WO2023079589A1 - Control device and computer-readable recording medium - Google Patents

Control device and computer-readable recording medium Download PDF

Info

Publication number
WO2023079589A1
WO2023079589A1 PCT/JP2021/040365 JP2021040365W WO2023079589A1 WO 2023079589 A1 WO2023079589 A1 WO 2023079589A1 JP 2021040365 W JP2021040365 W JP 2021040365W WO 2023079589 A1 WO2023079589 A1 WO 2023079589A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
unit
control device
induction motor
control
Prior art date
Application number
PCT/JP2021/040365
Other languages
French (fr)
Japanese (ja)
Inventor
宏祐 宇野
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2021/040365 priority Critical patent/WO2023079589A1/en
Publication of WO2023079589A1 publication Critical patent/WO2023079589A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Definitions

  • the present invention relates to control devices and computer-readable recording media.
  • An induction motor generates magnetic flux by passing an exciting current. Increasing the magnetic flux of the induction motor increases the torque. On the other hand, power consumption increases and the motor generates heat (Patent Document 1, etc.). Therefore, when there is no load, the exciting current of the induction motor is suppressed to a value lower than the rated value to reduce heat generation.
  • the control device solves the above problems by predicting the machining details ahead of the magnetic flux delay time from the analysis result of the machining program and controlling the magnetic flux amount.
  • one aspect of the present disclosure is a control device that controls a machine including a drive unit driven by an induction motor, comprising: an analysis unit that analyzes a machining program that includes commands for controlling the machine; a control command unit that commands the rotation of the induction motor based on the result; and a machining content prediction unit that predicts the machining content after a predetermined control switching time based on the analysis result of the machining program.
  • the control command unit is a control device that controls the amount of magnetic flux of the induction motor based on the machining content predicted by the machining content prediction unit.
  • Another aspect of the present disclosure is a computer-readable recording medium recording a program for operating a control device that controls a machine having a drive unit driven by an induction motor, the machining program including instructions for controlling the machine.
  • a control command unit that commands the rotation of the induction motor based on the analysis result of the analysis unit; and predicts the machining content after a predetermined control switching time based on the analysis result of the machining program.
  • the computer is readable by recording a program for controlling the amount of magnetic flux of the induction motor based on the machining content predicted by the machining content prediction unit.
  • the heat generation of the induction motor can be suppressed by lowering the exciting current in the positioning feed portion.
  • the excitation current is increased before machining to increase the amount of magnetic flux, it can be expected that there will be no effects such as a decrease in spindle speed or stoppage.
  • FIG. 1 is a schematic hardware configuration diagram of a control device according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing schematic functions of a control device according to the first embodiment of the present invention
  • FIG. It is a figure which shows the example of a processing program.
  • 7 is a graph illustrating the result of analyzing the machining program; It is a figure which shows the example of prediction by a process content prediction part. It is a figure which shows the other example of the prediction by a process content prediction part.
  • FIG. 6 is a block diagram showing the schematic functions of a control device according to a second embodiment of the present invention; It is a figure which shows the example of the prediction by the content prediction part of machining based on a simulation result.
  • FIG. 10 is a diagram showing another example of prediction by the machining content prediction unit based on simulation results;
  • FIG. 11 is a block diagram showing schematic functions of a control device according to a modification of the second embodiment;
  • FIG. 1 is a schematic hardware configuration diagram showing essential parts of a control device according to an embodiment of the present invention.
  • the control device 1 of the present invention can be implemented as a control device for controlling a machine tool having a drive section driven by an induction motor.
  • a control device 1 that controls a machine tool that processes a work by controlling the relative positions of the tool and the work will be described below as an example.
  • the CPU 11 included in the control device 1 of the present invention is a processor that controls the control device 1 as a whole.
  • the CPU 11 reads a system program stored in the ROM 12 via the bus 22 and controls the entire control device 1 according to the system program.
  • the RAM 13 temporarily stores calculation data, display data, various data input from the outside, and the like.
  • the non-volatile memory 14 is composed of, for example, a memory backed up by a battery (not shown) or an SSD (Solid State Drive), and retains the stored state even when the control device 1 is powered off.
  • the nonvolatile memory 14 stores data and machining programs read from the external device 72 via the interface 15, data and machining programs input via the input device 71, various data obtained from the machine tool 3, and the like. be done.
  • the data and processing programs stored in the nonvolatile memory 14 may be developed in the RAM 13 at the time of execution/use.
  • various system programs such as a known analysis program are pre-written in the ROM 12 .
  • the interface 15 is an interface for connecting the CPU 11 of the control device 1 and an external device 72 such as a USB device. From the external device 72 side, it is possible to read, for example, a machining program and various parameters used for controlling the machine tool 3 . Moreover, the machining program and each parameter edited in the control device 1 can be stored in the external storage means via the external device 72 .
  • a PLC (programmable logic controller) 16 controls the machine tool 3 and peripheral devices of the machine tool 3 (for example, a tool changer, an actuator such as a robot, a machine tool 3 A sensor or the like attached to the controller) is controlled by outputting a signal through the I/O unit 17 . Also, the PLC 16 receives signals from various switches on an operation panel provided in the main body of the industrial machine, peripheral devices, etc., performs necessary signal processing, and then transfers the signals to the CPU 11 .
  • each data read into the memory data obtained as a result of executing the machining program, the system program, etc., are output via the interface 18 and displayed.
  • An input device 71 composed of a keyboard, a pointing device, and the like passes commands, data, and the like based on operations by the operator to the CPU 11 via the interface 19 .
  • An axis control circuit 30 for controlling the axes provided in the machine tool 3 receives an axis movement command amount from the CPU 11 and outputs an axis command to the servo amplifier 40 .
  • the servo amplifier 40 receives this command, and drives the servo motor 50 that moves the drive section of the machine tool 3 along the axis.
  • the axis servo motor 50 incorporates a position/velocity detector, and feeds back a position/velocity feedback signal from this position/velocity detector to the axis control circuit 30 .
  • the axis control circuit 30 performs feedback control of the position and speed of the servomotor 50 .
  • axis control circuit 30, one servo amplifier 40, and one servomotor 50 are shown in the hardware configuration diagram of FIG. Only a few are provided.
  • the spindle on which the tool is attached and the workpiece are relatively moved in the directions of the three linear axes (X-axis, Y-axis, Z-axis).
  • Three sets of axis control circuit 30, servo amplifier 40, and servo motor 50 are prepared.
  • a spindle control circuit 60 receives a spindle rotation command and outputs a spindle speed signal to a spindle amplifier 61 .
  • the spindle amplifier 61 receives this spindle speed signal, rotates the induction motor 62 of the machine tool 3 at the commanded rotational speed, and drives the spindle.
  • a position coder 63 is coupled to the induction motor 62 .
  • the position coder 63 outputs feedback pulses in synchronization with the rotation of the main shaft, and the feedback pulses are read by the CPU 11 .
  • the spindle control circuit 60 controls the amount of magnetic flux of the induction motor 62 with respect to the spindle amplifier 61 .
  • the spindle amplifier 61 obtains the current amount of magnetic flux of the induction motor 62 and transfers it to the CPU 11 .
  • FIG. 2 is a schematic block diagram showing the functions of the control device 1 according to the first embodiment of the present invention.
  • the control device 1 according to the present embodiment controls the relative positions of the rotating tool and the workpiece, and cuts the workpiece by bringing the tool and the workpiece into contact with each other.
  • Each function provided in the control device 1 according to the present embodiment is realized by the CPU 11 provided in the control device 1 shown in FIG.
  • the control device 1 of this embodiment includes an analysis unit 100, a position command unit 110, a machining content prediction unit 130, and a control command unit 140.
  • a machining program 200 used for controlling the machine tool 3 is stored in advance, and a time required for switching the control of the induction motor 62 is stored.
  • a control switching time storage unit 210 is secured as an area.
  • the analysis unit 100 sequentially reads the blocks of the machining program 200. Then, the instruction by the read block is analyzed.
  • the analysis result includes a command to change the position of the tool
  • the analysis unit 100 commands the position command unit 110 to control the position of each servomotor 50 .
  • the control command unit 140 is commanded to control the rotation of the induction motor 62 .
  • the analysis unit 100 outputs at least the type of the analyzed command (whether it is a positioning command or a cutting feed command) and the time required for feed control according to each command to the machining content prediction unit 130 . It is desirable that the analysis unit 100 prefetches and analyzes blocks of the machining program 200 .
  • the position command unit 110 Based on the analysis result of the machining program 200 by the analysis unit 100, the position command unit 110 outputs to the machine tool 3 a command to drive the servo motor 50 so as to control the position of the tool with respect to the work.
  • the machining content prediction unit 130 predicts the content of machining to be performed after the current time (the current elapsed time from the start of machining).
  • the control switching time storage unit 210 stores in advance the control switching time, which is the time it takes for the magnetic flux to stabilize after the excitation current is changed in the induction motor 62 attached to the machine tool 3 . This control switching time may be obtained in advance by conducting an experiment using the induction motor 62 .
  • the machining content prediction unit 130 predicts the content of machining after at least the control switching time from the current time.
  • the machining content prediction unit 130 predicts that the workpiece is not being machined by the tool while the control based on the positioning command is being performed, for example. Also, while the control based on the cutting feed command is being performed, it is predicted that the workpiece is being machined by the tool.
  • FIG. 3 shows an example of the machining program 200.
  • FIG. 4 shows the analysis result of the machining program 200 illustrated in FIG. 3 by the analysis unit 100 as a graph.
  • a positioning command G00 is issued in block N05.
  • a cutting feed command G01 is issued at N06.
  • the analysis unit 100 calculates the time required to execute each command based on the feed speed of each feed command.
  • FIG. 3 shows an example of the machining program 200.
  • FIG. 4 shows the analysis result of the machining program 200 illustrated in FIG. 3 by the analysis unit 100 as a graph.
  • a positioning command G00 is issued in block N05.
  • a cutting feed command G01 is issued at N06.
  • the analysis unit 100 calculates the time required to execute each command based on the feed speed of each feed command.
  • the positioning command of block N05 is executed from the time of starting machining to the time of elapsed time t1
  • the positioning command of block N06 is executed from the time of elapsed time t1 to the time of elapsed time t2.
  • a cutting feed command is executed.
  • the analysis unit 100 outputs the result of this analysis to the processing content prediction unit 130 . Note that the analysis unit 100 may calculate the execution time of each command in consideration of the acceleration/deceleration of each axis more strictly.
  • FIG. 5 and 6 are graphs explaining the prediction of the processing content by the processing content prediction unit 130.
  • the current time is indicated by tc
  • the control switching time is indicated by td.
  • the machining content prediction unit 130 predicts the machining content after the control switching time td from the current time tc at predetermined intervals. For example, as shown in FIG. 5, consider the case where the time obtained by adding the control switching time td to the current time tc is before the elapsed time t1. At this time, the machining content prediction unit 130 determines that the positioning command of block N05 has been executed after the control switching time td from the current time tc. Then, based on this determination result, the machining content prediction unit 130 predicts that the workpiece will not be machined after the control switching time td.
  • the machining content prediction unit 130 determines that the cutting feed command of block N06 is being executed after the control switching time td from the current time tc. Based on this determination result, the machining content prediction unit 130 predicts that the workpiece will be machined after the control switching time td.
  • the control command unit 140 outputs a command to the machine tool 3 to rotate the induction motor 62 at the commanded rotational speed based on the analysis result of the machining program 200 by the analysis unit 100 .
  • the control command unit 140 controls the amount of magnetic flux of the induction motor 62 based on the prediction result of the machining content by the machining content prediction unit 130 .
  • a method of controlling the amount of magnetic flux for example, a method of controlling an exciting current flowing through an induction motor is conceivable.
  • the control command unit 140 sets the excitation current to a predetermined value lower than the rated value when it is predicted that the tool will not machine the workpiece from the current time tc until after the control switching time td. Control.
  • the exciting current is controlled to, for example, the rated value so as to obtain a sufficient amount of magnetic flux necessary for machining.
  • the control device having the above configuration, there is no problem even if the amount of magnetic flux is reduced in the positioning feed portion, so heat generation of the induction motor can be suppressed by reducing the excitation current.
  • the excitation current of the induction motor is increased so as to obtain a sufficient amount of magnetic flux necessary for machining the workpiece in the cutting feed portion, it can be expected that there will be no effects such as a decrease in spindle speed or stoppage. Since not only the control to increase the exciting current but also the control to decrease the exciting current can be performed based on the prediction considering the control switching time, it is expected that the electric power can be used efficiently.
  • FIG. 7 is a schematic block diagram of the functions provided by the control device 1 according to the second embodiment of the present invention.
  • the control device 1 according to the present embodiment controls the relative positions of the rotating tool and the workpiece, and cuts the workpiece by bringing the tool and the workpiece into contact with each other.
  • Each function provided in the control device 1 according to the present embodiment is realized by the CPU 11 provided in the control device 1 shown in FIG.
  • the control device 1 of this embodiment includes an analysis unit 100, a position command unit 110, a simulation unit 120, a machining content prediction unit 130, and a control command unit 140.
  • a machining program 200 used for controlling the machine tool 3 is stored in advance, and a time required for switching the control of the induction motor 62 is stored.
  • a control switching time storage unit 210 is secured as an area.
  • the position command unit 110 and the control command unit 140 according to this embodiment have the same functions as the position command unit 110 and the control command unit 140 according to the first embodiment.
  • the analysis unit 100 analyzes the machining program 200 and outputs control commands to the position command unit 110 and the control command unit 140, like the analysis unit 100 according to the first embodiment.
  • the analysis unit 100 according to this embodiment does not necessarily have to sequentially output the analysis results to the machining content prediction unit 130 . At least at the timing when the machining is started, the machining content prediction unit 130 is notified of the fact.
  • the simulation unit 120 sequentially reads the blocks of the machining program 200. Then, a machining simulation is executed based on the command from the read block.
  • the simulation processing by the simulation unit 120 is desirably a machining simulation using at least commands from the blocks of the machining program 200, the arrangement of the tool and the workpiece, and the shapes of the tool and the workpiece. Moreover, it is desirable that the machining simulation be able to perform a strict analysis of the time required for the machining with the tool and the workpiece in contact with each other. Since such machining simulation is already known, detailed description thereof is omitted in this specification.
  • the simulation unit 120 only needs to execute machining simulation of the block before the command of each block of the machining program 200 is executed.
  • all the machining simulations of the machining program 200 may be completed in advance, or the machining simulations may be executed in parallel (and prior to) the workpiece machining based on the machining program 200 .
  • the simulation unit 120 outputs to the machining content prediction unit 130 the results of the machining simulation including at least the time during which the tool is in contact with the workpiece and machining is being performed.
  • the machining content prediction unit 130 predicts the content of machining at a predetermined time during machining of the workpiece based on the result of machining simulation of the machining program 200 by the simulation unit 120 .
  • the control switching time storage unit 210 pre-stores the control switching time similarly to the first embodiment.
  • FIGS. 8 and 9 explain the prediction of machining details by the machining details prediction unit 130 based on the results of the machining simulation.
  • the machining content prediction unit 130 predicts the machining content after the control switching time from the current time based on the result of the machining simulation at predetermined intervals. For example, as shown in FIG. 8, consider the case where the tool 301 is not in contact with the workpiece 303 on the machining simulation after the control switching time from the current time after the machining is started. At this time, the machining content prediction unit 130 determines that the tool 301 and the workpiece 303 are not in contact with each other even in the actual machining after the control switching time from the current time. Based on this determination result, the machining content prediction unit 130 predicts that the workpiece 303 will not be machined after the control switching time.
  • the machining content prediction unit 130 determines that the tool 301 and the workpiece 303 are in contact with each other even in the actual machining after the control switching time from the current time. Based on this determination result, the machining content prediction unit 130 predicts that the workpiece 303 will be machined after the control switching time.
  • the control device having the above configuration, there is no problem even if the amount of magnetic flux is reduced in the positioning feed portion, so heat generation of the induction motor can be suppressed by reducing the excitation current.
  • the excitation current is increased so as to obtain a sufficient amount of magnetic flux necessary for machining the work in the cutting feed portion, it can be expected that the influence of the spindle speed reduction and stoppage will be eliminated.
  • a machining program creator provides a predetermined margin before and after the contact range between the workpiece and the tool. That is, the path of the cutting feed command is longer than the range in which the work is actually machined. Also, there are cases where a cutting feed command is used in a portion that should be axially fed by a positioning command.
  • the excitation current is controlled based on the contents of the command as in the control device according to the first embodiment, power consumption may be wasted. Since the control device according to the present embodiment strictly determines the contact range between the tool and the workpiece based on the results of the machining simulation, the excitation current is controlled more precisely than the control device according to the first embodiment. It is possible to do
  • FIG. 10 shows a modification of the control device 1 according to the second embodiment.
  • the control device 1 according to the second embodiment has a simulation section 120 .
  • the simulation section may be configured on a PC installed alongside the control device 1, or a fog computer or host computer connected via a network (not shown).
  • the control device 1 prepares a simulation result storage section 220, which is an area for storing simulation results by the external simulation device 2, on the RAM 13 to nonvolatile memory 14.
  • the machining simulation of the machining program 200 is executed by the simulation unit 240 provided in the simulation device 2 in advance or in parallel and precedingly.
  • the results of the machining simulation are stored in the simulation result storage unit 220 .
  • the machining content prediction unit 130 may refer to the simulation result storage unit 220 and predict the machining content after the control switching time from the current time.
  • Such a configuration eliminates the need to perform simulation processing on the control device 1 .
  • the functions of the present invention can be utilized even if the control device is not a high-performance control device that can perform machining simulation in parallel with the control of the machine tool.
  • the present invention is not limited to the above-described examples of the embodiments, and can be implemented in various modes by adding appropriate modifications.
  • a machine tool is described as an example of a control target by the control device.
  • any machine that utilizes an induction motor to drive the drive may utilize the features of the present invention.
  • the control command unit 140 controls the amount of magnetic flux of the induction motor according to the amount of cutting. As a result, it is possible to appropriately control the amount of magnetic flux according to the load on the spindle due to the details of machining.
  • control device 2 simulation device 3 machine tool 11 CPU 12 ROMs 13 RAM 14 nonvolatile memory 15, 18, 19 interface 16 PLC 17 I/O unit 22 bus 70 display device 71 input device 72 external device 100 analysis unit 110 position command unit 120 simulation unit 130 machining content prediction unit 140 control command unit 200 machining program 210 control switching time storage unit 220 simulation result storage unit 240 Simulation part 301 Tool 303 Work

Abstract

A control device according to the present disclosure is for controlling a machine provided with a driving unit that is driven by an induction motor. The control device is provided with: an analysis unit for analyzing a processing program in which a command for controlling the machine is included; a control command unit for commanding an induction motor to rotate on the basis of an analysis result by the analysis unit; and a processing detail prediction unit for predicting, on the basis of the analysis result by the processing program, a processing detail to be used ahead by a predetermined control switching time. The control command unit controls the magnetic flux amount of the induction motor on the basis of the processing detail predicted by the processing detail prediction unit.

Description

制御装置及びコンピュータ読み取り可能な記録媒体Control device and computer-readable recording medium
 本発明は、制御装置及びコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to control devices and computer-readable recording media.
 誘導モータは励磁電流を流すことで磁束を発生させる。誘導モータの磁束を高めると、トルクが高まる。一方で、消費電力が増加し、モータが発熱する(特許文献1など)。そのため、無負荷時には誘導モータの励磁電流を定格よりも低い値に抑え、発熱低減を図っている。 An induction motor generates magnetic flux by passing an exciting current. Increasing the magnetic flux of the induction motor increases the torque. On the other hand, power consumption increases and the motor generates heat (Patent Document 1, etc.). Therefore, when there is no load, the exciting current of the induction motor is suppressed to a value lower than the rated value to reduce heat generation.
特開2018-069392号公報JP 2018-069392 A
 誘導モータの励磁電流を定格以下に抑えている間に負荷がかかると、励磁電流を定格に戻す。しかしながら、十分な磁束が発生するまでに遅延時間がかかる。これが原因で機械の動作に問題が生じる場合がある。 If a load is applied while the excitation current of the induction motor is kept below the rating, the excitation current is returned to the rating. However, it takes a delay time before sufficient magnetic flux is generated. This can cause problems in machine operation.
 例えば工具を取り付けた主軸を誘導モータで回転させてワークを加工することを考える。工具とワークが離れている時は大きなトルクが必要ないため、励磁電流を定格よりも低い値に抑える。工具とワークが接触すると、主軸の回転に負荷がかかる。これを検知した制御装置は、主軸を回転させる誘導モータの励磁電流を定格値に上げる制御をする。しかしながら、磁束が高まるまでの遅延時間が原因で、トルクの高まりが遅延する。そのため、工具とワークとの接触直後に、主軸の回転速度が大きく低下したり、停止したりする場合がある。
 そこで、加工の状況を予測して加工が安定するように誘導モータの制御を行う技術が望まれている。
For example, consider machining a workpiece by rotating a spindle to which a tool is attached by an induction motor. Since large torque is not required when the tool and workpiece are separated, the excitation current is kept lower than the rated value. When the tool and the workpiece come into contact with each other, a load is applied to the rotation of the spindle. Upon detecting this, the control device performs control to increase the excitation current of the induction motor that rotates the main shaft to the rated value. However, the torque build-up is delayed due to the delay time before the flux builds up. Therefore, immediately after the contact between the tool and the workpiece, the rotation speed of the spindle may greatly decrease or stop.
Therefore, there is a demand for a technique for predicting the machining situation and controlling the induction motor so as to stabilize the machining.
 本開示による制御装置は、加工プログラムの解析結果から磁束の遅延時間分先の加工内容を予測して磁束量を制御することで、上記課題を解決する。 The control device according to the present disclosure solves the above problems by predicting the machining details ahead of the magnetic flux delay time from the analysis result of the machining program and controlling the magnetic flux amount.
 そして、本開示の一態様は、誘導モータにより駆動する駆動部を備える機械を制御する制御装置であって、前記機械を制御する指令を含む加工プログラムを解析する解析部と、前記解析部による解析結果に基づいて、前記誘導モータの回転を指令する制御指令部と、前記加工プログラムの解析結果に基づいて、所定の制御切換時間分先の加工内容を予測する加工内容予測部と、を備え前記制御指令部は、前記加工内容予測部により予測された加工内容に基づいて、誘導モータの磁束量を制御する、制御装置である。 Further, one aspect of the present disclosure is a control device that controls a machine including a drive unit driven by an induction motor, comprising: an analysis unit that analyzes a machining program that includes commands for controlling the machine; a control command unit that commands the rotation of the induction motor based on the result; and a machining content prediction unit that predicts the machining content after a predetermined control switching time based on the analysis result of the machining program. The control command unit is a control device that controls the amount of magnetic flux of the induction motor based on the machining content predicted by the machining content prediction unit.
 本開示の他の態様は、誘導モータにより駆動する駆動部を備える機械を制御する制御装置を動作させるプログラムを記録したコンピュータ読み取り可能な記録媒体であって、前記機械を制御する指令を含む加工プログラムを解析する解析部、前記解析部による解析結果に基づいて、前記誘導モータの回転を指令する制御指令部、前記加工プログラムの解析結果に基づいて、所定の制御切換時間分先の加工内容を予測する加工内容予測部、としてコンピュータを動作させ、前記制御指令部は、前記加工内容予測部により予測された加工内容に基づいて、誘導モータの磁束量を制御する、プログラムを記録したコンピュータ読み取り可能な記録媒体である。 Another aspect of the present disclosure is a computer-readable recording medium recording a program for operating a control device that controls a machine having a drive unit driven by an induction motor, the machining program including instructions for controlling the machine. a control command unit that commands the rotation of the induction motor based on the analysis result of the analysis unit; and predicts the machining content after a predetermined control switching time based on the analysis result of the machining program. The computer is readable by recording a program for controlling the amount of magnetic flux of the induction motor based on the machining content predicted by the machining content prediction unit. A recording medium.
 本開示の一態様により、位置決め送り部分は励磁電流を低くすることで誘導モータの発熱を抑えることができる。また、加工前に励磁電流を上げて磁束量を増加させるため、主軸速度の低下や停止のような影響が無くなることが期待できる。 According to one aspect of the present disclosure, the heat generation of the induction motor can be suppressed by lowering the exciting current in the positioning feed portion. In addition, since the excitation current is increased before machining to increase the amount of magnetic flux, it can be expected that there will be no effects such as a decrease in spindle speed or stoppage.
本発明の一実施形態による制御装置の概略的なハードウェア構成図である。1 is a schematic hardware configuration diagram of a control device according to an embodiment of the present invention; FIG. 本発明の第1実施形態による制御装置の概略的な機能を示すブロック図である。3 is a block diagram showing schematic functions of a control device according to the first embodiment of the present invention; FIG. 加工プログラムの例を示す図である。It is a figure which shows the example of a processing program. 加工プログラムを解析した結果を例示するグラフである。7 is a graph illustrating the result of analyzing the machining program; 加工内容予測部による予測の例を示す図である。It is a figure which shows the example of prediction by a process content prediction part. 加工内容予測部による予測の他の例を示す図である。It is a figure which shows the other example of the prediction by a process content prediction part. 本発明の第2実施形態による制御装置の概略的な機能を示すブロック図である。FIG. 6 is a block diagram showing the schematic functions of a control device according to a second embodiment of the present invention; シミュレーション結果に基づく加工内容予測部による予測の例を示す図である。It is a figure which shows the example of the prediction by the content prediction part of machining based on a simulation result. シミュレーション結果に基づく加工内容予測部による予測の他の例を示す図である。FIG. 10 is a diagram showing another example of prediction by the machining content prediction unit based on simulation results; 第2実施形態の変形例による制御装置の概略的な機能を示すブロック図である。FIG. 11 is a block diagram showing schematic functions of a control device according to a modification of the second embodiment;
 以下、本発明の実施形態を図面と共に説明する。
 図1は本発明の一実施形態による制御装置の要部を示す概略的なハードウェア構成図である。本発明の制御装置1は、誘導モータにより駆動される駆動部を備えた工作機械を制御する制御装置として実装することができる。以下では、工具とワークとの相対位置を制御することでワークを加工する工作機械を制御する制御装置1を例として説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic hardware configuration diagram showing essential parts of a control device according to an embodiment of the present invention. The control device 1 of the present invention can be implemented as a control device for controlling a machine tool having a drive section driven by an induction motor. A control device 1 that controls a machine tool that processes a work by controlling the relative positions of the tool and the work will be described below as an example.
 本発明の制御装置1が備えるCPU11は、制御装置1を全体的に制御するプロセッサである。CPU11は、バス22を介してROM12に格納されたシステム・プログラムを読み出し、該システム・プログラムに従って制御装置1全体を制御する。RAM13には一時的な計算データや表示データ、及び外部から入力された各種データ等が一時的に格納される。 The CPU 11 included in the control device 1 of the present invention is a processor that controls the control device 1 as a whole. The CPU 11 reads a system program stored in the ROM 12 via the bus 22 and controls the entire control device 1 according to the system program. The RAM 13 temporarily stores calculation data, display data, various data input from the outside, and the like.
 不揮発性メモリ14は、例えば図示しないバッテリでバックアップされたメモリやSSD(Solid State Drive)等で構成され、制御装置1の電源がオフされても記憶状態が保持される。不揮発性メモリ14には、インタフェース15を介して外部機器72から読み込まれたデータや加工プログラム、入力装置71を介して入力されたデータや加工プログラム、工作機械3から取得される各データ等が記憶される。不揮発性メモリ14に記憶されたデータや加工プログラムは、実行時/利用時にはRAM13に展開されても良い。また、ROM12には、公知の解析プログラムなどの各種システム・プログラムが予め書き込まれている。 The non-volatile memory 14 is composed of, for example, a memory backed up by a battery (not shown) or an SSD (Solid State Drive), and retains the stored state even when the control device 1 is powered off. The nonvolatile memory 14 stores data and machining programs read from the external device 72 via the interface 15, data and machining programs input via the input device 71, various data obtained from the machine tool 3, and the like. be done. The data and processing programs stored in the nonvolatile memory 14 may be developed in the RAM 13 at the time of execution/use. In addition, various system programs such as a known analysis program are pre-written in the ROM 12 .
 インタフェース15は、制御装置1のCPU11とUSB装置等の外部機器72と接続するためのインタフェースである。外部機器72側からは、例えば工作機械3の制御に用いられる加工プログラムや各パラメータ等を読み込むことができる。また、制御装置1内で編集した加工プログラムや各パラメータ等は、外部機器72を介して外部記憶手段に記憶させることができる。PLC(プログラマブル・ロジック・コントローラ)16は、制御装置1に内蔵されたシーケンス・プログラムによって、工作機械3及び該工作機械3の周辺装置(例えば、工具交換装置や、ロボット等のアクチュエータ、工作機械3に取付けられているセンサ等)にI/Oユニット17を介して信号を出力し制御する。また、PLC16は、産業機械の本体に配備された操作盤の各種スイッチや周辺装置等からの信号を受け、必要な信号処理をした後、CPU11に渡す。 The interface 15 is an interface for connecting the CPU 11 of the control device 1 and an external device 72 such as a USB device. From the external device 72 side, it is possible to read, for example, a machining program and various parameters used for controlling the machine tool 3 . Moreover, the machining program and each parameter edited in the control device 1 can be stored in the external storage means via the external device 72 . A PLC (programmable logic controller) 16 controls the machine tool 3 and peripheral devices of the machine tool 3 (for example, a tool changer, an actuator such as a robot, a machine tool 3 A sensor or the like attached to the controller) is controlled by outputting a signal through the I/O unit 17 . Also, the PLC 16 receives signals from various switches on an operation panel provided in the main body of the industrial machine, peripheral devices, etc., performs necessary signal processing, and then transfers the signals to the CPU 11 .
 表示装置70には、メモリ上に読み込まれた各データ、加工プログラムやシステム・プログラム等が実行された結果として得られたデータ等が、インタフェース18を介して出力されて表示される。また、キーボードやポインティングデバイス等から構成される入力装置71は、インタフェース19を介して作業者による操作に基づく指令,データ等をCPU11に渡す。 On the display device 70, each data read into the memory, data obtained as a result of executing the machining program, the system program, etc., are output via the interface 18 and displayed. An input device 71 composed of a keyboard, a pointing device, and the like passes commands, data, and the like based on operations by the operator to the CPU 11 via the interface 19 .
 工作機械3が備える軸を制御するための軸制御回路30は、CPU11からの軸の移動指令量を受けて、軸の指令をサーボアンプ40に出力する。サーボアンプ40はこの指令を受けて、工作機械3が備える駆動部を軸に沿って移動させるサーボモータ50を駆動する。軸のサーボモータ50は位置・速度検出器を内蔵し、この位置・速度検出器からの位置・速度フィードバック信号を軸制御回路30にフィードバックする。軸制御回路30は、サーボモータ50の位置・速度のフィードバック制御を行う。なお、図1のハードウェア構成図では、軸制御回路30、サーボアンプ40、サーボモータ50は1つずつしか示されていないが、実際には制御対象となる工作機械3に備えられた軸の数だけ用意される。例えば、一般的な直線3軸を備えた工作機械を制御する場合には、工具が取り付けられた主軸とワークとを直線3軸(X軸,Y軸,Z軸)方向に相対的に移動させる3組の軸制御回路30、サーボアンプ40、サーボモータ50が用意される。 An axis control circuit 30 for controlling the axes provided in the machine tool 3 receives an axis movement command amount from the CPU 11 and outputs an axis command to the servo amplifier 40 . The servo amplifier 40 receives this command, and drives the servo motor 50 that moves the drive section of the machine tool 3 along the axis. The axis servo motor 50 incorporates a position/velocity detector, and feeds back a position/velocity feedback signal from this position/velocity detector to the axis control circuit 30 . The axis control circuit 30 performs feedback control of the position and speed of the servomotor 50 . Although only one axis control circuit 30, one servo amplifier 40, and one servomotor 50 are shown in the hardware configuration diagram of FIG. Only a few are provided. For example, when controlling a general machine tool with three linear axes, the spindle on which the tool is attached and the workpiece are relatively moved in the directions of the three linear axes (X-axis, Y-axis, Z-axis). Three sets of axis control circuit 30, servo amplifier 40, and servo motor 50 are prepared.
 スピンドル制御回路60は、主軸回転指令を受け、スピンドルアンプ61にスピンドル速度信号を出力する。スピンドルアンプ61はこのスピンドル速度信号を受けて、工作機械3の誘導モータ62を指令された回転速度で回転させ、主軸を駆動する。誘導モータ62にはポジションコーダ63が結合されている。ポジションコーダ63が主軸の回転に同期して帰還パルスを出力し、その帰還パルスはCPU11によって読み取られる。また、スピンドル制御回路60は、スピンドルアンプ61に対して誘導モータ62の磁束量を制御する。スピンドルアンプ61は、誘導モータ62の現在の磁束量を取得してCPU11に渡す。 A spindle control circuit 60 receives a spindle rotation command and outputs a spindle speed signal to a spindle amplifier 61 . The spindle amplifier 61 receives this spindle speed signal, rotates the induction motor 62 of the machine tool 3 at the commanded rotational speed, and drives the spindle. A position coder 63 is coupled to the induction motor 62 . The position coder 63 outputs feedback pulses in synchronization with the rotation of the main shaft, and the feedback pulses are read by the CPU 11 . Further, the spindle control circuit 60 controls the amount of magnetic flux of the induction motor 62 with respect to the spindle amplifier 61 . The spindle amplifier 61 obtains the current amount of magnetic flux of the induction motor 62 and transfers it to the CPU 11 .
 図2は、本発明の第1実施形態による制御装置1が備える機能を概略的なブロック図として示したものである。本実施形態による制御装置1は、回転する工具とワークとの相対位置を制御し、工具とワークとを接触させることでワークを切削加工する。本実施形態による制御装置1が備える各機能は、図1に示した制御装置1が備えるCPU11がシステム・プログラムを実行し、制御装置1の各部の動作を制御することにより実現される。 FIG. 2 is a schematic block diagram showing the functions of the control device 1 according to the first embodiment of the present invention. The control device 1 according to the present embodiment controls the relative positions of the rotating tool and the workpiece, and cuts the workpiece by bringing the tool and the workpiece into contact with each other. Each function provided in the control device 1 according to the present embodiment is realized by the CPU 11 provided in the control device 1 shown in FIG.
 本実施形態の制御装置1は、解析部100、位置指令部110、加工内容予測部130、制御指令部140を備える。また、制御装置1のRAM13乃至不揮発性メモリ14には、工作機械3を制御するために用いられる加工プログラム200が予め記憶されると共に、誘導モータ62の制御の切換えに掛かる時間を記憶するための領域として制御切換時間記憶部210が確保されている。 The control device 1 of this embodiment includes an analysis unit 100, a position command unit 110, a machining content prediction unit 130, and a control command unit 140. In the RAM 13 to non-volatile memory 14 of the control device 1, a machining program 200 used for controlling the machine tool 3 is stored in advance, and a time required for switching the control of the induction motor 62 is stored. A control switching time storage unit 210 is secured as an area.
 解析部100は、加工プログラム200のブロックを逐次読み出す。そして、読み出したブロックによる指令を解析する。解析部100は、解析した結果に工具の位置を変化させる指令が含まれている場合、それぞれのサーボモータ50の位置を制御するように位置指令部110に指令する。また、解析した結果に主軸の回転速度の指令が含まれている場合、誘導モータ62の回転を制御するように制御指令部140に指令する。更に、解析部100は、少なくとも解析した指令の種類(位置決め指令であるのか切削送り指令であるのか)、及びそれぞれの指令による送り制御に掛かる時間を、加工内容予測部130に出力する。解析部100は、加工プログラム200のブロックを先読みして解析することが望ましい。 The analysis unit 100 sequentially reads the blocks of the machining program 200. Then, the instruction by the read block is analyzed. When the analysis result includes a command to change the position of the tool, the analysis unit 100 commands the position command unit 110 to control the position of each servomotor 50 . Further, when the analysis result includes a command for the rotation speed of the main shaft, the control command unit 140 is commanded to control the rotation of the induction motor 62 . Furthermore, the analysis unit 100 outputs at least the type of the analyzed command (whether it is a positioning command or a cutting feed command) and the time required for feed control according to each command to the machining content prediction unit 130 . It is desirable that the analysis unit 100 prefetches and analyzes blocks of the machining program 200 .
 位置指令部110は、解析部100による加工プログラム200の解析結果に基づいて、ワークに対する工具の位置を制御するようにサーボモータ50を駆動する指令を工作機械3に対して出力する。 Based on the analysis result of the machining program 200 by the analysis unit 100, the position command unit 110 outputs to the machine tool 3 a command to drive the servo motor 50 so as to control the position of the tool with respect to the work.
 加工内容予測部130は、解析部100による加工プログラム200の解析結果に基づいて、現時点(加工開始時から現在の経過時間)以降に行われる加工の内容を予測する。制御切換時間記憶部210には、工作機械3に取り付けられている誘導モータ62において、励磁電流を変化させてから磁束が安定するまで掛かる時間である制御切換時間が予め記憶されている。この制御切換時間は、予め誘導モータ62を用いて実験をして求めておけばよい。加工内容予測部130は、少なくとも現時点から制御切換時間だけ後の加工の内容を予測する。加工内容予測部130は、例えば位置決め指令に基づく制御が行われている間は、工具によるワークの加工が行われていないと予測する。また、切削送り指令に基づく制御が行われている間は、工具によるワークの加工が行われていると予測する。 Based on the analysis result of the machining program 200 by the analysis unit 100, the machining content prediction unit 130 predicts the content of machining to be performed after the current time (the current elapsed time from the start of machining). The control switching time storage unit 210 stores in advance the control switching time, which is the time it takes for the magnetic flux to stabilize after the excitation current is changed in the induction motor 62 attached to the machine tool 3 . This control switching time may be obtained in advance by conducting an experiment using the induction motor 62 . The machining content prediction unit 130 predicts the content of machining after at least the control switching time from the current time. The machining content prediction unit 130 predicts that the workpiece is not being machined by the tool while the control based on the positioning command is being performed, for example. Also, while the control based on the cutting feed command is being performed, it is predicted that the workpiece is being machined by the tool.
 加工内容予測部130による加工内容の予測について、図3~6を用いて説明する。
 図3は加工プログラム200の例を示している。また、図4は、解析部100による図3に例示する加工プログラム200の解析結果をグラフとして示している。図3に例示する加工プログラム200では、N05ブロックにおいて位置決め指令G00が指令されている。また、N06において切削送り指令G01が指令されている。解析部100は、それぞれの送り指令における送り速度に基づいて、各指令の実行に掛かる時間を算出する。図4の解析結果の例では、加工開始の時点から経過時間t1の時点までの間はN05ブロックの位置決め指令が実行され、経過時間t1の時点から経過時間t2の時点までの間はN06ブロックの切削送り指令が実行されることとなる。解析部100は、この解析の結果を加工内容予測部130に出力する。なお、解析部100は、より厳密に各軸の加減速を考慮して、それぞれの指令の実行時間を算出してもよい。
The prediction of the processing content by the processing content prediction unit 130 will be described with reference to FIGS. 3 to 6. FIG.
FIG. 3 shows an example of the machining program 200. As shown in FIG. Moreover, FIG. 4 shows the analysis result of the machining program 200 illustrated in FIG. 3 by the analysis unit 100 as a graph. In the machining program 200 illustrated in FIG. 3, a positioning command G00 is issued in block N05. A cutting feed command G01 is issued at N06. The analysis unit 100 calculates the time required to execute each command based on the feed speed of each feed command. In the example of the analysis result of FIG. 4, the positioning command of block N05 is executed from the time of starting machining to the time of elapsed time t1, and the positioning command of block N06 is executed from the time of elapsed time t1 to the time of elapsed time t2. A cutting feed command is executed. The analysis unit 100 outputs the result of this analysis to the processing content prediction unit 130 . Note that the analysis unit 100 may calculate the execution time of each command in consideration of the acceleration/deceleration of each axis more strictly.
 図5,6は、加工内容予測部130による加工内容の予測をグラフで説明している。図5,6の例では、現時点をtc、制御切換時間をtdで示している。加工内容予測部130は、所定周期毎に現時点tcから制御切換時間td後における加工内容を予測する。例えば、図5に示すように、現時点tcに制御切換時間tdを加えた時間が経過時間t1の時点よりも前である場合を考える。この時、加工内容予測部130は、現時点tcから制御切換時間td後において、ブロックN05の位置決め指令が実行されていると判定する。そして、この判定結果に基づいて、加工内容予測部130は、制御切換時間td後には、ワークの加工が行われていないと予測する。 5 and 6 are graphs explaining the prediction of the processing content by the processing content prediction unit 130. FIG. In the examples of FIGS. 5 and 6, the current time is indicated by tc, and the control switching time is indicated by td. The machining content prediction unit 130 predicts the machining content after the control switching time td from the current time tc at predetermined intervals. For example, as shown in FIG. 5, consider the case where the time obtained by adding the control switching time td to the current time tc is before the elapsed time t1. At this time, the machining content prediction unit 130 determines that the positioning command of block N05 has been executed after the control switching time td from the current time tc. Then, based on this determination result, the machining content prediction unit 130 predicts that the workpiece will not be machined after the control switching time td.
 一方、図6に示すように、現時点tcに制御切換時間tdを加えた時間が経過時間t1の時点以降である場合を考える。この時、加工内容予測部130は、現時点tcから制御切換時間td後において、ブロックN06の切削送り指令が実行されていると判定する。そして、この判定結果に基づいて、加工内容予測部130は、制御切換時間td後には、ワークの加工が行われていると予測する。 On the other hand, as shown in FIG. 6, consider the case where the time obtained by adding the control switching time td to the current time tc is after the elapsed time t1. At this time, the machining content prediction unit 130 determines that the cutting feed command of block N06 is being executed after the control switching time td from the current time tc. Based on this determination result, the machining content prediction unit 130 predicts that the workpiece will be machined after the control switching time td.
 制御指令部140は、解析部100による加工プログラム200の解析結果に基づいて、指令された回転速度で誘導モータ62を回転させる指令を工作機械3に対して出力する。また、制御指令部140は、加工内容予測部130による加工内容の予測結果に基づいて、誘導モータ62の磁束量を制御する。磁束量を制御する方法としては、例えば誘導モータに流れる励磁電流を制御する方法が考えられる。この場合、制御指令部140は、例えば現時点tcから制御切換時間td後にかけて工具によるワークの加工が行われていないと予測された場合には、励磁電流を定格より低い所定の値となるように制御する。また、工具によるワークの加工が行われていると予測された場合には、加工時に必要となる十分な磁束量となるように励磁電流を例えば定格値となるように制御する。 The control command unit 140 outputs a command to the machine tool 3 to rotate the induction motor 62 at the commanded rotational speed based on the analysis result of the machining program 200 by the analysis unit 100 . In addition, the control command unit 140 controls the amount of magnetic flux of the induction motor 62 based on the prediction result of the machining content by the machining content prediction unit 130 . As a method of controlling the amount of magnetic flux, for example, a method of controlling an exciting current flowing through an induction motor is conceivable. In this case, the control command unit 140 sets the excitation current to a predetermined value lower than the rated value when it is predicted that the tool will not machine the workpiece from the current time tc until after the control switching time td. Control. Further, when it is predicted that the workpiece is being machined by the tool, the exciting current is controlled to, for example, the rated value so as to obtain a sufficient amount of magnetic flux necessary for machining.
 上記構成を備えた本実施形態による制御装置は、位置決め送り部分においては磁束量を下げても問題ないので、励磁電流を低くすることで誘導モータの発熱を抑えることができる。また、切削送り部分におけるワークの加工時に必要となる十分な磁束量となるように誘導モータの励磁電流を上げるため、主軸速度の低下や停止のような影響が無くなることが期待できる。励磁電流を上げる制御だけでなく、励磁電流を下げる制御も制御切換時間を考慮した予測に基づいて行えるようになるため、効率よく電力を利用できることが見込まれる。 In the control device according to this embodiment having the above configuration, there is no problem even if the amount of magnetic flux is reduced in the positioning feed portion, so heat generation of the induction motor can be suppressed by reducing the excitation current. In addition, since the excitation current of the induction motor is increased so as to obtain a sufficient amount of magnetic flux necessary for machining the workpiece in the cutting feed portion, it can be expected that there will be no effects such as a decrease in spindle speed or stoppage. Since not only the control to increase the exciting current but also the control to decrease the exciting current can be performed based on the prediction considering the control switching time, it is expected that the electric power can be used efficiently.
 図7は、本発明の第2実施形態による制御装置1が備える機能を概略的なブロック図として示したものである。本実施形態による制御装置1は、回転する工具とワークとの相対位置を制御し、工具とワークとを接触させることでワークを切削加工する。本実施形態による制御装置1が備える各機能は、図1に示した制御装置1が備えるCPU11がシステム・プログラムを実行し、制御装置1の各部の動作を制御することにより実現される。 FIG. 7 is a schematic block diagram of the functions provided by the control device 1 according to the second embodiment of the present invention. The control device 1 according to the present embodiment controls the relative positions of the rotating tool and the workpiece, and cuts the workpiece by bringing the tool and the workpiece into contact with each other. Each function provided in the control device 1 according to the present embodiment is realized by the CPU 11 provided in the control device 1 shown in FIG.
 本実施形態の制御装置1は、解析部100、位置指令部110、シミュレーション部120、加工内容予測部130、制御指令部140を備える。また、制御装置1のRAM13乃至不揮発性メモリ14には、工作機械3を制御するために用いられる加工プログラム200が予め記憶されると共に、誘導モータ62の制御の切換えに掛かる時間を記憶するための領域として制御切換時間記憶部210が確保されている。 The control device 1 of this embodiment includes an analysis unit 100, a position command unit 110, a simulation unit 120, a machining content prediction unit 130, and a control command unit 140. In the RAM 13 to non-volatile memory 14 of the control device 1, a machining program 200 used for controlling the machine tool 3 is stored in advance, and a time required for switching the control of the induction motor 62 is stored. A control switching time storage unit 210 is secured as an area.
 本実施形態による位置指令部110、制御指令部140は、第1実施形態による位置指令部110、制御指令部140と同様の機能を備える。 The position command unit 110 and the control command unit 140 according to this embodiment have the same functions as the position command unit 110 and the control command unit 140 according to the first embodiment.
 本実施形態による解析部100は、第1実施形態による解析部100と同様に、加工プログラム200を解析し、位置指令部110、制御指令部140に対して制御指令を出力する。本実施形態による解析部100は、加工内容予測部130に対する解析結果を必ずしも逐次出力をする必要はない。少なくとも加工が開始されるタイミングでその旨が加工内容予測部130に通知されればよい。 The analysis unit 100 according to the present embodiment analyzes the machining program 200 and outputs control commands to the position command unit 110 and the control command unit 140, like the analysis unit 100 according to the first embodiment. The analysis unit 100 according to this embodiment does not necessarily have to sequentially output the analysis results to the machining content prediction unit 130 . At least at the timing when the machining is started, the machining content prediction unit 130 is notified of the fact.
 シミュレーション部120は、加工プログラム200のブロックを逐次読み出す。そして、読み出したブロックによる指令に基づいて加工に係るシミュレーションを実行する。シミュレーション部120によるシミュレーション処理では、少なくとも加工プログラム200のブロックによる指令と、工具とワークの配置、工具及びワークの形状を用いた加工シミュレーションであることが望ましい。また、工具とワークとが接触して加工をする時間について厳密な解析が行える加工シミュレーションであることが望ましい。このような加工シミュレーションについては既に公知であるため、本明細書での詳細な説明は省略する。シミュレーション部120は、加工プログラム200の各ブロックの指令が実行されることに先立って、当該ブロックの加工シミュレーションを実行していればよい。例えば、予め加工プログラム200の全ての加工シミュレーションを完了させていてもよいし、加工プログラム200に基づくワークの加工と並列して(且つ先行して)加工シミュレーションを実行するようにしてもよい。シミュレーション部120は、少なくとも工具がワークと接触して加工が行われている時間を含む加工シミュレーションの結果を加工内容予測部130に出力する。 The simulation unit 120 sequentially reads the blocks of the machining program 200. Then, a machining simulation is executed based on the command from the read block. The simulation processing by the simulation unit 120 is desirably a machining simulation using at least commands from the blocks of the machining program 200, the arrangement of the tool and the workpiece, and the shapes of the tool and the workpiece. Moreover, it is desirable that the machining simulation be able to perform a strict analysis of the time required for the machining with the tool and the workpiece in contact with each other. Since such machining simulation is already known, detailed description thereof is omitted in this specification. The simulation unit 120 only needs to execute machining simulation of the block before the command of each block of the machining program 200 is executed. For example, all the machining simulations of the machining program 200 may be completed in advance, or the machining simulations may be executed in parallel (and prior to) the workpiece machining based on the machining program 200 . The simulation unit 120 outputs to the machining content prediction unit 130 the results of the machining simulation including at least the time during which the tool is in contact with the workpiece and machining is being performed.
 本実施形態による加工内容予測部130は、シミュレーション部120による加工プログラム200の加工シミュレーションの結果に基づいて、ワークの加工時の所定時点における加工の内容を予測する。制御切換時間記憶部210には、第1実施形態と同様に制御切換時間が予め記憶されている。加工プログラム200によるワークの加工が開始されると、加工内容予測部130は、加工が開始されてからの経過時間に制御切換時間を加えた時点で、工具とワークとが接触しているかどうかを加工シミュレーションの結果に基づいて判定する。そして、工具とワークとが接触していない場合には加工が行われていないと予測する。また、工具とワークとが接触している場合には加工が行われていると予測する。 The machining content prediction unit 130 according to the present embodiment predicts the content of machining at a predetermined time during machining of the workpiece based on the result of machining simulation of the machining program 200 by the simulation unit 120 . The control switching time storage unit 210 pre-stores the control switching time similarly to the first embodiment. When the machining of the workpiece by the machining program 200 is started, the machining content prediction unit 130 determines whether or not the tool and the workpiece are in contact at the time when the control switching time is added to the elapsed time after machining is started. Judgment is made based on the result of machining simulation. Then, if the tool and the workpiece are not in contact with each other, it is predicted that machining is not being performed. Also, if the tool and the workpiece are in contact with each other, it is predicted that machining is being performed.
 図8,9は、加工シミュレーションの結果に基づく加工内容予測部130による加工内容の予測を説明している。加工内容予測部130は、所定周期毎に現時点から制御切換時間後における加工内容を、加工シミュレーションの結果に基づいて予測する。例えば、図8に示すように、加工を開始してからの現時点からみて制御切換時間後に加工シミュレーション上で工具301がワーク303と接触していない場合を考える。この時、加工内容予測部130は、現時点から制御切換時間後において、実際の加工においても工具301とワーク303とが接触していないと判定する。そして、この判定結果に基づいて、加工内容予測部130は、制御切換時間後には、ワーク303の加工が行われていないと予測する。 FIGS. 8 and 9 explain the prediction of machining details by the machining details prediction unit 130 based on the results of the machining simulation. The machining content prediction unit 130 predicts the machining content after the control switching time from the current time based on the result of the machining simulation at predetermined intervals. For example, as shown in FIG. 8, consider the case where the tool 301 is not in contact with the workpiece 303 on the machining simulation after the control switching time from the current time after the machining is started. At this time, the machining content prediction unit 130 determines that the tool 301 and the workpiece 303 are not in contact with each other even in the actual machining after the control switching time from the current time. Based on this determination result, the machining content prediction unit 130 predicts that the workpiece 303 will not be machined after the control switching time.
 一方、図9に示すように、現時点からみて制御切換時間後に加工シミュレーション上で工具301がワーク303と接触している場合を考える。この時、加工内容予測部130は、現時点から制御切換時間後において、実際の加工においても工具301とワーク303とが接触していると判定する。そして、この判定結果に基づいて、加工内容予測部130は、制御切換時間後には、ワーク303の加工が行われていると予測する。 On the other hand, as shown in FIG. 9, consider the case where the tool 301 is in contact with the workpiece 303 on the machining simulation after the control switching time from the current point of time. At this time, the machining content prediction unit 130 determines that the tool 301 and the workpiece 303 are in contact with each other even in the actual machining after the control switching time from the current time. Based on this determination result, the machining content prediction unit 130 predicts that the workpiece 303 will be machined after the control switching time.
 上記構成を備えた本実施形態による制御装置は、位置決め送り部分においては磁束量を下げても問題ないので、励磁電流を低くすることで誘導モータの発熱を抑えることができる。また、切削送り部分におけるワークの加工時に必要となる十分な磁束量となるように励磁電流を上げるため、主軸速度の低下や停止のような影響が無くなることが期待できる。一般に、加工プログラムの製作者は、ワークと工具とが接触する範囲の前後に所定のマージンを持たせる。即ち、実際にワークの加工が行われる範囲と比べて切削送り指令の経路は長くなる。また、本来は位置決め指令で軸送りをするべき部分において切削送り指令を用いる場合もある。そのため、第1実施形態による制御装置のように、指令の内容に基づいて励磁電流を制御した場合、電力消費に無駄が生じる場合がある。本実施形態による制御装置は、加工シミュレーションの結果に基づいて、工具とワークとが接触する範囲を厳密に判定するため、第1実施形態による制御装置と比較して、より厳密な励磁電流の制御を行うことが可能となる。 In the control device according to this embodiment having the above configuration, there is no problem even if the amount of magnetic flux is reduced in the positioning feed portion, so heat generation of the induction motor can be suppressed by reducing the excitation current. In addition, since the excitation current is increased so as to obtain a sufficient amount of magnetic flux necessary for machining the work in the cutting feed portion, it can be expected that the influence of the spindle speed reduction and stoppage will be eliminated. In general, a machining program creator provides a predetermined margin before and after the contact range between the workpiece and the tool. That is, the path of the cutting feed command is longer than the range in which the work is actually machined. Also, there are cases where a cutting feed command is used in a portion that should be axially fed by a positioning command. Therefore, if the excitation current is controlled based on the contents of the command as in the control device according to the first embodiment, power consumption may be wasted. Since the control device according to the present embodiment strictly determines the contact range between the tool and the workpiece based on the results of the machining simulation, the excitation current is controlled more precisely than the control device according to the first embodiment. It is possible to do
 上記した第2実施形態による制御装置の一変形例として、シミュレーション処理を外部のPC等で行うように構成してもよい。図10は、第2実施形態による制御装置1の変形例を示している。第2実施形態による制御装置1は、シミュレーション部120を備えている。しかしながら、例えば制御装置1に併設されるPCや、図示しないネットワークを介して接続されるフォグコンピュータやホストコンピュータの上にシミュレーション部を構成するようにしてもよい。この場合、図10に示すように、制御装置1は、外部のシミュレーション装置2によるシミュレーション結果を記憶するための領域であるシミュレーション結果記憶部220をRAM13乃至不揮発性メモリ14上に用意する。そして、予め又は並列且つ先行してシミュレーション装置2が備えるシミュレーション部240で加工プログラム200の加工シミュレーションを実行する。加工シミュレーションの結果はシミュレーション結果記憶部220に記憶する。そして、加工内容予測部130は、シミュレーション結果記憶部220を参照して現時点から制御切換時間後の加工内容の予測を行うようにすればよい。このような構成とすることで、シミュレーション処理を制御装置1の上で行う必要がなくなる。工作機械の制御と並列して加工シミュレーションを行える高性能な制御装置でなくとも、本発明の機能を活用することができる。 As a modified example of the control device according to the second embodiment, the simulation processing may be performed by an external PC or the like. FIG. 10 shows a modification of the control device 1 according to the second embodiment. The control device 1 according to the second embodiment has a simulation section 120 . However, for example, the simulation section may be configured on a PC installed alongside the control device 1, or a fog computer or host computer connected via a network (not shown). In this case, as shown in FIG. 10, the control device 1 prepares a simulation result storage section 220, which is an area for storing simulation results by the external simulation device 2, on the RAM 13 to nonvolatile memory 14. FIG. Then, the machining simulation of the machining program 200 is executed by the simulation unit 240 provided in the simulation device 2 in advance or in parallel and precedingly. The results of the machining simulation are stored in the simulation result storage unit 220 . Then, the machining content prediction unit 130 may refer to the simulation result storage unit 220 and predict the machining content after the control switching time from the current time. Such a configuration eliminates the need to perform simulation processing on the control device 1 . The functions of the present invention can be utilized even if the control device is not a high-performance control device that can perform machining simulation in parallel with the control of the machine tool.
 以上、本発明の実施形態について説明したが、本発明は上述した実施の形態の例のみに限定されることなく、適宜の変更を加えることにより様々な態様で実施することができる。
 例えば、上記した実施形態では制御装置による制御対象として工作機械を例として説明している。しかしながら、駆動部を駆動するために誘導モータを利用している機械であれば、本発明の機能を利用することは可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described examples of the embodiments, and can be implemented in various modes by adding appropriate modifications.
For example, in the above-described embodiment, a machine tool is described as an example of a control target by the control device. However, any machine that utilizes an induction motor to drive the drive may utilize the features of the present invention.
 また、上記した実施形態では、加工をしているか、していないかに応じて磁束量を制御する例を示したが、例えば加工内容予測部130は、更に工具のワークに対する切り込み量など、詳細な加工内容を予測するようにしてもよい。切り込み量は、制御装置1の設定や加工プログラム200による指令で予測することができる。また、加工シミュレーションに基づいて予測する場合には、具体的な切り込み量を予測することができる。そして、切り込み量の大小に応じて、制御指令部140は、誘導モータの磁束量を制御する。これにより、加工内容による主軸に係る負荷に応じた適切な磁束量の制御を行うことができるようになる。 Further, in the above-described embodiment, an example of controlling the amount of magnetic flux depending on whether or not machining is being performed has been shown. You may make it predict the content of processing. The depth of cut can be predicted by the setting of the control device 1 or the command by the machining program 200 . Further, when prediction is made based on machining simulation, it is possible to predict a specific depth of cut. Then, the control command unit 140 controls the amount of magnetic flux of the induction motor according to the amount of cutting. As a result, it is possible to appropriately control the amount of magnetic flux according to the load on the spindle due to the details of machining.
   1 制御装置
   2 シミュレーション装置
   3 工作機械
  11 CPU
  12 ROM
  13 RAM
  14 不揮発性メモリ
  15,18,19 インタフェース
  16 PLC
  17 I/Oユニット
  22 バス
  70 表示装置
  71 入力装置
  72 外部機器
 100 解析部
 110 位置指令部
 120 シミュレーション部
 130 加工内容予測部
 140 制御指令部
 200 加工プログラム
 210 制御切換時間記憶部
 220 シミュレーション結果記憶部
 240 シミュレーション部
 301 工具
 303 ワーク
1 control device 2 simulation device 3 machine tool 11 CPU
12 ROMs
13 RAM
14 nonvolatile memory 15, 18, 19 interface 16 PLC
17 I/O unit 22 bus 70 display device 71 input device 72 external device 100 analysis unit 110 position command unit 120 simulation unit 130 machining content prediction unit 140 control command unit 200 machining program 210 control switching time storage unit 220 simulation result storage unit 240 Simulation part 301 Tool 303 Work

Claims (4)

  1.  誘導モータにより駆動する駆動部を備える機械を制御する制御装置であって、
     前記機械を制御する指令を含む加工プログラムを解析する解析部と、
     前記解析部による解析結果に基づいて、前記誘導モータの回転を指令する制御指令部と、
     前記加工プログラムの解析結果に基づいて、所定の制御切換時間分先の加工内容を予測する加工内容予測部と、
     を備え
     前記制御指令部は、前記加工内容予測部により予測された加工内容に基づいて、誘導モータの磁束量を制御する、
    制御装置。
    A controller for controlling a machine comprising a drive driven by an induction motor, comprising:
    an analysis unit that analyzes a machining program that includes instructions for controlling the machine;
    a control command unit that commands rotation of the induction motor based on the analysis result of the analysis unit;
    a machining content prediction unit that predicts machining content for a predetermined control switching time ahead based on the analysis result of the machining program;
    wherein the control command unit controls the amount of magnetic flux of the induction motor based on the machining content predicted by the machining content prediction unit;
    Control device.
  2.  前記加工内容予測部は、前記解析部による前記加工プログラムの解析結果から前記加工内容を予測する、
    請求項1に記載の制御装置。
    The machining content prediction unit predicts the machining content from an analysis result of the machining program by the analysis unit.
    A control device according to claim 1 .
  3.  前記加工内容予測部は、前記加工プログラムに基づく加工シミュレーションの結果から前記加工内容を予測する、
    請求項1に記載の制御装置。
    The machining content prediction unit predicts the machining content from a machining simulation result based on the machining program.
    A control device according to claim 1 .
  4.  誘導モータにより駆動する駆動部を備える機械を制御する制御装置を動作させるプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
     前記機械を制御する指令を含む加工プログラムを解析する解析部、
     前記解析部による解析結果に基づいて、前記誘導モータの回転を指令する制御指令部、
     前記加工プログラムの解析結果に基づいて、所定の制御切換時間分先の加工内容を予測する加工内容予測部、
     としてコンピュータを動作させ、
     前記制御指令部は、前記加工内容予測部により予測された加工内容に基づいて、誘導モータの磁束量を制御する、
    プログラムを記録したコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium recording a program for operating a control device for controlling a machine having a drive unit driven by an induction motor,
    an analysis unit that analyzes a machining program containing instructions for controlling the machine;
    a control command unit that commands rotation of the induction motor based on the analysis result of the analysis unit;
    a machining content prediction unit that predicts machining content for a predetermined control switching time based on the analysis result of the machining program;
    run the computer as
    The control command unit controls the amount of magnetic flux of the induction motor based on the machining content predicted by the machining content prediction unit.
    A computer-readable recording medium that records a program.
PCT/JP2021/040365 2021-11-02 2021-11-02 Control device and computer-readable recording medium WO2023079589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040365 WO2023079589A1 (en) 2021-11-02 2021-11-02 Control device and computer-readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040365 WO2023079589A1 (en) 2021-11-02 2021-11-02 Control device and computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2023079589A1 true WO2023079589A1 (en) 2023-05-11

Family

ID=86240773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040365 WO2023079589A1 (en) 2021-11-02 2021-11-02 Control device and computer-readable recording medium

Country Status (1)

Country Link
WO (1) WO2023079589A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075961A (en) * 2017-10-19 2019-05-16 ファナック株式会社 Motor controller
JP2021081848A (en) * 2019-11-15 2021-05-27 ファナック株式会社 Control device, and control system
WO2021193496A1 (en) * 2020-03-25 2021-09-30 ファナック株式会社 Control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075961A (en) * 2017-10-19 2019-05-16 ファナック株式会社 Motor controller
JP2021081848A (en) * 2019-11-15 2021-05-27 ファナック株式会社 Control device, and control system
WO2021193496A1 (en) * 2020-03-25 2021-09-30 ファナック株式会社 Control device

Similar Documents

Publication Publication Date Title
JP5506945B2 (en) Numerical control method and numerical control device for machine tool
JP4221016B2 (en) Numerical control device for interference check
JP5355356B2 (en) Method for creating part programs
US9599978B2 (en) Numerical control apparatus having function of reducing path to start point in canned cycle
JP2010123122A6 (en) Method for creating part programs
US20200401107A1 (en) Numerical controller
US9804583B2 (en) Numerical control device
JP2004318762A (en) Numerical control device
JP2007245247A (en) Machine having program validation function
WO2023079589A1 (en) Control device and computer-readable recording medium
JP5030628B2 (en) Interference check system
US10018987B2 (en) Numerical controller executing operation by a movement command and table-format data
JP7252040B2 (en) Numerical controller
JP6077601B2 (en) Numerical control device that shortens the cycle time of machining programs
JP6464135B2 (en) Numerical controller
JP2017004188A (en) Numerical control device with acceleration/deceleration setting automatic switch function
JP2004202594A (en) Numerical control device
CN109143964B (en) Numerical controller
JP2019114192A (en) Numerical control device
JPWO2023157244A5 (en)
WO2022244072A1 (en) Numerical control device and computer-readable storage medium
JP2001312309A (en) Numerical control working machine and acceleration/ deceleration control method therefor
JP2012056066A (en) Thread cutting control method and device
JP7355952B1 (en) Control device and computer readable recording medium
JP7355951B1 (en) Control device and computer readable recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963187

Country of ref document: EP

Kind code of ref document: A1