WO2023078089A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2023078089A1
WO2023078089A1 PCT/CN2022/126343 CN2022126343W WO2023078089A1 WO 2023078089 A1 WO2023078089 A1 WO 2023078089A1 CN 2022126343 W CN2022126343 W CN 2022126343W WO 2023078089 A1 WO2023078089 A1 WO 2023078089A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
electronic device
radiation
dielectric layer
radiation patch
Prior art date
Application number
PCT/CN2022/126343
Other languages
English (en)
French (fr)
Inventor
卢亮
刘永超
张云
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023078089A1 publication Critical patent/WO2023078089A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the present application relates to the technical field of communication antennas, and in particular to an electronic device.
  • Ultra-Wide Band (UWB for short) technology is a short-range wireless communication technology that has been applied to various terminal devices in recent years.
  • the UWB antenna is an antenna in the UWB frequency band.
  • the existing UWB antenna is a microstrip antenna, which includes a radiation patch, a dielectric block and a floor from top to bottom, and the antenna is connected by a Liquid-crystal Polymer (LCP) transmission line. to the inside of the UWB chip.
  • LCP Liquid-crystal Polymer
  • the area and thickness of existing UWB antennas are relatively large, which brings great challenges to the occupation of the physical space inside the mobile phone and the design of the thin mobile phone structure. Loss effects, resulting in a reduction in antenna gain and efficiency.
  • the purpose of the present application is to provide an electronic device to solve the above-mentioned problems that the existing UWB antenna occupies a large space in the terminal device and has dielectric loss.
  • the present application provides an electronic device, including a main board for arranging devices, wherein the electronic device further includes an antenna, and the antenna includes a radiation patch, a feeder, and a grounding piece, and one end of the grounding piece is connected to the grounding piece.
  • the radiation patch is connected, the other end of the grounding member is coupled or connected to the main board, one end of the feeding member is connected to the main board, and the other end of the feeding member is connected to the radiation patch. Chip-coupled or butt-connected.
  • the radiating patch does not need to be placed on a dielectric block, and is connected to the main board through a grounding piece and a feeding piece, so that there is no dielectric loss, and the antenna efficiency and gain can be significantly improved. Since the antenna is integrally installed on the main board, the Z-direction space at the main board can provide enough space for the layout of the antenna, and there is no need to increase the thickness space for the antenna between the battery cover and the graphite sheet, so that there is no need to increase the thickness of the whole machine, to achieve Thin design of mobile phone.
  • the ground member is connected to the radiation patch by welding. Therefore, the reliability of the connection between the grounding piece and the radiation patch can be ensured.
  • the antenna further includes a dielectric layer, the radiating patch is disposed on the dielectric layer, and the end of the feeding part and the grounding part away from the main board are both connected to the medium layer.
  • the dielectric layer can support the radiation patch and ensure the overall stability of the antenna.
  • it can further reduce the overall size of the antenna, realize the miniaturization of the antenna, and reduce the space occupied by the antenna on the motherboard.
  • the radiation patch is etched and formed on the surface of the dielectric layer, and both the feeding member and the grounding member are connected to a side of the dielectric layer away from the radiation patch.
  • the radiation patch is formed on the front side of the dielectric layer by an etching process, which is conducive to improving the forming accuracy of the radiation patch, and is also conducive to improving the overall layout accuracy of the antenna on the main board.
  • both the grounding member and the feeding member are connected to the dielectric layer by welding. In this way, it can be ensured that both the grounding piece and the power feeding piece can be reliably connected to the dielectric layer,
  • the dielectric layer is a printed circuit board. Etching the radiation patch 21 on the front side of the PCB can improve the consistency of the wiring on the PCB and facilitate the etching operation.
  • the radiation patch is disposed inside the dielectric layer.
  • the dielectric layer can encapsulate the radiation patch inside, thereby further reducing the overall volume of the antenna.
  • both the grounding element and the power feeding element are disposed inside the dielectric layer. Therefore, the overall volume of the antenna can be reduced by encapsulating the grounding element, the feeding element, and the radiation patch through the dielectric layer, thereby reducing the occupation of the space above the main board.
  • the dielectric layer is ceramic or alumina.
  • the dielectric layer of ceramic or aluminum oxide has a relatively high dielectric constant, which can further reduce the space occupied by the antenna on the main board.
  • the dielectric layer is integrally formed with the radiation patch.
  • the radiation patch is disposed inside the dielectric layer during the molding process of the dielectric layer, so that the radiation patch is packaged through the dielectric layer, further reducing the overall volume of the antenna.
  • the dielectric layer is provided with a first port for connecting to the grounding component and a second port for connecting to the feeding component.
  • the first port and the second port can be connected to the grounding piece and the power feeding piece after the dielectric layer is formed, and connected to the main board through the grounding piece and the power feeding piece.
  • the first port and the second port can also be used to connect devices in series, such as capacitive elements or inductive elements, so as to adjust the resonance point of the antenna in a specified frequency band.
  • the radiation patch adopts a slot structure to design a good multi-band antenna. Designing a slot on the radiation patch and using the antenna slot to radiate can achieve good impedance matching and increase antenna gain.
  • the length of the slit is 0.25 ⁇ , where ⁇ is the working wavelength of the central point of the radiation frequency of the radiation patch.
  • a material of the radiation patch, the feed member, and the ground member is conductive metal. Therefore, the cost of the antenna can be reduced, and it is suitable for middle and low-end equipment, so that the middle and low-end equipment can use low-cost UWB technology.
  • the antenna can be prepared by using the processing technology of metal structural parts, the technology is simple, the cost is low, and it is beneficial to mass production and manufacturing.
  • the number of the radiation patches is at least one, and when the number of the radiation patches is more than two, a distance is maintained between two adjacent radiation patches.
  • multi-frequency radiation of the antenna can be realized.
  • the sizes of two adjacent radiation patches are equal or different. Therefore, the bandwidth can be increased, or the dual-frequency or multi-frequency operation of the antenna can be realized.
  • Fig. 1 is the state diagram when UWB antenna is applied in the prior art
  • Fig. 2 is the top view when UWB antenna is applied in the prior art
  • FIG. 3 is a schematic diagram of a side section of an existing mobile phone
  • Fig. 4 is the graph of radiation efficiency, system efficiency and reflection coefficient of UWB antenna in the prior art
  • Fig. 5 is the far-field pattern of UWB antenna in the prior art
  • Fig. 6 is the rear view of mobile phone
  • FIG. 7 is a schematic diagram of a lateral section of a mobile phone provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram (1) of an antenna in an electronic device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram (2) of an antenna in an electronic device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram (3) of an antenna in an electronic device provided by an embodiment of the present application.
  • Fig. 11 is a graph showing the radiation efficiency, system efficiency and reflection coefficient of the antenna in the electronic device provided by the embodiment of the present application;
  • FIG. 12 is a far-field pattern diagram of the antenna in the electronic device provided by the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an antenna in an electronic device provided by another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an antenna in an electronic device provided in another embodiment of the present application.
  • FIG. 15 is a schematic diagram of the bottom of the antenna shown in FIG. 14 near the main board;
  • Fig. 16 is a schematic structural diagram of a radiation patch
  • Figure 17 is a state diagram (1) of the application of two radiation patches in the antenna
  • Figure 18 is a state diagram (2) of the application of two radiation patches in the antenna
  • Fig. 19 is a state diagram (3) of the application of two radiation patches in the antenna.
  • connection can be a fixed connection, a detachable connection, or an integrated Connected, or electrically connected; either directly or indirectly through an intermediary.
  • Ultra-Wide Band is a short-range wireless communication method.
  • UWB does not use a sinusoidal carrier, but uses nanosecond to microsecond non-sinusoidal narrow pulses to transmit data. Therefore, its transmission bandwidth is very wide, and it is suitable for high-speed, short-distance wireless personal communication.
  • the Federal Communications Commission (FCC) of the United States stipulates that the operating frequency range of UWB is from 3.1GHz to 10.6GHz, and occupies a bandwidth of more than 500MHz.
  • UWB technology has the characteristics of high data transmission rate (up to 1Gbit/s), strong anti-multipath interference ability, low power consumption, low cost, strong penetration ability, low interception rate, and shared spectrum with other existing wireless communication systems, etc.
  • UWB technology has become the preferred technology for wireless personal area network (WPAN), and has been applied to various terminal electronic devices.
  • WPAN wireless personal area network
  • the UWB antenna 100 is an antenna in the UWB frequency band.
  • the electronic device can realize wireless communication through the UWB antenna 100 .
  • Figure 1 is a state diagram of the UWB antenna application in the prior art
  • Figure 2 is a top view of the UWB antenna application in the prior art, as shown in Figure 1 and Figure 2, the application of the existing UWB technology on the terminal is relatively simple
  • the UWB antenna 100 used is mainly a microstrip antenna
  • the microstrip antenna is connected to the inside of the UWB chip 1 through a liquid crystal polymer (Liquid-crystal Polymer, LCP) transmission line 2 .
  • LCP liquid crystal polymer
  • the microstrip antenna includes a radiation patch 110, a dielectric block (not shown) and a floor 120, the radiation patch 110 and the floor 120 are respectively arranged on both sides of the dielectric block, and the microstrip antenna passes through the floor 120 and the top When radiating between the radiating patches 110, it will be affected by dielectric loss, resulting in a decrease in antenna gain and efficiency.
  • FIG 2 is a top view of the UWB antenna in the prior art.
  • the radiation characteristics of the antenna must also be considered , the thickness of the antenna is generally 0.3mm, the length a is 13.8mm, the width b is 11mm, the dielectric constant of the dielectric block is 2.9, and the loss tangent is 0.002.
  • the cross-sectional area of the antenna (the cross-sectional area perpendicular to the thickness direction of the mobile phone) is very large, far larger than the cross-sectional area of the device on the main board of the mobile phone. Therefore, there is no space for arranging the antenna on the main board of the mobile phone.
  • FIG. 3 is a schematic diagram of a side section of an existing mobile phone.
  • the existing mobile phone includes a battery cover 11 , a graphite sheet 12 , a battery 13 , a main board 14 , a front shell 15 and a screen 16 .
  • the graphite sheet 12 is generally arranged between the battery and the battery cover 11 , and attached to the battery cover 11 to realize the function of heat dissipation.
  • Both the main board 14 and the battery are arranged between the graphite sheet 12 and the front case 15 , and devices 17 capable of realizing various functions are arranged on the main board 14 .
  • the screen 16 is fixed on the front case 15 for displaying.
  • the existing UWB antenna 100 can only be arranged between the battery cover 11 and the graphite sheet 12 of the mobile phone, as shown in FIG. 3 , This requires a certain thickness space 18 to be reserved between the battery cover 11 and the graphite sheet 12 .
  • the gap between the battery cover 11 and the graphite sheet 12 is very small, and even the battery cover 11 needs to be attached to the graphite sheet 12 to dissipate heat.
  • a thickness space 18 of at least 0.3mm must be reserved between the battery cover 11 and the graphite sheet 12, which will lead to an increase in the thickness of the mobile phone and bring great challenges to the overall structure.
  • Fig. 4 is a curve diagram of radiation efficiency and system efficiency of a UWB antenna in the prior art, the horizontal axis is frequency, the unit is GHz, and the vertical axis is efficiency, the unit is dB.
  • the solid line represents the radiation efficiency
  • the dotted line represents the system efficiency
  • the dotted line represents the return loss of the antenna.
  • the antenna of the existing solution covers two frequency bands, namely 6.5 GHz and 8 GHz, wherein the radiation efficiency and system efficiency at 6.5 GHz are -2.2 dB and -3.7 dB, respectively.
  • Fig. 5 is the far-field pattern of the UWB antenna in the prior art. As shown in Fig. 5, the far-field pattern of the antenna in the existing solution is oriented towards the back of the mobile phone, and the simulated gain is 5.39dBi. It can be seen that the radiation efficiency, system efficiency and gain of the existing antenna are all low.
  • the embodiment of the present application provides an electronic device, which can be a device such as a mobile phone, a tablet computer, a PDA (Personal Digital Assistant, PDA), etc., and the electronic device can use an antenna to perform wireless communication.
  • a device such as a mobile phone, a tablet computer, a PDA (Personal Digital Assistant, PDA), etc.
  • PDA Personal Digital Assistant
  • FIG. 6 is a back view of the mobile phone.
  • the electronic device is preferably a mobile phone as an example for detailed description.
  • FIG 7 is a schematic diagram of a side section of the mobile phone provided by the embodiment of the present application.
  • the electronic equipment of the mobile phone generally includes a battery cover 11, a graphite sheet 12, a battery 13, a main board 14, a front shell 15 and a screen 16 .
  • the graphite sheet 12 is arranged between the battery and the battery cover 11 and attached to the battery cover 11 to realize the function of heat dissipation, that is, there is no gap between the battery cover 11 and the graphite sheet 12 .
  • Both the main board 14 and the battery are arranged between the graphite sheet 12 and the front case 15 , and devices 17 capable of realizing various functions are arranged on the main board 14 .
  • the screen 16 is fixed on the front case 15 for displaying.
  • the electronic device also includes an antenna 2, and the antenna 2 is integrally arranged on the main board 14, and the Z-direction space at the main board 14 can provide enough arrangement space for the arrangement of the antenna 2, without adding a spacer between the battery cover 11 and the graphite sheet 12.
  • the 0.3mm thick space 18 where the antenna 2 is arranged enables the graphite sheet 12 to be attached to the battery cover 11, as shown in FIG. , so that the antenna 2 can work in the UWB frequency band, realize the application of UWB technology, and facilitate the thin design of the mobile phone.
  • FIG. 8 is a schematic structural diagram (1) of an antenna in an electronic device provided by an embodiment of the present application.
  • the electronic device also includes an antenna 2, and the antenna 2 includes a radiation patch 21, a feed 22a and a grounding piece 23a, one end of the grounding piece 23a is connected to the radiation patch 21, and the other end of the grounding piece 23a is connected to the main board 14, that is, the grounding piece 23a is in direct contact with the main board 14, such as being screwed to the main board 14, or It is directly welded to the main board 14.
  • One end of the feeder 22a is connected to the main board 14, and the other end of the feeder 22a is coupled to the radiation patch 21.
  • Fig. 9 is a schematic structural diagram (2) of the antenna in an electronic device provided by an embodiment of the present application.
  • the electronic device also includes an antenna 2, and the antenna 2 includes a radiation patch 21, a feeder 22b and a ground One end of the grounding piece 23a is connected to the radiation patch 21, and the other end of the grounding piece 23a is connected to the main board 14, that is, the grounding piece 23a is in direct contact with the main board 14, such as being screwed to the main board 14, or directly welded to the motherboard14.
  • One end of the feeder 22b is connected to the main board 14, and the other end of the feeder 22b is connected to the radiation patch 21.
  • the feeder 22b can be in direct contact with the radiation patch 21, so that the contact with the radiation patch 21 can direct feed.
  • the feeder 22a is not in direct contact with the radiation patch 21, forming a feeding form of coupling feed, and the feeder 22a is close to the radiation patch
  • One end of 21 has a certain length in the direction parallel to the radiation patch 21, so that a certain coupling space can be formed between the feeder 22a and the radiation patch 21.
  • the feeder 22b in the antenna shown in FIG. 9 is in direct contact with the radiation patch 21 to form a direct feed form, which can improve antenna gain and facilitate impedance matching compared with coupled feed.
  • FIG 10 is a schematic structural diagram (3) of the antenna in an electronic device provided by an embodiment of the present application.
  • the electronic device also includes an antenna 2, and the antenna 2 includes a radiation patch 21, a feeder 22a and a ground One end of the grounding piece 23b is connected to the radiation patch 21, and the other end of the grounding piece 23b is coupled to the mainboard 14. There is a gap between the grounding piece 23b and the mainboard 14, forming a coupled grounding structure.
  • One end of the feeder 22a is connected to the main board 14, and the other end of the feeder 22a is coupled to the radiation patch 21.
  • the grounding member 23a in the antenna shown in FIG. 8 is in direct contact with the main board 14 to form a direct grounding structure, thereby ensuring the stability of the antenna.
  • the grounding member 23a can be welded to the main board 14 14.
  • the grounding piece 23b in the antenna shown in Figure 10 is not in contact with the main board 14, forming a coupled grounding structure, so that there is no need for welding between the grounding piece 23b and the main board 14, making the arrangement of the grounding piece 23b easier to operate and convenient for maintenance .
  • the grounding member 23a in the antenna shown in FIG. 9 is in direct contact with the main board 14 to form a direct grounding structure.
  • the grounding member 23a in the antenna shown in FIG. 10 is not in contact with the main board 14.
  • the direct grounding structure in FIG. 9 is the same as the direct grounding structure in FIG. 8 , both of which can ensure the stability of the antenna.
  • the coupled grounding structure in FIG. 10 can eliminate the need for welding between the grounding member 23b and the main board 14, making the arrangement of the grounding member 23b easier to operate and convenient for maintenance.
  • the feed member 22a in the antenna shown in Figure 10 is not in contact with the radiation patch 21, forming a coupling feed structure, the coupling feed structure in Figure 10 is the same as the coupling feed structure in Figure 8, both can The shape of the radiating patch 21 can be adjusted more flexibly to effectively utilize the space, increase the bandwidth and improve the efficiency at the same time.
  • Fig. 11 is a graph showing the radiation efficiency and system efficiency of the antenna in the electronic device provided by the embodiment of the present application, the horizontal axis is the frequency, the unit is GHz, and the vertical axis is the efficiency, the unit is dB.
  • curve A represents the radiation efficiency (Rad.Efficiency shown in Figure 11)
  • curve B represents the system efficiency (Tot.Efficiency shown in Figure 11)
  • curve C represents the return loss of the antenna (S1 shown in Figure 11, 1).
  • FIG. 11 is specifically a curve diagram of radiation efficiency and system efficiency of the antenna shown in FIG. 8 .
  • the radiation efficiency and system efficiency of the antenna shown in FIG. 8 at 6.5 GHz are -0.8 dB and -1.8 dB, respectively.
  • Figure 12 is the far-field pattern of the antenna in the electronic device provided by the embodiment of the present application.
  • the far-field pattern of the antenna in this embodiment is directed towards the back of the mobile phone 1, and the simulation gain is 5.89dBi, which is relatively In terms of the simulation gain of the existing UWB antenna, the simulation gain of the antenna in this embodiment has been significantly improved, and compared with the directional diagram of the existing antenna as shown in Figure 5 and the antenna in this embodiment as shown in Figure 12 It can be seen from the pattern that the radiation intensity of the antenna in this embodiment is stronger in all directions.
  • the antenna 2 including the radiation patch 21, the grounding element and the feeding element compared with the existing antenna, its radiation efficiency, system efficiency and antenna gain are significantly improved in the UWB frequency band, wherein , the radiation efficiency at 6.5GHz is increased by 1.4dB, the system efficiency is increased by 1.9dB, and the antenna gain is increased by 0.5dBi.
  • the existing microstrip antenna needs to be on the dielectric block, the electric field of the antenna is radiated out through the dielectric loss, the antenna radiation efficiency and system efficiency are both lost to a certain extent, and the antenna gain is also lost.
  • the radiating patch 21 does not need to go over the dielectric block, but is connected to the main board 14 through the grounding piece and the feeding piece, so that there is no dielectric loss, and the antenna efficiency and gain can be significantly improved.
  • Radiation patch 21 can be designed to the size that is close to device 17 on the mainboard 14 in the size perpendicular to the thickness direction (Z direction) of mobile phone 1, namely the size of X direction and Y direction, thereby can greatly reduce the impact on mobile phone.
  • 1 Intrinsic X-direction and Y-direction space occupancy. Since the antenna 2 is integrally arranged on the main board 14, the Z-direction space at the main board 14 can provide enough space for the arrangement of the antenna 2, without adding a 0.3mm space between the battery cover 11 and the graphite sheet 12 for arranging the antenna 2.
  • the thickness space 18 shown in FIG. 6 enables the graphite sheet 12 to be attached to the battery cover 11, as shown in FIG. 2 It can work in the UWB frequency band to realize the application of UWB technology, which is conducive to the thin design of mobile phones.
  • the materials of the radiation patch 21 , the feeding part and the grounding part are all conductive metals, such as silver, copper, aluminum and the like.
  • metal copper is preferred.
  • the cost and resistivity of copper are low, which can reduce the cost of electronic equipment such as mobile phones, reduce the impedance of the radiation patch 21, grounding parts and conductive parts, and improve the radiation performance of the antenna.
  • FIG. 1 is a state diagram of UWB antenna application in the prior art. As shown in FIG. 1, the existing antenna uses an LCP transmission line 200 to connect the antenna and the UWB chip.
  • the antenna 2 including the radiation patch 21, the feeder and the grounding piece can be made into a customized piece, and can be integrally applied to the main board 14 in terminal electronic equipment such as mobile phones, without the need for LCP transmission lines 200, thereby greatly reducing the cost, suitable for low-end equipment, so that low-end equipment can use low-cost UWB technology.
  • the radiating patch 21, the feeder and the grounding member are all made of metal, the antenna 2 can be prepared by processing metal structural parts, the process is simple, the cost is low, and it is conducive to mass production.
  • the grounding element is connected to the radiation patch 21 by welding, so as to ensure the reliability of the connection between the grounding element and the radiation patch 21 .
  • the grounding member may be a metal strip, a metal copper column, a metal screw, and the like.
  • the grounding member may be a component having other different shapes, such as a triangle, a circle, an arc, a helix, etc., which is not limited in this embodiment.
  • FIG. 13 is a schematic structural diagram of an antenna in an electronic device provided in another embodiment of the present application.
  • the antenna 2 also includes a dielectric layer 24, and the radiation patch 21 is disposed on The dielectric layer 24 , the ends of the feeder 22 c and the grounding member 23 c away from the main board 14 are all connected to the dielectric layer 24 .
  • the dielectric layer 24 is the electromagnetic medium supporting the radiation patch 21, and its material grade can be FR-4.
  • FR-4 is a code name of a flame-resistant material grade, which means that the resin material must be able to extinguish itself after burning. A material specification to ensure the safety of the antenna 2 in operation.
  • the dielectric layer 24 may also be an electromagnetic medium such as F2B.
  • the dielectric layer 24 can expand the bandwidth and frequency band of the antenna 2, and can also adjust these parameters as required.
  • the thickness of the dielectric layer 24 can be changed as required, and its shape can be circular, square and so on.
  • the physical size of the antenna 2 is further reduced, and the reduced size of the antenna 2 is one times the square root of the dielectric constant of the original size. Therefore, the space occupied by the antenna 2 on the main board 14 can be further reduced.
  • the radiation patch 21 may be formed on the surface of the dielectric layer 24 by etching, and the feeder 22c and the grounding member 23c are both connected to the side of the dielectric layer 24 away from the radiation patch 21 .
  • the radiation patch 21 is formed on the front of the dielectric layer 24 by an etching process, which is conducive to improving the forming accuracy of the radiation patch 21 and also improving the layout accuracy of the antenna 2 on the main board 14 as a whole.
  • the dielectric layer 24 can be a printed circuit board (Printed Circuit Board, PCB), and the radiation patch 21 is etched on the front side of the PCB board by using the PCB board preparation process, which can improve the consistency of the wiring on the PCB board and is easy to engrave. Eclipse operation.
  • PCB printed Circuit Board
  • both the grounding member 23 c and the feeding member 22 c are connected to the dielectric layer 24 by welding.
  • FIG. 14 is a schematic structural diagram of an antenna in an electronic device provided by another embodiment of the present application.
  • the radiation patch 21 may be disposed inside the dielectric layer 24 .
  • the radiation patch 21 can be integrally formed with the dielectric layer 24, and is placed inside the dielectric layer 24 during the molding process of the dielectric layer 24, so that the radiation patch 21 is packaged through the dielectric layer 24, thereby further reducing the overall size of the antenna. volume.
  • both the grounding element and the feeding element can also be arranged inside the dielectric layer 24, so as to be packaged through the dielectric layer 24, wherein, one end of the grounding element away from the radiation patch 21 can protrude from the dielectric layer 24, so as to be in contact with the main board. 14 is directly connected, or may not protrude from the dielectric layer 24, and is connected to the main board 14 in a coupling direction. The end of the feeder away from the radiation patch 21 may or may not protrude from the dielectric layer 24 , and the feeder may be connected to the main board 14 through a transmission line. Therefore, the overall volume of the antenna can be reduced by encapsulating the grounding element, the feeding element and the radiation patch 21 by the dielectric layer 24 , thereby reducing the occupation of the space above the main board 14 .
  • the dielectric layer 24 may be a material with a relatively high dielectric constant, such as ceramics or alumina, and of course, is not limited to ceramics or alumina.
  • the dielectric layer 24 of ceramics or alumina can be used to package the radiation patch 21 inside the dielectric layer 24.
  • the dielectric constant is one times the root of the square root, so that the space occupied by the antenna 2 on the main board 14 can be further reduced.
  • the dielectric layer 24 and the radiation patch 21 are integrally formed.
  • the dielectric layer 24 of a ceramic material when used, the dielectric layer 24 and the radiation patch can be made by Low Temperature Co-fired Ceramic (LTCC) technology.
  • the patch 21 is integrally formed to package the radiating patch 21 , thereby simplifying the manufacturing process of the antenna 2 .
  • FIG. 15 is a schematic diagram of the bottom of the antenna shown in FIG. 14 near the main board 14.
  • the first port 241 and the second port 242 can be reserved, so that the dielectric layer 24 can be connected to the grounding piece and the power feeding piece after being formed, and connected to the main board through the grounding piece and the power feeding piece 14.
  • both the first port 241 and the second port 242 can further connect devices 17 in series, such as capacitive elements or inductive elements, so as to adjust the resonance point of the antenna in a specified frequency band.
  • FIG. 16 is a schematic structural diagram of the radiation patch 21. As shown in FIG. edge.
  • the radiating patch 21 When the radiating patch 21 has no gap 211, the radiating patch 21 is a complete metal sheet that radiates electromagnetic waves outwards as a whole.
  • the slit 211 can change the current path, so that the radiation patch 21 radiates electromagnetic waves outward at the slit 211 .
  • the radiating patch 21 adopts the structure of the slot 211 to design a good multi-band antenna.
  • the slit 211 is designed on the radiating patch 21, and the slit 211 of the antenna can be used for radiation to achieve good impedance matching and increase the antenna gain.
  • the number of slots 211 is two, and the two slots 211 can be designed as two frequency bands, or can be designed as the same frequency band, and the bandwidth can be increased through the two slots 211 .
  • three or more slots 211 can also be designed so that the antenna can realize multiple working frequency bands.
  • the length of the slot 211 may be 0.25 ⁇ , where ⁇ is the working wavelength of the central point of the radiation frequency of the radiation patch 21, so as to improve the radiation capability of the antenna.
  • the number of radiating patches 21 is at least one.
  • the number of radiating patches 21 is more than two, a distance is kept between two adjacent radiating patches 21, so that the antenna can be realized. multi-frequency radiation.
  • the first radiating patch 212a and the second radiating patch 213a there are two radiating patches 21, which are the first radiating patch 212a and the second radiating patch 213a, and the first radiating patch 212a and the grounding piece 23a and the feeder
  • the second radiating piece 213a is located above the first radiating piece 212a and keeps a certain distance from the first radiating piece 212a.
  • the feeding piece 22a feeds power to the first radiating piece 212a.
  • the first radiating piece 213a The antenna 212a can feed power to the second radiation sheet 213a through electromagnetic coupling, and the radiation capability of the antenna can be improved through the first radiation sheet 212a and the second radiation sheet 213a.
  • the size of two adjacent radiation patches 21 may be equal or unequal, and the size of the radiation patch 21 refers to the overall external dimension of the radiation patch 21 .
  • Figure 17 is a state diagram (1) of the application of two radiation patches in the antenna. As shown in Figure 17, when the sizes of two adjacent radiation patches 21 are equal, for example, the first radiation patch 212a and the second radiation patch When the dimensions of 213a are equal, the bandwidth of the antenna can be increased.
  • Figure 18 is a state diagram (two) of two radiation patches applied in the antenna, as shown in Figure 18, when the size of the first radiation piece 212b is greater than the size of the second radiation piece 213b, the resonance of the second radiation piece 213b The frequency is higher than the resonance frequency of the first radiation piece 212b, that is, the second radiation piece 213b corresponds to the bandwidth of the high-frequency resonance point, and the first radiation piece 212b corresponds to the bandwidth of the low-frequency resonance point.
  • Fig. 19 is a state diagram (3) of the application of two radiating patches in the antenna.
  • the resonance of the first radiating piece 212c The frequency is higher than the resonant frequency of the second radiation piece 213c, that is, the first radiation piece 212c corresponds to the bandwidth of the high-frequency resonance point, and the second radiation piece 213c corresponds to the bandwidth of the low-frequency resonance point, thereby realizing dual-frequency operation of the antenna.
  • the number of radiation patches 21 is more, the multi-frequency operation of the antenna can also be realized, which is not limited in this embodiment.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本申请提供了一种电子设备,包括用于布置器件的主板,其中,电子设备还包括天线,天线包括辐射贴片、馈电件和接地件,接地件的一端与辐射贴片相连,接地件的另一端与主板耦合相连或抵接相连,馈电件的一端与主板相连,馈电件的另一端与辐射贴片耦合相连或抵接相连。本申请提供的电子设备,其辐射贴片无需覆辙于介质块,通过接地件和馈电件连接于主板,从而没有介质损耗,天线效率和增益均能够明显提升,由于天线整体设置于主板,主板处的Z向空间可以为天线的布置提供足够的布置空间,无需在电池盖与石墨片之间增加用于布置天线的厚度空间,从而无需增加整机厚度,实现手机的薄型化设计。

Description

电子设备
本申请要求于2021年11月05日提交中国国家知识产权局、申请号为202111310894.0、申请名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信天线技术领域,尤其涉及一种电子设备。
背景技术
超宽带(Ultra-Wide Band,简称UWB)技术是一种短距离的无线通信技术,近些年已开始应用于各种终端设备。UWB天线为处于UWB频段的天线。对于手机产品而言,现有的UWB天线为一种微带天线,其由上至下依次包括辐射贴片、介质块和地板,天线通过液晶聚合物(Liquid-crystal Polymer,简称LCP)传输线连接到UWB芯片内部。但是,现有UWB天线的面积和厚度均较大,对于手机内部的物理空间的占用以及薄型手机架构的设计均带来较大挑战,天线经过地板和辐射贴片之间分析辐射,会受到介质损耗影响,导致天线增益和效率均有降低。
申请内容
本申请的目的在于提供一种电子设备,以解决上述现有UWB天线在终端设备中占用空间大,且存在介质损耗的问题。
本申请提供了一种电子设备,包括用于布置器件的主板,其中,所述电子设备还包括天线,所述天线包括辐射贴片、馈电件和接地件,所述接地件的一端与所述辐射贴片相连,所述接地件的另一端与所述主板耦合相连或抵接相连,所述馈电件的一端与所述主板相连,所述馈电件的另一端与所述辐射贴片耦合相连或抵接相连。
本申请提供的电子设备,其辐射贴片无需覆辙于介质块,通过接地件和馈电件连接于主板,从而没有介质损耗,天线效率和增益均能够明显提升。由于天线整体设置于主板,主板处的Z向空间可以为天线的布置提供足够的布置空间,无需在电池盖与石墨片之间增加用于布置天线的厚度空间,从而无需增加整机厚度,实现手机的薄型化设计。
在一种可能的实现方式中,所述接地件与所述辐射贴片焊接相连。从而可以保证接地件与辐射贴片连接的可靠性。
在一种可能的实现方式中,所述天线还包括介质层,所述辐射贴片设置于所述介质层,所述馈电件和所述接地件背离所述主板的一端均连接于所述介质层。该介质层一方面可以实现对辐射贴片的支撑,保证天线整体的稳定性,另一方面也可以使天线的整体尺寸进一步缩小,实现天线的小型化,降低天线在主板上的空间占用。
在一种可能的实现方式中,所述辐射贴片刻蚀形成于所述介质层的表面,所述馈电件和所述接地件均连接于所述介质层背离所述辐射贴片的一面。采用刻蚀工艺在介质层的正面形成辐射贴片,有利于提升辐射贴片的成型精度,也有利于提升天线整体 在主板上的布置精度。
在一种可能的实现方式中,所述接地件和所述馈电件均与所述介质层焊接相连。从而能够保证接地件和馈电件均能够与介质层可靠连接,
在一种可能的实现方式中,所述介质层为印制电路板。在PCB板的正面刻蚀辐射贴片21,能够提升PCB板上走线一致性,易于刻蚀操作。
在一种可能的实现方式中,所述辐射贴片设置于所述介质层的内部。该介质层可以将辐射贴片封装于内部,从而可以进一步减小天线的整体体积。
在一种可能的实现方式中,所述接地件和所述馈电件均设置于所述介质层的内部。由此,通过介质层对接地件、馈电件以及辐射贴片的封装,可以减小天线的整体体积,从而降低对主板上方空间的占用。
在一种可能的实现方式中,所述介质层为陶瓷或氧化铝。陶瓷或氧化铝的介质层具有较高的介电常数,从而可以进一步降低天线在主板上的空间的占用。
在一种可能的实现方式中,所述介质层与所述辐射贴片一体成型。辐射贴片在介质层成型过程中即设置于介质层的内部,从而实现辐射贴片通过介质层进行封装,进一步减小了天线的整体体积。
在一种可能的实现方式中,所述介质层上设置有用于连接所述接地件的第一端口和用于连接所述馈电件的第二端口。第一端口和第二端口可以便介质层成型后能够与接地件和馈电件相连,并通过接地件和馈电件连接至主板。当然,该第一端口和第二端口也可以便于串接器件,例如电容元件或电感元件,以调整天线谐振点在规定频段。
在一种可能的实现方式中,所述辐射贴片上无缝隙或设置至少一条缝隙,所述缝隙的一端贯通所述辐射贴片的边缘。辐射贴片采用缝隙结构能够设计出良好的多频段天线,在辐射贴片上设计缝隙,利用天线的缝隙辐射,可以实现好的阻抗匹配,提高天线增益。
在一种可能的实现方式中,所述缝隙的长度为0.25λ,其中,λ为所述辐射贴片辐射频率中心点的工作波长。从而可以提升天线的辐射能力。
在一种可能的实现方式中,所述辐射贴片、所述馈电件和所述接地件的材质为导电金属。从而可以降低天线的成本,适用于中低端设备,使中低端设备能够运用低成本UWB技术。天线可以采用金属结构件加工工艺制备,工艺简单,成本低,有利于批量生产制造。
在一种可能的实现方式中,所述辐射贴片的数量至少为一个,当所述辐射贴片的数量为两个以上时,相邻两个所述辐射贴片之间保持有间距。从而可以实现天线的多频辐射。
在一种可能的实现方式中,相邻两个所述辐射贴片的尺寸相等或不等。从而可以提升带宽,或实现天线的双频或多频工作。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为现有技术中UWB天线应用时的状态图;
图2为现有技术中UWB天线应用时的俯视图;
图3为现有手机的侧向切面示意图;
图4为现有技术中UWB天线的辐射效率、系统效率和反射系数曲线图;
图5为现有技术中UWB天线的远场方向图;
图6为手机的背面视图;
图7为本申请实施例提供的手机的侧向切面示意图;
图8为本申请一种实施例提供的电子设备中天线的结构示意图(一);
图9为本申请一种实施例提供的电子设备中天线的结构示意图(二);
图10为本申请一种实施例提供的电子设备中天线的结构示意图(三);
图11为本申请实施例提供的电子设备中天线的辐射效率、系统效率和反射系数曲线图;
图12为本申请实施例提供的电子设备中天线的远场方向图;
图13为本申请另一种实施例提供的电子设备中天线的结构示意图;
图14为本申请又一种实施例提供的电子设备中天线的结构示意图;
图15为图14所示天线靠近主板一侧的底部示意图;
图16为辐射贴片的结构示意图;
图17为两个辐射贴片在天线中应用的状态图(一);
图18为两个辐射贴片在天线中应用的状态图(二);
图19为两个辐射贴片在天线中应用的状态图(三)。
附图标记:
100-UWB天线;
110-辐射贴片;
120-地板;
200-传输线;
300-UWB芯片;
a-长度;
b-宽度;
1-手机;
11-电池盖;
12-石墨片;
13-电池;
14-主板;
15-前壳;
16-屏幕;
17-器件;
18-厚度空间;
2-天线;
21-辐射贴片;
211-缝隙;
212a,212b,212c-第一辐射片;
213a,213b,213c-第二辐射片;
22a,22b,22c-馈电件;
23a,23b,23c-接地件;
24-介质层;
241-第一端口;
242-第二端口。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个或两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
电子设备可以通过天线实现无线通信。超宽带(Ultra-Wide Band,UWB)是一种短距离的无线通信方式。UWB不采用正弦载波,而是利用纳秒至微秒级的非正弦窄脉冲传输数据,因此,其传输的带宽很宽,适用于高速、近距离的无线个人通信。美国联邦通信委员会(Federal Communications Commission,FCC)规定,UWB的工作频段范围为3.1GHz至10.6GHz,且占用500MHz以上的带宽。由于UWB技术具有数据传输速率高(达1Gbit/s)、抗多径干扰能力强、功耗低、成本低、穿透能力强、截获率低、与现有其他无线通信系统共享频谱等特点,UWB技术成为无线个人局域网通信技术(WPAN)的首选技术,目前已应用于各种终端电子设备。
其中,UWB天线100为处于UWB频段的天线。电子设备通过UWB天线100可以实现无线通信。图1为现有技术中UWB天线应用时的状态图,图2为现有技术中UWB天线应用时的俯视图,如图1和图2所示,现有的UWB技术在终端上的应用较为简单,所采用的UWB天线100主要是一种微带天线,该微带天线通过液晶聚合物(Liquid-crystal Polymer,LCP)传输线2连接到UWB芯片1内部。其中,微带天线包括辐射贴片110、介质块(图中未示出)和地板120,辐射贴片110和地板120分别设置于介质块的两侧,该 微带天线通过地板120和顶部的辐射贴片110之间辐射时,会受到介质损耗影响,造成天线增益和效率均降低。
图2为现有技术中UWB天线应用时的俯视图,如图2所示,目前,对于UWB技术应用于如手机等终端电子产品中时,受手机内空间的限制,还要兼顾天线的辐射特性,天线的厚度一般为0.3mm,长度a为13.8mm,宽度b为11mm,介质块的介电常数为2.9,损耗角正切为0.002。其中,天线的横截面积(垂直于手机厚度方向的截面积)非常大,远远大于手机主板上的器件的横截面积,因此,在手机主板上不存在可以用于布置该天线的空间。
图3为现有手机的侧向切面示意图,如图3所示,现有手机包括电池盖11、石墨片12、电池13、主板14、前壳15和屏幕16。其中,石墨片12通常设置于电池和电池盖11之间,并贴合于电池盖11,以实现散热的功能。主板14和电池均设置于石墨片12和前壳15之间,主板14上布设有能够实现各种功能的器件17。屏幕16则固定于前壳15,用于显示。由于现有手机主板14上不存在可以用于布置上述现有UWB天线100的空间,导致现有的UWB天线100只能布置在手机电池盖11和石墨片12之间,如图3所示,这就需要在电池盖11和石墨片12之间预留一定的厚度空间18。但是,一般情况下电池盖11和石墨片12之间的间隙非常小,甚至电池盖11需要与石墨片12贴合来进行散热,如果将天线布置于电池盖11和石墨片12之间,则必然会在电池盖11和石墨片12之间预留至少0.3mm的厚度空间18,这会导致手机整机的厚度增加,对整机架构带来较大挑战。
图4为现有技术中UWB天线的辐射效率和系统效率曲线图,横轴为频率,单位为GHz,纵轴为效率,单位为dB。如图4所示,实线表示辐射效率,虚线表示系统效率,点划线表示天线的回波损耗。从图4中可以看到,现有方案的天线覆盖两个频段,分别为在6.5GHz和8GHz,其中,在6.5GHz的辐射效率和系统效率分别为-2.2dB和-3.7dB。图5为现有技术中UWB天线的远场方向图,如图5所示,现有方案的天线远场方向图为定向朝向手机背侧,仿真增益为5.39dBi。由此可知,现有天线的辐射效率、系统效率和增益均较低。
为此,本申请实施例提供了一种电子设备,该电子设备可以是诸如手机、平板电脑、掌上电脑(Personal Digital Assistant,PDA)等设备,该电子设备均能够采用天线进行无线通信,本实施例对电子设备的具体种类不做限定。图6为手机的背面视图,如图6所示,本实施例中优选以电子设备为手机为例进行详细说明。
图7为本申请实施例提供的手机的侧向切面示意图,如图7所示,该手机类的电子设备一般包括电池盖11、石墨片12、电池13、主板14、前壳15和屏幕16。在本申请实施例提供的手机中,石墨片12设置于电池和电池盖11之间,且贴合于电池盖11,以实现散热的功能,即电池盖11与石墨片12之间无间隙。主板14和电池均设置于石墨片12和前壳15之间,主板14上布设有能够实现各种功能的器件17。屏幕16则固定于前壳15,用于显示。其中,该电子设备还包括天线2,天线2整体设置于主板14,主板14处的Z向空间可以为天线2的布置提供足够的布置空间,无需在电池盖11与石墨片12之间增加用于布置天线2的0.3mm的厚度空间18,使石墨片12能够贴合于电池盖11,如图7所示,从而无需增加整机厚度,实现在现有手机架构的基础上布置 该天线2,使天线2能够工作在UWB频段,实现UWB技术的运用,有利于手机的薄型化设计。
具体地,图8为本申请一种实施例提供的电子设备中天线的结构示意图(一),如图8所示,该电子设备还包括天线2,天线2包括辐射贴片21、馈电件22a和接地件23a,接地件23a的一端与辐射贴片21相连,接地件23a的另一端与主板14抵接相连,即接地件23a与主板14直接接触,如通过螺钉拧紧于主板14,或者直接焊接于主板14。馈电件22a的一端与主板14相连,馈电件22a的另一端与辐射贴片21耦合相连,馈电件22a与辐射贴片21之间保持有间隙,馈电件22a的能量通过该间隙耦合至辐射贴片21,从而形成一种由馈电件22a向辐射贴片21馈电的耦合馈电结构。
图9为本申请一种实施例提供的电子设备中天线的结构示意图(二),如图9所示,该电子设备还包括天线2,天线2包括辐射贴片21、馈电件22b和接地件23a,接地件23a的一端与辐射贴片21相连,接地件23a的另一端与主板14抵接相连,即接地件23a与主板14直接接触,如通过螺钉拧紧于主板14,或者直接焊接于主板14。馈电件22b的一端与主板14相连,馈电件22b的另一端与辐射贴片21抵接相连,馈电件22b能够与辐射贴片21直接接触,从而可以通过与辐射贴片21的接触直接馈电。
由图8和图9可知,图8所示的天线结构,其馈电件22a不与辐射贴片21直接接触,形成一种耦合馈电的馈电形式,该馈电件22a靠近辐射贴片21的一端在平行于辐射贴片21的方向具有一定的长度,从而可以在馈电件22a与辐射贴片21之间形成一定的耦合空间,相比于直接馈电,增加了带宽,提高了效率,也能够更加灵活地调节辐射贴片21的形状,有效利用了空间。图9所示的天线中的馈电件22b直接与辐射贴片21接触,形成一种直接馈电形式,相比于耦合馈电,能够提高天线增益,便于阻抗匹配。
图10为本申请一种实施例提供的电子设备中天线的结构示意图(三),如图10所示,该电子设备还包括天线2,天线2包括辐射贴片21、馈电件22a和接地件23b,接地件23b的一端与辐射贴片21相连,接地件23b的另一端与主板14耦合相连,接地件23b与主板14之间保持有间隙,形成一种耦合接地结构。馈电件22a的一端与主板14相连,馈电件22a的另一端与辐射贴片21耦合相连,馈电件22a与辐射贴片21之间保持有间隙,馈电件22a的能量通过该间隙耦合至辐射贴片21,从而形成一种由馈电件22a向辐射贴片21馈电的耦合馈电结构。
由图8和图10可知,图8所示的天线中的接地件23a与主板14直接接触,形成一种直接接地结构,从而可以保证天线的稳定性,具体地,接地件23a可以焊接于主板14。图10所示的天线中的接地件23b不与主板14接触,形成一种耦合接地结构,从而使接地件23b与主板14之间无需焊接,使接地件23b的布置更容易操作,且便于维护。
再由图9和图10可知,图9所示的天线中的接地件23a与主板14直接接触,形成一种直接接地结构,图10所示的天线中的接地件23a不与主板14接触,从而形成一种耦合接地结构。其中,图9中的直接接地结构与图8中的直接接地结构相同,均能够保证天线的稳定性。图10中的耦合接地结构可以使接地件23b与主板14之间无需焊接,使接地件23b的布置更容易操作,且便于维护。此外,图9所示的天线中的馈 电件22b直接与辐射贴片21接触,形成一种直接馈电形式,相比于耦合馈电,能够提高天线增益,便于阻抗匹配。图10所示的天线中的馈电件22a不与辐射贴片21接触,形成一种耦合馈电结构,该图10中的耦合馈电结构与图8中的耦合馈电结构相同,均能够更加灵活地调节辐射贴片21的形状,有效利用空间,同时也能够增加带宽,提高效率。
图11为本申请实施例提供的电子设备中天线的辐射效率和系统效率曲线图,横轴为频率,单位为GHz,纵轴为效率,单位为dB。其中,曲线A表示辐射效率(图11所示的Rad.Efficiency),曲线B表示系统效率(图11所示的Tot.Efficiency),曲线C表示天线的回波损耗(图11所示的S1,1)。该图11具体为图8所示天线的辐射效率和系统效率曲线图。如图11所示,图8所示的天线在6.5GHz的辐射效率和系统效率分别为-0.8dB和-1.8dB。图12为本申请实施例提供的电子设备中天线的远场方向图,如图12所示,本实施例中天线的远场方向图为定向朝向手机1背侧,仿真增益为5.89dBi,相对于现有UWB天线的仿真增益而言,本实施例中天线的仿真增益具有明显提升,且对比如图5所示的现有天线的方向图和如图12所示的本实施例中天线的方向图可知,本实施例中的天线在各个方向的辐射强度更强。由此,本实施例中包括辐射贴片21、接地件和馈电件的天线2,相对于现有的天线而言,其辐射效率、系统效率和天线增益在UWB频段均有明显提升,其中,在6.5GHz的辐射效率提升1.4dB,系统效率提升1.9dB,天线增益提升0.5dBi。
可以理解的是,现有的微带天线需要覆辙在介质块上,天线电场经过介质损耗辐射出去,天线辐射效率和系统效率均有一定损失,天线增益也会有损失,而本实施例中,如图6和图7所示,辐射贴片21无需覆辙于介质块,通过接地件和馈电件连接于主板14,从而没有介质损耗,天线效率和增益均能够明显提升。辐射贴片21在垂直于手机1厚度方向(Z方向)的尺寸,即X方向和Y方向的尺寸可以设计成与主板14上的器件17相近的尺寸大小,从而可以极大程度地降低对手机1内在X方向和Y方向空间的占用。由于天线2整体设置于主板14,主板14处的Z向空间可以为天线2的布置提供足够的布置空间,无需在电池盖11与石墨片12之间增加用于布置天线2的0.3mm的如图6所示的厚度空间18,使石墨片12能够贴合于电池盖11,如图7所示,从而无需增加整机厚度,实现在现有手机架构的基础上布置该天线2,使天线2能够工作在UWB频段,实现UWB技术的运用,有利于手机的薄型化设计。
其中,辐射贴片21、馈电件和接地件的材质均为导电金属,如银、铜、铝等。本实施例中优选为金属铜,铜的成本和电阻率均较低,可以降低手机等电子设备的成本,可以降低辐射贴片21、接地件和导电件的阻抗,提升天线辐射性能。
需要说明的是,辐射贴片21、馈电件和接地件均采用金属结构件,没有介质损耗,可以使天线效率和增益明显提升。此外,图1为现有技术中UWB天线应用时的状态图,如图1所示,现有的天线采用LCP传输线200连接天线和UWB芯片,LCP传输线200的成本非常高,难以应用在中低端终端设备中,本实施例中,包括辐射贴片21、馈电件和接地件的该天线2可以制作成定制件,并能够整体应用在手机等终端电子设备中的主板14,无需LCP传输线200,从而极大程度地降低了成本,适用于中低端设备,使中低端设备能够运用低成本UWB技术。此外,由于辐射贴片21、馈电件和接地件均为金属材 料,使天线2可以采用金属结构件加工工艺制备,工艺简单,成本低,有利于批量生产制造。
作为一种具体的实现方式,接地件与辐射贴片21焊接相连,从而可以保证接地件与辐射贴片21连接的可靠性。其中,该接地件可以为金属条、金属铜柱、金属螺钉等。当然,接地件可以为具有其它不同形状的构件,如三角形、圆形、弧形、螺旋线形等,对此本实施例不做限定。
作为一种具体的实现方式,图13为本申请另一种实施例提供的电子设备中天线的结构示意图,如图13所示,该天线2还包括介质层24,辐射贴片21设置于该介质层24,馈电件22c和接地件23c背离主板14的一端均连接于该介质层24。该介质层24为支撑辐射贴片21的电磁介质,其材料等级可以为FR-4,FR-4是一种耐燃材料等级的代号,所代表的意思是树脂材料经过燃烧状态必须能够自行熄灭的一种材料规格,保证天线2工作的安全性。当然,介质层24也可以为F2B等电磁介质。该介质层24可以拓展天线2的带宽和频段,也可以根据需要调节这些参数。该介质层24的厚度可以根据需要改变,其形状可以为圆形、方形等。此外,由于电磁介质的加载,根据介质中传播波长缩短的原理,天线2物理尺寸进一步缩小,天线2减小后的尺寸为原尺寸的介电常数开平方根分之一倍。从而可以进一步降低天线2在主板14上的空间的占用。
具体地,辐射贴片21可以刻蚀形成于介质层24的表面,馈电件22c和接地件23c均连接于介质层24背离辐射贴片21的一面。采用刻蚀工艺在介质层24的正面形成辐射贴片21,有利于提升辐射贴片21的成型精度,也有利于提升天线2整体在主板14上的布置精度。
其中,该介质层24可以为印制电路板(Printed Circuit Board,PCB),采用PCB板制备工艺,在PCB板的正面刻蚀辐射贴片21,能够提升PCB板上走线一致性,易于刻蚀操作。
具体地,为了保证接地件23c和馈电件22c均能够与介质层24可靠连接,接地件23c和馈电件22c均与介质层24焊接相连。
作为一种具体的实现方式,图14为本申请又一种实施例提供的电子设备中天线的结构示意图,如图14所示,辐射贴片21可以设置于介质层24的内部。辐射贴片21可以与介质层24一体成型,在介质层24成型过程中即设置于介质层24的内部,以使辐射贴片21通过该介质层24进行封装,从而可以进一步减小天线的整体体积。
其中,接地件和馈电件也可以均设置于介质层24的内部,以通过介质层24进行封装,其中,接地件的背离辐射贴片21的一端可以凸出于介质层24,以与主板14直接相连,或者也可以不凸出于介质层24,采用耦合连接的方向与主板14相连。馈电件背离辐射贴片21的一端可以凸出也可以不凸出于介质层24,馈电件通过传输线可以与主板14相连。由此,通过介质层24对接地件、馈电件以及辐射贴片21的封装,可以减小天线的整体体积,从而降低对主板14上方空间的占用。
需要说明的是,本实施例中,介质层24可以为介电常数较高的材料,如陶瓷或氧化铝等,当然,并不限于陶瓷或氧化铝。采用陶瓷或氧化铝的介质层24可以将辐射贴片21整体封装于介质层24内部,根据介质中传播波长缩短的原理,天线2物理尺寸进一步缩小,天线2减小后的尺寸为原尺寸的介电常数开平方根分之一倍,从而可以进一步 降低天线2在主板14上的空间的占用。本实施例中介质层24与辐射贴片21为一体成型,例如在采用陶瓷材料的介质层24时,可以通过低温共烧陶瓷(Low Temperature Co-fired Ceramic,LTCC)技术使介质层24与辐射贴片21一体成型,实现对辐射贴片21的封装,从而可以简化天线2加工制造的工艺。
其中,图15为图14所示天线靠近主板14一侧的底部示意图,如图15所示,介质层24上设置有用于连接接地件的第一端口241和用于连接馈电件的第二端口242。在介质层24成型过程中,可以预留出该第一端口241和第二端口242,以便介质层24成型后能够与接地件和馈电件相连,并通过接地件和馈电件连接至主板14。当然,该第一端口241和第二端口242均可以进一步串联器件17,例如电容元件或电感元件,以调整天线谐振点在规定频段。
作为一种具体的实现方式,图16为辐射贴片21的结构示意图,如图16所示,辐射贴片21上无缝隙211或设置至少一条缝隙211,缝隙211的一端贯通辐射贴片21的边缘。当辐射贴片21上无缝隙211时,辐射贴片21为一完整的金属薄片,以自身整体向外辐射电磁波。当辐射贴片21上设置至少一条缝隙211时,该缝隙211可以改变电流路径,使辐射贴片21在缝隙211处向外辐射电磁波。辐射贴片21采用缝隙211结构能够设计出良好的多频段天线,在辐射贴片21上设计缝隙211,利用天线的缝隙211辐射,可以实现好的阻抗匹配,提高天线增益。
本实施例中,缝隙211的数量为两条,两条缝隙211可以设计为两个频段,或者也可以设计为相同频段,并通过两条缝隙211增加带宽。当然,也可以设计有三条或更多条缝隙211,以使天线实现多个工作频段。
其中,缝隙211的长度可以为0.25λ,其中,λ为辐射贴片21辐射频率中心点的工作波长,从而可以提升天线的辐射能力。
作为一种具体的实现方式,辐射贴片21的数量至少为一个,当辐射贴片21的数量为两个以上时,相邻两个辐射贴片21之间保持有间距,从而可以实现天线的多频辐射。
具体地,本实施例中,如图17所示,辐射贴片21的数量为两个,分别为第一辐射片212a和第二辐射片213a,第一辐射片212a与接地件23a和馈电件22a相连,第二辐射片213a位于第一辐射片212a的上方,且与第一辐射片212a之间保持有一定的间距,馈电件22a向第一辐射片212a馈电,第一辐射片212a可以通过电磁耦合的方式向第二辐射片213a馈电,通过第一辐射片212a和第二辐射片213a可以提升天线的辐射能力。
其中,相邻两个辐射贴片21的尺寸可以相等,也可以不等,该辐射贴片21的尺寸是指辐射贴片21的整体的外形尺寸。
图17为两个辐射贴片在天线中应用的状态图(一),如图17所示,当相邻两个辐射贴片21的尺寸相等时,例如第一辐射片212a和第二辐射片213a的尺寸相等时,可以提升天线带宽。
图18为两个辐射贴片在天线中应用的状态图(二),如图18所示,当第一辐射片212b的尺寸大于第二辐射片213b的尺寸时,第二辐射片213b的共振频率比第一辐射片212b的共振频率高,即第二辐射片213b对应于高频谐振点带宽,第一辐射片212b对应 于低频谐振点带宽。
图19为两个辐射贴片在天线中应用的状态图(三),如图19所示,当第一辐射片212c的尺寸小于第二辐射片213c的尺寸时,第一辐射片212c的共振频率比第二辐射片213c的共振频率高,即第一辐射片212c对应于高频谐振点带宽,第二辐射片213c对应于低频谐振点带宽,从而实现了天线双频工作。当然,当辐射贴片21的数量为更多个时,也可以实现天线的多频工作,对此本实施例不做限定。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种电子设备,包括用于布置器件的主板,其特征在于,所述电子设备还包括天线,所述天线包括辐射贴片、馈电件和接地件,所述接地件的一端与所述辐射贴片相连,所述接地件的另一端与所述主板耦合相连或抵接相连,所述馈电件的一端与所述主板相连,所述馈电件的另一端与所述辐射贴片耦合相连或抵接相连。
  2. 根据权利要求1所述的电子设备,其特征在于,所述接地件与所述辐射贴片焊接相连。
  3. 根据权利要求1所述的电子设备,其特征在于,所述天线还包括介质层,所述辐射贴片设置于所述介质层,所述馈电件和所述接地件背离所述主板的一端均连接于所述介质层。
  4. 根据权利要求3所述的电子设备,其特征在于,所述辐射贴片刻蚀形成于所述介质层的表面,所述馈电件和所述接地件均连接于所述介质层背离所述辐射贴片的一面。
  5. 根据权利要求3所述的电子设备,其特征在于,所述接地件和所述馈电件均与所述介质层焊接相连。
  6. 根据权利要求3-5任一项所述的电子设备,其特征在于,所述介质层为印制电路板。
  7. 根据权利要求3所述的电子设备,其特征在于,所述辐射贴片设置于所述介质层的内部。
  8. 根据权利要求3所述的电子设备,其特征在于,所述接地件和所述馈电件均设置于所述介质层的内部。
  9. 根据权利要求3、7或8所述的电子设备,其特征在于,所述介质层为陶瓷或氧化铝。
  10. 根据权利要求3、7、8或9所述的电子设备,其特征在于,所述介质层与所述辐射贴片一体成型。
  11. 根据权利要求3、7-10任一项所述的电子设备,其特征在于,所述介质层上设置有用于连接所述接地件的第一端口和用于连接所述馈电件的第二端口。
  12. 根据权利要求1-11任一项所述的电子设备,其特征在于,所述辐射贴片上无缝隙或设置至少一条缝隙,所述缝隙的一端贯通所述辐射贴片的边缘。
  13. 根据权利要求12所述的电子设备,其特征在于,所述缝隙的长度为0.25λ,其中,λ为所述辐射贴片辐射频率中心点的工作波长。
  14. 根据权利要求1-13任一项所述的电子设备,其特征在于,所述辐射贴片、所述馈电件和所述接地件的材质为导电金属。
  15. 根据权利要求1-14任一项所述的电子设备,其特征在于,所述辐射贴片的数量至少为一个,当所述辐射贴片的数量为两个以上时,相邻两个所述辐射贴片之间保持有间距。
  16. 根据权利要求15所述的电子设备,其特征在于,相邻两个所述辐射贴片的尺 寸相等或不等。
PCT/CN2022/126343 2021-11-05 2022-10-20 电子设备 WO2023078089A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111310894.0A CN116093592A (zh) 2021-11-05 2021-11-05 电子设备
CN202111310894.0 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023078089A1 true WO2023078089A1 (zh) 2023-05-11

Family

ID=86208859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126343 WO2023078089A1 (zh) 2021-11-05 2022-10-20 电子设备

Country Status (2)

Country Link
CN (1) CN116093592A (zh)
WO (1) WO2023078089A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089106A1 (en) * 2006-02-01 2007-08-09 Electronics And Telecommunications Research Institute Antenna using proximity-coupling between radiation patch and short-ended feed line, rfid tag employing the same, and antenna impedance matching method thereof
CN204391262U (zh) * 2015-01-20 2015-06-10 瑞声精密制造科技(常州)有限公司 天线模块
CN111276800A (zh) * 2020-02-04 2020-06-12 Oppo广东移动通信有限公司 双频毫米波天线模组和电子设备
CN111600122A (zh) * 2020-05-13 2020-08-28 中天宽带技术有限公司 一种贴片天线
CN112332085A (zh) * 2020-10-27 2021-02-05 重庆两江卫星移动通信有限公司 一种ka波段双圆极化可切换收发天线
CN112448174A (zh) * 2019-09-04 2021-03-05 中国移动通信集团终端有限公司 天线系统和终端设备
CN112821050A (zh) * 2021-01-07 2021-05-18 Oppo广东移动通信有限公司 天线组件及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089106A1 (en) * 2006-02-01 2007-08-09 Electronics And Telecommunications Research Institute Antenna using proximity-coupling between radiation patch and short-ended feed line, rfid tag employing the same, and antenna impedance matching method thereof
CN204391262U (zh) * 2015-01-20 2015-06-10 瑞声精密制造科技(常州)有限公司 天线模块
CN112448174A (zh) * 2019-09-04 2021-03-05 中国移动通信集团终端有限公司 天线系统和终端设备
CN111276800A (zh) * 2020-02-04 2020-06-12 Oppo广东移动通信有限公司 双频毫米波天线模组和电子设备
CN111600122A (zh) * 2020-05-13 2020-08-28 中天宽带技术有限公司 一种贴片天线
CN112332085A (zh) * 2020-10-27 2021-02-05 重庆两江卫星移动通信有限公司 一种ka波段双圆极化可切换收发天线
CN112821050A (zh) * 2021-01-07 2021-05-18 Oppo广东移动通信有限公司 天线组件及电子设备

Also Published As

Publication number Publication date
CN116093592A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
EP4047746A1 (en) Antenna module and electronic device
TWI544682B (zh) 寬頻天線及其操作方法
CN108321498B (zh) 5g mimo天线和毫米波天线阵并存的天线结构及手持设备
TWI476989B (zh) 多頻天線
JP2006054847A (ja) アンテナ装置
US6762724B2 (en) Build-in antenna for a mobile communication terminal
CN109462028B (zh) 一种射频微机电微带天线
CN211350966U (zh) 一种超低剖面双频uwb天线及通信设备
EP4266497A1 (en) Electronic device
WO2022042414A1 (zh) 电子设备
CN107978853A (zh) 一种端射圆极化毫米波天线
CN2919565Y (zh) 基于多枝扩频技术的内置三频手机天线
WO2023078089A1 (zh) 电子设备
TW202207520A (zh) 行動裝置
CN2924818Y (zh) 平面三频天线
CN207517868U (zh) 一种端射圆极化毫米波天线
CN101106213B (zh) 多频天线
EP4027453A1 (en) Antenna structure and electronic device
WO2022012384A1 (zh) 一种电子设备
WO2021218800A1 (zh) 电子设备
TWI717932B (zh) 行動裝置和可拆卸天線結構
CN107394383B (zh) 槽隙平面倒l天线及蓝牙通讯装置
TWM264675U (en) Antenna
CN215933823U (zh) 一种全向天线和电子设备
KR20070017109A (ko) 랩탑 컴퓨터, 프린터 등의 장치에 사용하기 위한 이중 대역다이버시티 무선 랜 안테나 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889114

Country of ref document: EP

Kind code of ref document: A1