since the resonator 141 partially opposes the resonator 143 , a coupling path is generated between the resonators 141 and 143 without passing through the resonator 142 . Similarly, a coupling path occurs between the resonators 142 and 144 without the intervention of the resonator 143, and a coupling path occurs between the resonators 143 and 145 without the intervention of the resonator 144. . That is, so-called jump coupling occurs between the resonators. It is generally known that when interlaced coupling occurs, an attenuation pole occurs in the filter characteristics. Therefore, by offsetting the positions of adjacent resonators in the Z-axis direction and adding an attenuation pole, it is possible to adjust the attenuation characteristic and/or the passband width of the filter device.
 また、図13に示されるように、フィルタ装置200においては、共振器141において共振器142に面する部分にキャパシタ電極PC1が配置されており、共振器142において当該キャパシタ電極PC1に面する部分にキャパシタ電極PC2が配置されている。同様に、共振器144において共振器145に面する部分にキャパシタ電極PC4が配置されており、共振器145において当該キャパシタ電極PC4に面する部分にキャパシタ電極PC5が配置されている。キャパシタ電極PC1,PC2,PC4,PC5はいずれも平板電極である。 Further, as shown in FIG. 13, in the filter device 200, a capacitor electrode PC1 is arranged in a portion of the resonator 141 facing the resonator 142, and a capacitor electrode PC1 is arranged in a portion of the resonator 142 facing the capacitor electrode PC1. A capacitor electrode PC2 is arranged. Similarly, a capacitor electrode PC4 is arranged at a portion of the resonator 144 facing the resonator 145, and a capacitor electrode PC5 is arranged at a portion of the resonator 145 facing the capacitor electrode PC4. All of the capacitor electrodes PC1, PC2, PC4 and PC5 are plate electrodes.
 これらのキャパシタ電極は、上述のように共振器の位置をオフセットした場合に、隣接する共振器間の容量結合の結合度合いを調整するために用いられる。すなわち、これらのキャパシタ電極は必須の構成ではなく、所望のフィルタ特性に応じて必要な場合に配置される。たとえば、共振器142と共振器143との間、および/または、共振器143と共振器144との間にもキャパシタ電極を追加してもよい。あるいは、所望の特性を得ることができれば、キャパシタ電極PC1,PC2,PC4,PC5を削除してもよい。また、平板電極の寸法および/または形状を変更してもよい。 These capacitor electrodes are used to adjust the degree of capacitive coupling between adjacent resonators when the positions of the resonators are offset as described above. That is, these capacitor electrodes are not an essential feature, but are placed as needed depending on the desired filter characteristics. For example, capacitor electrodes may also be added between resonators 142 and 143 and/or between resonators 143 and 144 . Alternatively, the capacitor electrodes PC1, PC2, PC4, and PC5 may be omitted if desired characteristics can be obtained. Also, the dimensions and/or shape of the plate electrodes may be varied.
 なお、共振器間の容量結合を調整するキャパシタ電極については、実施の形態1および各変形例のフィルタ装置にも適用可能である。 It should be noted that the capacitor electrodes for adjusting the capacitive coupling between the resonators can also be applied to the filter devices of the first embodiment and each modification.
 以上のように、実施の形態2のフィルタ装置200についても、共振器の配列方向と導体の積層方向とが同じ方向となるように各共振器ユニットを構成することによって、フィルタ装置の形状不良および表面性状の悪化を抑制することができる。さらに、隣接する共振器のZ軸方向の位置をオフセットさせることによって、減衰特性および/または通過帯域幅を調整することができる。 As described above, in the filter device 200 according to the second embodiment as well, by configuring each resonator unit such that the direction in which the resonators are arranged and the direction in which the conductors are laminated are the same, it is possible to prevent the occurrence of defects in the shape of the filter device. Deterioration of surface properties can be suppressed. Furthermore, by offsetting the Z-axis position of adjacent resonators, attenuation characteristics and/or passband widths can be adjusted.
 なお、実施の形態2における「Z軸方向」は、本開示における「第3方向」に対応する。 The "Z-axis direction" in Embodiment 2 corresponds to the "third direction" in the present disclosure.
 [実施の形態3]
 実施の形態1においては、フィルタ装置の本体を形成した後に、シールド導体を外表面にスパッタ等によって形成する場合について説明した。実施の形態3においては、複数の共振器ユニットで構成される本体に、導体を貼付した誘電体ブロックを配置することによってシールド導体を形成する構成について説明する。
[Embodiment 3]
In Embodiment 1, the case where the shield conductor is formed on the outer surface by sputtering or the like after forming the main body of the filter device has been described. In the third embodiment, a configuration will be described in which a shield conductor is formed by arranging a dielectric block to which a conductor is attached to a main body composed of a plurality of resonator units.
 図15は、実施の形態3のフィルタ装置300におけるシールド導体の製造プロセスを示す図である。図15を参照して、まず、複数の共振器ユニット131~135を配列して本体110を仮組みする。その後、本体110の上面111,下面112および側面113,114に、誘電体170Fの一方の主面に導体195が貼付された誘電体ブロック190を配置する。そして、この状態で圧着および焼成して、共振器ユニット同士、および、共振器ユニットと誘電体ブロックとを一体化することによって、フィルタ装置300が形成される。フィルタ装置300においては、誘電体ブロック190に配置された導体195が、シールド導体121~124となる。 15A and 15B are diagrams showing the manufacturing process of the shield conductor in the filter device 300 of the third embodiment. Referring to FIG. 15, first, main body 110 is temporarily assembled by arranging a plurality of resonator units 131-135. After that, dielectric block 190 having conductor 195 attached to one main surface of dielectric 170F is placed on upper surface 111, lower surface 112 and side surfaces 113 and 114 of main body 110. As shown in FIG. Then, the filter device 300 is formed by pressing and baking in this state to integrate the resonator units with each other and the resonator unit and the dielectric block. In filter device 300, conductor 195 arranged in dielectric block 190 serves as shield conductors 121-124.
 このようなプロセスによってシールド導体を形成することによって、シールド導体を、本体と同じプロセスで形成することができるので、製造コストを低減することができる。 By forming the shield conductor by such a process, the shield conductor can be formed in the same process as the main body, so the manufacturing cost can be reduced.
 また、誘電体ブロックを構成する誘電体170Fの材料として、本体110を構成する誘電体170の誘電率とは異なる誘電率を有する材料を用いることによって、各共振器の特性を調整することができる。 Further, by using a material having a dielectric constant different from that of the dielectric 170 forming the main body 110 as the material of the dielectric 170F forming the dielectric block, the characteristics of each resonator can be adjusted. .
 (変形例6)
 変形例6においては、シールド導体を形成するための誘電体ブロック内に、共振器間を結合するための構造が組み込まれた構成について説明する。
(Modification 6)
Modification 6 describes a configuration in which a structure for coupling between resonators is incorporated in a dielectric block for forming a shield conductor.
 図16は、変形例6のフィルタ装置300Aの側面透過図である。図16を参照して、フィルタ装置300Aは、本体110の上面111に誘電体ブロック190Aが配置され、さらに下面112に誘電体ブロック190Bが配置された構成を有している。なお、図16には記載されていないが、側面113,114には、実施の形態3と同様の誘電体ブロック190が配置されている。 16 is a side see-through view of a filter device 300A of Modification 6. FIG. Referring to FIG. 16, filter device 300A has a structure in which dielectric block 190A is arranged on upper surface 111 of main body 110 and dielectric block 190B is arranged on lower surface 112 thereof. Although not shown in FIG. 16, dielectric blocks 190 similar to those of the third embodiment are arranged on the side surfaces 113 and 114 .
 誘電体ブロック190Aは、誘電体170Gと、導体195と、平板電極310,311とを含む。導体195は、誘電体170Gにおいて、本体110の上面111とは反対の面に配置されている。 The dielectric block 190A includes a dielectric 170G, a conductor 195, and plate electrodes 310,311. Conductor 195 is disposed on the side of dielectric 170G opposite top surface 111 of body 110 .
 平板電極310は、X軸方向に延在する帯状の電極であり、共振器144と共振器145とを結合する。平板電極311は、X軸方向に延在する帯状の電極であり、共振器142と共振器143とを結合する。 The plate electrode 310 is a strip-shaped electrode extending in the X-axis direction and couples the resonators 144 and 145 . The plate electrode 311 is a strip-shaped electrode extending in the X-axis direction and couples the resonators 142 and 143 .
 誘電体ブロック190Bは、誘電体170Gと、導体195と、平板電極312,313とを含む。導体195は、誘電体170Gにおいて、本体110の下面112とは反対の面に配置されている。 The dielectric block 190B includes a dielectric 170G, a conductor 195, and plate electrodes 312,313. Conductor 195 is disposed on a surface of dielectric 170G opposite bottom surface 112 of body 110 .
 平板電極312は、X軸方向に延在する帯状の電極であり、共振器143と共振器145とを結合する。平板電極313は、X軸方向に延在する帯状の電極であり、共振器141と共振器142とを結合する。 The plate electrode 312 is a strip-shaped electrode extending in the X-axis direction and couples the resonators 143 and 145 . The plate electrode 313 is a strip-shaped electrode extending in the X-axis direction and couples the resonators 141 and 142 .
 フィルタ装置300Aにおいては、誘電体ブロック190A,190B内に配置された平板電極310~313によって、共振器同士の結合度合いを高めることができる。また、平板電極312については、共振器143と共振器145との間の飛越結合を形成することができ、これによって非通過帯域に減衰極が生じる。したがって、隣接共振器間の結合、および、飛越結合の結合度合いを適切に調整することによって、フィルタ装置300Aの非通過帯域の減衰特性の向上、および/または、通過帯域幅の拡大を実現することができる。 In the filter device 300A, the degree of coupling between the resonators can be increased by the plate electrodes 310-313 arranged in the dielectric blocks 190A and 190B. Further, the plate electrode 312 can form a cross-coupling between the resonators 143 and 145, which produces an attenuation pole in the non-passband. Therefore, by appropriately adjusting the coupling between adjacent resonators and the degree of interlaced coupling, it is possible to improve the attenuation characteristics of the non-passband of the filter device 300A and/or expand the passband width. can be done.
 なお、飛越結合は図16に示した態様には限られず、結合する共振器の組み合わせは、所望のフィルタ特性に応じて適宜選択することができる。たとえば、共振器141と共振器143とを結合してもよいし、共振器141と共振器144とを結合してもよい。あるいは、共振器142と共振器144とを結合してもよいし、共振器142と共振器145とを結合してもよい。 Note that the interlaced coupling is not limited to the mode shown in FIG. 16, and the combination of resonators to be coupled can be appropriately selected according to desired filter characteristics. For example, resonator 141 and resonator 143 may be coupled, or resonator 141 and resonator 144 may be coupled. Alternatively, resonator 142 and resonator 144 may be coupled, or resonator 142 and resonator 145 may be coupled.
 [実施の形態4]
 実施の形態4においては、各共振器を構成する複数の平板導体が、シールド導体121,122に接続される構成について説明する。
[Embodiment 4]
In Embodiment 4, a configuration in which a plurality of flat plate conductors forming each resonator are connected to shield conductors 121 and 122 will be described.
 図17は、実施の形態4のフィルタ装置400の内部構造を示す透過斜視図である。また、図18は、フィルタ装置400をX軸の正方向から見た時の側面透過図である。フィルタ装置400においては、実施の形態1のフィルタ装置100における共振器141~145が、共振器141B~145Bに置き換わった構成となっている。なお、以降の説明において、フィルタ装置100と重複する要素の説明は繰り返さない。また、共振器141B~145Bを包括的に「共振器140B」と称する場合がある。 FIG. 17 is a see-through perspective view showing the internal structure of the filter device 400 of Embodiment 4. FIG. FIG. 18 is a transparent side view of the filter device 400 viewed from the positive direction of the X-axis. In filter device 400, resonators 141 to 145 in filter device 100 of Embodiment 1 are replaced with resonators 141B to 145B. In the following description, the description of elements that overlap with filter device 100 will not be repeated. Also, the resonators 141B to 145B may be collectively referred to as "resonator 140B".
 図17および図18を参照して、共振器140Bは、実施の形態1の共振器140と同様に、複数の平板導体と、当該平板導体を接続する接続導体160,180によって構成されている。共振器140Bにおける平板導体は、Y軸方向に延在する本体部146と、当該本体部146をシールド導体121,122にそれぞれ接続するための突出部147,148とを含む。 17 and 18, a resonator 140B is composed of a plurality of flat plate conductors and connection conductors 160 and 180 connecting the flat plate conductors, like the resonator 140 of the first embodiment. The flat conductor in the resonator 140B includes a main body portion 146 extending in the Y-axis direction and projecting portions 147 and 148 for connecting the main body portion 146 to the shield conductors 121 and 122, respectively.
 突出部147,148は、本体部146において、接続導体180が配置される位置からZ軸方向に延伸し、それぞれシールド導体121,122に電気的に接続されている。すなわち、X軸方向から見た場合に、共振器140Bは略十字形状を有している。この突出部147,148によって、共振器140Bの接地端が規定される。そして、共振器によって伝達される高周波信号の波長をλとすると、各共振器の第2端部と突出部147,148との間の距離が約λ/4となるように設計される。 The projecting portions 147 and 148 extend in the Z-axis direction from the position where the connection conductor 180 is arranged in the body portion 146 and are electrically connected to the shield conductors 121 and 122, respectively. That is, when viewed from the X-axis direction, the resonator 140B has a substantially cross shape. The projections 147 and 148 define the ground end of the resonator 140B. The distance between the second end of each resonator and the protrusions 147 and 148 is designed to be about λ/4, where λ is the wavelength of the high-frequency signal transmitted by the resonator.
 共振器を構成する複数の導体は、薄膜の導電性シート、あるいは、当該導電性シートが貼り付けられた誘電体シートを重ね合わせた状態で、ダイサーまたはレーザなどの切断手段によってチップサイズにカットして作製される。このとき、導電性シートおよび誘電体シートの重ね合わせにおける積みズレ、あるいは、カット工程における切断ズレが生じる場合がある。 A plurality of conductors constituting a resonator are cut into chip sizes by a cutting means such as a dicer or a laser while thin-film conductive sheets or dielectric sheets to which the conductive sheets are attached are superimposed. manufactured by At this time, misalignment in lamination of the conductive sheet and the dielectric sheet, or cutting misalignment in the cutting process may occur.
 これに対して、共振器140Bに接地端を規定する突出部147,148を設けることによって、当該突出部がない場合に比べて、共振器の共振周波数のばらつきを抑制することができる。 On the other hand, by providing the protrusions 147 and 148 that define the grounding end of the resonator 140B, it is possible to suppress variations in the resonance frequency of the resonator compared to the case where the protrusions are not provided.
 なお、突出部147,148は、共振器140Bを構成するすべての平板導体に設けることが望ましいが、一部の平板導体に突出部が設けられない構成であってもよい。 Although it is desirable that the protrusions 147 and 148 are provided on all the flat plate conductors forming the resonator 140B, some of the flat plate conductors may not be provided with the protrusions.
 (変形例7)
 変形例7は、実施の形態4で説明した突出部を有する共振器を含むフィルタ装置について、変形例6のような、共振器間を結合するための構造を含んだ誘電体ブロックを適用した場合の構成について説明する。
(Modification 7)
Modification 7 is a case where a dielectric block including a structure for coupling between resonators as in Modification 6 is applied to the filter device including resonators having protrusions described in Embodiment 4. will be described.
 図19は、変形例7のフィルタ装置400AをY軸方向から見た時の側面透過図である。図19を参照して、フィルタ装置400Aは、本体110の上面111に誘電体ブロック190Cが配置され、さらに下面112に誘電体ブロック190Dが配置された構成を有している。なお、図19には記載されていないが、側面113,114には、実施の形態3および変形例6と同様の誘電体ブロック190が配置されている。 FIG. 19 is a side see-through view of the filter device 400A of Modification 7 when viewed from the Y-axis direction. Referring to FIG. 19, filter device 400A has a structure in which dielectric block 190C is arranged on upper surface 111 of main body 110 and dielectric block 190D is arranged on lower surface 112 thereof. Although not shown in FIG. 19, dielectric blocks 190 similar to those of Embodiment 3 and Modification 6 are arranged on side surfaces 113 and 114 .
 誘電体ブロック190Cは、誘電体170Gと、導体195と、電極196と、ビア198と、平板電極310,311とを含む。導体195は、誘電体170Gにおいて、本体110の上面111とは反対の面に配置されている。また、誘電体ブロック190Dは、誘電体170Gと、導体195と、電極196と、ビア198と、平板電極312,313とを含む。導体195は、誘電体170Gにおいて、本体110の下面112とは反対の面に配置されている。 A dielectric block 190C includes a dielectric 170G, a conductor 195, an electrode 196, a via 198, and plate electrodes 310,311. Conductor 195 is disposed on the side of dielectric 170G opposite top surface 111 of body 110 . Dielectric block 190D also includes dielectric 170G, conductor 195, electrode 196, via 198, and plate electrodes 312,313. Conductor 195 is disposed on a surface of dielectric 170G opposite bottom surface 112 of body 110 .
 誘電体ブロック190Cにおける平板電極310,311、および、誘電体ブロック190Dにおける平板電極312,313は、変形例6のフィルタ装置300Aと同様に、X軸方向に延在する帯状の電極であり、共振器間を結合するために用いられる。具体的には、平板電極310は共振器144と共振器145とを結合し、平板電極311は共振器142と共振器143とを結合する。また、平板電極312は共振器143と共振器145とを結合し、平板電極313は共振器141と共振器142とを結合する。 The plate electrodes 310 and 311 in the dielectric block 190C and the plate electrodes 312 and 313 in the dielectric block 190D are strip electrodes extending in the X-axis direction, similar to the filter device 300A of the sixth modification. It is used to connect between vessels. Specifically, plate electrode 310 couples resonators 144 and 145 , and plate electrode 311 couples resonators 142 and 143 . Further, the plate electrode 312 couples the resonators 143 and 145 together, and the plate electrode 313 couples the resonators 141 and 142 together.
 そして、誘電体ブロック190C,190Dの導体195は、ビア198および電極196によって、共振器140Bにおける突出部147,148に接続される。 Conductors 195 of dielectric blocks 190C and 190D are connected to protrusions 147 and 148 of resonator 140B by vias 198 and electrodes 196. FIG.
 このように、突出部147,148によってシールド導体121,122と接続された共振器140Bを含むフィルタ装置400Aにおいても、シールド導体121,122を誘電体ブロックとして形成し、当該誘電体ブロック内に、共振器間を結合するための平板電極を配置することによって、フィルタ装置400Aの非通過帯域の減衰特性の向上、および/または、通過帯域幅の拡大を実現することができる。 Thus, also in the filter device 400A including the resonator 140B connected to the shield conductors 121 and 122 by the projecting portions 147 and 148, the shield conductors 121 and 122 are formed as dielectric blocks, and the dielectric blocks include: By arranging the flat plate electrodes for coupling between the resonators, it is possible to improve the attenuation characteristics of the non-passband of the filter device 400A and/or widen the passband width.
 なお、図19においては、共振器140Bを構成する一部の平板導体に突出部が設けられる構成について例示したが、実施の形態4のように、共振器140Bを構成するすべての平板導体に突出部が設けられる構成であってもよい。 Note that FIG. 19 illustrates a configuration in which a part of the flat plate conductors forming the resonator 140B is provided with a protrusion. A configuration in which a portion is provided may be used.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 10 通信装置、12 アンテナ、20 高周波フロントエンド回路、22,28 バンドパスフィルタ、24 増幅器、26 減衰器、30 ミキサ、32 局部発振器、40 D/Aコンバータ、50 RF回路、100,100A~100E,200,300,300A,400,400A フィルタ装置、110 本体、111 上面、112 下面、113~116 側面、121~126 シールド導体、130~135,131A~135A,132B,134B,131D~135D 共振器ユニット、140~145,141A~145A,140B~145B,140X 共振器、146 本体部、147,148 突出部、150~155 容量電極、160~165,180~185 接続導体、170,170A~170C,170F,170G 誘電体、190,190A~190D 誘電体ブロック、195,1401,1402 導体、196 電極、198,V10,V10A,V11,V20,V20A,V21 ビア、310~313,PL1,PL2 平板電極、PC1,PC2,PC4,PC5 キャパシタ電極、T1A,T1 入力端子、T2,T2A 出力端子。 10 communication device, 12 antenna, 20 high-frequency front-end circuit, 22, 28 band-pass filter, 24 amplifier, 26 attenuator, 30 mixer, 32 local oscillator, 40 D/A converter, 50 RF circuit, 100, 100A to 100E, 200, 300, 300A, 400, 400A filter device, 110 body, 111 upper surface, 112 lower surface, 113-116 side surface, 121-126 shield conductor, 130-135, 131A-135A, 132B, 134B, 131D-135D resonator unit , 140 to 145, 141A to 145A, 140B to 145B, 140X resonator, 146 main body, 147, 148 protrusions, 150 to 155 capacitive electrodes, 160 to 165, 180 to 185 connection conductors, 170, 170A to 170C, 170F , 170G dielectric, 190, 190A to 190D dielectric block, 195, 1401, 1402 conductor, 196 electrode, 198, V10, V10A, V11, V20, V20A, V21 via, 310 to 313, PL1, PL2 plate electrode, PC1 , PC2, PC4, PC5 Capacitor electrodes, T1A, T1 input terminals, T2, T2A output terminals.

Claims (17)

  1.  第1方向に配列して圧着された複数の共振器ユニットを含み、直方体の形状を有する本体と、
     前記本体の面に配置されたシールドとを備え、
     前記複数の共振器ユニットの各々は、
      直方体の形状を有する第1誘電体と、
      前記第1誘電体の内部において、前記第1方向に直交する第2方向に延在する共振器とを含み、
     前記共振器は、前記第2方向に延在する平板形状の複数の導体によって構成されており、
     前記複数の導体における隣接する導体の主面は前記第1方向に対向している、誘電体フィルタ。
    a body having a rectangular parallelepiped shape including a plurality of resonator units arranged in a first direction and crimped;
    a shield disposed on a face of the body;
    each of the plurality of resonator units,
    a first dielectric having a rectangular parallelepiped shape;
    a resonator extending in a second direction perpendicular to the first direction inside the first dielectric;
    The resonator is composed of a plurality of plate-shaped conductors extending in the second direction,
    A dielectric filter, wherein main surfaces of adjacent conductors in the plurality of conductors face each other in the first direction.
  2.  前記シールドは、
      前記本体において、前記第2方向に垂直な第1面および第2面にそれぞれ配置された第1シールド導体および第2シールド導体と、
      前記本体において、前記第1方向に沿って前記第1面および前記第2面をつなぐ第3面および第4面にそれぞれ配置され、前記第1シールド導体および前記第2シールド導体に接続された第3シールド導体および第4シールド導体とを含み、
     前記共振器の第1端部は前記第3シールド導体に接続されており、前記共振器の第2端部は前記第4シールド導体から離間している、請求項1に記載の誘電体フィルタ。
    The shield is
    a first shield conductor and a second shield conductor respectively arranged on a first surface and a second surface perpendicular to the second direction in the main body;
    In the main body, a third shield conductor is arranged on a third surface and a fourth surface connecting the first surface and the second surface along the first direction, and is connected to the first shield conductor and the second shield conductor. 3 shield conductors and a fourth shield conductor,
    2. The dielectric filter of claim 1, wherein a first end of said resonator is connected to said third shield conductor and a second end of said resonator is spaced from said fourth shield conductor.
  3.  前記複数の共振器ユニットの各々は、前記第2端部に対向し、前記第4シールド導体に接続された容量電極をさらに含む、請求項2に記載の誘電体フィルタ。 3. The dielectric filter according to claim 2, wherein each of said plurality of resonator units further includes a capacitive electrode facing said second end and connected to said fourth shield conductor.
  4.  前記共振器は、
      前記第1端部側に配置され、前記複数の導体を互いに電気的に接続する第1接続導体と、
      前記第2端部側に配置され、前記複数の導体を互いに電気的に接続する第2接続導体とを含む、請求項2または3に記載の誘電体フィルタ。
    The resonator is
    a first connection conductor arranged on the first end side and electrically connecting the plurality of conductors to each other;
    4. The dielectric filter according to claim 2, further comprising a second connection conductor arranged on the second end side and electrically connecting the plurality of conductors to each other.
  5.  前記誘電体フィルタによって伝達される高周波信号の波長をλとすると、前記共振器において、前記第1端部から前記第2端部までの前記第2方向の距離は約λ/4である、請求項4に記載の誘電体フィルタ。 The distance in the second direction from the first end to the second end of the resonator is about λ/4, where λ is the wavelength of the high-frequency signal transmitted by the dielectric filter. Item 5. The dielectric filter according to item 4.
  6.  前記共振器は、前記第1端部側に配置され、前記第1シールド導体および前記第2シールド導体に接続される突出部を有する、請求項4に記載の誘電体フィルタ。 5. The dielectric filter according to claim 4, wherein said resonator has a protruding portion arranged on said first end side and connected to said first shield conductor and said second shield conductor.
  7.  前記誘電体フィルタによって伝達される高周波信号の波長をλとすると、前記共振器において、前記突出部から前記第2端部までの前記第2方向の距離は約λ/4である、請求項6に記載の誘電体フィルタ。 7. In the resonator, the distance in the second direction from the projection to the second end is approximately λ/4, where λ is the wavelength of the high-frequency signal transmitted by the dielectric filter. A dielectric filter as described in .
  8.  前記第2方向に直交する断面の前記共振器の形状は、短軸方向が前記第1方向に沿った楕円である、請求項1~7いずれか1項に記載の誘電体フィルタ。 The dielectric filter according to any one of claims 1 to 7, wherein the shape of the resonator in the cross section perpendicular to the second direction is an ellipse whose minor axis direction is along the first direction.
  9.  前記複数の導体は、前記第1方向の端部に配置された第1導体と、前記第1導体以外の第2導体を含み、
     前記第1導体の金属成分は、前記第2導体の金属成分よりも多い、請求項1~8のいずれか1項に記載の誘電体フィルタ。
    The plurality of conductors includes a first conductor arranged at an end in the first direction and a second conductor other than the first conductor,
    The dielectric filter according to any one of claims 1 to 8, wherein the metal component of said first conductor is greater than the metal component of said second conductor.
  10.  隣接する共振器ユニットとの間に配置された第2誘電体をさらに備え、
     前記共振器の前記第1誘電体の特性と、前記第2誘電体の特性とは異なる、請求項1~9のいずれか1項に記載の誘電体フィルタ。
    further comprising a second dielectric disposed between adjacent resonator units;
    10. The dielectric filter according to claim 1, wherein properties of said first dielectric and properties of said second dielectric of said resonator are different.
  11.  前記複数の共振器ユニットは、第1共振器ユニットおよび第2共振器ユニットを含み、
     前記第1共振器ユニットにおける前記第1誘電体の特性と、前記第2共振器ユニットにおける前記第1誘電体の特性とは異なる、請求項1~10のいずれか1項に記載の誘電体フィルタ。
    the plurality of resonator units includes a first resonator unit and a second resonator unit;
    11. The dielectric filter according to claim 1, wherein characteristics of said first dielectric in said first resonator unit are different from characteristics of said first dielectric in said second resonator unit. .
  12.  前記複数の共振器ユニットは、第1共振器ユニットおよび第2共振器ユニットを含み、
     前記第1方向および前記第2方向の双方に直交する方向を第3方向とすると、
     前記第1共振器ユニットにおける前記共振器の中心位置の前記本体における前記第3方向の位置と、前記第2共振器ユニットにおける前記共振器の中心位置の前記本体における前記第3方向の位置とは異なっている、請求項1~10のいずれか1項に記載の誘電体フィルタ。
    the plurality of resonator units includes a first resonator unit and a second resonator unit;
    Assuming that a direction orthogonal to both the first direction and the second direction is a third direction,
    What is the position of the center position of the resonator in the first resonator unit in the third direction in the main body and the position of the center position of the resonator in the second resonator unit in the third direction in the main body? A dielectric filter according to any one of claims 1 to 10, which is different.
  13.  前記本体において、前記第1方向に直交する第5面および第6面にそれぞれ配置された入力端子および出力端子をさらに備え、
     前記シールドは、前記第5面および前記第6面にそれぞれ配置された第5シールド導体および第6シールド導体を含み、
     前記入力端子は、前記第5面において、前記第5シールド導体に形成された開口部の内部に配置され、
     前記出力端子は、前記第6面において、前記第6シールド導体に形成された開口部の内部に配置される、請求項2~7のいずれか1項に記載の誘電体フィルタ。
    The main body further comprises an input terminal and an output terminal arranged on a fifth surface and a sixth surface orthogonal to the first direction, respectively;
    the shield includes a fifth shield conductor and a sixth shield conductor arranged on the fifth surface and the sixth surface, respectively;
    the input terminal is arranged inside an opening formed in the fifth shield conductor on the fifth surface,
    8. The dielectric filter according to claim 2, wherein said output terminal is arranged inside an opening formed in said sixth shield conductor on said sixth surface.
  14.  前記入力端子および前記出力端子は、前記第2方向に延在している、請求項13に記載の誘電体フィルタ。 14. The dielectric filter according to claim 13, wherein said input terminal and said output terminal extend in said second direction.
  15.  前記入力端子および前記出力端子の厚みは、前記共振器を構成する前記複数の導体の厚みよりも厚い、請求項13または14に記載の誘電体フィルタ。 15. The dielectric filter according to claim 13, wherein the input terminal and the output terminal are thicker than the plurality of conductors forming the resonator.
  16.  前記第1シールド導体を含み、前記第1面に配置された第3誘電体と、
     前記第2シールド導体を含み、前記第2面に配置された第4誘電体とをさらに備える、請求項13に記載の誘電体フィルタ。
    a third dielectric including the first shield conductor and disposed on the first surface;
    14. The dielectric filter of claim 13, further comprising a fourth dielectric including said second shield conductor and disposed on said second surface.
  17.  前記第3誘電体および前記第4誘電体の少なくとも一方において、異なる共振器ユニットの共振器同士を結合するための平板電極をさらに備え、
     前記平板電極は、前記第1シールド導体と前記本体との間、または、前記第2シールド導体と前記本体との間に配置される、請求項16に記載の誘電体フィルタ。
    at least one of the third dielectric and the fourth dielectric, further comprising a plate electrode for coupling resonators of different resonator units;
    17. The dielectric filter according to claim 16, wherein said plate electrode is arranged between said first shield conductor and said body or between said second shield conductor and said body.
PCT/JP2022/037634 2021-11-02 2022-10-07 Dielectric filter WO2023079903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179576 2021-11-02
JP2021-179576 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023079903A1 true WO2023079903A1 (en) 2023-05-11

Family

ID=86241457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037634 WO2023079903A1 (en) 2021-11-02 2022-10-07 Dielectric filter

Country Status (1)

Country Link
WO (1) WO2023079903A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283201A (en) * 1987-05-14 1988-11-21 Murata Mfg Co Ltd Integrally molded type high frequency filter
JPH0443703A (en) * 1990-06-08 1992-02-13 Ngk Insulators Ltd Symmetrical strip line resonator
JPH07263913A (en) * 1994-03-18 1995-10-13 Toko Inc Dielectric filter and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283201A (en) * 1987-05-14 1988-11-21 Murata Mfg Co Ltd Integrally molded type high frequency filter
JPH0443703A (en) * 1990-06-08 1992-02-13 Ngk Insulators Ltd Symmetrical strip line resonator
JPH07263913A (en) * 1994-03-18 1995-10-13 Toko Inc Dielectric filter and its production

Similar Documents

Publication Publication Date Title
US6304156B1 (en) Laminated dielectric antenna duplexer and a dielectric filter
JP4579198B2 (en) Multilayer bandpass filter
US6020798A (en) Dielectric laminated device and its manufacturing method
KR20060049933A (en) Non-reciprocal circuit device
JP6315347B2 (en) Directional coupler and module using the same
WO2023079903A1 (en) Dielectric filter
CN112544015B (en) Waveguide slot antenna
WO2022209277A1 (en) Dielectric filter
JP3464820B2 (en) Dielectric laminated resonator and dielectric filter
WO2022230454A1 (en) Dielectric filter
US20240021967A1 (en) Dielectric filter
WO2022209278A1 (en) Dielectric filter
WO2022230286A1 (en) Filter device and high frequency front end circuit equipped with same
WO2022210086A1 (en) Dielectric filter and dielectric resonator
WO2022209457A1 (en) Dielectric resonator, and dielectric filter and multiplexer using same
EP1455410B1 (en) Bandpass filter
WO2024057786A1 (en) Electronic component
JP2762332B2 (en) Multilayer dielectric duplexer
US20230327632A1 (en) Filter and multiplexer
JP4140033B2 (en) High frequency components
JPH08181506A (en) Dielectric filter
JPH06132704A (en) Laminated dielectric filter
JPH0730303A (en) Filter
JP3515697B2 (en) Stacked dielectric resonator
JPH06252603A (en) Laminated dielectric filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889726

Country of ref document: EP

Kind code of ref document: A1