WO2023079844A1 - モータ、ブロア、及び、車両 - Google Patents
モータ、ブロア、及び、車両 Download PDFInfo
- Publication number
- WO2023079844A1 WO2023079844A1 PCT/JP2022/034880 JP2022034880W WO2023079844A1 WO 2023079844 A1 WO2023079844 A1 WO 2023079844A1 JP 2022034880 W JP2022034880 W JP 2022034880W WO 2023079844 A1 WO2023079844 A1 WO 2023079844A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- stator
- cavity
- hollow portion
- electronic component
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims description 30
- 230000005484 gravity Effects 0.000 description 25
- 230000004048 modification Effects 0.000 description 23
- 238000012986 modification Methods 0.000 description 23
- 230000004907 flux Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/22—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
Definitions
- the present disclosure relates to a motor, a blower, and a vehicle, and more particularly to an outer rotor type motor, a blower including the motor, and a vehicle including the blower.
- Patent Document 1 describes an outer rotor type motor.
- electronic components are arranged in a space formed in the central portion of a stator core (stator core).
- the space formed in the central portion of the stator core is provided between the protective cover and the circuit board, and the protective cover temporarily fixes the shaft (rotating shaft). That is, the space in which the electronic components are arranged and the rotating shaft are separated by the protective cover. Therefore, in the motor of Patent Document 1, the rotating shaft and the electronic component are positioned to overlap each other in a plan view from the direction in which the shaft extends, and it is difficult to further reduce the thickness of the motor in the direction in which the shaft extends. .
- the present disclosure has been made in view of the above points, and aims to provide a motor, blower, and vehicle that are further thinned.
- a motor is an outer rotor type motor.
- the motor includes a stator, a rotor, and electronic components.
- the stator includes a stator core.
- the rotor includes a rotating shaft and has a center of rotation as a center of rotation.
- the stator core includes a stator body and a plurality of teeth.
- the stator main body has a shaft hole into which the rotating shaft is inserted.
- the plurality of teeth are provided at the end of the stator body.
- the stator body further has a hollow portion different from the axial hole.
- the electronic component is positioned within the cavity.
- a blower according to another aspect of the present disclosure includes the motor and blades fixed to the rotating shaft of the motor.
- a vehicle according to another aspect of the present disclosure includes the blower and a vehicle body that accommodates the blower.
- FIG. 1 is an external view of a motor according to Embodiment 1.
- FIG. 2 is a cross-sectional view of the motor according to Embodiment 1.
- FIG. 3 is another sectional view of the motor according to the first embodiment.
- FIG. 4 is an external view of a stator core of the motor according to Embodiment 1.
- FIG. 5A is a schematic diagram showing an example of a cross-sectional shape of a hollow portion of a stator core of the motor according to Embodiment 1.
- FIG. 5B is a schematic diagram showing another example of the cross-sectional shape of the hollow portion of the stator core of the motor according to Embodiment 1.
- FIG. 5A is a schematic diagram showing an example of a cross-sectional shape of a hollow portion of a stator core of the motor according to Embodiment 1.
- FIG. 5B is a schematic diagram showing another example of the cross-sectional shape of the hollow portion of the stator core of the motor according to Embodiment 1.
- FIG. 5C is a schematic diagram showing still another example of the cross-sectional shape of the hollow portion of the stator core of the motor according to Embodiment 1.
- FIG. 6 is a schematic diagram showing the positional relationship between the hollow portion of the stator core of the motor according to Modification 1 and the teeth.
- FIG. 7 is a schematic diagram of a blower according to Embodiment 2.
- FIG. 8 is a schematic diagram of a vehicle according to Embodiment 3.
- FIG. 1 is an outer rotor type motor.
- the motor 1 includes a rotor 2, a stator 3, a circuit board 4, and bearings 51 and 52, as shown in FIGS. 1 is an external view of the motor 1.
- FIG. FIG. 2 is a cross-sectional view of the motor taken along a plane including the axis A1 of the rotating shaft 20 of the rotor 2 and the II-II line segment perpendicular to the axis A1.
- FIG. 3 is a cross section of the motor taken along a plane that has the axis A1 of the rotating shaft 20 of the rotor 2 as a normal line, includes a III-III line segment orthogonal to the axis A1, and passes through the center of the rotor core 21. It is a diagram.
- the rotor 2 has a rotating shaft 20, a rotor core 21, and a plurality of (16 in FIG. 3) permanent magnets 22, as shown in FIGS.
- a plurality of permanent magnets 22 are held by the rotor core 21 .
- the stator 3 has a stator core 31 and a plurality of (18 in FIG. 3) coils 38 .
- Permanent magnets 22 are arranged around stator core 31 . That is, rotor core 21 surrounds stator core 31 .
- a plurality of coils 38 are wound around the stator core 31 .
- Rotor 2 rotates with respect to stator 3 . That is, the rotor 2 rotates when the magnetic flux (magnetic force) generated from the plurality of coils 38 acts on the plurality of permanent magnets 22 . Rotational force (driving force) of the rotor 2 is output from the rotating shaft 20 to the outside of the motor 1 .
- Rotor 2 has a rotor core 21 , a plurality of permanent magnets 22 and a rotating shaft 20 .
- the rotor core 21 has a disc portion 23 and a cylindrical portion 24 .
- the disk portion 23 has a disk shape centered on the axis A1, and the thickness direction of the disk portion 23 is parallel to the axis A1.
- the cylindrical portion 24 has a hollow cylindrical shape centered on the axis A1.
- the outer peripheral portion of the disk portion 23 is connected to one end of the cylindrical portion 24 in the direction parallel to the axis A1 (hereinafter referred to as the extending direction A2 of the axis A1 or simply the extending direction A2).
- the cylindrical portion 24 surrounds the stator 3 in plan view from the extending direction A2 of the axis A1.
- a plurality of permanent magnets 22 are arranged on the inner peripheral surface of the cylindrical portion 24 at equal intervals along the inner peripheral surface of the cylindrical portion 24 .
- a plurality of permanent magnets 22 face the stator 3 .
- the rotating shaft 20 extends along the extending direction A2 of the axis A1.
- the rotating shaft 20 passes through the center of the disc portion 23 .
- a stator 3 is positioned between the rotating shaft 20 of the rotor 2 and the cylindrical portion 24 of the rotor core 21 .
- the stator 3 has a stator core 31 and multiple coils 38 .
- FIG. 4 is an external view of the stator core 31 of the motor 1 of this embodiment.
- the stator core 31 has a stator body 32 and a plurality of (18 in FIGS. 3 and 4) teeth 33 .
- the stator main body 32 is in the shape of a hollow disk centered on the axis A1.
- a plurality of teeth 33 protrude from a radially outer end portion 39 (see FIG. 4) of the stator body 32 .
- a portion of the end portion 39 between two adjacent teeth 33 is an outer peripheral edge 391 of the stator main body 32 .
- the teeth 33 are provided between two outer peripheral edges 391 adjacent to each other.
- a shaft hole 36 is also provided in the stator body 32 .
- the shaft hole 36 is a cylindrical through hole having a diameter D1 (see FIG. 4) and centered on the axis A1. Bearings 51 and 52 and the rotating shaft 20 are arranged in the shaft hole 36 .
- the stator body 32 is formed with one or more (six in FIGS. 3 and 4) hollow portions 37 . As shown in FIGS. 3 and 4, the six cavities 37 include cavities 371, 372, 373, 374, 375, and 376. FIG.
- Each cavity 37 is formed between an end 39 of the stator body 32 and the shaft hole 36 . That is, each of the hollow portions 37 is formed between the outer peripheral edge 391 and the teeth 33 and the shaft hole 36 . Each of the hollow portions 37 penetrates the stator main body 32, for example, in the extending direction A2 of the axis A1. Each of the hollow portions 37 is, for example, cylindrical or prismatic. As will be described later, there is at least one cavity 37 in which the electronic component 41 is arranged. In FIGS. 2 and 3, electronic component 411 is positioned within cavity 371 . Electronic component 412 is also disposed within cavity 372 .
- Each of the plurality of teeth 33 includes a trunk portion 34 and a tip portion 35, as shown in FIG.
- the trunk portion 34 protrudes outward in the radial direction of the stator body 32 from the end portion 39 of the stator body 32 .
- the body portions 34 of the plurality of teeth 33 are provided at regular intervals in the circumferential direction of the stator body 32 (rotational direction of the rotor 2).
- the tip portion 35 protrudes from the tip of the body portion 34 .
- the multiple teeth 33 correspond to the multiple coils 38 on a one-to-one basis.
- Each of the coils 38 is formed by winding a conductive wire around the body portion 34 of the corresponding tooth 33 .
- the circuit board 4 includes a board base material 45 and circuit elements arranged on the board base material 45, as shown in FIG.
- the substrate base material 45 of the circuit board 4 is, for example, a printed circuit board.
- the substrate base material 45 of the circuit board 4 is formed in a substantially circular shape in plan view from the extending direction A2 of the axis A1, and has a through hole through which the rotating shaft 20 is passed in the center.
- a plurality of circuit elements for driving the motor 1 are provided on the main surface 42 of the substrate base material 45 .
- a plurality of circuit elements constitute a drive circuit that drives the motor 1 .
- the drive circuit includes one or more (two in FIG. 3) electronic components 41 .
- the two electronic components 41 include an electronic component 411 and an electronic component 412 .
- Each of the electronic components 41 is, for example, a relatively tall component, a so-called tall component, such as an inductor, a transformer, a capacitor, or the like.
- Each of the electronic components 41 is arranged so that the entire area of the electronic component 41 overlaps with one of the hollow portions 37 of the stator core 31 in plan view from the extending direction A2 of the axis A1. As shown in FIG. 3 , the entire area of the electronic component 411 overlaps the hollow portion 371 in plan view from the extending direction A2 of the axis A1. Further, the entire area of the electronic component 412 overlaps with the hollow portion 372 in plan view from the extending direction A2 of the axis A1. Therefore, in the motor 1 according to the first embodiment, the distance between the main surface 42 of the substrate base material 45 and the stator core 31 is the height of the electronic component 41 (the distance between the main surface 42 of the substrate base material 45 and the upper end of the electronic component 41).
- a portion of the electronic component 41 is positioned within the cavity 37 . That is, in the motor 1, even if the electronic component 41 is a tall component, the circuit board 4 and the stator core 31 can be brought closer along the extension direction A2 of the axis A1, so that the motor 1 can be made thinner. can be done.
- each of the electronic components 41 may be positioned within any one of the hollow portions 37 of the stator core 31 .
- the electronic components 41 do not necessarily have to be arranged inside all the cavities 37 .
- no electronic component 41 is arranged inside each of the cavities 373-376.
- the circuit board 4 includes one electronic component 41
- the electronic component 41 is located in one of the cavities 37 provided in the stator core 31 .
- the circuit board 4 includes two electronic components 41
- each of the two electronic components 41 is positioned in a different one of the cavities 37 provided in the stator core 31.
- the drive circuit may include components whose height is lower than the distance between the main surface 42 of the circuit board 4 and the stator core 31 , and the components need not be present inside the cavity 37 .
- (2-4) Bearing The bearing 51 is arranged in the shaft hole 36 of the stator core 31, as shown in FIGS. 2 and 3, the bearing 52 is arranged inside the shaft hole 36 of the stator core 31. As shown in FIGS. The two bearings 51 and 52 are arranged in the extending direction A2 of the axis A1. Also, the rotation axis of each of the two bearings 51 and 52 coincides with the axis A1. Both the bearing 51 and the bearing 52 hold the rotating shaft 20 .
- the rotating shaft 20 is held by at least two bearings 51 and 52.
- the stability of the axis A1 of the rotating shaft 20 is improved, and the axial vibration of the rotor 2 can be reduced.
- the wear of the bearings 51 and 52 and the rotating shaft 20 can be suppressed, so that the service life of the motor 1 can be extended.
- FIG. 3 is a plan view of the stator core 31 viewed from the extending direction A2 of the axis A1. The shape and arrangement of the cavity 37 will be described in detail below.
- each of the hollow portions 37 is a through hole extending in the extending direction A2 of the axis A1.
- Each of the hollow portions 37 has, for example, a columnar shape extending in the extending direction A2 of the axis A1, or a columnar shape such as a prismatic shape.
- the shape of the hollow portion 37 (hereinafter referred to as “cross-sectional shape”) in plan view from the extending direction A2 of the axis A1 is, for example, circular.
- the cross-sectional shape of the hollow portion 37 is, for example, a polygon. Examples of polygons include, for example, quadrilaterals, hexagons, octagons, etc., but other shapes are also possible.
- the cross-sectional shape of the hollow portion 37 is preferably a regular polygon. That is, the cross-sectional shape of the hollow portion 37 may be a regular octagon as shown in FIG. 5A. If the hollow portion 37 has a polygonal cross-sectional shape, the sides of the polygon may form an arbitrary angle with respect to an imaginary straight line connecting the tooth 33 closest to the hollow portion 37 and the axis A1. For example, when the cross-sectional shape of the hollow portion 37 is square, even if an imaginary straight line connecting the tooth 33 closest to the hollow portion 37 and the axis A1 intersects a pair of sides of the square at an angle of 90°. good.
- FIG. 5A is a schematic diagram showing an example of the cross-sectional shape of the hollow portion 37 of the stator core 31.
- the cross-sectional shape of the hollow portion 37 may be a shape in which the corners of a polygon are replaced by arcs (a shape in which the vertex of the polygon is a curved surface). That is, the cross-sectional shape of the hollow portion 37 may be a shape in which each vertex of a square is replaced by an arc, as shown in FIG. 5B.
- FIG. 5B is a schematic diagram showing another example of the cross-sectional shape of the hollow portion 37 of the stator core 31. As shown in FIG.
- the stator core 31 may include hollow portions 37 having different cross-sectional shapes.
- the size of the motor 1 is about 90 mm in outer diameter and about 20 to 25 mm in height, excluding the rotating shaft 20 .
- the diameter of each hollow portion 37 is preferably 8 mm or more and 12 mm or less, for example. This preferable range is large enough to accommodate electronic components in the cavity 37 and is large enough to secure a magnetic flux path.
- the size of the motor 1 is an example, and the motor 1 may have other sizes. In this case, the preferred value of the diameter of each of the cavities 37 may vary.
- the vertices or sides of the polygon are symmetrical with respect to an imaginary straight line connecting the tooth 33 closest to the hollow portion 37 and the axis A1. It is preferred that the points lie on the imaginary straight line.
- the cross-sectional shape of the hollow portion 37 is a square, as shown in FIG. 4, the perpendicular bisectors of the pair of sides of the square coincide with the imaginary straight line L1.
- the hollow portion 37 has a square cross-sectional shape, for example, one diagonal line of the square overlaps the imaginary straight line L2, as shown in FIG. 5C.
- FIG. 5C is a schematic diagram showing still another example of the cross-sectional shape of the hollow portion 37 of the stator core 31. As shown in FIG.
- each of the cavities 37 is separated from the shaft hole 36 of the stator main body 32 . It is preferable that the distance D2 between the cavity 37 and the shaft hole 36 is at least 5% or more of the diameter D1 of the shaft hole 36. As a result, the distance D2 between the hollow portion 37 and the shaft hole 36 can be made sufficiently long, so that the strength of the portion between the hollow portion 37 and the shaft hole 36 in the stator body 32 can be further increased. .
- each of the hollow portions 37 is separated from the outer peripheral edge 391 of the stator main body 32 . It is preferable that the distance D3 between the hollow portion 37 and the outer peripheral edge 391 is at least 50% or more of the width W1 of the tooth 33 .
- the width W1 of the tooth 33 refers to the width of the trunk portion 34 of the tooth 33 in the direction orthogonal to the imaginary straight line L1 connecting the tooth 33 and the axis A1.
- the portion of the stator main body 32 sandwiched between the hollow portion 37 and the outer peripheral edge 391 has a sufficient width in the radial direction of the teeth 33 . Therefore, the strength around the hollow portion 37 of the stator body 32 can be sufficiently increased.
- the distance between the axis A1 and the center position of each cavity 37 is the same. is preferably
- each of the cavities 37 is positioned between the tooth 33 closest to the cavity 37 and the axis A1. More specifically, each of the hollow portions 37 exists on the imaginary straight line L1 corresponding to the hollow portion 37 .
- the imaginary straight line L1 is a straight line that is orthogonal to the extending direction A2 of the axial center A1 and connects the tooth 33 closest to the corresponding cavity 37 and the axial center A1.
- the center of gravity 37w of the hollow portion 37 refers to the position of the center of gravity of the object when it is assumed that an object having the same shape as the hollow portion 37 and a uniform density is inserted into the hollow portion 37 .
- the position of the center of gravity 37w is the middle point of the central axis of the cylinder in the extending direction A2.
- the position of the center of gravity 37w is the intersection of the diagonal lines of the quadrangular prism, and extends from the extending direction A2. It is a punctuation point of a diagonal line of a square in plan view.
- each of the hollow portions 37 has a center of gravity 37 w of the hollow portion 37 existing on the virtual straight line L1 corresponding to the hollow portion 37 .
- the distance D3 between the hollow portion 37 and the outer peripheral edge 391 of the stator main body 32 is long because the teeth 33 are on the imaginary straight line L1. Therefore, when the center of the hollow portion 37 exists on the imaginary straight line L1, the magnetic flux from the teeth 33 can easily pass through the region between the hollow portion 37 and the outer peripheral edge 391 . Further, by separating the outer peripheral edge 391 of the stator main body 32 and the hollow portion 37, the strength of the portion between the outer peripheral edge 391 of the stator main body 32 and the hollow portion 37 can be further increased.
- a first imaginary straight line connecting the center of gravity 37w of the first cavity and the axis A1 and the center of gravity 37w of the second cavity and the second imaginary straight line connecting the axis A1 is constant.
- the stator core 31 has six hollow portions 37
- the hollow portions 37 are provided every 60° in the circumferential direction D ⁇ b>7 of the stator body 32 . Therefore, the positions of the centers of gravity 37w of the plurality of cavities 37 are symmetrical with respect to rotation of 60° along the axis A1.
- stator core 31 is symmetrical with respect to rotation of 60°. With this configuration, variations in the influence of the cavity 37 on the magnetic flux can be reduced in the circumferential direction D7 of the stator body 32 .
- each of the cavities 37 is line-symmetrical with respect to an imaginary straight line perpendicular to the axis A1. Therefore, the positions of the centers of gravity 37w of the plurality of cavities 37 are symmetrical with respect to the imaginary straight line perpendicular to the axis A1.
- the shape of the hollow portion 37 may be symmetrical with respect to an imaginary straight line perpendicular to the axis A1.
- the stator core 31 is line-symmetrical with respect to an imaginary straight line L1 perpendicular to the axis A1 in plan view from the direction A2 in which the axis A1 extends.
- the positions of the centers of gravity 37w of all the cavities 37 are rotationally symmetrical, and the cavities 37 having the same shape are both rotationally symmetrical and linearly symmetrical. It is preferable that at least one of For example, in the case of the stator core 31 shown in FIG. 4, the positions of the centers of gravity 37w (371w to 376w) of all the cavities 37 are rotationally symmetrical and linearly symmetrical by 60°, and the quadrangular cavities 37 are rotationally symmetrical and linearly symmetrical by 180°. It is symmetrical, and the circular cavity 37 is line symmetrical.
- the number of cavities 37 is preferably a divisor of the number of teeth 33 when two or more. According to this configuration, when a plurality of cavities 37 are provided at equal intervals in the circumferential direction D7 of the stator body 32, the relative positional relationship between the cavities 37 and the teeth 33 adjacent to the cavities 37 is It becomes uniform for all the cavities 37 .
- each of the other cavities 37 similarly exists on a virtual straight line corresponding to Therefore, when the number of hollow portions 37 is n (n is an integer equal to or greater than 2), the position of the center of gravity 37w of the hollow portions 37 is symmetrical with respect to rotation of (360/n)°. Therefore, variations in magnetic flux density are reduced in the circumferential direction D7 of the stator body 32, and the rotational stability of the rotor 2 is improved.
- the number of hollow portions 37 is preferably a divisor of the number of magnetic poles of the rotor 2 . More preferably, the number of cavities 37 is a common divisor of the number of teeth 33 and the number of magnetic poles of rotor 2 . According to this configuration, when a plurality of cavities 37 are provided at equal intervals in the circumferential direction D7 of the stator main body 32, the teeth 33 closest to the cavities 37 and the permanent magnets 22 positioned in the vicinity of the teeth 33 becomes uniform for all the cavities 37 . For example, when the number of teeth 33 is 12 and the number of magnetic poles of the rotor 2 is 8, both the teeth 33 and the rotor 2 are symmetrical with respect to 90° rotation. Therefore, the four hollow portions 37 are provided in the stator core 31 so that the positions of the centers of gravity 37w of the hollow portions 37 are symmetrical with respect to rotation of 90°. The influence on magnetic flux can be reduced.
- the number of cavities 37 is preferably determined by the number of teeth 33 and the number of magnetic poles of rotor 2 .
- the cavity 37 in which the electronic component 41 is arranged affects the stator body 32 around the cavity 37
- the cavity 37 in which the electronic component 41 is not arranged affects the stator body 32 around the cavity 37.
- the difference in influence is not as large as the difference in influence on the stator main body 32 due to the presence or absence of the cavity 37 . Therefore, there may exist a hollow portion 37 in which the electronic component 41 is not arranged. That is, the number of hollow portions 37 may be greater than the number of electronic components 41 .
- the hollow portions 37 in which the electronic components 41 are arranged are close to each other.
- the electronic components 41 as follows. That is, it is preferable to arrange the electronic component 41 in each of the hollow portions 372 and 373 rather than in each of the hollow portions 372 and 375 .
- the distance between the cavity 37 in which the electronic component 41 is arranged and the other cavity 37 in which the electronic component 41 is arranged is the diameter of the end 39 of the stator body 32 ( It is preferably 50% or less of the outer diameter of the stator main body 32).
- the electronic component 41 is arranged inside the hollow portion 37 of the stator core 31 . Therefore, even if the electronic component 41 is a tall component such as an inductor, a transformer, or a capacitor, the stator core 31 and the circuit board 4 can be brought closer along the extension direction A2 of the axis A1. Therefore, the thickness of the motor 1 can be reduced in the extending direction A2.
- the stator core 31 is provided with the shaft hole 36 separately from the hollow portion 37 . Therefore, even if the electronic component 41 is a tall component, the plurality of bearings 51 and 52 that support the rotating shaft 20 can be arranged in the shaft hole 36 . Therefore, a plurality of bearings 51 and 52 can be easily provided on the rotating shaft 20 of the motor 1, and the vibration of the shaft can be reduced, and the life of the rotating shaft 20 and the bearings 51 and 52 can be extended.
- the hollow portion 37 is arranged at a distance of 5% or more of the diameter D1 of the shaft hole 36 from the shaft hole 36 of the stator core 31 . Therefore, the strength of stator core 31 between shaft hole 36 and hollow portion 37 can be further increased.
- the hollow portion 37 is arranged at a distance of 50% or more of the width W1 of the teeth 33 from the outer peripheral edge 391 of the stator main body 32 . Therefore, since the distance between the hollow portion 37 and the outer peripheral edge 391 is sufficient, the magnetic coupling between the stator main body 32 and the teeth 33 and the strength of the stator core 31 can be further enhanced. Therefore, this configuration can improve the rotational stability of the rotor 2 .
- the cavity 37 is positioned on an imaginary straight line connecting the tooth 33 and the axis A1. Therefore, when the size of the hollow portion 37 is the same, the distance between the hollow portion 37 and the outer peripheral edge 391 of the stator body 32 can be increased. Therefore, it is possible to increase the distance between the hollow portion 37 and the outer peripheral edge 391 of the stator main body 32 while increasing the cross-sectional area of the hollow portion 37 .
- the stator core 31 has a plurality of hollow portions 37, and the positions of the centers of gravity 37w of the plurality of hollow portions 37 are symmetrical with respect to a straight line perpendicular to the axis A1. symmetric with respect to a rotation of (360/n)° (n is the number of cavities 37) around the axis A1. Therefore, unevenness in magnetic flux density in the circumferential direction of the stator core 31 can be reduced. That is, it is possible to reduce the increase in cogging torque and torque ripple of the rotor 2 and improve the rotational stability.
- the number of hollow portions 37 provided in the stator core 31 is a common divisor of the number of teeth 33 and the number of magnetic poles of the rotor 2 . Therefore, when the positions of the centers of gravity 37w of the hollow portions 37 are arranged at regular intervals in the circumferential direction of the stator main body 32, the positional relationship between the hollow portions 37 and the teeth 33 can also have the same structure. Therefore, the unevenness of the magnetic flux density in the circumferential direction of the stator core 31 can be reduced, and the rotational stability of the rotor 2 can be improved.
- the center of gravity 37w of the hollow portion 37 may not be present on the imaginary straight line L2 connecting the tooth 33 closest to the hollow portion 37 and the axis A1.
- a center of gravity 37w of the cavity 37 may exist. 6 is a schematic diagram showing the positional relationship between the cavity 37 of the stator core 31 and the teeth 33 of the motor according to Modification 1. As shown in FIG.
- all of the plurality of hollow portions 37 provided in the stator core 31 may have the same shape.
- all of the plurality of cavities 37 may be cylindrical extending in the extending direction A2.
- all of the plurality of hollow portions 37 may have a regular hexagonal prism shape extending in the extending direction A2.
- the number of teeth 33 and the number of magnetic poles of the rotor 2 may be arbitrary.
- the number of teeth 33 may be 12 and the number of magnetic poles of the rotor 2 may be 8 (8 poles and 12 slots).
- the number of hollow portions 37 is preferably two or four.
- the number of teeth 33 may be 10 and the number of magnetic poles of the rotor 2 may be 12 (10 poles and 12 slots).
- the number of hollow portions 37 is preferably two. In the first embodiment, since the number of teeth is 18 and the number of magnetic poles of the rotor 2 is 16, the number of hollow portions 37 is preferably two.
- the bearing 52 is not limited to the configuration in which the bearing 52 is arranged in the shaft hole 36, and the bearing 52 sandwiches the rotor core 21 between the bearings 51 and 52 in the extending direction A2 of the axis A1. They may be in a positional relationship. That is, at least the bearing 51 is arranged in the shaft hole 36 of the stator core 31, and the bearing 52 holds the rotary shaft 20, thereby achieving the same effect.
- the hollow portion 37 is not limited to a cylindrical shape or prismatic shape extending in the extending direction A2, and the hollow portion 37 may have a truncated cone shape or a truncated pyramid shape.
- cavity 37 may be conical, pyramidal, frustoconical, or frustopyramidal.
- the hollow portion 37 has a larger cross-sectional area of the cross section having the extending direction A2 as the normal direction at a position closer to the circuit board 4, and a position farther from the circuit board 4 having the extending direction A2 as the normal line.
- the cross-sectional area of the cross section in the direction is small. Even with such a configuration, the electronic component 41 can be arranged in the concave portion, so that the same effect can be obtained.
- the sixth modification of the first embodiment is not limited to the structure in which the hollow portion 37 penetrates the stator main body 32 along the extending direction A2 of the axis A1, and the hollow portion 37 is a concave portion extending in the extending direction A2. There may be. That is, the hollow portion 37 may be a recess formed in the surface of the stator body 32 facing the circuit board 4 .
- the cavity 37 is open on the surface of the stator body 32 facing the circuit board 4 and has a depth necessary for the electronic component 41 to be arranged therein.
- the hollow portion 37 has a larger cross-sectional area of a cross section normal to the extending direction A2 at a position closer to the circuit board 4, and a position farther from the circuit board 4 has a larger cross-sectional area in the extending direction A2. It may be a shape having a small cross-sectional area of a cross section having a normal direction of .
- the shape of the hollow portion 37 is, for example, cylindrical, prismatic, conical, pyramidal, truncated conical, truncated pyramidal, hemispherical, or the like. In other words, the hollow portion 37 is partially closed to the extent that the electronic component 41 can be placed inside.
- stator core 31 is a laminated core made up of a plurality of steel plates
- cavity 37 may not be formed in some of the steel plates that make up stator core 31 .
- the electronic component 41 can be arranged in the concave portion, so that the same effect can be obtained.
- the number of electronic components 41 is not limited to two.
- the electronic component 41 is arranged inside any one of the cavities 371 to 376 .
- the first electronic component 41 is arranged, for example, inside the cavity 371 .
- the second electronic component 41 is arranged, for example, in the hollow portion 372 .
- the third electronic component 41 is arranged in one of the cavities 373 to 376 .
- the circuit board 4 is not limited to the disc shape, and the circuit board 4 may be semicircular or fan-shaped. Alternatively, the circuit board 4 may be polygonal. That is, the area of the circuit board 4 may be reduced to a minimum as long as the electronic component 41 can be arranged inside the hollow portion 37 .
- Embodiment 2 In Embodiment 2, a blower 6 including the motor 1 according to Embodiment 1 will be described with reference to the drawings.
- FIG. 7 is a schematic diagram of the blower 6 according to the second embodiment.
- the blower 6 according to Embodiment 2 includes a motor 1, a case 61, and blades 62, as shown in FIG.
- the motor 1 and blades 62 are housed in a case 61 .
- the motor 1 is directly or indirectly connected to the blades 62 , and the blades 62 rotate in conjunction with the rotation of the motor 1 .
- the case 61 has a body portion 611 and an exhaust flange 612 .
- the body portion 611 has a cylindrical shape and extends in the extending direction A2 of the axis A1 of the motor 1 (see FIG. 1).
- the exhaust flange 612 has a cylindrical shape and protrudes in a direction orthogonal to the extending direction A2 of the axis A1 of the motor 1 .
- the space inside the body portion 611 and the space inside the exhaust flange 612 communicate with each other.
- the body portion 611 and the exhaust flange 612 of the case 61 are integrally formed using resin, for example.
- the vanes 62 are rotated by the motor 1. More specifically, the blades 62 are accommodated in the case 61 while being directly or indirectly connected to the motor 1 .
- the blades 62 are attached to a portion of the rotary shaft 20 that protrudes from the motor 1 into the case 61 (upward in FIG. 7). Inside the case 61 , the blades 62 rotate in conjunction with the rotation of the motor 1 .
- the electronic component 41 is arranged inside the hollow portion 37 of the stator core 31 . Therefore, even if the electronic component 41 is a tall component such as an inductor, a transformer, or a capacitor, the stator core 31 and the circuit board 4 can be brought closer along the extension direction A2 of the axis A1. Therefore, the thickness of the motor 1 can be reduced in the extending direction A2. Thereby, when the thickness of the case 61 in the extension direction A2 is the same, the blower 6 can be made thinner than the conventional blower using a motor.
- the thickness of the blower 6 in the extending direction A2 is the same, the thickness of the case 61 and the blades 62 in the extending direction A2 can be increased by the thickness of the motor 1 in the extending direction A2. Therefore, when the thickness in the extension direction A2 of the blower is the same as that of a blower using a conventional motor, the air volume can be increased to enhance the cooling effect.
- Embodiment 3 a vehicle (moving body) 7 including a blower 6 according to Embodiment 2 will be described with reference to the drawings.
- FIG. 8 is a schematic diagram of a vehicle 7 according to the third embodiment.
- a vehicle 7 according to Embodiment 3 includes a blower 6, a battery 71, a control device 72, a cable 73, and a vehicle body 74 (moving body main body), as shown in FIG.
- the same components as those of the blower 6 according to the second embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
- the vehicle 7 is a four-wheeled hybrid vehicle in which an engine and a driving battery 71 are mounted on a vehicle body 74.
- the vehicle 7 is not limited to a hybrid vehicle, and may be an electric vehicle.
- the battery 71 is composed of, for example, a lithium-ion battery, a nickel-metal hydride battery, or the like, and supplies electric power to the motor 1, a drive motor for running the vehicle 7, and the like.
- the control device 72 is electrically connected to the blower 6 by a cable 73 and controls the motor 1 of the blower 6. More specifically, controller 72 is electrically connected to circuit board 4 of motor 1 (see FIG. 2) by cable 73 . Also, the control device 72 controls the battery 71 . More specifically, the control device 72 controls power supply from the battery 71 to the motor 1, the drive motor, and the like.
- a vehicle body 74 is equipped with a blower 6, a battery 71, a control device 72, and a cable 73.
- the blower 6 used in the vehicle 7 functions as a cooling fan system to suppress the temperature rise of the battery 71 .
- the blades 62 are rotated and wind is sent to the battery 71 .
- the battery 71 is air-cooled, and the temperature rise of the battery 71 is suppressed.
- the electronic component 41 is arranged inside the hollow portion 37 of the stator core 31 . Therefore, even if the electronic component 41 is a tall component such as an inductor, a transformer, or a capacitor, the stator core 31 and the circuit board 4 can be brought closer along the extension direction A2 of the axis A1. Therefore, the thickness of the motor 1 can be reduced in the extending direction A2. Thereby, the thickness of the blower 6 in the stretching direction A2 can be reduced. Alternatively, since the thickness of the motor 1 is small in the extension direction A2, the case 61 and blades 62 of the blower 6 can be extended in the extension direction A2 without changing the size of the blower 6. FIG. Therefore, the cooling effect of the blower 6 can be easily improved.
- a motor (1) according to the first aspect is an outer rotor type motor (1).
- a motor (1) comprises a stator (3), a rotor (2) and electronic components (41).
- the stator (3) includes a stator core (31).
- the rotor (2) includes a rotating shaft (20) and rotates about an axis (A1).
- a stator core (31) includes a stator body (32) and a plurality of teeth (33).
- the stator body (32) has a shaft hole (36) into which the rotating shaft (20) is inserted.
- a plurality of teeth (33) are provided at the end (39) of the stator body (32).
- the stator body (32) further has a cavity (37) different from the axial hole (36).
- An electronic component (41) is placed in the cavity (37).
- the rotation axis of the rotor (2) is The thickness of the motor (1) along the extension direction (A2) of the axis (A1) can be reduced without affecting (20).
- the cavity (37) is circular in plan view from the extending direction (A2) of the axis (A1).
- the electronic component (41) only needs to be inside the hollow portion (37) in plan view from the extending direction (A2) of the axis (A1). 41) has less restrictions on shape and position. Therefore, for example, it becomes easy to design the circuit board (4) on which the electronic component (41) is mounted. Also, in the stator (3), variations in magnetic flux density due to the cavity (37) can be reduced.
- the cavity (37) is polygonal when viewed from above in the direction (A2) in which the axis (A1) extends.
- the electronic component (41) only needs to be inside the hollow portion (37) in plan view from the extending direction (A2) of the axis (A1). 41) has less restrictions on shape and position. Therefore, for example, it becomes easy to design the circuit board (4) on which the electronic component (41) is mounted. Also, in the stator (3), variations in magnetic flux density due to the cavity (37) can be reduced.
- the cavity (37) is quadrangular in plan view from the extension direction (A2) of the axis (A1).
- the cross-sectional shape of the electronic component (41) is square, it is possible to reduce the increase in the cross-sectional area of the cavity (37). Moreover, it becomes easy to provide the hollow portion (37) in the stator core (31).
- the hollow portion (37) is orthogonal to the extending direction (A2) of the axis (A1) and has a plurality of It exists on an imaginary straight line (L1) passing through one of the teeth (33) and the axis (A1).
- the motor (1) it becomes easy to increase the distance (D3) between the teeth (33) and the outer peripheral edge (391) of the stator body (32). Therefore, the magnetic flux from the tooth (33) can easily pass through the area between the cavity (37) and the outer peripheral edge (391). In addition, the strength of the portion between the outer peripheral edge (391) of the stator body (32) and the cavity (37) can be further increased.
- a plurality of hollow portions (37) are formed in the stator body (32).
- the electronic component (41) is arranged inside one of the plurality of cavities (37) (37).
- the electronic component (41) may be arranged inside any one of the plurality of cavities (37). Therefore, for example, it is possible to share the stator core (31) for a plurality of types of motors having the same structure of the stator (3) and different layouts of the circuit boards (4) on which the electronic components (41) are mounted. can.
- the stator body (32) is perpendicular to the axis (A1) in a plan view from the extending direction (A2) of the axis (A1).
- the shape is symmetrical with respect to the virtual straight line (L1).
- the number of the plurality of cavities (37) is a divisor of the number of the plurality of teeth (33).
- the plurality of hollow portions (37) having the same shape are arranged so that their centers of gravity (37w) are evenly spaced along the circumferential direction (D7) of the stator (3).
- the relative positional relationship between the hollow portion (37) and the teeth (33) closest to the hollow portion (37) can be the same in the circumferential direction (D7) of the stator (3). Therefore, it is possible to reduce the uneven magnetic flux density in the circumferential direction (D7) of the stator (3).
- the number of the plurality of cavities (37) is a divisor of the number of magnetic poles of the rotor (2).
- the plurality of hollow portions (37) having the same shape are arranged so that their centers of gravity (37w) are evenly spaced along the circumferential direction (D7) of the stator (3).
- the relative positional relationship between the magnetic poles of the rotor (2) and the cavity (37) can be the same in the direction of rotation (D7) of the rotor (2). Therefore, it is possible to reduce variations in the torque of the rotor (2) and stabilize the rotation characteristics.
- the motor (1) according to the tenth aspect includes a plurality of electronic components (41) in any one of the sixth to ninth aspects.
- the plurality of cavities (37) includes a first cavity (37) and a second cavity (37).
- the plurality of electronic components (41) includes a first electronic component (41) and a second electronic component (41).
- a first electronic component (41) is positioned within the first cavity (37).
- a second electronic component (41) is positioned within the second cavity (37).
- the motor (1) since the plurality of electronic components (41) are arranged in different cavities (37), the cross-sectional area of each cavity (37) can be reduced. can. Therefore, the cavity (37) can be easily provided in the stator core (31).
- the stator body (32) is hollow cylindrical with the axis (A1) as the central axis.
- the distance (D6) between the first cavity (37) and the second cavity (37) is no more than 50% of the diameter (D4) of the end (39) of the stator body (32).
- the motor (1) when the number of electronic components (41) is small, by arranging the electronic components (41) close to each other, the first electronic component (41) and the second electronic component (41) The wiring distance to the electronic component (41) can be shortened, and the circuit board (4) provided with the first electronic component (41) and the second electronic component (41) can be miniaturized.
- the shaft hole (36) is cylindrical with the axis (A1) as the central axis.
- the shortest distance (D2) between the cavity (37) and the shaft hole (36) is 5% or more of the diameter (D1) of the shaft hole (36).
- the strength of the stator core (31) between the shaft hole (36) and the cavity (37) is sufficiently increased. Therefore, sufficient rigidity of the stator core (31) can be ensured.
- a motor (1) according to a thirteenth aspect is, in any one of the first to twelfth aspects, is 50% or more of the width (W1) of the teeth (33) in the direction perpendicular to the projection direction of the teeth (33).
- the magnetic flux from the teeth (33) easily passes through the area between the outer peripheral edge (391) of the stator body (32) and the cavity (37). Therefore, it is possible to reduce variations in magnetic flux density among the plurality of teeth (33) and stabilize the rotation of the rotor (2). Also, the strength of the region between the outer peripheral edge (391) of the stator body (32) and the cavity (37) is sufficiently enhanced. Therefore, sufficient rigidity of the stator core (31) can be ensured.
- the motor (1) according to the 14th aspect further comprises a bearing (51) in any one of the 1st to 13th aspects.
- a bearing (51) is arranged in the shaft hole (36) and holds the rotating shaft (20) of the rotor (2).
- the motor (1) by arranging the bearing (51) in the shaft hole (36), the rotation stability of the rotor (2) can be improved, and the life of the motor (1) can be extended. can. Further, even if the electronic component (41) is a tall component, it does not affect the arrangement of the bearings (51).
- a blower (6) according to a fifteenth aspect comprises a motor (1) according to any one of the first to fourteenth aspects and a blade (62).
- the vane (62) is fixed to the rotating shaft (20) of the motor (1).
- the thickness in the motor (1), the thickness can be reduced in the direction (A2) in which the axis (A1) extends, so the thickness of the blower (6) can be reduced. .
- a vehicle (7) according to a sixteenth aspect comprises the blower (6) according to the fifteenth aspect and a vehicle body (74) accommodating the blower (6).
- the thickness of the motor (1) can be reduced in the direction (A2) in which the axis (A1) extends, so the blower (6) can be reduced in thickness. .
- the motor can be made thinner, and the blower can be made thinner, and the blower can be easily installed in the vehicle. That is, the motor, blower, and vehicle according to the present disclosure are industrially useful.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
(1)モータの全体構成
本開示の実施形態1に係るモータ1は、アウターロータ型のモータである。モータ1は、図1~3に示すように、ロータ2と、ステータ3と、回路基板4と、軸受51及び52と、を備える。なお、図1は、モータ1の外観図である。また、図2は、ロータ2の回転軸20の軸心A1と、軸心A1と直交するII-II線分とを含む平面で切ったときのモータの断面図である。また、図3は、ロータ2の回転軸20の軸心A1を法線とし、軸心A1と直交するIII-III線分を含みかつロータコア21の中央を通る平面で切ったときのモータの断面図である。
(2-1)ロータ
ロータ2は、ロータコア21と、複数の永久磁石22と、回転軸20と、を有している。
ステータ3は、ステータコア31と、複数のコイル38と、を有している。
回路基板4は、図2に示すように、基板母材45と、基板母材45上に配されている回路素子とを含む。回路基板4の基板母材45は、例えば、プリント基板である。回路基板4の基板母材45は、軸心A1の延伸方向A2からの平面視において略円形に形成されており、中央部に回転軸20が通される貫通孔を有する。
軸受51は、図2及び図3に示すように、ステータコア31の軸孔36内に配置されている。また、軸受52は、図2及び図3に示すように、ステータコア31の軸孔36内に配置されている。2つの軸受51、52は、軸心A1の延伸方向A2に並んでいる。また、2つの軸受51、52の各々の回転軸は、軸心A1と一致する。そして、軸受51と軸受52は、いずれも、回転軸20を保持している。
(3-1)空洞部の形状
図3は、ステータコア31を軸心A1の延伸方向A2から平面視した平面図である。以下、空洞部37の形状及び配置について詳細に説明する。
空洞部37の各々は、ステータ本体32の軸孔36と離間している。空洞部37と軸孔36との間の距離D2は、少なくとも、軸孔36の直径D1の5%以上であることが好ましい。これにより、空洞部37と軸孔36との間の距離D2を十分に長くすることができるので、ステータ本体32における空洞部37と軸孔36との間の部分の強度をより高めることができる。
空洞部37の各々は、空洞部37に最近接するティース33と、軸心A1との間に位置する。より具体的には、空洞部37の各々は、空洞部37に対応する仮想直線L1上に存在する。仮想直線L1は、軸心A1の延伸方向A2に直交し、かつ、対応する空洞部37に最近接するティース33と軸心A1とを結ぶ直線である。空洞部37の重心37wとは、空洞部37と同形状で密度が均一である物体が空洞部37に挿入されていると仮定した場合の、その物体の重心の位置を指す。例えば、空洞部37が軸心A1の延伸方向A2に延伸する円柱状である場合、重心37wの位置は、円柱の中心軸の延伸方向A2における中点である。また、例えば、空洞部37が軸心A1の延伸方向A2に延伸し断面形状が正方形である四角柱状である場合、重心37wの位置は、四角柱の対角線の交点であり、延伸方向A2からの平面視において正方形の対角線の句点である。また、空洞部37の各々は、空洞部37の重心37wがその空洞部37に対応する仮想直線L1上に存在することが好ましい。
ステータコア31が複数の空洞部37を有する場合、複数の空洞部37は、ステータ本体32の周方向D7において等間隔に設けられている。より詳しくは複数の空洞部37の重心37wが、ステータ本体32の周方向D7において等間隔に並ぶ。したがって、空洞部37の重心37wと軸心A1とを結ぶ仮想直線と、その空洞部37に隣接する空洞部37の重心37wと軸心A1とを結ぶ仮想直線とがなす角度は一定である。言い換えると、隣接する2つの空洞部(第1空洞部、第2空洞部)37において、第1空洞部の重心37wと軸心A1とを結ぶ第1仮想直線と、第2空洞部の重心37wと軸心A1とを結ぶ第2仮想直線とがなす角度は一定である。例えば、ステータコア31が6個の空洞部37を有する場合、空洞部37は、ステータ本体32の周方向D7において、60°毎に設けられる。したがって、複数の空洞部37の重心37wの位置は、軸心A1に沿った60°の回転に対して対称である。また、複数の空洞部37の形状が各空洞部37の重心37wと軸心A1とを結ぶ仮想直線との関係において同一である場合、ステータコア31は、60°の回転に対して対称である。この構成により、ステータ本体32の周方向D7において、空洞部37による磁束への影響のばらつきを低減させることができる。
空洞部37の個数は、2以上である場合は、ティース33の個数の約数であることが好ましい。この構成によれば、複数の空洞部37がステータ本体32の周方向D7において等間隔に設けられた場合に、空洞部37と、その空洞部37に近接するティース33との相対位置関係は、全ての空洞部37について均一となる。すなわち、例えば、空洞部37の1つが、空洞部37に最近接するティース33と軸心A1とを通過する仮想直線上に存在する場合、他の空洞部37の各々も同様に、その空洞部37に対応する仮想直線上に存在する。したがって、空洞部37の個数をn(nは2以上の整数)としたとき、空洞部37の重心37wの位置は、(360/n)°の回転に対して対称の形状となる。そのため、ステータ本体32の周方向D7において磁束密度のばらつきが低減し、ロータ2の回転安定性が向上する。
電子部品41は、いずれかの空洞部37の内部に配置される。
実施形態1に係るモータ1では、ステータコア31の空洞部37の内部に電子部品41が配置される。したがって、電子部品41がインダクタ、トランス、コンデンサ等の高背部品であっても、ステータコア31と回路基板4とを軸心A1の延伸方向A2に沿って近づけることができる。したがって、延伸方向A2においてモータ1を薄型化することができる。
以下、実施形態1の変形例について説明する。
実施形態1の変形例1として、空洞部37の重心37wは、空洞部37に最近接するティース33と軸心A1とを結ぶ仮想直線L2上に存在していなくてもよい。例えば、図6に示すように、周方向D7に沿って隣接する2つのティース33の間に位置するステータ本体32の外周縁391上の位置P1と軸心A1とを結ぶ仮想直線L3上に、空洞部37の重心37wが存在してもよい。なお、図6は、変形例1に係るモータのステータコア31の空洞部37とティース33との位置関係を示す模式図である。このような場合であっても、空洞部37と、ステータ本体32の外周縁391との間の距離D3が十分に大きい場合、実施形態1と同様の効果を得ることができる。すなわち、ステータコア31における、空洞部37と、ステータ本体32の外周縁391との間の領域をティース33からの磁束が通りやすいようにすることができる。
実施形態1の変形例2として、ステータコア31に設けられる複数の空洞部37は、すべて同一形状であってもよい。例えば、複数の空洞部37は全て延伸方向A2に延伸する円筒形であってもよい。又は、例えば、複数の空洞部37は全て延伸方向A2に延伸する、正六角柱状であってもよい。
実施形態1の変形例3として、ティース33の個数とロータ2の磁極数とはそれぞれ任意であってよい。例えば、ティース33の個数が12でロータ2の磁極数は8(8極12スロット)であってもよい。この場合に、空洞部37の個数は、2又は4が好ましい。又は、例えば、ティース33の個数が10でロータ2の磁極数は12(10極12スロット)であってもよい。空洞部37の個数は、2が好ましい。なお、実施形態1ではティースの個数が18、ロータ2の磁極数は16であるため、空洞部37の個数は、2が好ましい。
実施形態1の変形例4として、軸受52が軸孔36に配されている構成に限定されず、軸受52は、軸心A1の延伸方向A2において、ロータコア21を軸受51と軸受52とで挟む位置関係にあってもよい。すなわち、少なくとも軸受51がステータコア31の軸孔36内に配置され、軸受52が回転軸20を保持していることで、同様の効果を奏する。
実施形態1の変形例5として、空洞部37が延伸方向A2に延伸する円柱状又は角柱状に限定されず、空洞部37は、円錐台状又は角錐台状であってもよい。例えば、空洞部37は、円錐状、角錐状、円錐台状又は角錐台状であってもよい。空洞部37は、軸心A1の延伸方向A2において、回路基板4に近い位置ほど延伸方向A2を法線方向とする断面の断面積が大きく、回路基板4から遠い位置ほど延伸方向A2を法線方向とする断面の断面積が小さい。このような構成であっても、凹部に電子部品41を配することができるため、同様の効果を奏する。
実施形態1の変形例6として、空洞部37が軸心A1の延伸方向A2に沿ってステータ本体32を貫通している構成に限定されず、空洞部37は、延伸方向A2に延伸する凹部であってもよい。すなわち、空洞部37は、ステータ本体32の回路基板4と対向する面に形成された窪みであってもよい。空洞部37は、ステータ本体32の回路基板4に対向する面に開口しており、電子部品41が内部に配置されるために必要な深さを有している。又は、空洞部37は、軸心A1の延伸方向A2において、回路基板4に近い位置ほど延伸方向A2を法線方向とする断面の断面積が大きく、回路基板4から遠い位置ほど、延伸方向A2を法線方向とする断面の断面積が小さい形状であってもよい。空洞部37の形状は、例えば、円柱上、角柱状、円錐状、角錐状、円錐台状、角錐台状、及び、半球状等である。言い換えると、電子部品41が内部に配置されることに支障がない程度に、空洞部37の一部が塞がっている。例えば、ステータコア31が複数の鋼板で構成される積層コアである場合、ステータコア31を構成する複数の鋼板のうちの一部の鋼板に空洞部37が形成されていなくてもよい。このような構成であっても、凹部に電子部品41を配することができるため、同様の効果を奏する。
実施形態1の変形例7として、電子部品41の個数は2個に限られない。例えば、電子部品41の個数が1個である場合、電子部品41は、空洞部371~376のうちいずれか1つの内側に配置される。また、例えば、電子部品41の個数が3個である場合、第1の電子部品41は、例えば、空洞部371内に配置される。また、第2の電子部品41は、例えば、空洞部372内に配置される。また、第3の電子部品41は、空洞部373~376のうちいずれか1つの空洞部37内に配置される。
実施形態1の変形例8として、回路基板4が円板状である構成に限定されず、回路基板4は、半円形や扇形であってもよい。あるいは、回路基板4は、多角形であってもよい。すなわち、電子部品41を空洞部37内に配置できれば、回路基板4の面積を最小限に削減してよい。
実施形態2では、実施形態1に係るモータ1を備えるブロア6について、図面を参照して説明する。
図7は、実施形態2に係るブロア6の概略図である。実施形態2に係るブロア6は、図7に示すように、モータ1と、ケース61と、羽根62とを備える。モータ1と羽根62とは、ケース61に収容されている。モータ1は、羽根62と直接的又は間接的に連結されており、モータ1の回転に連動して、羽根62が回転する。
実施形態2に係るブロア6によれば、ステータコア31の空洞部37の内部に電子部品41が配置される。したがって、電子部品41がインダクタ、トランス、コンデンサ等の高背部品であっても、ステータコア31と回路基板4とを軸心A1の延伸方向A2に沿って近づけることができる。したがって、延伸方向A2においてモータ1を薄型化することができる。これにより、延伸方向A2におけるケース61の厚みが同一である場合には、従来のモータを用いたブロアに対し、ブロア6を薄型化することができる。また、延伸方向A2におけるブロア6の厚みを同一とした場合には、モータ1の延伸方向A2における厚みが薄い分だけ、ケース61及び羽根62の延伸方向A2における厚みを大きくすることができる。したがって、従来のモータを用いたブロアに対し、ブロアの延伸方向A2における厚みを同一とした場合、風量を増加させて冷却効果を高めることができる。
実施形態3では、実施形態2に係るブロア6を備える車両(移動体)7について、図面を参照して説明する。
図8は、実施形態3に係る車両7の概略図である。実施形態3に係る車両7は、図8に示すように、ブロア6と、バッテリ71と、制御装置72と、ケーブル73と、車体74(移動体本体)とを備える。なお、実施形態3に係るブロア6に関し、実施形態2に係るブロア6(図7参照)と同様の構成要素については、同一の符号を付して説明を省略する。
実施形態3に係る車両7によれば、ステータコア31の空洞部37の内部に電子部品41が配置される。したがって、電子部品41がインダクタ、トランス、コンデンサ等の高背部品であっても、ステータコア31と回路基板4とを軸心A1の延伸方向A2に沿って近づけることができる。したがって、延伸方向A2においてモータ1を薄型化することができる。これにより、延伸方向A2におけるブロア6の厚みを小さくすることができる。又は、延伸方向A2においてモータ1の厚みが小さいために、ブロア6の大きさを変えずに、ブロア6のケース61及び羽根62を延伸方向A2に伸ばすことができる。したがって、ブロア6による冷却効果を容易に向上させることができる。
第1の態様に係るモータ(1)は、アウターロータ型のモータ(1)である。モータ(1)は、ステータ(3)と、ロータ(2)と、電子部品(41)と、を備える。ステータ(3)は、ステータコア(31)を含む。ロータ(2)は、回転軸(20)を含み、軸心(A1)を回転中心とする。ステータコア(31)は、ステータ本体(32)と、複数のティース(33)と、を含む。ステータ本体(32)は、回転軸(20)が挿入される軸孔(36)を有する。複数のティース(33)は、ステータ本体(32)の端部(39)に設けられている。ステータ本体(32)は、軸孔(36)とは異なる空洞部(37)を更に有する。電子部品(41)は空洞部(37)内に配置されている。
2 ロータ
20 回転軸
21 ロータコア
3 ステータ
31 ステータコア
32 ステータ本体
33 ティース
36 軸孔
37、371、372、373、374、375、376 空洞部
39 端部
391 外周縁
41、411、412 電子部品
51、52 軸受
6 ブロア
62 羽根
7 車両
74 車体
A1 軸心
A2 延伸方向
D1、D4 直径
D2、D3、D6 距離
W1 幅
L1、L2、L3 仮想直線
Claims (16)
- アウターロータ型のモータであって、
ステータコアを含むステータと、
回転軸を含み軸心を回転中心とするロータと、
電子部品と、を備え、
前記ステータコアは、
前記回転軸が挿入される軸孔を有するステータ本体と、
前記ステータ本体の端部に設けられている複数のティースと、を含み、
前記ステータ本体は、
前記軸孔とは異なる空洞部を更に有し、
前記電子部品は前記空洞部内に配置されている、
モータ。 - 前記空洞部は、前記軸心の延伸方向からの平面視において円形である、
請求項1に記載のモータ。 - 前記空洞部は、前記軸心の延伸方向からの平面視において多角形である、
請求項1に記載のモータ。 - 前記空洞部は、前記軸心の前記延伸方向からの平面視において四角形である、
請求項3に記載のモータ。 - 前記空洞部は、前記軸心の延伸方向と直交し、かつ、前記複数のティースのうちの1つと前記軸心とを通る仮想直線上に存在する、
請求項1から4のいずれか1項に記載のモータ。 - 前記ステータ本体に前記空洞部が複数形成されており、
前記電子部品は、前記複数の空洞部のうち1つの空洞部の内側に配置されている、
請求項1から5のいずれか1項に記載のモータ。 - 前記ステータ本体は、前記軸心の延伸方向からの平面視において、前記軸心と直交する仮想直線に対して線対称の形状である、
請求項6に記載のモータ。 - 前記複数の空洞部の個数は、前記複数のティースの個数の約数である、
請求項6又は7に記載のモータ。 - 前記複数の空洞部の個数は、前記ロータの磁極数の約数である、
請求項8に記載のモータ。 - 前記電子部品を複数備え、
前記複数の空洞部は、第1の空洞部と、第2の空洞部とを含み、
前記複数の電子部品は、第1の電子部品と、第2の電子部品とを含み、
前記第1の電子部品は、前記第1の空洞部内に配置されており、
前記第2の電子部品は、前記第2の空洞部内に配置されている、
請求項6から9のいずれか1項に記載のモータ。 - 前記ステータ本体は、前記軸心を中心軸とする中空円筒形であり、
前記第1の空洞部と前記第2の空洞部との間の距離は、前記ステータ本体の前記端部の直径の50%以下である、
請求項10に記載のモータ。 - 前記軸孔は、前記軸心を中心軸とする円筒形であり、
前記空洞部と前記軸孔との間の最短距離は、前記軸孔の直径の5%以上である、
請求項1から11のいずれか1項に記載のモータ。 - 前記空洞部と前記ステータ本体の外周縁との間の最短距離は、前記ティースの突出方向と直交する方向における前記ティースの幅の50%以上である、
請求項1から12のいずれか1項に記載のモータ。 - 軸受部材、を更に備え、
前記軸受部材は前記軸孔内に配置され、前記ロータの前記回転軸を保持する、
請求項1から13のいずれか1項に記載のモータ。 - 請求項1から14のいずれか1項に記載のモータと、
前記モータの前記回転軸に固定されている羽根と、
を備えるブロア。 - 請求項15に記載のブロアと、
前記ブロアを収容する車体と、
を備える車両。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280070937.9A CN118140392A (zh) | 2021-11-05 | 2022-09-20 | 电动机、鼓风机和车辆 |
JP2023557644A JPWO2023079844A1 (ja) | 2021-11-05 | 2022-09-20 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021181472 | 2021-11-05 | ||
JP2021-181472 | 2021-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023079844A1 true WO2023079844A1 (ja) | 2023-05-11 |
Family
ID=86241280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/034880 WO2023079844A1 (ja) | 2021-11-05 | 2022-09-20 | モータ、ブロア、及び、車両 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023079844A1 (ja) |
CN (1) | CN118140392A (ja) |
WO (1) | WO2023079844A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58127552A (ja) * | 1982-01-26 | 1983-07-29 | Seiko Epson Corp | ブラシレスモ−タ− |
JP2003134779A (ja) * | 2001-10-22 | 2003-05-09 | Mitsuba Corp | ロボット用モータ |
JP2009050068A (ja) * | 2007-08-17 | 2009-03-05 | Kura Gijutsu Kenkyusho:Kk | 磁束分流制御回転電機システム |
WO2011118036A1 (ja) * | 2010-03-26 | 2011-09-29 | 本田技研工業株式会社 | 駆動用モータを備える車両 |
WO2017051784A1 (ja) * | 2015-09-25 | 2017-03-30 | 日本電産株式会社 | モータ、および回転プロペラ装置 |
US20180102695A1 (en) * | 2015-08-13 | 2018-04-12 | Chi Hua Fitness Co., Ltd. | Magnetic-controlled generator with built-in controller |
WO2020066117A1 (ja) * | 2018-09-26 | 2020-04-02 | 三菱電機株式会社 | アウターロータ型回転電機および天井扇風機 |
-
2022
- 2022-09-20 WO PCT/JP2022/034880 patent/WO2023079844A1/ja active Application Filing
- 2022-09-20 CN CN202280070937.9A patent/CN118140392A/zh active Pending
- 2022-09-20 JP JP2023557644A patent/JPWO2023079844A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58127552A (ja) * | 1982-01-26 | 1983-07-29 | Seiko Epson Corp | ブラシレスモ−タ− |
JP2003134779A (ja) * | 2001-10-22 | 2003-05-09 | Mitsuba Corp | ロボット用モータ |
JP2009050068A (ja) * | 2007-08-17 | 2009-03-05 | Kura Gijutsu Kenkyusho:Kk | 磁束分流制御回転電機システム |
WO2011118036A1 (ja) * | 2010-03-26 | 2011-09-29 | 本田技研工業株式会社 | 駆動用モータを備える車両 |
US20180102695A1 (en) * | 2015-08-13 | 2018-04-12 | Chi Hua Fitness Co., Ltd. | Magnetic-controlled generator with built-in controller |
WO2017051784A1 (ja) * | 2015-09-25 | 2017-03-30 | 日本電産株式会社 | モータ、および回転プロペラ装置 |
WO2020066117A1 (ja) * | 2018-09-26 | 2020-04-02 | 三菱電機株式会社 | アウターロータ型回転電機および天井扇風機 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023079844A1 (ja) | 2023-05-11 |
CN118140392A (zh) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2418756B1 (en) | Permanent magnet rotating electric machine | |
US20190190332A1 (en) | Rotor structure, motor and compressor | |
KR20090006766A (ko) | 영구자석식 회전전기 및 영구자석식 회전전기시스템 | |
KR20050056883A (ko) | 송풍장치 | |
US20080136284A1 (en) | Manufacturing method of motor and armature | |
US20230119389A1 (en) | Rotor, Interior Permanent Magnet Motor, and Compressor | |
JP4496064B2 (ja) | 永久磁石形モータ及び洗濯機 | |
JP4655646B2 (ja) | 永久磁石埋込型電動機 | |
WO2024156223A1 (zh) | 一种外转子电机 | |
WO2023079844A1 (ja) | モータ、ブロア、及び、車両 | |
JP2014015908A (ja) | ブロワユニット | |
WO2023176616A1 (ja) | モータ | |
CN101714793B (zh) | 旋转电机的线圈支座 | |
ES2784018T3 (es) | Dispositivo de almacenamiento de energía eléctrica en forma de energía cinética mejorada y vehículo ferroviario que comprende dicho dispositivo | |
US11149749B2 (en) | Impeller, impeller blade wheel, air-blowing device, and method of manufacturing air-blowing device | |
KR20120049836A (ko) | 더블 로터 타입 모터 | |
JP2006280199A (ja) | 永久磁石埋込型電動機 | |
JP2014090541A (ja) | インナーロータ型モータ | |
US11005333B2 (en) | Electric motor having a stator with a radially outside rotor with the rotor having a fan mounting portion comprising a noncontact region and a contract region configured to contact a mouting surface of a fan | |
ES1068612U (es) | Motor de imanes permanentes. | |
JP2008017645A (ja) | 永久磁石埋込型電動機 | |
EP3457543A1 (en) | Rotor and motor including same | |
KR102440535B1 (ko) | 기능 개선형 모터 | |
WO2020250712A1 (ja) | 回転電機の回転子、及び回転電機 | |
WO2023101029A1 (ja) | アキシャルギャップモータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22889668 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023557644 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280070937.9 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22889668 Country of ref document: EP Kind code of ref document: A1 |