WO2023079802A1 - Reaction apparatus, reaction system, and reaction product manufacturing method - Google Patents

Reaction apparatus, reaction system, and reaction product manufacturing method Download PDF

Info

Publication number
WO2023079802A1
WO2023079802A1 PCT/JP2022/028707 JP2022028707W WO2023079802A1 WO 2023079802 A1 WO2023079802 A1 WO 2023079802A1 JP 2022028707 W JP2022028707 W JP 2022028707W WO 2023079802 A1 WO2023079802 A1 WO 2023079802A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
raw material
reactor
support
kiln
Prior art date
Application number
PCT/JP2022/028707
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 植田
諭 中村
賢一 古木
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Publication of WO2023079802A1 publication Critical patent/WO2023079802A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/60Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/14Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/36Arrangements of air or gas supply devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials

Definitions

  • the present invention relates to a reactor, a reaction system, and a method for producing a reaction product.
  • reactors for continuously manufacturing desired products by giving raw materials a predetermined atmosphere.
  • a reaction apparatus generally called a rotary kiln heats a hollow kiln section that rotates around a central axis, and passes materials through this kiln section while rolling to produce a desired product.
  • a reaction apparatus called a roller hearth kiln manufactures a desired product by passing raw materials and works through a tunnel type kiln.
  • various other reactors have been developed.
  • Patent Document 1 discloses the following reactor.
  • the reactor has a screw feeder main body serving as a pressure reaction vessel, a catalyst supply section for introducing catalyst into the screw feeder main body, and a lower hydrocarbon supply section for introducing lower hydrocarbons into the screw feeder main body. Further, this reactor has a screw for transferring the produced nanocarbon, a solid delivery part for delivering the catalyst and nanocarbon transferred by the screw, and a gas delivery part for delivering the produced hydrogen to the outside of the feeder body. .
  • the present disclosure has been made to solve such problems, and provides a reactor or the like for efficiently producing desired products.
  • a reactor according to the present disclosure has a kiln section, a temperature control device, and a reaction auxiliary device.
  • the kiln section includes a cylindrical portion that extends rotatably along the central axis, a raw material supply port that receives the raw material supplied from one end of the cylindrical portion, and a delivery port that delivers the reaction product to the other end of the cylindrical portion. and have Temperature control devices, including heating or cooling devices, control the temperature of the kiln section in the intermediate region between the raw material feed throat and the feed throat.
  • the reaction assisting device has an assisting device for assisting the reaction of the raw materials on the support extending from one end side or the other end side to the intermediate region of the cylindrical portion.
  • the auxiliary device includes at least one of an agitator, a mixer, a pulverizer, a kneader, a carrier, a fluid injection port, a fluid suction port, and a scraper.
  • the user who manufactures the reaction product performs the following steps.
  • the user has a cylinder part that extends rotatably along the central axis, a raw material supply port that receives the raw material supplied from one end of the cylinder part, and a delivery port that delivers the reaction product to the other end side of the cylinder part. and a kiln section having The user controls the temperature of the kiln section in the intermediate region between the raw material feed throat and the feed throat.
  • a user supplies the raw material from the fluid supply port. By rotating the kiln unit, the user conveys the raw material to the delivery port along the direction parallel to the central axis while keeping the raw material in contact with the fluid.
  • the user can perform raw material agitation, raw material mixing, raw material pulverization, raw material kneading, raw material conveying, raw material scraping, fluid injection, and fluid suction. Perform a reaction assistance action including at least one of them.
  • a user delivers the reaction product from the delivery port.
  • FIG. 1 is a side cross-sectional view of the reactor according to Embodiment 1.
  • FIG. 1 is a first cross-sectional view in the front direction of the reactor according to Embodiment 1.
  • FIG. 2 is a second cross-sectional view in the front direction of the reactor according to Embodiment 1.
  • FIG. Fig. 3 is a flow chart of the process performed by the reactor;
  • FIG. 2 is a side cross-sectional view of a reactor according to a second embodiment;
  • FIG. 11 is a configuration diagram of a reaction system according to Embodiment 5;
  • FIG. 11 is a configuration diagram of a reaction system according to Embodiment 6;
  • FIG. 11 is a configuration diagram of a battery material manufacturing system according to a seventh embodiment;
  • FIG. 1 is a side cross-sectional view of a reactor 10 according to Embodiment 1.
  • FIG. The reaction apparatus 10 is an apparatus for producing a reaction product by applying conditions such as predetermined physical stimulation to raw materials.
  • the type and state of the raw materials and reaction products are not particularly limited, but they may be inorganic substances such as metal oxides or metal sulfides containing lithium as one of the components, or organic substances such as hydrocarbons. good too.
  • the shape and size of the raw material and the reaction product are not particularly limited, but when the shape is massive, the diagonal length is preferably 0.1 mm to 50 mm, more preferably 1 to 20 mm. Furthermore, when the shape of the starting material or the reaction product is massive, the diagonal length ratio (aspect ratio) is preferably 1 to 10, more preferably 1.3 to 1.8.
  • the reactor 10 has a kiln section 100, a temperature control device 110, a first auxiliary reaction device 120 and a second auxiliary reaction device 130 as main components.
  • the reactor 10 also has a feeder 140, a kiln foot 150, a driving device 160, etc. in addition to the above configuration.
  • the kiln section 100 has a raw material supply port 101, a delivery port 102 and a cylindrical portion 103 as its main components.
  • the raw material supply port 101 receives the raw material R10 supplied to one end side.
  • the delivery port 102 delivers the reaction product R11 to the other end.
  • the tubular portion 103 is a cylindrical member having the raw material supply port 101 at one end and the delivery port 102 at the other end, and extends rotatably along the central axis C10.
  • the kiln section 100 imparts a predetermined temperature in the range of room temperature to 1500 degrees Celsius to the incoming raw material. Therefore, the main constituent members of the kiln section 100, the first auxiliary reaction device 120 and the second auxiliary reaction device 130 are made of members that can withstand this temperature. That is, the members constituting the kiln section 100, the first reaction auxiliary device 120, and the second reaction auxiliary device 130 are, for example, oxides such as alumina and zirconia, carbides such as silicon carbide and titanium carbide, and silicon nitride and titanium nitride. Ceramics, such as nitrides, or carbons, such as crystalline graphite or fiber-reinforced graphite.
  • the members constituting the kiln section 100, the first reaction auxiliary device 120 and the second reaction auxiliary device 130 are nickel, cobalt, chromium, molybdenum, tungsten, tantalum, titanium, iron, copper, aluminum, silicon, boron, carbon, etc.
  • a heat-resistant alloy containing as a component at least one of the alloying elements can be employed.
  • the kiln part 100 may be installed with an inclination so that the supply port side of the cylindrical part 103 is higher than the delivery port side.
  • the central axis C10 of the cylindrical portion 103 is inclined at a predetermined angle ⁇ with respect to the horizontal direction.
  • the kiln section 100 is configured such that the received predetermined raw material R10 is conveyed to the delivery port 102 along the central axis C10 while being in contact with the inner wall of the cylindrical section 103 .
  • the angle ⁇ can be selected from the range of -90 degrees to +90 degrees.
  • the side relatively close to the raw material supply port 101 of the kiln section 100 may be referred to as the upstream side, and the side relatively close to the delivery port 102 may be referred to as the downstream side. That is, the kiln section 100 is configured such that the received predetermined raw material R10 is conveyed from the upstream side to the downstream side.
  • a feeder 140 is engaged with the raw material supply port 101 of the kiln section 100 shown in FIG.
  • the feeder 140 rotatably supports the raw material supply port 101 side of the kiln section 100 . That is, the feeder 140 is a support section that supports the kiln section 100 .
  • the feeder 140 receives the raw material R10 from a raw material inlet 141, which is an opening provided above, and guides the received raw material R10 to the raw material supply port 101. As shown in FIG. Further, feeder 140 supports first reaction auxiliary device 120 .
  • a kiln foot 150 is engaged with the delivery port 102 of the kiln section 100 via a bearing 104 .
  • the kiln foot 150 rotatably supports the delivery port 102 side. That is, the kiln foot 150 is a support for supporting the kiln section 100 .
  • the kiln foot 150 also has a reaction product outlet 151 through which the reaction product R11 delivered from the delivery port 102 is delivered. Furthermore, the kiln foot 150 supports the second reaction auxiliary device 130 .
  • the temperature control device 110 includes a heating device or a cooling device, and controls the temperature of the kiln section 100 by heating or cooling the kiln section 100 .
  • the temperature control device 110 performs heating in a range from room temperature to about 1500 degrees Celsius, for example.
  • the temperature control device 110 has, for example, a heating device surrounding the cylindrical portion 103 in an intermediate region between the raw material supply port 101 and the delivery port 102 .
  • Heating devices include any temperature-controllable heaters, such as sheath heaters, coil heaters, or ceramic heaters. Alternatively, the heating device may burn gas and circulate a heated fluid.
  • Temperature controller 110 may include a controller for controlling the temperature of kiln section 100 .
  • the temperature control device 110 may have a thermometer at a predetermined location in the kiln section 100 to monitor the temperature.
  • the first reaction auxiliary device 120 and the second reaction auxiliary device 130 are examples of embodiments of the reaction auxiliary device.
  • the reaction auxiliary device has a support extending from one end side or the other end side of the kiln section 100 to the inside of the cylindrical section 103 . This support also has an auxiliary vessel for assisting the reaction of the raw material in the intermediate region of the kiln section 100 .
  • the auxiliary device includes at least one of an agitator, a mixer, a pulverizer, a kneader, a conveyer (conveyor), a fluid injection port, a fluid suction port, and a scraper.
  • the first reaction auxiliary device 120 has a first support 121 and a stopper 122 as main components.
  • the first support 121 is a beam-like structure that is supported by the feeder 140 and protrudes from the feeder 140 to the cylindrical portion 103 .
  • the first support 121 holds the stopper 122 in the intermediate region of the tubular portion 103 .
  • FIG. 2 is a first cross-sectional view in the front direction of the reactor according to Embodiment 1.
  • FIG. FIG. 2 is a sectional view of the section II-II shown in FIG. 1 observed from a direction parallel to the central axis C10.
  • the stopper 122 is a disk-shaped member having a main surface parallel to the surface perpendicular to the central axis C10.
  • the outer peripheral portion of the stopper 122 has a gap between it and the inner wall of the cylindrical portion 103, which is large enough for the raw material R10 to pass through.
  • the stopper 122 has a function of receiving the ball 123 on the raw material supply port 101 side.
  • a plurality of balls 123 are arranged upstream of the stopper 122 of the kiln section 100 and move freely as the cylindrical section 103 rotates. Also, the ball 123 has such a diameter that it cannot pass through the stopper 122 .
  • the first reaction auxiliary device 120 and the plurality of balls 123 have the function of a ball mill for pulverizing the raw material R10 inside the kiln section 100. That is, the first reaction auxiliary device 120 is one embodiment of a reaction auxiliary device having a pulverizer as an auxiliary device. By having the first reaction auxiliary device 120, the reaction device 10 can pulverize the raw material R10 and efficiently promote the desired reaction.
  • the second reaction auxiliary device 130 has a second support 131 and a scraper 132 .
  • the second support 131 is a beam-shaped structure that is supported by the kiln foot 150 and protrudes from the kiln foot 150 to the cylindrical portion 103 .
  • the second support 131 has a scraper 132 as an auxiliary device on the downstream side of the intermediate region of the tubular portion 103 .
  • the scraper 132 is provided to scrape off the reaction product R11 produced in the intermediate region of the kiln section 100 when it adheres to the inner wall of the cylindrical section 103 .
  • FIG. 3 is a second cross-sectional view in the front direction of the reactor according to the first embodiment.
  • FIG. 3 is a sectional view of the section III-III shown in FIG. 1 observed from a direction parallel to the central axis C10.
  • the scraper 132 is a flat member extending from the second support 131 toward the inner wall of the cylindrical portion 103 .
  • the scraper 132 plays a role of stripping (scraping) the reaction product R11 adhering to the inner wall surface of the cylindrical portion 103 . Therefore, the gap between the tip of the scraper 132 and the inner wall of the cylindrical portion 103 is set to a distance that allows these substances adhering to the inner wall to be scraped off. As a result, the reaction product R11 adhering to the inner wall of the tubular portion 103 is separated from the inner wall and conveyed to the delivery port 102 .
  • the reaction device 10 can prevent the reaction product R11 from sticking to the inner wall of the cylindrical portion 103. Thereby, the reactor 10 can efficiently produce the desired reaction product.
  • the drive device 160 has a motor and a driving force transmission portion 161 fitted to a drive shaft protruding from the motor.
  • the driving device 160 rotates the kiln section 100 by transmitting the driving force of the motor to the driven section 106 via the driving force transmission section 161 .
  • the driving force transmission portion 161 and the driven portion 106 are, for example, gears configured to mesh with each other.
  • the driving device 160 rotates the kiln section 100 around the central axis C10 with such a configuration.
  • the kiln unit 100 conveys the raw material R10 received from the raw material supply port 101 to the delivery port 102 while rolling.
  • FIG. 4 is a flow chart of the process (reaction product manufacturing method) executed by the reactor.
  • the flow chart shown in FIG. 4 is executed using the reactor 10, for example, by a user who uses the reactor 10 to produce a reaction product.
  • the user prepares the reactor 10 including the kiln section 100 (step S11).
  • the reactor 10 prepared by the user has the configuration described above.
  • the user operates the reaction device 10 to cause the temperature control device 110 to heat the kiln section 100 . That is, the temperature control device 110 heats the inside of the kiln section 100 to a predetermined temperature (step S12).
  • the user supplies the raw material R10 from the raw material supply port 101 to the kiln section 100 (step S13).
  • the user supplies the raw material R10 to the raw material supply port 101 by putting the raw material R10 into the feeder 140 .
  • the user rotates the kiln unit 100 to convey the raw material R10 downstream (step S14).
  • the user preferably starts rotating the kiln unit 100 after step S11 and before step S12 in order to convey the raw material R10 supplied to the kiln unit 100 downstream.
  • the reaction apparatus 10 rotates the kiln section 100 by driving the driving device 160 .
  • the user causes the first reaction auxiliary device 120 and the second reaction auxiliary device 130 to perform the reaction auxiliary operation (step S15). That is, the user causes the first reaction auxiliary device 120 to pulverize the raw material R10. Further, the user causes the second reaction auxiliary device 130 to scrape the reaction product R11 produced from the raw material R10.
  • step S16 the user causes the reaction product to be delivered from the delivery port 102 (step S16).
  • the reactor 10 receives the raw material R10 in the kiln section 100, promotes a predetermined reaction in the kiln section 100, and produces the reaction product R11. More specifically, the reactor 10 transports the received raw material R10 and pulverizes it by the first reaction auxiliary device 120 . Further, the reactor 10 exposes the pulverized raw material R10 to a predetermined temperature environment while tumbling and flowing downstream in the kiln section 100 to produce a reaction product R11. Furthermore, the reactor 10 scrapes the reaction product R11 in the cylindrical portion 103 by the second reaction auxiliary device 130 before the delivery port 102 . The reactor 10 then delivers the reaction product R11 through the delivery port 102 and discharges it through the reaction product outlet 151 .
  • reaction device 10 may perform the rotation operation of the kiln section 100 before step S12 or may be performed simultaneously with step S12.
  • the reactor 10 according to the first embodiment is not limited to the configuration described above.
  • the first reaction auxiliary device 120 and the second reaction auxiliary device 130 may have other auxiliary devices.
  • the reactor 10 may have only one of the first auxiliary reaction device 120 and the second auxiliary reaction device 130 .
  • the first auxiliary reaction device 120 and the second auxiliary reaction device 130 may each have a plurality of auxiliary devices on its support.
  • the first reaction auxiliary device 120 and the second reaction auxiliary device 130 may each have a plurality of supports.
  • the first support 121 or the second support 131 may have a branched shape inside the cylindrical portion 103 .
  • the first support 121 of the first reaction auxiliary device 120 and the second support 131 of the second reaction auxiliary device 130 may be connected and integrated. That is, the reaction auxiliary device may have a support that is supported on the raw material supply port 101 side and the delivery port 102 side.
  • a screw may be selected as a representative of the conveyer (conveyor) described above, it is not limited to a screw as long as it has a conveying function.
  • the carrier may be a pendulum paddle, a rotary paddle, or a belt with paddles that moves along the central axis C10.
  • the conveyer is not limited to the one that conveys the raw material while contacting it, and may be one that conveys the raw material in a non-contact manner using a fluid, such as a fan or a jet nozzle.
  • the reactor 10 which is a rotary kiln, utilizes the space of the cylindrical portion 103 in the kiln portion 100 to continuously and efficiently feed the raw material R10 due to the configuration having the reaction auxiliary device as described above.
  • a given reaction can be applied to produce the reaction product R11. Therefore, according to Embodiment 1, it is possible to provide a reaction apparatus or the like for efficiently producing a desired product.
  • FIG. 5 is a side sectional view of the reactor 20 according to the second embodiment.
  • the reactor 20 according to the second embodiment differs from the first embodiment in the mode of the reaction auxiliary device. Further, the reactor 20 differs from that of the first embodiment in the aspect of the temperature control device 110 .
  • the temperature control device 110 controls the temperature inside the cylinder by contacting the outer wall of the cylinder.
  • the temperature control device 110 in this embodiment has a plurality of temperature control units along the stretching direction of the kiln unit 100 . That is, temperature control device 110 in the present embodiment has a plurality of temperature control regions that are different in the direction along central axis C10 in the intermediate region.
  • the temperature control device 110 includes a first temperature control section 110A, a second temperature control section 110B and a third temperature control section 110C.
  • the first temperature control unit 110A is arranged relatively close to the raw material supply port 101 and at a position spaced apart from the raw material supply port 101 .
  • the second temperature control section 110B is arranged downstream of the first temperature control section 110A and upstream of the third temperature control section 110C.
  • the third temperature control section 110C is arranged downstream of the second temperature control section 110B.
  • the first temperature control section 110A, the second temperature control section 110B, and the third temperature control section 110C are set to different temperatures.
  • the first temperature control section 110A controls the internal temperature of the kiln section 100 to be, for example, 500 degrees.
  • the second temperature control section 110B controls the internal temperature of the kiln section 100 to be, for example, 1500 degrees.
  • the third temperature control section 110C controls the internal temperature of the kiln section 100 to, for example, 40 degrees.
  • the temperature controller 110 can set different temperatures for different regions of the kiln section 100 .
  • the reactor 20 can promote or suppress a desired reaction depending on the region of the kiln section 100 .
  • the reaction device 20 in the present embodiment has a reaction auxiliary device 170 as a reaction auxiliary device.
  • the reaction auxiliary device 170 has a support 171 , a stirrer 172 , a pulverizer 173 , a sprayer 174 , a carrier 175 , a speed reducer 176 , a driving force transmission section 177 and a support driving device 178 as main components.
  • the support 171 of the reaction auxiliary device 170 is rotatably supported by one end and the other end. More specifically, the support 171 is a shaft extending along the central axis C10 of the kiln section 100, one end of which is supported by a bearing 180 provided on the feeder 140, and the other of which is a bearing provided on the kiln foot 150. 180.
  • the support 171 is connected to a support driving device 178 via a reduction gear 176 and a driving force transmission section 177 . That is, the reaction apparatus 20 in this embodiment further includes a support driving device 178 that rotates the support 171 of the reaction auxiliary device 170 .
  • the support driving device 178 is a motor, and rotates the driving force transmission part 177 to transmit the driving force to the speed reducer 176 .
  • the speed reducer 176 converts the force received from the driving force transmission unit 177 into a predetermined rotational speed by combining a plurality of gears, for example, and transmits the force to the support 171 .
  • the speed reducer 176 , the driving force transmission section 177 and the support driving device 178 are mechanisms for rotating the reaction auxiliary device 170 .
  • the reaction auxiliary device 170 is supported so that the support 171 can rotate independently of the kiln section 100 . That is, the rotational direction and rotational speed of the kiln section 100 and the rotational direction and rotational speed of the support 171 may be the same or different. Specifically, for example, the kiln section 100 rotates about 0.1 to 10 times per minute, and the reaction auxiliary device 170 rotates about 0 to 500 times per minute. The rotation speed or rotation direction of the reaction auxiliary device 170 may change according to time.
  • the reaction auxiliary device 170 has a plurality of auxiliary devices along the extending direction of the support 171 . More specifically, the reaction auxiliary device 170 has a stirrer 172, a pulverizer 173, a sprayer 174 and a carrier 175 in order from the upstream side.
  • the stirrer 172 has a function of stirring the raw material R10 received from the raw material supply port 101. More specifically, the stirrer 172 is, for example, a rod-shaped member protruding from the support 171 . This rod-shaped member protrudes from the support 171 in a direction orthogonal to the central axis C10, bends at right angles near the inner wall of the cylindrical portion 103, extends in a direction parallel to the central axis C10, and then bends again at right angles to connect to the support 171. . In the example shown in FIG. 5, the stirrer 172 has two of these bar-shaped members. Since the stirrer 172 is fixed to the support 171, the support 171 rotates to stir the raw material R10.
  • the pulverizer 173 has the function of pulverizing the raw material R10 stirred by the stirrer 172.
  • the pulverizer 173 has a plurality of plate-shaped elliptical members having elliptical main surfaces. The elliptical member extends near the inner wall of the cylindrical portion 103 at its major diameter portion. Since the pulverizer 173 is fixed to the support 171, the support 171 rotates so that the bulk raw material R10 is sandwiched between the pulverizer 173 and the cylindrical portion 103 and pulverized.
  • the spray 174 discharges a predetermined fluid into the cylindrical portion 103 to bring the fluid into contact with the raw material R10.
  • the support 171 has a fluid receiving port 174A at its upstream end and a pipe for sending the granules received therefrom to the spray 174 .
  • the spray 174 ejects the fluid supplied through the fluid receiving port 174A from the fluid ejection port 174B. That is, the raw material R10 pulverized by the pulverizer 173 comes into contact with the fluid discharged from the spray 174.
  • the fluid ejected by the spray 174 may be an inert gas or a predetermined gas for promoting reaction. Further, the fluid ejected by the spray 174 may contain fluid powder or liquid.
  • the conveyer 175 has a function of conveying downstream a predetermined reaction product generated by passing through the area where the spray 174 is arranged. More specifically, the transporter 175 is a screw that transports the reaction product as the support 171 rotates. The conveyer 175 conveys the reaction product at a conveying speed corresponding to the pitch of the screw or the rotational speed of the support 171, for example.
  • a stirrer 172 and a pulverizer 173 are installed in a region of the temperature control device 110 where the temperature is controlled by the first temperature control section 110A.
  • a spray 174 is installed in a region where the temperature is controlled by the second temperature control section 110B.
  • a transporter 175 is installed in a region where the temperature is controlled by the third temperature control section 110C.
  • the reactor 20 degreases, agitates, and pulverizes the raw material R10 in a region where the first temperature control unit 110A controls the temperature of the kiln unit 100 to about 500 degrees Celsius.
  • the reaction device 20 ejects a predetermined fluid from the fluid ejection port 174B in a region where the second temperature control section 110B controls the temperature to about 1000 degrees Celsius to promote the reaction of the raw material R10.
  • the reaction device 20 conveys the reaction product to the delivery port 102 in a region where the third temperature control section 110C controls the temperature to about 40 degrees Celsius.
  • the reaction device 20 can realize a desired process by linking the temperature control device 110 and the reaction auxiliary device 170 .
  • the aspect of the auxiliary device which the reaction auxiliary device 170 has is not limited to the above example.
  • the configuration of the stirrer 172 is not limited to the above configuration as long as it has a function of stirring the raw material R10.
  • the stirrer 172 may be a plate-like member or a pin-like member.
  • the plate member is not limited to a flat plate, and may have unevenness, holes, or the like.
  • the shape of the pulverizer 173 may be such that the outer edge thereof has unevenness along the circumferential direction, for example.
  • the pulverizer 173 may be a ball mill using the balls 123 shown in Embodiment 1 as a pulverizing medium, or a bead mill using beads smaller in diameter than the balls 123 as a pulverizing medium. It may be a rod mill that uses rods with short sides as a grinding medium.
  • the reaction auxiliary device 170 may have one or more of the auxiliary devices described above.
  • reaction auxiliary device 170 may have, for example, an intake port for sucking gas and exhausting it to the outside.
  • the reaction auxiliary device 170 may have a kneader in addition to or instead of the above configuration.
  • the configuration and arrangement of the reaction auxiliary device 170 shown in FIG. 5 are merely examples, and various combinations of the configuration of the auxiliary device are possible.
  • the reaction device 20 may have a plurality of reaction auxiliary devices 170.
  • the reactor 20 may have a plurality of supports 171 that are supported so as to be planetary rotatable along an axis parallel to the central axis C10.
  • the reaction device 20 has been described above. Since the reactor 20 includes an auxiliary device inside the kiln section 100, a plurality of predetermined processes can be performed continuously. Therefore, according to the present embodiment, it is possible to provide a reactor or the like for efficiently producing a desired product.
  • FIG. 6 is a configuration diagram of a reaction system according to a third embodiment.
  • the reaction system 1 shown in FIG. 6 is a system in which two reactors 10, that is, a first reactor 10A and a second reactor 10B are connected in series.
  • FIG. 6 schematically shows a state in which the first reactor 10A and the second reactor 10B are connected.
  • the reaction system 1 according to the present embodiment is an example of realizing a reaction product manufacturing process that requires more processes than can be performed by one reactor.
  • the reaction product outlet 151A for the reaction product in the first reactor 10A and the raw material inlet 141B in the second reactor 10B are connected.
  • the first reactor 10A shown in the figure produces a reaction product A by giving a predetermined reaction to the raw material R10 received from the raw material inlet 141A.
  • the first reactor 10A sends out the produced reaction product A from the reaction product outlet 151A.
  • the second fluid control area 140A receives the reaction product A delivered from the reaction product outlet 151A of the first reactor 10A into the raw material inlet 141B.
  • the second reactor 10B produces reaction product B from reaction product A by giving a predetermined reaction.
  • the second reactor 10B sends out the produced reaction product B from the reaction product outlet 151B.
  • the reaction system 1 described above one or both of the first reactor 10A and the second reactor 10B may of course be either the reactor 10 or the reactor 20. Moreover, the reaction system 1 may be one in which three or more reaction devices are connected. With such a configuration, the reaction system 1 according to the third embodiment can continuously apply a plurality of physical stimuli to the raw material. Moreover, with such a configuration, the reaction system 1 enables flexible arrangement of the system itself and flexible system configuration. That is, the reaction system 1 can prevent the configuration from becoming complicated even when the number of processes that exceed the number of processes that can be performed by one reactor is required. As described above, according to Embodiment 3, it is possible to provide a reaction system for efficiently producing a desired product that requires a plurality of reactions.
  • FIG. 7 is a configuration diagram of a reaction system according to a fourth embodiment.
  • the reaction system 2 shown in FIG. 7 has a granulator 210 and a reactor 20 as main components.
  • the reactor 20 in the present embodiment is assumed to have a stirrer at least in the intermediate region as a reaction auxiliary device.
  • the granulator 210 applies pressure to the raw material, which is a granular material, to produce a granulated product.
  • the granules are produced by applying a pressure of, for example, 10 to 700 megapascals to a granular material composed of secondary particles of about several tens to several hundreds of microns.
  • the means for applying pressure is not particularly limited, but in consideration of production efficiency, a continuous pressurization method using rotating die rolls is desirable.
  • the shape of the granules is not particularly limited, but considering ease of transportation in the granulation device 210, it is desirable that the granules have a tablet shape such as a spherical shape, a disk shape, or an ellipsoidal shape.
  • the diameter or the length of the long side of the granules is from several millimeters to several tens of millimeters as a guideline, but is preferably 30 millimeters or less. Also, considering the efficiency of the reaction in the granulator 210, it is desirable that the granules have approximately the same size.
  • a small amount of binder resin having, for example, a vinyl group or an imide group is added for the purpose of improving granulation properties and improving crushability after reacting the granules.
  • the granulation may be performed while granulating, or a raw material premixed with an organic polymer binder may be used.
  • the granulator 210 supplies the manufactured granules to the raw material inlet 141 .
  • the reactor 20 Upon receiving the granules at the raw material inlet 141 , the reactor 20 supplies the received granules to the kiln section 100 .
  • the reaction device 20 applies a predetermined physical stimulus and a predetermined atmosphere to the received granules to produce a reaction product. More specifically, the reaction device 20 stirs the granules by the reaction auxiliary device 170 , blows out the gas for reaction and sucks the gas after the reaction, and applies predetermined heat by the temperature control device 110 .
  • the reaction device 20 delivers the produced reaction product from the reaction product outlet 151 .
  • the raw material is pressurized in the granulator 210 and then stirred while being heated in the reactor 20 whose atmosphere is controlled.
  • the reaction system 2 can continuously produce, for example, an oxide-based solid electrolyte or a sulfide-based solid electrolyte. That is, according to Embodiment 4, a desired reaction product can be produced efficiently and continuously.
  • FIG. 8 is a configuration diagram of a battery material manufacturing system 3 according to a fifth embodiment.
  • a battery material production system 3 shown in FIG. 8 is an embodiment of a reaction system, and is a system for producing, for example, a solid electrolyte sheet and a battery laminate of a solid secondary battery containing a reaction product.
  • the battery material manufacturing system 3 has a first process area P31, a second process area P32, a third process area P33 and a fourth process area P34 as a main configuration. That is, the battery material manufacturing system 3 manufactures the battery material through the first, second, third and fourth steps described above.
  • the battery material manufacturing system 3 is used to manufacture a solid electrolyte sheet and a battery laminate.
  • the battery material manufacturing system 3 manufactures a solid electrolyte.
  • the first process area P31 has a granulator 210 and a reactor 20 as main components.
  • the granulation device 210 receives raw materials, which are powders and granules, and applies pressure to produce tablet-shaped granules.
  • the granulator 210 supplies the produced granules to the reaction device 20 .
  • the reactor 20 stirs the received granules while heating them to produce a solid electrolyte.
  • the reactor 20 supplies the manufactured solid electrolyte to the second process region P32.
  • the battery material manufacturing system 3 mixes and kneads the solid electrolyte and the binder resin.
  • the second process area P32 has an extruder 350 .
  • the extruder 350 receives both the solid electrolyte produced in the first process region P31 and the separately supplied binder resin, and mixes and kneads the received solid electrolyte and binder resin to produce a kneaded product.
  • the extruder 350 supplies the produced kneaded material to the third process area P33.
  • the battery material manufacturing system 3 receives the kneaded material from the second process area P32 and manufactures a solid electrolyte sheet from the received kneaded material.
  • the third process area P33 has an extruder 360, a coater 370, a dryer 380 and a rolling mill 390 as main components.
  • the extruder 360 receives the kneaded material from the extruder 350, extrudes the received kneaded material, and continuously manufactures a sheet-like molding.
  • the sheet extruded by the extruder 360 may be integrated with a base material 361 such as a non-woven fabric. That is, the third process area P33 includes a sheet manufacturing apparatus.
  • the extruder 360 may also be referred to as a sheet manufacturing device.
  • the coater 370 applies a predetermined positive electrode active material or the like to the surface of the molding. Further, the dryer 380 dries the molding coated with the predetermined positive electrode active material and supplies it to the rolling mill 390 . The rolling mill 390 rolls the dried molding and supplies it to the fourth process area P34.
  • the battery material manufacturing system 3 has a process of bonding predetermined sheets and winding them.
  • the fourth process area P34 has a laminator 400 and a winding machine 410 as main components.
  • the laminator 400 bonds a negative electrode sheet 401 (or an electrode sheet) containing a negative electrode active material to a sheet-like molding supplied from the rolling mill 390 , and supplies the bonded battery stack to the winder 410 .
  • Winder 410 winds up the battery stack.
  • the configuration of the battery material manufacturing system 3 and the battery material manufacturing method executed by the battery material manufacturing system 3 have been described above.
  • the battery material manufacturing system 3 according to the present embodiment can consistently and efficiently manufacture reaction products such as solid electrolytes that require multiple reactions, and can continuously manufacture sheets using the manufactured reaction products. .
  • the battery material manufacturing system 3 according to the present embodiment is not limited to that shown in FIG.
  • the battery material manufacturing system 3 may not have the winder 410 in the fourth process area P34.
  • the reaction system shown in FIG. 8 can also produce a predetermined material that is not a battery material. That is, the reaction system shown in FIG. 8 can be called a material manufacturing system or a solid electrolyte manufacturing system. Also, a method executed by such a material manufacturing system can be referred to as a material manufacturing method.
  • the battery material manufacturing system 3 shown in FIG. 8 can manufacture the solid electrolyte sheet in the third process area P33 and laminate the electrolyte sheet including the negative electrode sheet in the fourth process area P34, as described above. can. Thereby, the battery material manufacturing system 3 can manufacture a battery laminate. That is, in this case, the system shown in FIG. 8 can be called a battery manufacturing system, and the method executed by the system shown in FIG. 8 can be called a battery manufacturing method.
  • Embodiment 5 it is possible to provide a reaction system or method for efficiently producing desired battery materials, batteries, or predetermined materials containing reaction products.
  • the present invention can be used, for example, in systems for manufacturing battery materials such as solid electrolytes, or systems for manufacturing batteries.
  • Reference Signs List 1 2 reaction system 3 battery material manufacturing system 10, 20 reactor 100 kiln section 101 raw material supply port 102 delivery port 103 cylindrical section 104 bearing 106 driven section 110 temperature control device 110A first temperature control section 110B second temperature control section 110C third temperature control unit 120 first reaction auxiliary device 121 first support 122 stopper 123 ball 130 second reaction auxiliary device 131 second support 132 scraper 140 feeder 141 raw material inlet 150 kiln foot 151 reaction product outlet 160 drive device 161 driving force transmission unit 170 reaction auxiliary device 171 support 172 stirrer 173 pulverizer 174 spray 174A fluid receiving port 174B fluid injection port 175 carrier 176 reduction gear 177 driving force transmission unit 178 support driving device 180 bearing 210 granulator 350 Extruder 360 Extruder 361 Substrate 370 Coater 380 Dryer 390 Rolling Mill 400 Laminator 401 Negative Electrode Sheet 410 Winder C10 Central Axis R10 Raw Material R11 Reaction Product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Secondary Cells (AREA)

Abstract

In a reaction apparatus (10), a kiln (100) has a cylindrical part (103) that rotatably extends along a center axis, a material feed port (101) through which a material supplied from one end side of the cylindrical part (103) is received, and an outlet (102) through which a reaction product is sent out to the other end side of the cylindrical part (103). A temperature control device (110) includes a heating unit or a cooling unit, and controls the temperature of the kiln (100) in an intermediate region between the material feed port (101) and the outlet (102). A reaction assistance device has an assistance unit that assists reaction of the material in a support which extends from one side end or the other end side to the intermediate region of the cylindrical part. The assistance unit includes at least one of a stirrer, a mixer, a crusher, a kneader, a conveyor, a fluid jetting port, a fluid suction port, and a scraper.

Description

反応装置、反応システムおよび反応生成物製造方法Reactor, reaction system and method for producing reaction product
 本発明は反応装置、反応システムおよび反応生成物製造方法に関する。 The present invention relates to a reactor, a reaction system, and a method for producing a reaction product.
 原料に対して所定の雰囲気を与えることにより所望の製品を連続的に製造するための反応装置が存在する。例えば一般には、ロータリーキルンと称される反応装置は、中心軸周りに回転する中空のキルン部を加熱し、このキルン部に材料を転動させながら通過させることにより所望の製品を製造する。また例えばローラーハースキルンと称される反応装置は、トンネル型のキルン部に原料やワークを通過させることにより所望の製品を製造する。またその他にも種々の反応装置が開発されている。 There are reactors for continuously manufacturing desired products by giving raw materials a predetermined atmosphere. For example, a reaction apparatus generally called a rotary kiln heats a hollow kiln section that rotates around a central axis, and passes materials through this kiln section while rolling to produce a desired product. For example, a reaction apparatus called a roller hearth kiln manufactures a desired product by passing raw materials and works through a tunnel type kiln. In addition, various other reactors have been developed.
 例えば特許文献1は、以下の反応装置について開示している。反応装置は、圧力反応容器となるスクリュフィーダ本体と、スクリュフィーダ本体内に触媒を導入する触媒供給部と、スクリュフィーダ本体内に低級炭化水素を導入する低級炭化水素供給部と、を有する。またこの反応装置は、生成したナノ炭素を移送するスクリュと、スクリュによって移送される触媒とナノ炭素を送出する固体送出部と、生成した水素をフィーダ本体外に送出する気体送出部と、を有する。 For example, Patent Document 1 discloses the following reactor. The reactor has a screw feeder main body serving as a pressure reaction vessel, a catalyst supply section for introducing catalyst into the screw feeder main body, and a lower hydrocarbon supply section for introducing lower hydrocarbons into the screw feeder main body. Further, this reactor has a screw for transferring the produced nanocarbon, a solid delivery part for delivering the catalyst and nanocarbon transferred by the screw, and a gas delivery part for delivering the produced hydrogen to the outside of the feeder body. .
特開2006-290682号公報JP 2006-290682 A
 所で、所定の機能を有する反応生成物を製造する場合には、例えば原料を高温に加熱し、さらにこれを攪拌したり、あるいは所定の雰囲気ガスなどの流体に接触させたりすることが望まれる。しかしながらこのような複数の外的刺激を原料に付与して好適に反応を生じさせるには、上述の技術を含む複数の装置を用いなければならず、所望の製品を効率よく製造することが困難だった。 By the way, in the case of producing a reaction product having a predetermined function, it is desirable, for example, to heat the raw material to a high temperature and then stir it or bring it into contact with a fluid such as a predetermined atmospheric gas. . However, in order to apply such a plurality of external stimuli to the raw material and cause a suitable reaction, it is necessary to use a plurality of devices including the above-mentioned techniques, which makes it difficult to efficiently produce the desired product. was.
 本開示は、このような課題を解決するためになされたものであって、所望の製品を効率よく製造する反応装置等を提供するものである。 The present disclosure has been made to solve such problems, and provides a reactor or the like for efficiently producing desired products.
 本開示にかかる反応装置は、キルン部、温度制御装置および反応補助装置を有する。キルン部は、中心軸に沿って回転可能に延伸する筒部と、筒部の一端側から供給される原料を受け入れる原料供給口と、筒部の他端側に反応生成物を送出する送出口と、を有する。温度制御装置は、加熱装置または冷却装置を含み、原料供給口と送出口との間の中間領域におけるキルン部の温度を制御する。反応補助装置は、一端側または他端側から筒部の中間領域に延伸する支持体において原料の反応を補助するための補助器を有する。補助器は、攪拌器、混合器、粉砕器、混練器、搬送器、流体噴射口、流体吸引口、およびスクレーパのうち少なくともいずれか1つを含む。 A reactor according to the present disclosure has a kiln section, a temperature control device, and a reaction auxiliary device. The kiln section includes a cylindrical portion that extends rotatably along the central axis, a raw material supply port that receives the raw material supplied from one end of the cylindrical portion, and a delivery port that delivers the reaction product to the other end of the cylindrical portion. and have Temperature control devices, including heating or cooling devices, control the temperature of the kiln section in the intermediate region between the raw material feed throat and the feed throat. The reaction assisting device has an assisting device for assisting the reaction of the raw materials on the support extending from one end side or the other end side to the intermediate region of the cylindrical portion. The auxiliary device includes at least one of an agitator, a mixer, a pulverizer, a kneader, a carrier, a fluid injection port, a fluid suction port, and a scraper.
 本開示にかかる反応生成物製造方法は、反応生成物を製造する使用者が以下の工程を実行する。使用者は、中心軸に沿って回転可能に延伸する筒部と、筒部の一端側から供給される原料を受け入れる原料供給口と、筒部の他端側に反応生成物を送出する送出口と、を有するキルン部を用意する。使用者は、原料供給口と送出口との間の中間領域におけるキルン部の温度を制御する。使用者は、流体供給口から原料を供給する。使用者は、キルン部を回転させることにより、原料を流体に接触させながら中心軸に平行な方向に沿って送出口へ搬送する。使用者は、中間領域において原料の反応を補助するために、原料の攪拌、原料の混合、原料の粉砕、原料の混練、原料の運搬、原料のスクレーピング、流体の噴射、流体の吸引、のうち少なくともいずれか1つを含む反応補助動作を行う。使用者は、送出口から反応生成物を送出する。 In the reaction product manufacturing method according to the present disclosure, the user who manufactures the reaction product performs the following steps. The user has a cylinder part that extends rotatably along the central axis, a raw material supply port that receives the raw material supplied from one end of the cylinder part, and a delivery port that delivers the reaction product to the other end side of the cylinder part. and a kiln section having The user controls the temperature of the kiln section in the intermediate region between the raw material feed throat and the feed throat. A user supplies the raw material from the fluid supply port. By rotating the kiln unit, the user conveys the raw material to the delivery port along the direction parallel to the central axis while keeping the raw material in contact with the fluid. In order to assist the reaction of the raw materials in the intermediate area, the user can perform raw material agitation, raw material mixing, raw material pulverization, raw material kneading, raw material conveying, raw material scraping, fluid injection, and fluid suction. Perform a reaction assistance action including at least one of them. A user delivers the reaction product from the delivery port.
 本開示によれば、所望の製品を効率よく製造する反応装置等を提供することができる。 According to the present disclosure, it is possible to provide a reactor or the like that efficiently manufactures desired products.
実施の形態1にかかる反応装置の側面方向の断面図である。1 is a side cross-sectional view of the reactor according to Embodiment 1. FIG. 実施の形態1にかかる反応装置の正面方向の第1断面図である。1 is a first cross-sectional view in the front direction of the reactor according to Embodiment 1. FIG. 実施の形態1にかかる反応装置の正面方向の第2断面図である。2 is a second cross-sectional view in the front direction of the reactor according to Embodiment 1. FIG. 反応装置が実行する処理のフローチャートである。Fig. 3 is a flow chart of the process performed by the reactor; 実施の形態2にかかる反応装置の側面方向の断面図である。FIG. 2 is a side cross-sectional view of a reactor according to a second embodiment; 実施の形態5にかかる反応システムの構成図である。FIG. 11 is a configuration diagram of a reaction system according to Embodiment 5; 実施の形態6にかかる反応システムの構成図である。FIG. 11 is a configuration diagram of a reaction system according to Embodiment 6; 実施の形態7にかかる電池用材料製造システムの構成図である。FIG. 11 is a configuration diagram of a battery material manufacturing system according to a seventh embodiment;
 以下、発明の実施の形態を通じて本発明を説明するが、特許請求の範囲にかかる発明を以下の実施形態に限定するものではない。また、実施形態で説明する構成の全てが課題を解決するための手段として必須であるとは限らない。説明の明確化のため、以下の記載および図面は、適宜、省略、および簡略化がなされている。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。 The present invention will be described below through embodiments of the invention, but the invention according to the scope of claims is not limited to the following embodiments. Moreover, not all the configurations described in the embodiments are essential as means for solving the problems. For clarity of explanation, the following descriptions and drawings are omitted and simplified as appropriate. In each drawing, the same elements are denoted by the same reference numerals, and redundant description is omitted as necessary.
 <実施の形態1>
 図1を参照しながら、実施の形態1にかかる反応装置の主な構成について説明する。図1は、実施の形態1にかかる反応装置10の側面方向の断面図である。反応装置10は、原料に所定の物理的な刺激等の条件を与えることにより反応生成物を製造するための装置である。
<Embodiment 1>
The main configuration of the reactor according to Embodiment 1 will be described with reference to FIG. FIG. 1 is a side cross-sectional view of a reactor 10 according to Embodiment 1. FIG. The reaction apparatus 10 is an apparatus for producing a reaction product by applying conditions such as predetermined physical stimulation to raw materials.
 原料や反応生成物の種類や状態は特に制限されないが、リチウムを成分の一つに含む金属酸化物や金属硫化物のような無機物であってもよいし、炭化水素のような有機物であってもよい。また、原料や反応生成物の形状や大きさは特に制限されないが、形状が塊状の場合の対角長さは、好ましくは0.1mm~50mmであり、さらに好ましくは1~20mmである。さらに、原料や反応生成物の形状が塊状の場合、対角長さの比率(アスペクト比)は、好ましくは1~10であり、さらに好ましくは1.3~1.8である。反応装置10は主な構成として、キルン部100、温度制御装置110、第1反応補助装置120および第2反応補助装置130を有している。また反応装置10は上記構成に加えて、フィーダ140、キルンフット150、駆動装置160等を有している。 The type and state of the raw materials and reaction products are not particularly limited, but they may be inorganic substances such as metal oxides or metal sulfides containing lithium as one of the components, or organic substances such as hydrocarbons. good too. The shape and size of the raw material and the reaction product are not particularly limited, but when the shape is massive, the diagonal length is preferably 0.1 mm to 50 mm, more preferably 1 to 20 mm. Furthermore, when the shape of the starting material or the reaction product is massive, the diagonal length ratio (aspect ratio) is preferably 1 to 10, more preferably 1.3 to 1.8. The reactor 10 has a kiln section 100, a temperature control device 110, a first auxiliary reaction device 120 and a second auxiliary reaction device 130 as main components. The reactor 10 also has a feeder 140, a kiln foot 150, a driving device 160, etc. in addition to the above configuration.
 キルン部100は主な構成として、原料供給口101、送出口102および筒部103を有している。原料供給口101は、一端側に供給される原料R10を受け入れる。送出口102は、他端側に反応生成物R11を送出する。筒部103は、一端側に原料供給口101を有し他端側に送出口102を有する円筒状の部材であって、中心軸C10に沿って回転可能に延伸する。 The kiln section 100 has a raw material supply port 101, a delivery port 102 and a cylindrical portion 103 as its main components. The raw material supply port 101 receives the raw material R10 supplied to one end side. The delivery port 102 delivers the reaction product R11 to the other end. The tubular portion 103 is a cylindrical member having the raw material supply port 101 at one end and the delivery port 102 at the other end, and extends rotatably along the central axis C10.
 キルン部100は受け入れる原料に対して室温から摂氏1500度の範囲における所定の温度を付与する。そのため、キルン部100、第1反応補助装置120および第2反応補助装置130の主たる構成部材はこの温度に耐えうる部材により形成されている。すなわちキルン部100、第1反応補助装置120および第2反応補助装置130を構成する部材は、例えば、アルミナやジルコニアなどの酸化物、炭化ケイ素や炭化チタンなどの炭化物、窒化ケイ素や窒化チタンなどの窒化物のようなセラミックス、または、結晶質グラファイトや繊維強化グラファイトのようなカーボンである。あるいはキルン部100、第1反応補助装置120および第2反応補助装置130を構成する部材は、ニッケル、コバルト、クロム、モリブデン、タングステン、タンタル、チタン、鉄、銅、アルミニウム、ケイ素、ホウ素、炭素などの合金元素のうち少なくとも一つを成分に含む耐熱合金が採用され得る。 The kiln section 100 imparts a predetermined temperature in the range of room temperature to 1500 degrees Celsius to the incoming raw material. Therefore, the main constituent members of the kiln section 100, the first auxiliary reaction device 120 and the second auxiliary reaction device 130 are made of members that can withstand this temperature. That is, the members constituting the kiln section 100, the first reaction auxiliary device 120, and the second reaction auxiliary device 130 are, for example, oxides such as alumina and zirconia, carbides such as silicon carbide and titanium carbide, and silicon nitride and titanium nitride. Ceramics, such as nitrides, or carbons, such as crystalline graphite or fiber-reinforced graphite. Alternatively, the members constituting the kiln section 100, the first reaction auxiliary device 120 and the second reaction auxiliary device 130 are nickel, cobalt, chromium, molybdenum, tungsten, tantalum, titanium, iron, copper, aluminum, silicon, boron, carbon, etc. A heat-resistant alloy containing as a component at least one of the alloying elements can be employed.
 キルン部100は筒部103における供給口側が送出口側より高くなるように傾斜して設置されてもよい。図1に示すキルン部100は、筒部103の中心軸C10が水平方向に対して所定の角度θの傾斜を有している。これにより、キルン部100は、受け入れた所定の原料R10が筒部103の内壁に接触しながら中心軸C10に沿って送出口102へ搬送されるように構成されている。角度θは-90度から+90度の範囲から選択し得る。 The kiln part 100 may be installed with an inclination so that the supply port side of the cylindrical part 103 is higher than the delivery port side. In the kiln portion 100 shown in FIG. 1, the central axis C10 of the cylindrical portion 103 is inclined at a predetermined angle θ with respect to the horizontal direction. Thus, the kiln section 100 is configured such that the received predetermined raw material R10 is conveyed to the delivery port 102 along the central axis C10 while being in contact with the inner wall of the cylindrical section 103 . The angle θ can be selected from the range of -90 degrees to +90 degrees.
 なお、以降の説明において、相対的にキルン部100の原料供給口101に近い側を上流側と表現し、送出口102に近い側を下流側と表現する場合がある。すなわちキルン部100は、受け入れた所定の原料R10が上流側から下流側へ搬送されるように構成されている。 In the following description, the side relatively close to the raw material supply port 101 of the kiln section 100 may be referred to as the upstream side, and the side relatively close to the delivery port 102 may be referred to as the downstream side. That is, the kiln section 100 is configured such that the received predetermined raw material R10 is conveyed from the upstream side to the downstream side.
 図1に示すキルン部100の原料供給口101には、軸受け104を介してフィーダ140が係合する。フィーダ140は、キルン部100における原料供給口101の側を回転可能に支持する。すなわちフィーダ140は、キルン部100を支持する支持部である。フィーダ140は上方に設けられた開口部である原料投入口141から原料R10を受け入れて、受け入れた原料R10を原料供給口101に案内する。さらにフィーダ140は第1反応補助装置120を支持する。 A feeder 140 is engaged with the raw material supply port 101 of the kiln section 100 shown in FIG. The feeder 140 rotatably supports the raw material supply port 101 side of the kiln section 100 . That is, the feeder 140 is a support section that supports the kiln section 100 . The feeder 140 receives the raw material R10 from a raw material inlet 141, which is an opening provided above, and guides the received raw material R10 to the raw material supply port 101. As shown in FIG. Further, feeder 140 supports first reaction auxiliary device 120 .
 またキルン部100の送出口102には、軸受け104を介してキルンフット150が係合する。キルンフット150は送出口102の側を回転可能に支持する。すなわちキルンフット150はキルン部100を支持する支持部である。またキルンフット150は反応生成物出口151を有しており、送出口102から送出される反応生成物R11を反応生成物出口151から送出する。さらに、キルンフット150は、第2反応補助装置130を支持する。 A kiln foot 150 is engaged with the delivery port 102 of the kiln section 100 via a bearing 104 . The kiln foot 150 rotatably supports the delivery port 102 side. That is, the kiln foot 150 is a support for supporting the kiln section 100 . The kiln foot 150 also has a reaction product outlet 151 through which the reaction product R11 delivered from the delivery port 102 is delivered. Furthermore, the kiln foot 150 supports the second reaction auxiliary device 130 .
 温度制御装置110は、加熱装置または冷却装置を含み、キルン部100を加熱または冷却することによりキルン部100の温度を制御する。温度制御装置110は例えば室温から摂氏1500度程度の範囲の加熱を行う。温度制御装置110は、例えば原料供給口101と送出口102との間の中間領域における筒部103の周囲を囲むように加熱装置を有している。加熱装置は例えばシースヒータ、コイルヒータまたはセラミックヒータなどの温度制御可能な任意のヒータを含む。あるいは加熱装置は、ガスを燃焼して加熱した流体を循環させるものであってもよい。温度制御装置110は、キルン部100の温度を制御するための制御装置を含みうる。例えば温度制御装置110は、キルン部100の所定の位置に温度を監視するための温度計を有していてもよい。 The temperature control device 110 includes a heating device or a cooling device, and controls the temperature of the kiln section 100 by heating or cooling the kiln section 100 . The temperature control device 110 performs heating in a range from room temperature to about 1500 degrees Celsius, for example. The temperature control device 110 has, for example, a heating device surrounding the cylindrical portion 103 in an intermediate region between the raw material supply port 101 and the delivery port 102 . Heating devices include any temperature-controllable heaters, such as sheath heaters, coil heaters, or ceramic heaters. Alternatively, the heating device may burn gas and circulate a heated fluid. Temperature controller 110 may include a controller for controlling the temperature of kiln section 100 . For example, the temperature control device 110 may have a thermometer at a predetermined location in the kiln section 100 to monitor the temperature.
 第1反応補助装置120および第2反応補助装置130は、反応補助装置の実施態様の例である。反応補助装置は、キルン部100の一端側または他端側から筒部103の内側に延伸する支持体を有している。またこの支持体は、キルン部100の中間領域において原料の反応を補助するための補助器を有している。補助器は、攪拌器、混合器、粉砕器、混練器、搬送器(コンベヤ)、流体噴射口、流体吸引口、およびスクレーパのうち少なくともいずれか1つを含む。 The first reaction auxiliary device 120 and the second reaction auxiliary device 130 are examples of embodiments of the reaction auxiliary device. The reaction auxiliary device has a support extending from one end side or the other end side of the kiln section 100 to the inside of the cylindrical section 103 . This support also has an auxiliary vessel for assisting the reaction of the raw material in the intermediate region of the kiln section 100 . The auxiliary device includes at least one of an agitator, a mixer, a pulverizer, a kneader, a conveyer (conveyor), a fluid injection port, a fluid suction port, and a scraper.
 第1反応補助装置120は、主な構成として第1支持体121およびストッパ122を有している。第1支持体121はフィーダ140に支持され、フィーダ140から筒部103に突出する梁状の構造体である。第1支持体121は筒部103の中間領域においてストッパ122を保持する。 The first reaction auxiliary device 120 has a first support 121 and a stopper 122 as main components. The first support 121 is a beam-like structure that is supported by the feeder 140 and protrudes from the feeder 140 to the cylindrical portion 103 . The first support 121 holds the stopper 122 in the intermediate region of the tubular portion 103 .
 図2を参照して第1反応補助装置120についてさらに説明する。図2は、実施の形態1にかかる反応装置の正面方向の第1断面図である。図2は、図1に示した断面II-IIを中心軸C10に平行な方向から観察した断面図である。 The first reaction auxiliary device 120 will be further described with reference to FIG. FIG. 2 is a first cross-sectional view in the front direction of the reactor according to Embodiment 1. FIG. FIG. 2 is a sectional view of the section II-II shown in FIG. 1 observed from a direction parallel to the central axis C10.
 ストッパ122は中心軸C10に直交する面に平行な主面を有する円盤状の部材である。ストッパ122の外周部は、筒部103の内壁との間に原料R10が通過する程度の隙間を有している。またストッパ122は原料供給口101の側においてボール123を受け止める機能を担う。ボール123は、キルン部100のストッパ122よりも上流側に複数が配置され、筒部103の回転にしたがって自由に動く。またボール123はストッパ122を通過できない程度の直径を有している。 The stopper 122 is a disk-shaped member having a main surface parallel to the surface perpendicular to the central axis C10. The outer peripheral portion of the stopper 122 has a gap between it and the inner wall of the cylindrical portion 103, which is large enough for the raw material R10 to pass through. Also, the stopper 122 has a function of receiving the ball 123 on the raw material supply port 101 side. A plurality of balls 123 are arranged upstream of the stopper 122 of the kiln section 100 and move freely as the cylindrical section 103 rotates. Also, the ball 123 has such a diameter that it cannot pass through the stopper 122 .
 これにより第1反応補助装置120および複数のボール123は、キルン部100の内部の原料R10を粉砕するボールミルの機能を有している。つまり第1反応補助装置120は補助器として粉砕器を有する反応補助装置の一実施態様である。反応装置10は、第1反応補助装置120を有することにより、原料R10を粉砕して効率よく所望の反応を促すことができる。 Accordingly, the first reaction auxiliary device 120 and the plurality of balls 123 have the function of a ball mill for pulverizing the raw material R10 inside the kiln section 100. That is, the first reaction auxiliary device 120 is one embodiment of a reaction auxiliary device having a pulverizer as an auxiliary device. By having the first reaction auxiliary device 120, the reaction device 10 can pulverize the raw material R10 and efficiently promote the desired reaction.
 図1に戻り説明を続ける。第2反応補助装置130は、第2支持体131およびスクレーパ132を有している。第2支持体131は、キルンフット150に支持され、キルンフット150から筒部103に突出する梁状の構造体である。第2支持体131は筒部103の中間領域の下流側において補助器であるスクレーパ132を有している。スクレーパ132は、キルン部100の中間領域において生成された反応生成物R11が筒部103の内壁に付着した場合に、これを剥ぎ取るために設けられている。 Return to Figure 1 and continue the explanation. The second reaction auxiliary device 130 has a second support 131 and a scraper 132 . The second support 131 is a beam-shaped structure that is supported by the kiln foot 150 and protrudes from the kiln foot 150 to the cylindrical portion 103 . The second support 131 has a scraper 132 as an auxiliary device on the downstream side of the intermediate region of the tubular portion 103 . The scraper 132 is provided to scrape off the reaction product R11 produced in the intermediate region of the kiln section 100 when it adheres to the inner wall of the cylindrical section 103 .
 図3を併せて参照しながら第2反応補助装置130についてさらに説明する。図3は、実施の形態1にかかる反応装置の正面方向の第2断面図である。図3は、図1に示した断面III-IIIを中心軸C10に平行な方向から観察した断面図である。 The second reaction auxiliary device 130 will be further described with reference to FIG. FIG. 3 is a second cross-sectional view in the front direction of the reactor according to the first embodiment. FIG. 3 is a sectional view of the section III-III shown in FIG. 1 observed from a direction parallel to the central axis C10.
 スクレーパ132は第2支持体131から筒部103の内壁に向かって延伸する平板状の部材である。スクレーパ132は筒部103の内壁面に付着した反応生成物R11を剥ぎ取る(スクレーピングする)役割を担う。そのためスクレーパ132の先端部と筒部103の内壁との隙間は内壁に付着したこれらの物質を剥ぎ取ることができる程度の距離に設定されている。これにより筒部103の内壁に付着した反応生成物R11は、内壁から剥離し、送出口102に搬送される。 The scraper 132 is a flat member extending from the second support 131 toward the inner wall of the cylindrical portion 103 . The scraper 132 plays a role of stripping (scraping) the reaction product R11 adhering to the inner wall surface of the cylindrical portion 103 . Therefore, the gap between the tip of the scraper 132 and the inner wall of the cylindrical portion 103 is set to a distance that allows these substances adhering to the inner wall to be scraped off. As a result, the reaction product R11 adhering to the inner wall of the tubular portion 103 is separated from the inner wall and conveyed to the delivery port 102 .
 第2反応補助装置130を有することにより、反応装置10は反応生成物R11が筒部103の内壁に固着するのを抑制できる。これにより反応装置10は効率よく所望の反応生成物を製造できる。 By having the second reaction auxiliary device 130, the reaction device 10 can prevent the reaction product R11 from sticking to the inner wall of the cylindrical portion 103. Thereby, the reactor 10 can efficiently produce the desired reaction product.
 再び図1に戻り説明を続ける。駆動装置160は、モータと、このモータから突出する駆動軸に嵌合する駆動力伝達部161とを有している。駆動装置160は駆動力伝達部161を介してモータの駆動力を従動部106に伝えることによりキルン部100を回転させる。駆動力伝達部161および従動部106は例えば互いに噛み合うように構成された歯車である。駆動装置160はこのような構成により中心軸C10を回転中心としてキルン部100を回転させる。これにより、キルン部100は、原料供給口101から受け入れた原料R10を転動させながら送出口102に搬送する。 Returning to Figure 1, the explanation continues. The drive device 160 has a motor and a driving force transmission portion 161 fitted to a drive shaft protruding from the motor. The driving device 160 rotates the kiln section 100 by transmitting the driving force of the motor to the driven section 106 via the driving force transmission section 161 . The driving force transmission portion 161 and the driven portion 106 are, for example, gears configured to mesh with each other. The driving device 160 rotates the kiln section 100 around the central axis C10 with such a configuration. As a result, the kiln unit 100 conveys the raw material R10 received from the raw material supply port 101 to the delivery port 102 while rolling.
 次に、図4を参照して、反応装置10が実行する処理について説明する。図4は、反応装置が実行する処理(反応生成物製造方法)のフローチャートである。図4に示すフローチャートは、例えば反応装置10を使用して反応生成物を製造する使用者が反応装置10を使って実行する。 Next, the processing performed by the reaction device 10 will be described with reference to FIG. FIG. 4 is a flow chart of the process (reaction product manufacturing method) executed by the reactor. The flow chart shown in FIG. 4 is executed using the reactor 10, for example, by a user who uses the reactor 10 to produce a reaction product.
 まず、使用者は、キルン部100を含む反応装置10を用意する(ステップS11)。使用者が用意する反応装置10は、上述した構成を有している。 First, the user prepares the reactor 10 including the kiln section 100 (step S11). The reactor 10 prepared by the user has the configuration described above.
 次に、使用者は、反応装置10を操作し、温度制御装置110にキルン部100を加熱させる。すなわち温度制御装置110は、キルン部100の内部を所定の温度に加熱する(ステップS12)。 Next, the user operates the reaction device 10 to cause the temperature control device 110 to heat the kiln section 100 . That is, the temperature control device 110 heats the inside of the kiln section 100 to a predetermined temperature (step S12).
 次に、使用者は、原料供給口101からキルン部100に原料R10を供給する(ステップS13)。なお、使用者はフィーダ140に原料R10を投入することにより原料R10を原料供給口101に供給する。 Next, the user supplies the raw material R10 from the raw material supply port 101 to the kiln section 100 (step S13). The user supplies the raw material R10 to the raw material supply port 101 by putting the raw material R10 into the feeder 140 .
 次に、使用者は、キルン部100を回転させることにより、原料R10を下流へ搬送する(ステップS14)。なお使用者は、キルン部100に供給した原料R10を下流に搬送するために、ステップS11の後であってステップS12の前に、キルン部100の回転を開始させるのが好ましい。このとき反応装置10は、駆動装置160を駆動することによりキルン部100を回転させる。 Next, the user rotates the kiln unit 100 to convey the raw material R10 downstream (step S14). The user preferably starts rotating the kiln unit 100 after step S11 and before step S12 in order to convey the raw material R10 supplied to the kiln unit 100 downstream. At this time, the reaction apparatus 10 rotates the kiln section 100 by driving the driving device 160 .
 次に、使用者は、第1反応補助装置120および第2反応補助装置130に反応補助動作を行わせる(ステップS15)。すなわち、使用者は、第1反応補助装置120により原料R10を粉砕させる。さらに使用者は、原料R10から生成された反応生成物R11を第2反応補助装置130によりスクレーピングさせる。 Next, the user causes the first reaction auxiliary device 120 and the second reaction auxiliary device 130 to perform the reaction auxiliary operation (step S15). That is, the user causes the first reaction auxiliary device 120 to pulverize the raw material R10. Further, the user causes the second reaction auxiliary device 130 to scrape the reaction product R11 produced from the raw material R10.
 次に、使用者は、送出口102から反応生成物を送出させる(ステップS16)。 Next, the user causes the reaction product to be delivered from the delivery port 102 (step S16).
 以上、反応装置10が実行する反応生成物製造方法について説明した。上述の方法により、反応装置10は、キルン部100に原料R10を受け入れ、受け入れた原料R10をキルン部100において所定の反応を促し、反応生成物R11を生成する。より詳細には反応装置10は受け入れた原料R10を搬送して、第1反応補助装置120により粉砕する。さらに反応装置10は粉砕した原料R10をキルン部100において下流へ転動流動させながら所定の温度環境下に晒して反応生成物R11を生成する。さらに反応装置10は送出口102の手前で第2反応補助装置130により筒部103の反応生成物R11をスクレーピングする。そして反応装置10は反応生成物R11を送出口102から送出し、さらに反応生成物出口151からこれを排出する。 The reaction product manufacturing method executed by the reactor 10 has been described above. According to the method described above, the reactor 10 receives the raw material R10 in the kiln section 100, promotes a predetermined reaction in the kiln section 100, and produces the reaction product R11. More specifically, the reactor 10 transports the received raw material R10 and pulverizes it by the first reaction auxiliary device 120 . Further, the reactor 10 exposes the pulverized raw material R10 to a predetermined temperature environment while tumbling and flowing downstream in the kiln section 100 to produce a reaction product R11. Furthermore, the reactor 10 scrapes the reaction product R11 in the cylindrical portion 103 by the second reaction auxiliary device 130 before the delivery port 102 . The reactor 10 then delivers the reaction product R11 through the delivery port 102 and discharges it through the reaction product outlet 151 .
 上述の方法は、反応装置10が原料R10から反応生成物R11を製造し、製造した反応生成物R11を送出するまでの流れに沿って示されている。しかし、反応装置10が実行する方法は、上述の順序に拘束されるものではない。例えば反応装置10は、例えばキルン部100の回転操作を、ステップS12の前から実行していてもよいし、ステップS12と同時に行ってもよい。 The above-described method is shown along the flow from the production of the reaction product R11 from the raw material R10 by the reactor 10 to the delivery of the produced reaction product R11. However, the methods performed by reactor 10 are not constrained to the above order. For example, the reaction device 10 may perform the rotation operation of the kiln section 100 before step S12 or may be performed simultaneously with step S12.
 以上、実施の形態1について説明したが、実施の形態1にかかる反応装置10は上述の構成に限られない。第1反応補助装置120および第2反応補助装置130は他の補助器を有するものであってもよい。また反応装置10は、第1反応補助装置120および第2反応補助装置130のうちいずれか一方のみを有するものであってもよい。第1反応補助装置120および第2反応補助装置130はその支持体にそれぞれ複数の補助器を有するものであってもよい。 Although the first embodiment has been described above, the reactor 10 according to the first embodiment is not limited to the configuration described above. The first reaction auxiliary device 120 and the second reaction auxiliary device 130 may have other auxiliary devices. Also, the reactor 10 may have only one of the first auxiliary reaction device 120 and the second auxiliary reaction device 130 . The first auxiliary reaction device 120 and the second auxiliary reaction device 130 may each have a plurality of auxiliary devices on its support.
 第1反応補助装置120および第2反応補助装置130はそれぞれ複数の支持体を有するものであってもよい。第1支持体121または第2支持体131は筒部103の内部において分岐した形状を有していてもよい。また第1反応補助装置120の第1支持体121と第2反応補助装置130の第2支持体131とは接続されて一体となっていてもよい。すなわち反応補助装置は、原料供給口101側と送出口102側とに支持される支持体を有していてもよい。上述の搬送器(コンベヤ)は代表的にはスクリュが選択され得るが、搬送機能を有するものであれば、スクリュに限定されない。例えば、搬送器は、振り子式パドルや回転式パドルであってもよいし、中心軸C10に沿って動くパドル付きベルトであってもよい。さらに、搬送器は、原料に接触して搬送するものに限らず、ファンやジェットノズルのように流体を用いて非接触で搬送させるものであってもよい。 The first reaction auxiliary device 120 and the second reaction auxiliary device 130 may each have a plurality of supports. The first support 121 or the second support 131 may have a branched shape inside the cylindrical portion 103 . Also, the first support 121 of the first reaction auxiliary device 120 and the second support 131 of the second reaction auxiliary device 130 may be connected and integrated. That is, the reaction auxiliary device may have a support that is supported on the raw material supply port 101 side and the delivery port 102 side. Although a screw may be selected as a representative of the conveyer (conveyor) described above, it is not limited to a screw as long as it has a conveying function. For example, the carrier may be a pendulum paddle, a rotary paddle, or a belt with paddles that moves along the central axis C10. Furthermore, the conveyer is not limited to the one that conveys the raw material while contacting it, and may be one that conveys the raw material in a non-contact manner using a fluid, such as a fan or a jet nozzle.
 実施の形態1は、上述のように反応補助装置を有する構成により、ロータリキルンである反応装置10は、キルン部100における筒部103の空間を活用して原料R10に対して連続的に効率よく所定の反応を付与し、反応生成物R11を製造できる。よって、実施の形態1によれば、所望の製品を効率よく製造する反応装置等を提供することができる。 In the first embodiment, the reactor 10, which is a rotary kiln, utilizes the space of the cylindrical portion 103 in the kiln portion 100 to continuously and efficiently feed the raw material R10 due to the configuration having the reaction auxiliary device as described above. A given reaction can be applied to produce the reaction product R11. Therefore, according to Embodiment 1, it is possible to provide a reaction apparatus or the like for efficiently producing a desired product.
 <実施の形態2>
 次に、実施の形態2について説明する。図5は、実施の形態2にかかる反応装置20の側面方向の断面図である。実施の形態2にかかる反応装置20は、反応補助装置の態様が実施の形態1と異なる。また反応装置20は、温度制御装置110の態様が実施の形態1と異なる。
<Embodiment 2>
Next, Embodiment 2 will be described. FIG. 5 is a side sectional view of the reactor 20 according to the second embodiment. The reactor 20 according to the second embodiment differs from the first embodiment in the mode of the reaction auxiliary device. Further, the reactor 20 differs from that of the first embodiment in the aspect of the temperature control device 110 .
 温度制御装置110は、筒部の外壁に接触することにより筒部の内部の温度を制御する。本実施の形態における温度制御装置110は、キルン部100の延伸方向に沿って複数の温度制御部を有している。すなわち本実施の形態における温度制御装置110は、中間領域において中心軸C10に沿った方向に異なる複数の温度制御領域を有する。 The temperature control device 110 controls the temperature inside the cylinder by contacting the outer wall of the cylinder. The temperature control device 110 in this embodiment has a plurality of temperature control units along the stretching direction of the kiln unit 100 . That is, temperature control device 110 in the present embodiment has a plurality of temperature control regions that are different in the direction along central axis C10 in the intermediate region.
 より具体的には、温度制御装置110は、第1温度制御部110A、第2温度制御部110Bおよび第3温度制御部110Cを含む。第1温度制御部110Aは、原料供給口101に比較的に近い側であって、原料供給口101から離間した位置に配置される。第2温度制御部110Bは、第1温度制御部110Aよりも下流側であって、且つ、第3温度制御部110Cより上流側に配置される。第3温度制御部110Cは、第2温度制御部110Bよりも下流側に配置される。 More specifically, the temperature control device 110 includes a first temperature control section 110A, a second temperature control section 110B and a third temperature control section 110C. The first temperature control unit 110A is arranged relatively close to the raw material supply port 101 and at a position spaced apart from the raw material supply port 101 . The second temperature control section 110B is arranged downstream of the first temperature control section 110A and upstream of the third temperature control section 110C. The third temperature control section 110C is arranged downstream of the second temperature control section 110B.
 第1温度制御部110A、第2温度制御部110Bおよび第3温度制御部110Cは、それぞれが別の温度に設定される。例えば第1温度制御部110Aはキルン部100の内部温度を例えば500度になるように制御する。さらに第2温度制御部110Bはキルン部100の内部温度を例えば1500度になるように制御する。第3温度制御部110Cはキルン部100の内部温度を例えば40度になるように制御する。このように、温度制御装置110は、キルン部100の異なる領域に対して異なる温度を設定することができる。これにより反応装置20はキルン部100の領域に応じて所望の反応を促進したり抑制したりすることができる。 The first temperature control section 110A, the second temperature control section 110B, and the third temperature control section 110C are set to different temperatures. For example, the first temperature control section 110A controls the internal temperature of the kiln section 100 to be, for example, 500 degrees. Furthermore, the second temperature control section 110B controls the internal temperature of the kiln section 100 to be, for example, 1500 degrees. The third temperature control section 110C controls the internal temperature of the kiln section 100 to, for example, 40 degrees. Thus, the temperature controller 110 can set different temperatures for different regions of the kiln section 100 . Thereby, the reactor 20 can promote or suppress a desired reaction depending on the region of the kiln section 100 .
 本実施の形態における反応装置20は、反応補助装置として、反応補助装置170を有している。反応補助装置170は主な構成として、支持体171、攪拌器172、粉砕器173、スプレー174、搬送器175、減速機176、駆動力伝達部177および支持体駆動装置178を有している。 The reaction device 20 in the present embodiment has a reaction auxiliary device 170 as a reaction auxiliary device. The reaction auxiliary device 170 has a support 171 , a stirrer 172 , a pulverizer 173 , a sprayer 174 , a carrier 175 , a speed reducer 176 , a driving force transmission section 177 and a support driving device 178 as main components.
 反応補助装置170は、支持体171が一端側と他端側とにより回転可能に支持されている。より具体的には、支持体171はキルン部100の中心軸C10に沿って延伸する軸であって、一端側がフィーダ140に設けられた軸受け180により支持され、他方側がキルンフット150に設けられた軸受け180により支持されている。 The support 171 of the reaction auxiliary device 170 is rotatably supported by one end and the other end. More specifically, the support 171 is a shaft extending along the central axis C10 of the kiln section 100, one end of which is supported by a bearing 180 provided on the feeder 140, and the other of which is a bearing provided on the kiln foot 150. 180.
 また支持体171は減速機176および駆動力伝達部177を介して支持体駆動装置178に接続している。すなわち本実施の形態における反応装置20は、反応補助装置170の支持体171を回転させる支持体駆動装置178をさらに備える。 Also, the support 171 is connected to a support driving device 178 via a reduction gear 176 and a driving force transmission section 177 . That is, the reaction apparatus 20 in this embodiment further includes a support driving device 178 that rotates the support 171 of the reaction auxiliary device 170 .
 支持体駆動装置178はモータであって、駆動力伝達部177を回転させて減速機176に駆動力を伝達する。減速機176は例えば複数の歯車の組み合わせにより駆動力伝達部177から受ける力を所定の回転数に変換して支持体171に伝達する。 The support driving device 178 is a motor, and rotates the driving force transmission part 177 to transmit the driving force to the speed reducer 176 . The speed reducer 176 converts the force received from the driving force transmission unit 177 into a predetermined rotational speed by combining a plurality of gears, for example, and transmits the force to the support 171 .
 減速機176、駆動力伝達部177および支持体駆動装置178は、反応補助装置170を回転させるための機構である。反応補助装置170は、支持体171がキルン部100と別個に回転できるように支持されている。すなわちキルン部100の回転方向およびキルン部100の回転速度と、支持体171の回転方向および回転速度は、それぞれ同じであってもよいし、異なっていてもよい。具体的には、例えばキルン部100は毎分0.1回転~10回転程度であって、反応補助装置170は毎分0回転~500回転程度である。反応補助装置170の回転速度または回転方向は、時間に応じて変化してもよい。 The speed reducer 176 , the driving force transmission section 177 and the support driving device 178 are mechanisms for rotating the reaction auxiliary device 170 . The reaction auxiliary device 170 is supported so that the support 171 can rotate independently of the kiln section 100 . That is, the rotational direction and rotational speed of the kiln section 100 and the rotational direction and rotational speed of the support 171 may be the same or different. Specifically, for example, the kiln section 100 rotates about 0.1 to 10 times per minute, and the reaction auxiliary device 170 rotates about 0 to 500 times per minute. The rotation speed or rotation direction of the reaction auxiliary device 170 may change according to time.
 反応補助装置170は、支持体171の延伸方向に沿って複数の補助器を有する。より具体的には、反応補助装置170は、上流側から順に、攪拌器172、粉砕器173、スプレー174および搬送器175を有している。 The reaction auxiliary device 170 has a plurality of auxiliary devices along the extending direction of the support 171 . More specifically, the reaction auxiliary device 170 has a stirrer 172, a pulverizer 173, a sprayer 174 and a carrier 175 in order from the upstream side.
 攪拌器172は、原料供給口101から受け入れた原料R10を攪拌するための機能を有する。より具体的には、攪拌器172は例えば支持体171から突出する棒状部材である。この棒状部材は支持体171から中心軸C10に直交する方向に突出し、筒部103の内壁近傍で直角に折れ曲がり、中心軸C10に平行な方向に延伸した後に再び直角に折れ曲がり支持体171に接続する。図5に示す例では、攪拌器172はこの棒状部材を2つ有している。攪拌器172は、支持体171に固定されているため、支持体171が回転することにより原料R10を攪拌する。 The stirrer 172 has a function of stirring the raw material R10 received from the raw material supply port 101. More specifically, the stirrer 172 is, for example, a rod-shaped member protruding from the support 171 . This rod-shaped member protrudes from the support 171 in a direction orthogonal to the central axis C10, bends at right angles near the inner wall of the cylindrical portion 103, extends in a direction parallel to the central axis C10, and then bends again at right angles to connect to the support 171. . In the example shown in FIG. 5, the stirrer 172 has two of these bar-shaped members. Since the stirrer 172 is fixed to the support 171, the support 171 rotates to stir the raw material R10.
 粉砕器173は、攪拌器172により攪拌された原料R10を粉砕する機能を有する。粉砕器173は、楕円形の主面を有する板状の楕円形部材を複数有する。楕円形部材は、その長径部分が筒部103の内壁近傍に延伸している。粉砕器173は、支持体171に固定されているため、支持体171が回転することにより塊状の原料R10が粉砕器173と筒部103とに挟まれ、粉砕される。 The pulverizer 173 has the function of pulverizing the raw material R10 stirred by the stirrer 172. The pulverizer 173 has a plurality of plate-shaped elliptical members having elliptical main surfaces. The elliptical member extends near the inner wall of the cylindrical portion 103 at its major diameter portion. Since the pulverizer 173 is fixed to the support 171, the support 171 rotates so that the bulk raw material R10 is sandwiched between the pulverizer 173 and the cylindrical portion 103 and pulverized.
 スプレー174は、所定の流体を筒部103の内部に吐出して原料R10にこの流体を接触させる。支持体171は、上流側の端部において流体受け入れ口174Aを有し、ここから受け入れた粒体をスプレー174に発送するためのパイプを有している。スプレー174は流体受け入れ口174Aを介して供給された流体を、流体噴射口174Bから吐出する。すなわち粉砕器173により粉砕された原料R10はスプレー174から吐出される流体と接触する。スプレー174が吐出する流体は、不活性ガスでもよいし、反応を促すための所定のガスでもよい。またスプレー174が吐出する流体は、流動性を有している粉体や液体などを含んでいてもよい。 The spray 174 discharges a predetermined fluid into the cylindrical portion 103 to bring the fluid into contact with the raw material R10. The support 171 has a fluid receiving port 174A at its upstream end and a pipe for sending the granules received therefrom to the spray 174 . The spray 174 ejects the fluid supplied through the fluid receiving port 174A from the fluid ejection port 174B. That is, the raw material R10 pulverized by the pulverizer 173 comes into contact with the fluid discharged from the spray 174. As shown in FIG. The fluid ejected by the spray 174 may be an inert gas or a predetermined gas for promoting reaction. Further, the fluid ejected by the spray 174 may contain fluid powder or liquid.
 搬送器175は、スプレー174が配置された領域を通過することにより生成された所定の反応生成物を下流へ搬送するための機能を有している。より具体的には、搬送器175は支持体171が回転することによりこの反応生成物を搬送するスクリュである。搬送器175は例えばスクリュのピッチまたは支持体171の回転速度に応じた搬送速度により反応生成物を搬送する。 The conveyer 175 has a function of conveying downstream a predetermined reaction product generated by passing through the area where the spray 174 is arranged. More specifically, the transporter 175 is a screw that transports the reaction product as the support 171 rotates. The conveyer 175 conveys the reaction product at a conveying speed corresponding to the pitch of the screw or the rotational speed of the support 171, for example.
 次に、温度制御装置110と反応補助装置170との関連について説明する。温度制御装置110のうち、第1温度制御部110Aが温度を制御する領域は、攪拌器172および粉砕器173が設置されている。第2温度制御部110Bが温度を制御する領域は、スプレー174が設置されている。そして第3温度制御部110Cが温度を制御する領域は、搬送器175が設置されている。 Next, the relationship between the temperature control device 110 and the reaction auxiliary device 170 will be described. A stirrer 172 and a pulverizer 173 are installed in a region of the temperature control device 110 where the temperature is controlled by the first temperature control section 110A. A spray 174 is installed in a region where the temperature is controlled by the second temperature control section 110B. A transporter 175 is installed in a region where the temperature is controlled by the third temperature control section 110C.
 すなわち反応装置20は、第1温度制御部110Aがキルン部100の温度を摂氏500度程度に制御する領域において、原料R10を脱脂するとともに攪拌および粉砕を行う。次に、反応装置20は、第2温度制御部110Bが温度を摂氏1000度程度に制御する領域において流体噴射口174Bから所定の流体を吐出して原料R10の反応を促す。次に反応装置20は、第3温度制御部110Cが温度を摂氏40度程度に制御する領域において反応生成物を送出口102に搬送する。 That is, the reactor 20 degreases, agitates, and pulverizes the raw material R10 in a region where the first temperature control unit 110A controls the temperature of the kiln unit 100 to about 500 degrees Celsius. Next, the reaction device 20 ejects a predetermined fluid from the fluid ejection port 174B in a region where the second temperature control section 110B controls the temperature to about 1000 degrees Celsius to promote the reaction of the raw material R10. Next, the reaction device 20 conveys the reaction product to the delivery port 102 in a region where the third temperature control section 110C controls the temperature to about 40 degrees Celsius.
 以上に説明したように、反応装置20は温度制御装置110と反応補助装置170とを連携させることにより所望のプロセスを実現できる。なお、反応補助装置170が有する補助器の態様は上述の例に限られない。例えば攪拌器172の構成は原料R10を攪拌する機能を有する構成であれば上述の構成に限られない。攪拌器172は板状部材であってもよいし、ピン状部材であってもよい。この場合、板状部材は平板に限らず、凹凸や孔などを有していてもよい。同様に、粉砕器173の形状は、例えば外縁部が周方向に沿って凹凸を有するものであってもよい。粉砕器173は実施の形態1に示したボール123を粉砕媒とするボールミルであってもよいし、ボール123よりも直径の小さいビーズを粉砕媒とするビーズミルであってもよいし、長辺と短辺をもった棒状物を粉砕媒とするロッドミルであってもよい。反応補助装置170は上述した補助器のうちの1つ以上を有していればよい。 As described above, the reaction device 20 can realize a desired process by linking the temperature control device 110 and the reaction auxiliary device 170 . In addition, the aspect of the auxiliary device which the reaction auxiliary device 170 has is not limited to the above example. For example, the configuration of the stirrer 172 is not limited to the above configuration as long as it has a function of stirring the raw material R10. The stirrer 172 may be a plate-like member or a pin-like member. In this case, the plate member is not limited to a flat plate, and may have unevenness, holes, or the like. Similarly, the shape of the pulverizer 173 may be such that the outer edge thereof has unevenness along the circumferential direction, for example. The pulverizer 173 may be a ball mill using the balls 123 shown in Embodiment 1 as a pulverizing medium, or a bead mill using beads smaller in diameter than the balls 123 as a pulverizing medium. It may be a rod mill that uses rods with short sides as a grinding medium. The reaction auxiliary device 170 may have one or more of the auxiliary devices described above.
 また反応補助装置170は上述の構成に加えて、例えばガスを吸引して外部へ排気するための吸気口を有していてもよい。反応補助装置170は、上述の構成に加えて、または上述の構成に代えて、混練器を有していてもよい。図5に示した反応補助装置170の構成や配置は一例であって、補助器の構成は種々の組み合わせが可能である。 In addition to the above configuration, the reaction auxiliary device 170 may have, for example, an intake port for sucking gas and exhausting it to the outside. The reaction auxiliary device 170 may have a kneader in addition to or instead of the above configuration. The configuration and arrangement of the reaction auxiliary device 170 shown in FIG. 5 are merely examples, and various combinations of the configuration of the auxiliary device are possible.
 反応装置20は、反応補助装置170を複数有するものであってもよい。この場合、例えば反応装置20は中心軸C10に平行な軸に沿って遊星回転可能に支持されている複数の支持体171を有していてもよい。 The reaction device 20 may have a plurality of reaction auxiliary devices 170. In this case, for example, the reactor 20 may have a plurality of supports 171 that are supported so as to be planetary rotatable along an axis parallel to the central axis C10.
 以上、反応装置20について説明した。反応装置20はキルン部100の内部に補助器を含むことにより、所定の複数の工程を連続的に実行できる。よって、本実施の形態によれば、所望の製品を効率よく製造する反応装置等を提供することができる。 The reaction device 20 has been described above. Since the reactor 20 includes an auxiliary device inside the kiln section 100, a plurality of predetermined processes can be performed continuously. Therefore, according to the present embodiment, it is possible to provide a reactor or the like for efficiently producing a desired product.
 <実施の形態3>
 次に、図6を参照して実施の形態3について説明する。図6は、実施の形態3にかかる反応システムの構成図である。図6に示す反応システム1は、2つの反応装置10すなわち第1反応装置10Aおよび第2反応装置10Bが直列に連結されたシステムである。図6には、第1反応装置10Aと第2反応装置10Bとが連結した状態が模式的に示されている。本実施の形態における反応システム1は、1台の反応装置により行うことが出来る処理数を超える工程を要する反応生成物の製造工程を実現する例である。反応システム1は、第1反応装置10Aにおける反応生成物の反応生成物出口151Aと、第2反応装置10Bにおける原料投入口141Bとが連結している。
<Embodiment 3>
Next, Embodiment 3 will be described with reference to FIG. FIG. 6 is a configuration diagram of a reaction system according to a third embodiment. The reaction system 1 shown in FIG. 6 is a system in which two reactors 10, that is, a first reactor 10A and a second reactor 10B are connected in series. FIG. 6 schematically shows a state in which the first reactor 10A and the second reactor 10B are connected. The reaction system 1 according to the present embodiment is an example of realizing a reaction product manufacturing process that requires more processes than can be performed by one reactor. In the reaction system 1, the reaction product outlet 151A for the reaction product in the first reactor 10A and the raw material inlet 141B in the second reactor 10B are connected.
 図に示す第1反応装置10Aは、原料投入口141Aから受け入れた原料R10に対して所定の反応を与えることにより反応生成物Aを生成する。第1反応装置10Aは、生成した反応生成物Aを、反応生成物出口151Aから送出する。 The first reactor 10A shown in the figure produces a reaction product A by giving a predetermined reaction to the raw material R10 received from the raw material inlet 141A. The first reactor 10A sends out the produced reaction product A from the reaction product outlet 151A.
 第2流体制御領域140Aは、第1反応装置10Aの反応生成物出口151Aから送出された反応生成物Aを原料投入口141Bに受け入れる。第2反応装置10Bは所定の反応を与えることにより反応生成物Aから反応生成物Bを生成する。第2反応装置10Bは、生成した反応生成物Bを、反応生成物出口151Bから送出する。 The second fluid control area 140A receives the reaction product A delivered from the reaction product outlet 151A of the first reactor 10A into the raw material inlet 141B. The second reactor 10B produces reaction product B from reaction product A by giving a predetermined reaction. The second reactor 10B sends out the produced reaction product B from the reaction product outlet 151B.
 以上、実施の形態3について説明した。なお、上述の反応システム1において、第1反応装置10Aおよび第2反応装置10Bの一方または両方は、もちろん反応装置10または反応装置20のうちいずれかであってもよい。また反応システム1は、3つ以上の反応装置が連結するものであってもよい。このような構成により、実施の形態3にかかる反応システム1は、原料に対して複数の物理的刺激を連続して付与できる。またこのような構成により、反応システム1は、システム自体の柔軟な配置および柔軟なシステム構成を可能とする。すなわち、反応システム1は、1台の反応装置により行うことが出来る処理数を超える工程を要する場合であっても、構成が煩雑になるのを抑制できる。以上、実施の形態3によれば、複数の反応を要する所望の製品を効率よく製造する反応システムを提供することができる。 The third embodiment has been described above. In the reaction system 1 described above, one or both of the first reactor 10A and the second reactor 10B may of course be either the reactor 10 or the reactor 20. Moreover, the reaction system 1 may be one in which three or more reaction devices are connected. With such a configuration, the reaction system 1 according to the third embodiment can continuously apply a plurality of physical stimuli to the raw material. Moreover, with such a configuration, the reaction system 1 enables flexible arrangement of the system itself and flexible system configuration. That is, the reaction system 1 can prevent the configuration from becoming complicated even when the number of processes that exceed the number of processes that can be performed by one reactor is required. As described above, according to Embodiment 3, it is possible to provide a reaction system for efficiently producing a desired product that requires a plurality of reactions.
 <実施の形態4>
 次に、図7を参照して実施の形態4について説明する。図7は、実施の形態4にかかる反応システムの構成図である。図7に示す反応システム2は主な構成として、造粒装置210および反応装置20を有している。また本実施の形態における反応装置20は反応補助装置として少なくとも中間領域に攪拌器を有しているものとする。
<Embodiment 4>
Next, Embodiment 4 will be described with reference to FIG. FIG. 7 is a configuration diagram of a reaction system according to a fourth embodiment. The reaction system 2 shown in FIG. 7 has a granulator 210 and a reactor 20 as main components. In addition, the reactor 20 in the present embodiment is assumed to have a stirrer at least in the intermediate region as a reaction auxiliary device.
 造粒装置210は、粉粒体である原料に圧力を加えて造粒物を製造する。造粒物は例えば数十ミクロンから数百ミクロン程度の2次粒子から成る粉粒体に例えば10メガパスカルから700メガパスカルの圧力を加えることにより製造する。圧力を加える手段は特に限定されないが、生産の効率を考慮すると、回転する金型ロールを用いた連続加圧方式が望ましい。造粒物の形状は特に限定されないが、造粒装置210における搬送しやすさを考慮すると、球状、円盤状、もしくは楕円体状のようなタブレット形状を有していることが望ましい。造粒物の大きさは、造粒物の直径もしくは長辺の長さが数ミリメートルから数十ミリメートルとすることが目安であるが、30ミリメートル以下とすることが望ましい。また、造粒装置210における反応の効率を考慮すると、各々の造粒物の大きさは、互いに同じくらいであることが望ましい。また、造粒物の製造において加圧する際は、造粒性の向上や造粒物を反応させた後の解砕性の向上を目的として、例えばビニル基やイミド基を有するバインダ樹脂を微量添加しながら造粒してもよいし、有機高分子結合剤をあらかじめ混合した原料を用いてもよい。造粒装置210は、製造した造粒物を原料投入口141に供給する。 The granulator 210 applies pressure to the raw material, which is a granular material, to produce a granulated product. The granules are produced by applying a pressure of, for example, 10 to 700 megapascals to a granular material composed of secondary particles of about several tens to several hundreds of microns. The means for applying pressure is not particularly limited, but in consideration of production efficiency, a continuous pressurization method using rotating die rolls is desirable. The shape of the granules is not particularly limited, but considering ease of transportation in the granulation device 210, it is desirable that the granules have a tablet shape such as a spherical shape, a disk shape, or an ellipsoidal shape. As for the size of the granules, the diameter or the length of the long side of the granules is from several millimeters to several tens of millimeters as a guideline, but is preferably 30 millimeters or less. Also, considering the efficiency of the reaction in the granulator 210, it is desirable that the granules have approximately the same size. In addition, when pressurizing in the production of granules, a small amount of binder resin having, for example, a vinyl group or an imide group is added for the purpose of improving granulation properties and improving crushability after reacting the granules. The granulation may be performed while granulating, or a raw material premixed with an organic polymer binder may be used. The granulator 210 supplies the manufactured granules to the raw material inlet 141 .
 反応装置20は、原料投入口141において造粒物を受け入れると、受け入れた造粒物をキルン部100に供給する。反応装置20は、受け入れた造粒物に対して所定の物理的刺激と所定の雰囲気を付与し、反応生成物を生成する。より具体的には、反応装置20は反応補助装置170により造粒物を攪拌するとともに、反応用のガスを噴出および反応後のガスを吸引し、温度制御装置110により所定の熱を加える。反応装置20は反応生成物を生成すると、生成した反応生成物を反応生成物出口151から送出する。 Upon receiving the granules at the raw material inlet 141 , the reactor 20 supplies the received granules to the kiln section 100 . The reaction device 20 applies a predetermined physical stimulus and a predetermined atmosphere to the received granules to produce a reaction product. More specifically, the reaction device 20 stirs the granules by the reaction auxiliary device 170 , blows out the gas for reaction and sucks the gas after the reaction, and applies predetermined heat by the temperature control device 110 . When the reaction product is produced, the reaction device 20 delivers the produced reaction product from the reaction product outlet 151 .
 以上、実施の形態4について説明した。本実施の形態にかかる反応システム2は、造粒装置210において原料に圧力を付与し、次いで、雰囲気制御された反応装置20において熱を加えながら攪拌する。これにより、反応システム2は例えば酸化物系固体電解質や硫化物系固体電解質を連続的に製造できる。すなわち、実施の形態4によれば、所望の反応生成物を効率よく連続的に製造できる。 The fourth embodiment has been described above. In the reaction system 2 according to the present embodiment, the raw material is pressurized in the granulator 210 and then stirred while being heated in the reactor 20 whose atmosphere is controlled. Thereby, the reaction system 2 can continuously produce, for example, an oxide-based solid electrolyte or a sulfide-based solid electrolyte. That is, according to Embodiment 4, a desired reaction product can be produced efficiently and continuously.
 <実施の形態5>
 次に、実施の形態5について説明する。図8は、実施の形態5にかかる電池用材料製造システム3の構成図である。図8に示す電池用材料製造システム3は、反応システムの一実施態様であって、例えば反応生成物を含む固体二次電池の固体電解質シートおよび電池積層体を製造するためのシステムである。電池用材料製造システム3は主な構成として第1工程領域P31、第2工程領域P32、第3工程領域P33および第4工程領域P34を有する。すなわち電池用材料製造システム3は、上述の第1工程、第2工程、第3工程および第4工程を経ることにより電池用材料を製造する。
<Embodiment 5>
Next, Embodiment 5 will be described. FIG. 8 is a configuration diagram of a battery material manufacturing system 3 according to a fifth embodiment. A battery material production system 3 shown in FIG. 8 is an embodiment of a reaction system, and is a system for producing, for example, a solid electrolyte sheet and a battery laminate of a solid secondary battery containing a reaction product. The battery material manufacturing system 3 has a first process area P31, a second process area P32, a third process area P33 and a fourth process area P34 as a main configuration. That is, the battery material manufacturing system 3 manufactures the battery material through the first, second, third and fourth steps described above.
 以下に示す例は、電池用材料製造システム3を用いて固体電解質シートおよび電池積層体を製造するものである。第1工程領域P31において、電池用材料製造システム3は、固体電解質を製造する。第1工程領域P31は主な構成として、造粒装置210および反応装置20を有する。 In the example shown below, the battery material manufacturing system 3 is used to manufacture a solid electrolyte sheet and a battery laminate. In the first process region P31, the battery material manufacturing system 3 manufactures a solid electrolyte. The first process area P31 has a granulator 210 and a reactor 20 as main components.
 第1工程領域P31において、造粒装置210は粉粒体である原料を受け入れ、圧力を加えてタブレット状の造粒物を製造する。造粒装置210は、製造した造粒物を、反応装置20に供給する。反応装置20は受け入れた造粒物を加熱しながら攪拌し、固体電解質を製造する。反応装置20は、製造した固体電解質を第2工程領域P32に供給する。 In the first process area P31, the granulation device 210 receives raw materials, which are powders and granules, and applies pressure to produce tablet-shaped granules. The granulator 210 supplies the produced granules to the reaction device 20 . The reactor 20 stirs the received granules while heating them to produce a solid electrolyte. The reactor 20 supplies the manufactured solid electrolyte to the second process region P32.
 第2工程領域P32において、電池用材料製造システム3は、固体電解質とバインダ樹脂との混合と混練を行う。第2工程領域P32は、押出機350を有する。押出機350は、第1工程領域P31において生成された固体電解質と、別途供給されるバインダ樹脂とを併せて受け入れ、受け入れた固体電解質とバインダ樹脂とを混合および混練して混練物を製造する。押出機350は、製造した混練物を第3工程領域P33に供給する。 In the second process area P32, the battery material manufacturing system 3 mixes and kneads the solid electrolyte and the binder resin. The second process area P32 has an extruder 350 . The extruder 350 receives both the solid electrolyte produced in the first process region P31 and the separately supplied binder resin, and mixes and kneads the received solid electrolyte and binder resin to produce a kneaded product. The extruder 350 supplies the produced kneaded material to the third process area P33.
 第3工程領域P33において、電池用材料製造システム3は、第2工程領域P32から混練物を受け入れ、受け入れた混練物から固体電解質シートを製造する。第3工程領域P33は主な構成として、押出成形機360、コータ370、乾燥機380および圧延機390を有する。 In the third process area P33, the battery material manufacturing system 3 receives the kneaded material from the second process area P32 and manufactures a solid electrolyte sheet from the received kneaded material. The third process area P33 has an extruder 360, a coater 370, a dryer 380 and a rolling mill 390 as main components.
 押出成形機360は、押出機350から混練物を受け入れ、受け入れた混練物を押出成形してシート状の成形物を連続的に製造する。このとき第3工程領域P33は、押出成形機360が押し出したシートに不織布などの基材361を合わせて一体化してもよい。すなわち第3工程領域P33は、シート製造装置を含む。なお、押出成形機360はシート製造装置と称されてもよい。 The extruder 360 receives the kneaded material from the extruder 350, extrudes the received kneaded material, and continuously manufactures a sheet-like molding. At this time, in the third process area P33, the sheet extruded by the extruder 360 may be integrated with a base material 361 such as a non-woven fabric. That is, the third process area P33 includes a sheet manufacturing apparatus. Note that the extruder 360 may also be referred to as a sheet manufacturing device.
 次にコータ370は、成形物の表面に所定の正極活物質等を塗布する。さらに乾燥機380は、所定の正極活物質等が塗布された成形物を乾燥し、圧延機390に供給する。圧延機390は、乾燥した成形物を圧延して第4工程領域P34に供給する。 Next, the coater 370 applies a predetermined positive electrode active material or the like to the surface of the molding. Further, the dryer 380 dries the molding coated with the predetermined positive electrode active material and supplies it to the rolling mill 390 . The rolling mill 390 rolls the dried molding and supplies it to the fourth process area P34.
 第4工程領域P34において、電池用材料製造システム3は、所定のシートを貼り合わせ、これを巻き取る工程を有する。第4工程領域P34は主な構成として、ラミネータ400および巻取機410を有する。ラミネータ400は、圧延機390から供給されるシート状の成形物に、負極活物質を含む負極シート401(または電極シート)を貼り合わせ、貼り合わせた電池積層体を巻取機410に供給する。巻取機410は、電池積層体を巻き取る。 In the fourth process area P34, the battery material manufacturing system 3 has a process of bonding predetermined sheets and winding them. The fourth process area P34 has a laminator 400 and a winding machine 410 as main components. The laminator 400 bonds a negative electrode sheet 401 (or an electrode sheet) containing a negative electrode active material to a sheet-like molding supplied from the rolling mill 390 , and supplies the bonded battery stack to the winder 410 . Winder 410 winds up the battery stack.
 以上、電池用材料製造システム3の構成および電池用材料製造システム3が実行する電池用材料製造方法について説明した。本実施の形態にかかる電池用材料製造システム3は、複数の反応を要する固体電解質等の反応生成物を一貫して効率よく製造し、製造した反応生成物を用いて連続的にシートを製造できる。なお、本実施の形態にかかる電池用材料製造システム3は、図8に示したものに限られない。例えば電池用材料製造システム3は例えば第4工程領域P34における巻取機410を有していなくてもよい。 The configuration of the battery material manufacturing system 3 and the battery material manufacturing method executed by the battery material manufacturing system 3 have been described above. The battery material manufacturing system 3 according to the present embodiment can consistently and efficiently manufacture reaction products such as solid electrolytes that require multiple reactions, and can continuously manufacture sheets using the manufactured reaction products. . Note that the battery material manufacturing system 3 according to the present embodiment is not limited to that shown in FIG. For example, the battery material manufacturing system 3 may not have the winder 410 in the fourth process area P34.
 また図8に示す反応システムは、電池用材料ではない所定の材料を製造することもできる。すなわち、図8に示す反応システムは、材料製造システムまたは固体電解質製造システムと称することが出来る。また、かかる材料製造システムが実行する方法を、材料製造方法と称することが出来る。 The reaction system shown in FIG. 8 can also produce a predetermined material that is not a battery material. That is, the reaction system shown in FIG. 8 can be called a material manufacturing system or a solid electrolyte manufacturing system. Also, a method executed by such a material manufacturing system can be referred to as a material manufacturing method.
 また図8に示す電池用材料製造システム3は、上述のように、第3工程領域P33において固体電解質シートを製造し、且つ、第4工程領域P34において負極シートを含む電解質シートをラミネートすることができる。これにより、電池用材料製造システム3は、電池積層体を製造することが出来る。すなわちこの場合、図8に示すシステムを、電池製造システムと称し、図8に示すシステムが実行する方法を、電池製造方法と称することが出来る。 Further, the battery material manufacturing system 3 shown in FIG. 8 can manufacture the solid electrolyte sheet in the third process area P33 and laminate the electrolyte sheet including the negative electrode sheet in the fourth process area P34, as described above. can. Thereby, the battery material manufacturing system 3 can manufacture a battery laminate. That is, in this case, the system shown in FIG. 8 can be called a battery manufacturing system, and the method executed by the system shown in FIG. 8 can be called a battery manufacturing method.
 以上に述べたように、実施の形態5によれば、反応生成物を含む所望の電池用材料、電池または所定の材料を効率よく製造するための反応システムまたはその方法を提供できる。 As described above, according to Embodiment 5, it is possible to provide a reaction system or method for efficiently producing desired battery materials, batteries, or predetermined materials containing reaction products.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 It should be noted that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the scope of the invention.
 この出願は、2021年11月4日に出願された日本出願特願2021-180044を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-180044 filed on November 4, 2021, and the entire disclosure thereof is incorporated herein.
 本発明は、例えば固体電解質等の電池用材料を製造するシステム、あるいは電池を製造するシステム等に利用可能である。 The present invention can be used, for example, in systems for manufacturing battery materials such as solid electrolytes, or systems for manufacturing batteries.
 1、2 反応システム
 3 電池用材料製造システム
 10、20 反応装置
 100 キルン部
 101 原料供給口
 102 送出口
 103 筒部
 104 軸受け
 106 従動部
 110 温度制御装置
 110A 第1温度制御部
 110B 第2温度制御部
 110C 第3温度制御部
 120 第1反応補助装置
 121 第1支持体
 122 ストッパ
 123 ボール
 130 第2反応補助装置
 131 第2支持体
 132 スクレーパ
 140 フィーダ
 141 原料投入口
 150 キルンフット
 151 反応生成物出口
 160 駆動装置
 161 駆動力伝達部
 170 反応補助装置
 171 支持体
 172 攪拌器
 173 粉砕器
 174 スプレー
 174A 流体受け入れ口
 174B 流体噴射口
 175 搬送器
 176 減速機
 177 駆動力伝達部
 178 支持体駆動装置
 180 軸受け
 210 造粒装置
 350 押出機
 360 押出成形機
 361 基材
 370 コータ
 380 乾燥機
 390 圧延機
 400 ラミネータ
 401 負極シート
 410 巻取機
 C10 中心軸
 R10 原料
 R11 反応生成物
Reference Signs List 1, 2 reaction system 3 battery material manufacturing system 10, 20 reactor 100 kiln section 101 raw material supply port 102 delivery port 103 cylindrical section 104 bearing 106 driven section 110 temperature control device 110A first temperature control section 110B second temperature control section 110C third temperature control unit 120 first reaction auxiliary device 121 first support 122 stopper 123 ball 130 second reaction auxiliary device 131 second support 132 scraper 140 feeder 141 raw material inlet 150 kiln foot 151 reaction product outlet 160 drive device 161 driving force transmission unit 170 reaction auxiliary device 171 support 172 stirrer 173 pulverizer 174 spray 174A fluid receiving port 174B fluid injection port 175 carrier 176 reduction gear 177 driving force transmission unit 178 support driving device 180 bearing 210 granulator 350 Extruder 360 Extruder 361 Substrate 370 Coater 380 Dryer 390 Rolling Mill 400 Laminator 401 Negative Electrode Sheet 410 Winder C10 Central Axis R10 Raw Material R11 Reaction Product

Claims (14)

  1.  中心軸に沿って回転可能に延伸する筒部と、前記筒部の一端側から供給される原料を受け入れる原料供給口と、前記筒部の他端側に反応生成物を送出する送出口と、を有するキルン部と、
     加熱装置または冷却装置を含み、前記原料供給口と前記送出口との間の中間領域における前記キルン部の温度を制御する温度制御装置と、
     前記一端側または前記他端側から前記筒部の前記中間領域に延伸する支持体と、前記支持体に設けられ、前記原料の反応を補助する攪拌器、混合器、粉砕器、混練器、搬送器、流体噴射口、流体吸引口、およびスクレーパのうち少なくともいずれか1つを含む補助器と、を含む反応補助装置と、
    を有する反応装置。
    a cylindrical portion that extends rotatably along a central axis; a raw material supply port that receives raw materials supplied from one end of the cylindrical portion; a delivery port that delivers a reaction product to the other end of the cylindrical portion; a kiln section having
    a temperature control device that includes a heating device or a cooling device and controls the temperature of the kiln section in an intermediate region between the raw material supply port and the delivery port;
    A support extending from the one end side or the other end side to the intermediate region of the cylindrical portion, and a stirrer, mixer, pulverizer, kneader, and conveyer provided on the support for assisting the reaction of the raw materials. an auxiliary reaction device including at least one of a vessel, a fluid injection port, a fluid suction port, and a scraper;
    a reactor having a
  2.  前記反応補助装置は、前記支持体が前記一端側と前記他端側とにより支持されている、
    請求項1に記載の反応装置。
    In the reaction auxiliary device, the support is supported by the one end side and the other end side,
    A reactor according to claim 1.
  3.  前記反応補助装置は、前記支持体が延伸する方向に沿って回転可能に支持されている、
    請求項1または2に記載の反応装置。
    The reaction auxiliary device is rotatably supported along the direction in which the support extends,
    3. Reactor according to claim 1 or 2.
  4.  前記反応補助装置は、前記中心軸に平行な軸に沿って遊星回転可能に支持されている、
    請求項1または2に記載の反応装置。
    The reaction auxiliary device is supported so as to be planetary rotatable along an axis parallel to the central axis,
    3. Reactor according to claim 1 or 2.
  5.  前記反応補助装置は、前記支持体が前記キルン部と別個に回転できるように支持されている、請求項3または4に記載の反応装置。 The reactor according to claim 3 or 4, wherein the reaction auxiliary device is supported so that the support can rotate independently of the kiln section.
  6.  前記反応補助装置は、前記支持体を複数有する、
    請求項1~5のいずれか一項に記載の反応装置。
    The reaction auxiliary device has a plurality of the supports,
    The reactor according to any one of claims 1-5.
  7.  前記反応補助装置は、前記支持体の延伸方向に沿って複数の前記補助器を有する、
    請求項1~6のいずれか一項に記載の反応装置。
    The reaction auxiliary device has a plurality of the auxiliary devices along the extending direction of the support,
    The reactor according to any one of claims 1-6.
  8.  前記反応補助装置は、前記支持体を回転させる支持体駆動装置をさらに含む、
    請求項1~7のいずれか一項に記載の反応装置。
    The reaction auxiliary device further includes a support driving device that rotates the support,
    The reactor according to any one of claims 1-7.
  9.  前記温度制御装置は、前記中間領域において前記中心軸に沿った方向に異なる複数の温度制御領域を有する、
    請求項1~8のいずれか一項に記載の反応装置。
    The temperature control device has a plurality of temperature control regions that are different in the direction along the central axis in the intermediate region.
    The reactor according to any one of claims 1-8.
  10.  前記温度制御装置は、前記筒部の外壁に接触することにより前記筒部の内部の温度を制御する、
    請求項1~8のいずれか一項に記載の反応装置。
    The temperature control device controls the temperature inside the tubular portion by contacting the outer wall of the tubular portion.
    The reactor according to any one of claims 1-8.
  11.  請求項1~10のいずれか一項に記載の反応装置である第1反応装置と第2反応装置とを直列に連結した、
    反応システム。
    The first reactor and the second reactor, which are the reactors according to any one of claims 1 to 10, are connected in series,
    reaction system.
  12.  前記原料に圧力を加えて造粒物を製造する造粒装置と、
     前記造粒物を受け入れて反応生成物を製造する請求項1~10のいずれか一項に記載の反応装置と、を備える
    反応システム。
    a granulator that applies pressure to the raw material to produce granules;
    and the reactor according to any one of claims 1 to 10, which receives the granules to produce a reaction product.
  13.  反応生成物を製造する請求項1~10のいずれか一項に記載の反応装置と、
     前記反応生成物と、バインダ樹脂と、を混練して連続的に押し出すことにより混練物を製造する押出機と、
    前記混練物をシート状に成形してシートを製造するシート製造装置と、を備える
    反応システム。
    The reactor according to any one of claims 1 to 10 for producing a reaction product,
    an extruder for producing a kneaded product by kneading the reaction product and the binder resin and continuously extruding them;
    and a sheet manufacturing apparatus for manufacturing a sheet by forming the kneaded material into a sheet.
  14.  中心軸に沿って回転可能に延伸する筒部と、前記筒部の一端側から供給される原料を受け入れる原料供給口と、前記筒部の他端側に反応生成物を送出する送出口と、を有するキルン部を用意し、
     前記原料供給口と前記送出口との間の中間領域における前記キルン部の温度を制御し、
     前記原料供給口から前記原料を供給し、
     前記キルン部を回転させることにより、前記原料を前記中心軸に平行な方向に沿って前記送出口へ搬送し、
     前記中間領域において前記原料の反応を補助するために、前記原料の攪拌、混合、粉砕、混練、搬送、スクレーピング、流体の噴射、流体の吸引、のうち少なくともいずれか1つを含む反応補助動作を行い、
     前記送出口から反応生成物を送出する、
    反応生成物製造方法。
    a cylindrical portion that extends rotatably along a central axis; a raw material supply port that receives raw materials supplied from one end of the cylindrical portion; a delivery port that delivers a reaction product to the other end of the cylindrical portion; Prepare a kiln section having
    controlling the temperature of the kiln section in an intermediate region between the raw material supply port and the delivery port;
    supplying the raw material from the raw material supply port;
    By rotating the kiln unit, the raw material is conveyed to the delivery port along a direction parallel to the central axis;
    In order to assist the reaction of the raw materials in the intermediate region, reaction assisting operations including at least one of stirring, mixing, pulverizing, kneading, conveying, scraping, jetting fluid, and sucking fluid are performed on the raw materials. do,
    delivering a reaction product from the delivery port;
    Reaction product manufacturing method.
PCT/JP2022/028707 2021-11-04 2022-07-26 Reaction apparatus, reaction system, and reaction product manufacturing method WO2023079802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-180044 2021-11-04
JP2021180044A JP7325491B2 (en) 2021-11-04 2021-11-04 Reactor and method for producing reaction product

Publications (1)

Publication Number Publication Date
WO2023079802A1 true WO2023079802A1 (en) 2023-05-11

Family

ID=86241244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028707 WO2023079802A1 (en) 2021-11-04 2022-07-26 Reaction apparatus, reaction system, and reaction product manufacturing method

Country Status (3)

Country Link
JP (2) JP7325491B2 (en)
TW (1) TW202320909A (en)
WO (1) WO2023079802A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822881A (en) * 1981-08-03 1983-02-10 川崎重工業株式会社 Rotary kiln and direct reduction method of metallic oxide using said kiln
JPS59184751A (en) * 1983-03-26 1984-10-20 クレツクネル−フムボルト−ドイツ・アクチエンゲゼルシヤフト Method and device for treating raw material for cement manufacture
JPH10505055A (en) * 1995-04-11 1998-05-19 イーシーシー インターナショナル リミテッド Treatment of effluent-derived solids
JPH10141863A (en) * 1996-11-07 1998-05-29 Murata Mfg Co Ltd Tubular furnace
JPH1180555A (en) * 1997-09-02 1999-03-26 Kishimoto Akira Oxygen-absorbing resin composition and packaging container
JP2000018830A (en) * 1998-06-23 2000-01-18 Hirohata Furnace Co Ltd Rotary kiln equipped with powder adhesion preventer
JP2000042437A (en) * 1998-08-03 2000-02-15 Akami Seisakusho:Kk Cracking/crushing/grading apparatus
JP2000241077A (en) * 1999-02-18 2000-09-08 Mitsui Eng & Shipbuild Co Ltd Rotary kiln
JP2004028463A (en) * 2002-06-26 2004-01-29 Japan Nuclear Cycle Development Inst States Of Projects Rotary kiln for producing uranium dioxide
JP2011230983A (en) * 2010-04-30 2011-11-17 Mitsubishi Rayon Co Ltd Method for firing molybdenum-containing material and method for producing (meth)acrylic acid
US20150122243A1 (en) * 2008-10-14 2015-05-07 Intellergy, Inc. Process and system for converting waste to energy without burning

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822881A (en) * 1981-08-03 1983-02-10 川崎重工業株式会社 Rotary kiln and direct reduction method of metallic oxide using said kiln
JPS59184751A (en) * 1983-03-26 1984-10-20 クレツクネル−フムボルト−ドイツ・アクチエンゲゼルシヤフト Method and device for treating raw material for cement manufacture
JPH10505055A (en) * 1995-04-11 1998-05-19 イーシーシー インターナショナル リミテッド Treatment of effluent-derived solids
JPH10141863A (en) * 1996-11-07 1998-05-29 Murata Mfg Co Ltd Tubular furnace
JPH1180555A (en) * 1997-09-02 1999-03-26 Kishimoto Akira Oxygen-absorbing resin composition and packaging container
JP2000018830A (en) * 1998-06-23 2000-01-18 Hirohata Furnace Co Ltd Rotary kiln equipped with powder adhesion preventer
JP2000042437A (en) * 1998-08-03 2000-02-15 Akami Seisakusho:Kk Cracking/crushing/grading apparatus
JP2000241077A (en) * 1999-02-18 2000-09-08 Mitsui Eng & Shipbuild Co Ltd Rotary kiln
JP2004028463A (en) * 2002-06-26 2004-01-29 Japan Nuclear Cycle Development Inst States Of Projects Rotary kiln for producing uranium dioxide
US20150122243A1 (en) * 2008-10-14 2015-05-07 Intellergy, Inc. Process and system for converting waste to energy without burning
JP2011230983A (en) * 2010-04-30 2011-11-17 Mitsubishi Rayon Co Ltd Method for firing molybdenum-containing material and method for producing (meth)acrylic acid

Also Published As

Publication number Publication date
TW202320909A (en) 2023-06-01
JP2023068755A (en) 2023-05-18
JP2023159127A (en) 2023-10-31
JP7325491B2 (en) 2023-08-14

Similar Documents

Publication Publication Date Title
CN102056487B (en) Kneading device
CN106346734B (en) A kind of extruder and its extrusion process and system
WO2011098013A1 (en) Horizontal four-shaft stirrer
JP2024038046A (en) Reactor, reaction system, material manufacturing system, battery material manufacturing system, battery manufacturing system, reaction product manufacturing method, battery material manufacturing method, and battery manufacturing method
WO2023079802A1 (en) Reaction apparatus, reaction system, and reaction product manufacturing method
EP3012019B1 (en) Particle production device and particle production method using same
CN111249989A (en) High viscosity material flash mixed device
JP7198317B1 (en) Reactor, reaction system, battery material manufacturing system, battery manufacturing system, solid electrolyte manufacturing system, and reaction product manufacturing method
CN211487606U (en) Device for preparing pre-foamed microcapsules
TW202319112A (en) Reaction apparatus, reaction system, battery material manufacturing system, battery manufacturing system, solid electrolyte manufacturing system and reaction product manufacturing method
CN104136187A (en) Apparatus for processing scrap cross-linked thermoset elastomeric material
CN107720184A (en) Novel spiral conveying equipment and application method
CN107596994B (en) Even mixing arrangement is shaken to traditional chinese medicine pill
CN209161882U (en) A kind of automatic continuous coating controlled-release fertilizer process units of rotary drum
CN220824796U (en) Superfine ultra-viscous micro powder heating and feeding equipment
CN207329550U (en) Novel spiral conveying equipment
CN218227548U (en) Mixing device and preparation equipment of electrode diaphragm
JP2000061282A (en) Granule mixer
JP4567339B2 (en) Plastic oil supply unit
CN219765140U (en) Double-motion mixer
JP2015137144A (en) Particulate matter feeding device
JPH10259013A (en) High temperature heat processing system for organic waste, etc
CN113908766A (en) Continuous solid-liquid mixing granulator
JPH11276878A (en) Extrusion type granulating apparatus
JPH10286822A (en) Method and apparatus for kneading thermoplastic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889627

Country of ref document: EP

Kind code of ref document: A1