WO2023079614A1 - Seating determination device and machine tool - Google Patents

Seating determination device and machine tool Download PDF

Info

Publication number
WO2023079614A1
WO2023079614A1 PCT/JP2021/040558 JP2021040558W WO2023079614A1 WO 2023079614 A1 WO2023079614 A1 WO 2023079614A1 JP 2021040558 W JP2021040558 W JP 2021040558W WO 2023079614 A1 WO2023079614 A1 WO 2023079614A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
seating
workpiece
determination
tool
Prior art date
Application number
PCT/JP2021/040558
Other languages
French (fr)
Japanese (ja)
Inventor
淳平 松村
淳 ▲柳▼▲崎▼
信也 熊▲崎▼
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2023557882A priority Critical patent/JPWO2023079614A1/ja
Priority to PCT/JP2021/040558 priority patent/WO2023079614A1/en
Publication of WO2023079614A1 publication Critical patent/WO2023079614A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means

Definitions

  • This specification relates to a seating determination device and a machine tool.
  • the seating determination method disclosed in Patent Document 1 below has been disclosed.
  • the back pressure detected by the pressure sensor during machining converges within a predetermined pressure range within the set time and becomes constant
  • the back pressure that becomes constant by the control device is used as the reference. is used to set the threshold for processing.
  • the control device compares the back pressure threshold value for machining with the back pressure detected by the pressure sensor to make a pass/fail determination.
  • the purpose of this specification is to provide a seating determination device that can monitor the seating state of a workpiece for each different machining.
  • the present specification describes a detection device that detects a physical quantity that changes according to the seating state of a workpiece, and a seating state based on the physical quantity and a threshold value set for the physical quantity for determining the seating state during machining of the workpiece. and a setting unit for setting a threshold value for each different machining of a workpiece.
  • the threshold can be set for each different processing by the setting unit. Therefore, the seating determination device can constantly and finely monitor the seating state for each different machining, and as a result, the accuracy of machining the workpiece can be improved.
  • FIG. 1 is a side view for explaining the configuration of a machine tool provided with a seating determination device;
  • FIG. 2 is a partial cross-sectional view for explaining the configuration of a detection device of the seating determination device of FIG. 1;
  • FIG. 2 is a functional block diagram for explaining the configuration of a control device of the seating determination device of FIG. 1;
  • FIG. 4 is a diagram for explaining input of a threshold value for each processing in the control device of FIG. 3;
  • FIG. 10 is a diagram for explaining threshold values set for each different processing (each processing content); It is a figure for demonstrating the threshold value set for every different process.
  • FIG. 11 is a partial cross-sectional view for explaining the configuration of a detection device of the seating determination device of the first modified example;
  • FIG. 11 is a functional block diagram for explaining the configuration of a control device of the seating determination device of the first modified example; It is a figure for demonstrating a physical quantity.
  • a machining system including an automatic work transfer machine that transfers a work to a machine tool having a seating determination device will be described as an example.
  • the machining system 10 includes a base 20 and a machine tool 30 that is provided on the base 20 and performs various types of machining on the workpiece W. As shown in FIG. In this embodiment, the case where one machine tool 30 is provided on the base 20 is exemplified, but it is also possible to provide a plurality of machine tools 30 on the base 20 . Further, the machining system 10 includes an articulated robot 50 (hereinafter simply referred to as "robot 50” in some cases). Further, the machine tool 30 that constitutes the machining system 10 is provided with a seating determination device 60 that determines the seating state of the workpiece W carried in by the robot 50 .
  • robot 50 articulated robot 50
  • machine tool 30 rotates or non-rotatably fixes a workpiece W, which is an object to be machined, and performs different machining such as cutting and boring (drilling).
  • the movable head 41 moves along the Z-axis direction (front-rear direction) on rails (not shown) provided on the base 20 via a plurality of wheels 41a.
  • the headstock 42 holds the workpiece W rotatably.
  • the headstock 42 rotatably supports a main spindle 42a arranged horizontally along the Z-axis direction (front-rear direction).
  • a chuck 42c for holding the work W is provided on a seating portion 42b (so-called contact metal) for the work W provided at the tip of the spindle 42a.
  • a detection device 61 of a seating determination device 60 which will be described later, is arranged behind the seating portion 42b in the Z-axis direction.
  • the main shaft 42a is rotatably driven by a servomotor 42e via a rotation transmission mechanism 42d, and is rotatable around the Z-axis.
  • the tool table 43 is a device that holds a plurality of tools 43a and feeds the selected tool 43a.
  • the tool rest 43 is a polygonal turret-type tool rest (tool rest), and has a tool holder 43b to which a plurality of tools 43a for machining the workpiece W are attached.
  • a cutting tool such as a cutting tool or a rotary tool such as an end mill or a drill can be exemplified.
  • the tool table 43 has a rotary drive section 43c capable of rotatably supporting the tool holding section 43b and fixing the indexed tool 43a, that is, the tool holding section 43b.
  • the tool holding portion 43b is rotated by rotating the rotation driving portion 43c, and the tool 43a corresponding to each machining of the workpiece W is selected by turning indexing.
  • the tool table moving device 44 is a device that moves the tool table 43 and thus the tool 43a along the X-axis direction (vertical direction) and the Z-axis direction (front-rear direction).
  • the tool rest moving device 44 has an X-axis driving device 44a for moving the tool rest 43 along the X-axis direction and a Z-axis driving device 44b for moving the tool rest 43 along the Z-axis direction.
  • the X-axis drive device 44a includes an X-axis slider 44a1 slidably attached to a column provided on the movable head 41 along the vertical direction, and a servo motor 44a2 for moving the X-axis slider 44a1.
  • the Z-axis driving device 44b has a Z-axis slider 44b1 slidably attached to the X-axis slider 44a1 along the front-rear direction, and a servo motor 44b2 for moving the Z-axis slider 44b1. .
  • the machining chamber 45 is a space for machining the workpiece W, and accommodates a chuck 42c and a tool table 43 (a tool 43a, a tool holding portion 43b, a rotation driving portion 43c, and a detection device 61). ing.
  • the processing chamber 45 is partitioned by a front wall 45a, a ceiling wall 45b, left and right walls, and a rear wall (all not shown).
  • the front wall 45a is formed with an inlet/outlet 45a1 through which the work W is entered/exited.
  • the inlet/outlet 45a1 is opened and closed by a shutter 45c driven by a motor (not shown).
  • the open state (open position) of the shutter 45c is indicated by a solid line, and the closed state (closed position) is indicated by a chain double-dashed line.
  • the traveling chamber 46 is a space provided facing the inlet/outlet 45a1 of the processing chamber 45.
  • the traveling room 46 is defined by the front wall 45 a and the front panel 31 .
  • a robot 50 which will be described later, can run in the running room 46 .
  • the control device 47 includes, for example, a CNC (Computer Numerically Controlled), a PLC (Programmable Logic Controller), a servo system, etc. as main components, and a rotary drive unit 43c of the machine tool 30, a tool It controls the operation of the stage moving device 44 and the like.
  • the control device 47 is communicably connected to a setting device 62 of a seating determination device 60, which will be described later.
  • robot 50 The robot 50 is movable, and loads a workpiece W before machining into the machine tool 30 and unloads the workpiece W after machining from the machine tool 30 . Therefore, the robot 50 has a traveling portion 51 , a body portion 52 and a robot hand 53 .
  • the running section 51 runs inside the running chamber 46 .
  • the body portion 52 has a turning table and an arm portion, and by turning and expanding and contracting the arm portion, the workpiece W is carried into and out of the processing chamber 45, more specifically, the main shaft 42a.
  • the robot hand 53 is provided at the tip of the arm portion of the body portion 52, and grips (clamps) the work W and releases (unclamps) the work W. As shown in FIG.
  • the seating determination device 60 includes a headstock 42, more specifically, a detection device 61 provided behind the seating portion 42b of the spindle 42a, and a setting device 62 provided below the control device 47. and
  • the setting device 62 is arranged below the control device 47, but the arrangement of the setting device 62 is not limited to this, and it goes without saying that the setting device 62 can be arranged at a position spaced apart from the control device 47. stomach.
  • the detection device 61 includes a detection hole 611, an air supply pipe 612 and a digital seating sensor 613, as shown in FIG.
  • a plurality of detection holes 611 are provided in the seating portion 42b.
  • a plurality of detection holes 611 are arranged at equal intervals on the circumference.
  • the detection hole 611 is such that the detection hole 611 opened on the seating surface 42b1 is blocked by the back surface W1 of the workpiece W to a certain extent when the workpiece W is properly seated on the seating surface 42b1 of the seating portion 42b. ing.
  • the air supply pipe 612 connects the detection hole 611 and an air supply source C such as a compressor installed in the factory.
  • a flow control valve Va is connected to the air supply pipe 612 so as to adjust the throttle amount of the flow path.
  • a pressure gauge G for detecting the primary side pressure supplied from the air supply source C is connected to the primary side (air supply source C side) of the flow control valve Va in the air supply pipe 612 .
  • the digital seating sensor 613 is connected to the secondary side of the flow control valve Va (the seating portion 42b side of the main shaft 42a).
  • a digital seat sensor 613 is formed including a back pressure gauge 614 and a pressure switch 615 .
  • the back pressure gauge 614 detects the back pressure P (see FIG. 3), which is the pressure of the positive air that is ejected from the detection hole 611 on the seating surface 42b1 and supplied toward the back surface W1 of the workpiece W.
  • the back pressure gauge 614 then outputs a digital signal representing the detected back pressure P.
  • the back pressure P detected by the back pressure gauge 614 corresponds to the seating state in which the work W is attached to the seating portion 42b, that is, the back surface W1 of the work W is seated facing the seating surface 42b1.
  • the sitting state of the work W for example, a sitting state in which the back surface W1 and the seating surface 42b1 are parallel and close to each other can be cited as an appropriate sitting state.
  • the detection hole 611 is blocked by the back surface W1, so the detected back pressure P increases.
  • the seating state of the workpiece W for example, a state in which the back surface W1 is inclined with respect to the seating surface 42b1, or a state in which the distance between the back surface W1 and the seating surface 42b1 is large, can be cited as an inappropriate seating state.
  • an inappropriate seating state in other words, in a floating state in which the back surface W1 of the workpiece W is lifted from the seating surface 42b1 of the seating portion 42b, all or part of the detection hole 611 is not blocked by the back surface W1, so that detection is not possible. back pressure P becomes smaller.
  • the pressure switch 615 is a solid state digital pressure switch and is connected to the setting device 62 and the control device 47 . As will be described later, the pressure switch 615 has threshold values LV1, LV2, . It outputs a signal Sn or an abnormal signal Sa (see FIG. 3). Here, in this embodiment, the pressure switch 615 functions as a determination section and an output section.
  • the pressure switch 615 compares the detected back pressure P with threshold values LV1, LV2, . Then, the pressure switch 615 outputs a normal signal Sn representing an appropriate seating state when the back pressure P is equal to or greater than threshold values LV1, LV2, . do. On the other hand, when the back pressure P is less than the threshold values LV1, LV2, . An abnormal signal Sa representing is output.
  • the pressure switch 615 as a determination unit detects an abnormality when, for example, the detected back pressure P continues to be less than the threshold values LV1, LV2, .
  • a signal Sa can be output.
  • the setting device 62 has, for example, a PLC as a main component, and can communicate with the control device 47 .
  • the setting device 62 acquires the processing information J for each different processing from the control device 47 by communication.
  • the machining information J is information set for each machining (each machining content), and is related to, for example, machining of the workpiece W by the tool 43a, and includes the machining position of the tool 43a with respect to the workpiece W, the machining direction, the machining speed, This information includes the amount of machining per unit time (for example, cutting volume per unit time).
  • the machining information J can be extracted from, for example, an NC program stored in the control device 47 .
  • the setting device 62 includes an input section 621, a setting section 622 and a history storage section 623, as shown in FIG.
  • the setting device 62 is operated by an operator who works using the machine tool 30 .
  • the input unit 621 is a human interface operated by the operator.
  • the input unit 621 inputs the threshold values LV1, LV2, .
  • Input of the thresholds LV1, LV2, . . . , LVn and the reference threshold LVb will be described below. In the description, the thresholds LV1, LV2, .
  • the input unit 621 displays a display screen 621a visually recognized by the operator, as shown in FIG.
  • "work No.” for identifying the work W to be machined is displayed, and the back pressure P currently detected by the back pressure gauge 614 is displayed as a "detected value”.
  • a selection section 621b for selecting (or directly inputting) "processing (processing content)” and a selection section 621c for selecting (or directly inputting) "threshold” are displayed. be.
  • the "processing (processing details)” based on the processing information J, the "processing No.” be.
  • the numerical value is increased or decreased by operating the "+” or "-” using the selection unit 621c.
  • the display screen 621a can display a "detection value history” that displays the history of the back pressure P acquired from the digital seating sensor 613 as an item stored in the history storage unit 623, which will be described later. Further, on the display screen 621a, it is possible to display "NG count” indicating the number of times the abnormal signal Sa was obtained in the past as an item stored in the history storage unit 623, which will be described later.
  • total number of detections indicating the total number of times the digital seating sensor 613 has detected the back pressure P in the past can be displayed. can. Furthermore, on the display screen 621a, it is possible to display the "NG rate” that can be calculated by dividing the "NG count” by the “total detection count”.
  • the setting unit 622 sets each threshold LV and the reference threshold LVb input by the input unit 621 to the pressure switch 615 .
  • the setting unit 622 can set the pressure switch 615 by describing each threshold value LV and the reference threshold value LVb as an NC program using M code, for example.
  • the setting unit 622 describes each threshold LV (or reference threshold LVb) between a start code and an end code identifiable for each machining (each machining content). Then, the setting unit 622 sets the threshold LV and the reference threshold LVb by outputting the generated NC program to the pressure switch 615 . Thereby, the pressure switch 615 can sequentially change the threshold value LV according to the machining for each machining according to the NC program.
  • the setting unit 622 can also set the pressure switch 615 by collectively transmitting all the threshold values LV and the reference threshold values LVb input by the input unit 621 .
  • the pressure switch 615 can change the threshold value LV (or the reference threshold value LVb) for each processing (for each processing content) by referring to the processing information J acquired from the control device 47, for example.
  • the history storage unit 623 sequentially stores the back pressure P, the normal signal Sn, and the abnormal signal Sa, which are digital signals acquired from the digital seating sensor 613, in an updatable manner. Then, the history storage unit 623 acquires the detected value of the back pressure P stored renewably, the number of times the back pressure P is acquired, that is, the total number of detections, the number of times the abnormality signal Sa is acquired, and the abnormality signal Sa for the total number of detections. It outputs the ratio of the number of times it has been performed to the input unit 621 .
  • the seating determination device 60 can set a threshold value LV for each different processing (or for each different processing content), and the set threshold value LV or a preset reference threshold value LVb can be set. is used to determine the seating state of the workpiece W on the seating portion 42b.
  • the back pressure P detected by the digital seating sensor 613 is likely to change depending on the machining performed by the machine tool 30, and more specifically, depending on the contents of the workpiece W being machined.
  • the elements (parameters) that determine different machining include the machining position, which is the position at which machining is performed on the workpiece W, the machining direction, which is the direction in which machining is performed, and the speed at which machining is performed. , and the amount of machining, which is the amount of machining (for example, the feed amount of the tool 43a, the volume to be removed, etc.). Therefore, when setting the threshold value LV for each different machining, it is necessary to set according to the tendency of change in the back pressure P corresponding to each machining content.
  • the position where the tool 43a processes the work W on the front end side is defined as a first processing position A1
  • the position where the tool 43a processes the work W on the base end side is defined as a first processing position A1.
  • the second machining position is A2.
  • the separation direction in which the tool 43a moves away from the seating surface 42b1 of the seating portion 42b is defined as the first machining direction D1
  • the seating direction in which the tool 43a approaches the seating surface 42b1 is the second machining direction D2.
  • the speed at which the tool 43a processes the workpiece W is defined as a machining speed V
  • the feed amount of the tool 43a with respect to the workpiece W is defined as a machining amount R.
  • the inclination of the back surface W1 with respect to the seating surface 42b1 becomes smaller than in the case of the first machining position A1. Therefore, in this case, the workpiece W is less likely to float, and the decrease in the detected back pressure P is small. Therefore, in the machining (machining content) where the machining position is the second machining position A2, in order to accurately determine the seating state of the workpiece W, for example, it is necessary to set the threshold LV to a value larger than the reference threshold LVb.
  • the threshold LV is set to a value larger than the reference threshold LVb, for example, in order to accurately determine the seating state of the workpiece W.
  • the processing amount differs For example, as shown in FIG. 5, when the tool 43a cuts the work W along the first processing direction D1, the greater the processing amount R, the greater the friction between the work W and the tool 43a. As a result, the workpiece W can be easily moved in the direction of detaching, as indicated by the dashed arrow. Therefore, as the machining amount R increases, the workpiece W is more likely to be lifted, and the decrease in the detected back pressure P increases. Therefore, in the case of the first machining direction D1, the larger the machining amount R (machining content), the more accurately the seating state of the workpiece W is determined. Must be set to a value.
  • the larger the machining amount R the easier it is for the workpiece W to move in the seating direction, as indicated by the dashed-dotted arrow. Therefore, in this case, the workpiece W is less likely to float, and the decrease in the detected back pressure P is small. Therefore, in the case of the second machining direction, the larger the machining amount R (machining content), the more accurately the seating state of the workpiece W is determined. must be set to
  • the operator operates the input unit 621 of the setting device 62, and for each different processing (each different processing content) Set the threshold LV. That is, on the display screen 621a of the input unit 621, the operator first selects "processing (processing details)" using the selection unit 621b. Subsequently, the operator uses the selection unit 621c to input an appropriate threshold value LV for the target processing (processing content). Accordingly, the operator inputs respective threshold values LV1, LV2, .
  • the input unit 621 outputs the input thresholds LV1, LV2, . . . , LVn to the setting unit 622.
  • the operator can input the reference threshold value LVb, which is used as a reference in all processes, using the selection unit 621c, for example.
  • the reference threshold value LVb may be set in the pressure switch 615 in advance.
  • the setting unit 622 acquires the threshold values LV1, LV2, . . . , LVn and the reference threshold value LVb from the input unit 621. Then, the setting unit 622 sets the threshold values LV1, LV2, .
  • the back pressure gauge 614 starts detecting the back pressure P.
  • the pressure switch 615 compares the back pressure P with thresholds LV1, LV2, .
  • the pressure switch 615 outputs a normal signal Sn as a digital signal to the control device 47 and the history storage unit 623 when the detected back pressure P is equal to or higher than the set threshold value LV.
  • the control device 47 continues machining the work W because the work W is properly seated on the seating surface 42b1 of the seating portion 42b.
  • the history storage unit 623 stores the output normal signal Sn in an updatable manner.
  • the pressure switch 615 outputs an abnormality signal Sa as a digital signal to the control device 47 and the history storage unit 623 when the detected back pressure P is less than the set threshold value LV.
  • the control device 47 stops machining the work W because the work W is in a floating state when the work W is seated on the seating surface 42b1 of the seating portion 42b.
  • the history storage unit 623 stores the output normal signal Sn in an updatable manner.
  • the seating determination device 60 includes a detection device 61 that detects the back pressure P as a physical quantity that changes according to the seating state of the work W, the back pressure P, and the A pressure switch 615 as a determination unit for determining the seating state based on threshold values LV1, LV2, . and a setting unit 622 for setting threshold values LV1, LV2, . . . , LVn.
  • the setting unit 622 can set the threshold values LV1, LV2, . Therefore, in the seating determination device 60, the seating state, that is, the floating state of the work W can be constantly and finely monitored for each processing (each processing content), and as a result, the processing accuracy of the work W can be improved. can.
  • threshold values LV1, LV2, . . . , LVn can be set for each process (each process content). Therefore, for example, compared to the case where only one reference threshold value LVb can be set for the entire machining, when the seating determination device 60 is provided in the machine tool 30, the frequency of stopping machining due to an abnormality in the seating state can be reduced. As a result, the productivity of the work W by the machine tool 30 can be improved.
  • the pressure switch 615 forming the digital seating sensor 613 compares the set threshold value LV with the detected back pressure P, and determines if the back pressure P is less than the threshold value LV.
  • the abnormality signal Sa is output to the control device 47 in some cases. That is, in the above-described embodiment, the pressure switch 615 has the functions of the determination section and the output section.
  • the setting device 62 compares the set threshold value LV with the detected back pressure P, and determines if the back pressure P is less than the threshold value LV. It is also possible to output an abnormal signal Sa.
  • the first modified example will be described below, but the same reference numerals will be given to the same parts as in the above-described embodiment, and the description thereof will be omitted.
  • the pressure switch 615 of the digital seating sensor 613 is omitted, and the back pressure P (digital signal) detected by the back pressure gauge 614 is output to the setting device 62. Transformed.
  • an acquisition unit 624, a determination unit 625, and an output unit 626 are newly provided for the setting device 62, as shown in FIG.
  • the acquisition unit 624 acquires the back pressure P (digital signal) detected from the back pressure gauge 614 and outputs the acquired back pressure P to the determination unit 625 .
  • LVn for determination and a reference threshold LVb are set by the setting unit 622. Also in this case, similarly to the embodiment described above, it is possible to describe and set the threshold LV (reference threshold LVb) between the start code and the end code using the M code.
  • the determination unit 625 compares the threshold values LV1, LV2, . . . , LVn and the reference threshold value LVb with the back pressure P acquired by the acquisition unit 624.
  • the determination unit 625 outputs a normal signal Sn to the output unit 626 when the back pressure P is equal to or higher than each of the thresholds LV1, LV2, . . . , LVn and the reference threshold LVb. , LVn and the reference threshold value LVb, the abnormality signal Sa is output to the output unit 626 .
  • the determination unit 625 also outputs the back pressure P acquired by the acquisition unit 624 to the output unit 626 .
  • the output unit 626 acquires the normal signal Sn, the abnormal signal Sa, and the back pressure P output from the determination unit 625 .
  • the output unit 626 then outputs the acquired normal signal Sn or abnormal signal Sa to the control device 47 and outputs the back pressure P to the history storage unit 623 .
  • threshold values LV1, LV2, are also in the first modified example.
  • the determination unit 625 compares the back pressure P with each of the threshold values LV1, LV2, . It can be output to the control device 47 via the output unit 626 . Therefore, even in the first modified example, the same effects as in the above-described embodiment can be obtained.
  • the digital seating sensor 613 outputs the normal signal Sn or the abnormal signal Sa to the control device 47 .
  • the setting device 62 outputs the normal signal Sn or the abnormal signal Sa to the control device 47 . Then, when the control device 47 acquires the abnormality signal Sa, since an abnormality has occurred in the seating state of the work W, the machining is stopped.
  • control device 47 provided in the machine tool 30 has a CNC, a PLC, a servo system, etc. as main components, and operates the rotation drive part 43c, the tool table moving device 44, etc. according to the NC program etc. set for each machining. can be controlled. Therefore, the control device 47 can include the setting device 62 of the embodiment described above, or the setting device 62 of the first modified example described above.
  • control device 47 can include an input section 621, a setting section 622, and a history storage section 623, similar to the setting device 62 of the embodiment described above.
  • the control device 47 can set the threshold value LV for determination in the pressure switch 615 of the digital seating sensor 613 for each process (each process content). Then, when the controller 47 acquires the abnormality signal Sa from the pressure switch 615, it is possible to stop the machining because there is an abnormality in the seating state of the workpiece W. Therefore, even in this case, the same effects as in the above-described embodiment can be obtained.
  • control device 47 includes an acquisition unit 624, a determination unit 625, and an output unit 626, similarly to the setting device 62 of the first modified example described above. be able to. However, the control device 47 can omit the output unit 626 as necessary.
  • the control device 47 can set the determination threshold value LV for each process (each process content) in the determination unit 625 . Then, the control device 47 compares the back pressure P acquired by the determination unit 625 from the back pressure gauge 614 with the threshold value LV (or the reference threshold value LVb) set for each different processing (each different processing content) and makes a determination. Accordingly, when the abnormality signal Sa is acquired, it is possible to stop the machining because an abnormality has occurred in the seating state of the workpiece W. Therefore, even in this case, the same effects as in the above-described embodiment can be obtained.
  • the physical quantity that changes according to the seating state of the work W is the pressure of the positive air supplied toward the back surface W1 of the work W.
  • a certain back pressure P was used.
  • the physical quantity is not limited to using the back pressure P as long as it changes according to the seating state of the workpiece W.
  • the load K applied to the workpiece W by a machining tool 43a or the distance L between the workpiece W and the seating surface 42b1 can be used.
  • the machining amount R (see FIG. 5) per unit time can be used.
  • the pressure switch 615 and the determination unit 625 as determination units determine the seating state of the workpiece W based on changes in the back pressure P.
  • FIG. By the way, as described above, the back pressure P detected by the back pressure gauge 614 changes depending on the seating state of the work W, that is, the floating state.
  • the floating state of the workpiece W depends on the magnitude of the machining load generated when the tool 43a performs machining on the workpiece W, the magnitude of the gripping force with which the chuck 42c grips the workpiece W during machining, and the workpiece W varies depending on at least one of the anomalies of the tool 43a machining the . That is, the back pressure P is the magnitude of the machining load generated when the tool 43a performs machining on the workpiece W, the magnitude of the gripping force with which the chuck 42c grips the workpiece W during machining, and the It changes depending on at least one of the abnormalities of the tool 43a for processing.
  • the pressure switch 615 and the determination unit 625 determine the magnitude of the machining load on the workpiece W by the tool 43a and the magnitude of the gripping force of the workpiece W by the chuck 42c based on the change in the back pressure P detected by the back pressure gauge 614. It is possible to determine at least one of an abnormality such as chipping or breakage of the tool 43a.
  • the pressure switch 615 and the determination unit 625 can output an abnormal signal Sa when, for example, it is determined that the machining load is greater than the reference machining load based on the change in the back pressure P. can.
  • the pressure switch 615 and the determination unit 625 output an abnormality signal Sa when determining, for example, that the magnitude of the gripping force is smaller than the reference gripping force based on the change in the back pressure P. can do. Further, when the workpiece W is machined, the pressure switch 615 and the determination unit 625 determine, for example, that the machining amount R is smaller than the reference machining amount based on the change in the back pressure P, the tool 43a is abnormal. is likely to occur, the abnormality signal Sa can be output. Then, in the machine tool 30, the machining of the workpiece W can be stopped along with the acquisition of the abnormality signal Sa.
  • Second machining position D1... First machining direction, D2... Second machining direction, V... Machining speed, W... Work, W1... Back side, P... Back side pressure (physical quantity), K... load (physical quantity), L... distance (physical quantity), R... processing amount (physical quantity)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

According to the present invention, a seating determination device comprises a detection device that detects a physical quantity that varies in accordance with the seating state of a workpiece, a determination unit that determines the seating state on the basis of the physical quantity and a threshold value set for the physical quantity to determine the seating state during processing of the workpiece, and a setting unit that sets the threshold value for each different process performed on the workpiece.

Description

着座判定装置及び工作機械Seating determination device and machine tool
 本明細書は、着座判定装置及び工作機械に関するものである。 This specification relates to a seating determination device and a machine tool.
 従来から、例えば、下記特許文献1に開示された着座判定方法が開示されている。従来の着座判定方法は、圧力センサによって検出される加工時の背圧が設定時間内に所定の圧力範囲内に収束して一定となった場合において、制御装置が一定となった背圧を基準として加工時用の閾値を設定するようになっている。そして、従来の着座判定方法では、制御装置が背圧に関する加工時用の閾値と、圧力センサによって検出された背圧とを比較して合否判定するようになっている。 Conventionally, for example, the seating determination method disclosed in Patent Document 1 below has been disclosed. In the conventional seating determination method, when the back pressure detected by the pressure sensor during machining converges within a predetermined pressure range within the set time and becomes constant, the back pressure that becomes constant by the control device is used as the reference. is used to set the threshold for processing. In the conventional seating determination method, the control device compares the back pressure threshold value for machining with the back pressure detected by the pressure sensor to make a pass/fail determination.
特開2017-7027号公報JP 2017-7027 A
 ところで、着座したワークに機械加工を施す場合、加工が異なるとワークの着座状態が変化する場合がある。従って、異なる加工毎に適切な閾値を設定して着座状態を判定することが必要である。しかしながら、上記従来の着座判定方法においては、加工時用の閾値を設定する際に、異なる加工毎に加工時用の閾値を設定することが開示されていない。 By the way, when machining a seated work, the seating state of the work may change depending on the machining. Therefore, it is necessary to determine the seating state by setting an appropriate threshold value for each different processing. However, in the above-described conventional seating determination method, when setting the threshold value for processing, setting the threshold value for processing for each different processing is not disclosed.
 本明細書は、異なる加工毎にワークの着座状態を監視することができる着座判定装置を提供することを目的とする。 The purpose of this specification is to provide a seating determination device that can monitor the seating state of a workpiece for each different machining.
 本明細書は、ワークの着座状態に応じて変化する物理量を検出する検出装置と、物理量と、ワークに対する加工中の着座状態を判定するために物理量に関して設定された閾値とに基づいて、着座状態を判定する判定部と、ワークに対する異なる加工毎に、閾値を設定する設定部と、を備えた、着座判定装置を開示する。 The present specification describes a detection device that detects a physical quantity that changes according to the seating state of a workpiece, and a seating state based on the physical quantity and a threshold value set for the physical quantity for determining the seating state during machining of the workpiece. and a setting unit for setting a threshold value for each different machining of a workpiece.
 着座判定装置によれば、設定部によって異なる加工毎に閾値を設定することができる。従って、着座判定装置では、異なる加工毎に、着座状態を細かく常に監視することができ、その結果、ワークに対する加工の精度を向上させることができる。 According to the seating determination device, the threshold can be set for each different processing by the setting unit. Therefore, the seating determination device can constantly and finely monitor the seating state for each different machining, and as a result, the accuracy of machining the workpiece can be improved.
着座判定装置を備えた工作機械の構成を説明するための側面図である。1 is a side view for explaining the configuration of a machine tool provided with a seating determination device; FIG. 図1の着座判定装置の検出装置の構成を説明するための一部断面図である。2 is a partial cross-sectional view for explaining the configuration of a detection device of the seating determination device of FIG. 1; FIG. 図1の着座判定装置の制御装置の構成を説明するための機能ブロック図である。2 is a functional block diagram for explaining the configuration of a control device of the seating determination device of FIG. 1; FIG. 図3の制御装置において加工毎の閾値の入力を説明するための図である。FIG. 4 is a diagram for explaining input of a threshold value for each processing in the control device of FIG. 3; 異なる加工毎(加工内容毎)に設定される閾値を説明するための図である。FIG. 10 is a diagram for explaining threshold values set for each different processing (each processing content); 異なる加工毎に設定される閾値を説明するための図である。It is a figure for demonstrating the threshold value set for every different process. 第一変形例の着座判定装置の検出装置の構成を説明するための一部断面図である。FIG. 11 is a partial cross-sectional view for explaining the configuration of a detection device of the seating determination device of the first modified example; 第一変形例の着座判定装置の制御装置の構成を説明するための機能ブロック図である。FIG. 11 is a functional block diagram for explaining the configuration of a control device of the seating determination device of the first modified example; 物理量を説明するための図である。It is a figure for demonstrating a physical quantity.
 以下、着座判定装置及び工作機械について、図面を参照しながら説明する。本実施形態においては、着座判定装置を有する工作機械に対してワークを搬送するワーク自動搬送機を備えて形成された加工システムを例示して説明する。 The seating determination device and machine tool will be described below with reference to the drawings. In this embodiment, a machining system including an automatic work transfer machine that transfers a work to a machine tool having a seating determination device will be described as an example.
1.加工システム10の全体構成
 加工システム10は、図1に示すように、ベース20と、ベース20に設けられてワークWに各種の機械加工を施す工作機械30とを備える。尚、本実施形態においては、ベース20に1つの工作機械30が設けられる場合を例示するが、ベース20に複数の工作機械30を設けることも可能である。又、加工システム10は、工作機械30に機械加工前のワークWを搬入すると共に工作機械30から機械加工後のワークWを搬出するワーク自動搬送機としての多関節ロボット50(以下、単に「ロボット50」と称呼する場合もある。)を備えている。更に、加工システム10を構成する工作機械30には、ロボット50によって搬入されたワークWの着座状態を判定する着座判定装置60が設けられる。
1. Overall Configuration of Machining System 10 As shown in FIG. 1, the machining system 10 includes a base 20 and a machine tool 30 that is provided on the base 20 and performs various types of machining on the workpiece W. As shown in FIG. In this embodiment, the case where one machine tool 30 is provided on the base 20 is exemplified, but it is also possible to provide a plurality of machine tools 30 on the base 20 . Further, the machining system 10 includes an articulated robot 50 (hereinafter simply referred to as "robot 50” in some cases). Further, the machine tool 30 that constitutes the machining system 10 is provided with a seating determination device 60 that determines the seating state of the workpiece W carried in by the robot 50 .
2.工作機械30
 工作機械30は、機械加工の対象物であるワークWを回転させて、又は、回転不能に固定して、異なる加工、例えば、切削加工や削孔加工(ドリル加工)等を施すものである。工作機械30は、図1に示すように、可動ヘッド41、主軸台42、工具台43、工具台移動装置44、加工室45、走行室46、及び、制御装置47を有している。可動ヘッド41は、複数の車輪41aを介してベース20に設けられたレール(図示省略)上をZ軸線方向(前後方向)に沿って移動する。
2. machine tool 30
The machine tool 30 rotates or non-rotatably fixes a workpiece W, which is an object to be machined, and performs different machining such as cutting and boring (drilling). The machine tool 30, as shown in FIG. The movable head 41 moves along the Z-axis direction (front-rear direction) on rails (not shown) provided on the base 20 via a plurality of wheels 41a.
 主軸台42は、ワークWを回転可能に保持するものである。主軸台42は、Z軸線方向(前後方向)に沿って水平に配置された主軸42aを回転可能に支持する。主軸42aの先端に設けられたワークWの着座部42b(所謂、当金)には、ワークWを保持するチャック42cが設けられる。着座部42bのZ軸線方向にて後方には、後述する着座判定装置60の検出装置61が配置されている。主軸42aは、回転伝達機構42dを介してサーボモータ42eによって回転駆動され、Z軸線の回りに回転可能とされる。 The headstock 42 holds the workpiece W rotatably. The headstock 42 rotatably supports a main spindle 42a arranged horizontally along the Z-axis direction (front-rear direction). A chuck 42c for holding the work W is provided on a seating portion 42b (so-called contact metal) for the work W provided at the tip of the spindle 42a. A detection device 61 of a seating determination device 60, which will be described later, is arranged behind the seating portion 42b in the Z-axis direction. The main shaft 42a is rotatably driven by a servomotor 42e via a rotation transmission mechanism 42d, and is rotatable around the Z-axis.
 工具台43は、複数の工具43aを保持し、選択された工具43aに送り運動を与える装置である。工具台43は、多角形状のタレット型の工具台(刃物台)であり、ワークWを加工する複数の工具43aが取り付けられる工具保持部43bを有している。ここで、工具43aとしては、バイト等の切削工具、或いは、エンドミルやドリル等の回転工具を例示することができる。 The tool table 43 is a device that holds a plurality of tools 43a and feeds the selected tool 43a. The tool rest 43 is a polygonal turret-type tool rest (tool rest), and has a tool holder 43b to which a plurality of tools 43a for machining the workpiece W are attached. Here, as the tool 43a, a cutting tool such as a cutting tool or a rotary tool such as an end mill or a drill can be exemplified.
 更に、工具台43は、工具保持部43b回転可能に支持すると共に、旋回割出しされた工具43a、即ち、工具保持部43bを固定可能である回転駆動部43cを有している。これにより、工具台43においては、回転駆動部43cが回転駆動することによって工具保持部43bが回転し、ワークWの各々の加工に対応する工具43aが旋回割出しによって選択される。 Further, the tool table 43 has a rotary drive section 43c capable of rotatably supporting the tool holding section 43b and fixing the indexed tool 43a, that is, the tool holding section 43b. As a result, in the tool table 43, the tool holding portion 43b is rotated by rotating the rotation driving portion 43c, and the tool 43a corresponding to each machining of the workpiece W is selected by turning indexing.
 工具台移動装置44は、工具台43ひいては工具43aをX軸線方向(上下方向)及びZ軸線方向(前後方向)に沿って移動させる装置である。工具台移動装置44は、工具台43をX軸線方向に沿って移動させるX軸駆動装置44aと、工具台43をZ軸線方向に沿って移動させるZ軸駆動装置44bとを有している。 The tool table moving device 44 is a device that moves the tool table 43 and thus the tool 43a along the X-axis direction (vertical direction) and the Z-axis direction (front-rear direction). The tool rest moving device 44 has an X-axis driving device 44a for moving the tool rest 43 along the X-axis direction and a Z-axis driving device 44b for moving the tool rest 43 along the Z-axis direction.
 X軸駆動装置44aは、可動ヘッド41に設けられたコラムに対して上下方向に沿って摺動可能に取り付けられたX軸スライダ44a1と、X軸スライダ44a1を移動させるためのサーボモータ44a2とを有している。Z軸駆動装置44bは、X軸スライダ44a1に対して前後方向に沿って摺動可能に取り付けられたZ軸スライダ44b1と、Z軸スライダ44b1を移動させるためのサーボモータ44b2とを有している。 The X-axis drive device 44a includes an X-axis slider 44a1 slidably attached to a column provided on the movable head 41 along the vertical direction, and a servo motor 44a2 for moving the X-axis slider 44a1. have. The Z-axis driving device 44b has a Z-axis slider 44b1 slidably attached to the X-axis slider 44a1 along the front-rear direction, and a servo motor 44b2 for moving the Z-axis slider 44b1. .
 加工室45は、ワークWを加工するための空間であり、加工室45内には、チャック42c、工具台43(工具43a、工具保持部43b、回転駆動部43c及び検出装置61)が収容されている。加工室45は、前壁45a、天井壁45b、左右壁及び後壁(何れも図示省略)によって区画されている。前壁45aには、ワークWが入出される入出口45a1が形成されている。入出口45a1は、図示省略のモータによって駆動するシャッタ45cによって開閉される。尚、シャッタ45cの開状態(開位置)を実線により、閉状態(閉位置)を二点鎖線により示す。 The machining chamber 45 is a space for machining the workpiece W, and accommodates a chuck 42c and a tool table 43 (a tool 43a, a tool holding portion 43b, a rotation driving portion 43c, and a detection device 61). ing. The processing chamber 45 is partitioned by a front wall 45a, a ceiling wall 45b, left and right walls, and a rear wall (all not shown). The front wall 45a is formed with an inlet/outlet 45a1 through which the work W is entered/exited. The inlet/outlet 45a1 is opened and closed by a shutter 45c driven by a motor (not shown). The open state (open position) of the shutter 45c is indicated by a solid line, and the closed state (closed position) is indicated by a chain double-dashed line.
 走行室46は、加工室45の入出口45a1に臨んで設けられた空間である。走行室46は、前壁45a及び全面パネル31によって区画されている。走行室46内は、後述するロボット50が走行可能である。 The traveling chamber 46 is a space provided facing the inlet/outlet 45a1 of the processing chamber 45. The traveling room 46 is defined by the front wall 45 a and the front panel 31 . A robot 50 , which will be described later, can run in the running room 46 .
 制御装置47は、例えば、CNC(Computer Numerically Controlled)、PLC(Programmable Logic Controller)、サーボシステム等を主要構成部品とし、加工毎に設定されたNCプログラム等に従い工作機械30の回転駆動部43c、工具台移動装置44等の作動を制御する。本実施形態において、制御装置47は、後述する着座判定装置60の設定装置62と通信可能に接続されている。 The control device 47 includes, for example, a CNC (Computer Numerically Controlled), a PLC (Programmable Logic Controller), a servo system, etc. as main components, and a rotary drive unit 43c of the machine tool 30, a tool It controls the operation of the stage moving device 44 and the like. In this embodiment, the control device 47 is communicably connected to a setting device 62 of a seating determination device 60, which will be described later.
3.ロボット50
 ロボット50は、走行可能であり、機械加工前のワークWを工作機械30に対して搬入すると共に、機械加工後のワークWを工作機械30から搬出する。このため、ロボット50は、走行部51、本体部52及びロボットハンド53を有している。
3. robot 50
The robot 50 is movable, and loads a workpiece W before machining into the machine tool 30 and unloads the workpiece W after machining from the machine tool 30 . Therefore, the robot 50 has a traveling portion 51 , a body portion 52 and a robot hand 53 .
 走行部51は、走行室46内を走行する。本体部52は、旋回テーブル及びアーム部を有し、アーム部を旋回及び伸縮させることにより、加工室45、より詳しくは、主軸42aに対して、ワークWを搬入及び搬出する。ロボットハンド53は、本体部52のアーム部の先端に設けられており、ワークWを把持(クランプ)したり、ワークWを解放(アンクランプ)したりする。 The running section 51 runs inside the running chamber 46 . The body portion 52 has a turning table and an arm portion, and by turning and expanding and contracting the arm portion, the workpiece W is carried into and out of the processing chamber 45, more specifically, the main shaft 42a. The robot hand 53 is provided at the tip of the arm portion of the body portion 52, and grips (clamps) the work W and releases (unclamps) the work W. As shown in FIG.
4.着座判定装置60
 着座判定装置60は、図1に示すように、主軸台42、より詳しくは、主軸42aにおける着座部42bの後方に設けられた検出装置61と、制御装置47の下部に設けられた設定装置62とを有する。尚、本実施形態においては、設定装置62を制御装置47の下部に配置するが、設定装置62の配置については、この限りではなく、制御装置47から離間した位置に配置可能であることは言うまでもない。
4. Seating determination device 60
As shown in FIG. 1, the seating determination device 60 includes a headstock 42, more specifically, a detection device 61 provided behind the seating portion 42b of the spindle 42a, and a setting device 62 provided below the control device 47. and In this embodiment, the setting device 62 is arranged below the control device 47, but the arrangement of the setting device 62 is not limited to this, and it goes without saying that the setting device 62 can be arranged at a position spaced apart from the control device 47. stomach.
4-1.検出装置61
 検出装置61は、図2に示すように、検出孔611、エア供給管612及びデジタル着座センサ613を備えている。検出孔611は、着座部42bに複数設けられている。尚、検出孔611は、例えば、円周上に等間隔に複数配置される。検出孔611は、ワークWが着座部42bの着座面42b1に対して適切に着座した場合において、着座面42b1にて開口する検出孔611がワークWの背面W1によって一定程度塞がれるようになっている。
4-1. detection device 61
The detection device 61 includes a detection hole 611, an air supply pipe 612 and a digital seating sensor 613, as shown in FIG. A plurality of detection holes 611 are provided in the seating portion 42b. For example, a plurality of detection holes 611 are arranged at equal intervals on the circumference. The detection hole 611 is such that the detection hole 611 opened on the seating surface 42b1 is blocked by the back surface W1 of the workpiece W to a certain extent when the workpiece W is properly seated on the seating surface 42b1 of the seating portion 42b. ing.
 エア供給管612は、検出孔611と、工場内に設置されたコンプレッサ等のエア供給源Cとを接続する。そして、エア供給管612には、流路の絞り量が調整できるように、流量調整弁Vaが接続される。又、エア供給管612における流量調整弁Vaの一次側(エア供給源C側)には、エア供給源Cから供給される一次側圧力を検出する圧力計Gが接続されている。 The air supply pipe 612 connects the detection hole 611 and an air supply source C such as a compressor installed in the factory. A flow control valve Va is connected to the air supply pipe 612 so as to adjust the throttle amount of the flow path. A pressure gauge G for detecting the primary side pressure supplied from the air supply source C is connected to the primary side (air supply source C side) of the flow control valve Va in the air supply pipe 612 .
 デジタル着座センサ613は、流量調整弁Vaの二次側(主軸42aの着座部42b側)に接続されている。デジタル着座センサ613は、背圧計614及び圧力スイッチ615を含んで形成されている。背圧計614は、着座面42b1にて検出孔611から噴出し、ワークWの背面W1向けて供給される正圧エアの圧力である背圧P(図3を参照)を検出する。そして、背圧計614は、検出した背圧Pを表すデジタル信号を出力する。 The digital seating sensor 613 is connected to the secondary side of the flow control valve Va (the seating portion 42b side of the main shaft 42a). A digital seat sensor 613 is formed including a back pressure gauge 614 and a pressure switch 615 . The back pressure gauge 614 detects the back pressure P (see FIG. 3), which is the pressure of the positive air that is ejected from the detection hole 611 on the seating surface 42b1 and supplied toward the back surface W1 of the workpiece W. The back pressure gauge 614 then outputs a digital signal representing the detected back pressure P. FIG.
 ところで、背圧計614によって検出される背圧Pは、ワークWが着座部42bに取り付けられた状態、即ち、ワークWの背面W1が着座面42b1に対向して着座した状態を表す着座状態に応じて変化する物理量である。ここで、ワークWの着座状態として、例えば、背面W1と着座面42b1とが平行且つ互いに近接した着座状態を適切な着座状態として挙げることができる。適切な着座状態においては、検出孔611が背面W1によって塞がれるため、検出される背圧Pは大きくなる。 By the way, the back pressure P detected by the back pressure gauge 614 corresponds to the seating state in which the work W is attached to the seating portion 42b, that is, the back surface W1 of the work W is seated facing the seating surface 42b1. is a physical quantity that varies with Here, as the sitting state of the work W, for example, a sitting state in which the back surface W1 and the seating surface 42b1 are parallel and close to each other can be cited as an appropriate sitting state. In an appropriate seated state, the detection hole 611 is blocked by the back surface W1, so the detected back pressure P increases.
 一方、ワークWの着座状態として、例えば、着座面42b1に対して背面W1が傾いている、或いは、背面W1と着座面42b1との間の距離が大きい状態を不適切な着座状態として挙げることができる。不適切な着座状態、換言すれば、ワークWの背面W1が着座部42bの着座面42b1から浮き上がった浮き上がり状態では、検出孔611の全部又は一部が背面W1によって塞がれないため、検出される背圧Pは小さくなる。 On the other hand, as the seating state of the workpiece W, for example, a state in which the back surface W1 is inclined with respect to the seating surface 42b1, or a state in which the distance between the back surface W1 and the seating surface 42b1 is large, can be cited as an inappropriate seating state. can. In an inappropriate seating state, in other words, in a floating state in which the back surface W1 of the workpiece W is lifted from the seating surface 42b1 of the seating portion 42b, all or part of the detection hole 611 is not blocked by the back surface W1, so that detection is not possible. back pressure P becomes smaller.
 圧力スイッチ615は、ソリッドステート型のデジタル圧力スイッチであり、設定装置62及び制御装置47に接続される。圧力スイッチ615は、後述するように、設定装置62によって判定用の閾値LV1,LV2,…,LVnが設定され、背圧計614によって検出される背圧Pの大きさに応じてデジタル信号である正常信号Sn又は異常信号Sa(図3を参照)を出力する。ここで、本実施形態においては、圧力スイッチ615は、判定部及び出力部として機能する。 The pressure switch 615 is a solid state digital pressure switch and is connected to the setting device 62 and the control device 47 . As will be described later, the pressure switch 615 has threshold values LV1, LV2, . It outputs a signal Sn or an abnormal signal Sa (see FIG. 3). Here, in this embodiment, the pressure switch 615 functions as a determination section and an output section.
 圧力スイッチ615は、検出された背圧Pと、後述するように異なる加工毎(或いは、異なる加工内容毎)に設定される閾値LV1,LV2,…,LVnとを比較する。そして、圧力スイッチ615は、背圧Pが異なる加工毎(或いは、異なる加工内容毎)に設定された閾値LV1,LV2,…,LVn以上の場合に、適切な着座状態を表す正常信号Snを出力する。一方、圧力スイッチ615は、背圧Pが異なる加工毎(或いは、異なる加工内容毎)に設定された閾値LV1,LV2,…,LVn未満の場合に、不適切な着座状態即ちワークWの浮き上がり状態を表す異常信号Saを出力する。ここで、判定部としての圧力スイッチ615は、例えば、検出された背圧Pが所定時間(例えば、数秒間)だけ継続して閾値LV1,LV2,…,LVn未満になっている場合に、異常信号Saを出力することができる。 The pressure switch 615 compares the detected back pressure P with threshold values LV1, LV2, . Then, the pressure switch 615 outputs a normal signal Sn representing an appropriate seating state when the back pressure P is equal to or greater than threshold values LV1, LV2, . do. On the other hand, when the back pressure P is less than the threshold values LV1, LV2, . An abnormal signal Sa representing is output. Here, the pressure switch 615 as a determination unit detects an abnormality when, for example, the detected back pressure P continues to be less than the threshold values LV1, LV2, . A signal Sa can be output.
4-2.設定装置62
 設定装置62は、例えば、PLCを主要構成部品とし、制御装置47と通信可能とされている。ここで、本実施形態においては、設定装置62は、図3に示すように、制御装置47から異なる加工毎の加工情報Jを通信によって取得するようになっている。加工情報Jは、加工毎(加工内容毎)に設定される情報であって、例えば、工具43aによるワークWへの加工に関連し、ワークWに対する工具43aの加工位置、加工方向、加工速度、単位時間当たりの加工量(例えば、単位時間当たりの切削体積等)を含む情報である。尚、加工情報Jは、例えば、制御装置47に記憶されたNCプログラム等から抽出することができる。
4-2. Setting device 62
The setting device 62 has, for example, a PLC as a main component, and can communicate with the control device 47 . Here, in this embodiment, as shown in FIG. 3, the setting device 62 acquires the processing information J for each different processing from the control device 47 by communication. The machining information J is information set for each machining (each machining content), and is related to, for example, machining of the workpiece W by the tool 43a, and includes the machining position of the tool 43a with respect to the workpiece W, the machining direction, the machining speed, This information includes the amount of machining per unit time (for example, cutting volume per unit time). The machining information J can be extracted from, for example, an NC program stored in the control device 47 .
 設定装置62は、図3に示すように、入力部621、設定部622及び履歴記憶部623を備えている。尚、設定装置62は、工作機械30を用いて作業を行う作業者によって操作される。 The setting device 62 includes an input section 621, a setting section 622 and a history storage section 623, as shown in FIG. The setting device 62 is operated by an operator who works using the machine tool 30 .
 入力部621は、作業者によって入力操作されるヒューマンインタフェースである。入力部621は、設定部622に対して、工作機械30による異なる加工毎、より詳しくは、ワークWに対する異なる加工内容毎に閾値LV1,LV2,…,LVn及び基準閾値LVbを入力する。以下、閾値LV1,LV2,…,LVn及び基準閾値LVbの入力を説明するが、説明において閾値LV1,LV2,…,LVnをまとめて単に「閾値LV」と称呼する場合がある。 The input unit 621 is a human interface operated by the operator. The input unit 621 inputs the threshold values LV1, LV2, . Input of the thresholds LV1, LV2, . . . , LVn and the reference threshold LVb will be described below. In the description, the thresholds LV1, LV2, .
 入力部621は、図4に示すように、作業者によって視認される表示画面621aを表示する。表示画面621aにおいては、加工されるワークWを識別する「ワークNo.」が表示され、又、現在背圧計614によって検出されている背圧Pが「検出値」として表示される。更に、表示画面621aにおいては、「加工(加工内容)」を選択する(又は直接入力可能な)選択部621bと、「閾値」を選択する(又は直接入力可能な)選択部621cとが表示される。 The input unit 621 displays a display screen 621a visually recognized by the operator, as shown in FIG. On the display screen 621a, "work No." for identifying the work W to be machined is displayed, and the back pressure P currently detected by the back pressure gauge 614 is displayed as a "detected value". Furthermore, on the display screen 621a, a selection section 621b for selecting (or directly inputting) "processing (processing content)" and a selection section 621c for selecting (or directly inputting) "threshold" are displayed. be.
 ここで、「加工(加工内容)」については、加工情報Jに基づき、選択部621bを用いて「+」又は「-」の操作を行うことにより、「加工No.」を選択して入力される。又、「閾値」については、選択部621cを用いて「+」又は「-」の操作を行うことにより、数値を増減させて入力される。 Here, for the "processing (processing details)", based on the processing information J, the "processing No." be. As for the "threshold", the numerical value is increased or decreased by operating the "+" or "-" using the selection unit 621c.
 尚、表示画面621aにおいては、後述する履歴記憶部623に記憶されている項目として、デジタル着座センサ613から取得した背圧Pの履歴を表示する「検出値履歴」を表示することができる。又、表示画面621aにおいては、後述する履歴記憶部623に記憶されている項目として、過去に異常信号Saを取得した回数を表示する「NG回数」を表示することができる。 The display screen 621a can display a "detection value history" that displays the history of the back pressure P acquired from the digital seating sensor 613 as an item stored in the history storage unit 623, which will be described later. Further, on the display screen 621a, it is possible to display "NG count" indicating the number of times the abnormal signal Sa was obtained in the past as an item stored in the history storage unit 623, which will be described later.
 又、表示画面621aにおいては、後述する履歴記憶部623に記憶されている項目として、過去にデジタル着座センサ613が背圧Pを検出した総回数を表示する「総検出回数」を表示することができる。更に、表示画面621aにおいては、「NG回数」を「総検出回数」により除することにより算出可能な「NG割合」を表示することができる。 Further, on the display screen 621a, as an item stored in a history storage unit 623, which will be described later, "total number of detections" indicating the total number of times the digital seating sensor 613 has detected the back pressure P in the past can be displayed. can. Furthermore, on the display screen 621a, it is possible to display the "NG rate" that can be calculated by dividing the "NG count" by the "total detection count".
 再び、図3に戻り、設定部622は、入力部621によって入力された各閾値LV及び基準閾値LVbを圧力スイッチ615に設定する。ここで、設定部622は、例えば、Mコードを用いて、各閾値LV及び基準閾値LVbをNCプログラムとして記述し、圧力スイッチ615の設定を行うことができる。 Returning to FIG. 3 again, the setting unit 622 sets each threshold LV and the reference threshold LVb input by the input unit 621 to the pressure switch 615 . Here, the setting unit 622 can set the pressure switch 615 by describing each threshold value LV and the reference threshold value LVb as an NC program using M code, for example.
 具体的に、設定部622は、例えば、NCプログラムにおいて、加工毎(加工内容毎)に識別可能な開始コードと終了コードの間にそれぞれの閾値LV(又は基準閾値LVb)を記述する。そして、設定部622は、生成したNCプログラムを圧力スイッチ615に出力することにより、閾値LV及び基準閾値LVbを設定する。これにより、圧力スイッチ615は、NCプログラムに従い、加工毎に、加工に応じた閾値LVを順次変更することができる。 Specifically, for example, in the NC program, the setting unit 622 describes each threshold LV (or reference threshold LVb) between a start code and an end code identifiable for each machining (each machining content). Then, the setting unit 622 sets the threshold LV and the reference threshold LVb by outputting the generated NC program to the pressure switch 615 . Thereby, the pressure switch 615 can sequentially change the threshold value LV according to the machining for each machining according to the NC program.
 尚、設定部622は、入力部621によって入力された全ての閾値LV及び基準閾値LVbを一括して送信することにより、圧力スイッチ615に設定することも可能である。この場合、圧力スイッチ615は、例えば、制御装置47から取得した加工情報Jを参照することにより、加工毎(加工内容毎)に閾値LV(又は基準閾値LVb)を変更することができる。 The setting unit 622 can also set the pressure switch 615 by collectively transmitting all the threshold values LV and the reference threshold values LVb input by the input unit 621 . In this case, the pressure switch 615 can change the threshold value LV (or the reference threshold value LVb) for each processing (for each processing content) by referring to the processing information J acquired from the control device 47, for example.
 履歴記憶部623は、デジタル着座センサ613から取得したデジタル信号である背圧P、正常信号Sn及び異常信号Saを更新可能に順次記憶する。そして、履歴記憶部623は、更新可能に記憶した背圧Pの検出値や、背圧Pを取得した回数即ち総検出回数、異常信号Saを取得した回数、総検出回数に対する異常信号Saを取得した回数の割合等を入力部621に出力する。 The history storage unit 623 sequentially stores the back pressure P, the normal signal Sn, and the abnormal signal Sa, which are digital signals acquired from the digital seating sensor 613, in an updatable manner. Then, the history storage unit 623 acquires the detected value of the back pressure P stored renewably, the number of times the back pressure P is acquired, that is, the total number of detections, the number of times the abnormality signal Sa is acquired, and the abnormality signal Sa for the total number of detections. It outputs the ratio of the number of times it has been performed to the input unit 621 .
4-3.着座判定装置60の作動
 着座判定装置60は、異なる加工毎(或いは、異なる加工内容毎)に閾値LVを設定することができ、設定された閾値LV、或いは、予め設定されている基準閾値LVbを用いて、ワークWの着座部42bに対する着座状態を判定する。ところで、デジタル着座センサ613によって検出される背圧Pは、工作機械30における加工毎、より詳しくは、ワークWに対する加工内容毎によって変化しやすい。
4-3. Operation of Seating Determination Device 60 The seating determination device 60 can set a threshold value LV for each different processing (or for each different processing content), and the set threshold value LV or a preset reference threshold value LVb can be set. is used to determine the seating state of the workpiece W on the seating portion 42b. By the way, the back pressure P detected by the digital seating sensor 613 is likely to change depending on the machining performed by the machine tool 30, and more specifically, depending on the contents of the workpiece W being machined.
 ここで、異なる加工(或いは、異なる加工内容)を決定する要素(パラメータ)としては、ワークWに機械加工を施す位置である加工位置、機械加工を施す方向である加工方向、機械加工を施す速度である加工速度、及び、機械加工を施す量(例えば、工具43aの送り量や除去体積等)である加工量を例示することができる。従って、異なる加工毎に閾値LVを設定する場合には、各々の加工内容に応じた背圧Pの変化の傾向に従って設定することが必要になる。 Here, the elements (parameters) that determine different machining (or different machining details) include the machining position, which is the position at which machining is performed on the workpiece W, the machining direction, which is the direction in which machining is performed, and the speed at which machining is performed. , and the amount of machining, which is the amount of machining (for example, the feed amount of the tool 43a, the volume to be removed, etc.). Therefore, when setting the threshold value LV for each different machining, it is necessary to set according to the tendency of change in the back pressure P corresponding to each machining content.
 尚、以下の説明において、図5に示すように、工具43aがワークWの先端側にて加工する位置を第一加工位置A1とし、工具43aがワークWの基端側にて加工する位置を第二加工位置A2とする。又、図5に示すように、工具43aが着座部42bの着座面42b1から離間する離座方向を第一加工方向D1とし、工具43aが着座面42b1に接近する着座方向を第二加工方向D2とする。又、図5に示すように、工具43aがワークWを加工する速度を加工速度Vとし、工具43aのワークWに対する送り量を加工量Rとする。 In the following description, as shown in FIG. 5, the position where the tool 43a processes the work W on the front end side is defined as a first processing position A1, and the position where the tool 43a processes the work W on the base end side is defined as a first processing position A1. The second machining position is A2. Also, as shown in FIG. 5, the separation direction in which the tool 43a moves away from the seating surface 42b1 of the seating portion 42b is defined as the first machining direction D1, and the seating direction in which the tool 43a approaches the seating surface 42b1 is the second machining direction D2. and Further, as shown in FIG. 5, the speed at which the tool 43a processes the workpiece W is defined as a machining speed V, and the feed amount of the tool 43a with respect to the workpiece W is defined as a machining amount R. As shown in FIG.
4-3-1.加工位置が異なる場合
 例えば、工作機械30において、ワークWに切削加工が施される場合を想定する。この場合、図5に示すように、工具43a(例えば、バイト)が第一加工位置A1にてワークWを切削加工すると、着座面42b1に対して背面W1が傾きやすくなる。従って、この場合には、ワークWが浮き上がり状態になりやすく、検出される背圧Pの減少が大きくなる。このため、加工位置が第一加工位置A1となる加工(加工内容)においては、ワークWの着座状態を正確に判定するために、例えば、閾値LVを基準閾値LVbよりも小さい値に設定する必要がある。
4-3-1. Case Where Machining Positions Are Different For example, it is assumed that the workpiece W is subjected to cutting in the machine tool 30 . In this case, as shown in FIG. 5, when the tool 43a (for example, cutting tool) cuts the workpiece W at the first machining position A1, the back surface W1 tends to tilt with respect to the seating surface 42b1. Therefore, in this case, the workpiece W tends to float, and the detected back pressure P greatly decreases. Therefore, in the machining (machining content) where the machining position is the first machining position A1, it is necessary to set the threshold LV to a value smaller than the reference threshold LVb, for example, in order to accurately determine the seating state of the workpiece W. There is
 一方、工具43aが基端側の第二加工位置A2にてワークWを切削加工すると、着座面42b1に対する背面W1の傾きが第一加工位置A1の場合に比べて小さくなる。従って、この場合には、ワークWが浮き上がり状態になりにくく、検出される背圧Pの減少が小さくなる。このため、加工位置が第二加工位置A2となる加工(加工内容)においては、ワークWの着座状態を正確に判定するために、例えば、閾値LVを基準閾値LVbよりも大きい値に設定する必要がある。 On the other hand, when the tool 43a cuts the workpiece W at the second machining position A2 on the base end side, the inclination of the back surface W1 with respect to the seating surface 42b1 becomes smaller than in the case of the first machining position A1. Therefore, in this case, the workpiece W is less likely to float, and the decrease in the detected back pressure P is small. Therefore, in the machining (machining content) where the machining position is the second machining position A2, in order to accurately determine the seating state of the workpiece W, for example, it is necessary to set the threshold LV to a value larger than the reference threshold LVb. There is
4-3-2.加工方向が異なる場合
 例えば、図5に示すように、工具43aが第一加工方向D1に沿ってワークWを切削加工すると、破線の矢印により示すように、ワークWが着座部42bの着座面42b1から離間する離座方向に移動しやすくなる。従って、この場合には、ワークWが浮き上がり状態になりやすく、検出される背圧Pの減少が大きくなる。このため、加工方向が第一加工方向D1と一致する加工(加工内容)においては、ワークWの着座状態を正確に判定するために、例えば、閾値LVを基準閾値LVbよりも小さい値に設定する必要がある。
4-3-2. When Machining Directions Are Different For example, as shown in FIG. It becomes easier to move in the seat separation direction away from. Therefore, in this case, the workpiece W tends to float, and the detected back pressure P greatly decreases. Therefore, in the machining (machining content) in which the machining direction matches the first machining direction D1, the threshold LV is set to a value smaller than the reference threshold LVb, for example, in order to accurately determine the seating state of the workpiece W. There is a need.
 一方、工具43aが第二加工方向D2に沿ってワークWを切削加工すると、一点鎖線の矢印により示すように、ワークWが着座部42bの着座面42b1に接近する着座方向に移動しやすくなる。従って、この場合には、ワークWが浮き上がり状態になりにくく、検出される背圧Pの減少が小さくなる。このため、加工方向が第二加工方向D2と一致する加工(加工内容)においては、ワークWの着座状態を正確に判定するために、例えば、閾値LVを基準閾値LVbよりも大きい値に設定する必要がある。 On the other hand, when the tool 43a cuts the work W along the second machining direction D2, the work W tends to move toward the seating surface 42b1 of the seating portion 42b, as indicated by the dashed-dotted arrow. Therefore, in this case, the workpiece W is less likely to float, and the decrease in the detected back pressure P is small. Therefore, in the machining (machining content) in which the machining direction matches the second machining direction D2, the threshold LV is set to a value larger than the reference threshold LVb, for example, in order to accurately determine the seating state of the workpiece W. There is a need.
4-3-3.加工速度が異なる場合
 例えば、図5に示すように、工具43aが第一加工方向D1に沿ってワークWを切削加工する場合、加工速度Vが大きい程、ワークWと工具43aとの摩擦が大きくなり、その結果、破線の矢印により示すように、ワークWが離座方向に移動しやすくなる。従って、加工速度Vが大きい程、ワークWが浮き上がり状態になりやすく、検出される背圧Pの減少が大きくなる。このため、第一加工方向D1である場合、加工速度Vが大きい加工(加工内容)である程、ワークWの着座状態を正確に判定するために、例えば、閾値LVを基準閾値LVbよりも小さい値に設定する必要がある。
4-3-3. When Machining Speeds are Different For example, as shown in FIG. 5, when the tool 43a cuts the work W along the first machining direction D1, the higher the machining speed V, the greater the friction between the work W and the tool 43a. As a result, the workpiece W can be easily moved in the direction of detaching, as indicated by the dashed arrow. Therefore, as the machining speed V increases, the workpiece W is more likely to float, and the detected back pressure P decreases more. For this reason, in the case of the first machining direction D1, the higher the machining speed V (machining content), the more accurately the seating state of the workpiece W is determined. Must be set to a value.
 一方、工具43aが第二加工方向D2に沿ってワークWを切削加工する場合、加工速度Vが大きい程、一点鎖線の矢印により示すように、ワークWが着座方向に移動しやすくなる。従って、この場合には、ワークWが浮き上がり状態になりにくく、検出される背圧Pの減少が小さくなる。このため、第二加工方向である場合、加工速度Vが大きい加工(加工内容)である程、ワークWの着座状態を正確に判定するために、例えば、閾値LVを基準閾値LVbよりも大きい値に設定する必要がある。 On the other hand, when the tool 43a cuts the workpiece W along the second machining direction D2, the higher the machining speed V, the easier it is for the workpiece W to move in the seating direction, as indicated by the dashed-dotted arrow. Therefore, in this case, the workpiece W is less likely to float, and the decrease in the detected back pressure P is small. For this reason, in the case of the second machining direction, the larger the machining speed V (the machining content), the more accurately the seating state of the workpiece W is determined. must be set to
4-3-4.加工量が異なる場合
 例えば、図5に示すように、工具43aが第一加工方向D1に沿ってワークWを切削加工する場合、加工量Rが大きい程、ワークWと工具43aとの摩擦が大きくなり、その結果、破線の矢印により示すように、ワークWが離座方向に移動しやすくなる。従って、加工量Rが大きい程、ワークWが浮き上がり状態になりやすく、検出される背圧Pの減少が大きくなる。このため、第一加工方向D1である場合、加工量Rが大きい加工(加工内容)である程、ワークWの着座状態を正確に判定するために、例えば、閾値LVを基準閾値LVbよりも小さい値に設定する必要がある。
4-3-4. When the processing amount differs For example, as shown in FIG. 5, when the tool 43a cuts the work W along the first processing direction D1, the greater the processing amount R, the greater the friction between the work W and the tool 43a. As a result, the workpiece W can be easily moved in the direction of detaching, as indicated by the dashed arrow. Therefore, as the machining amount R increases, the workpiece W is more likely to be lifted, and the decrease in the detected back pressure P increases. Therefore, in the case of the first machining direction D1, the larger the machining amount R (machining content), the more accurately the seating state of the workpiece W is determined. Must be set to a value.
 一方、工具43aが第二加工方向D2に沿ってワークWを切削加工する場合、加工量Rが大きい程、一点鎖線の矢印により示すように、ワークWが着座方向に移動しやすくなる。従って、この場合には、ワークWが浮き上がり状態になりにくく、検出される背圧Pの減少が小さくなる。このため、第二加工方向である場合、加工量Rが大きい加工(加工内容)である程、ワークWの着座状態を正確に判定するために、例えば、閾値LVを基準閾値LVbよりも大きい値に設定する必要がある。 On the other hand, when the tool 43a cuts the workpiece W along the second machining direction D2, the larger the machining amount R, the easier it is for the workpiece W to move in the seating direction, as indicated by the dashed-dotted arrow. Therefore, in this case, the workpiece W is less likely to float, and the decrease in the detected back pressure P is small. Therefore, in the case of the second machining direction, the larger the machining amount R (machining content), the more accurately the seating state of the workpiece W is determined. must be set to
4-3-5.加工が異なる場合
 例えば、工作機械30において、ワークWに対し、図5に示す切削加工の場合と、図6に示す削孔加工(ドリル加工)の場合とが施される場合を想定する。削孔加工の場合、工具43a(例えば、ドリルビット)による加工方向は、工具43aが着座面42b1に接近する第二加工方向D2、即ち、着座方向に一致する。このため、切削加工及び削孔加工の加工方向が共に第二加工方向D2である場合を比較すると、工具43aがワークWを着座方向に押圧する力は、削孔加工の方が相対的に大きくなる。
4-3-5. Cases of Different Machining For example, it is assumed that the machine tool 30 performs the cutting shown in FIG. 5 and the drilling shown in FIG. In the case of drilling, the machining direction by the tool 43a (for example, a drill bit) coincides with the second machining direction D2 in which the tool 43a approaches the seating surface 42b1, that is, the seating direction. Therefore, when comparing the case where the machining directions of cutting and drilling are both in the second machining direction D2, the force with which the tool 43a presses the workpiece W in the seating direction is relatively larger in the drilling. Become.
 即ち、工具43aがワークWに削孔加工すると、図6にて一点鎖線の矢印により示すように、切削加工の場合に比べて、ワークWが着座方向により移動しやすくなる。従って、削孔加工の場合には、切削加工の場合に比べて、ワークWが浮き上がり状態になりにくく、検出される背圧Pの減少がより小さくなる。このため、加工方向が同一である場合、削孔加工においては、上述した切削加工の異なる加工内容(パラメータ)に応じて設定される各々の閾値LVよりも大きい値に設定する必要がある。 That is, when the tool 43a drills the workpiece W, the workpiece W moves more easily in the seating direction than in the case of cutting, as indicated by the dashed-dotted arrow in FIG. Therefore, in the case of drilling, compared to cutting, the workpiece W is less likely to float, and the decrease in the detected back pressure P is smaller. Therefore, when the machining direction is the same, in drilling, it is necessary to set a value larger than each threshold value LV set according to different machining contents (parameters) of the above-described cutting.
 上述したように、異なる加工毎(異なる加工内容毎)に設定すべき閾値LVの傾向に従い、作業者は、設定装置62の入力部621を操作して、異なる加工毎(異なる加工内容毎)に閾値LVを設定する。即ち、作業者は、入力部621の表示画面621aにおいて、先ず、選択部621bを用いて「加工(加工内容)」を選択する。続いて、作業者は、対象となる加工(加工内容)について、選択部621cを用いて適切な閾値LVを入力する。これにより、作業者は、「加工No.1」から「加工No.n」までのそれぞれの閾値LV1,LV2,…,LVnを入力する。 As described above, according to the tendency of the threshold value LV to be set for each different processing (each different processing content), the operator operates the input unit 621 of the setting device 62, and for each different processing (each different processing content) Set the threshold LV. That is, on the display screen 621a of the input unit 621, the operator first selects "processing (processing details)" using the selection unit 621b. Subsequently, the operator uses the selection unit 621c to input an appropriate threshold value LV for the target processing (processing content). Accordingly, the operator inputs respective threshold values LV1, LV2, .
 そして、入力部621は、入力された閾値LV1,LV2,…,LVnを設定部622に出力する。ここで、作業者は、全ての加工において基準となる基準閾値LVbを、例えば、選択部621cを用いて入力することが可能である。尚、基準閾値LVbについては、予め圧力スイッチ615に設定されていても良い。 Then, the input unit 621 outputs the input thresholds LV1, LV2, . . . , LVn to the setting unit 622. Here, the operator can input the reference threshold value LVb, which is used as a reference in all processes, using the selection unit 621c, for example. Note that the reference threshold value LVb may be set in the pressure switch 615 in advance.
 設定部622は、入力部621から閾値LV1,LV2,…,LVn及び基準閾値LVbを取得する。そして、設定部622は、異なる加工毎(異なる加工内容毎)に、又は、一括して、閾値LV1,LV2,…,LVn及び基準閾値LVbを圧力スイッチ615に設定する。 The setting unit 622 acquires the threshold values LV1, LV2, . . . , LVn and the reference threshold value LVb from the input unit 621. Then, the setting unit 622 sets the threshold values LV1, LV2, .
 これにより、検出装置61においては、工作機械30の着座部42bの着座面42b1にワークWが装着されると、背圧計614が背圧Pの検出を開始する。検出装置61においては、圧力スイッチ615が背圧Pと加工毎(加工内容毎)に設定されたそれぞれの閾値LV1,LV2,…,LVn又は基準閾値LVbとを比較する。 Accordingly, in the detecting device 61, when the workpiece W is mounted on the seating surface 42b1 of the seating portion 42b of the machine tool 30, the back pressure gauge 614 starts detecting the back pressure P. In the detection device 61, the pressure switch 615 compares the back pressure P with thresholds LV1, LV2, .
 そして、圧力スイッチ615は、検出された背圧Pが設定された閾値LV以上であれば、デジタル信号としての正常信号Snを制御装置47及び履歴記憶部623に出力する。これにより、制御装置47は、ワークWが着座部42bの着座面42b1に適切に着座しているため、ワークWに対する機械加工を継続する。又、履歴記憶部623は、出力された正常信号Snを更新可能に記憶する。 Then, the pressure switch 615 outputs a normal signal Sn as a digital signal to the control device 47 and the history storage unit 623 when the detected back pressure P is equal to or higher than the set threshold value LV. As a result, the control device 47 continues machining the work W because the work W is properly seated on the seating surface 42b1 of the seating portion 42b. Also, the history storage unit 623 stores the output normal signal Sn in an updatable manner.
 一方、圧力スイッチ615は、検出された背圧Pが設定された閾値LV未満であれば、デジタル信号としての異常信号Saを制御装置47及び履歴記憶部623に出力する。これにより、制御装置47は、着座部42bの着座面42b1に対してワークWの着座状態が浮き上がり状態であるため、ワークWに対する機械加工を停止する。又、履歴記憶部623は、出力された正常信号Snを更新可能に記憶する。 On the other hand, the pressure switch 615 outputs an abnormality signal Sa as a digital signal to the control device 47 and the history storage unit 623 when the detected back pressure P is less than the set threshold value LV. As a result, the control device 47 stops machining the work W because the work W is in a floating state when the work W is seated on the seating surface 42b1 of the seating portion 42b. Also, the history storage unit 623 stores the output normal signal Sn in an updatable manner.
 以上の説明からも理解できるように、着座判定装置60は、ワークWの着座状態に応じて変化する物理量としての背圧Pを検出する検出装置61と、背圧Pと、ワークWに対する加工中の着座状態を判定するために背圧Pに関して設定された閾値LV1,LV2,…,LVnとに基づいて、着座状態を判定する判定部としての圧力スイッチ615と、ワークWに対する異なる加工毎に、閾値LV1,LV2,…,LVnを設定する設定部622と、を備える。 As can be understood from the above description, the seating determination device 60 includes a detection device 61 that detects the back pressure P as a physical quantity that changes according to the seating state of the work W, the back pressure P, and the A pressure switch 615 as a determination unit for determining the seating state based on threshold values LV1, LV2, . and a setting unit 622 for setting threshold values LV1, LV2, . . . , LVn.
 これにより、着座判定装置60では、設定部622によって加工毎(加工内容毎)に閾値LV1,LV2,…,LVnを設定することができる。従って、着座判定装置60では、加工毎(加工内容毎)に、着座状態、即ち、ワークWの浮き上がり状態を細かく常に監視することができ、その結果、ワークWに対する加工の精度を向上させることができる。 Thus, in the seating determination device 60, the setting unit 622 can set the threshold values LV1, LV2, . Therefore, in the seating determination device 60, the seating state, that is, the floating state of the work W can be constantly and finely monitored for each processing (each processing content), and as a result, the processing accuracy of the work W can be improved. can.
 又、着座判定装置60では、加工毎(加工内容毎)に閾値LV1,LV2,…,LVnを設定することができる。このため、例えば、加工全体で1つの基準閾値LVbしか設定できない場合に比べ、着座判定装置60を工作機械30に設けた場合には、着座状態の異常によって機械加工を停止する頻度を低減することができ、その結果、工作機械30によるワークWの生産性を向上させることができる。 Further, in the seating determination device 60, threshold values LV1, LV2, . . . , LVn can be set for each process (each process content). Therefore, for example, compared to the case where only one reference threshold value LVb can be set for the entire machining, when the seating determination device 60 is provided in the machine tool 30, the frequency of stopping machining due to an abnormality in the seating state can be reduced. As a result, the productivity of the work W by the machine tool 30 can be improved.
5.変形例
5-1.第一変形例
 上述した実施形態においては、デジタル着座センサ613を形成する圧力スイッチ615が設定された閾値LVと検出された背圧Pとを比較して判定し、背圧Pが閾値LV未満である場合に異常信号Saを制御装置47に出力するようにした。即ち、上述した実施形態においては、圧力スイッチ615が判定部及び出力部の機能を発揮するようにした。
5. Modification 5-1. First Modification In the embodiment described above, the pressure switch 615 forming the digital seating sensor 613 compares the set threshold value LV with the detected back pressure P, and determines if the back pressure P is less than the threshold value LV. The abnormality signal Sa is output to the control device 47 in some cases. That is, in the above-described embodiment, the pressure switch 615 has the functions of the determination section and the output section.
 これに代えて、図7及び図8に示すように、設定装置62が設定された閾値LVと検出された背圧Pとを比較して判定し、背圧Pが閾値LV未満である場合に異常信号Saを出力することも可能である。以下、第一変形例を説明するが、上述した実施形態と同一部分に同一の符号を付し、その説明を省略する。 Alternatively, as shown in FIGS. 7 and 8, the setting device 62 compares the set threshold value LV with the detected back pressure P, and determines if the back pressure P is less than the threshold value LV. It is also possible to output an abnormal signal Sa. The first modified example will be described below, but the same reference numerals will be given to the same parts as in the above-described embodiment, and the description thereof will be omitted.
 第一変形例においては、図7に示すように、デジタル着座センサ613の圧力スイッチ615が省略され、背圧計614によって検出された背圧P(デジタル信号)が設定装置62に出力されるように変形される。そして、第一変形例においては、図8に示すように、設定装置62に対して、新たに取得部624、判定部625及び出力部626が設けられる。取得部624は、背圧計614から検出された背圧P(デジタル信号)を取得し、取得した背圧Pを判定部625に出力する。 In the first modification, as shown in FIG. 7, the pressure switch 615 of the digital seating sensor 613 is omitted, and the back pressure P (digital signal) detected by the back pressure gauge 614 is output to the setting device 62. Transformed. In the first modified example, an acquisition unit 624, a determination unit 625, and an output unit 626 are newly provided for the setting device 62, as shown in FIG. The acquisition unit 624 acquires the back pressure P (digital signal) detected from the back pressure gauge 614 and outputs the acquired back pressure P to the determination unit 625 .
 判定部625は、設定部622によって判定用の閾値LV1,LV2,…,LVn及び基準閾値LVbが設定される。尚、この場合においても、上述した実施形態と同様に、Mコードを用いて開始コード及び終了コードの間に閾値LV(基準閾値LVb)を記述して設定することが可能である。判定部625は、閾値LV1,LV2,…,LVn及び基準閾値LVbと、取得部624が取得した背圧Pとを比較する。 , LVn for determination and a reference threshold LVb are set by the setting unit 622. Also in this case, similarly to the embodiment described above, it is possible to describe and set the threshold LV (reference threshold LVb) between the start code and the end code using the M code. The determination unit 625 compares the threshold values LV1, LV2, . . . , LVn and the reference threshold value LVb with the back pressure P acquired by the acquisition unit 624.
 そして、判定部625は、背圧Pが各々の閾値LV1,LV2,…,LVn及び基準閾値LVb以上の場合には正常信号Snを出力部626に出力し、背圧Pが各々の閾値LV1,LV2,…,LVn及び基準閾値LVb未満の場合には異常信号Saを出力部626に出力する。又、判定部625は、取得部624が取得した背圧Pも出力部626に出力する。 Then, the determination unit 625 outputs a normal signal Sn to the output unit 626 when the back pressure P is equal to or higher than each of the thresholds LV1, LV2, . . . , LVn and the reference threshold LVb. , LVn and the reference threshold value LVb, the abnormality signal Sa is output to the output unit 626 . The determination unit 625 also outputs the back pressure P acquired by the acquisition unit 624 to the output unit 626 .
 出力部626は、判定部625から出力された正常信号Sn、異常信号Sa及び背圧Pを取得する。そして、出力部626は、取得した正常信号Sn又は異常信号Saを制御装置47に出力し、背圧Pを履歴記憶部623に出力する。 The output unit 626 acquires the normal signal Sn, the abnormal signal Sa, and the back pressure P output from the determination unit 625 . The output unit 626 then outputs the acquired normal signal Sn or abnormal signal Sa to the control device 47 and outputs the back pressure P to the history storage unit 623 .
 従って、第一変形例においても、異なる加工毎(異なる加工内容毎)に閾値LV1,LV2,…,LVnを設定することができる。そして、第一変形例においては、判定部625が背圧Pと各々の閾値LV1,LV2,…,LVn及び基準閾値LVbとを比較して判定することにより、正常信号Sn又は異常信号Saを、出力部626を介して制御装置47に出力することができる。従って、第一変形例においても、上述した実施形態と同様の効果が得られる。 Therefore, also in the first modified example, threshold values LV1, LV2, . In the first modification, the determination unit 625 compares the back pressure P with each of the threshold values LV1, LV2, . It can be output to the control device 47 via the output unit 626 . Therefore, even in the first modified example, the same effects as in the above-described embodiment can be obtained.
5-2.第二変形例
 上述した実施形態においては、デジタル着座センサ613が制御装置47に対して正常信号Sn又は異常信号Saを出力するようにした。又、上述した第一変形例においては、設定装置62が制御装置47に対して正常信号Sn又は異常信号Saを出力するようにした。そして、制御装置47は、異常信号Saを取得した場合、ワークWの着座状態に異常が発生しているため、機械加工を停止するようにした。
5-2. Second Modification In the embodiment described above, the digital seating sensor 613 outputs the normal signal Sn or the abnormal signal Sa to the control device 47 . Further, in the first modified example described above, the setting device 62 outputs the normal signal Sn or the abnormal signal Sa to the control device 47 . Then, when the control device 47 acquires the abnormality signal Sa, since an abnormality has occurred in the seating state of the work W, the machining is stopped.
 ところで、工作機械30に設けられる制御装置47は、CNC、PLC、サーボシステム等を主要構成部品とし、加工毎に設定されたNCプログラム等に従い回転駆動部43c、工具台移動装置44等の作動を制御することができる。従って、制御装置47が、上述した実施形態の設定装置62を備えたり、上述した第一変形例の設定装置62を備えたりすることが可能である。 By the way, the control device 47 provided in the machine tool 30 has a CNC, a PLC, a servo system, etc. as main components, and operates the rotation drive part 43c, the tool table moving device 44, etc. according to the NC program etc. set for each machining. can be controlled. Therefore, the control device 47 can include the setting device 62 of the embodiment described above, or the setting device 62 of the first modified example described above.
 この場合、制御装置47は、上述した実施形態の設定装置62と同様に、入力部621、設定部622、履歴記憶部623を備えることができる。これにより、制御装置47は、デジタル着座センサ613の圧力スイッチ615に判定用の閾値LVを加工毎(加工内容毎)に設定することが可能となる。そして、制御装置47は、圧力スイッチ615から異常信号Saを取得した場合、ワークWの着座状態に異常が発生しているため、機械加工を停止することが可能となる。従って、この場合においても、上述した実施形態と同様の効果が得られる。 In this case, the control device 47 can include an input section 621, a setting section 622, and a history storage section 623, similar to the setting device 62 of the embodiment described above. As a result, the control device 47 can set the threshold value LV for determination in the pressure switch 615 of the digital seating sensor 613 for each process (each process content). Then, when the controller 47 acquires the abnormality signal Sa from the pressure switch 615, it is possible to stop the machining because there is an abnormality in the seating state of the workpiece W. Therefore, even in this case, the same effects as in the above-described embodiment can be obtained.
 又、制御装置47は、上述した第一変形例の設定装置62と同様に、入力部621、設定部622、履歴記憶部623に加えて、取得部624、判定部625及び出力部626を備えることができる。但し、制御装置47は、必要に応じて、出力部626を省略可能である。 In addition to the input unit 621, the setting unit 622, and the history storage unit 623, the control device 47 includes an acquisition unit 624, a determination unit 625, and an output unit 626, similarly to the setting device 62 of the first modified example described above. be able to. However, the control device 47 can omit the output unit 626 as necessary.
 これにより、制御装置47は、判定部625に判定用の閾値LVを加工毎(加工内容毎)に設定することが可能となる。そして、制御装置47は、判定部625が背圧計614から取得した背圧Pと、異なる加工毎(異なる加工内容毎)に設定された閾値LV(又は基準閾値LVb)とを比較して判定することにより、異常信号Saを取得した場合、ワークWの着座状態に異常が発生しているため、機械加工を停止することが可能となる。従って、この場合においても、上述した実施形態と同様の効果が得られる。 As a result, the control device 47 can set the determination threshold value LV for each process (each process content) in the determination unit 625 . Then, the control device 47 compares the back pressure P acquired by the determination unit 625 from the back pressure gauge 614 with the threshold value LV (or the reference threshold value LVb) set for each different processing (each different processing content) and makes a determination. Accordingly, when the abnormality signal Sa is acquired, it is possible to stop the machining because an abnormality has occurred in the seating state of the workpiece W. Therefore, even in this case, the same effects as in the above-described embodiment can be obtained.
5-3.第三変形例
 上述した実施形態、第一変形例及び第二変形例においては、ワークWの着座状態に応じて変化する物理量として、ワークWの背面W1向けて供給される正圧エアの圧力である背圧Pを用いるようにした。しかしながら、物理量は、ワークWの着座状態に応じて変化すれば、背圧Pを用いることに限定されない。例えば、図9に示すように、機械加工を施す工具43aによりワークWに付与される荷重K、又は、ワークWと着座面42b1との間の距離Lを用いることができる。或いは、単位時間当たりの加工量R(図5を参照)を用いることができる。
5-3. Third Modification In the above-described embodiment, first modification, and second modification, the physical quantity that changes according to the seating state of the work W is the pressure of the positive air supplied toward the back surface W1 of the work W. A certain back pressure P was used. However, the physical quantity is not limited to using the back pressure P as long as it changes according to the seating state of the workpiece W. For example, as shown in FIG. 9, the load K applied to the workpiece W by a machining tool 43a or the distance L between the workpiece W and the seating surface 42b1 can be used. Alternatively, the machining amount R (see FIG. 5) per unit time can be used.
 5-4.第四変形例
 上述した実施形態及び上記各変形例においては、判定部としての圧力スイッチ615及び判定部625が背圧Pの変化に基づいて、ワークWの着座状態を判定するようにした。ところで、上述したように、背圧計614によって検出される背圧Pは、ワークWの着座状態、即ち、浮き上がり状態に依存して変化する。
5-4. Fourth Modification In the embodiment and each modification described above, the pressure switch 615 and the determination unit 625 as determination units determine the seating state of the workpiece W based on changes in the back pressure P. FIG. By the way, as described above, the back pressure P detected by the back pressure gauge 614 changes depending on the seating state of the work W, that is, the floating state.
 そして、ワークWの浮き上がり状態は、工具43aがワークWに対して機械加工を施す際に生じる加工負荷の大きさ、加工時にチャック42cがワークWを把持する把持力の大きさ、及び、ワークWに機械加工を施す工具43aの異常のうちの少なくとも一つに依存して変化する。つまり、背圧Pは、工具43aがワークWに対して機械加工を施す際に生じる加工負荷の大きさ、加工時にチャック42cがワークWを把持する把持力の大きさ、及び、ワークWに機械加工を施す工具43aの異常のうちの少なくとも一つに依存して変化する。 The floating state of the workpiece W depends on the magnitude of the machining load generated when the tool 43a performs machining on the workpiece W, the magnitude of the gripping force with which the chuck 42c grips the workpiece W during machining, and the workpiece W varies depending on at least one of the anomalies of the tool 43a machining the . That is, the back pressure P is the magnitude of the machining load generated when the tool 43a performs machining on the workpiece W, the magnitude of the gripping force with which the chuck 42c grips the workpiece W during machining, and the It changes depending on at least one of the abnormalities of the tool 43a for processing.
 そこで、圧力スイッチ615及び判定部625は、背圧計614によって検出される背圧Pの変化に基づいて、工具43aによるワークWへの加工負荷の大きさ、チャック42cによるワークWの把持力の大きさ、及び、工具43aの欠けや破損等の異常のうちの少なくとも一つを判定することが可能である。そして、ワークWの加工に際して、圧力スイッチ615及び判定部625は、背圧Pの変化に基づいて、例えば、加工負荷が基準加工負荷よりも大きいと判定した場合、異常信号Saを出力することができる。 Therefore, the pressure switch 615 and the determination unit 625 determine the magnitude of the machining load on the workpiece W by the tool 43a and the magnitude of the gripping force of the workpiece W by the chuck 42c based on the change in the back pressure P detected by the back pressure gauge 614. It is possible to determine at least one of an abnormality such as chipping or breakage of the tool 43a. When the workpiece W is machined, the pressure switch 615 and the determination unit 625 can output an abnormal signal Sa when, for example, it is determined that the machining load is greater than the reference machining load based on the change in the back pressure P. can.
 又、ワークWの加工に際して、圧力スイッチ615及び判定部625は、背圧Pの変化に基づいて、例えば、把持力の大きさが基準把持力よりも小さいと判定した場合、異常信号Saを出力することができる。更に、ワークWの加工に際して、圧力スイッチ615及び判定部625は、背圧Pの変化に基づいて、例えば、加工量Rの大きさが基準加工量よりも小さいと判定した場合、工具43aに異常が発生している可能性が高いため異常信号Saを出力することができる。そして、工作機械30においては、異常信号Saの取得に伴い、ワークWの機械加工を停止することができる。 Further, when the workpiece W is processed, the pressure switch 615 and the determination unit 625 output an abnormality signal Sa when determining, for example, that the magnitude of the gripping force is smaller than the reference gripping force based on the change in the back pressure P. can do. Further, when the workpiece W is machined, the pressure switch 615 and the determination unit 625 determine, for example, that the machining amount R is smaller than the reference machining amount based on the change in the back pressure P, the tool 43a is abnormal. is likely to occur, the abnormality signal Sa can be output. Then, in the machine tool 30, the machining of the workpiece W can be stopped along with the acquisition of the abnormality signal Sa.
 10…加工システム、20…ベース、30…工作機械、42…主軸台、42a…主軸、42b…着座部、42b1…着座面42b1、43a…工具、47…制御装置、50…多関節ロボット、60…着座判定装置、61…検出装置、611…検出孔、612…エア供給管、613…デジタル着座センサ、614…背圧計、615…圧力スイッチ(判定部、出力部)、62…設定装置、621…入力部、622…設定部、623…履歴記憶部、624…取得部、625…判定部、626…出力部、LV1,LV2,…,LVn…閾値、LVb…基準閾値、Sn…正常信号Sn、Sa…異常信号、A1…第一加工位置、A2…第二加工位置、D1…第一加工方向、D2…第二加工方向、V…加工速度、W…ワーク、W1…背面、P…背圧(物理量)、K…荷重(物理量)、L…距離(物理量)、R…加工量(物理量) DESCRIPTION OF SYMBOLS 10... Machining system 20... Base 30... Machine tool 42... Headstock 42a... Spindle 42b... Seating part 42b1... Seating surface 42b1, 43a... Tool, 47... Control device, 50... Articulated robot, 60 Seating determination device 61 Detecting device 611 Detection hole 612 Air supply pipe 613 Digital seating sensor 614 Back pressure gauge 615 Pressure switch (determination section, output section) 62 Setting device 621 Input unit 622 Setting unit 623 History storage unit 624 Acquisition unit 625 Determination unit 626 Output unit LV1, LV2, LVn Threshold, LVb Reference threshold Sn Normal signal Sn , Sa... Error signal, A1... First machining position, A2... Second machining position, D1... First machining direction, D2... Second machining direction, V... Machining speed, W... Work, W1... Back side, P... Back side pressure (physical quantity), K... load (physical quantity), L... distance (physical quantity), R... processing amount (physical quantity)

Claims (14)

  1.  ワークの着座状態に応じて変化する物理量を検出する検出装置と、
     前記物理量と、前記ワークに対する加工中の前記着座状態を判定するために前記物理量に関して設定された閾値とに基づいて、前記着座状態を判定する判定部と、
     前記ワークに対する異なる加工毎に、前記閾値を設定する設定部と、
     を備えた、着座判定装置。
    a detection device that detects a physical quantity that changes according to the seating state of the workpiece;
    a determination unit that determines the seating state based on the physical quantity and a threshold value set for the physical quantity for determining the seating state during machining of the workpiece;
    a setting unit that sets the threshold for each different machining of the workpiece;
    A seating determination device.
  2.  前記判定部が前記着座状態に異常が発生したと判定した場合、前記着座状態に生じた異常を表す異常信号を出力する出力部を有する、請求項1に記載の着座判定装置。 2. The seating determination device according to claim 1, further comprising an output section that outputs an abnormality signal representing an abnormality that has occurred in the seating state when the determination section determines that an abnormality has occurred in the seating state.
  3.  前記判定部は、前記検出装置に設けられており、
     前記設定部は、前記検出装置に前記閾値を設定する、請求項1又は2に記載の着座判定装置。
    The determination unit is provided in the detection device,
    3. The seating determination device according to claim 1, wherein said setting unit sets said threshold in said detection device.
  4.  前記物理量は、加工時に前記ワークに付与される圧力、機械加工を施す工具により前記ワークに付与される荷重、前記ワークと着座面との間の距離、及び、単位時間当たりの加工量のうちの少なくとも1つである、請求項1-3の何れか一項に記載の着座判定装置。 The physical quantity is the pressure applied to the work during machining, the load applied to the work by a tool for machining, the distance between the work and the seating surface, and the amount of machining per unit time. The seating determination device according to any one of claims 1 to 3, comprising at least one.
  5.  前記検出装置は、デジタル信号を出力するデジタル着座センサを有する、請求項1-4の何れか一項に記載の着座判定装置。 The seating determination device according to any one of claims 1 to 4, wherein the detection device has a digital seating sensor that outputs a digital signal.
  6.  請求項1-5の何れか一項に記載の前記着座判定装置を備え、
     着座部に着座した前記ワークに機械加工を施す工作機械。
    Equipped with the seating determination device according to any one of claims 1 to 5,
    A machine tool for machining the workpiece seated on the seating portion.
  7.  前記検出装置は、前記着座部に設けられており、
     前記判定部及び前記設定部は、前記検出装置から前記物理量を入力し、入力した前記物理量を用いて前記工作機械の作動を制御する制御装置に設けられる、請求項6に記載の工作機械。
    The detection device is provided on the seating portion,
    7. The machine tool according to claim 6, wherein said determination unit and said setting unit are provided in a control device that inputs said physical quantity from said detection device and uses said input physical quantity to control the operation of said machine tool.
  8.  前記判定部は、前記検出装置によって検出された前記物理量と前記設定部によって設定された前記閾値とを比較して、前記ワークの前記着座部における前記着座状態を判定する、請求項7に記載の工作機械。 8. The determination unit according to claim 7, wherein the determination unit determines the seating state of the work on the seating unit by comparing the physical quantity detected by the detection device and the threshold value set by the setting unit. Machine Tools.
  9.  前記制御装置は、前記着座状態に異常が発生した場合、前記ワークへの機械加工を停止する、請求項7又は8に記載の工作機械。 The machine tool according to claim 7 or 8, wherein the control device stops machining the workpiece when an abnormality occurs in the seating state.
  10.  前記設定部は、工具を用いて前記ワークに施される異なる加工毎に、前記ワークに対する加工位置、加工方向、加工速度、及び、加工量のうちの少なくとも一つに基づいて、前記閾値を設定する、請求項6-9の何れか一項に記載の工作機械。 The setting unit sets the threshold based on at least one of a machining position, a machining direction, a machining speed, and a machining amount for each different machining performed on the workpiece using a tool. A machine tool according to any one of claims 6-9.
  11.  前記設定部は、前記加工方向が前記ワークの着座方向に沿った方向の場合には前記閾値を予め設定された基準閾値よりも大きな値に設定し、前記加工方向が前記ワークの離座方向に沿った方向の場合には前記閾値を前記基準閾値よりも小さな値に設定する、請求項10に記載の工作機械。 The setting unit sets the threshold to a value larger than a preset reference threshold when the machining direction is along the seating direction of the workpiece, and the machining direction is in the unseating direction of the workpiece. 11. The machine tool according to claim 10, wherein said threshold is set to a value smaller than said reference threshold for the along direction.
  12.  前記判定部は、前記物理量として加工時に前記ワークに付与される圧力に基づき、前記ワークの前記着座部における着座面に対する浮き上がり状態を前記着座状態として判定する、請求項6-11の何れか一項に記載の工作機械。 12. The determination unit determines, as the seating state, a state in which the workpiece is lifted from the seating surface of the seating portion based on the pressure applied to the workpiece during machining as the physical quantity. The machine tool described in .
  13.  前記圧力は、前記ワークに対する加工負荷の大きさ、加工時に前記ワークを把持する把持力の大きさ、及び、前記ワークに機械加工を施す工具の異常のうちの少なくとも一つに依存して変化する、請求項12に記載の工作機械。 The pressure changes depending on at least one of the magnitude of the machining load on the workpiece, the magnitude of the gripping force that grips the workpiece during machining, and the abnormality of a tool that performs machining on the workpiece. 13. The machine tool of claim 12.
  14.  前記判定部は、前記着座状態の判定に基づいて、更に、前記加工負荷の大きさ、前記把持力の大きさ及び前記工具の異常のうちの少なくとも一つを判定する、請求項13に記載の工作機械。 14. The apparatus according to claim 13, wherein the determining unit further determines at least one of the magnitude of the machining load, the magnitude of the gripping force, and the abnormality of the tool based on the determination of the seating state. Machine Tools.
PCT/JP2021/040558 2021-11-04 2021-11-04 Seating determination device and machine tool WO2023079614A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023557882A JPWO2023079614A1 (en) 2021-11-04 2021-11-04
PCT/JP2021/040558 WO2023079614A1 (en) 2021-11-04 2021-11-04 Seating determination device and machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040558 WO2023079614A1 (en) 2021-11-04 2021-11-04 Seating determination device and machine tool

Publications (1)

Publication Number Publication Date
WO2023079614A1 true WO2023079614A1 (en) 2023-05-11

Family

ID=86240746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040558 WO2023079614A1 (en) 2021-11-04 2021-11-04 Seating determination device and machine tool

Country Status (2)

Country Link
JP (1) JPWO2023079614A1 (en)
WO (1) WO2023079614A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210605A (en) * 2001-01-12 2002-07-30 Murata Mach Ltd Lathe
JP2007276031A (en) * 2006-04-05 2007-10-25 Kitagawa Iron Works Co Ltd Method and apparatus for monitoring processing target gripping device
JP2016032852A (en) * 2014-07-31 2016-03-10 アズビルTaco株式会社 Workpiece seating determination method and its device
JP2017007027A (en) * 2015-06-22 2017-01-12 アズビルTaco株式会社 Seating determination method when processing work

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210605A (en) * 2001-01-12 2002-07-30 Murata Mach Ltd Lathe
JP2007276031A (en) * 2006-04-05 2007-10-25 Kitagawa Iron Works Co Ltd Method and apparatus for monitoring processing target gripping device
JP2016032852A (en) * 2014-07-31 2016-03-10 アズビルTaco株式会社 Workpiece seating determination method and its device
JP2017007027A (en) * 2015-06-22 2017-01-12 アズビルTaco株式会社 Seating determination method when processing work

Also Published As

Publication number Publication date
JPWO2023079614A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP7277152B2 (en) Tool management system for machine tools
JP2008027045A (en) Numerical control apparatus provided with interference checking function
JP6722052B2 (en) Multi-blade tool abnormality detection method
JP2015226947A (en) Work-piece processing method and work-piece processing device for machine tool
WO2022050209A1 (en) Machine tool and information processing device
CN111451837A (en) Preventive maintenance system for machine tool
JP2000317710A (en) Tool abnormality detection tethod and device for machine tool
WO2023079614A1 (en) Seating determination device and machine tool
JP2004160564A (en) Machine tool
KR100548874B1 (en) Numerical control unit having function for detecting the nicked edge of tool
KR20180024093A (en) Tool breakage and wear monitoring method
KR101787347B1 (en) Control method of numerical control machine tool
JP2007105809A (en) Method of detecting slip of main spindle driving belt of machine tool
JP2007286688A (en) Interference detection method and control device for machine tool
JP7194965B2 (en) Machine Tools
JPH04311206A (en) Control method for avoiding abnormality in numerically controlled machine tool
JP2008226112A (en) Numerically controlled apparatus
JP2020013433A (en) Numerical control device, numerical control method, and numerical control program
JP2017021472A (en) Machining device and machining method
JP7131454B2 (en) Numerical controllers, machine tools, control programs, and storage media
JP6807997B1 (en) Tool holder and machining method
WO2021192071A1 (en) Workpiece processing apparatus
JP7010873B2 (en) Machine tools, machining systems, and additional table units
JPS6334051A (en) Automatic measurement/judgment device for defective material and improper chucking
JP2023029135A (en) Current measurement system of machine tool and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557882

Country of ref document: JP