WO2023079764A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2023079764A1
WO2023079764A1 PCT/JP2021/041058 JP2021041058W WO2023079764A1 WO 2023079764 A1 WO2023079764 A1 WO 2023079764A1 JP 2021041058 W JP2021041058 W JP 2021041058W WO 2023079764 A1 WO2023079764 A1 WO 2023079764A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
torque
command value
dead zone
unit
Prior art date
Application number
PCT/JP2021/041058
Other languages
French (fr)
Japanese (ja)
Inventor
悠太 酒井
勉 田村
ロバート フックス
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to PCT/JP2021/041058 priority Critical patent/WO2023079764A1/en
Publication of WO2023079764A1 publication Critical patent/WO2023079764A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a motor control device that controls an electric motor for steering angle control.
  • Patent Document 1 discloses the following driving assistance technology. That is, the steering control unit calculates the X-coordinate xc of the target passing point and the X-coordinate xe of the estimated passing point at the forward gaze distance. Then, the steering control unit has an operational term obtained by multiplying the deviation (xc-xe) between these X coordinates xc and xe by a first control gain Gl, and an operational term obtained by multiplying the yaw angle ⁇ ca by a second control gain Gy. are added to calculate the control amount (torque command value) Tc of the motor.
  • the first and second control gains Gl and Gy are set to larger values as the hands-off time is longer, and are set to smaller values as the arousal level is lower or the carelessness level is higher when the hands-free state is not detected. be.
  • the driver's grip on the steering wheel is a prerequisite for driving support functions equivalent to Level 2. Therefore, in the driving assistance mode, if the determination result of the hands-free state continues for a predetermined time or longer, a warning is output, and if the hands-free state continues after the warning, the driving assistance mode is canceled.
  • An object of an embodiment of the present invention is to provide a motor control device that can accurately determine whether the vehicle is in a gripping state or a hands-free state in a driving assistance mode.
  • An embodiment of the present invention includes a torque detection unit for detecting steering torque, an assist torque command value setting unit for setting an assist torque command value using the steering torque, the steering torque and the assist torque command value.
  • a manual steering command value generation unit that generates a manual steering command value using and an integrated angle that calculates an integrated angle command value by adding the manual steering command value to the automatic steering command value given in the driving support mode a command value calculation unit; a control unit that performs angle control of an electric motor for steering angle control based on the integrated angle command value; the steering torque input to the manual steering command value generating unit, the assist torque command value input to the manual steering command value generating unit, and the a plurality of dead zone processors provided for at least one of the steering torques input to the assist torque command value calculator; and a dead zone width setting section for changing the dead zone width of at least one of the dead zone processing sections when the above continues for a predetermined time or more.
  • An embodiment of the present invention includes a torque detection section for detecting steering torque, a steering angle detection section for detecting an actual steering angle, and automatic steering control based on an automatic steering command value given during a driving assistance mode.
  • an automatic steering control unit that sets the steering torque; an assist control unit that sets an assist control amount using the steering torque; and an integrated control amount is calculated by adding the automatic steering control amount and the assist control amount.
  • a motor control device including an integrated control amount calculation unit and a control unit that controls an electric motor for steering angle control based on the integrated control amount, and is in a gripping state in which a driver is gripping a steering wheel.
  • a hands-on/off determination unit that determines whether the driver is in a hands-off state in which the driver does not grip the steering wheel; and an actual automatic steering angle calculator for calculating an actual automatic steering angle, which is a steering angle for automatic steering based on the automatic steering control amount, by subtracting the actual manual steering angle from the actual steering angle.
  • the automatic steering control unit is configured to set the automatic steering control amount using the automatic steering command value and the actual automatic steering angle; and the actual manual steering angle calculation unit a dead zone processing unit provided in at least one of the steering torque input to the actual manual steering angle calculation unit, the assist control amount input to the actual manual steering angle calculation unit, and the steering torque input to the assist control unit; a dead zone width setting section for changing the dead zone width of at least one dead zone processing section of the dead zone processing section when the determination result of the hands-on/off determination section that the hands are released is continued for a predetermined time or longer in the mode.
  • a motor controller is provided, further comprising:
  • FIG. 1 is a schematic diagram showing a schematic configuration of an electric power steering system to which a motor control device according to an embodiment of the invention is applied.
  • FIG. 2 is a block diagram for explaining the electrical configuration of the motor control ECU.
  • FIG. 3 is a graph showing a setting example of the assist torque command value T * m,ad with respect to the steering torque Ttb .
  • FIG. 4 is a schematic diagram showing an example of a reference EPS model used in the manual steering command value setting section.
  • FIG. 5 is a block diagram showing the configuration of the angle control section.
  • FIG. 6 is a schematic diagram showing a configuration example of a physical model of the electric power steering system.
  • FIG. 7 is a block diagram showing the configuration of the disturbance torque estimator.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an electric power steering system to which a motor control device according to an embodiment of the invention is applied.
  • FIG. 2 is a block diagram for explaining the electrical configuration of the motor control ECU.
  • FIG. 8 is a schematic diagram showing the configuration of the torque control section.
  • FIG. 9 is a flow chart showing the procedure of the first dead zone width setting process performed by the first dead zone width setting section.
  • FIG. 10 is a graph showing an example of input/output characteristics of the first dead band width setting section.
  • FIG. 11 is a time chart showing an example of changes in the first dead zone width W1 in the driving assistance mode.
  • FIG. 12 is a block diagram for explaining the electrical configuration of the first modified example of the motor control ECU.
  • FIG. 13 is a block diagram for explaining the electrical configuration of a second modification of the motor control ECU.
  • FIG. 14 is a block diagram showing the configuration of the automatic steering control section.
  • FIG. 15 is a schematic diagram showing a configuration example of a physical model of the electric power steering system.
  • FIG. 16 is a block diagram showing the configuration of the disturbance torque estimator.
  • FIG. 17 is a block diagram for explaining the electrical configuration of a third modification of the motor control ECU.
  • An embodiment of the present invention includes a torque detection unit for detecting steering torque, an assist torque command value setting unit for setting an assist torque command value using the steering torque, the steering torque and the assist torque command value.
  • a manual steering command value generation unit that generates a manual steering command value using and an integrated angle that calculates an integrated angle command value by adding the manual steering command value to the automatic steering command value given in the driving support mode a command value calculation unit; a control unit that performs angle control of an electric motor for steering angle control based on the integrated angle command value; the steering torque input to the manual steering command value generating unit, the assist torque command value input to the manual steering command value generating unit, and the a dead zone processor provided for at least one of the steering torques input to the assist torque command value calculator; and a dead zone width setting section for changing the dead zone width of at least one of the dead zone processing sections when the operation continues for a period of time or more.
  • An embodiment of the present invention includes a torque detection section for detecting steering torque, a steering angle detection section for detecting an actual steering angle, and automatic steering control based on an automatic steering command value given during a driving assistance mode.
  • an automatic steering control unit that sets the steering torque; an assist control unit that sets an assist control amount using the steering torque; and an integrated control amount is calculated by adding the automatic steering control amount and the assist control amount.
  • a motor control device including an integrated control amount calculation unit and a control unit that controls an electric motor for steering angle control based on the integrated control amount, and is in a gripping state in which a driver is gripping a steering wheel.
  • a hands-on/off determination unit that determines whether the driver is in a hands-off state in which the driver does not grip the steering wheel; and an actual automatic steering angle calculator for calculating an actual automatic steering angle, which is a steering angle for automatic steering based on the automatic steering control amount, by subtracting the actual manual steering angle from the actual steering angle.
  • the automatic steering control unit is configured to set the automatic steering control amount using the automatic steering command value and the actual automatic steering angle; and the actual manual steering angle calculation unit a dead zone processing unit provided in at least one of the steering torque input to the actual manual steering angle calculation unit, the assist control amount input to the actual manual steering angle calculation unit, and the steering torque input to the assist control unit; a dead zone width setting section for changing the dead zone width of at least one dead zone processing section of the dead zone processing section when the determination result of the hands-on/off determination section that the hands are released is continued for a predetermined time or longer in the mode.
  • a motor controller is provided, further comprising:
  • the dead zone width setting section in the driving support mode, is configured to increase the dead zone width when the hands-on/off judging part continues for a predetermined period of time or more to determine that the hands are in the hands-free state.
  • the dead band width setting unit is in the hands-free state from that point in time when the hands-on/off determination unit determines that the hands-on state is in the hands-free state for a predetermined period of time in the driving assistance mode. While the determination result continues, the dead zone width is gradually increased, and when the dead zone width reaches a predetermined upper limit value, the dead zone width is held at the upper limit value.
  • the dead band width setting unit in the driving assistance mode, after the hands-on-off determination unit determines that the hands are released for a predetermined time or longer, the hands-on-off determination unit
  • the determination result changes to the gripping state
  • the dead zone width is gradually decreased while the determination result indicating the gripping state continues from that time point, and when the dead zone width reaches a predetermined lower limit value, The dead band width is held at the lower limit.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an electric power steering system to which a motor control device according to an embodiment of the present invention is applied.
  • An electric power steering system 1 includes a steering wheel (handle) 2 as a steering member for steering a vehicle, a steering mechanism 4 for steering wheels 3 in conjunction with the rotation of the steering wheel 2, and a driver. and a steering assist mechanism 5 for assisting the steering of the vehicle.
  • the steering wheel 2 and steering mechanism 4 are mechanically connected via a steering shaft 6 and an intermediate shaft 7 .
  • the steering shaft 6 includes an input shaft 8 connected to the steering wheel 2 and an output shaft 9 connected to the intermediate shaft 7.
  • the input shaft 8 and the output shaft 9 are connected via a torsion bar 10 so as to be relatively rotatable.
  • a torque sensor (torque detector) 12 is arranged near the torsion bar 10 .
  • the torque sensor 12 detects a steering torque (torsion bar torque) Ttb applied to the steering wheel 2 based on relative rotational displacement amounts of the input shaft 8 and the output shaft 9 .
  • the steering torque Ttb detected by the torque sensor 12 is, for example, a positive value for torque for steering to the left and a negative value for torque for steering to the right.
  • the magnitude of the steering torque Ttb increases as the absolute value increases.
  • the steering mechanism 4 consists of a rack and pinion mechanism including a pinion shaft 13 and a rack shaft 14 as a steering shaft.
  • the steered wheels 3 are connected to each end of the rack shaft 14 via tie rods 15 and knuckle arms (not shown).
  • the pinion shaft 13 is connected to the intermediate shaft 7 .
  • the pinion shaft 13 rotates in conjunction with steering of the steering wheel 2 .
  • a pinion 16 is connected to the tip of the pinion shaft 13 .
  • the rack shaft 14 extends linearly along the lateral direction of the vehicle.
  • a rack 17 that meshes with the pinion 16 is formed in the axially intermediate portion of the rack shaft 14 .
  • the pinion 16 and rack 17 convert the rotation of the pinion shaft 13 into axial movement of the rack shaft 14 .
  • the steerable wheels 3 can be steered.
  • the steering assist mechanism 5 includes an electric motor 18 for generating a steering assist force (assist torque) and a speed reducer 19 for amplifying the output torque of the electric motor 18 and transmitting it to the steering mechanism 4 .
  • the speed reducer 19 comprises a worm gear mechanism including a worm gear 20 and a worm wheel 21 meshing with the worm gear 20 .
  • the speed reducer 19 is accommodated in a gear housing 22 as a transmission mechanism housing.
  • the reduction ratio (gear ratio) of the speed reducer 19 may be represented by N.
  • the reduction ratio N is defined as the ratio ⁇ wg / ⁇ ww of the rotation angle ⁇ wg of the worm gear 20 to the rotation angle ⁇ ww of the worm wheel 21 .
  • the worm gear 20 is rotationally driven by the electric motor 18 . Also, the worm wheel 21 is connected to the output shaft 9 so as to be rotatable together.
  • the worm gear 20 When the worm gear 20 is rotationally driven by the electric motor 18, the worm wheel 21 is rotationally driven, motor torque is applied to the steering shaft 6, and the steering shaft 6 (output shaft 9) rotates. Rotation of the steering shaft 6 is transmitted to the pinion shaft 13 via the intermediate shaft 7 . Rotation of the pinion shaft 13 is converted into axial movement of the rack shaft 14 . As a result, the steerable wheels 3 are steered. That is, by rotationally driving the worm gear 20 with the electric motor 18, the steering assistance with the electric motor 18 and the steering of the steerable wheels 3 become possible.
  • the electric motor 18 is provided with a rotation angle sensor 23 for detecting the rotation angle of the rotor of the electric motor 18 .
  • the torque applied to the output shaft 9 includes motor torque by the electric motor 18 and disturbance torque other than the motor torque.
  • the disturbance torque T lc other than the motor torque includes steering torque T tb , road load torque (road surface reaction torque) T rl , friction torque T f and the like.
  • the steering torque Ttb is a torque applied to the output shaft 9 from the steering wheel 2 side by force applied to the steering wheel 2 by the driver (driver torque), force generated by steering inertia, or the like.
  • the road load torque Trl is generated by the self-aligning torque generated in the tire, the force generated by the suspension and tire wheel alignment, the frictional force of the rack and pinion mechanism, and the like. is the torque applied to
  • the vehicle has a CCD (Charge Coupled Device) camera 25 that captures the road in front of the vehicle, a GPS (Global Positioning System) 26 that detects the position of the vehicle, and a radar that detects road shapes and obstacles. 27, a map information memory 28 storing map information and a vehicle speed sensor 29 for detecting vehicle speed V are mounted.
  • CCD Charge Coupled Device
  • GPS Global Positioning System
  • the CCD camera 25, GPS 26, radar 27, map information memory 28, and vehicle speed sensor 29 are connected to a host ECU (Electronic Control Unit) 201 for driving support control. Based on the information and map information obtained by the CCD camera 25, the GPS 26, the radar 27 and the vehicle speed sensor 29, the host ECU 201 recognizes the surrounding environment, estimates the position of the vehicle, plans routes, etc., and determines control target values for steering and drive actuators. make a decision.
  • ECU Electronic Control Unit
  • the host ECU 201 sets an automatic steering command value ⁇ * c,ad for driving assistance in the driving assistance mode.
  • the driving assistance is Lane Centering Assist (LCA) to keep the vehicle position in the middle of the lane (lane center).
  • the automatic steering command value ⁇ * c,ad is a target steering angle value for driving the vehicle along the center of the lane.
  • the automatic steering command value ⁇ * c,ad is set based on, for example, the vehicle speed, the lateral deviation from the target travel line, and the yaw deviation of the vehicle from the target travel line. Since the processing for setting the automatic steering command value ⁇ * c,ad is well known, detailed description thereof will be omitted here.
  • the host ECU 201 sets the automatic steering command value ⁇ * c,ad to zero.
  • the host ECU 201 also outputs a mode signal S mode indicating whether the driving mode is the normal mode or the driving assistance mode.
  • the mode signal S mode , the automatic steering command value ⁇ * c,ad set by the host ECU 201, and the vehicle speed V are given to the motor control ECU 202 via the vehicle-mounted network.
  • the steering torque T tb detected by the torque sensor 12 and the output signal of the rotation angle sensor 23 are input to the motor control ECU 202 .
  • the motor control ECU 202 controls the electric motor 18 based on these input signals and information given from the host ECU 201 .
  • FIG. 2 is a block diagram for explaining the electrical configuration of the motor control ECU 202. As shown in FIG.
  • the motor control ECU 202 includes a microcomputer 40, a drive circuit (inverter circuit) 31 that is controlled by the microcomputer 40 to supply electric power to the electric motor 18, and a current flowing through the electric motor 18 (hereinafter referred to as "motor current Im, int ”).
  • the microcomputer 40 has a CPU and memory (ROM, RAM, non-volatile memory, etc.), and functions as a plurality of functional processing units by executing predetermined programs.
  • the plurality of function processing units include a rotation angle calculation unit 41, a reduction ratio division unit 42, a first dead zone processing unit 43, an assist torque command value setting unit 44, a second dead band processing unit 45, a manual steering A command value generation unit 46, an integrated angle command value calculation unit 47, an angle control unit 48, a torque control unit 49, a hands-on/off determination unit 50, a first dead band width setting unit 51, and a second dead band width setting unit 52 are included.
  • the rotation angle calculator 41 calculates the rotor rotation angle ⁇ m,int of the electric motor 18 based on the output signal of the rotation angle sensor 23 .
  • a reduction ratio dividing unit 42 divides the rotor rotation angle ⁇ m ,int by the reduction ratio N to convert the rotor rotation angle ⁇ m ,int into the rotation angle (actual steering angle) ⁇ c,int of the output shaft 9. .
  • the steering torque Ttb is input to the first dead zone processor 43 .
  • the first dead zone processing unit 43 where W 1 is the first dead zone width, Zero is output as the steering torque Ttb ,de after the first dead zone processing (see FIG. 10 described later).
  • the first dead zone processing unit 43 sets [T tb +(W 1 /2)] as the steering torque T tb,de after the first dead zone processing. Output. In a region where the steering torque T tb is greater than W 1 /2, the first dead zone processing unit 43 outputs [T tb - (W 1 /2)] as the steering torque T tb,de after the first dead zone processing. do.
  • the first dead zone width W1 is set by the first dead zone width setting section 51 .
  • the assist torque command value setting unit 44 sets assist torque command values T * m and md, which are target values of assist torque required for manual operation.
  • the assist torque command value setting unit 44 sets assist torque command values T * m and md based on the vehicle speed V and the steering torque Ttb detected by the torque sensor 12 .
  • a setting example of the assist torque command values T * m, md with respect to the steering torque Ttb is shown in FIG.
  • the assist torque command values T * m, md are positive values when the electric motor 18 is to generate a steering assist force for left steering, and the electric motor 18 generates a steering assist force for right steering. Negative value when it should.
  • the assist torque command values T * m, md are positive for a positive value of the steering torque Ttb and negative for a negative value of the steering torque Ttb .
  • the assist torque command values T * m, md are set such that the absolute value thereof increases as the absolute value of the steering torque Ttb increases.
  • the assist torque command values T * m, md are set such that the higher the vehicle speed V, the smaller the absolute value thereof.
  • the assist torque command value setting unit 44 may calculate the assist torque command values T * m, md by multiplying the steering torque Ttb by a preset constant.
  • the assist torque command values T * m, md are input to the second dead zone processing unit 45 . Assuming that the second dead band width is W 2 , the second dead band processing unit 45 adjusts the assist torque command value T * m, md within the range of ⁇ W 2 /2 or more and W 2 /2 or less (second dead band region). In some cases, zero is output as the assist torque command value T * m,md,de after the second dead zone processing.
  • the second dead zone processing unit 45 calculates [T * m, md + (W 2 /2)] after the second dead zone processing. are output as assist torque command values T * m, md, and de .
  • the second dead zone processing unit 45 converts [T * m,md ⁇ (W 2 /2)] to They are output as assist torque command values T * m, md, and de .
  • the second dead band width W2 is set by the second dead band width setting unit 52 .
  • the manual steering command value generator 46 is provided to set the steering angle corresponding to the steering wheel operation as manual steering command values ⁇ * c, md when the driver operates the steering wheel 2 .
  • the manual steering command value generator 46 generates the manual steering command value ⁇ * using the steering torque Ttb,de after the first dead band processing and the assist torque command value T * m, md, de after the second dead band processing. Generate c and md .
  • the manual steering command value generator 46 uses the reference EPS model to generate the manual steering command value ⁇ * c. Set md .
  • FIG. 4 is a schematic diagram showing an example of the reference EPS model used in the manual steering command value generator 46.
  • FIG. 4 is a schematic diagram showing an example of the reference EPS model used in the manual steering command value generator 46.
  • This reference EPS model is a single inertia model that includes a lower column.
  • a lower column corresponds to the output shaft 9 and the worm wheel 21 .
  • Jc is the inertia of the lower column
  • ⁇ c is the rotation angle of the lower column
  • Ttb de is the steering torque after the first dead zone processing.
  • This reference EPS model is a torque acting on the output shaft 9 from the electric motor 18 based on the steering torque Ttb ,de after the first dead band processing and the assist torque command value T * m, md, de after the second dead band processing.
  • a road load torque Trl is expressed by the following equation (1) using a spring constant k and a viscous damping coefficient c.
  • T rl ⁇ k ⁇ c ⁇ c(d ⁇ c /dt) (1)
  • the spring constant k and the viscous damping coefficient c are set to predetermined values obtained in advance through experiments, analyses, or the like.
  • the manual steering command value generator 46 calculates the rotation angle ⁇ c of the lower column by solving the differential equation of equation (2). Then, the manual steering command value generator 46 sets the obtained rotation angle ⁇ c of the lower column as the manual steering command value ⁇ * c,md .
  • the integrated angle command value calculation unit 47 adds the manual steering command value ⁇ *c, md to the automatic steering command value ⁇ * c,ad set by the host ECU 201 to calculate the integrated angle command value ⁇ * c,int . do.
  • the angle control unit 48 calculates a motor torque command value T * m ,int , which is a target value of the motor torque of the electric motor 18, based on the integrated angle command value ⁇ * c ,int .
  • the torque control unit 49 drives the drive circuit 31 so that the motor torque of the electric motor 18 approaches the motor torque command value T * m,int . That is, the control unit including the angle control unit 48 and the torque control unit 49 controls the actual steering angle ⁇ c,int (the rotation angle ⁇ c,int of the output shaft 9) to approach the integrated angle command value ⁇ * c,int. , drive and control the drive circuit 31 . Details of the operations of the angle control section 48 and the torque control section 49 will be described later.
  • the hands-on/off determination unit 50 determines whether the driver is gripping the steering wheel 2 (hands-on) or the driver is not gripping the steering wheel 2 (hands-off).
  • the hands-on/off determination unit 50 estimates the driver torque, which is the torque applied to the steering wheel 2 by the driver, based on, for example, the steering torque Ttb and the actual steering angle ⁇ c,int or the rotor rotation angle ⁇ m,int. If the driver torque is equal to or greater than a predetermined threshold value, it may be determined that the gripped state is present, and if the driver torque is less than the threshold value for a predetermined time or longer, it may be determined that the hand is released. In this case, after the driver torque changes from a state equal to or greater than the threshold value to less than the threshold value, it is determined to be in the gripping state until it is determined to be in the hands-free state.
  • a hands-on/off determination unit 50 for example, A "steering wheel operation state determination unit" described in JP-A-2003-200053 or the like can be used.
  • the hands-on/off determination unit 50 determines that the gripping state is established. It may be determined that there is. In this case, after the steering torque Ttb changes from the threshold value or more to less than the threshold value, the gripping state is determined until the hands-free state is determined.
  • a first dead band width setting unit 51 and a second dead band width setting unit 52 respectively set a first dead band width W1 and a second dead band width W based on the hands-on/off determination result of the hands-on/off determination unit 50 in the driving assistance mode. Set 2 .
  • the details of the operations of the first dead band width setting section 51 and the second dead band width setting section 52 will be described later.
  • FIG. 5 is a block diagram showing the configuration of the angle control section 48. As shown in FIG.
  • the angle control unit 48 calculates a motor torque command value T * m , int based on the integrated angle command value ⁇ * c , int .
  • the angle control unit 48 includes a low-pass filter (LPF) 61, a feedback control unit 62, a feedforward control unit 63, a disturbance torque estimation unit 64, a torque addition unit 65, a disturbance torque compensation unit 66, and a reduction ratio division.
  • LPF low-pass filter
  • a section 67 and a speed reduction ratio multiplication section 68 are included.
  • the low-pass filter 61 performs low-pass filter processing on the integrated angle command value ⁇ * c,int .
  • the integrated angle command value ⁇ * c, intf after low-pass filtering is given to the feedback control section 62 and the feedforward control section 63 .
  • the feedback control unit 62 is provided to bring the actual steering angle ⁇ c,int calculated by the reduction ratio dividing unit 42 (see FIG. 2) closer to the integrated angle command value ⁇ * c,intf after low-pass filtering.
  • the feedback control section 62 includes an angular deviation calculation section 62A and a PD control section 62B.
  • the angle deviation calculation unit 62A calculates the deviation ( ⁇ * c , intf - ⁇ c,int ) may be calculated as the angular deviation ⁇ c,int .
  • the PD control section 62B calculates the feedback control torque T fb ,int by performing a PD calculation (proportional differential calculation) on the angular deviation ⁇ c, int calculated by the angular deviation calculating section 62A.
  • the feedback control torque T fb,int is applied to the torque adder 65 .
  • the feedforward control section 63 is provided to compensate for the response delay due to the inertia of the electric power steering system 1 and improve the control response.
  • Feedforward control section 63 includes an angular acceleration calculation section 63A and an inertia multiplication section 63B.
  • the angular acceleration calculator 63A calculates a target angular acceleration d 2 ⁇ * c,intf /dt 2 by second-order differentiating the integrated angle command value ⁇ * c, intf.
  • the inertia J is obtained, for example, from a physical model (see FIG. 6) of the electric power steering system 1, which will be described later.
  • the feedforward control torque Tff ,int is given to the torque adder 65 as an inertia compensation value.
  • the torque adder 65 calculates a basic torque command value (T fb,int +T ff, int ) by adding the feedforward control torque T ff,int to the feedback control torque T fb,int .
  • the disturbance torque estimator 64 is provided for estimating nonlinear torque (disturbance torque: torque other than motor torque) generated as a disturbance in the plant (controlled object of the electric motor 18).
  • the disturbance torque estimation value ⁇ T lc calculated by the disturbance torque estimator 64 is given to the disturbance torque compensator 66 as a disturbance torque compensation value.
  • the output shaft torque command value T * c,int is given to the reduction ratio dividing section 67 .
  • a reduction ratio division unit 67 divides the output shaft torque command value T * c,int by the reduction ratio N to calculate a motor torque command value T * m,int .
  • This motor torque command value T * m,int is given to the torque control section 49 (see FIG. 2).
  • the disturbance torque estimator 64 will be described in detail.
  • the disturbance torque estimator 64 uses, for example, the physical model 101 of the electric power steering system 1 shown in FIG. Consists of observers.
  • This physical model 101 includes a plant (an example of a motor driven object) 102 including an output shaft 9 and a worm wheel 21 fixed to the output shaft 9 .
  • the plant 102 is provided with a steering torque Ttb from the steering wheel 2 through the torsion bar 10 and a road load torque Trl from the steered wheels 3 side.
  • Tlc indicates disturbance torque other than the motor torque applied to the plant 102 .
  • the disturbance torque Tlc is shown as the sum of the steering torque Ttb , the road load torque Trl , and the friction torque Tf . contains.
  • the state equation for the physical model 101 in FIG. 6 is expressed by the following formula (4).
  • x is a state variable vector
  • u1 is a known input vector
  • u2 is an unknown input vector
  • y is an output vector (measured value).
  • A is the system matrix
  • B1 is the first input matrix
  • B2 is the second input matrix
  • C is the output matrix
  • D is the feedthrough matrix.
  • x e is a state variable vector of the extended system and is expressed by the following equation (6).
  • a e is a system matrix of the extended system
  • B e is a known input matrix of the extended system
  • C e is an output matrix of the extended system.
  • a disturbance observer (extended state observer) represented by the following equation (7) is constructed from the extended state equation of equation (5) above.
  • ⁇ x e represents the estimated value of x e .
  • L is an observer gain.
  • ⁇ y represents the estimated value of y.
  • ⁇ x e is represented by the following equation (8).
  • ⁇ c ,int is the estimated value of ⁇ c ,int
  • ⁇ Tlc is the estimated value of Tlc .
  • the disturbance torque estimator 64 calculates the state variable vector ⁇ xe based on the equation (7).
  • FIG. 7 is a block diagram showing the configuration of the disturbance torque estimator 64. As shown in FIG.
  • the disturbance torque estimation unit 64 includes an input vector input unit 81, an output matrix multiplication unit 82, a first addition unit 83, a gain multiplication unit 84, an input matrix multiplication unit 85, a system matrix multiplication unit 86, a second It includes an addition section 87 , an integration section 88 and a state variable vector output section 89 .
  • the input vector input unit 81 outputs an input vector u1 .
  • the output of the integrator 88 is the state variable vector ⁇ x e (see equation (8) above).
  • an initial value is given as the state variable vector ⁇ xe .
  • the initial value of the state variable vector ⁇ x e is 0, for example.
  • a system matrix multiplier 86 multiplies the state variable vector ⁇ x e by the system matrix A e .
  • the output matrix multiplier 82 multiplies the state variable vector ⁇ x e by the output matrix C e .
  • the gain multiplier 84 multiplies the output (y ⁇ y) of the first adder 83 by the observer gain L (see the above equation (7)).
  • the input matrix multiplication unit 85 multiplies the input vector u1 output from the input vector input unit 81 by the input matrix Be .
  • the second adder 87 outputs the output (Be ⁇ u 1 ) of the input matrix multiplier 85, the output (A e ⁇ x e ) of the system matrix multiplier 86, and the output of the gain multiplier 84 (L(y ⁇ ⁇ y)) is added to calculate the differential value d ⁇ x e /dt of the state variable vector.
  • the integrator 88 calculates the state variable vector ⁇ x e by integrating the output (d ⁇ x e /dt) of the second adder 87 .
  • a state variable vector output unit 89 calculates an estimated disturbance torque value ⁇ T lc , an estimated steering angle value ⁇ c,int, and an estimated angular velocity value d ⁇ c,int /dt based on the state variable vector ⁇ x e . .
  • a general disturbance observer consists of an inverse model of the plant and a low-pass filter.
  • the equation of motion of the plant is expressed by Equation (3) as described above. Therefore, the inverse model of the plant becomes the following equation (9).
  • Inputs to a general disturbance observer are J ⁇ d 2 ⁇ c,int /dt 2 and N ⁇ T * m, int . 23 noise.
  • the noise effect due to differentiation can be reduced.
  • the disturbance torque estimator 64 a general disturbance observer composed of an inverse model of the plant and a low-pass filter may be used.
  • FIG. 8 is a block diagram showing the electrical configuration of the torque control section 49.
  • Torque controller 49 includes a motor current command value calculator 91 , a current deviation calculator 92 , a PI controller 93 , and a PWM (Pulse Width Modulation) controller 94 .
  • PWM Pulse Width Modulation
  • the motor current command value calculation unit 91 divides the motor torque command value T * m,int calculated by the angle control unit 48 by the torque constant Kt of the electric motor 18 to obtain the motor current command value I * m,int. to calculate
  • the PI control unit 93 performs PI calculation (proportional-integral calculation) on the current deviation ⁇ I m,int calculated by the current deviation calculation unit 92, thereby converting the motor current Im, int flowing through the electric motor 18 into the motor current command value. Generate a drive command value for leading to I * m,int .
  • the PWM control section 94 generates a PWM control signal having a duty ratio corresponding to the drive command value, and supplies it to the drive circuit 31 . As a result, electric power corresponding to the drive command value is supplied to the electric motor 18 .
  • the first dead zone width setting unit 51 performs a first dead zone width setting process for setting the first dead zone width W1 in the driving support mode.
  • the second dead band width setting unit 52 performs a second dead band width setting process for setting the second dead band width W2 in the driving support mode.
  • FIG. 9 is a flowchart showing the procedure of the first dead zone width setting process performed by the first dead zone width setting section 51.
  • FIG. The first dead band width setting process shown in FIG. 9 is started each time the driving assistance mode is started, and is repeatedly performed at predetermined calculation cycles until the driving assistance mode is canceled.
  • ⁇ T is the time (sampling time) corresponding to one calculation cycle.
  • T off is the duration of the hands-free state.
  • W1_min is a preset minimum value of the first dead zone width W1 (hereinafter referred to as “first dead zone width minimum value W1_min ”).
  • the normal value of the first dead band width W1 is set as the minimum first dead band width W1 ,min .
  • W1_max is the preset maximum value of the first dead zone width W1 (hereinafter referred to as "first dead zone width maximum value W1_max ").
  • W1_decrease is a first dead band width decrease amount in a preset one calculation cycle.
  • W1_increase is the amount of increase in the width of the first dead band in one calculation cycle set in advance.
  • the initial value of W1 is W1_min .
  • the initial value of Toff is zero.
  • the first dead band width setting unit 51 determines whether or not the determination result of the hands-on/off determination unit 50 is the hands-free state (step S1).
  • the first dead zone width setting unit 51 sets the duration Toff of the hands-free state to zero (step S2). Then, the first dead band width setting unit 51 determines whether or not the first dead band width W1 is larger than the first dead band width minimum value W1_min (step S3).
  • the first dead band width setting unit 51 sets the first dead band width decrease amount from the first dead band width W1.
  • the value obtained by subtracting W1_decrease is set as the first dead zone width W1 (step S4).
  • the first dead band width setting unit 51 sets the first dead band width The width minimum value W1_min is set as the first dead zone width W1 . Then, the first dead band width setting unit 51 ends the processing in the current calculation cycle.
  • step S3 When it is determined in step S3 that the first dead band width W1 is equal to or less than the first dead band width minimum value W1_min (step S3: NO), the first dead band width setting unit 51 sets the first dead band width minimum The value W1_min is set as the first dead zone width W1 (step S5). Then, the first dead band width setting unit 51 ends the processing in the current calculation cycle.
  • step S1 when the determination result of the hands-on/off determination unit 55 is determined to be the hands-free state (step S1: YES), the first dead band width setting unit 51 adds ⁇ T to the hands-free state duration Toff . The added value is set to Toff (step S6). That is, the duration Toff of the hands-free state is updated.
  • the first dead band width setting unit 51 determines whether or not the duration Toff of the hands-free state is longer than the predetermined time T_start (step S7). If the continuation time T off of the hands-free state is equal to or less than the predetermined time T _start , that is, if T off ⁇ T _start (step S7: NO), the first dead band width setting unit 51 proceeds to step S3.
  • step S7 determines whether or not the first dead zone width W1 is smaller than the first dead zone width maximum value W1_max (step S8).
  • the first dead zone width setting unit 51 sets the first dead zone width W1 to the first dead zone width increase amount. The value obtained by adding W1_increase is set as the first dead zone width W1 (step S9).
  • the first dead band width setting unit 51 sets the first dead band width The width maximum value W1_max is set as the first dead zone width W1 . Then, the first dead band width setting unit 51 ends the processing in the current calculation cycle.
  • step S8 If it is determined in step S8 that the first dead band width W1 is greater than or equal to the first dead band width maximum value W1_max (step S8: NO), the first dead band width setting unit 51 sets the first dead band width maximum The value W1_maxx is set as the first dead zone width W1 (step S10: NO). Then, the first dead band width setting unit 51 ends the processing in the current calculation cycle.
  • FIG. 10 is a graph showing an example of input/output characteristics of the first dead zone processing section 43.
  • a polygonal line L1 indicates the input/output characteristics of the first dead zone processing section 43 when the first dead zone width W1 is set to the first dead zone width minimum value W1_min .
  • a polygonal line L2 indicates the input/output characteristics of the first dead zone processor 43 when the first dead zone width W1 is set to the first dead zone width maximum value W1_max .
  • the first dead zone width W1 is set to the first dead zone width minimum value W1_min .
  • the first dead zone width W1 is a value within the range of W1_min ⁇ W1 ⁇ W1_max .
  • FIG. 11 is a time chart showing an example of changes in the first dead zone width W1 in the driving support mode.
  • the first dead zone width W1 is set to the normal first dead zone width minimum value W1_min at time t0.
  • the determination result of the hands-on/off determining unit 50 is the gripping state (gripping determination).
  • the hands-on/off determination unit 50 determines that the hands are released (determined hands are released).
  • the determination result of the hands-on/off determination unit 50 is the grasping state (holding determination).
  • the determination result of the hands-on/off determination unit 50 is the grasping state (holding determination), so the first dead band width W1 maintains the first dead band width minimum value W1_min .
  • the first dead zone width W1 remains the first dead zone width minimum value until the predetermined time T_start elapses from time t1. Maintain W 1_min .
  • the first dead zone width W1 increases.
  • the first dead band width W1 reaches the first dead band width maximum value W1_max (time t3), the first dead band width W1 maintains the first dead band width maximum value W1_max .
  • the first dead zone width W1 decreases.
  • the first dead band width W1 reaches the first dead band minimum width W1_min (time t5), the first dead band width W1 maintains the first dead band width minimum value W1_min .
  • the absolute value of the amount of change per unit time of the first dead band width W1 when the first dead band width W1 is increased (the absolute value of the slope of the graph between t2 and t3 in FIG. 11)
  • To increase the absolute value of the amount of change per unit time of the first dead band width W 1 (absolute value of the slope of the graph between t4 and t5 in FIG. 11) when the first dead band width W 1 is reduced is preferred. That is, it is preferable to make the first dead band width decrease amount W1_decrease larger than the first dead band width increase amount W1_increase .
  • the reason for this is as follows.
  • the increase in the first dead zone width W1 is performed at the time of hands-free determination. Since the hands-off determination is more dubious than the gripping determination, it is preferable that the amount of change per unit time of the first dead zone width W1 when the first dead zone width increases is relatively small. On the other hand, the first dead zone width W1 is decreased during grip determination. Since the grip judgment is more accurate than the hands-free judgment, it is preferable to return the first dead zone width W1 to the normal state as soon as possible when the first dead zone width decreases. However, the first dead zone width increase amount W1_increase and the first dead zone width decrease amount W1_decrease may be the same value.
  • the second dead band width setting process performed by the second dead band width setting unit 52 is the same as the second dead band width setting process of FIG. However, in the second dead band width setting process, the first dead band width W 1 , the first dead band minimum value W 1 — min , the first dead band width maximum value W 1 — max , the first dead band width decrease amount W 1 — decrease, and the first dead band width W 1 —
  • the dead band width increase amount W1_increase is the second dead band width W2 , the second dead band width minimum value W2_min , the second dead band width maximum value W2_max , the second dead band width decrease amount W2_decrease , and the second dead band width increase amount, respectively.
  • W 2_increase is the second dead band width W2 , the second dead band width minimum value W2_min , the second dead band width maximum value W2_max , the second dead band width decrease amount W2_decrease , and the second dead band width increase amount, respectively.
  • the first dead band width setting unit 51 sets the first dead band width minimum value W1_min as the first dead band width W1_min
  • the second dead band width setting unit 52 sets the second dead band width W1_min.
  • the dead zone width minimum value W2_min is set as the second dead zone width W2 . That is, in the normal mode, the first dead zone width W1 and the second dead zone width W2 are not changed.
  • the first dead zone width W1 and the second dead zone width W2 are increased when the hands-on/off determination unit 50 determines that the driver is in a hands-free state for a predetermined time or longer. be.
  • the manual steering command values ⁇ * c, md with respect to the driver torque (driver input) are decreased.
  • the amount of rotation of the output shaft 9 based on the driver torque is reduced, so that the torsion bar 10 is easily twisted even by a relatively small rotation of the steering wheel 2 by the driver's operation.
  • the steering torque Ttb and the driver torque increase, so that the accuracy of the hands-on/off determination by the hands-on/off determination unit 50 increases.
  • FIG. 12 is a block diagram for explaining the electrical configuration of a modification of the motor control ECU 202. As shown in FIG. In FIG. 12, the same reference numerals as in FIG. 2 are given to the parts corresponding to the parts in FIG. 2 described above.
  • the configuration of the functional processing section in the microcomputer 40A is different from that in FIG. Specifically, in the first modification, instead of the first dead zone processor 43, the second dead zone processor 45, the first dead zone width setting part 51, and the second dead zone width setting part 52 of FIG. A processing unit 53 and a third dead band width setting unit 54 are provided.
  • the third dead zone processing section 53 is arranged upstream of both the assist torque command value setting section 44 and the manual steering command value generating section 46 .
  • the third dead zone processing unit 53 Zero is output as the steering torque Ttb ,de after the third dead zone processing.
  • the third dead zone processing unit 53 sets [T tb +(W 3 /2)] as the steering torque T tb,de after the third dead zone processing. Output. In a region where the steering torque T tb is greater than W 3 /2, the third dead zone processing unit 53 outputs [T tb ⁇ (W 3 /2)] as the steering torque T tb,de after the third dead zone processing. do.
  • the third dead zone width W3 is set by the third dead zone width setting section 54 .
  • the third dead band width setting unit 54 sets the third dead band width W3 based on the hands-on/off determination result of the hands-on/off determination unit 50 in the driving assistance mode.
  • the third dead zone width setting unit 54 performs a third dead zone width setting process for setting the third dead zone width W3 in the driving support mode.
  • the third dead band width setting process performed by the third dead band width setting unit 54 is the same as the first dead band width setting process in FIG. However, in the third dead band width setting process , in FIG .
  • the dead band width increase amount W1_increase is the third dead band width W3 , the third dead band width minimum value W3_min , the third dead band width maximum value W3_max , the third dead band width decrease amount W3_decrease , and the third dead band width increase amount. W is replaced by 3_increase .
  • the assist torque command value setting unit 44 sets the assist torque command values T * m,md based on the steering torque Ttb ,de and the vehicle speed V after the third dead zone processing.
  • the manual steering command value generator 46 calculates a manual steering command value ⁇ *c,md based on the assist torque command value T * m,md and the steering torque Ttb,de after the third dead zone processing.
  • the manual steering command value generation unit 46 substitutes the steering torque Ttb ,de after the third dead zone processing for Ttb, de in Equation (2), and T * m,md in Equation (2). , de are substituted with the assist torque command values T * m and md , and the differential equation of equation (2) is solved to calculate the rotation angle ⁇ c of the lower column. Set the angle ⁇ as c,md .
  • the hands-on/off determination unit 50 determines that the driver is in a hands-free state for a predetermined period of time or longer, the third dead zone width W3 is increased. Effects similar to those of the embodiment can be obtained.
  • the third dead zone width setting unit 54 sets the third dead zone width minimum value W3_min as the third dead zone width W3 . That is, in the normal mode, the third dead band width W3 is not changed.
  • FIG. 13 is a block diagram for explaining the electrical configuration of a modification of the motor control ECU 202. As shown in FIG.
  • the motor control ECU 202 includes a microcomputer 40B, a drive circuit (inverter circuit) 31 that is controlled by the microcomputer 40B, and a drive circuit (inverter circuit) 31 that supplies electric power to the electric motor 18 . int ”).
  • the microcomputer 40B has a CPU and memory (ROM, RAM, non-volatile memory, etc.), and functions as a plurality of functional processing units by executing predetermined programs.
  • the plurality of functional processing units include an assist control unit 111, an automatic steering control unit 112, an integrated torque calculation unit (integrated control amount calculation unit) 113, a torque control unit (control unit) 114, and an actual steering angle calculation unit.
  • the assist control unit 111 sets an assist torque command value (assist control amount) T * m, md, which is a target value of the assist torque required for manual steering.
  • the assist control unit 111 sets assist torque command values T * m and md based on the vehicle speed V and the steering torque Ttb detected by the torque sensor 12 .
  • the assist control unit 111 sets the assist torque command values T * m and md in the same manner as the assist torque command value setting unit 44 in FIG.
  • the automatic steering control unit 112 uses an automatic steering angle command value ⁇ * c,ad given from the host ECU 201 and an actual automatic steering angle ⁇ c,ad described later to determine an automatic steering torque command value (automatic steering torque command value) necessary for automatic steering. Steering control amount) T * m,ad is set. Details of the automatic steering control unit 112 will be described later.
  • the integrated torque calculation unit 113 calculates an integrated torque command value (integrated control amount) T * m, int by adding the automatic steering torque command value T * m ,ad to the assist torque command value T * m,md. .
  • the torque control unit 114 drives the drive circuit 31 so that the motor torque of the electric motor 18 approaches the integrated torque command value T * m,int . Since the configuration of the torque control section 114 is the same as the configuration of the torque control section 49 shown in FIG. 8, description thereof will be omitted.
  • the actual steering angle calculator 115 calculates the rotation angle ⁇ c,int of the output shaft 9 based on the output signal of the rotation angle sensor 23 .
  • the actual steering angle calculator 115 includes a rotation angle calculator 115A and a reduction ratio divider 115B.
  • the rotation angle calculator 115A calculates the rotor rotation angle ⁇ m,int of the electric motor 18 based on the output signal of the rotation angle sensor 23 .
  • the reduction ratio division unit 115B divides the rotor rotation angle ⁇ m ,int calculated by the rotation angle calculation unit 115A by the reduction ratio N of the speed reducer 19, thereby dividing the rotor rotation angle ⁇ m ,int into the rotation of the output shaft 9.
  • the angle (actual steering angle) ⁇ is converted to c,int .
  • the actual steering angle ⁇ c ,int is the steering angle for manual steering (hereinafter referred to as “actual manual steering angle ⁇ c,md ”) based on the steering torque Ttb and the assist torque command value T * m,md , and the automatic steering angle ⁇ c,md. and a steering angle for automatic steering based on the steering torque command value T * m,ad (hereinafter referred to as "actual automatic steering angle ⁇ c,ad ").
  • the steering torque Ttb is input to the fourth dead zone processing unit 116 . If the width of the fourth dead band is W4 , and the steering torque Ttb is within the range of -W4 /2 or more and W4 /2 or less (fourth dead band region), the fourth dead band processing unit 116: Zero is output as the steering torque Ttb ,de after the fourth dead zone processing.
  • the fourth dead zone processing unit 116 sets [T tb +(W 4 /2)] as the steering torque T tb,de after the fourth dead zone processing. Output. In a region where the steering torque T tb is greater than W 4 /2, the fourth dead zone processing unit 116 outputs [T tb ⁇ (W 4 /2)] as the steering torque T tb,de after the fourth dead zone processing. do.
  • the fourth dead band width W4 is set by the fourth dead band width setting section 120 .
  • the assist torque command values T * m, md are input to the fifth dead zone processing unit 117 . Assuming that the width of the fifth dead band is W5 , the fifth dead band processing unit 11 sets the assist torque command value T * m, md within a range of -W5 /2 or more and W5 /2 or less (fifth dead band region). In some cases, zero is output as the assist torque command value T * m,md,de after the fifth dead zone processing.
  • the fifth dead zone processing unit 11 calculates [T * m, md + (W 5 /2)] after the fifth dead zone processing. are output as assist torque command values T * m, md, and de .
  • the fifth dead zone processing unit 11 converts [T * m, md - (W 5 /2)] to They are output as assist torque command values T * m, md, and de .
  • the fifth dead band width W5 is set by the fifth dead band width setting section 121 .
  • the actual automatic steering angle calculator 118 calculates the actual automatic steering angle ⁇ c ,ad included in the actual steering angle ⁇ c ,int .
  • the actual automatic steering angle calculator 118 includes an actual manual steering angle calculator 118A and a subtractor 118B.
  • the actual manual steering angle calculator 118A calculates the actual manual steering angle ⁇ c based on the steering torque Ttb ,de after the fourth dead band processing and the assist torque command value T * m, md, de after the fifth dead band processing . , md .
  • the subtraction unit 118B subtracts the actual manual steering angle ⁇ c,md calculated by the actual manual steering angle calculation unit 118A from the actual steering angle ⁇ c ,int calculated by the actual steering angle calculation unit 115, thereby obtaining the actual automatic steering angle ⁇ c, md .
  • a steering angle ⁇ c ,ad is calculated. This actual automatic steering angle ⁇ c,ad is given to the automatic steering control section 112 .
  • the actual manual steering angle calculator 118A uses a reference model (reference EPS model) of the electric power steering system 1 to calculate the actual manual steering angles ⁇ c,md .
  • the actual manual steering angle calculator 118A calculates the actual manual steering angle ⁇ c,md using, for example, the reference EPS model shown in FIG.
  • the road load torque Trl is expressed by the above equation (1) using the spring constant k and the viscous damping coefficient c. Also in this modification, the spring constant k and the viscous damping coefficient c are set in advance.
  • the equation of motion of the reference EPS model in FIG. 4 is represented by the above-described equation (2).
  • the actual manual steering angle calculation unit 118A substitutes the steering torque Ttb ,de after the fourth dead zone processing for Ttb,de in Equation (2), and substitutes T * m,md,de for T* m,md,de in Equation (2) with the fifth
  • the rotation angle ⁇ c of the lower column is calculated, and the obtained rotation angle ⁇ c is calculated as It is set as the actual manual steering angle ⁇ c ,md .
  • the hands-on/off determination unit 119 determines whether the user is in a gripping state or in a hands-free state by the same method as the hands-on/off determination unit 50 in FIG.
  • the fourth dead band width setting unit 120 and the fifth dead band width setting unit 121 respectively set the fourth dead band width W4 and the fifth dead band width W based on the hands-on/off determination result of the hands-on/off determination unit 119 during the driving assistance mode. Set 5 .
  • the operations of the fourth dead band width setting section 120 and the fifth dead band width setting section 121 will be described later.
  • the automatic steering control unit 112 will be described in detail below.
  • FIG. 14 is a block diagram showing the configuration of the automatic steering control section 112. As shown in FIG.
  • the automatic steering control unit 112 calculates an automatic steering torque command value T * m ,ad using the automatic steering angle command value ⁇ * c,ad and the actual automatic steering angle ⁇ c,ad .
  • the automatic steering control unit 112 includes a low-pass filter (LPF) 161, a feedback control unit 162, a feedforward control unit 163, a disturbance torque estimation unit 164, a torque addition unit 165, a disturbance torque compensation unit 166, a reduction ratio A division unit 167 and a reduction ratio multiplication unit 168 are included.
  • LPF low-pass filter
  • a low-pass filter 161 performs low-pass filter processing on the automatic steering angle command value ⁇ * c,ad .
  • the automatic steering angle command value ⁇ * c, adf after low-pass filtering is provided to feedback control section 162 and feedforward control section 163 .
  • the feedback control unit 162 brings the actual automatic steering angle ⁇ c,ad calculated by the actual automatic steering angle calculation unit 118 (see FIG. 13) closer to the automatic steering angle command value ⁇ * c,adf after low-pass filtering.
  • Feedback control section 162 includes an angular deviation calculation section 162A and a PD control section 162B.
  • the angle deviation calculation unit 162A calculates the deviation ( ⁇ * c , adfd ⁇ c,ad ) may be calculated as the angular deviation ⁇ c,ad .
  • the PD control section 162B calculates the feedback control torque T fb ,ad by performing PD calculation (proportional differential calculation) on the angular deviation ⁇ c, ad calculated by the angular deviation calculating section 162A.
  • the feedback control torque T fb,ad is applied to the torque adder 165 .
  • the feedforward control unit 163 is provided to compensate for the response delay due to the inertia of the electric power steering system 1 and improve the control response.
  • Feedforward control section 163 includes an angular acceleration calculation section 163A and an inertia multiplication section 163B.
  • the angular acceleration calculator 163A calculates a target angular acceleration d2 ⁇ * c, adf/ dt2 by second-order differentiating the automatic steering angle command value ⁇ * c,adf .
  • the inertia J is obtained, for example, from a physical model (see FIG. 15) of the electric power steering system 1, which will be described later.
  • the feedforward control torque Tff ,ad is given to the torque adder 165 as an inertia compensation value.
  • the torque adder 165 calculates a basic torque command value (T fb,ad +T ff, ad ) by adding the feedforward control torque T ff,ad to the feedback control torque T fb,ad .
  • the disturbance torque estimating unit 164 mainly calculates an automatic disturbance torque estimation value ⁇ It is provided to compute Tlc ,ad .
  • the disturbance torque T lc,ad for the automatic steering is the torque for the object (plant) to be driven by the electric motor 18, assuming that only the automatic steering control based on the automatic steering torque command value T * m,ad is performed. Refers to torque other than motor torque that is generated as a disturbance.
  • the disturbance torque estimator 164 calculates the automatic disturbance torque T lc , ad , the actual automatic steering angle ⁇ c,ad , and the differential value (actual automatic angular velocity) d ⁇ c ,ad /dt of the actual automatic steering angle ⁇ c,ad.
  • the automatic disturbance torque estimation value ⁇ Tlc,ad calculated by the disturbance torque estimator 164 is given to the disturbance torque compensator 166 as an automatic disturbance torque compensation value.
  • T * c,ad target torque for the output shaft 9 in which the automatic disturbance torque is compensated is obtained.
  • the automatic output shaft torque command value T * c,ad is given to the reduction ratio dividing section 167 .
  • a reduction ratio division unit 167 divides the automatic output shaft torque command value T * c,ad by the reduction ratio N to calculate an automatic steering torque command value T * m,ad (target torque for the electric motor 18).
  • This automatic steering torque command value T * m,ad is given to the integrated torque calculator 113 (see FIG. 13).
  • the disturbance torque estimator 164 uses, for example, the physical model 101A of the electric power steering system 1 shown in FIG . It consists of a disturbance observer that calculates the actual automatic angular velocity estimate ⁇ d ⁇ c,ad /dt. However, FIG. 15 shows a physical model assuming that only the automatic steering control based on the automatic steering torque command value T * m,ad is performed.
  • This physical model 101A includes a plant (an example of a motor driven object) 102A including an output shaft 9 and a worm wheel 21 fixed to the output shaft 9 .
  • the plant 102A is provided with a steering torque (torsion bar torque) Ttb , which is a twisting torque of the torsion bar 10, and is provided with a road load torque Trl,ad from the steered wheels 3 side.
  • Ttb steering torque
  • Trl road load torque
  • the plant 102A is given an automatic output shaft torque command value N ⁇ T * m,ad from the motor via the worm gear 20, and the friction between the worm wheel 21 and the worm gear 20 produces a friction torque Tf,ad. is given.
  • Tlc,ad indicates the automatic disturbance torque applied to the plant 102A.
  • the automatic disturbance torque Tlc ,ad is shown as the sum of the steering torque Ttb , the road load torque Trl,ad, and the friction torque Tf,ad .
  • Tlc ,ad includes other torques.
  • x is a state variable vector
  • u1 is a known input vector
  • u2 is an unknown input vector
  • y is an output vector.
  • A is the system matrix
  • B1 is the first input matrix
  • B2 is the second input matrix
  • C is the output matrix
  • D is the feedthrough matrix.
  • x e is the state variable vector of the extended system and is expressed by the following equation (13).
  • a e is the system matrix of the extended system
  • B e is the known input matrix of the extended system
  • C e is the output matrix of the extended system.
  • a disturbance observer (extended state observer) represented by the following equation (14) is constructed from the extended state equation of equation (12) above.
  • ⁇ x e represents an estimate of x e .
  • L is an observer gain.
  • ⁇ y represents the estimated value of y.
  • ⁇ x e is represented by the following equation (15).
  • ⁇ c ,ad is the estimated value of the actual automatic steering angle ⁇ c,ad
  • ⁇ d ⁇ c ,ad /dt is the estimated value of the angular velocity d ⁇ c,ad /dt
  • ⁇ Tlc , ad is the estimated value of the automatic disturbance torque Tlc ,ad .
  • the disturbance torque estimator 164 calculates the state variable vector ⁇ x e based on the equation (14).
  • FIG. 16 is a block diagram showing the configuration of the disturbance torque estimator 164. As shown in FIG.
  • the disturbance torque estimation unit 164 includes an input vector input unit 181, an output matrix multiplication unit 182, a first addition unit 183, a gain multiplication unit 184, an input matrix multiplication unit 185, a system matrix multiplication unit 186, a second It includes an addition section 187 , an integration section 188 and a state variable vector output section 189 .
  • the input vector input unit 181 outputs an input vector u1 .
  • the output of the integrator 188 is the state variable vector ⁇ x e (see equation (15) above).
  • an initial value is given as the state variable vector ⁇ xe .
  • the initial value of the state variable vector ⁇ x e is 0, for example.
  • a system matrix multiplier 186 multiplies the state variable vector ⁇ x e by the system matrix A e .
  • the output matrix multiplier 182 multiplies the state variable vector ⁇ x e by the output matrix C e .
  • the gain multiplier 184 multiplies the output (y ⁇ y) of the first adder 183 by the observer gain L (see formula (14) above).
  • the input matrix multiplication unit 185 multiplies the input vector u1 output from the input vector input unit 181 by the input matrix Be .
  • the second adder 187 outputs the input matrix multiplier 185 output (B e ⁇ u 1 ), the system matrix multiplier 186 output (A e ⁇ x e ), and the gain multiplier 184 output (L(y ⁇ y)) is added to calculate the differential value d ⁇ x e /dt of the state variable vector.
  • the integrator 188 calculates the state variable vector ⁇ x e by integrating the output (d ⁇ x e /dt) of the second adder 187 .
  • a state variable vector output unit 189 outputs an automatic disturbance torque estimation value ⁇ Tlc,ad , an actual automatic steering angle estimation value ⁇ c ,ad, and an actual automatic angular velocity estimation value d ⁇ c based on the state variable vector ⁇ xe. , ad /dt.
  • a disturbance observer consisting of an inverse model of the plant and a low-pass filter may be used instead of the extended state observer described above.
  • the equation of motion of the plant is expressed by Equation (10) as described above.
  • Inputs to the disturbance observer using the inverse model of the plant are J ⁇ d 2 ⁇ c,ad /dt 2 and N ⁇ T * m,ad . , is greatly affected by noise from the rotation angle sensor 23 .
  • the extended state observer described above estimates the disturbance torque in an integral manner, and therefore has the advantage of being able to reduce the noise effect due to differentiation.
  • the fourth dead band width setting unit 120 performs a fourth dead band width setting process for setting the fourth dead band width W4 in the driving assistance mode.
  • the fifth dead band width setting unit 121 performs a fifth dead band width setting process for setting the fifth dead band width W5 in the driving assistance mode.
  • the fourth dead band width setting process performed by the fourth dead band width setting unit 120 is the same as the first dead band width setting process in FIG. However, in the fourth dead band width setting process, the first dead band width W1 , the first dead band minimum value W1_min , the first dead band maximum value W1_max , the first dead band width decrease amount W1_decrease and the first dead band width W1_min shown in FIG.
  • the dead band width increase amount W1_increase is the fourth dead band width W4 , the fourth dead band width minimum value W4_min , the fourth dead band width maximum value W4_max , the fourth dead band width decrease amount W4_decrease , and the fourth dead band width increase amount. W is replaced by 4_increase .
  • the fifth dead band width setting process performed by the fifth dead band width setting unit 121 is the same as the first dead band width setting process in FIG. However, in the fifth dead band width setting process, the first dead band width W 1 , the first dead band minimum value W 1 — min , the first dead band width maximum value W 1 — max , the first dead band width decrease amount W 1 — decrease, and the first dead band width W 1 —
  • the dead band width increase W1_increase is the fifth dead band width W5 , the fifth dead band width minimum value W5_min , the fifth dead band width maximum value W5_max , the fifth dead band width decrease W5_decrease , and the fifth dead band width increase. W is replaced by 5_increase .
  • the integrated torque command value is the sum of the automatic steering torque command value T * m, ad calculated based on the feedback control torque Tfb ,ad and the assist torque command value T * m,md.
  • the electric motor 18 is driven based on T * m,int . Therefore, in the driving support mode, the output shaft 9 is normally rotated based on the automatic steering torque command value T * m,ad , and the steering torque Ttb and the assist torque command value generated based on the driver torque.
  • the output shaft 9 is rotated based on T * m,md .
  • the fourth dead zone width W4 and the fifth dead zone width W5 are increased when the hands-on/off determining unit 119 continues to determine that the vehicle is in a hands-free state for a predetermined time or longer in the driving support mode.
  • the absolute value of the actual manual steering angle ⁇ c,md with respect to the driver torque that is, the angle at which the driver is permitted to steer for driving assistance. is smaller than normal.
  • the value of the actual automatic steering angle ⁇ c ,ad used for feedback control becomes larger than the normal value, and the motor is driven through the feedback control torque Tfb ,ad and the automatic steering torque command value T * m,ad in order. Reflected in the torque command value.
  • the amount of rotation of the output shaft 9 based on the driver torque is reduced, as in the embodiment of FIG.
  • the rotation is less likely to be transmitted, and the torsion bar 10 is more likely to be twisted.
  • the steering torque Ttb and the driver torque increase, so that the accuracy of the hands-on/off determination by the hands-on/off determination unit 119 increases.
  • assist torque command value T * m,md set by assist control unit 111 is given to torque control unit 114 as integrated torque command value T * m,int . Therefore, in the normal mode, drive circuit 31 is driven based only on assist torque command values T * m, md .
  • FIG. 17 is a block diagram for explaining the electrical configuration of a third modification of the motor control ECU 202. As shown in FIG. In FIG. 17, the same reference numerals as in FIG. 13 denote the parts corresponding to the parts in FIG. 13 described above.
  • the configuration of the functional processing section in the microcomputer 40C is different from that in FIG. Specifically, in the third modification, instead of the fourth dead zone processing section 116, the fifth dead zone processing section 117, the fourth dead zone width setting section 120, and the fifth dead zone width setting section 121 of FIG. A processing unit 123 and a sixth dead band width setting unit 124 are provided.
  • the sixth dead zone processing section 123 is arranged in the front stage of both the assist control section 111 and the actual manual steering angle calculation section 118A. If the width of the sixth dead band is W6 , and the steering torque Ttb is within the range of -W6 /2 or more and W6 /2 or less (sixth dead band region), the sixth dead band processing unit 123: Zero is output as the steering torque Ttb ,de after the sixth dead zone processing.
  • the sixth dead zone processing unit 123 sets [T tb +(W 6 /2)] as the steering torque T tb,de after the sixth dead zone processing. Output. In a region where the steering torque T tb is greater than W 6 /2, the sixth dead zone processing unit 123 outputs [T tb ⁇ (W 6 /2)] as the steering torque T tb,de after the sixth dead zone processing. do.
  • the sixth dead zone width W6 is set by the sixth dead zone width setting section 124 .
  • the sixth dead band width setting unit 124 sets the sixth dead band width W6 based on the hands-on/off determination result of the hands-on/off determination unit 119 in the driving assistance mode.
  • the sixth dead zone width setting unit 124 performs a sixth dead zone width setting process for setting the sixth dead zone width W6 in the driving assistance mode.
  • the sixth dead band width setting process performed by the sixth dead band width setting unit 124 is the same as the first dead band width setting process in FIG. However, in the sixth dead band width setting process, the first dead band width W 1 , the first dead band width minimum value W 1 — min , the first dead band width maximum value W 1 — max , the first dead band width decrease amount W 1 — decrease, and the first dead band width W 1 —
  • the dead band width increase W1_increase is the sixth dead band width W6 , the sixth dead band width minimum value W6_min , the sixth dead band width maximum value W6_max , the third dead band width decrease W6_decrease , and the sixth dead band width increase. W 6_increase .
  • the assist control unit 111 sets the assist torque command values T * m,md based on the steering torque Ttb ,de and the vehicle speed V after the sixth dead zone processing.
  • the actual manual steering angle calculation unit 118A calculates the actual manual steering angle ⁇ c,md based on the assist torque command value T * m,md and the steering torque Ttb ,de after the sixth dead zone processing.
  • the actual manual steering angle calculation unit 118A substitutes the steering torque Ttb,de after the sixth dead zone processing for Ttb, de in the equation (2), and calculates T * m,md in the equation (2). , de are substituted with the assist torque command values T * m and md , and the differential equation of equation (2) is solved to calculate the rotation angle ⁇ c of the lower column. Set the angle ⁇ as c,md .
  • the hands-on/off determining unit 119 continues to determine that the driver is in a hands-free state for a predetermined period of time or more, the sixth dead zone width W6 is increased. An effect similar to that of the second modification can be obtained.
  • assist torque command value T * m,md set by assist control unit 111 is given to torque control unit 114 as integrated torque command value T * m,int . Therefore, in the normal mode, drive circuit 31 is driven based only on assist torque command values T * m, md .
  • both the first dead band width W1 used in the first dead band processing unit 43 and the second dead band width W2 used in the second dead band processing unit 45 are Although the control is based on the OFF determination result, only one of the first dead zone width W1 and the second dead zone width W2 may be controlled based on the hands-on/off determination result. Alternatively, only one of the first dead zone processor 43 and the second dead zone processor 45 may be provided, and the dead zone used by the dead zone processor may be controlled based on the hands-on/off determination result.
  • both the fourth dead zone width W4 used in the fourth dead zone processing section 116 and the fifth dead zone width W5 used in the fifth dead zone processing section 117 are , are controlled based on the hands-on/off determination result, but only one of the fourth dead zone width W4 and the fifth dead zone width W5 may be controlled based on the hands-on/off determination result.
  • only one of the fourth dead zone processing section 116 and the fifth dead zone processing section 117 may be provided, and the dead zone used by the dead zone processing section may be controlled based on the hands-on/off determination result.

Abstract

Provided is a motor control device comprising a dead zone processing unit which is provided to at least one of a steering torque input to a manual steering command value generation unit, an assist torque command value input to the manual steering command value generation unit, and a steering torque input to an assist torque command value calculation unit, and a dead zone width setting unit which changes a dead zone width of at least one dead zone processing unit of the dead zone processing units when, in a driving assistance mode, a result of determination, which is made by a hands-on/off determination unit and indicates that the state is a hands-off state, continues for a predetermined time or longer.

Description

モータ制御装置motor controller
 この発明は、舵角制御用の電動モータを制御するモータ制御装置に関する。 The present invention relates to a motor control device that controls an electric motor for steering angle control.
 特許文献1には、次のような運転支援技術が開示されている。すなわち、操舵制御部は、前方注視距離における目標通過点のX座標xcと推定通過点のX座標xeとを算出する。そして、操舵制御部は、これらのX座標xc、xeの偏差(xc-xe)に第1の制御ゲインGlを乗算した演算項と、ヨー角θcaに第2の制御ゲインGyを乗算した演算項とを加算して、モータの制御量(トルク指令値)Tcを算出する。第1、第2の制御ゲインGl、Gyは、手放し時間が長いほど大きな値に設定され、手放し状態が検出されない場合には、覚醒度が低い、或いは、漫然度が高いほど小さな値に設定される。 Patent Document 1 discloses the following driving assistance technology. That is, the steering control unit calculates the X-coordinate xc of the target passing point and the X-coordinate xe of the estimated passing point at the forward gaze distance. Then, the steering control unit has an operational term obtained by multiplying the deviation (xc-xe) between these X coordinates xc and xe by a first control gain Gl, and an operational term obtained by multiplying the yaw angle θca by a second control gain Gy. are added to calculate the control amount (torque command value) Tc of the motor. The first and second control gains Gl and Gy are set to larger values as the hands-off time is longer, and are set to smaller values as the arousal level is lower or the carelessness level is higher when the hands-free state is not detected. be.
特開2011-57037号公報JP 2011-57037 A
 レベル2相当での運転支援機能ではドライバがハンドルを把持していることが前提条件となっている。したがって、運転支援モードにおいて、手放し状態であるとの判定結果が所定時間以上継続すると警告が出力され、警告後も手放し状態がさらに継続すると、運転支援モードが解除される。 The driver's grip on the steering wheel is a prerequisite for driving support functions equivalent to Level 2. Therefore, in the driving assistance mode, if the determination result of the hands-free state continues for a predetermined time or longer, a warning is output, and if the hands-free state continues after the warning, the driving assistance mode is canceled.
 このため、運転支援モードにおいては、把持状態であるか手放し状態であるかを正確に判定する必要がある。しかしながら、トルクセンサによって検出される操舵トルク(トーションバートルク)に基づいて把持状態であるか手放し状態であるかが判定される場合、直線走行などのドライバトルクの入力が少ない状況では、ドライバが把持しているにもかかわらず、手放し状態であると誤判定されるおそれがある。 For this reason, in the driving support mode, it is necessary to accurately determine whether the user is in a gripping state or in a hands-free state. However, when it is determined whether the driver is in the gripped state or the hands-free state based on the steering torque (torsion bar torque) detected by the torque sensor, the driver may not be able to grip the steering wheel in a situation where the driver torque input is small, such as when driving in a straight line. There is a possibility that it may be erroneously determined that the user is in the hands-free state even though the user is doing so.
 この発明の一実施形態の目的は、運転支援モード時において、把持状態であるか手放し状態であるかを正確に判定できるようになる、モータ制御装置を提供することである。 An object of an embodiment of the present invention is to provide a motor control device that can accurately determine whether the vehicle is in a gripping state or a hands-free state in a driving assistance mode.
 本発明の一実施形態は、操舵トルクを検出するためのトルク検出部と、前記操舵トルクを用いてアシストトルク指令値を設定するアシストトルク指令値設定部と、前記操舵トルクと前記アシストトルク指令値とを用いて、手動操舵指令値を生成する手動操舵指令値生成部と、運転支援モード時に与えられる自動操舵指令値に前記手動操舵指令値を加算して、統合角度指令値を演算する統合角度指令値演算部と、前記統合角度指令値に基づいて、舵角制御用の電動モータを角度制御する制御部と、ドライバがステアリングホイールを把持している把持状態であるか、ドライバが前記ステアリングホイールを把持していない手放し状態であるかを判定するハンズオンオフ判定部と、前記手動操舵指令値生成部に入力する前記操舵トルク、前記手動操舵指令値生成部に入力する前記アシストトルク指令値および前記アシストトルク指令値演算部に入力する前記操舵トルクのうちの少なくとも1つに設けられた複数の不感帯処理部と、前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間以上継続したときに、前記不感帯処理部の少なくとも1つの不感帯処理部の不感帯幅を変更する不感帯幅設定部とを含む、モータ制御装置を提供する。 An embodiment of the present invention includes a torque detection unit for detecting steering torque, an assist torque command value setting unit for setting an assist torque command value using the steering torque, the steering torque and the assist torque command value. A manual steering command value generation unit that generates a manual steering command value using and an integrated angle that calculates an integrated angle command value by adding the manual steering command value to the automatic steering command value given in the driving support mode a command value calculation unit; a control unit that performs angle control of an electric motor for steering angle control based on the integrated angle command value; the steering torque input to the manual steering command value generating unit, the assist torque command value input to the manual steering command value generating unit, and the a plurality of dead zone processors provided for at least one of the steering torques input to the assist torque command value calculator; and a dead zone width setting section for changing the dead zone width of at least one of the dead zone processing sections when the above continues for a predetermined time or more.
 この構成では、運転支援モード時において、把持状態であるか手放し状態であるかを正確に判定できるようになる。 With this configuration, it is possible to accurately determine whether the gripping state or the hands-free state is in the driving support mode.
 本発明の一実施形態は、操舵トルクを検出するためのトルク検出部と、実操舵角を検出するための操舵角検出部と、運転支援モード時に与えられる自動操舵指令値に基づいて自動操舵制御量を設定する自動操舵制御部と、前記操舵トルクを用いてアシスト制御量を設定するアシスト制御部と、前記自動操舵制御量と前記アシスト制御量とを加算することによって、統合制御量を演算する統合制御量演算部と、前記統合制御量に基づいて舵角制御用の電動モータを制御する制御部とを含むモータ制御装置であって、ドライバがステアリングホイールを把持している把持状態であるか、ドライバが前記ステアリングホイールを把持していない手放し状態であるかを判定するハンズオンオフ判定部と、前記操舵トルクと前記アシスト制御量とに基づく手動操舵分の操舵角である実手動操舵角を演算する実手動操舵角演算部と、前記実操舵角から前記実手動操舵角を減算することにより、前記自動操舵制御量に基づく自動操舵分の操舵角である実自動操舵角を演算する実自動操舵角演算部とを含み、前記自動操舵制御部は、前記自動操舵指令値および前記実自動操舵角を用いて前記自動操舵制御量を設定するように構成されており、前記実手動操舵角演算部に入力する前記操舵トルク、前記実手動操舵角演算部に入力する前記アシスト制御量および前記アシスト制御部に入力する前記操舵トルクのうちの少なくとも1つに設けられた不感帯処理部と、前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間以上継続したときに、前記不感帯処理部の少なくとも1つの不感帯処理部の不感帯幅を変更する不感帯幅設定部とをさらに含む、モータ制御装置を提供する。 An embodiment of the present invention includes a torque detection section for detecting steering torque, a steering angle detection section for detecting an actual steering angle, and automatic steering control based on an automatic steering command value given during a driving assistance mode. an automatic steering control unit that sets the steering torque; an assist control unit that sets an assist control amount using the steering torque; and an integrated control amount is calculated by adding the automatic steering control amount and the assist control amount. A motor control device including an integrated control amount calculation unit and a control unit that controls an electric motor for steering angle control based on the integrated control amount, and is in a gripping state in which a driver is gripping a steering wheel. a hands-on/off determination unit that determines whether the driver is in a hands-off state in which the driver does not grip the steering wheel; and an actual automatic steering angle calculator for calculating an actual automatic steering angle, which is a steering angle for automatic steering based on the automatic steering control amount, by subtracting the actual manual steering angle from the actual steering angle. the automatic steering control unit is configured to set the automatic steering control amount using the automatic steering command value and the actual automatic steering angle; and the actual manual steering angle calculation unit a dead zone processing unit provided in at least one of the steering torque input to the actual manual steering angle calculation unit, the assist control amount input to the actual manual steering angle calculation unit, and the steering torque input to the assist control unit; a dead zone width setting section for changing the dead zone width of at least one dead zone processing section of the dead zone processing section when the determination result of the hands-on/off determination section that the hands are released is continued for a predetermined time or longer in the mode. A motor controller is provided, further comprising:
 この構成では、運転支援モード時において、把持状態であるか手放し状態であるかを正確に判定できるようになる。 With this configuration, it is possible to accurately determine whether the gripping state or the hands-free state is in the driving support mode.
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above and further objects, features and effects of the present invention will be made clear by the following description of the embodiments with reference to the accompanying drawings.
図1は、本発明の一実施形態に係るモータ制御装置が適用された電動パワーステアリングシステムの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of an electric power steering system to which a motor control device according to an embodiment of the invention is applied. 図2は、モータ制御用ECUの電気的構成を説明するためのブロック図である。FIG. 2 is a block diagram for explaining the electrical configuration of the motor control ECU. 図3は、操舵トルクTtbに対するアシストトルク指令値T m,adの設定例を示すグラフである。FIG. 3 is a graph showing a setting example of the assist torque command value T * m,ad with respect to the steering torque Ttb . 図4は、手動操舵指令値設定部で用いられるリファレンスEPSモデルの一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a reference EPS model used in the manual steering command value setting section. 図5は、角度制御部の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the angle control section. 図6は、電動パワーステアリングシステムの物理モデルの構成例を示す模式図である。FIG. 6 is a schematic diagram showing a configuration example of a physical model of the electric power steering system. 図7は、外乱トルク推定部の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of the disturbance torque estimator. 図8は、トルク制御部の構成を示す模式図である。FIG. 8 is a schematic diagram showing the configuration of the torque control section. 図9は、第1不感帯幅設定部によって行われる第1不感帯幅設定処理の手順を示すフローチャートであるFIG. 9 is a flow chart showing the procedure of the first dead zone width setting process performed by the first dead zone width setting section. 図10は、第1不感帯幅設定部の入出力特性の一例を示すグラフである。FIG. 10 is a graph showing an example of input/output characteristics of the first dead band width setting section. 図11は、運転支援モードでの第1不感帯幅Wの変化の一例を示すタイムチャートである。FIG. 11 is a time chart showing an example of changes in the first dead zone width W1 in the driving assistance mode. 図12は、モータ制御用ECUの第1変形例の電気的構成を説明するためのブロック図である。FIG. 12 is a block diagram for explaining the electrical configuration of the first modified example of the motor control ECU. 図13は、モータ制御用ECUの第2変形例の電気的構成を説明するためのブロック図である。FIG. 13 is a block diagram for explaining the electrical configuration of a second modification of the motor control ECU. 図14は、自動操舵制御部の構成を示すブロック図である。FIG. 14 is a block diagram showing the configuration of the automatic steering control section. 図15は、電動パワーステアリングシステムの物理モデルの構成例を示す模式図である。FIG. 15 is a schematic diagram showing a configuration example of a physical model of the electric power steering system. 図16は、外乱トルク推定部の構成を示すブロック図である。FIG. 16 is a block diagram showing the configuration of the disturbance torque estimator. 図17は、モータ制御用ECUの第3変形例の電気的構成を説明するためのブロック図である。FIG. 17 is a block diagram for explaining the electrical configuration of a third modification of the motor control ECU.
 [本発明の実施形態の説明]
 本発明の一実施形態は、操舵トルクを検出するためのトルク検出部と、前記操舵トルクを用いてアシストトルク指令値を設定するアシストトルク指令値設定部と、前記操舵トルクと前記アシストトルク指令値とを用いて、手動操舵指令値を生成する手動操舵指令値生成部と、運転支援モード時に与えられる自動操舵指令値に前記手動操舵指令値を加算して、統合角度指令値を演算する統合角度指令値演算部と、前記統合角度指令値に基づいて、舵角制御用の電動モータを角度制御する制御部と、ドライバがステアリングホイールを把持している把持状態であるか、ドライバが前記ステアリングホイールを把持していない手放し状態であるかを判定するハンズオンオフ判定部と、前記手動操舵指令値生成部に入力する前記操舵トルク、前記手動操舵指令値生成部に入力する前記アシストトルク指令値および前記アシストトルク指令値演算部に入力する前記操舵トルクのうちの少なくとも1つに設けられた不感帯処理部と、前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間以上継続したときに、前記不感帯処理部の少なくとも1つの不感帯処理部の不感帯幅を変更する不感帯幅設定部とを含む、モータ制御装置を提供する。
[Description of the embodiment of the present invention]
An embodiment of the present invention includes a torque detection unit for detecting steering torque, an assist torque command value setting unit for setting an assist torque command value using the steering torque, the steering torque and the assist torque command value. A manual steering command value generation unit that generates a manual steering command value using and an integrated angle that calculates an integrated angle command value by adding the manual steering command value to the automatic steering command value given in the driving support mode a command value calculation unit; a control unit that performs angle control of an electric motor for steering angle control based on the integrated angle command value; the steering torque input to the manual steering command value generating unit, the assist torque command value input to the manual steering command value generating unit, and the a dead zone processor provided for at least one of the steering torques input to the assist torque command value calculator; and a dead zone width setting section for changing the dead zone width of at least one of the dead zone processing sections when the operation continues for a period of time or more.
 この構成では、運転支援モード時において、把持状態であるか手放し状態であるかを正確に判定できるようになる。 With this configuration, it is possible to accurately determine whether the gripping state or the hands-free state is in the driving support mode.
 本発明の一実施形態は、操舵トルクを検出するためのトルク検出部と、実操舵角を検出するための操舵角検出部と、運転支援モード時に与えられる自動操舵指令値に基づいて自動操舵制御量を設定する自動操舵制御部と、前記操舵トルクを用いてアシスト制御量を設定するアシスト制御部と、前記自動操舵制御量と前記アシスト制御量とを加算することによって、統合制御量を演算する統合制御量演算部と、前記統合制御量に基づいて舵角制御用の電動モータを制御する制御部とを含むモータ制御装置であって、ドライバがステアリングホイールを把持している把持状態であるか、ドライバが前記ステアリングホイールを把持していない手放し状態であるかを判定するハンズオンオフ判定部と、前記操舵トルクと前記アシスト制御量とに基づく手動操舵分の操舵角である実手動操舵角を演算する実手動操舵角演算部と、前記実操舵角から前記実手動操舵角を減算することにより、前記自動操舵制御量に基づく自動操舵分の操舵角である実自動操舵角を演算する実自動操舵角演算部とを含み、前記自動操舵制御部は、前記自動操舵指令値および前記実自動操舵角を用いて前記自動操舵制御量を設定するように構成されており、前記実手動操舵角演算部に入力する前記操舵トルク、前記実手動操舵角演算部に入力する前記アシスト制御量および前記アシスト制御部に入力する前記操舵トルクのうちの少なくとも1つに設けられた不感帯処理部と、前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間以上継続したときに、前記不感帯処理部の少なくとも1つの不感帯処理部の不感帯幅を変更する不感帯幅設定部とをさらに含む、モータ制御装置を提供する。 An embodiment of the present invention includes a torque detection section for detecting steering torque, a steering angle detection section for detecting an actual steering angle, and automatic steering control based on an automatic steering command value given during a driving assistance mode. an automatic steering control unit that sets the steering torque; an assist control unit that sets an assist control amount using the steering torque; and an integrated control amount is calculated by adding the automatic steering control amount and the assist control amount. A motor control device including an integrated control amount calculation unit and a control unit that controls an electric motor for steering angle control based on the integrated control amount, and is in a gripping state in which a driver is gripping a steering wheel. a hands-on/off determination unit that determines whether the driver is in a hands-off state in which the driver does not grip the steering wheel; and an actual automatic steering angle calculator for calculating an actual automatic steering angle, which is a steering angle for automatic steering based on the automatic steering control amount, by subtracting the actual manual steering angle from the actual steering angle. the automatic steering control unit is configured to set the automatic steering control amount using the automatic steering command value and the actual automatic steering angle; and the actual manual steering angle calculation unit a dead zone processing unit provided in at least one of the steering torque input to the actual manual steering angle calculation unit, the assist control amount input to the actual manual steering angle calculation unit, and the steering torque input to the assist control unit; a dead zone width setting section for changing the dead zone width of at least one dead zone processing section of the dead zone processing section when the determination result of the hands-on/off determination section that the hands are released is continued for a predetermined time or longer in the mode. A motor controller is provided, further comprising:
 この構成では、運転支援モード時において、把持状態であるか手放し状態であるかを正確に判定できるようになる。 With this configuration, it is possible to accurately determine whether the gripping state or the hands-free state is in the driving support mode.
 本発明の一実施形態では、前記不感帯幅設定部によって不感帯幅が変更される不感帯処理部を、不感帯幅可変の不感帯処理部とすると、前記不感帯幅設定部は、前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間以上継続したときに、前記不感帯幅可変の不感帯処理部の不感帯幅を大きくするように構成されている。 In one embodiment of the present invention, when the dead zone processing section whose dead zone width is changed by the dead zone width setting section is a dead zone processing section with a variable dead zone width, the dead zone width setting section, in the driving support mode, The dead zone width variable dead zone processing part is configured to increase the dead zone width when the hands-on/off judging part continues for a predetermined period of time or more to determine that the hands are in the hands-free state.
 本発明の一実施形態では、前記不感帯幅設定部は、前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間継続したときには、その時点から手放し状態であるとの判定結果が継続している間は、前記不感帯幅を徐々に増加させ、前記不感帯幅が所定の上限値に達すると、前記不感帯幅を前記上限値に保持する。 In one embodiment of the present invention, the dead band width setting unit is in the hands-free state from that point in time when the hands-on/off determination unit determines that the hands-on state is in the hands-free state for a predetermined period of time in the driving assistance mode. While the determination result continues, the dead zone width is gradually increased, and when the dead zone width reaches a predetermined upper limit value, the dead zone width is held at the upper limit value.
 本発明の一実施形態では、前記不感帯幅設定部は、前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間以上継続した後に、前記ハンズオンオフ判定部による判定結果が把持状態に変化したときには、その時点から把持状態であるとの判定結果が継続している間は、前記不感帯幅を徐々に減少させ、前記不感帯幅が所定の下限値に達すると、前記不感帯幅を前記下限値に保持する。 In one embodiment of the present invention, the dead band width setting unit, in the driving assistance mode, after the hands-on-off determination unit determines that the hands are released for a predetermined time or longer, the hands-on-off determination unit When the determination result changes to the gripping state, the dead zone width is gradually decreased while the determination result indicating the gripping state continues from that time point, and when the dead zone width reaches a predetermined lower limit value, The dead band width is held at the lower limit.
 [本発明の実施形態の詳細な説明]
 以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
[Detailed Description of Embodiments of the Invention]
BEST MODE FOR CARRYING OUT THE INVENTION Below, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 [1]電動パワーステアリングシステムの概略構成
 図1は、本発明の一実施形態に係るモータ制御装置が適用された電動パワーステアリングシステムの概略構成を示す模式図である。
[1] Schematic Configuration of Electric Power Steering System FIG. 1 is a schematic diagram showing a schematic configuration of an electric power steering system to which a motor control device according to an embodiment of the present invention is applied.
 電動パワーステアリングシステム1は、車両を操向するための操舵部材としてのステアリングホイール(ハンドル)2と、このステアリングホイール2の回転に連動して転舵輪3を転舵する転舵機構4と、ドライバの操舵を補助するための操舵補助機構5とを備えている。ステアリングホイール2と転舵機構4とは、ステアリングシャフト6および中間軸7を介して機械的に連結されている。 An electric power steering system 1 includes a steering wheel (handle) 2 as a steering member for steering a vehicle, a steering mechanism 4 for steering wheels 3 in conjunction with the rotation of the steering wheel 2, and a driver. and a steering assist mechanism 5 for assisting the steering of the vehicle. The steering wheel 2 and steering mechanism 4 are mechanically connected via a steering shaft 6 and an intermediate shaft 7 .
 ステアリングシャフト6は、ステアリングホイール2に連結された入力軸8と、中間軸7に連結された出力軸9とを含む。入力軸8と出力軸9とは、トーションバー10を介して相対回転可能に連結されている。 The steering shaft 6 includes an input shaft 8 connected to the steering wheel 2 and an output shaft 9 connected to the intermediate shaft 7. The input shaft 8 and the output shaft 9 are connected via a torsion bar 10 so as to be relatively rotatable.
 トーションバー10の近傍には、トルクセンサ(トルク検出部)12が配置されている。トルクセンサ12は、入力軸8および出力軸9の相対回転変位量に基づいて、ステアリングホイール2に与えられた操舵トルク(トーションバートルク)Ttbを検出する。この実施形態では、トルクセンサ12によって検出される操舵トルクTtbは、例えば、左方向への操舵のためのトルクが正の値として検出され、右方向への操舵のためのトルクが負の値として検出され、その絶対値が大きいほど操舵トルクTtbの大きさが大きくなるものとする。 A torque sensor (torque detector) 12 is arranged near the torsion bar 10 . The torque sensor 12 detects a steering torque (torsion bar torque) Ttb applied to the steering wheel 2 based on relative rotational displacement amounts of the input shaft 8 and the output shaft 9 . In this embodiment, the steering torque Ttb detected by the torque sensor 12 is, for example, a positive value for torque for steering to the left and a negative value for torque for steering to the right. , and the magnitude of the steering torque Ttb increases as the absolute value increases.
 転舵機構4は、ピニオン軸13と、転舵軸としてのラック軸14とを含むラックアンドピニオン機構からなる。ラック軸14の各端部には、タイロッド15およびナックルアーム(図示略)を介して転舵輪3が連結されている。ピニオン軸13は、中間軸7に連結されている。ピニオン軸13は、ステアリングホイール2の操舵に連動して回転するようになっている。ピニオン軸13の先端には、ピニオン16が連結されている。 The steering mechanism 4 consists of a rack and pinion mechanism including a pinion shaft 13 and a rack shaft 14 as a steering shaft. The steered wheels 3 are connected to each end of the rack shaft 14 via tie rods 15 and knuckle arms (not shown). The pinion shaft 13 is connected to the intermediate shaft 7 . The pinion shaft 13 rotates in conjunction with steering of the steering wheel 2 . A pinion 16 is connected to the tip of the pinion shaft 13 .
 ラック軸14は、車両の左右方向に沿って直線状に延びている。ラック軸14の軸方向の中間部には、ピニオン16に噛み合うラック17が形成されている。このピニオン16およびラック17によって、ピニオン軸13の回転がラック軸14の軸方向移動に変換される。ラック軸14を軸方向に移動させることによって、転舵輪3を転舵することができる。 The rack shaft 14 extends linearly along the lateral direction of the vehicle. A rack 17 that meshes with the pinion 16 is formed in the axially intermediate portion of the rack shaft 14 . The pinion 16 and rack 17 convert the rotation of the pinion shaft 13 into axial movement of the rack shaft 14 . By moving the rack shaft 14 in the axial direction, the steerable wheels 3 can be steered.
 ステアリングホイール2が操舵(回転)されると、この回転が、ステアリングシャフト6および中間軸7を介して、ピニオン軸13に伝達される。そして、ピニオン軸13の回転は、ピニオン16およびラック17によって、ラック軸14の軸方向移動に変換される。これにより、転舵輪3が転舵される。 When the steering wheel 2 is steered (rotated), this rotation is transmitted to the pinion shaft 13 via the steering shaft 6 and the intermediate shaft 7. Rotation of the pinion shaft 13 is converted into axial movement of the rack shaft 14 by the pinion 16 and the rack 17 . As a result, the steerable wheels 3 are steered.
 操舵補助機構5は、操舵補助力(アシストトルク)を発生するための電動モータ18と、電動モータ18の出力トルクを増幅して転舵機構4に伝達するための減速機19とを含む。減速機19は、ウォームギヤ20と、このウォームギヤ20と噛み合うウォームホイール21とを含むウォームギヤ機構からなる。減速機19は、伝達機構ハウジングとしてのギヤハウジング22内に収容されている。以下において、減速機19の減速比(ギヤ比)をNで表す場合がある。減速比Nは、ウォームホイール21の回転角θwwに対するウォームギヤ20の回転角θwgの比θwg/θwwとして定義される。 The steering assist mechanism 5 includes an electric motor 18 for generating a steering assist force (assist torque) and a speed reducer 19 for amplifying the output torque of the electric motor 18 and transmitting it to the steering mechanism 4 . The speed reducer 19 comprises a worm gear mechanism including a worm gear 20 and a worm wheel 21 meshing with the worm gear 20 . The speed reducer 19 is accommodated in a gear housing 22 as a transmission mechanism housing. In the following, the reduction ratio (gear ratio) of the speed reducer 19 may be represented by N. The reduction ratio N is defined as the ratio θ wgww of the rotation angle θ wg of the worm gear 20 to the rotation angle θ ww of the worm wheel 21 .
 ウォームギヤ20は、電動モータ18によって回転駆動される。また、ウォームホイール21は、出力軸9に一体回転可能に連結されている。 The worm gear 20 is rotationally driven by the electric motor 18 . Also, the worm wheel 21 is connected to the output shaft 9 so as to be rotatable together.
 電動モータ18によってウォームギヤ20が回転駆動されると、ウォームホイール21が回転駆動され、ステアリングシャフト6にモータトルクが付与されるとともにステアリングシャフト6(出力軸9)が回転する。そして、ステアリングシャフト6の回転は、中間軸7を介してピニオン軸13に伝達される。ピニオン軸13の回転は、ラック軸14の軸方向移動に変換される。これにより、転舵輪3が転舵される。すなわち、電動モータ18によってウォームギヤ20を回転駆動することによって、電動モータ18による操舵補助や転舵輪3の転舵が可能となる。電動モータ18には、電動モータ18のロータの回転角を検出するための回転角センサ23が設けられている。 When the worm gear 20 is rotationally driven by the electric motor 18, the worm wheel 21 is rotationally driven, motor torque is applied to the steering shaft 6, and the steering shaft 6 (output shaft 9) rotates. Rotation of the steering shaft 6 is transmitted to the pinion shaft 13 via the intermediate shaft 7 . Rotation of the pinion shaft 13 is converted into axial movement of the rack shaft 14 . As a result, the steerable wheels 3 are steered. That is, by rotationally driving the worm gear 20 with the electric motor 18, the steering assistance with the electric motor 18 and the steering of the steerable wheels 3 become possible. The electric motor 18 is provided with a rotation angle sensor 23 for detecting the rotation angle of the rotor of the electric motor 18 .
 出力軸9(電動モータ18の駆動対象の一例)に加えられるトルクとしては、電動モータ18によるモータトルクと、モータトルク以外の外乱トルクとがある。モータトルク以外の外乱トルクTlcには、操舵トルクTtb、路面負荷トルク(路面反力トルク)Trl、摩擦トルクT等が含まれる。 The torque applied to the output shaft 9 (an example of the object to be driven by the electric motor 18) includes motor torque by the electric motor 18 and disturbance torque other than the motor torque. The disturbance torque T lc other than the motor torque includes steering torque T tb , road load torque (road surface reaction torque) T rl , friction torque T f and the like.
 操舵トルクTtbは、ドライバによってステアリングホイール2に加えられる力(ドライバトルク)や、ステアリング慣性によって発生する力等によって、ステアリングホイール2側から出力軸9に加えられるトルクである。 The steering torque Ttb is a torque applied to the output shaft 9 from the steering wheel 2 side by force applied to the steering wheel 2 by the driver (driver torque), force generated by steering inertia, or the like.
 路面負荷トルクTrlは、タイヤに発生するセルフアライニングトルク、サスペンションやタイヤホイールアライメントによって発生する力、ラックアンドピニオン機構の摩擦力等によって、転舵輪3側からラック軸14を介して出力軸9に加えられるトルクである。 The road load torque Trl is generated by the self-aligning torque generated in the tire, the force generated by the suspension and tire wheel alignment, the frictional force of the rack and pinion mechanism, and the like. is the torque applied to
 車両には、車両の進行方向前方の道路を撮影するCCD(Charge Coupled Device)カメラ25、自車位置を検出するためのGPS(Global Positioning System)26、道路形状や障害物を検出するためのレーダー27、地図情報を記憶した地図情報メモリ28および車速Vを検出するため車速センサ29が搭載されている。 The vehicle has a CCD (Charge Coupled Device) camera 25 that captures the road in front of the vehicle, a GPS (Global Positioning System) 26 that detects the position of the vehicle, and a radar that detects road shapes and obstacles. 27, a map information memory 28 storing map information and a vehicle speed sensor 29 for detecting vehicle speed V are mounted.
 CCDカメラ25、GPS26、レーダー27、地図情報メモリ28および車速センサ29は、運転支援制御を行うための上位ECU(ECU:Electronic Control Unit)201に接続されている。上位ECU201は、CCDカメラ25、GPS26、レーダー27および車速センサ29によって得られる情報および地図情報を元に、周辺環境認識、自車位置推定、経路計画等を行い、操舵や駆動アクチュエータの制御目標値の決定を行う。 The CCD camera 25, GPS 26, radar 27, map information memory 28, and vehicle speed sensor 29 are connected to a host ECU (Electronic Control Unit) 201 for driving support control. Based on the information and map information obtained by the CCD camera 25, the GPS 26, the radar 27 and the vehicle speed sensor 29, the host ECU 201 recognizes the surrounding environment, estimates the position of the vehicle, plans routes, etc., and determines control target values for steering and drive actuators. make a decision.
 この実施形態では、運転モードとして、通常モードと運転支援モードとがある。上位ECU201は、運転支援モード時には、運転支援のための自動操舵指令値θ c,adを設定する。この実施形態では、運転支援は、車両位置を車線中央(レーンセンタ)に維持するためのレーンセンタリングアシスト(LCA)である。自動操舵指令値θ c,adは、車両を車線の中央に沿って走行させるための操舵角の目標値である。自動操舵指令値θ c,adは、例えば、車速、目標走行ラインに対する横偏差および目標走行ラインに対する車両のヨー偏差に基づいて、設定される。このような自動操舵指令値θ c,adを設定する処理は、周知であるため、ここでは詳細な説明を省略する。なお、通常モード時には、上位ECU201は、自動操舵指令値θ c,adを零に設定する。 In this embodiment, there are a normal mode and a driving support mode as the driving modes. The host ECU 201 sets an automatic steering command value θ * c,ad for driving assistance in the driving assistance mode. In this embodiment, the driving assistance is Lane Centering Assist (LCA) to keep the vehicle position in the middle of the lane (lane center). The automatic steering command value θ * c,ad is a target steering angle value for driving the vehicle along the center of the lane. The automatic steering command value θ * c,ad is set based on, for example, the vehicle speed, the lateral deviation from the target travel line, and the yaw deviation of the vehicle from the target travel line. Since the processing for setting the automatic steering command value θ * c,ad is well known, detailed description thereof will be omitted here. In the normal mode, the host ECU 201 sets the automatic steering command value θ * c,ad to zero.
 また、上位ECU201は、運転モードが通常モードであるか運転支援モードであるかを示すモード信号Smodeを出力する。モード信号Smode、上位ECU201によって設定される自動操舵指令値θ c,adおよび車速Vは、車載ネットワークを介して、モータ制御用ECU202に与えられる。トルクセンサ12によって検出される操舵トルクTtb、回転角センサ23の出力信号は、モータ制御用ECU202に入力される。モータ制御用ECU202は、これらの入力信号および上位ECU201から与えられる情報に基づいて、電動モータ18を制御する。 The host ECU 201 also outputs a mode signal S mode indicating whether the driving mode is the normal mode or the driving assistance mode. The mode signal S mode , the automatic steering command value θ * c,ad set by the host ECU 201, and the vehicle speed V are given to the motor control ECU 202 via the vehicle-mounted network. The steering torque T tb detected by the torque sensor 12 and the output signal of the rotation angle sensor 23 are input to the motor control ECU 202 . The motor control ECU 202 controls the electric motor 18 based on these input signals and information given from the host ECU 201 .
 [2]モータ制御用ECU202
 図2は、モータ制御用ECU202の電気的構成を説明するためのブロック図である。
[2] Motor control ECU 202
FIG. 2 is a block diagram for explaining the electrical configuration of the motor control ECU 202. As shown in FIG.
 モータ制御用ECU202は、マイクロコンピュータ40と、マイクロコンピュータ40によって制御され、電動モータ18に電力を供給する駆動回路(インバータ回路)31と、電動モータ18に流れる電流(以下、「モータ電流Im,int」という)を検出するための電流検出回路32とを備えている。 The motor control ECU 202 includes a microcomputer 40, a drive circuit (inverter circuit) 31 that is controlled by the microcomputer 40 to supply electric power to the electric motor 18, and a current flowing through the electric motor 18 (hereinafter referred to as "motor current Im, int ”).
 マイクロコンピュータ40は、CPUおよびメモリ(ROM、RAM、不揮発性メモリなど)を備えており、所定のプログラムを実行することによって、複数の機能処理部として機能するようになっている。この複数の機能処理部には、回転角演算部41と、減速比除算部42と、第1不感帯処理部43と、アシストトルク指令値設定部44と、第2不感帯処理部45と、手動操舵指令値生成部46と、統合角度指令値演算部47と、角度制御部48と、トルク制御部49と、ハンズオンオフ判定部50と、第1不感帯幅設定部51と、第2不感帯幅設定部52とが含まれる。 The microcomputer 40 has a CPU and memory (ROM, RAM, non-volatile memory, etc.), and functions as a plurality of functional processing units by executing predetermined programs. The plurality of function processing units include a rotation angle calculation unit 41, a reduction ratio division unit 42, a first dead zone processing unit 43, an assist torque command value setting unit 44, a second dead band processing unit 45, a manual steering A command value generation unit 46, an integrated angle command value calculation unit 47, an angle control unit 48, a torque control unit 49, a hands-on/off determination unit 50, a first dead band width setting unit 51, and a second dead band width setting unit 52 are included.
 回転角演算部41は、回転角センサ23の出力信号に基づいて、電動モータ18のロータ回転角θm,intを演算する。減速比除算部42は、ロータ回転角θm,intを減速比Nで除算することにより、ロータ回転角θm,intを出力軸9の回転角(実操舵角)θc,intに変換する。 The rotation angle calculator 41 calculates the rotor rotation angle θ m,int of the electric motor 18 based on the output signal of the rotation angle sensor 23 . A reduction ratio dividing unit 42 divides the rotor rotation angle θm ,int by the reduction ratio N to convert the rotor rotation angle θm ,int into the rotation angle (actual steering angle) θc,int of the output shaft 9. .
 第1不感帯処理部43には、操舵トルクTtbが入力される。第1不感帯処理部43は、第1不感帯幅をWとすると、操舵トルクTtbが-W/2以上でW/2以下の範囲(第1不感帯領域)内である場合には、零を、第1不感帯処理後の操舵トルクTtb,deとして出力する(後述する図10参照)。 The steering torque Ttb is input to the first dead zone processor 43 . When the steering torque T tb is within the range of -W 1 /2 or more and W 1 /2 or less (first dead zone region), the first dead zone processing unit 43, where W 1 is the first dead zone width, Zero is output as the steering torque Ttb ,de after the first dead zone processing (see FIG. 10 described later).
 操舵トルクTtbが-W/2よりも小さい領域では、第1不感帯処理部43は、[Ttb+(W/2)]を、第1不感帯処理後の操舵トルクTtb,deとして出力する。操舵トルクTtbがW/2よりも大きい領域では、第1不感帯処理部43は、[Ttb-(W/2)]を、第1不感帯処理後の操舵トルクTtb,deとして出力する。第1不感帯幅Wは、第1不感帯幅設定部51によって設定される。 In a region where the steering torque T tb is smaller than −W 1 /2, the first dead zone processing unit 43 sets [T tb +(W 1 /2)] as the steering torque T tb,de after the first dead zone processing. Output. In a region where the steering torque T tb is greater than W 1 /2, the first dead zone processing unit 43 outputs [T tb - (W 1 /2)] as the steering torque T tb,de after the first dead zone processing. do. The first dead zone width W1 is set by the first dead zone width setting section 51 .
 アシストトルク指令値設定部44は、手動操作に必要なアシストトルクの目標値であるアシストトルク指令値T m,mdを設定する。アシストトルク指令値設定部44は、車速Vとトルクセンサ12によって検出される操舵トルクTtbに基づいて、アシストトルク指令値T m,mdを設定する。操舵トルクTtbに対するアシストトルク指令値T m,mdの設定例は、図3に示されている。 The assist torque command value setting unit 44 sets assist torque command values T * m and md, which are target values of assist torque required for manual operation. The assist torque command value setting unit 44 sets assist torque command values T * m and md based on the vehicle speed V and the steering torque Ttb detected by the torque sensor 12 . A setting example of the assist torque command values T * m, md with respect to the steering torque Ttb is shown in FIG.
 アシストトルク指令値T m,mdは、電動モータ18から左方向操舵のための操舵補助力を発生させるべきときには正の値とされ、電動モータ18から右方向操舵のための操舵補助力を発生させるべきときには負の値とされる。アシストトルク指令値T m,mdは、操舵トルクTtbの正の値に対しては正をとり、操舵トルクTtbの負の値に対しては負をとる。そして、アシストトルク指令値T m,mdは、操舵トルクTtbの絶対値が大きくなるほど、その絶対値が大きくなるように設定される。アシストトルク指令値T m,mdは、車速Vが大きいほど、その絶対値が小さくなるように設定される。 The assist torque command values T * m, md are positive values when the electric motor 18 is to generate a steering assist force for left steering, and the electric motor 18 generates a steering assist force for right steering. Negative value when it should. The assist torque command values T * m, md are positive for a positive value of the steering torque Ttb and negative for a negative value of the steering torque Ttb . The assist torque command values T * m, md are set such that the absolute value thereof increases as the absolute value of the steering torque Ttb increases. The assist torque command values T * m, md are set such that the higher the vehicle speed V, the smaller the absolute value thereof.
 なお、アシストトルク指令値設定部44は、操舵トルクTtbに予め設定された定数を乗算することによって、アシストトルク指令値T m,mdを演算してもよい。 The assist torque command value setting unit 44 may calculate the assist torque command values T * m, md by multiplying the steering torque Ttb by a preset constant.
 第2不感帯処理部45には、アシストトルク指令値T m,mdが入力される。第2不感帯処理部45は、第2不感帯幅をWとすると、アシストトルク指令値T m,mdが-W/2以上でW/2以下の範囲(第2不感帯領域)内である場合には、零を、第2不感帯処理後のアシストトルク指令値T m,md,deとして出力する。 The assist torque command values T * m, md are input to the second dead zone processing unit 45 . Assuming that the second dead band width is W 2 , the second dead band processing unit 45 adjusts the assist torque command value T * m, md within the range of −W 2 /2 or more and W 2 /2 or less (second dead band region). In some cases, zero is output as the assist torque command value T * m,md,de after the second dead zone processing.
 アシストトルク指令値T m,mdが-W/2よりも小さい領域では、第2不感帯処理部45は、[T m,md+(W/2)]を、第2不感帯処理後のアシストトルク指令値T m,md,deとして出力する。アシストトルク指令値T m,mdがW/2よりも大きい領域では、第2不感帯処理部45は、[T m,md-(W/2)]を、第2不感帯処理後のアシストトルク指令値T m,md,deとして出力する。第2不感帯幅Wは、第2不感帯幅設定部52によって設定される。 In a region where the assist torque command values T * m, md are smaller than −W 2 /2, the second dead zone processing unit 45 calculates [T * m, md + (W 2 /2)] after the second dead zone processing. are output as assist torque command values T * m, md, and de . In a region where the assist torque command values T * m,md are greater than W 2 /2, the second dead zone processing unit 45 converts [T * m,md− (W 2 /2)] to They are output as assist torque command values T * m, md, and de . The second dead band width W2 is set by the second dead band width setting unit 52 .
 手動操舵指令値生成部46は、ドライバがステアリングホイール2を操作した場合に、当該ステアリングホイール操作に応じた操舵角を手動操舵指令値θ c,mdとして設定するために設けられている。手動操舵指令値生成部46は、第1不感帯処理後の操舵トルクTtb,deと、第2不感帯処理後のアシストトルク指令値T m,md,deとを用いて手動操舵指令値θ c,mdを生成する。手動操舵指令値生成部46は、この実施形態では、リファレンスEPSモデルを用いて、手動操舵指令値θ c.mdを設定する。 The manual steering command value generator 46 is provided to set the steering angle corresponding to the steering wheel operation as manual steering command values θ * c, md when the driver operates the steering wheel 2 . The manual steering command value generator 46 generates the manual steering command value θ * using the steering torque Ttb,de after the first dead band processing and the assist torque command value T * m, md, de after the second dead band processing. Generate c and md . In this embodiment, the manual steering command value generator 46 uses the reference EPS model to generate the manual steering command value θ * c. Set md .
 図4は、手動操舵指令値生成部46で用いられるリファレンスEPSモデルの一例を示す模式図である。 FIG. 4 is a schematic diagram showing an example of the reference EPS model used in the manual steering command value generator 46. FIG.
 このリファレンスEPSモデルは、ロアコラムを含む単一慣性モデルである。ロアコラムは、出力軸9およびウォームホイール21に対応する。図4において、Jは、ロアコラムの慣性であり、θはロアコラムの回転角であり、Ttb,deは、第1不感帯処理後の操舵トルクである。このリファレンスEPSモデルは、第1不感帯処理後の操舵トルクTtb,deと、第2不感帯処理後のアシストトルク指令値T m,md,deに基づき電動モータ18から出力軸9に作用するトルクN・T m,md,deと、路面負荷トルクTrlとがロアコラムに与えられたときのロアコラムの回転角θを生成(推定)するためのモデルである。路面負荷トルクTrlは、ばね定数kおよび粘性減衰係数cを用いて、次式(1)で表される。 This reference EPS model is a single inertia model that includes a lower column. A lower column corresponds to the output shaft 9 and the worm wheel 21 . In FIG. 4, Jc is the inertia of the lower column, θc is the rotation angle of the lower column, and Ttb ,de is the steering torque after the first dead zone processing. This reference EPS model is a torque acting on the output shaft 9 from the electric motor 18 based on the steering torque Ttb ,de after the first dead band processing and the assist torque command value T * m, md, de after the second dead band processing. This is a model for generating (estimating) the rotation angle θc of the lower column when N·T * m, md, de and road load torque Trl are applied to the lower column. A road load torque Trl is expressed by the following equation (1) using a spring constant k and a viscous damping coefficient c.
 Trl=-k・θ-c(dθ/dt)  …(1)
 この実施形態では、ばね定数kおよび粘性減衰係数cとして、予め実験・解析等で求められた所定値が設定されている。
T rl =−k·θ c −c(dθ c /dt) (1)
In this embodiment, the spring constant k and the viscous damping coefficient c are set to predetermined values obtained in advance through experiments, analyses, or the like.
 リファレンスEPSモデルの運動方程式は、次式(2)で表される。 The equation of motion of the reference EPS model is expressed by the following formula (2).
 J・dθ/dt=Ttb,de+N・T m,md,de-k・θ-c(dθ/dt) …(2)
 手動操舵指令値生成部46は、式(2)の微分方程式を解くことにより、ロアコラムの回転角θを演算する。そして、手動操舵指令値生成部46は、得られたロアコラムの回転角θを手動操舵指令値θ c,mdとして設定する。
J c ·d 2 θ c /dt 2 =T tb,de +N·T * m,md,de −k·θ c −c(dθ c /dt) (2)
The manual steering command value generator 46 calculates the rotation angle θc of the lower column by solving the differential equation of equation (2). Then, the manual steering command value generator 46 sets the obtained rotation angle θc of the lower column as the manual steering command value θ * c,md .
 統合角度指令値演算部47は、上位ECU201によって設定される自動操舵指令値θ c,adに手動操舵指令値θ c,mdを加算して、統合角度指令値θ c,intを演算する。 The integrated angle command value calculation unit 47 adds the manual steering command value θ*c, md to the automatic steering command value θ * c,ad set by the host ECU 201 to calculate the integrated angle command value θ * c,int . do.
 角度制御部48は、統合角度指令値θ c,intに基づいて、電動モータ18のモータトルクの目標値であるモータトルク指令値T m,intを演算する。トルク制御部49は、電動モータ18のモータトルクがモータトルク指令値T m,intに近づくように駆動回路31を駆動する。つまり、角度制御部48およびトルク制御部49からなる制御部は、実操舵角θc,int(出力軸9の回転角θc,int)が統合角度指令値θ c,intに近づくように、駆動回路31を駆動制御する。角度制御部48およびトルク制御部49の動作の詳細については、後述する。 The angle control unit 48 calculates a motor torque command value T * m ,int , which is a target value of the motor torque of the electric motor 18, based on the integrated angle command value θ * c ,int . The torque control unit 49 drives the drive circuit 31 so that the motor torque of the electric motor 18 approaches the motor torque command value T * m,int . That is, the control unit including the angle control unit 48 and the torque control unit 49 controls the actual steering angle θ c,int (the rotation angle θ c,int of the output shaft 9) to approach the integrated angle command value θ * c,int. , drive and control the drive circuit 31 . Details of the operations of the angle control section 48 and the torque control section 49 will be described later.
 ハンズオンオフ判定部50は、ドライバがステアリングホイール2を把持している把持状態(ハンズオン)であるか、ドライバがステアリングホイール2を把持していない手放し状態(ハンズオフ)であるかを判定する。ハンズオンオフ判定部50は、例えば、操舵トルクTtbと、実操舵角θc,intまたはロータ回転角θm,intとに基づいて、ドライバがステアリングホイール2に加えたトルクであるドライバトルクを推定し、ドライバトルクが所定の閾値以上であれば把持状態と判定し、ドライバトルクが閾値未満である状態が所定時間以上継続しているときに手放し状態であると判定するものであってもよい。この場合、ドライバトルクが閾値以上の状態から閾値未満に変化した後、手放し状態であると判定されるまでの間は、把持状態と判定される。 The hands-on/off determination unit 50 determines whether the driver is gripping the steering wheel 2 (hands-on) or the driver is not gripping the steering wheel 2 (hands-off). The hands-on/off determination unit 50 estimates the driver torque, which is the torque applied to the steering wheel 2 by the driver, based on, for example, the steering torque Ttb and the actual steering angle θc,int or the rotor rotation angle θm,int. If the driver torque is equal to or greater than a predetermined threshold value, it may be determined that the gripped state is present, and if the driver torque is less than the threshold value for a predetermined time or longer, it may be determined that the hand is released. In this case, after the driver torque changes from a state equal to or greater than the threshold value to less than the threshold value, it is determined to be in the gripping state until it is determined to be in the hands-free state.
 このようなハンズオンオフ判定部50としては、例えば、特開2017-114324号公報、特開2018-165156号公報、特開2020-142703号公報、特開2020-59361号公報、特開2020-59362号公報等に記載されている「ハンドル操作状態判定部」を用いることができる。 As such a hands-on/off determination unit 50, for example, A "steering wheel operation state determination unit" described in JP-A-2003-200053 or the like can be used.
 ハンズオンオフ判定部50は、例えば、操舵トルクTtbが所定の閾値以上であれば把持状態と判定し、操舵トルクTtbが閾値未満である状態が所定時間以上継続しているときに手放し状態であると判定するものであってもよい。この場合、操舵トルクTtbが閾値以上の状態から閾値未満に変化した後、手放し状態であると判定されるまでの間は、把持状態と判定される。 For example , if the steering torque Ttb is equal to or greater than a predetermined threshold value, the hands-on/off determination unit 50 determines that the gripping state is established. It may be determined that there is. In this case, after the steering torque Ttb changes from the threshold value or more to less than the threshold value, the gripping state is determined until the hands-free state is determined.
 第1不感帯幅設定部51および第2不感帯幅設定部52は、それぞれ、運転支援モード時に、ハンズオンオフ判定部50のハンズオンオフ判定結果に基づいて、第1不感帯幅Wおよび第2不感帯幅Wを設定する。第1不感帯幅設定部51および第2不感帯幅設定部52の動作の詳細については後述する。 A first dead band width setting unit 51 and a second dead band width setting unit 52 respectively set a first dead band width W1 and a second dead band width W based on the hands-on/off determination result of the hands-on/off determination unit 50 in the driving assistance mode. Set 2 . The details of the operations of the first dead band width setting section 51 and the second dead band width setting section 52 will be described later.
 図5は、角度制御部48の構成を示すブロック図である。 FIG. 5 is a block diagram showing the configuration of the angle control section 48. As shown in FIG.
 角度制御部48は、統合角度指令値θ c,intに基づいてモータトルク指令値T m,intを演算する。角度制御部48は、ローパスフィルタ(LPF)61と、フィードバック制御部62と、フィードフォワード制御部63と、外乱トルク推定部64と、トルク加算部65と、外乱トルク補償部66と、減速比除算部67と、減速比乗算部68とを含む。 The angle control unit 48 calculates a motor torque command value T * m , int based on the integrated angle command value θ * c , int . The angle control unit 48 includes a low-pass filter (LPF) 61, a feedback control unit 62, a feedforward control unit 63, a disturbance torque estimation unit 64, a torque addition unit 65, a disturbance torque compensation unit 66, and a reduction ratio division. A section 67 and a speed reduction ratio multiplication section 68 are included.
 減速比乗算部68は、減速比除算部67によって演算されるモータトルク指令値T m,intに減速機19の減速比Nを乗算することにより、モータトルク指令値T m,intを出力軸9に作用する出力軸トルク指令値T c,int(=N・T m,int)に換算する。 The reduction ratio multiplication unit 68 multiplies the motor torque command value T * m,int calculated by the reduction ratio division unit 67 by the reduction ratio N of the reduction gear 19 to output the motor torque command value T * m,int . Convert to an output shaft torque command value T * c,int (=N·T * m,int ) acting on the shaft 9 .
 ローパスフィルタ61は、統合角度指令値θ c,intに対してローパスフィルタ処理を行う。ローパスフィルタ処理後の統合角度指令値θ c,intfは、フィードバック制御部62およびフィードフォワード制御部63に与えられる。 The low-pass filter 61 performs low-pass filter processing on the integrated angle command value θ * c,int . The integrated angle command value θ * c, intf after low-pass filtering is given to the feedback control section 62 and the feedforward control section 63 .
 フィードバック制御部62は、減速比除算部42(図2参照)によって演算される実操舵角θc,intを、ローパスフィルタ処理後の統合角度指令値θ c,intfに近づけるために設けられている。フィードバック制御部62は、角度偏差演算部62Aと、PD制御部62Bとを含む。角度偏差演算部62Aは、統合角度指令値θ c,intfと、減速比除算部42によって演算される実操舵角θc,intとの偏差Δθc,int(=θ c,intf-θc,int)を演算する。なお、角度偏差演算部62Aは、統合角度指令値θ c,intfと、外乱トルク推定部64によって演算される操舵角推定値^θc,intとの偏差(θ c,intf-^θc,int)を、角度偏差Δθc,intとして演算するようにしてもよい。 The feedback control unit 62 is provided to bring the actual steering angle θc,int calculated by the reduction ratio dividing unit 42 (see FIG. 2) closer to the integrated angle command value θ * c,intf after low-pass filtering. there is The feedback control section 62 includes an angular deviation calculation section 62A and a PD control section 62B. An angle deviation calculation unit 62A calculates a deviation Δθ c, int (=θ * c , intf −θ c, int ). The angle deviation calculation unit 62A calculates the deviation (θ* c , intf -c,int ) may be calculated as the angular deviation Δθ c,int .
 PD制御部62Bは、角度偏差演算部62Aによって演算される角度偏差Δθc,intに対してPD演算(比例微分演算)を行うことにより、フィードバック制御トルクTfb,intを演算する。フィードバック制御トルクTfb,intは、トルク加算部65に与えられる。 The PD control section 62B calculates the feedback control torque T fb ,int by performing a PD calculation (proportional differential calculation) on the angular deviation Δθ c, int calculated by the angular deviation calculating section 62A. The feedback control torque T fb,int is applied to the torque adder 65 .
 フィードフォワード制御部63は、電動パワーステアリングシステム1の慣性による応答性の遅れを補償して、制御の応答性を向上させるために設けられている。フィードフォワード制御部63は、角加速度演算部63Aと慣性乗算部63Bとを含む。角加速度演算部63Aは、統合角度指令値θ c,intfを二階微分することにより、目標角加速度dθ c,intf/dtを演算する。 The feedforward control section 63 is provided to compensate for the response delay due to the inertia of the electric power steering system 1 and improve the control response. Feedforward control section 63 includes an angular acceleration calculation section 63A and an inertia multiplication section 63B. The angular acceleration calculator 63A calculates a target angular acceleration d 2 θ * c,intf /dt 2 by second-order differentiating the integrated angle command value θ * c, intf.
 慣性乗算部63Bは、角加速度演算部63Aによって演算された目標角加速度dθ c,intf/dtに、電動パワーステアリングシステム1の慣性Jを乗算することにより、フィードフォワード制御トルクTff,int(=J・dθ c,intf/dt)を演算する。慣性Jは、例えば、後述する電動パワーステアリングシステム1の物理モデル(図6参照)から求められる。フィードフォワード制御トルクTff,intは、慣性補償値として、トルク加算部65に与えられる。 The inertia multiplier 63B multiplies the target angular acceleration d 2 θ * c,intf /dt 2 calculated by the angular acceleration calculator 63A by the inertia J of the electric power steering system 1 to obtain the feedforward control torque Tff. , int (=J·d 2 θ * c, intf /dt 2 ). The inertia J is obtained, for example, from a physical model (see FIG. 6) of the electric power steering system 1, which will be described later. The feedforward control torque Tff ,int is given to the torque adder 65 as an inertia compensation value.
 トルク加算部65は、フィードバック制御トルクTfb,intにフィードフォワード制御トルクTff,intを加算することにより、基本トルク指令値(Tfb,int+Tff,int)を演算する。 The torque adder 65 calculates a basic torque command value (T fb,int +T ff, int ) by adding the feedforward control torque T ff,int to the feedback control torque T fb,int .
 外乱トルク推定部64は、プラント(電動モータ18の制御対象)に外乱として発生する非線形なトルク(外乱トルク:モータトルク以外のトルク)を推定するために設けられている。外乱トルク推定部64は、プラントへの入力値である出力軸トルク指令値T c,int(=N・T m,int)と、プラントの出力である実操舵角θc,intとに基づいて、外乱トルク(外乱負荷)Tlc、操舵角θc,intおよび操舵角微分値(角速度)dθc,int/dtを推定する。外乱トルクTlc、操舵角θc,intおよび操舵角微分値(角速度)dθc,int/dtの推定値を、それぞれ^Tlc、^θc,intおよびd^θc,int/dtで表す。外乱トルク推定部64の詳細については、後述する。 The disturbance torque estimator 64 is provided for estimating nonlinear torque (disturbance torque: torque other than motor torque) generated as a disturbance in the plant (controlled object of the electric motor 18). The disturbance torque estimator 64 calculates the output shaft torque command value T * c,int (=N·T * m,int ), which is the input value to the plant, and the actual steering angle θc,int, which is the output of the plant. Based on this, the disturbance torque (disturbance load) T lc , the steering angle θ c,int and the steering angle differential value (angular velocity) dθ c,int /dt are estimated. Estimated values of disturbance torque T lc , steering angle θ c,int and steering angle differential value (angular velocity) dθ c,int /dt are respectively given by ^T lc , ^θ c,int and d^θ c,int /dt. show. Details of the disturbance torque estimator 64 will be described later.
 外乱トルク推定部64によって演算された外乱トルク推定値^Tlcは、外乱トルク補償値として外乱トルク補償部66に与えられる。 The disturbance torque estimation value ̂T lc calculated by the disturbance torque estimator 64 is given to the disturbance torque compensator 66 as a disturbance torque compensation value.
 外乱トルク補償部66は、基本トルク指令値(Tfb,int+Tff,int)から外乱トルク推定値^Tlcを減算することにより、出力軸トルク指令値T c,int(=Tfb,int+Tff,int-^Tlc)を演算する。これにより、外乱トルクが補償された出力軸トルク指令値T c,int(出力軸9に対するトルク指令値)が得られる。 The disturbance torque compensator 66 subtracts the disturbance torque estimated value ̂Tlc from the basic torque command value (Tfb ,int + Tff ,int ) to obtain the output shaft torque command value T * c ,int (=Tfb , int +T ff, int −̂T lc ). As a result, the output shaft torque command value T * c,int (torque command value for the output shaft 9) in which the disturbance torque is compensated is obtained.
 出力軸トルク指令値T c,intは、減速比除算部67に与えられる。減速比除算部67は、出力軸トルク指令値T c,intを減速比Nで除算することにより、モータトルク指令値T m,intを演算する。このモータトルク指令値T m,intが、トルク制御部49(図2参照)に与えられる。 The output shaft torque command value T * c,int is given to the reduction ratio dividing section 67 . A reduction ratio division unit 67 divides the output shaft torque command value T * c,int by the reduction ratio N to calculate a motor torque command value T * m,int . This motor torque command value T * m,int is given to the torque control section 49 (see FIG. 2).
 外乱トルク推定部64について詳しく説明する。外乱トルク推定部64は、例えば、図6に示す電動パワーステアリングシステム1の物理モデル101を使用して、外乱トルクTlc、操舵角θc,intおよび角速度dθc,int/dtを推定する外乱オブザーバから構成されている。 The disturbance torque estimator 64 will be described in detail. The disturbance torque estimator 64 uses, for example, the physical model 101 of the electric power steering system 1 shown in FIG. Consists of observers.
 この物理モデル101は、出力軸9および出力軸9に固定されたウォームホイール21を含むプラント(モータ駆動対象の一例)102を含む。プラント102には、ステアリングホイール2からトーションバー10を介して操舵トルクTtbが与えられるとともに、転舵輪3側から路面負荷トルクTrlが与えられる。 This physical model 101 includes a plant (an example of a motor driven object) 102 including an output shaft 9 and a worm wheel 21 fixed to the output shaft 9 . The plant 102 is provided with a steering torque Ttb from the steering wheel 2 through the torsion bar 10 and a road load torque Trl from the steered wheels 3 side.
 さらに、プラント102には、ウォームギヤ20を介して出力軸トルク指令値T c,int(=N・T m,int)が与えられるとともに、ウォームホイール21とウォームギヤ20との間の摩擦によって摩擦トルクTが与えられる。 Further, the plant 102 is given an output shaft torque command value T * c,int (=N·T * m,int ) via the worm gear 20, and the friction between the worm wheel 21 and the worm gear 20 causes friction A torque Tf is applied.
 プラント102の慣性をJとすると、物理モデル101の慣性についての運動方程式は、次式(3)で表される。 Assuming that the inertia of the plant 102 is J, the equation of motion for the inertia of the physical model 101 is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 dθc,int/dtは、プラント102の角加速度である。Nは、減速機19の減速比である。Tlcは、プラント102に与えられるモータトルク以外の外乱トルクを示している。この実施形態では、外乱トルクTlcは、操舵トルクTtbと路面負荷トルクTrlと摩擦トルクTとの和として示されているが、実際には、外乱トルクTlcはこれら以外のトルクを含んでいる。 d 2 θ c,int /dt 2 is the angular acceleration of plant 102 . N is the speed reduction ratio of the speed reducer 19 . Tlc indicates disturbance torque other than the motor torque applied to the plant 102 . In this embodiment, the disturbance torque Tlc is shown as the sum of the steering torque Ttb , the road load torque Trl , and the friction torque Tf . contains.
 図6の物理モデル101に対する状態方程式は、次式(4)で表わされる。 The state equation for the physical model 101 in FIG. 6 is expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 前記式(4)において、xは状態変数ベクトル、uは既知入力ベクトル、uは未知入力ベクトル、yは出力ベクトル(測定値)である。前記式(4)において、Aはシステム行列、Bは第1入力行列、Bは第2入力行列、Cは出力行列、Dは、直達行列である。 In the above equation (4), x is a state variable vector, u1 is a known input vector, u2 is an unknown input vector, and y is an output vector (measured value). (4), A is the system matrix, B1 is the first input matrix, B2 is the second input matrix, C is the output matrix, and D is the feedthrough matrix.
 前記状態方程式を、未知入力ベクトルuを状態の1つとして含めた系に拡張する。拡張系の状態方程式(拡張状態方程式)は、次式(5)で表される。 We extend the above state equation to a system that includes the unknown input vector u2 as one of the states. The state equation of the extended system (extended state equation) is represented by the following equation (5).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 前記式(5)において、xは、拡張系の状態変数ベクトルであり、次式(6)で表される。 In the above equation (5), x e is a state variable vector of the extended system and is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 前記式(5)において、Aは拡張系のシステム行列、Bは拡張系の既知入力行列、Cは拡張系の出力行列である。 In the above equation (5), A e is a system matrix of the extended system, B e is a known input matrix of the extended system, and C e is an output matrix of the extended system.
 前記式(5)の拡張状態方程式から、次式(7)の方程式で表される外乱オブザーバ(拡張状態オブザーバ)が構築される。 A disturbance observer (extended state observer) represented by the following equation (7) is constructed from the extended state equation of equation (5) above.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(7)において、^xはxの推定値を表している。また、Lはオブザーバゲインである。また、^yはyの推定値を表している。^xは、次式(8)で表される。 In equation (7), ̂x e represents the estimated value of x e . Also, L is an observer gain. Also, ^y represents the estimated value of y. ^x e is represented by the following equation (8).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(8)において、^θc,intはθc,intの推定値であり、^TlcはTlcの推定値である。 In equation (8), ̂θc ,int is the estimated value of θc ,int , and ̂Tlc is the estimated value of Tlc .
 外乱トルク推定部64は、前記式(7)の方程式に基づいて状態変数ベクトル^xを演算する。 The disturbance torque estimator 64 calculates the state variable vector ̂xe based on the equation (7).
 図7は、外乱トルク推定部64の構成を示すブロック図である。 FIG. 7 is a block diagram showing the configuration of the disturbance torque estimator 64. As shown in FIG.
 外乱トルク推定部64は、入力ベクトル入力部81と、出力行列乗算部82と、第1加算部83と、ゲイン乗算部84と、入力行列乗算部85と、システム行列乗算部86と、第2加算部87と、積分部88と、状態変数ベクトル出力部89とを含む。 The disturbance torque estimation unit 64 includes an input vector input unit 81, an output matrix multiplication unit 82, a first addition unit 83, a gain multiplication unit 84, an input matrix multiplication unit 85, a system matrix multiplication unit 86, a second It includes an addition section 87 , an integration section 88 and a state variable vector output section 89 .
 減速比乗算部68(図5参照)によって演算される出力軸トルク指令値T c,int(=N・T m,int)は、入力ベクトル入力部81に与えられる。入力ベクトル入力部81は、入力ベクトルuを出力する。 The output shaft torque command value T * c,int (=N·T * m,int ) calculated by the reduction ratio multiplication section 68 (see FIG. 5) is given to the input vector input section 81 . The input vector input unit 81 outputs an input vector u1 .
 積分部88の出力が状態変数ベクトル^x(前記式(8)参照)となる。演算開始時には、状態変数ベクトル^xとして初期値が与えられる。状態変数ベクトル^xの初期値は、たとえば0である。 The output of the integrator 88 is the state variable vector ̂x e (see equation (8) above). At the start of computation, an initial value is given as the state variable vector ̂xe . The initial value of the state variable vector ̂x e is 0, for example.
 システム行列乗算部86は、状態変数ベクトル^xにシステム行列Aを乗算する。出力行列乗算部82は、状態変数ベクトル^xに出力行列Cを乗算する。 A system matrix multiplier 86 multiplies the state variable vector ̂x e by the system matrix A e . The output matrix multiplier 82 multiplies the state variable vector ̂x e by the output matrix C e .
 第1加算部83は、減速比除算部42(図2参照)によって演算された実操舵角θc,intである出力ベクトル(測定値)yから、出力行列乗算部82の出力(C・^x)を減算する。つまり、第1加算部83は、出力ベクトルyと出力ベクトル推定値^y(=C・^x)との差(y-^y)を演算する。ゲイン乗算部84は、第1加算部83の出力(y-^y)にオブザーバゲインL(前記式(7)参照)を乗算する。 The first adder 83 converts the output vector (measured value) y, which is the actual steering angle θ c,int calculated by the reduction ratio divider 42 (see FIG. 2), to the output (C e · ^x e ). That is, the first adder 83 calculates the difference (y−̂y) between the output vector y and the output vector estimated value ̂y (=C e ·̂x e ). The gain multiplier 84 multiplies the output (y−̂y) of the first adder 83 by the observer gain L (see the above equation (7)).
 入力行列乗算部85は、入力ベクトル入力部81から出力される入力ベクトルuに入力行列Bを乗算する。第2加算部87は、入力行列乗算部85の出力(Be・u)と、システム行列乗算部86の出力(A・^x)と、ゲイン乗算部84の出力(L(y-^y))とを加算することにより、状態変数ベクトルの微分値d^x/dtを演算する。積分部88は、第2加算部87の出力(d^x/dt)を積分することにより、状態変数ベクトル^xを演算する。状態変数ベクトル出力部89は、状態変数ベクトル^xに基づいて、外乱トルク推定値^Tlc、操舵角推定値^θc,intおよび角速度推定値d^θc,int/dtを演算する。 The input matrix multiplication unit 85 multiplies the input vector u1 output from the input vector input unit 81 by the input matrix Be . The second adder 87 outputs the output (Be·u 1 ) of the input matrix multiplier 85, the output (A e ·̂x e ) of the system matrix multiplier 86, and the output of the gain multiplier 84 (L(y− ̂y)) is added to calculate the differential value d̂x e /dt of the state variable vector. The integrator 88 calculates the state variable vector ̂x e by integrating the output (d̂x e /dt) of the second adder 87 . A state variable vector output unit 89 calculates an estimated disturbance torque value ̂T lc , an estimated steering angle value ̂θ c,int, and an estimated angular velocity value d̂θ c,int /dt based on the state variable vector ̂x e . .
 一般的な外乱オブザーバは、前述の拡張状態オブザーバとは異なり、プラントの逆モデルとローパスフィルタとから構成される。プラントの運動方程式は、前述のように式(3)で表される。したがって、プラントの逆モデルは、次式(9)となる。 Unlike the extended state observer described above, a general disturbance observer consists of an inverse model of the plant and a low-pass filter. The equation of motion of the plant is expressed by Equation (3) as described above. Therefore, the inverse model of the plant becomes the following equation (9).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 一般的な外乱オブザーバへの入力は、J・dθc,int/dtおよびN・T m,intであり、実操舵角θc,intの二階微分値を用いるため、回転角センサ23のノイズの影響を大きく受ける。これに対して、前述の実施形態の拡張状態オブザーバでは、積分型で外乱トルクを推定するため、微分によるノイズ影響を低減できる。 Inputs to a general disturbance observer are J·d 2 θ c,int /dt 2 and N·T * m, int . 23 noise. On the other hand, in the extended state observer of the above-described embodiment, since the disturbance torque is estimated in an integral manner, the noise effect due to differentiation can be reduced.
 なお、外乱トルク推定部64として、プラントの逆モデルとローパスフィルタとから構成される一般的な外乱オブザーバを用いてもよい。 As the disturbance torque estimator 64, a general disturbance observer composed of an inverse model of the plant and a low-pass filter may be used.
 図8は、トルク制御部49の電気的構成を示すブロック図である。トルク制御部49は、モータ電流指令値演算部91と、電流偏差演算部92と、PI制御部93と、PWM(Pulse Width Modulation)制御部94とを含む。 FIG. 8 is a block diagram showing the electrical configuration of the torque control section 49. As shown in FIG. Torque controller 49 includes a motor current command value calculator 91 , a current deviation calculator 92 , a PI controller 93 , and a PWM (Pulse Width Modulation) controller 94 .
 モータ電流指令値演算部91は、角度制御部48によって演算されたモータトルク指令値T m,intを電動モータ18のトルク定数Kで除算することにより、モータ電流指令値I m,intを演算する。 The motor current command value calculation unit 91 divides the motor torque command value T * m,int calculated by the angle control unit 48 by the torque constant Kt of the electric motor 18 to obtain the motor current command value I * m,int. to calculate
 電流偏差演算部92は、モータ電流指令値演算部91によって得られたモータ電流指令値I m,intと電流検出回路32によって検出されたモータ電流Im,intとの偏差ΔIm,int(=I m,int-Im,int)を演算する。 A current deviation calculator 92 calculates a deviation ΔI m ,int ( =I * m,int - Im,int ).
 PI制御部93は、電流偏差演算部92によって演算された電流偏差ΔIm,intに対するPI演算(比例積分演算)を行うことにより、電動モータ18に流れるモータ電流Im,intをモータ電流指令値I m,intに導くための駆動指令値を生成する。PWM制御部94は、前記駆動指令値に対応するデューティ比のPWM制御信号を生成して、駆動回路31に供給する。これにより、駆動指令値に対応した電力が電動モータ18に供給されることになる。 The PI control unit 93 performs PI calculation (proportional-integral calculation) on the current deviation ΔI m,int calculated by the current deviation calculation unit 92, thereby converting the motor current Im, int flowing through the electric motor 18 into the motor current command value. Generate a drive command value for leading to I * m,int . The PWM control section 94 generates a PWM control signal having a duty ratio corresponding to the drive command value, and supplies it to the drive circuit 31 . As a result, electric power corresponding to the drive command value is supplied to the electric motor 18 .
 次に、第1不感帯幅設定部51および第2不感帯幅設定部52の動作について詳しく説明する。第1不感帯幅設定部51は、運転支援モード時に、第1不感帯幅Wを設定するための第1不感帯幅設定処理を行う。第2不感帯幅設定部52は、運転支援モード時に、第2不感帯幅Wを設定するための第2不感帯幅設定処理を行う。 Next, operations of the first dead band width setting section 51 and the second dead band width setting section 52 will be described in detail. The first dead zone width setting unit 51 performs a first dead zone width setting process for setting the first dead zone width W1 in the driving support mode. The second dead band width setting unit 52 performs a second dead band width setting process for setting the second dead band width W2 in the driving support mode.
 図9は、第1不感帯幅設定部51によって行われる第1不感帯幅設定処理の手順を示すフローチャートである。図9に示される第1不感帯幅設定処理は、運転支援モードが開始される毎に開始され、運転支援モードが解除されるまで、所定の演算周期毎に繰り返し行われる。 FIG. 9 is a flowchart showing the procedure of the first dead zone width setting process performed by the first dead zone width setting section 51. FIG. The first dead band width setting process shown in FIG. 9 is started each time the driving assistance mode is started, and is repeatedly performed at predetermined calculation cycles until the driving assistance mode is canceled.
 以下において、ΔTは、1演算周期に相当する時間(サンプリングタイム)である。Toffは、手放し状態の継続時間である。W1_minは、予め設定された第1不感帯幅Wの最小値(以下、「第1不感帯幅最小値W1_min」という。)である。第1不感帯幅Wの通常値が、第1不感帯幅最小値W1,minとして設定される。W1_maxは、予め設定された第1不感帯幅Wの最大値(以下、「第1不感帯幅最大値W1_max」という)である。W1_decreaseは、予め設定された1演算周期での第1不感帯幅減少量である。W1_increaseは、予め設定された1演算周期での第1不感帯幅増加量である。Wの初期値は、W1_minである。Toffの初期値は、0である。 In the following, ΔT is the time (sampling time) corresponding to one calculation cycle. T off is the duration of the hands-free state. W1_min is a preset minimum value of the first dead zone width W1 (hereinafter referred to as “first dead zone width minimum value W1_min ”). The normal value of the first dead band width W1 is set as the minimum first dead band width W1 ,min . W1_max is the preset maximum value of the first dead zone width W1 (hereinafter referred to as "first dead zone width maximum value W1_max "). W1_decrease is a first dead band width decrease amount in a preset one calculation cycle. W1_increase is the amount of increase in the width of the first dead band in one calculation cycle set in advance. The initial value of W1 is W1_min . The initial value of Toff is zero.
 第1不感帯幅設定部51は、ハンズオンオフ判定部50の判定結果が手放し状態であるか否かを判別する(ステップS1)。 The first dead band width setting unit 51 determines whether or not the determination result of the hands-on/off determination unit 50 is the hands-free state (step S1).
 ハンズオンオフ判定部50の判定結果が把持状態であれば(ステップS1:NO)、第1不感帯幅設定部51は、手放し状態の継続時間Toffを零に設定する(ステップS2)。そして、第1不感帯幅設定部51は、第1不感帯幅Wが第1不感帯幅最小値W1_minよりも大きいか否か判別する(ステップS3)。 If the determination result of the hands-on/off determining unit 50 is the gripping state (step S1: NO), the first dead zone width setting unit 51 sets the duration Toff of the hands-free state to zero (step S2). Then, the first dead band width setting unit 51 determines whether or not the first dead band width W1 is larger than the first dead band width minimum value W1_min (step S3).
 第1不感帯幅Wが第1不感帯幅最小値W1_minよりも大きい場合には(ステップS3:YES)、第1不感帯幅設定部51は、第1不感帯幅Wから第1不感帯幅減少量W1_decreaseを減算した値を、第1不感帯幅Wとして設定する(ステップS4)。ただし、第1不感帯幅Wから第1不感帯幅減少量W1_decreaseを減算した値が、第1不感帯幅最小値W1_minよりも小さい場合には、第1不感帯幅設定部51は、第1不感帯幅最小値W1_minを第1不感帯幅Wとして設定する。そして、第1不感帯幅設定部51は、今回の演算周期での処理を終了する。 When the first dead band width W1 is greater than the first dead band width minimum value W1_min (step S3: YES), the first dead band width setting unit 51 sets the first dead band width decrease amount from the first dead band width W1. The value obtained by subtracting W1_decrease is set as the first dead zone width W1 (step S4). However, when the value obtained by subtracting the first dead band width decrease amount W1_decrease from the first dead band width W1 is smaller than the first dead band width minimum value W1_min , the first dead band width setting unit 51 sets the first dead band width The width minimum value W1_min is set as the first dead zone width W1 . Then, the first dead band width setting unit 51 ends the processing in the current calculation cycle.
 ステップS3において、第1不感帯幅Wが第1不感帯幅最小値W1_min以下であると判別された場合には(ステップS3:NO)、第1不感帯幅設定部51は、第1不感帯幅最小値W1_minを第1不感帯幅Wとして設定する(ステップS5)。そして、第1不感帯幅設定部51は、今回の演算周期での処理を終了する。 When it is determined in step S3 that the first dead band width W1 is equal to or less than the first dead band width minimum value W1_min (step S3: NO), the first dead band width setting unit 51 sets the first dead band width minimum The value W1_min is set as the first dead zone width W1 (step S5). Then, the first dead band width setting unit 51 ends the processing in the current calculation cycle.
 ステップS1において、ハンズオンオフ判定部55の判定結果が手放し状態であると判別された場合には(ステップS1:YES)、第1不感帯幅設定部51は、手放し状態の継続時間ToffにΔTを加算した値を、Toffに設定する(ステップS6)。つまり、手放し状態の継続時間Toffが更新される。 In step S1, when the determination result of the hands-on/off determination unit 55 is determined to be the hands-free state (step S1: YES), the first dead band width setting unit 51 adds ΔT to the hands-free state duration Toff . The added value is set to Toff (step S6). That is, the duration Toff of the hands-free state is updated.
 次に、第1不感帯幅設定部51は、手放し状態の継続時間Toffが所定時間T_startよりも長いか否かを判別する(ステップS7)。手放し状態の継続時間Toffが所定時間T_start以下であれば、つまり、Toff≦T_startであれば(ステップS7:NO)、第1不感帯幅設定部51は、ステップS3に移行する。 Next, the first dead band width setting unit 51 determines whether or not the duration Toff of the hands-free state is longer than the predetermined time T_start (step S7). If the continuation time T off of the hands-free state is equal to or less than the predetermined time T _start , that is, if T off ≦T _start (step S7: NO), the first dead band width setting unit 51 proceeds to step S3.
 ステップS7において、手放し状態の継続時間Toffが所定時間T_startよりも長いと判別された場合、つまり、Toff>T_startであると判別された場合には(ステップS7:YES)、第1不感帯幅設定部51は、第1不感帯幅Wが第1不感帯幅最大値W1_maxよりも小さいか否かを判別する(ステップS8)。第1不感帯幅Wが第1不感帯幅最大値W1_maxよりも小さい場合には(ステップS8:YES)、第1不感帯幅設定部51は、第1不感帯幅Wに第1不感帯幅増加量W1_increaseを加算した値を、第1不感帯幅Wとして設定する(ステップS9)。ただし、第1不感帯幅Wに第1不感帯幅増加量W1_increaseを加算した値が、第1不感帯幅最大値W1_maxよりも大きい場合には、第1不感帯幅設定部51は、第1不感帯幅最大値W1_maxを第1不感帯幅Wとして設定する。そして、第1不感帯幅設定部51は、今回の演算周期での処理を終了する。 If it is determined in step S7 that the duration T off of the hands-free state is longer than the predetermined time T _start , that is, if it is determined that T off >T _start (step S7: YES), the first The dead zone width setting unit 51 determines whether or not the first dead zone width W1 is smaller than the first dead zone width maximum value W1_max (step S8). When the first dead zone width W1 is smaller than the first dead zone width maximum value W1_max (step S8: YES), the first dead zone width setting unit 51 sets the first dead zone width W1 to the first dead zone width increase amount. The value obtained by adding W1_increase is set as the first dead zone width W1 (step S9). However, when the value obtained by adding the first dead band width increase amount W1_increase to the first dead band width W1 is larger than the first dead band width maximum value W1_max , the first dead band width setting unit 51 sets the first dead band width The width maximum value W1_max is set as the first dead zone width W1 . Then, the first dead band width setting unit 51 ends the processing in the current calculation cycle.
 ステップS8において、第1不感帯幅Wが第1不感帯幅最大値W1_max以上であると判別された場合には(ステップS8:NO)、第1不感帯幅設定部51は、第1不感帯幅最大値W1_maxxを第1不感帯幅Wとして設定する(ステップS10:NO)。そして、第1不感帯幅設定部51は、今回の演算周期での処理を終了する。 If it is determined in step S8 that the first dead band width W1 is greater than or equal to the first dead band width maximum value W1_max (step S8: NO), the first dead band width setting unit 51 sets the first dead band width maximum The value W1_maxx is set as the first dead zone width W1 (step S10: NO). Then, the first dead band width setting unit 51 ends the processing in the current calculation cycle.
 図10は、第1不感帯処理部43の入出力特性の一例を示すグラフである。 FIG. 10 is a graph showing an example of input/output characteristics of the first dead zone processing section 43. FIG.
 折れ線L1は、第1不感帯幅Wが第1不感帯幅最小値W1_minに設定されている場合の第1不感帯処理部43の入出力特性を示している。折れ線L2は、第1不感帯幅Wが第1不感帯幅最大値W1_maxに設定されている場合の第1不感帯処理部43の入出力特性を示している。 A polygonal line L1 indicates the input/output characteristics of the first dead zone processing section 43 when the first dead zone width W1 is set to the first dead zone width minimum value W1_min . A polygonal line L2 indicates the input/output characteristics of the first dead zone processor 43 when the first dead zone width W1 is set to the first dead zone width maximum value W1_max .
 通常時においては、第1不感帯幅Wは第1不感帯幅最小値W1_minに設定されている。手放し状態の継続時間Toffが所定時間T_startよりも長い場合には、第1不感帯幅Wは、W1_min<W≦W1_maxの範囲内の値となる。 Normally, the first dead zone width W1 is set to the first dead zone width minimum value W1_min . When the duration Toff of the hands-free state is longer than the predetermined time T_start , the first dead zone width W1 is a value within the range of W1_min < W1W1_max .
 図11は、運転支援モードでの第1不感帯幅Wの変化の一例を示すタイムチャートである。 FIG. 11 is a time chart showing an example of changes in the first dead zone width W1 in the driving support mode.
 図11において、時点t0では第1不感帯幅Wは通常値である第1不感帯幅最小値W1_minに設定されているものとする。図11の例では、時点t0から時点t1までは、ハンズオンオフ判定部50の判定結果は、把持状態(把持判定)である。時点t1から時点t4までは、ハンズオンオフ判定部50の判定結果は、手放し状態(手放し判定)である。時点t4以降はハンズオンオフ判定部50の判定結果は、把持状態(把持判定)である。 In FIG. 11, it is assumed that the first dead zone width W1 is set to the normal first dead zone width minimum value W1_min at time t0. In the example of FIG. 11, from time t0 to time t1, the determination result of the hands-on/off determining unit 50 is the gripping state (gripping determination). From time t1 to time t4, the hands-on/off determination unit 50 determines that the hands are released (determined hands are released). After the time t4, the determination result of the hands-on/off determination unit 50 is the grasping state (holding determination).
 時点t0から時点t1までの期間は、ハンズオンオフ判定部50の判定結果は把持状態(把持判定)であるため、第1不感帯幅Wは第1不感帯幅最小値W1_minを維持する。 During the period from time t0 to time t1, the determination result of the hands-on/off determination unit 50 is the grasping state (holding determination), so the first dead band width W1 maintains the first dead band width minimum value W1_min .
 時点t1でハンズオンオフ判定部50の判定結果が手放し状態(手放し判定)に変化しても、時点t1から所定時間T_startが経過するまでは、第1不感帯幅Wは第1不感帯幅最小値W1_minを維持する。 Even if the determination result of the hands-on/off determination unit 50 changes to the hands-free state (hands-free determination) at time t1, the first dead zone width W1 remains the first dead zone width minimum value until the predetermined time T_start elapses from time t1. Maintain W 1_min .
 時点t1から所定時間T_startが経過すると(時点t2)、第1不感帯幅Wは増加していく。そして、第1不感帯幅Wが第1不感帯幅最大値W1_maxに達すると(時点t3)、第1不感帯幅Wは第1不感帯幅最大値W1_maxを維持する。 When the predetermined time T_start has passed from time t1 (time t2), the first dead zone width W1 increases. When the first dead band width W1 reaches the first dead band width maximum value W1_max (time t3), the first dead band width W1 maintains the first dead band width maximum value W1_max .
 時点t4でハンズオンオフ判定部50の判定結果が把持状態(把持判定)に変化すると、第1不感帯幅Wは減少していく。そして、第1不感帯幅Wが第1不感帯幅最小値W1_minに達すると(時点t5)、第1不感帯幅Wは第1不感帯幅最小値W1_minを維持する。 When the determination result of the hands-on/off determination unit 50 changes to the gripping state (gripping determination) at time t4, the first dead zone width W1 decreases. When the first dead band width W1 reaches the first dead band minimum width W1_min (time t5), the first dead band width W1 maintains the first dead band width minimum value W1_min .
 図11に示すように、第1不感帯幅Wを増加させる場合の第1不感帯幅Wの単位時間当たりの変化量の絶対値(図11のt2~t3間のグラフの傾きの絶対値)よりも、第1不感帯幅Wを減少させる場合の第1不感帯幅Wの単位時間当たりの変化量の絶対値(図11のt4~t5間のグラフの傾きの絶対値)を大きくすることが好ましい。つまり、第1不感帯幅増加量W1_increaseよりも、第1不感帯幅減少量W1_decreaseを大きくすることが好ましい。 As shown in FIG. 11, the absolute value of the amount of change per unit time of the first dead band width W1 when the first dead band width W1 is increased (the absolute value of the slope of the graph between t2 and t3 in FIG. 11) To increase the absolute value of the amount of change per unit time of the first dead band width W 1 (absolute value of the slope of the graph between t4 and t5 in FIG. 11) when the first dead band width W 1 is reduced is preferred. That is, it is preferable to make the first dead band width decrease amount W1_decrease larger than the first dead band width increase amount W1_increase .
 この理由は、以下の通りである。第1不感帯幅Wの増加は、手放し判定時に行われる。手放し判定は、把持判定に比べて疑わしい判定であるため、第1不感帯幅増加時の第1不感帯幅Wの単位時間の変化量は比較的小さな方が好ましい。一方、第1不感帯幅Wの減少は、把持判定時に行われる。把持判定は、手放し判定に比べて正確な判定であるため、第1不感帯幅減少時には第1不感帯幅Wをできるだけ早く通常状態に戻すことが好ましい。ただし、第1不感帯幅増加量W1_increaseと、第1不感帯幅減少量W1_decreaseは、同じ値であってもよい。 The reason for this is as follows. The increase in the first dead zone width W1 is performed at the time of hands-free determination. Since the hands-off determination is more dubious than the gripping determination, it is preferable that the amount of change per unit time of the first dead zone width W1 when the first dead zone width increases is relatively small. On the other hand, the first dead zone width W1 is decreased during grip determination. Since the grip judgment is more accurate than the hands-free judgment, it is preferable to return the first dead zone width W1 to the normal state as soon as possible when the first dead zone width decreases. However, the first dead zone width increase amount W1_increase and the first dead zone width decrease amount W1_decrease may be the same value.
 第2不感帯幅設定部52によって行われる第2不感帯幅設定処理は、図9の第2不感帯幅設定処理と同様である。ただし、第2不感帯幅設定処理においては、図9の第1不感帯幅W、第1不感帯幅最小値W1_min、第1不感帯幅最大値W1_max、第1不感帯幅減少量W1_decreaseおよび第1不感帯幅増加量W1_increaseは、それぞれ、第2不感帯幅W、第2不感帯幅最小値W2_min、第2不感帯幅最大値W2_max、第2不感帯幅減少量W2_decreaseおよび第2不感帯幅増加量W2_increaseに置き換えられる。 The second dead band width setting process performed by the second dead band width setting unit 52 is the same as the second dead band width setting process of FIG. However, in the second dead band width setting process, the first dead band width W 1 , the first dead band minimum value W 1 — min , the first dead band width maximum value W 1 — max , the first dead band width decrease amount W 1 — decrease, and the first dead band width W 1 — The dead band width increase amount W1_increase is the second dead band width W2 , the second dead band width minimum value W2_min , the second dead band width maximum value W2_max , the second dead band width decrease amount W2_decrease , and the second dead band width increase amount, respectively. W 2_increase .
 運転モードが通常モードである場合には、第1不感帯幅設定部51は、第1不感帯幅最小値W1_minを第1不感帯幅Wとして設定し、第2不感帯幅設定部52は、第2不感帯幅最小値W2_minを第2不感帯幅Wとして設定する。つまり、通常モード時には、第1不感帯幅Wおよび第2不感帯幅Wは変更されない。 When the operation mode is the normal mode, the first dead band width setting unit 51 sets the first dead band width minimum value W1_min as the first dead band width W1_min , and the second dead band width setting unit 52 sets the second dead band width W1_min. The dead zone width minimum value W2_min is set as the second dead zone width W2 . That is, in the normal mode, the first dead zone width W1 and the second dead zone width W2 are not changed.
 前述の実施形態では、運転支援モードにおいて、ハンズオンオフ判定部50よる手放し状態であるとの判定結果が所定時間以上継続したときに、第1不感帯幅Wおよび第2不感帯幅Wが大きくされる。第1不感帯幅Wおよび第2不感帯幅Wが大きくされると、ドライバトルク(ドライバ入力)に対する手動操舵指令値θ c,mdが小さくなる。これにより、ドライバトルクに基づく出力軸9の回転量が小さくなるので、ドライバ操作によるステアリングホイール2の比較的小さな回転によっても、トーションバー10が捻じれやすくなる。これにより、操舵トルクTtbおよびドライバトルクが大きくなるので、ハンズオンオフ判定部50によるハンズオンオフ判定の精度が高くなる。これにより、直線走行などのドライバトルクの入力が少ない状況において、ドライバがステアリングホイール2を把持しているにもかかわらず手放し状態であるとの誤判定を防止または抑制することができる。 In the above-described embodiment, in the driving support mode, the first dead zone width W1 and the second dead zone width W2 are increased when the hands-on/off determination unit 50 determines that the driver is in a hands-free state for a predetermined time or longer. be. When the first dead zone width W1 and the second dead zone width W2 are increased, the manual steering command values θ * c, md with respect to the driver torque (driver input) are decreased. As a result, the amount of rotation of the output shaft 9 based on the driver torque is reduced, so that the torsion bar 10 is easily twisted even by a relatively small rotation of the steering wheel 2 by the driver's operation. As a result, the steering torque Ttb and the driver torque increase, so that the accuracy of the hands-on/off determination by the hands-on/off determination unit 50 increases. As a result, it is possible to prevent or suppress an erroneous determination that the driver is not holding the steering wheel 2 even though the driver is gripping the steering wheel 2 when the driver torque input is small, such as when the vehicle is running straight.
 [3]モータ制御用ECU202の第1変形例
 図12は、モータ制御用ECU202の変形例の電気的構成を説明するためのブロック図である。図12において、前述の図2の各部と対応する部分には、図2と同じ符号を付して示す。
[3] First Modification of Motor Control ECU 202 FIG. 12 is a block diagram for explaining the electrical configuration of a modification of the motor control ECU 202. As shown in FIG. In FIG. 12, the same reference numerals as in FIG. 2 are given to the parts corresponding to the parts in FIG. 2 described above.
 第1変形例では、マイクロコンピュータ40Aにおける機能処理部の構成が図2と異なっている。具体的には、第1変形例では、図2の第1不感帯処理部43、第2不感帯処理部45、第1不感帯幅設定部51および第2不感帯幅設定部52に代えて、第3不感帯処理部53および第3不感帯幅設定部54が設けられている。 In the first modified example, the configuration of the functional processing section in the microcomputer 40A is different from that in FIG. Specifically, in the first modification, instead of the first dead zone processor 43, the second dead zone processor 45, the first dead zone width setting part 51, and the second dead zone width setting part 52 of FIG. A processing unit 53 and a third dead band width setting unit 54 are provided.
 第3不感帯処理部53は、アシストトルク指令値設定部44および手動操舵指令値生成部46の両方に対する前段に配置されている。第3不感帯処理部53は、第3不感帯幅をWとすると、操舵トルクTtbが-W/2以上でW/2以下の範囲(第3不感帯領域)内である場合には、零を、第3不感帯処理後の操舵トルクTtb,deとして出力する。 The third dead zone processing section 53 is arranged upstream of both the assist torque command value setting section 44 and the manual steering command value generating section 46 . When the steering torque Ttb is within the range of -W 3 /2 or more and W 3 /2 or less (third dead zone region), where W 3 is the third dead zone width, the third dead zone processing unit 53: Zero is output as the steering torque Ttb ,de after the third dead zone processing.
 操舵トルクTtbが-W/2よりも小さい領域では、第3不感帯処理部53は、[Ttb+(W/2)]を、第3不感帯処理後の操舵トルクTtb,deとして出力する。操舵トルクTtbがW/2よりも大きい領域では、第3不感帯処理部53は、[Ttb-(W/2)]を、第3不感帯処理後の操舵トルクTtb,deとして出力する。 In a region where the steering torque T tb is smaller than −W 3 /2, the third dead zone processing unit 53 sets [T tb +(W 3 /2)] as the steering torque T tb,de after the third dead zone processing. Output. In a region where the steering torque T tb is greater than W 3 /2, the third dead zone processing unit 53 outputs [T tb −(W 3 /2)] as the steering torque T tb,de after the third dead zone processing. do.
 第3不感帯幅Wは、第3不感帯幅設定部54によって設定される。第3不感帯幅設定部54は、運転支援モード時に、ハンズオンオフ判定部50のハンズオンオフ判定結果に基づいて、第3不感帯幅Wを設定する。第3不感帯幅設定部54は、運転支援モード時に、第3不感帯幅Wを設定するための第3不感帯幅設定処理を行う。 The third dead zone width W3 is set by the third dead zone width setting section 54 . The third dead band width setting unit 54 sets the third dead band width W3 based on the hands-on/off determination result of the hands-on/off determination unit 50 in the driving assistance mode. The third dead zone width setting unit 54 performs a third dead zone width setting process for setting the third dead zone width W3 in the driving support mode.
 第3不感帯幅設定部54によって行われる第3不感帯幅設定処理は、図9の第1不感帯幅設定処理と同様である。ただし、第3不感帯幅設定処理においては、図9の第1不感帯幅W、第1不感帯幅最小値W1_min、第1不感帯幅最大値W1_max、第1不感帯幅減少量W1_decreaseおよび第1不感帯幅増加量W1_increaseは、それぞれ、第3不感帯幅W、第3不感帯幅最小値W3_min、第3不感帯幅最大値W3_max、第3不感帯幅減少量W3_decreaseおよび第3不感帯幅増加量W3_increaseに置き換えられる。 The third dead band width setting process performed by the third dead band width setting unit 54 is the same as the first dead band width setting process in FIG. However, in the third dead band width setting process , in FIG . The dead band width increase amount W1_increase is the third dead band width W3 , the third dead band width minimum value W3_min , the third dead band width maximum value W3_max , the third dead band width decrease amount W3_decrease , and the third dead band width increase amount. W is replaced by 3_increase .
 第1変形例では、アシストトルク指令値設定部44は、第3不感帯処理後の操舵トルクTtb,deと車速Vとに基づいて、アシストトルク指令値T m,mdを設定する。手動操舵指令値生成部46は、アシストトルク指令値T m,mdと、第3不感帯処理後の操舵トルクTtb,deとに基づいて、手動操舵指令値θ*c,mdを演算する。 In the first modification, the assist torque command value setting unit 44 sets the assist torque command values T * m,md based on the steering torque Ttb ,de and the vehicle speed V after the third dead zone processing. The manual steering command value generator 46 calculates a manual steering command value θ *c,md based on the assist torque command value T * m,md and the steering torque Ttb,de after the third dead zone processing.
 具体的には、手動操舵指令値生成部46は、式(2)のTtb,deに第3不感帯処理後の操舵トルクTtb,deを代入し、式(2)のT m,md,deにアシストトルク指令値T m,mdを代入して、式(2)の微分方程式を解くことにより、ロアコラムの回転角θを演算し、得られた回転角θを実手動操舵角θc,mdとして設定する。 Specifically, the manual steering command value generation unit 46 substitutes the steering torque Ttb ,de after the third dead zone processing for Ttb, de in Equation (2), and T * m,md in Equation (2). , de are substituted with the assist torque command values T * m and md , and the differential equation of equation (2) is solved to calculate the rotation angle θc of the lower column. Set the angle θ as c,md .
 運転支援モード時において、ハンズオンオフ判定部50による手放し状態であるとの判定結果が所定時間以上継続したときに、第3不感帯幅Wが大きくされるので、第1変形例においても、前述の実施形態と同様な効果が得られる。 In the driving assistance mode, when the hands-on/off determination unit 50 determines that the driver is in a hands-free state for a predetermined period of time or longer, the third dead zone width W3 is increased. Effects similar to those of the embodiment can be obtained.
 なお、運転モードが通常モードである場合には、第3不感帯幅設定部54は、第3不感帯幅最小値W3_minを第3不感帯幅Wとして設定する。つまり、通常モード時には、第3不感帯幅Wは変更されない。 When the operation mode is the normal mode, the third dead zone width setting unit 54 sets the third dead zone width minimum value W3_min as the third dead zone width W3 . That is, in the normal mode, the third dead band width W3 is not changed.
 [4]モータ制御用ECU202の第2変形例
 図13は、モータ制御用ECU202の変形例の電気的構成を説明するためのブロック図である。
[4] Second Modification of Motor Control ECU 202 FIG. 13 is a block diagram for explaining the electrical configuration of a modification of the motor control ECU 202. As shown in FIG.
 モータ制御用ECU202は、マイクロコンピュータ40Bと、マイクロコンピュータ40Bによって制御され、電動モータ18に電力を供給する駆動回路(インバータ回路)31と、電動モータ18に流れる電流(以下、「モータ電流Im,int」という)を検出するための電流検出回路32とを備えている。 The motor control ECU 202 includes a microcomputer 40B, a drive circuit (inverter circuit) 31 that is controlled by the microcomputer 40B, and a drive circuit (inverter circuit) 31 that supplies electric power to the electric motor 18 . int ”).
 マイクロコンピュータ40Bは、CPUおよびメモリ(ROM、RAM、不揮発性メモリなど)を備えており、所定のプログラムを実行することによって、複数の機能処理部として機能するようになっている。この複数の機能処理部には、アシスト制御部111と、自動操舵制御部112と、統合トルク演算部(統合制御量演算部)113と、トルク制御部(制御部)114と、実操舵角演算部115と、第4不感帯処理部116と、第5不感帯処理部117と、実自動操舵角演算部118と、ハンズオンオフ判定部119と、第4不感帯幅設定部120と、第5不感帯幅設定部121とを含む。 The microcomputer 40B has a CPU and memory (ROM, RAM, non-volatile memory, etc.), and functions as a plurality of functional processing units by executing predetermined programs. The plurality of functional processing units include an assist control unit 111, an automatic steering control unit 112, an integrated torque calculation unit (integrated control amount calculation unit) 113, a torque control unit (control unit) 114, and an actual steering angle calculation unit. a fourth dead zone processor 116; a fifth dead zone processor 117; an actual automatic steering angle calculator 118; a hands-on/off determination module 119; a fourth dead zone width setting part 120; 121.
 アシスト制御部111は、手動操舵に必要なアシストトルクの目標値であるアシストトルク指令値(アシスト制御量)T m,mdを設定する。アシスト制御部111は、車速Vとトルクセンサ12によって検出される操舵トルクTtbに基づいて、アシストトルク指令値T m,mdを設定する。アシスト制御部111は、図2のアシストトルク指令値設定部44と同様な方法で、アシストトルク指令値T m,mdを設定する。 The assist control unit 111 sets an assist torque command value (assist control amount) T * m, md, which is a target value of the assist torque required for manual steering. The assist control unit 111 sets assist torque command values T * m and md based on the vehicle speed V and the steering torque Ttb detected by the torque sensor 12 . The assist control unit 111 sets the assist torque command values T * m and md in the same manner as the assist torque command value setting unit 44 in FIG.
 自動操舵制御部112は、上位ECU201から与えられる自動操舵角指令値θ c,adと後述する実自動操舵角θc,adとを用いて、自動操舵に必要な自動操舵トルク指令値(自動操舵制御量)T m,adを設定する。自動操舵制御部112の詳細については後述する。 The automatic steering control unit 112 uses an automatic steering angle command value θ * c,ad given from the host ECU 201 and an actual automatic steering angle θc,ad described later to determine an automatic steering torque command value (automatic steering torque command value) necessary for automatic steering. Steering control amount) T * m,ad is set. Details of the automatic steering control unit 112 will be described later.
 統合トルク演算部113は、アシストトルク指令値T m,mdに自動操舵トルク指令値T m,adを加算することによって、統合トルク指令値(統合制御量)T m,intを演算する。 The integrated torque calculation unit 113 calculates an integrated torque command value (integrated control amount) T * m, int by adding the automatic steering torque command value T * m ,ad to the assist torque command value T * m,md. .
 トルク制御部114は、電動モータ18のモータトルクが統合トルク指令値T m,intに近づくように駆動回路31を駆動する。トルク制御部114の構成は、前述の図8に示されるトルク制御部49の構成と同じなので、その説明を省略する。 The torque control unit 114 drives the drive circuit 31 so that the motor torque of the electric motor 18 approaches the integrated torque command value T * m,int . Since the configuration of the torque control section 114 is the same as the configuration of the torque control section 49 shown in FIG. 8, description thereof will be omitted.
 実操舵角演算部115は、回転角センサ23の出力信号に基づいて、出力軸9の回転角θc,intを演算する。具体的には、実操舵角演算部115は、回転角演算部115Aと減速比除算部115Bとを含む。回転角演算部115Aは、回転角センサ23の出力信号に基づいて、電動モータ18のロータ回転角θm,intを演算する。減速比除算部115Bは、回転角演算部115Aによって演算されるロータ回転角θm,intを減速機19の減速比Nで除算することにより、ロータ回転角θm,intを出力軸9の回転角(実操舵角)θc,intに換算する。 The actual steering angle calculator 115 calculates the rotation angle θ c,int of the output shaft 9 based on the output signal of the rotation angle sensor 23 . Specifically, the actual steering angle calculator 115 includes a rotation angle calculator 115A and a reduction ratio divider 115B. The rotation angle calculator 115A calculates the rotor rotation angle θ m,int of the electric motor 18 based on the output signal of the rotation angle sensor 23 . The reduction ratio division unit 115B divides the rotor rotation angle θm ,int calculated by the rotation angle calculation unit 115A by the reduction ratio N of the speed reducer 19, thereby dividing the rotor rotation angle θm ,int into the rotation of the output shaft 9. The angle (actual steering angle) θ is converted to c,int .
 実操舵角θc,intは、操舵トルクTtbおよびアシストトルク指令値T m,mdに基づく手動操舵分の操舵角(以下、「実手動操舵角θc,md」という。)と、自動操舵トルク指令値T m,adに基づく自動操舵分の操舵角(以下、「実自動操舵角θc,ad」という。)とを含んでいる。 The actual steering angle θc ,int is the steering angle for manual steering (hereinafter referred to as “actual manual steering angle θc,md ”) based on the steering torque Ttb and the assist torque command value T * m,md , and the automatic steering angle θc,md. and a steering angle for automatic steering based on the steering torque command value T * m,ad (hereinafter referred to as "actual automatic steering angle θc,ad ").
 第4不感帯処理部116には、操舵トルクTtbが入力される。第4不感帯処理部116は、第4不感帯幅をWとすると、操舵トルクTtbが-W/2以上でW/2以下の範囲(第4不感帯領域)内である場合には、零を、第4不感帯処理後の操舵トルクTtb,deとして出力する。 The steering torque Ttb is input to the fourth dead zone processing unit 116 . If the width of the fourth dead band is W4 , and the steering torque Ttb is within the range of -W4 /2 or more and W4 /2 or less (fourth dead band region), the fourth dead band processing unit 116: Zero is output as the steering torque Ttb ,de after the fourth dead zone processing.
 操舵トルクTtbが-W/2よりも小さい領域では、第4不感帯処理部116は、[Ttb+(W/2)]を、第4不感帯処理後の操舵トルクTtb,deとして出力する。操舵トルクTtbがW/2よりも大きい領域では、第4不感帯処理部116は、[Ttb-(W/2)]を、第4不感帯処理後の操舵トルクTtb,deとして出力する。第4不感帯幅Wは、第4不感帯幅設定部120によって設定される。 In a region where the steering torque T tb is smaller than −W 4 /2, the fourth dead zone processing unit 116 sets [T tb +(W 4 /2)] as the steering torque T tb,de after the fourth dead zone processing. Output. In a region where the steering torque T tb is greater than W 4 /2, the fourth dead zone processing unit 116 outputs [T tb −(W 4 /2)] as the steering torque T tb,de after the fourth dead zone processing. do. The fourth dead band width W4 is set by the fourth dead band width setting section 120 .
 第5不感帯処理部117には、アシストトルク指令値T m,mdが入力される。第5不感帯処理部11は、第5不感帯幅をWとすると、アシストトルク指令値T m,mdが-W/2以上でW/2以下の範囲(第5不感帯領域)内である場合には、零を、第5不感帯処理後のアシストトルク指令値T m,md,deとして出力する。 The assist torque command values T * m, md are input to the fifth dead zone processing unit 117 . Assuming that the width of the fifth dead band is W5 , the fifth dead band processing unit 11 sets the assist torque command value T * m, md within a range of -W5 /2 or more and W5 /2 or less (fifth dead band region). In some cases, zero is output as the assist torque command value T * m,md,de after the fifth dead zone processing.
 アシストトルク指令値T m,mdが-W/2よりも小さい領域では、第5不感帯処理部11は、[T m,md+(W/2)]を、第5不感帯処理後のアシストトルク指令値T m,md,deとして出力する。アシストトルク指令値T m,mdがW/2よりも大きい領域では、第5不感帯処理部11は、[T m,md-(W/2)]を、第5不感帯処理後のアシストトルク指令値T m,md,deとして出力する。第5不感帯幅Wは、第5不感帯幅設定部121によって設定される。 In a region where the assist torque command values T * m, md are smaller than -W 5 /2, the fifth dead zone processing unit 11 calculates [T * m, md + (W 5 /2)] after the fifth dead zone processing. are output as assist torque command values T * m, md, and de . In a region where the assist torque command values T * m, md are greater than W 5 /2, the fifth dead zone processing unit 11 converts [T * m, md - (W 5 /2)] to They are output as assist torque command values T * m, md, and de . The fifth dead band width W5 is set by the fifth dead band width setting section 121 .
 実自動操舵角演算部118は、実操舵角θc,intに含まれている実自動操舵角θc,adを演算する。具体的には、実自動操舵角演算部118は、実手動操舵角演算部118Aと減算部118Bとを含む。実手動操舵角演算部118Aは、第4不感帯処理後の操舵トルクTtb,deと第5不感帯処理後のアシストトルク指令値T m,md,deとに基づいて、実手動操舵角θc,mdを演算する。減算部118Bは、実操舵角演算部115によって演算される実操舵角θc,intから実手動操舵角演算部118Aによって演算される実手動操舵角θc,mdを減算することによって、実自動操舵角θc,adを演算する。この実自動操舵角θc,adが、自動操舵制御部112に与えられる。 The actual automatic steering angle calculator 118 calculates the actual automatic steering angle θc ,ad included in the actual steering angle θc ,int . Specifically, the actual automatic steering angle calculator 118 includes an actual manual steering angle calculator 118A and a subtractor 118B. The actual manual steering angle calculator 118A calculates the actual manual steering angle θc based on the steering torque Ttb ,de after the fourth dead band processing and the assist torque command value T * m, md, de after the fifth dead band processing . , md . The subtraction unit 118B subtracts the actual manual steering angle θc,md calculated by the actual manual steering angle calculation unit 118A from the actual steering angle θc ,int calculated by the actual steering angle calculation unit 115, thereby obtaining the actual automatic steering angle θc, md . A steering angle θc ,ad is calculated. This actual automatic steering angle θ c,ad is given to the automatic steering control section 112 .
 実手動操舵角演算部118Aは、この実施形態では、電動パワーステアリングシステム1のリファレンスモデル(リファレンスEPSモデル)を用いて、実手動操舵角θc,mdを演算する。 In this embodiment, the actual manual steering angle calculator 118A uses a reference model (reference EPS model) of the electric power steering system 1 to calculate the actual manual steering angles θc,md .
 実手動操舵角演算部118Aは、例えば、前述の図4で示されるリファレンスEPSモデルを用いて、実手動操舵角θc,mdを演算する。 The actual manual steering angle calculator 118A calculates the actual manual steering angle θc,md using, for example, the reference EPS model shown in FIG.
 図4を参照して、路面負荷トルクTrlは、ばね定数kおよび粘性減衰係数cを用いて、前述の式(1)で表される。この変形例においても、ばね定数kおよび粘性減衰係数cは、予め設定されている。 Referring to FIG. 4, the road load torque Trl is expressed by the above equation (1) using the spring constant k and the viscous damping coefficient c. Also in this modification, the spring constant k and the viscous damping coefficient c are set in advance.
 図4のリファレンスEPSモデルの運動方程式は、前述の式(2)で表される。実手動操舵角演算部118Aは、式(2)のTtb,deに第4不感帯処理後の操舵トルクTtb,deを代入し、式(2)のT m,md,deに第5不感帯処理後のアシストトルク指令値T m,md,deを代入して、式(2)の微分方程式を解くことにより、ロアコラムの回転角θを演算し、得られた回転角θを実手動操舵角θc,mdとして設定する。 The equation of motion of the reference EPS model in FIG. 4 is represented by the above-described equation (2). The actual manual steering angle calculation unit 118A substitutes the steering torque Ttb ,de after the fourth dead zone processing for Ttb,de in Equation (2), and substitutes T * m,md,de for T* m,md,de in Equation (2) with the fifth By substituting the assist torque command values T * m, md, and de after the dead zone processing and solving the differential equation of formula (2), the rotation angle θc of the lower column is calculated, and the obtained rotation angle θc is calculated as It is set as the actual manual steering angle θc ,md .
 ハンズオンオフ判定部119は、図2のハンズオンオフ判定部50と同様な方法により、把持状態であるか、手放し状態であるかを判定する。 The hands-on/off determination unit 119 determines whether the user is in a gripping state or in a hands-free state by the same method as the hands-on/off determination unit 50 in FIG.
 第4不感帯幅設定部120および第5不感帯幅設定部121は、それぞれ、運転支援モード時に、ハンズオンオフ判定部119のハンズオンオフ判定結果に基づいて、第4不感帯幅Wおよび第5不感帯幅Wを設定する。第4不感帯幅設定部120および第5不感帯幅設定部121の動作については後述する。 The fourth dead band width setting unit 120 and the fifth dead band width setting unit 121 respectively set the fourth dead band width W4 and the fifth dead band width W based on the hands-on/off determination result of the hands-on/off determination unit 119 during the driving assistance mode. Set 5 . The operations of the fourth dead band width setting section 120 and the fifth dead band width setting section 121 will be described later.
 以下、自動操舵制御部112について詳しく説明する。 The automatic steering control unit 112 will be described in detail below.
 図14は、自動操舵制御部112の構成を示すブロック図である。 FIG. 14 is a block diagram showing the configuration of the automatic steering control section 112. As shown in FIG.
 自動操舵制御部112は、自動操舵角指令値θ c,adと実自動操舵角θc,adとを用いて、自動操舵トルク指令値T m,adを演算する。自動操舵制御部112は、ローパスフィルタ(LPF)161と、フィードバック制御部162と、フィードフォワード制御部163と、外乱トルク推定部164と、トルク加算部165と、外乱トルク補償部166と、減速比除算部167と、減速比乗算部168とを含む。 The automatic steering control unit 112 calculates an automatic steering torque command value T * m ,ad using the automatic steering angle command value θ * c,ad and the actual automatic steering angle θc,ad . The automatic steering control unit 112 includes a low-pass filter (LPF) 161, a feedback control unit 162, a feedforward control unit 163, a disturbance torque estimation unit 164, a torque addition unit 165, a disturbance torque compensation unit 166, a reduction ratio A division unit 167 and a reduction ratio multiplication unit 168 are included.
 減速比乗算部168は、減速比除算部167によって演算される自動操舵トルク指令値T m,adに減速機19の減速比Nを乗算することにより、自動操舵トルク指令値T m,adを、出力軸9(ウォームホイール21)に作用する自動出力軸トルク指令値N・T m,ad(=T c,ad)に換算する。 A reduction ratio multiplication unit 168 multiplies the automatic steering torque command value T * m,ad calculated by the reduction ratio division unit 167 by the reduction ratio N of the reduction gear 19, thereby obtaining the automatic steering torque command value T * m,ad. is converted into an automatic output shaft torque command value N·T * m,ad (=T * c,ad ) acting on the output shaft 9 (worm wheel 21).
 ローパスフィルタ161は、自動操舵角指令値θ c,adに対してローパスフィルタ処理を行う。ローパスフィルタ処理後の自動操舵角指令値θ c,adfは、フィードバック制御部162およびフィードフォワード制御部163に与えられる。 A low-pass filter 161 performs low-pass filter processing on the automatic steering angle command value θ * c,ad . The automatic steering angle command value θ * c, adf after low-pass filtering is provided to feedback control section 162 and feedforward control section 163 .
 フィードバック制御部162は、実自動操舵角演算部118(図13参照)によって演算される実自動操舵角θc,adを、ローパスフィルタ処理後の自動操舵角指令値θ c,adfに近づけるために設けられている。フィードバック制御部162は、角度偏差演算部162AとPD制御部162Bとを含む。角度偏差演算部162Aは、自動操舵角指令値θ c,adfと実自動操舵角θc,adとの偏差Δθc,ad(=θ c,adfd-θc,ad)を演算する。なお、角度偏差演算部162Aは、自動操舵角指令値θ c,adfと、外乱トルク推定部164によって演算される実自動操舵角推定値^θc,adとの偏差(θ c,adfd-^θc,ad)を、角度偏差Δθc,adとして演算してもよい。 The feedback control unit 162 brings the actual automatic steering angle θc,ad calculated by the actual automatic steering angle calculation unit 118 (see FIG. 13) closer to the automatic steering angle command value θ * c,adf after low-pass filtering. is provided in Feedback control section 162 includes an angular deviation calculation section 162A and a PD control section 162B. The angle deviation calculator 162A calculates a deviation Δθ c,ad (=θ * c,adfd −θ c,ad ) between the automatic steering angle command value θ * c,adf and the actual automatic steering angle θc,ad. The angle deviation calculation unit 162A calculates the deviation (θ * c , adfd −^θ c,ad ) may be calculated as the angular deviation Δθ c,ad .
 PD制御部162Bは、角度偏差演算部162Aによって演算される角度偏差Δθc,adに対してPD演算(比例微分演算)を行うことにより、フィードバック制御トルクTfb,adを演算する。フィードバック制御トルクTfb,adは、トルク加算部165に与えられる。 The PD control section 162B calculates the feedback control torque T fb ,ad by performing PD calculation (proportional differential calculation) on the angular deviation Δθ c, ad calculated by the angular deviation calculating section 162A. The feedback control torque T fb,ad is applied to the torque adder 165 .
 フィードフォワード制御部163は、電動パワーステアリングシステム1の慣性による応答性の遅れを補償して、制御の応答性を向上させるために設けられている。フィードフォワード制御部163は、角加速度演算部163Aと慣性乗算部163Bとを含む。角加速度演算部163Aは、自動操舵角指令値θ c,adfを二階微分することにより、目標角加速度dθ c,adf/dtを演算する。 The feedforward control unit 163 is provided to compensate for the response delay due to the inertia of the electric power steering system 1 and improve the control response. Feedforward control section 163 includes an angular acceleration calculation section 163A and an inertia multiplication section 163B. The angular acceleration calculator 163A calculates a target angular acceleration d2θ * c, adf/ dt2 by second-order differentiating the automatic steering angle command value θ * c,adf .
 慣性乗算部163Bは、角加速度演算部163Aによって演算された目標角加速度dθ c,adf/dtに、電動パワーステアリングシステム1の慣性Jを乗算することにより、フィードフォワード制御トルクTff,ad(=J・dθ c,adf/dt)を演算する。慣性Jは、例えば、後述する電動パワーステアリングシステム1の物理モデル(図15参照)から求められる。フィードフォワード制御トルクTff,adは、慣性補償値として、トルク加算部165に与えられる。 The inertia multiplier 163B multiplies the target angular acceleration d 2 θ * c, adf /dt 2 calculated by the angular acceleration calculator 163A by the inertia J of the electric power steering system 1 to obtain the feedforward control torque T ff , ad (=J·d 2 θ * c, adf /dt 2 ). The inertia J is obtained, for example, from a physical model (see FIG. 15) of the electric power steering system 1, which will be described later. The feedforward control torque Tff ,ad is given to the torque adder 165 as an inertia compensation value.
 トルク加算部165は、フィードバック制御トルクTfb,adにフィードフォワード制御トルクTff,adを加算することにより、基本トルク指令値(Tfb,ad+Tff,ad)を演算する。 The torque adder 165 calculates a basic torque command value (T fb,ad +T ff, ad ) by adding the feedforward control torque T ff,ad to the feedback control torque T fb,ad .
 外乱トルク推定部164は、主として、電動モータ18の駆動対象に作用するモータトルク以外の外乱トルクTlcに含まれる自動操舵分の外乱トルクTlc,adの推定値である自動外乱トルク推定値^Tlc,adを演算するために設けられている。自動操舵分の外乱トルクTlc,adとは、自動操舵トルク指令値T m,adに基づく自動操舵制御のみが行われていると仮定した場合に、電動モータ18の駆動対象(プラント)に外乱として発生するモータトルク以外のトルクをいう。 The disturbance torque estimating unit 164 mainly calculates an automatic disturbance torque estimation value ^ It is provided to compute Tlc ,ad . The disturbance torque T lc,ad for the automatic steering is the torque for the object (plant) to be driven by the electric motor 18, assuming that only the automatic steering control based on the automatic steering torque command value T * m,ad is performed. Refers to torque other than motor torque that is generated as a disturbance.
 自動操舵トルク指令値T m,adに基づく自動操舵制御のみが行われていると仮定した場合には、プラントの目標値は自動出力軸トルク指令値N・T m,ad(=T c,ad)となり、プラントの出力は実自動操舵角θc,adとなる。そこで、外乱トルク推定部164は、自動出力軸トルク指令値N・T m,ad(=T c,ad)と実自動操舵角θc,adとに基づいて、自動外乱トルクTlc,adと、実自動操舵角θc,adと、実自動操舵角θc,adの微分値(実自動角速度)dθc,ad/dtとを推定する。以下において、Tlc,ad、θc,adおよびdθc,ad/dtの推定値を、それぞれ^Tlc,ad、^θc,adおよび^dθc,ad/dtで表すことにする。外乱トルク推定部164の詳細については、後述する。 Assuming that only the automatic steering control based on the automatic steering torque command value T * m,ad is performed, the target value of the plant is the automatic output shaft torque command value N·T * m,ad (=T * c,ad ), and the output of the plant becomes the actual automatic steering angle θc,ad . Therefore , the disturbance torque estimator 164 calculates the automatic disturbance torque T lc , ad , the actual automatic steering angle θc,ad , and the differential value (actual automatic angular velocity) dθc ,ad /dt of the actual automatic steering angle θc,ad. In the following we denote the estimated values of T lc,ad , θ c,ad and dθ c,ad /dt by ̂T lc,ad , ̂θ c,ad and ̂dθ c,ad /dt, respectively. The details of the disturbance torque estimator 164 will be described later.
 外乱トルク推定部164によって演算された自動外乱トルク推定値^Tlc,adは、自動外乱トルク補償値として外乱トルク補償部166に与えられる。 The automatic disturbance torque estimation value ̂Tlc,ad calculated by the disturbance torque estimator 164 is given to the disturbance torque compensator 166 as an automatic disturbance torque compensation value.
 外乱トルク補償部166は、基本トルク指令値(Tfb,ad+Tff,ad)から自動外乱トルク推定値^Tlc,adを減算することにより、自動出力軸トルク指令値T c,ad(=Tfb,ad+Tff,ad-^Tlc,ad)を演算する。これにより、自動外乱トルクが補償された自動出力軸トルク指令値T c,ad(出力軸9に対する目標トルク)が得られる。 The disturbance torque compensator 166 subtracts the automatic disturbance torque estimation value ̂T lc,ad from the basic torque command value (T fb,ad +Tff ,ad ) to obtain the automatic output shaft torque command value T * c,ad ( =T fb,ad +T ff,ad −̂T lc,ad ). As a result, the automatic output shaft torque command value T * c,ad (target torque for the output shaft 9) in which the automatic disturbance torque is compensated is obtained.
 自動出力軸トルク指令値T c,adは、減速比除算部167に与えられる。減速比除算部167は、自動出力軸トルク指令値T c,adを減速比Nで除算することにより、自動操舵トルク指令値T m,ad(電動モータ18に対する目標トルク)を演算する。この自動操舵トルク指令値T m,adが、統合トルク演算部113(図13参照)に与えられる。 The automatic output shaft torque command value T * c,ad is given to the reduction ratio dividing section 167 . A reduction ratio division unit 167 divides the automatic output shaft torque command value T * c,ad by the reduction ratio N to calculate an automatic steering torque command value T * m,ad (target torque for the electric motor 18). This automatic steering torque command value T * m,ad is given to the integrated torque calculator 113 (see FIG. 13).
 外乱トルク推定部164について詳しく説明する。外乱トルク推定部164は、例えば、図15に示す電動パワーステアリングシステム1の物理モデル101Aを使用して、自動外乱トルク推定値^Tlc,ad、実自動操舵角推定値^θc,adおよび実自動角速度推定値^dθc,ad/dtを演算する、外乱オブザーバから構成されている。ただし、図15は、自動操舵トルク指令値T m,adに基づく自動操舵制御のみが行われていると仮定した場合の物理モデルを示している。 The disturbance torque estimator 164 will be described in detail. The disturbance torque estimator 164 uses, for example, the physical model 101A of the electric power steering system 1 shown in FIG . It consists of a disturbance observer that calculates the actual automatic angular velocity estimate ̂dθ c,ad /dt. However, FIG. 15 shows a physical model assuming that only the automatic steering control based on the automatic steering torque command value T * m,ad is performed.
 この物理モデル101Aは、出力軸9および出力軸9に固定されたウォームホイール21を含むプラント(モータ駆動対象の一例)102Aを含む。プラント102Aには、トーションバー10の捩じれトルクである操舵トルク(トーションバートルク)Ttbが与えられるとともに、転舵輪3側から路面負荷トルクTrl,adが与えられる。さらに、プラント102Aには、ウォームギヤ20を介してモータから自動出力軸トルク指令値N・T m,adが与えられるとともに、ウォームホイール21とウォームギヤ20との間の摩擦によって摩擦トルクTf,adが与えられる。 This physical model 101A includes a plant (an example of a motor driven object) 102A including an output shaft 9 and a worm wheel 21 fixed to the output shaft 9 . The plant 102A is provided with a steering torque (torsion bar torque) Ttb , which is a twisting torque of the torsion bar 10, and is provided with a road load torque Trl,ad from the steered wheels 3 side. Further, the plant 102A is given an automatic output shaft torque command value N·T * m,ad from the motor via the worm gear 20, and the friction between the worm wheel 21 and the worm gear 20 produces a friction torque Tf,ad. is given.
 プラント102Aの慣性をJとすると、物理モデル101Aの慣性についての運動方程式は、次式(10)で表される。 Assuming that the inertia of the plant 102A is J, the equation of motion for the inertia of the physical model 101A is expressed by the following equation (10).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 dθc,ad/dtは、プラント102Aの角加速度である。Nは、減速機19の減速比である。Tlc,adは、プラント102Aに与えられる自動外乱トルクを示している。この実施形態では、自動外乱トルクTlc,adは、操舵トルクTtbと路面負荷トルクTrl,adと摩擦トルクTf,adとの和として示されているが、実際には、自動外乱トルクTlc,adはこれら以外のトルクを含んでいる。 d 2 θ c,ad /dt 2 is the angular acceleration of plant 102A. N is the speed reduction ratio of the speed reducer 19 . Tlc,ad indicates the automatic disturbance torque applied to the plant 102A. In this embodiment, the automatic disturbance torque Tlc ,ad is shown as the sum of the steering torque Ttb , the road load torque Trl,ad, and the friction torque Tf,ad . Tlc ,ad includes other torques.
 図15の物理モデル101Aに対する状態方程式は、次式(11)で表わされる。 The state equation for the physical model 101A of FIG. 15 is expressed by the following equation (11).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 前記式(11)において、xは状態変数ベクトル、uは既知入力ベクトル、uは未知入力ベクトル、yは出力ベクトルである。前記式(11)において、Aはシステム行列、B1は第1入力行列、B2は第2入力行列、Cは出力行列、Dは直達行列である。 (11), x is a state variable vector, u1 is a known input vector, u2 is an unknown input vector, and y is an output vector. In equation (11), A is the system matrix, B1 is the first input matrix, B2 is the second input matrix, C is the output matrix, and D is the feedthrough matrix.
 前記状態方程式を、未知入力ベクトルuを状態の1つとして含めた系に拡張する。拡張系の状態方程式(拡張状態方程式)は、次式(12)で表される。 We extend the above state equation to a system that includes the unknown input vector u2 as one of the states. The state equation of the extended system (extended state equation) is represented by the following equation (12).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 前記式(12)において、xは、拡張系の状態変数ベクトルであり、次式(13)で表される。 In the above equation (12), x e is the state variable vector of the extended system and is expressed by the following equation (13).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 前記式(12)において、Aは拡張系のシステム行列、Bは拡張系の既知入力行列、Cは拡張系の出力行列である。 In the above equation (12), A e is the system matrix of the extended system, B e is the known input matrix of the extended system, and C e is the output matrix of the extended system.
 前記式(12)の拡張状態方程式から、次式(14)の方程式で表される外乱オブザーバ(拡張状態オブザーバ)が構築される。 A disturbance observer (extended state observer) represented by the following equation (14) is constructed from the extended state equation of equation (12) above.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(14)において、^xはxの推定値を表している。また、Lはオブザーバゲインである。また、^yはyの推定値を表している。^xは、次式(15)で表される。 In equation (14), ̂x e represents an estimate of x e . Also, L is an observer gain. Also, ^y represents the estimated value of y. ^x e is represented by the following equation (15).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式(15)において、^θc,adは実自動操舵角θc,adの推定値であり、^dθc,ad/dtは角速度dθc,ad/dtの推定値であり、^Tlc,adは自動外乱トルクTlc,adの推定値である。 In equation (15), ^θc ,ad is the estimated value of the actual automatic steering angle θc,ad , ^dθc ,ad /dt is the estimated value of the angular velocity dθc,ad /dt, and ^ Tlc , ad is the estimated value of the automatic disturbance torque Tlc ,ad .
 外乱トルク推定部164は、前記式(14)の方程式に基づいて状態変数ベクトル^xを演算する。 The disturbance torque estimator 164 calculates the state variable vector ̂x e based on the equation (14).
 図16は、外乱トルク推定部164の構成を示すブロック図である。 FIG. 16 is a block diagram showing the configuration of the disturbance torque estimator 164. As shown in FIG.
 外乱トルク推定部164は、入力ベクトル入力部181と、出力行列乗算部182と、第1加算部183と、ゲイン乗算部184と、入力行列乗算部185と、システム行列乗算部186と、第2加算部187と、積分部188と、状態変数ベクトル出力部189とを含む。 The disturbance torque estimation unit 164 includes an input vector input unit 181, an output matrix multiplication unit 182, a first addition unit 183, a gain multiplication unit 184, an input matrix multiplication unit 185, a system matrix multiplication unit 186, a second It includes an addition section 187 , an integration section 188 and a state variable vector output section 189 .
 減速比乗算部168(図14参照)によって演算される自動出力軸トルク指令値N・T m,ad(=T c,ad)は、入力ベクトル入力部181に与えられる。入力ベクトル入力部181は、入力ベクトルuを出力する。 The automatic output shaft torque command value N·T * m,ad (=T * c,ad ) calculated by the reduction ratio multiplication section 168 (see FIG. 14) is given to the input vector input section 181 . The input vector input unit 181 outputs an input vector u1 .
 積分部188の出力が状態変数ベクトル^x(前記式(15)参照)となる。演算開始時には、状態変数ベクトル^xとして初期値が与えられる。状態変数ベクトル^xの初期値は、たとえば0である。 The output of the integrator 188 is the state variable vector ̂x e (see equation (15) above). At the start of computation, an initial value is given as the state variable vector ̂xe . The initial value of the state variable vector ̂x e is 0, for example.
 システム行列乗算部186は、状態変数ベクトル^xにシステム行列Aを乗算する。出力行列乗算部182は、状態変数ベクトル^xに出力行列Cを乗算する。 A system matrix multiplier 186 multiplies the state variable vector ̂x e by the system matrix A e . The output matrix multiplier 182 multiplies the state variable vector ̂x e by the output matrix C e .
 第1加算部183は、実自動操舵角θc,adである出力ベクトルyから、出力行列乗算部182の出力(C・^x)を減算する。つまり、第1加算部183は、出力ベクトルyと出力ベクトル推定値^y(=C・^x)との差(y-^y)を演算する。ゲイン乗算部184は、第1加算部183の出力(y-^y)にオブザーバゲインL(前記式(14)参照)を乗算する。 The first adder 183 subtracts the output (C e ·̂x e ) of the output matrix multiplier 182 from the output vector y, which is the actual automatic steering angle θ c,ad . That is, the first adder 183 calculates the difference (y−̂y) between the output vector y and the output vector estimate value ̂y (=C e ·̂x e ). The gain multiplier 184 multiplies the output (y−̂y) of the first adder 183 by the observer gain L (see formula (14) above).
 入力行列乗算部185は、入力ベクトル入力部181から出力される入力ベクトルuに入力行列Bを乗算する。第2加算部187は、入力行列乗算部185の出力(B・u)と、システム行列乗算部186の出力(A・^x)と、ゲイン乗算部184の出力(L(y-^y))とを加算することにより、状態変数ベクトルの微分値d^x/dtを演算する。積分部188は、第2加算部187の出力(d^x/dt)を積分することにより、状態変数ベクトル^xを演算する。状態変数ベクトル出力部189は、状態変数ベクトル^xに基づいて、自動外乱トルク推定値^Tlc,ad、実自動操舵角推定値^θc,adおよび実自動角速度推定値d^θc,ad/dtを演算する。 The input matrix multiplication unit 185 multiplies the input vector u1 output from the input vector input unit 181 by the input matrix Be . The second adder 187 outputs the input matrix multiplier 185 output (B e ·u 1 ), the system matrix multiplier 186 output (A e ·̂x e ), and the gain multiplier 184 output (L(y −^y)) is added to calculate the differential value d^x e /dt of the state variable vector. The integrator 188 calculates the state variable vector ̂x e by integrating the output (d̂x e /dt) of the second adder 187 . A state variable vector output unit 189 outputs an automatic disturbance torque estimation value ̂Tlc,ad , an actual automatic steering angle estimation value ̂θc ,ad, and an actual automatic angular velocity estimation value d̂θc based on the state variable vector ̂xe. , ad /dt.
 前述の拡張状態オブザーバの代わりに、プラントの逆モデルとローパスフィルタとから構成される外乱オブザーバを用いてもよい。この場合、プラントの運動方程式は、前述のように式(10)で表される。 A disturbance observer consisting of an inverse model of the plant and a low-pass filter may be used instead of the extended state observer described above. In this case, the equation of motion of the plant is expressed by Equation (10) as described above.
 したがって、プラントの逆モデルは、次式(16)となる。 Therefore, the inverse model of the plant is the following formula (16).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 プラントの逆モデルを用いた外乱オブザーバへの入力は、J・dθc,ad/dtおよびN・T m,adであり、実操舵角θc,adの二階微分値を用いるため、回転角センサ23のノイズの影響を大きく受ける。これに対して、前述の拡張状態オブザーバでは、積分型で外乱トルクを推定するため、微分によるノイズ影響を低減できるという利点がある。 Inputs to the disturbance observer using the inverse model of the plant are J·d 2 θ c,ad /dt 2 and N·T * m,ad . , is greatly affected by noise from the rotation angle sensor 23 . On the other hand, the extended state observer described above estimates the disturbance torque in an integral manner, and therefore has the advantage of being able to reduce the noise effect due to differentiation.
 次に、第4不感帯幅設定部120および第5不感帯幅設定部121の動作について説明する。第4不感帯幅設定部120は、運転支援モード時に、第4不感帯幅Wを設定するための第4不感帯幅設定処理を行う。第5不感帯幅設定部121は、運転支援モード時に、第5不感帯幅Wを設定するための第5不感帯幅設定処理を行う。 Next, operations of the fourth dead band width setting section 120 and the fifth dead band width setting section 121 will be described. The fourth dead band width setting unit 120 performs a fourth dead band width setting process for setting the fourth dead band width W4 in the driving assistance mode. The fifth dead band width setting unit 121 performs a fifth dead band width setting process for setting the fifth dead band width W5 in the driving assistance mode.
 第4不感帯幅設定部120によって行われる第4不感帯幅設定処理は、図9の第1不感帯幅設定処理と同様である。ただし、第4不感帯幅設定処理においては、図9の第1不感帯幅W、第1不感帯幅最小値W1_min、第1不感帯幅最大値W1_max、第1不感帯幅減少量W1_decreaseおよび第1不感帯幅増加量W1_increaseは、それぞれ、第4不感帯幅W、第4不感帯幅最小値W4_min、第4不感帯幅最大値W4_max、第4不感帯幅減少量W4_decreaseおよび第4不感帯幅増加量W4_increaseに置き換えられる。 The fourth dead band width setting process performed by the fourth dead band width setting unit 120 is the same as the first dead band width setting process in FIG. However, in the fourth dead band width setting process, the first dead band width W1 , the first dead band minimum value W1_min , the first dead band maximum value W1_max , the first dead band width decrease amount W1_decrease and the first dead band width W1_min shown in FIG. The dead band width increase amount W1_increase is the fourth dead band width W4 , the fourth dead band width minimum value W4_min , the fourth dead band width maximum value W4_max , the fourth dead band width decrease amount W4_decrease , and the fourth dead band width increase amount. W is replaced by 4_increase .
 第5不感帯幅設定部121によって行われる第5不感帯幅設定処理は、図9の第1不感帯幅設定処理と同様である。ただし、第5不感帯幅設定処理においては、図9の第1不感帯幅W、第1不感帯幅最小値W1_min、第1不感帯幅最大値W1_max、第1不感帯幅減少量W1_decreaseおよび第1不感帯幅増加量W1_increaseは、それぞれ、第5不感帯幅W、第5不感帯幅最小値W5_min、第5不感帯幅最大値W5_max、第5不感帯幅減少量W5_decreaseおよび第5不感帯幅増加量W5_increaseに置き換えられる。 The fifth dead band width setting process performed by the fifth dead band width setting unit 121 is the same as the first dead band width setting process in FIG. However, in the fifth dead band width setting process, the first dead band width W 1 , the first dead band minimum value W 1 — min , the first dead band width maximum value W 1 — max , the first dead band width decrease amount W 1 — decrease, and the first dead band width W 1 — The dead band width increase W1_increase is the fifth dead band width W5 , the fifth dead band width minimum value W5_min , the fifth dead band width maximum value W5_max , the fifth dead band width decrease W5_decrease , and the fifth dead band width increase. W is replaced by 5_increase .
 第2変形例では、フィードバック制御トルクTfb,ad等に基づいて演算される自動操舵トルク指令値T m,adと、アシストトルク指令値T m,mdとの和である統合トルク指令値T m,intに基づいて電動モータ18が駆動される。したがって、運転支援モード時において、通常時は、自動操舵トルク指令値T m,adに基づいて出力軸9が回転されるとともに、ドライバトルクに基づき発生する、操舵トルクTtbおよびアシストトルク指令値T m,mdに基づいて出力軸9が回転される。 In the second modification, the integrated torque command value is the sum of the automatic steering torque command value T * m, ad calculated based on the feedback control torque Tfb ,ad and the assist torque command value T * m,md. The electric motor 18 is driven based on T * m,int . Therefore, in the driving support mode, the output shaft 9 is normally rotated based on the automatic steering torque command value T * m,ad , and the steering torque Ttb and the assist torque command value generated based on the driver torque. The output shaft 9 is rotated based on T * m,md .
 運転支援モード時において、ハンズオンオフ判定部119による手放し状態であるとの判定結果が所定時間以上継続したときに、第4不感帯幅Wおよび第5不感帯幅Wが大きくされる。第4不感帯幅Wおよび第5不感帯幅Wが大きくされると、ドライバトルクに対する実手動操舵角θc,md、すなわち、運転支援に対してドライバの操舵が許容される角度、の絶対値が通常時よりも小さくなる。 The fourth dead zone width W4 and the fifth dead zone width W5 are increased when the hands-on/off determining unit 119 continues to determine that the vehicle is in a hands-free state for a predetermined time or longer in the driving support mode. When the fourth dead band width W4 and the fifth dead band width W5 are increased, the absolute value of the actual manual steering angle θ c,md with respect to the driver torque, that is, the angle at which the driver is permitted to steer for driving assistance. is smaller than normal.
 その結果、フィードバック制御に用いられる実自動操舵角θc,adの値が通常時より大きくなり、フィードバック制御トルクTfb,ad、自動操舵トルク指令値T m,adを順に介して、モータのトルク指示値に反映される。 As a result, the value of the actual automatic steering angle θc ,ad used for feedback control becomes larger than the normal value, and the motor is driven through the feedback control torque Tfb ,ad and the automatic steering torque command value T * m,ad in order. Reflected in the torque command value.
 その結果、図2の実施形態と同様に、ドライバトルクに基づく出力軸9の回転量が小さくなる。これにより、ステアリングホイール2を回転させてもその回転が伝わりにくくなるため、トーションバー10が捻じれやすくなる。これにより、操舵トルクTtbおよびドライバトルクが大きくなるので、ハンズオンオフ判定部119によるハンズオンオフ判定の精度が高くなる。これにより、直線走行などのドライバトルクの入力が少ない状況において、ドライバがステアリングホイール2を把持しているにもかかわらず手放し状態であるとの誤判定を防止または抑制することができる。 As a result, the amount of rotation of the output shaft 9 based on the driver torque is reduced, as in the embodiment of FIG. As a result, even if the steering wheel 2 is rotated, the rotation is less likely to be transmitted, and the torsion bar 10 is more likely to be twisted. As a result, the steering torque Ttb and the driver torque increase, so that the accuracy of the hands-on/off determination by the hands-on/off determination unit 119 increases. As a result, it is possible to prevent or suppress an erroneous determination that the driver is not holding the steering wheel 2 even though the driver is gripping the steering wheel 2 when the driver torque input is small, such as when the vehicle is running straight.
 第2変形例では、通常モード時においては、アシスト制御部111によって設定されるアシストトルク指令値T m,mdが、統合トルク指令値T m,intとしてトルク制御部114に与えられる。したがって、通常モード時においては、アシストトルク指令値T m,mdのみに基づいて、駆動回路31が駆動される。 In the second modification, in the normal mode, assist torque command value T * m,md set by assist control unit 111 is given to torque control unit 114 as integrated torque command value T * m,int . Therefore, in the normal mode, drive circuit 31 is driven based only on assist torque command values T * m, md .
 [4]モータ制御用ECU202の第3変形例
 図17は、モータ制御用ECU202の第3変形例の電気的構成を説明するためのブロック図である。図17において、前述の図13の各部と対応する部分には、図13と同じ符号を付して示す。
[4] Third Modification of Motor Control ECU 202 FIG. 17 is a block diagram for explaining the electrical configuration of a third modification of the motor control ECU 202. As shown in FIG. In FIG. 17, the same reference numerals as in FIG. 13 denote the parts corresponding to the parts in FIG. 13 described above.
 第3変形例では、マイクロコンピュータ40Cにおける機能処理部の構成が図13と異なっている。具体的には、第3変形例では、図13の第4不感帯処理部116、第5不感帯処理部117、第4不感帯幅設定部120および第5不感帯幅設定部121に代えて、第6不感帯処理部123および第6不感帯幅設定部124が設けられている。 In the third modified example, the configuration of the functional processing section in the microcomputer 40C is different from that in FIG. Specifically, in the third modification, instead of the fourth dead zone processing section 116, the fifth dead zone processing section 117, the fourth dead zone width setting section 120, and the fifth dead zone width setting section 121 of FIG. A processing unit 123 and a sixth dead band width setting unit 124 are provided.
 第6不感帯処理部123は、アシスト制御部111および実手動操舵角演算部118Aの両方に対する前段に配置されている。第6不感帯処理部123は、第6不感帯幅をWとすると、操舵トルクTtbが-W/2以上でW/2以下の範囲(第6不感帯領域)内である場合には、零を、第6不感帯処理後の操舵トルクTtb,deとして出力する。 The sixth dead zone processing section 123 is arranged in the front stage of both the assist control section 111 and the actual manual steering angle calculation section 118A. If the width of the sixth dead band is W6 , and the steering torque Ttb is within the range of -W6 /2 or more and W6 /2 or less (sixth dead band region), the sixth dead band processing unit 123: Zero is output as the steering torque Ttb ,de after the sixth dead zone processing.
 操舵トルクTtbが-W/2よりも小さい領域では、第6不感帯処理部123は、[Ttb+(W/2)]を、第6不感帯処理後の操舵トルクTtb,deとして出力する。操舵トルクTtbがW/2よりも大きい領域では、第6不感帯処理部123は、[Ttb-(W/2)]を、第6不感帯処理後の操舵トルクTtb,deとして出力する。 In a region where the steering torque T tb is smaller than −W 6 /2, the sixth dead zone processing unit 123 sets [T tb +(W 6 /2)] as the steering torque T tb,de after the sixth dead zone processing. Output. In a region where the steering torque T tb is greater than W 6 /2, the sixth dead zone processing unit 123 outputs [T tb −(W 6 /2)] as the steering torque T tb,de after the sixth dead zone processing. do.
 第6不感帯幅Wは、第6不感帯幅設定部124によって設定される。第6不感帯幅設定部124は、運転支援モード時に、ハンズオンオフ判定部119のハンズオンオフ判定結果に基づいて、第6不感帯幅Wを設定する。第6不感帯幅設定部124は、運転支援モード時に、第6不感帯幅Wを設定するための第6不感帯幅設定処理を行う。 The sixth dead zone width W6 is set by the sixth dead zone width setting section 124 . The sixth dead band width setting unit 124 sets the sixth dead band width W6 based on the hands-on/off determination result of the hands-on/off determination unit 119 in the driving assistance mode. The sixth dead zone width setting unit 124 performs a sixth dead zone width setting process for setting the sixth dead zone width W6 in the driving assistance mode.
 第6不感帯幅設定部124によって行われる第6不感帯幅設定処理は、図9の第1不感帯幅設定処理と同様である。ただし、第6不感帯幅設定処理においては、図9の第1不感帯幅W、第1不感帯幅最小値W1_min、第1不感帯幅最大値W1_max、第1不感帯幅減少量W1_decreaseおよび第1不感帯幅増加量W1_increaseは、それぞれ、第6不感帯幅W、第6不感帯幅最小値W6_min、第6不感帯幅最大値W6_max、第3不感帯幅減少量W6_decreaseおよび第6不感帯幅増加量W6_increaseに置き換えられる。 The sixth dead band width setting process performed by the sixth dead band width setting unit 124 is the same as the first dead band width setting process in FIG. However, in the sixth dead band width setting process, the first dead band width W 1 , the first dead band width minimum value W 1 — min , the first dead band width maximum value W 1 — max , the first dead band width decrease amount W 1 — decrease, and the first dead band width W 1 — The dead band width increase W1_increase is the sixth dead band width W6 , the sixth dead band width minimum value W6_min , the sixth dead band width maximum value W6_max , the third dead band width decrease W6_decrease , and the sixth dead band width increase. W 6_increase .
 第3変形例では、アシスト制御部111は、第6不感帯処理後の操舵トルクTtb,deと車速Vとに基づいて、アシストトルク指令値T m,mdを設定する。実手動操舵角演算部118Aは、アシストトルク指令値T m,mdと、第6不感帯処理後の操舵トルクTtb,deとに基づいて、実手動操舵角θc,mdを演算する。 In the third modification, the assist control unit 111 sets the assist torque command values T * m,md based on the steering torque Ttb ,de and the vehicle speed V after the sixth dead zone processing. The actual manual steering angle calculation unit 118A calculates the actual manual steering angle θc,md based on the assist torque command value T * m,md and the steering torque Ttb ,de after the sixth dead zone processing.
 具体的には、実手動操舵角演算部118Aは、式(2)のTtb,deに第6不感帯処理後の操舵トルクTtb,deを代入し、式(2)のT m,md,deにアシストトルク指令値T m,mdを代入して、式(2)の微分方程式を解くことにより、ロアコラムの回転角θを演算し、得られた回転角θを実手動操舵角θc,mdとして設定する。 Specifically, the actual manual steering angle calculation unit 118A substitutes the steering torque Ttb,de after the sixth dead zone processing for Ttb, de in the equation (2), and calculates T * m,md in the equation (2). , de are substituted with the assist torque command values T * m and md , and the differential equation of equation (2) is solved to calculate the rotation angle θc of the lower column. Set the angle θ as c,md .
 運転支援モード時において、ハンズオンオフ判定部119による手放し状態であるとの判定結果が所定時間以上継続したときに、第6不感帯幅Wが大きくされるので、第3変形例においても、前述の第2変形例と同様な効果が得られる。 In the driving support mode, when the hands-on/off determining unit 119 continues to determine that the driver is in a hands-free state for a predetermined period of time or more, the sixth dead zone width W6 is increased. An effect similar to that of the second modification can be obtained.
 第3変形例では、通常モード時においては、アシスト制御部111によって設定されるアシストトルク指令値T m,mdが、統合トルク指令値T m,intとしてトルク制御部114に与えられる。したがって、通常モード時においては、アシストトルク指令値T m,mdのみに基づいて、駆動回路31が駆動される。 In the third modification, in the normal mode, assist torque command value T * m,md set by assist control unit 111 is given to torque control unit 114 as integrated torque command value T * m,int . Therefore, in the normal mode, drive circuit 31 is driven based only on assist torque command values T * m, md .
 前述の実施形態では、図2に示されるように、第1不感帯処理部43で用いられる第1不感帯幅Wおよび第2不感帯処理部45で用いられる第2不感帯幅Wの両方が、ハンズオンオフ判定結果に基づいて制御されているが、第1不感帯幅Wおよび第2不感帯幅Wのうちのいずれか一方のみがハンズオンオフ判定結果に基づいて制御されてもよい。また、第1不感帯処理部43および第2不感帯処理部45のいずれか一方のみを設け、当該不感帯処理部で用いられる不感帯をハンズオンオフ判定結果に基づいて制御するようにしてもよい。 In the above-described embodiment, as shown in FIG. 2, both the first dead band width W1 used in the first dead band processing unit 43 and the second dead band width W2 used in the second dead band processing unit 45 are Although the control is based on the OFF determination result, only one of the first dead zone width W1 and the second dead zone width W2 may be controlled based on the hands-on/off determination result. Alternatively, only one of the first dead zone processor 43 and the second dead zone processor 45 may be provided, and the dead zone used by the dead zone processor may be controlled based on the hands-on/off determination result.
 前述の第2変形例では、図13に示されるように、第4不感帯処理部116で用いられる第4不感帯幅Wおよび第5不感帯処理部117で用いられる第5不感帯幅Wの両方が、ハンズオンオフ判定結果に基づいて制御されているが、第4不感帯幅Wおよび第5不感帯幅Wのうちのいずれか一方のみがハンズオンオフ判定結果に基づいて制御されてもよい。また、第4不感帯処理部116よび第5不感帯処理部117のいずれか一方のみを設け、当該不感帯処理部で用いられる不感帯をハンズオンオフ判定結果に基づいて制御するようにしてもよい。 In the second modification described above, as shown in FIG. 13, both the fourth dead zone width W4 used in the fourth dead zone processing section 116 and the fifth dead zone width W5 used in the fifth dead zone processing section 117 are , are controlled based on the hands-on/off determination result, but only one of the fourth dead zone width W4 and the fifth dead zone width W5 may be controlled based on the hands-on/off determination result. Alternatively, only one of the fourth dead zone processing section 116 and the fifth dead zone processing section 117 may be provided, and the dead zone used by the dead zone processing section may be controlled based on the hands-on/off determination result.
 前述の実施形態では、この発明をコラムタイプEPSのモータ制御に適用した場合の例を示したが、この発明は、コラムタイプ以外のEPSのモータ制御にも適用することができる。 In the above-described embodiment, an example in which the present invention is applied to column-type EPS motor control has been shown, but the present invention can also be applied to motor control of EPSs other than column-type EPS.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used to clarify the technical content of the present invention, and the present invention should be construed as being limited to these specific examples. should not, the scope of the invention is limited only by the appended claims.
 1…電動パワーステアリング装置、3…転舵輪、4…転舵機構、18…電動モータ、43…第1不感帯処理部、44…アシストトルク指令値設定部、45…第2不感帯処理部、46…手動操舵指令値生成部、47…統合角度指令値演算部、48…角度制御部、49…トルク制御部、50…ハンズオンオフ判定部、51…第1不感帯幅設定部、52…第2不感帯幅設定部、53…第3不感帯幅処理部、54…第3不感帯幅設定部、111…アシスト制御部、112…自動操舵制御部、113…統合トルク演算部(統合制御量演算部)、114…トルク制御部(制御部)、115…実操舵角演算部、116…第4不感帯処理部、117…第5不感帯処理部、118…実自動操舵角演算部、118A…実手動操舵角演算部、118B…減算部、119…ハンズオンオフ判定部、120…第4不感帯幅設定部、121…第5不感帯幅設定部、122…第6不感帯幅処理部、123…第6不感帯幅設定部、201…上位ECU201、202…モータ制御用ECU REFERENCE SIGNS LIST 1 electric power steering device 3 steered wheels 4 steering mechanism 18 electric motor 43 first dead zone processing section 44 assist torque command value setting section 45 second dead zone processing section 46 Manual steering command value generation unit 47 Integrated angle command value calculation unit 48 Angle control unit 49 Torque control unit 50 Hands-on/off determination unit 51 First dead band width setting unit 52 Second dead band width Setting unit 53 Third dead band width processing unit 54 Third dead band width setting unit 111 Assist control unit 112 Automatic steering control unit 113 Integrated torque calculation unit (integrated control amount calculation unit) 114 Torque control unit (control unit) 115 Actual steering angle calculation unit 116 Fourth dead band processing unit 117 Fifth dead band processing unit 118 Actual automatic steering angle calculation unit 118A Actual manual steering angle calculation unit 118B...Subtraction part 119...Hands-on/off determination part 120...Fourth dead zone width setting part 121...Fifth dead zone width setting part 122...Sixth dead zone width processing part 123...Sixth dead zone width setting part 201... Upper ECUs 201, 202 ... ECU for motor control

Claims (5)

  1.  操舵トルクを検出するためのトルク検出部と、
     前記操舵トルクを用いてアシストトルク指令値を設定するアシストトルク指令値設定部と、
     前記操舵トルクと前記アシストトルク指令値とを用いて、手動操舵指令値を生成する手動操舵指令値生成部と、
     運転支援モード時に与えられる自動操舵指令値に前記手動操舵指令値を加算して、統合角度指令値を演算する統合角度指令値演算部と、
     前記統合角度指令値に基づいて、舵角制御用の電動モータを角度制御する制御部と、
     ドライバがステアリングホイールを把持している把持状態であるか、ドライバが前記ステアリングホイールを把持していない手放し状態であるかを判定するハンズオンオフ判定部と、
     前記手動操舵指令値生成部に入力する前記操舵トルク、前記手動操舵指令値生成部に入力する前記アシストトルク指令値および前記アシストトルク指令値演算部に入力する前記操舵トルクのうちの少なくとも1つに設けられた不感帯処理部と、
     前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間以上継続したときに、前記不感帯処理部の少なくとも1つの不感帯処理部の不感帯幅を変更する不感帯幅設定部とを含む、モータ制御装置。
    a torque detector for detecting steering torque;
    an assist torque command value setting unit that sets an assist torque command value using the steering torque;
    a manual steering command value generation unit that generates a manual steering command value using the steering torque and the assist torque command value;
    an integrated angle command value calculation unit that calculates an integrated angle command value by adding the manual steering command value to the automatic steering command value given in the driving assistance mode;
    a control unit that performs angle control of an electric motor for steering angle control based on the integrated angle command value;
    a hands-on/off determination unit that determines whether the driver is gripping the steering wheel or is in a hands-free state where the driver is not gripping the steering wheel;
    at least one of the steering torque input to the manual steering command value generation section, the assist torque command value input to the manual steering command value generation section, and the steering torque input to the assist torque command value calculation section; a provided dead zone processing unit;
    Dead zone width setting for changing the dead zone width of at least one of the dead zone processors when the hands-on/off determination part determines that the hands are released for a predetermined time or more during the driving support mode. and a motor control device.
  2.  操舵トルクを検出するためのトルク検出部と、実操舵角を検出するための操舵角検出部と、運転支援モード時に与えられる自動操舵指令値に基づいて自動操舵制御量を設定する自動操舵制御部と、前記操舵トルクを用いてアシスト制御量を設定するアシスト制御部と、前記自動操舵制御量と前記アシスト制御量とを加算することによって、統合制御量を演算する統合制御量演算部と、前記統合制御量に基づいて舵角制御用の電動モータを制御する制御部とを含むモータ制御装置であって、
     ドライバがステアリングホイールを把持している把持状態であるか、ドライバが前記ステアリングホイールを把持していない手放し状態であるかを判定するハンズオンオフ判定部と、
     前記操舵トルクと前記アシスト制御量とに基づく手動操舵分の操舵角である実手動操舵角を演算する実手動操舵角演算部と、
     前記実操舵角から前記実手動操舵角を減算することにより、前記自動操舵制御量に基づく自動操舵分の操舵角である実自動操舵角を演算する実自動操舵角演算部とを含み、
     前記自動操舵制御部は、前記自動操舵指令値および前記実自動操舵角を用いて前記自動操舵制御量を設定するように構成されており、
     前記実手動操舵角演算部に入力する前記操舵トルク、前記実手動操舵角演算部に入力する前記アシスト制御量および前記アシスト制御部に入力する前記操舵トルクのうちの少なくとも1つに設けられた不感帯処理部と、
     前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間以上継続したときに、前記不感帯処理部の少なくとも1つの不感帯処理部の不感帯幅を変更する不感帯幅設定部とをさらに含む、モータ制御装置。
    A torque detection unit for detecting steering torque, a steering angle detection unit for detecting actual steering angle, and an automatic steering control unit for setting an automatic steering control amount based on an automatic steering command value given in the driving assistance mode. an assist control unit that sets an assist control amount using the steering torque; an integrated control amount calculation unit that calculates an integrated control amount by adding the automatic steering control amount and the assist control amount; A motor control device including a control unit that controls an electric motor for steering angle control based on the integrated control amount,
    a hands-on/off determination unit that determines whether the driver is gripping the steering wheel or is in a hands-free state where the driver is not gripping the steering wheel;
    an actual manual steering angle calculation unit that calculates an actual manual steering angle that is a steering angle corresponding to manual steering based on the steering torque and the assist control amount;
    an actual automatic steering angle calculation unit that calculates an actual automatic steering angle, which is a steering angle corresponding to automatic steering based on the automatic steering control amount, by subtracting the actual manual steering angle from the actual steering angle;
    The automatic steering control unit is configured to set the automatic steering control amount using the automatic steering command value and the actual automatic steering angle,
    A dead zone provided in at least one of the steering torque input to the actual manual steering angle calculation section, the assist control amount input to the actual manual steering angle calculation section, and the steering torque input to the assist control section. a processing unit;
    Dead zone width setting for changing the dead zone width of at least one of the dead zone processors when the hands-on/off determination part determines that the hands are released for a predetermined time or more during the driving support mode. and a motor controller.
  3.  前記不感帯幅設定部によって不感帯幅が変更される不感帯処理部を、不感帯幅可変の不感帯処理部とすると、
     前記不感帯幅設定部は、前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間以上継続したときに、前記不感帯幅可変の不感帯処理部の不感帯幅を大きくするように構成されている、請求項1または2に記載のモータ制御装置。
    Assuming that the dead band processing unit whose dead band width is changed by the dead band width setting unit is a dead band processing unit with a variable dead band width,
    The dead zone width setting part increases the dead zone width of the dead zone processing part with a variable dead zone width when the hands-on/off determination part determines that the hand is released for a predetermined time or longer in the driving support mode. 3. A motor controller according to claim 1 or 2, configured to:
  4.  前記不感帯幅設定部は、前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間継続したときには、その時点から手放し状態であるとの判定結果が継続している間は、前記不感帯幅を徐々に増加させ、前記不感帯幅が所定の上限値に達すると、前記不感帯幅を前記上限値に保持する、請求項3に記載のモータ制御装置。 In the driving support mode, when the hands-on/off determining unit continues to make a determination that the hands are released for a predetermined period of time, the dead band width setting unit continues to determine that the hands are released from that time point. 4. The motor control device according to claim 3, wherein said dead band width is gradually increased while said dead band width is on, and when said dead band width reaches a predetermined upper limit value, said dead band width is held at said upper limit value.
  5.  前記不感帯幅設定部は、前記運転支援モード時において、前記ハンズオンオフ判定部による手放し状態であるとの判定結果が所定時間以上継続した後に、前記ハンズオンオフ判定部による判定結果が把持状態に変化したときには、その時点から把持状態であるとの判定結果が継続している間は、前記不感帯幅を徐々に減少させ、前記不感帯幅が所定の下限値に達すると、前記不感帯幅を前記下限値に保持する、請求項4に記載のモータ制御装置。 In the driving assistance mode, the dead band width setting unit determines that the hands-on/off determination unit determines that the hands-on/off state has changed to the gripping state after a determination result of the hands-on/off determination unit that the hands are released is continued for a predetermined time or longer. Sometimes, the width of the dead zone is gradually decreased while the determination result indicating that the gripping state continues from that time point, and when the width of the dead zone reaches a predetermined lower limit, the width of the dead zone is reduced to the lower limit. 5. The motor controller of claim 4, holding.
PCT/JP2021/041058 2021-11-08 2021-11-08 Motor control device WO2023079764A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041058 WO2023079764A1 (en) 2021-11-08 2021-11-08 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041058 WO2023079764A1 (en) 2021-11-08 2021-11-08 Motor control device

Publications (1)

Publication Number Publication Date
WO2023079764A1 true WO2023079764A1 (en) 2023-05-11

Family

ID=86240917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041058 WO2023079764A1 (en) 2021-11-08 2021-11-08 Motor control device

Country Status (1)

Country Link
WO (1) WO2023079764A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245931A (en) * 2010-05-25 2011-12-08 Jtekt Corp Electric power steering device
JP2019014468A (en) * 2017-07-07 2019-01-31 株式会社ジェイテクト Steering apparatus
JP2019182393A (en) * 2018-04-17 2019-10-24 株式会社ジェイテクト Driver torque estimation device and steering gear comprising same
JP2019194059A (en) * 2018-04-27 2019-11-07 株式会社ジェイテクト Motor controller
WO2019225289A1 (en) * 2018-05-21 2019-11-28 株式会社ジェイテクト Motor control device
JP2020019346A (en) * 2018-07-31 2020-02-06 株式会社ジェイテクト Motor controller
JP2020049962A (en) * 2018-09-21 2020-04-02 株式会社ジェイテクト Motor control device
JP2020132008A (en) * 2019-02-21 2020-08-31 株式会社ジェイテクト Steering device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245931A (en) * 2010-05-25 2011-12-08 Jtekt Corp Electric power steering device
JP2019014468A (en) * 2017-07-07 2019-01-31 株式会社ジェイテクト Steering apparatus
JP2019182393A (en) * 2018-04-17 2019-10-24 株式会社ジェイテクト Driver torque estimation device and steering gear comprising same
JP2019194059A (en) * 2018-04-27 2019-11-07 株式会社ジェイテクト Motor controller
WO2019225289A1 (en) * 2018-05-21 2019-11-28 株式会社ジェイテクト Motor control device
JP2020019346A (en) * 2018-07-31 2020-02-06 株式会社ジェイテクト Motor controller
JP2020049962A (en) * 2018-09-21 2020-04-02 株式会社ジェイテクト Motor control device
JP2020132008A (en) * 2019-02-21 2020-08-31 株式会社ジェイテクト Steering device

Similar Documents

Publication Publication Date Title
JP7116888B2 (en) motor controller
JP7236038B2 (en) vehicle steering system
JP7129004B2 (en) motor controller
JP7194326B2 (en) motor controller
CN109204449B (en) Steering control device
JP7194340B2 (en) motor controller
JP2019098817A (en) Vehicular steering device
JP7129003B2 (en) motor controller
JP7256958B2 (en) electric power steering device
JP4545054B2 (en) Electric power steering device
CN113928410A (en) Steering device
WO2023079764A1 (en) Motor control device
JP2023048867A (en) Motor control device
WO2023100369A1 (en) Motor control device
WO2023062748A1 (en) Motor control device
WO2023032010A1 (en) Steering device
WO2023286592A1 (en) Motor control device
WO2022264309A1 (en) Steering device for vehicle
WO2023127149A1 (en) Motor control device
WO2023079765A1 (en) Motor control device
WO2023084646A1 (en) Steering device
WO2023144895A1 (en) Motor control device
JP2023069907A (en) Motor control device
JP2023046823A (en) Steering apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557608

Country of ref document: JP