WO2023077586A1 - 一种摩擦-电磁复合型发电装置及其性能测试平台和方法 - Google Patents

一种摩擦-电磁复合型发电装置及其性能测试平台和方法 Download PDF

Info

Publication number
WO2023077586A1
WO2023077586A1 PCT/CN2021/134276 CN2021134276W WO2023077586A1 WO 2023077586 A1 WO2023077586 A1 WO 2023077586A1 CN 2021134276 W CN2021134276 W CN 2021134276W WO 2023077586 A1 WO2023077586 A1 WO 2023077586A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
power generation
array
electrode
generation device
Prior art date
Application number
PCT/CN2021/134276
Other languages
English (en)
French (fr)
Inventor
马勇
赵天聪
牛博
解光慈
杨文吒
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to JP2022513842A priority Critical patent/JP7487966B2/ja
Priority to GB2206179.0A priority patent/GB2618120A/en
Publication of WO2023077586A1 publication Critical patent/WO2023077586A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the invention relates to the technical field of generators, in particular to a friction-electromagnetic composite power generation device and a performance testing platform and method thereof.
  • electromagnetic induction power generation is often suitable for high-frequency mechanical movements, and its energy utilization efficiency for low-frequency mechanical movements in daily life extremely low. It can be seen that the electromagnetic generator can only collect a small part of random and irregular mechanical energy, resulting in a large waste of mechanical energy, resulting in low energy conversion efficiency for power generation.
  • the invention provides a friction-electromagnetic composite power generation device, which is used to solve the problem that random and irregular mechanical energy cannot be efficiently collected by an electromagnetic generator, resulting in low energy conversion efficiency for power generation.
  • the first aspect of the present invention provides a friction-electromagnetic composite power generation device, including:
  • the rotor part includes: a rotor plate, a magnet array and a vane array, the magnet array is arranged on the rotor plate, the two axial ends of the rotor plate are fixedly connected to one of the vane arrays, the rotor plate is provided with a first through hole, The central shaft passes through the first through hole and is fixedly connected to the rotor plate, and the vane array is provided with a first dielectric film;
  • the stator part includes: a stator plate, a coil array, an electrode array and a friction layer, the coil array is arranged on the stator plate, the electrode array is fixedly connected to the inner axial surface of the stator plate, and the friction layer covers the electrode array On, the friction layer is made of a second dielectric film;
  • the friction layer is in contact with the first dielectric film, and there is a difference in electrode sequence between the first dielectric film and the second dielectric film.
  • the electrode array includes N first electrodes and N second electrodes, where N is an integer greater than 3;
  • the first electrodes and the second electrodes are alternately arranged circumferentially, the N first electrodes are electrically connected to each other, and the N second electrodes are electrically connected to each other.
  • the stator part further includes a circular electrode disk, and the center of the electrode disk is provided with a second Through holes, one end surface of the electrode disk is bonded to the inner axial surface of the stator plate, and the electrode array is arranged on the other end surface;
  • the first electrode and the second electrode are alternately arranged at equal intervals along the circumference of the electrode disk.
  • the first electrode and the second electrode have the same shape and are fan-shaped metal coatings.
  • the inner end of the first electrode is connected to the The first connecting ring arranged in the center of the electrode disk is connected, and the outer end of the second electrode is connected with the second connecting ring arranged on the outer periphery of the electrode disk;
  • the diameter of the second through hole is smaller than the inner diameter of the first connecting ring.
  • the central angle of the first electrode and the second electrode ranges from 10° to 80°;
  • the distance between the first electrode and the second electrode ranges from 0.02L to L, wherein L is the maximum width of the first electrode or the second electrode.
  • the blade array includes a cylindrical structure and N blades, and the N blades are uniformly connected to the outer circumference of the cylindrical structure, and the circular The central hole of the barrel structure is aligned with the first through hole.
  • the shape of the axial section of the blade is the same as that of the electrode, and the first dielectric film covers the blade and the friction layer opposite side.
  • the first dielectric film includes N arched films, the tops of the arched films are in flexible contact with the friction layer, the The contact area between the arched film and the friction layer is equal to the axial cross-sectional area of the electrode.
  • the seventh possible implementation also includes a flange coupling
  • Both axial ends of the rotor plate are fixedly connected to one blade array, specifically: one axial end of the rotor plate is fixedly connected to the first blade array, and the other axial end is fixedly connected to the second blade array;
  • first threaded holes are opened around the first through hole, and the first threaded holes match the axial threaded holes on the flange coupling;
  • the cylinder end face of the first array is provided with four second threaded holes matching the first threaded holes, and the inner wall of the cylinder of the second array is provided with external threads matching the flange coupling. internal thread;
  • the first array is fixedly connected to an axial end of the rotor plate through the cooperation of the bolts with the axial threaded holes, the first threaded hole and the second threaded hole, and the second array is fixed through the cooperation of the internal thread and the external thread , fixedly connected with the other axial end of the rotor plate;
  • the flange coupling is fixedly connected with the central shaft through the cooperation of radial threaded holes and screws.
  • the magnet array includes N cylindrical magnets, and the coil array includes N coils connected in series in the same winding direction;
  • the magnet is embedded in the rotor plate, and the coil is embedded in the stator plate.
  • the rotor plate is a circular plate, and the magnets are evenly arranged along the circumference of the rotor plate;
  • the coils are embedded in the stator plate in the same arrangement as the magnets.
  • a third through hole is opened in the center of the stator plate, and a bearing is embedded in the third through hole, and the central shaft is rotatably connected with the stator plate through the bearing.
  • the second aspect of the present invention provides a friction-electromagnetic composite power generation device performance test platform, including:
  • the fixing assembly includes: a base, a platform and a support rod.
  • One end of the base is provided with a motor accommodating groove, and the other end is fixedly connected to the platform.
  • the support rod is arranged around the periphery of the base and one end of the support rod is fixed to the platform. connected, and the other end is fixedly connected with the friction-electromagnetic composite power generation device according to any one of claims 1 to 12;
  • the electrometer is electrically connected to the output end of the friction-electromagnetic composite power generation device
  • the speed-regulating motor is fixed in the motor accommodating groove, and the rotating shaft of the speed-regulating motor is connected with the central shaft of the friction-electromagnetic composite power generation device.
  • the first possible implementation device of the second aspect also includes: a rigid coupling, a flexible coupling, a torque sensor, a data acquisition card and a computer;
  • the electrometer is connected with the computer through the data acquisition card;
  • the torque sensor is connected to the computer;
  • One end of the rigid coupling is connected to the rotating shaft, the other end is connected to one end of the flexible coupling through the torque sensor, and the other end of the flexible coupling is connected to the central shaft.
  • the third aspect of the present invention provides a method for testing the performance of a friction-electromagnetic composite power generation device.
  • the performance test platform for a friction-electromagnetic composite power generation device provided by the second aspect of the present invention is used for testing, including:
  • the speed of the friction-electromagnetic composite power generation device is adjusted by a speed-regulating motor
  • the electrical physical quantity includes voltage, current and electricity
  • the performance index value is calculated according to the electrical physical quantity, and the performance index value includes period average output power, power density, triboelectric surface charge density or material quality factor.
  • the digital signal is converted into a change curve by Labview software.
  • the obtaining the electrical physical quantity corresponding to the rotational speed through the electrometer includes:
  • Energy utilization efficiency is calculated from the electrical physical quantity and the torque.
  • the present invention has the following advantages:
  • the friction-electromagnetic composite power generation device is provided with a rotor part, a stator part and a central shaft, the rotor part and the stator part are sleeved on the central shaft, and a stator part is sleeved on both sides of the rotor part in the axial direction
  • the rotor part is provided with a rotor plate, a magnet array and a blade array, the magnet array is fixed on the rotor plate, the two axial ends of the rotor plate are fixedly connected with a blade array, and the blade array is provided with a first dielectric film;
  • the stator part is provided with The stator plate, the coil array, the electrode array and the friction layer, the coil array is fixed on the stator plate, the electrode array is fixedly connected with the inner axial surface of the electronic plate, and the friction layer composed of the second dielectric film is covered on the electrode array;
  • the layer is in contact with the first dielectric film on the vane array, so that when the rot
  • the rotor During the rotation process, the magnet array on the rotor plate and the coil array on the stator plate move relative to each other, so that the coil array cuts the magnetic induction lines of the magnet array, generates induced current, and realizes electromagnetic power generation. Combining the two power generation methods reduces the limitation of frequency on mechanical energy collection, can collect more mechanical energy and convert it into electrical energy, and improves the energy conversion efficiency of power generation.
  • the triboelectric nanogenerator and electromagnetic generator are integrated to achieve complementary advantages, which is no longer affected by: the matching load is too high, and it is impossible to efficiently supply energy for devices with small internal resistance; or the matching load is too low, for large internal resistance
  • the restriction that resistive devices cannot efficiently supply energy not only improves the energy conversion efficiency, but also broadens the application range of power generation devices.
  • the materials used in the friction-electromagnetic composite power generation device are cheap, and the modular structure of the device can be mass-produced and easy to assemble and replace, so that it has the advantages of low production cost and low maintenance cost.
  • the friction-electromagnetic composite power generation device has small volume, light weight, strong structural stability, and convenient packaging.
  • the mechanical energy in the environment directly drives the rotor of the friction-electromagnetic composite power generation device to generate electricity without complicated mechanical transmission and
  • the conversion mechanism is not easy to be damaged under complex environmental loads, and has the advantage of being resistant to complex environmental loads.
  • Fig. 1 is a schematic structural diagram of a friction-electromagnetic composite power generation device shown in an embodiment of the present application
  • FIG. 2 is a schematic structural view of an electrode disk and an electrode array shown in an embodiment of the present application
  • Fig. 3 is a schematic structural view of the rotor part and the central shaft shown in the embodiment of the present application;
  • Fig. 4 is another structural schematic diagram of a friction-electromagnetic composite power generation device shown in an embodiment of the present application
  • Fig. 5 is a schematic structural diagram of a friction-electromagnetic composite power generation device for collecting wind energy shown in an embodiment of the present application
  • Fig. 6 is a schematic structural diagram of a friction-electromagnetic composite power generation device performance test platform shown in the embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of a fixing assembly shown in an embodiment of the present application.
  • Fig. 8 is a schematic flowchart of a performance testing method of a friction-electromagnetic composite power generation device shown in an embodiment of the present application;
  • Fig. 9 is a friction voltage-time (V-t) curve diagram obtained by a friction-electromagnetic composite power generation device performance test method shown in the embodiment of the present application;
  • Fig. 10 is a friction current-time (I-t) curve diagram obtained by a friction-electromagnetic composite power generation device performance testing method shown in the embodiment of the present application;
  • Fig. 11 is the triboelectricity-time (Q-t) curve diagram that a kind of friction-electromagnetic composite power generation device performance test method that the application embodiment shows is obtained;
  • Fig. 12 is an electromagnetic voltage-time (V-t) curve diagram obtained by a friction-electromagnetic composite power generation device performance testing method shown in the embodiment of the present application;
  • Fig. 13 is an electromagnetic current-time (I-t) curve obtained by a performance testing method of a friction-electromagnetic composite power generation device shown in the embodiment of the present application.
  • the embodiment of the present invention provides a friction-electromagnetic composite power generation device to solve the technical problem that random and irregular mechanical energy cannot be efficiently collected by using an electromagnetic generator or a friction nanogenerator, resulting in low energy conversion efficiency for power generation.
  • the triboelectric nanogenerator proposed by the research team of Professor Wang Zhonglin is based on the principle of friction to generate electricity - charge transfer occurs between two thin layers of friction materials with different triboelectric polarities, so that a potential difference is formed between the two, and the potential difference is used to drive electrons.
  • the directional flow generates current to realize power generation, and has the output characteristics of large open circuit voltage and small short circuit current. According to Maxwell's classical equations, it can be found that the triboelectric nanogenerator can continuously and efficiently collect low-frequency mechanical energy.
  • the electromagnetic generator is suitable for collecting high-frequency mechanical energy
  • the friction nanogenerator is suitable for collecting low-frequency mechanical energy.
  • most mechanical motion in everyday life is random and irregular—that is, a mixture of high and low frequencies, such as the vibration of bridges, the undulation of ocean waves, etc. Therefore, if only the electromagnetic generator or the frictional nanogenerator is used to collect random and irregular mechanical energy, a large amount of mechanical energy will be wasted, resulting in low energy conversion efficiency for power generation.
  • the present invention proposes a friction-electromagnetic composite power generation device.
  • Figure 1 is a friction-electromagnetic composite power generation device provided by an embodiment of the present invention.
  • a friction-electromagnetic composite power generation device provided by the present invention includes:
  • the rotor part 100, the stator part 200 and the central shaft 300, the rotor part 100 and the stator part 200 are sleeved on the central shaft 300, and a stator part 200 is sleeved on both sides of the rotor part 100;
  • the rotor part 100 includes: a rotor plate 110, The magnet array 120 and the blade array 130, the magnet array 120 is arranged on the rotor plate 110, the two axial ends of the rotor plate 110 are fixedly connected to a blade array 130, the rotor plate 110 is provided with a first through hole, and the central axis 300 passes through the first through hole.
  • a through hole is fixedly connected with the rotor plate 110, and the blade array 130 is provided with a first dielectric film;
  • the stator part 200 includes: a stator plate 210, a coil array 220, an electrode array 230 and a friction layer 240, and the coil array 220 is arranged on the stator plate 210, the electrode array 230 is fixedly connected to the inner axial surface of the stator plate 320, the friction layer 240 covers the electrode array 230, the friction layer 240 is composed of the second dielectric film; the friction layer 240 is in contact with the first dielectric film, There is a difference in electrode sequence between the first dielectric film and the second dielectric film.
  • the two sides of the rotor part refer to both sides of the rotor part in the axial direction
  • the two axial ends of the rotor plate refer to the two end faces of the rotor plate in the axial direction
  • the inner axial face of the stator plate designates The sub-plate is close to the end surface of the rotor part in the axial direction
  • the axial direction refers to the direction where the axis of the central shaft is located.
  • the central axis is perpendicular to the ground, defining that the stator plate includes an upper stator plate and a lower stator plate, the vane array includes an upper vane array (the second vane array) and a lower vane array (the first vane array), and the electrode array includes an upper electrode array And the lower electrode array, the friction layer includes the upper friction layer and the lower friction layer, which can be understood as the central axis is sequentially sleeved with the lower stator plate, the lower electrode array, the lower friction layer, the lower blade array, the rotor plate, and the upper blade.
  • the lower part of the lower friction layer covers the upper part of the lower electrode array to form a whole, and the lower part of the lower electrode array is fixedly connected with the upper part of the lower stator plate; the lower part of the lower blade array Covered with a first dielectric film, the first dielectric film on it is in contact with the top of the lower friction layer; the top of the lower blade array is fixedly connected to the bottom of the rotor plate; the top of the rotor plate is fixedly connected to the bottom of the upper blade array; The top of the upper blade array is covered with a first dielectric film, and the first dielectric film on it is in contact with the bottom of the upper friction layer; the top of the upper friction layer covers the bottom of the upper electrode array to form a whole, and the top of the upper electrode array It is fixedly connected with the lower side of the upper stator plate.
  • the beneficial effects of this embodiment are: (1) Combining the two power generation methods of electromagnetic power generation and friction power generation in one power generation device, the low-frequency mechanical energy can be efficiently converted into electrical energy through friction power generation, and the high-frequency mechanical energy can be efficiently converted into electrical energy through electromagnetic power generation.
  • the conversion into electric energy broadens the power generation bandwidth, reduces the limitation of frequency on power generation efficiency, collects more mechanical energy and converts it into electric energy, and improves the energy conversion efficiency of power generation.
  • the electrode array 230 includes N first electrodes 231 and N second electrodes 232, where N is an integer greater than 3; the first electrodes 231 and the second electrodes 232 are alternately arranged in the stator On the inner axial surface of the plate 210 , the N first electrodes 231 are electrically connected to each other, and the N second electrodes 232 are electrically connected to each other.
  • the first electrode and the second electrode are arranged on the circular electrode disk 250, and the electrode disk 250 Made of insulating material, the center of the electrode disk 250 is provided with a second through hole 251 through which the central axis passes.
  • One end surface of the electrode disk 250 is bonded to the inner axial surface of the stator plate 210, and the other end surface is circumferentially
  • the first electrodes 231 and the second electrodes 232 are arranged alternately at intervals.
  • the first electrodes 231 and the second electrodes 232 have the same shape and size, and are all fan-shaped metal coatings.
  • the inner ends of all the first electrodes 231 are arranged in the center of the electrode disk 250. Connect the first connecting ring 233 of the electrode plate to realize mutual electrical connection, and the outer ends of all the second electrodes 232 are connected through the second connecting ring 234 arranged on the outer periphery of the electrode disc to realize mutual electrical connection.
  • the materials of the electrodes and the connecting ring Similarly, it can be made on the surface of the electrode disc by copper plating, immersion gold, soldering or 3D printing.
  • a layer of second dielectric film is also provided on the end face of the electrode disk where the electrode array is arranged, so as to completely cover the electrode array.
  • the dielectric film is made of insulator material or semiconductor material.
  • the insulator material can be made of polymer polymer material, such as polyoxymethylene, wool and its fabric, silk and its fabric, cotton and its fabric, hard rubber, rayon, polyethylene , polypropylene, polyimide, polyvinyl chloride, polychlorotrifluoroethylene and polytetrafluoroethylene; semiconductor materials can be selected from inorganic semiconductor or organic semiconductor materials, such as silicon, germanium, III and V compounds, One or more of Group II and VI compounds, organic semiconductors, and non-conductive oxides and semiconducting oxides. However, it is necessary to ensure that the first dielectric film and the second dielectric film are made of different materials, so that the first dielectric film has electronegativity, and the second dielectric film has electronegativity.
  • the diameter of the second through hole 251 is smaller than the inner diameter of the first connecting ring 233 .
  • the time required to generate a potential difference between the first electrode and the second electrode is shorter, the rate of charge transfer is faster, the obtained current amplitude is higher, and the frequency is faster.
  • the introduction of more electrodes on the array is helpful to increase the accumulated charge, current and current frequency, and the number of sector electrodes is affected by the central angle. The smaller the central angle, the more sector electrodes can be set, but the electrode The quantity is also limited by the manufacturing process. Under the limitation of the process, the preferred range of the central angle of the fan-shaped electrodes is 10°-80°.
  • the distance between the electrodes determines the efficiency of triboelectric power generation, which has an extremely important impact on the overall output characteristics of the friction-electromagnetic composite power generation device.
  • the optimal value of the distance between the first electrode and the second electrode is determined through the comsol simulation structure The range is 0.02L ⁇ L, and L is the maximum width of the first electrode or the second electrode.
  • the blade array 130 is composed of a cylindrical structure and N blades 131, the middle hole of the cylindrical structure is aligned with the first through hole, and in the embodiment of the present application, the inner ends of the nine blades are uniform It is connected to the outer periphery of a cylindrical structure 132, and the middle hole of the cylindrical structure 132 allows the central shaft to pass through.
  • the shape of the axial section of the blade 131 is the same as that of the electrode. It can be regarded as a fan-shaped structure with a certain thickness formed by stretching a fan-shaped surface with the same shape as the electrode to a certain height.
  • the surface of the blade opposite to the friction layer Covered with a layer of first dielectric film. Blades can be prepared by 3D printers with ABS, PLA, nylon, resin or other flexible materials.
  • the first dielectric film 133 on the opposite surface of the blade is arranged in an arched shape, That is to say, the two edges of the first dielectric film 133 are inserted into the blade from the surface opposite to the friction layer of the blade 131 to realize fixing, so that a hollow is formed between the middle of the first dielectric film and the blade 131, and the first dielectric film 133 is arched. Part of the top is in contact with the friction layer 240 for friction, so that the first dielectric film 133 and the friction layer 240 can achieve flexible contact, which can reduce friction.
  • the first dielectric film 133 can be bent and shaped to have a fan-shaped surface with the same shape and size as the electrode, and then inserted and fixed on the surface of the blade opposite to the friction layer.
  • the fit distance between the stator part and the rotor part adjusting the friction force between the first dielectric film and the friction layer, combined with the difference obtained by the friction-electromagnetic composite power generation device performance test method in Example 3
  • the optimal fit distance is selected so that the friction-electromagnetic composite power generation device has good output performance and low starting torque at the same time.
  • a flange coupling 400 is added in the embodiment of the present application.
  • a first threaded holes 111 matching the axial threaded holes 410 on the flange coupling are provided, and four first threaded holes 111 are provided on the cylindrical end surface of the first vane array 130.1 to match the first
  • a threaded hole 111 matches the second threaded hole 134 , and the inner wall of the cylinder of the second vane array 130 .
  • the bolts are sequentially screwed into the axial threaded hole 410, the first threaded hole 111 and the second threaded hole 134 to securely connect the flange coupling 400, the rotor plate 110 and the first blade array 130.1.
  • the internal thread on the second blade array 130.2 is screwed into the external thread on the flange coupling 400 to realize the fixed connection between the second blade array 130.2 and the rotor plate 110.
  • the fixed connection between the rotor part 100 and the central shaft 300 is realized by screwing the screw into the radial threaded hole 420 on the flange coupling 400 to press the central shaft 300 .
  • the magnet array 120 includes 9 cylindrical magnets
  • the coil array 220 includes 9 coils connected in series with the same winding direction
  • the rotor plate 110 is a circular plate, and can be made of light insulating materials such as plastic, rubber, resin, etc.
  • Nine round holes are evenly opened in the circumferential direction of the plate, and the cylindrical magnets are embedded in the round holes of the rotor plate 110 and fixed with epoxy glue.
  • the stator plate 210 is a square plate, which can be made of lightweight insulating materials such as plastic, rubber, resin, etc., and a third through hole is opened in the center of the square plate, and a bearing 500 is embedded in the third through hole, and the central shaft 300 passes through the center of the bearing 500 Rotationally connected with the stator plate 210, that is, the central shaft 300 is fixedly connected with the bearing inner ring of the bearing 500, and the stator plate 210 is fixedly connected with the bearing outer ring of the bearing 500.
  • the stator plate 210 is relatively stationary.
  • the coils are embedded in the round holes of the stator plate 210 and fixed with epoxy glue.
  • the positions of the round holes of the stator plate 210 correspond to the positions of the round holes of the rotor plate, so that the coil array 220 can be aligned with the magnet during rotation.
  • the magnetic field lines of the array 120 perform a cutting motion.
  • the friction-electromagnetic composite power generation device also includes a power part 1400 and a casing 1500.
  • the casing 1500 completely wraps the stator part and the rotor part, and one end of the exposed central shaft is fixed to the connecting shaft 1410 of the power part.
  • the power part is composed of three wind blades 1420.
  • the wind blades 1420 rotate under the drive of wind energy, driving the central shaft fixedly connected to it to rotate, and then driving the rotor part fixedly connected to the central shaft to rotate, and the rotor part rotates. Friction occurs between the first dielectric film and the second dielectric film to generate triboelectric current, and the coil array cuts the magnetic induction lines of the magnet array to generate induced current, thereby converting wind energy into electrical energy.
  • FIG. 6 is a performance test platform for a friction-electromagnetic composite power generation device provided by an embodiment of the present invention.
  • the performance test platform of a friction-electromagnetic composite power generation device includes:
  • the fixed assembly 600 includes: a base 610, a platform 620 and a support rod 630, one end of the base 610 is provided with a motor accommodating groove 611, and the other end is fixedly connected with the platform 620, and the support rod 630 is arranged on the periphery of the base 610 and one end of the support rod 630 is fixedly connected to the platform 620, and the other end is fixedly connected to the friction-electromagnetic composite power generation device in Embodiment 1; the output of the electrometer 800 and the friction-electromagnetic composite power generation device
  • the terminals are electrically connected; the speed-regulating motor 700 is fixed in the motor accommodating groove, and the rotating shaft 710 of the speed-regulating motor 700 is connected with the central shaft 300 of the friction-electromagnetic composite power generation device.
  • the platform 620 is a square plate placed horizontally.
  • a base 610 is fixed on the square plate.
  • the base 610 is a rectangular parallelepiped as a whole.
  • the side of the motor accommodation groove 611 is provided with a transverse threaded through hole 614, and the rotating shaft of the speed regulating motor 700 is placed in the motor accommodation groove 611 upwards, and the bolts are screwed into the transverse thread through hole 614 to lock the speed regulating motor 700, and the speed regulating motor 700 is fixed on the base.
  • the periphery of 610 is provided with at least two support rods 630, and the support rods 630 are provided with external threads, and one end of the support rods 630 is screwed into the third threaded hole 621 on the platform 620 and then cooperates with a nut to realize the fixed connection with the platform 620, and the other end Screw in the fourth threaded hole 211 provided at the four corners of the stator plate of the friction-electromagnetic composite power generation device and fix the connection with nuts to ensure that the central shaft 300 and the rotating shaft 710 are aligned, and connect the central shaft 300 and the rotating shaft 710 through a coupling connect them.
  • the rotational speed of the rotor part of the friction-electromagnetic composite power generation device can be controlled by adjusting the speed of the speed-regulating motor, and then the output end of the friction-electromagnetic composite power generation device can be connected through the terminal clip of the electrometer to detect the friction-electromagnetic composite power generation device at this speed.
  • the electrical physical quantities such as voltage, current and electricity of the composite power generation device realize the performance test of the friction-electromagnetic composite power generation device.
  • the beneficial effect of this embodiment is: by continuously adjusting the speed of the speed-regulating motor to drive the rotor part of the friction-electromagnetic composite power generation device to rotate at low or high frequency, the random and irregular mechanical energy in the natural environment is simulated.
  • the excitation of the composite power generation device can improve the accuracy of the performance test.
  • the friction-electromagnetic composite power generation device is also provided with a rigid coupling 900, a flexible coupling 1000, a torque sensor 1100, a data acquisition card 1200 and a computer 1300;
  • the torque sensor 1100 adopts a dynamic torque sensor, one end of the rigid coupling 900 is connected with the rotating shaft 710 through a keyway, the other end is connected with one end of the torque sensor 1100 through a keyway, and the other end of the torque sensor 1100 is connected with the flexible coupling through a keyway
  • One end of the flexible coupling 1000 is connected, and the other end of the flexible coupling 1000 is locked and connected with the central shaft 300 through a transverse screw, so that the connection between the central shaft 300 and the rotating shaft 710 can be realized, and the dynamic torque sensor 1100 can also be used to obtain the real-time torque of the rotating shaft.
  • the dynamic torque sensor 1100 It is connected with the computer 1300 through a data transmission line, and the detected torque data is transmitted to the computer.
  • the electrometer 800 is connected to the computer 1300 through the data acquisition card 1200, and the electrical physical quantity detected by the electrometer 800 is converted into a digital signal through calculation and signal filtering through the data acquisition card 1200, and then the digital signal is input into the Labview on the computer 1300
  • the software is used to obtain the time-varying curves of electrical physical quantities such as voltage, current, and transferred charge output from the friction-electromagnetic composite power generation device.
  • the platform 620 is an optical platform, and there are regularly arranged third threaded holes 621 arranged on the platform, and the sizes of the third threaded holes 621 are all matched with the size of the support rod 630.
  • Three threaded holes 621 can fix friction-electromagnetic composite power generating devices of different sizes, making the performance testing platform universal.
  • four leveling feet 622 are set at the four corners of the platform, and the leveling feet 622 are connected with the platform 620 by threads.
  • the leveling level When in use, the leveling level is placed on the platform 620 and then rotated
  • the leveling foot 622 adjusts the support height until the air bubble of the leveling leveler remains in the middle of the leveler, so as to ensure that the platform will not vibrate due to the unevenness of the ground during the test and affect the test results.
  • a cuboid-shaped support 612 is provided on both sides of the base 610, and a threaded through hole 613 is opened on the support 612, and the bolts are screwed into the threaded through hole 613 and the third threaded hole 621 in turn.
  • the support 612 is locked on the platform 620 to fix the base 610 on the platform 620 , and the position of the base 610 can be moved by locking the support 612 with third threaded holes 621 at different positions on the platform 620 .
  • FIG. 8 is a performance testing method of a friction-electromagnetic composite power generation device provided by an embodiment of the present invention.
  • a method for testing the performance of a friction-electromagnetic composite power generation device provided by the present invention includes:
  • the voltage V and the electric quantity Q can be measured by an electrometer
  • T is the electrical signal output cycle
  • V o is the volume of the friction-electromagnetic composite power generation device
  • M is the torque of the central axis, which is measured by a dynamic torque sensor
  • n is The rotational speed of the rotating shaft of the speed-regulating motor
  • S is the area of an electrode
  • Material1 and Material2 are the first and second dielectric films respectively.
  • the beneficial effect of this embodiment is: detect the electrical physical quantity and torque of the friction-electromagnetic composite power generation device through the electrometer and the dynamic torque sensor, then convert the electrical physical quantity into a digital signal through the data acquisition card, and then convert the digital signal through the Labview software. The signal is converted into a graph, which can realize fast and effective testing and present the performance of the friction-electromagnetic composite power generation device more intuitively.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种摩擦-电磁复合型发电装置及其性能测试平台和方法,该装置包括转子部(100)、定子部(200)和中心轴(300),转子部(100)和定子部(200)套设在中心轴(300)上,转子部(100)轴向方向上的两侧均套设有一个定子部(200);转子部(100)设置有转子板(110)、磁铁阵列(120)和叶片阵列(130),磁铁阵列(120)固定在转子板(110)上,转子板(110)的两轴向端均固定连接一个叶片阵列(130),叶片阵列(130)设置有第一介电薄膜;定子部(200)设置有定子板(210)、线圈阵列(220)、电极阵列(230)和摩擦层(240),线圈阵列(220)固定在定子板(210)上,电极阵列(230)与定子板(210)的内侧轴向面固定连接,由第二介电薄膜构成的摩擦层(240)覆盖在电极阵列(230)上;摩擦层(240)与叶片阵列(130)上的第一介电薄膜接触,第一介电薄膜和第二介电薄膜存在电极序差异。该装置提高了发电的能量转换效率。

Description

一种摩擦-电磁复合型发电装置及其性能测试平台和方法
本申请要求于2021年11月03日提交中国专利局、申请号为202111296190.2、发明名称为“一种摩擦-电磁复合型发电装置及其性能测试平台和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及发电机技术领域,尤其涉及一种摩擦-电磁复合型发电装置及其性能测试平台和方法。
背景技术
随着科学技术的不断发展,人类对能源的需求愈加旺盛,传统能源的逐渐减少,使得可再生能源的探索已成为人们主要的关注点。可再生能源中的水能、风能等一些随机且无规则的机械能因其分布广,储量大且可供收集,使其成为人们的重点探索方向。现实生活中,多通过传统的电磁发电机采集这种机械能,如常见的发电风车和水轮发电机等,然而,传统的电磁发电机是基于法拉第电磁感应定律进行发电,其结构复杂、体积大,自然界许多微小的机械运动产生的能量电磁发电机无法采集,此外,根据麦克斯韦经典方程组可以发现,电磁感应发电往往适用于高频率的机械运动,其对于日常生活中低频机械运动的能量利用效率极低。可见电磁发电机仅能采集随机且无规则的机械能的一小部分,造成机械能的大量浪费,致使发电的能量转换效率低。
发明内容
本发明提供了一种摩擦-电磁复合型发电装置,用于解决利用电磁发电机无法高效采集随机且无规则的机械能,导致发电的能量转换效率低的问题。
本发明第一方面提供一种摩擦-电磁复合型发电装置,包括:
转子部、定子部和中心轴,该转子部和该定子部套设在该中心轴上, 该转子部的两侧均套设一个该定子部;
该转子部包括:转子板、磁铁阵列和叶片阵列,该磁铁阵列设置在该转子板上,该转子板的两轴向端均固定连接一个该叶片阵列,该转子板设置有第一通孔,该中心轴穿过该第一通孔并与该转子板固定连接,该叶片阵列设置有第一介电薄膜;
该定子部包括:定子板、线圈阵列、电极阵列和摩擦层,该线圈阵列设置在该定子板上,该电极阵列与该定子板的内侧轴向面固定连接,该摩擦层覆盖在该电极阵列上,该摩擦层由第二介电薄膜构成;
该摩擦层与该第一介电薄膜接触,该第一介电薄膜和该第二介电薄膜存在电极序差异。
在第一方面的第一种可能实现的装置中,该电极阵列包括N个第一电极和N个第二电极,该N为大于3的整数;
该第一电极和该第二电极周向交替排布,该N个第一电极相互电性连接,该N个第二电极相互电性连接。
结合第一方面的第一种可能实现的装置,在第二种可能实现的装置中,该定子部还包括圆形的电极盘,该电极盘的中心设置有供该中心轴穿过的第二通孔,该电极盘的一端面与该定子板的内侧轴向面粘接,另一端面设置该电极阵列;
该第一电极和该第二电极沿该电极盘的周向等间距交替排布,该第一电极和该第二电极的形状相同且均为扇形的金属镀层,该第一电极的内端与设置在该电极盘中心的第一连接环连接,该第二电极的外端与设置在该电极盘外周的第二连接环连接;
该第二通孔的孔径小于该第一连接环的内径。
结合第一方面的第二种可能实现的装置,在第三种可能实现的装置中,该第一电极和该第二电极的圆心角的取值范围为10°~80°;
该第一电极和该第二电极的间距的取值范围为0.02L~L,其中L为第一电极或第二电极的最大宽度。
结合第一方面的第二种可能实现的装置,在第四种可能实现的装置中,该叶片阵列包括圆筒结构和N个叶片,该N个叶片均匀连接在圆筒结构的外 周,该圆筒结构的中孔与该第一通孔对齐。
结合第一方面的第四种可能实现的装置,在第五种可能实现的装置中,该叶片的轴向截面的形状与电极的形状相同,该第一介电薄膜覆盖该叶片与该摩擦层相对的面。
结合第一方面的第四种可能实现的装置,在第六种可能实现的装置中,该第一介电薄膜包括N个拱形薄膜,该拱形薄膜的顶部与该摩擦层柔性接触,该拱形薄膜与该摩擦层的接触面积等于电极的轴向截面面积。
结合第一方面的第四种可能实现的装置,在第七种可能实现的装置中,还包括法兰联轴器;
该该转子板的两轴向端均固定连接一个所述叶片阵列具体为:所述转子板的一轴向端固定连接第一叶片阵列,另一轴向端固定连接第二叶片阵列;
该第一通孔的周围开设有4个第一螺纹孔,该第一螺纹孔与该法兰联轴器上的轴向螺纹孔相匹配;
该第一阵列的圆筒端面开设有4个与该第一螺纹孔相匹配的第二螺纹孔,该第二阵列的圆筒内壁设置有与该法兰联轴器上的外螺纹相匹配的内螺纹;
该第一阵列通过螺栓与轴向螺纹孔、第一螺纹孔以及第二螺纹孔的配合,与该转子板的一轴向端固定连接,该第二阵列通过该内螺纹和该外螺纹的配合,与该转子板的另一轴向端固定连接;
该法兰联轴器通过其上的径向螺纹孔与螺钉的配合,与该中心轴固定连接。
结合第一方面的第一种可能实现的装置,在第八种可能实现的装置中,该磁铁阵列包括N个圆筒状磁铁,该线圈阵列包括N个以相同缠绕方向串联连接的线圈;
该磁铁内嵌在该转子板中,该线圈内嵌在该定子板中。
结合第一方面的第四种可能实现的装置,在第九种可能实现的装置中,该转子板为圆形板,该磁铁沿该转子板的周向均匀排布;
该线圈以与该磁铁相同的排布方式内嵌在该定子板中。
在第一方面的第十种可能实现的装置中,该定子板的中心开设有第三通孔,该第三通孔内嵌有轴承,该中心轴穿过该轴承与该定子板转动连接。
本发明第二方面提供一种摩擦-电磁复合型发电装置性能测试平台,包括:
固定组件、调速电机和静电计;
该固定组件包括:底座、平台和支撑杆,该底座的一端开设有电机容置槽,另一端与该平台固定连接,该支撑杆设置在该底座的周边且该支撑杆的一端与该平台固定连接,另一端与如权利要求1至12任一项该摩擦-电磁复合型发电装置固定连接;
该静电计与该摩擦-电磁复合型发电装置的输出端电性连接;
该调速电机固定在该电机容置槽内,该调速电机的转动轴与该摩擦-电磁复合型发电装置的中心轴连接。
在第二方面的第一种可能实现的装置中,还包括:刚性联轴器、柔性联轴器、扭矩传感器、数据采集卡和计算机;
该静电计通过该数据采集卡与该计算机连接;
该扭矩传感器与该计算机连接;
该刚性联轴器的一端与该转动轴连接,另一端通过该扭矩传感器与该柔性联轴器的一端连接,该柔性联轴器的另一端与该中心轴连接。
本发明第三方面提供一种摩擦-电磁复合型发电装置性能测试方法,采用本发明第二方面所提供的摩擦-电磁复合型发电装置性能测试平台进行测试,包括:
通过调速电机调节摩擦-电磁复合型发电装置的转速;
通过静电计获取该转速对应的电性物理量,该电性物理量包括电压、电流和电量;
根据该电性物理量计算性能指标值,该性能指标值包括周期平均输出功率、功率密度、摩擦起电表面电荷密度或材料品质因数。
在第三方面的第一种可能实现的方法中,该通过静电计获取该转速对应的电性物理量之后,还包括:
通过数据采集卡将该电性物理量转换成数字信号;
通过Labview软件将该数字信号转换成变化曲线图。
在第三方面的第二种可能实现的方法中,该通过静电计获取该转速对应的电性物理量包括:
通过静电计获取该转速对应的电性物理量,通过扭矩传感器获取该转速对应的扭矩;
根据该电性物理量和该扭矩计算能量利用效率。
从以上技术方案可以看出,本发明具有以下优点:
本发明提供的摩擦-电磁复合型发电装置设置有转子部、定子部和中心轴,转子部和定子部套设在中心轴上,转子部轴向方向上的两侧均套设有一个定子部;转子部设置有转子板、磁铁阵列和叶片阵列,磁铁阵列固定在转子板上,转子板的两轴向端均固定连接一个叶片阵列,叶片阵列设置有第一介电薄膜;定子部设置有定子板、线圈阵列、电极阵列和摩擦层,线圈阵列固定在定子板上,电极阵列与电子版的内侧轴向面固定连接,由第二介电薄膜构成的摩擦层覆盖在电极阵列上;摩擦层与叶片阵列上的第一介电薄膜接触,如此在转子部发生旋转时,第一介电薄膜与第二介电薄膜发生摩擦,因为第一介电薄膜和第二介电薄膜存在电极序差异,且第一介电薄膜和电极阵列的摩擦极性相差很大,所以电极阵列表面的电荷会因发生聚集和转移,从而产生电势差,使得电荷定向移动形成摩擦电流,实现摩擦发电;同时转子部发生旋转过程中,转子板上的磁铁阵列和定子板上线圈阵列发生相对运动,使得线圈阵列对磁铁阵列的磁感线做切割运动,产生感应电流,实现电磁发电。将两种发电方式结合在一起,减小了频率对机械能采集的限制,能采集更多的机械能转换成电能,提高了发电的能量转换效率。
此外,将摩擦纳米发电机和电磁发电机整合在一起,实现优势互补,不再受:匹配负载过高,对于小内阻的器件无法实现高效地供能;或匹配负载过低,对于大内阻的器件无法高效地供能的限制,不仅提高了能量转化效率,还拓宽了发电装置的应用范围。
同时,摩擦-电磁复合型发电装置所用材料价格低廉,装置结构的模块化使其可大批量制作且易装配更换方便,使其具有制作成本低,维修成本 低的优势。
再有,摩擦-电磁复合型发电装置的体积小,重量轻,结构稳定性强,封装方便,环境中的机械能直接驱动摩擦-电磁复合型发电装置的转子部进行发电,无复杂的机械传动和转换机构,在复杂环境载荷下不易损毁,具有耐复杂环境负荷的优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例示出的一种摩擦-电磁复合型发电装置的结构示意图;
图2为本申请实施例示出的电极盘和电极阵列的结构示意图;
图3为本申请实施例示出的转子部和中心轴的结构示意图;
图4为本申请实施例示出的一种摩擦-电磁复合型发电装置的另一结构示意图;
图5为本申请实施例示出的一种用于采集风能的摩擦-电磁复合型发电装置的结构示意图;
图6为本申请实施例示出的一种摩擦-电磁复合型发电装置性能测试平台的结构示意图;
图7为本申请实施例示出的固定组件的结构示意图;
图8为本申请实施例示出的一种摩擦-电磁复合型发电装置性能测试方法的流程示意图;
图9为本申请实施例示出的一种摩擦-电磁复合型发电装置性能测试方法所获得的摩擦电压—时间(V—t)曲线图;
图10为本申请实施例示出的一种摩擦-电磁复合型发电装置性能测试方法所获得的摩擦电流—时间(I—t)曲线图;
图11为本申请实施例示出的一种摩擦-电磁复合型发电装置性能测试 方法所获得的摩擦电量—时间(Q—t)曲线图;
图12为本申请实施例示出的一种摩擦-电磁复合型发电装置性能测试方法所获得的电磁电压—时间(V—t)曲线图;
图13为本申请实施例示出的一种摩擦-电磁复合型发电装置性能测试方法所获得的电磁电流—时间(I—t)曲线图。
附图标记:100-转子部,110-转子板,111-第一螺纹孔,120-磁铁阵列,130-叶片阵列130.1-第一叶片阵列,130.2-第二叶片阵列,131-叶片,132-圆筒结构,133-第一介电薄膜,134-第二螺纹孔,200-定子部,210-定子板,211-第四螺纹孔,220-线圈阵列,230-电极阵列,231-第一电极,232-第二电极,233-第一连接环,234-第二连接环,240-摩擦层,250-电极盘,251-第二通孔,300-中心轴,400-法兰联轴器,410-轴向螺纹孔,420-径向螺纹孔,500-轴承,600-固定组件,610-底座,611-电机容置槽,612-支座,613-螺纹通孔,614-横向螺纹通孔,620-平台,621-第三螺纹孔,622-调平地脚,630-支撑杆,700-调速电机,710-转动轴,800-静电计,900-刚性联轴器,1000-柔性联轴器,1100-扭矩传感器,1200-数据采集卡,1300-计算机,1400-动力部,1410-连接轴,1420-风叶片,1500-外壳。
具体实施方式
本发明实施例提供了一种摩擦-电磁复合型发电装置,用于解决的技术问题为利用电磁发电机或摩擦纳米发电机无法高效采集随机且无规则的机械能,导致发电的能量转换效率低。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
由王中林教授研究团队提出的摩擦纳米发电机是基于摩擦原理进行发电—两个摩擦电极性不同的摩擦材料薄层之间会发生电荷转移而使得二者之间形成一个电势差,利用该电势差驱使电子定向流动从而产生电流实现 发电,具有开路电压大、短路电流小的输出特性。根据麦克斯韦经典方程组可以发现,摩擦纳米发电机可以持续高效地收集低频机械能。
可见电磁发电机适用于采集高频的机械能,摩擦纳米发电机适用于采集低频的机械能。但是,日常生活中的大部分机械运动都是随机且无规则的—即高频与低频混合,例如桥梁的振动、海浪的波动等。所以如果仅利用电磁发电机或仅利用摩擦纳米发电机对随机且无规则的机械能进行采集,都会造成机械能的大量浪费,致使发电的能量转换效率低。为了高效地收集无规则的机械能,提高发电的能量转换效率,设计一种可以高效收集机械能的装置是极其必要的,故本发明提出一种摩擦-电磁复合型发电装置。
实施例一
请参阅图1至4,图1为本发明实施例提供的一种摩擦-电磁复合型发电装置。
本发明提供的一种摩擦-电磁复合型发电装置,包括:
转子部100、定子部200和中心轴300,转子部100和定子部200套设在中心轴300上,转子部100的两侧均套设一个定子部200;转子部100包括:转子板110、磁铁阵列120和叶片阵列130,磁铁阵列120设置在转子板110上,转子板110的两轴向端均固定连接一个叶片阵列130,转子板110设置有第一通孔,中心轴300穿过第一通孔并与转子板110固定连接,叶片阵列130设置有第一介电薄膜;定子部200包括:定子板210、线圈阵列220、电极阵列230和摩擦层240,线圈阵列220设置在定子板210上,电极阵列230与定子板320的内侧轴向面固定连接,摩擦层240覆盖在电极阵列230上,摩擦层240由第二介电薄膜构成;摩擦层240与第一介电薄膜接触,第一介电薄膜和第二介电薄膜存在电极序差异。
需要说明的是,转子部的两侧指转子部在轴向方向上的两侧,转子板的两轴向端指转子板在轴向方向上的两个端面,定子板的内侧轴向面指定子板在轴向方向上靠近转子部的端面,轴向方向指中心轴轴心线所在方向。
具体地,中心轴垂直于地面,定义定子板包括上定子板和下定子板,叶片阵列包括上叶片阵列(第二叶片阵列)和下叶片阵列(第一叶片阵列), 电极阵列包括上电极阵列和下电极阵列,摩擦层包括上摩擦层和下摩擦层,可以理解为中心轴从下到上依次套设着下定子板、下电极阵列、下摩擦层、下叶片阵列、转子板、上叶片阵列、上摩擦层、上电极阵列和上定子板,其中:下摩擦层的下面覆盖在下电极阵列的上面形成一个整体,下电极阵列的下面与下定子板的上面固定连接;下叶片阵列的下面覆盖有第一介电薄膜,其上的第一介电薄膜与下摩擦层的上面接触;下叶片阵列的上面与转子板的下面固定连接;转子板的上面与上叶片阵列的下面固定连接;上叶片阵列的上面覆盖有第一介电薄膜,其上的第一介电薄膜与上摩擦层的下面接触;上摩擦层的上面覆盖在上电极阵列的下面形成一个整体,上电极阵列的上面与上定子板的下面固定连接。如此设计,在中心轴受到外部机械能的激励发生转动时,带动转子部旋转,此时,转子板上的磁铁阵列与定子板上的线圈阵列发生相对运动形成一个电磁发电机,线圈阵列对旋转磁铁阵列的磁感线做切割运动,为阻碍磁场的变化,线圈感应出电流;同时,叶片阵列的旋转使得其上的第一介电薄膜与摩擦层发生摩擦,使得电极阵列产生电势差,驱动电荷定向移动,产生摩擦电流,形成一个摩擦纳米发电机。
本实施例的有益效果是:(1)将电磁发电和摩擦发电两种发电方式结合在一台发电装置中,通过摩擦发电将低频机械能高效地转换成电能,通过电磁发电将高频机械能高效地转换成电能,拓宽了发电带宽,减小了频率对发电效率限制,能采集更多的机械能转换成电能,提高发电的能量转换效率。
(2)两个电机阵列、摩擦层、叶片阵列和线圈阵列的设计,等于将两个摩擦纳米发电机和两个电磁发电机同相位并联再全波整流地连接,实现两者输出特性的有效互补,使得摩擦-电磁复合型发电装置在很宽的工作频率范围内均能提供较高的开路电压和较大的短路电流。
(3)将摩擦纳米发电机和电磁发电机整合在一起,实现优势互补,不再受:匹配负载过高,对于小内阻的器件无法实现高效地供能;或匹配负载过低,对于大内阻的器件无法高效地供能的限制,不仅提高了能量转化效率,还可以拓宽发电装置的应用范围。
具体地,如图2所示,电极阵列230包括N个第一电极231和N个第二电极232,N为大于3的整数;第一电极231和第二电极232周向交替排布在定子板210的内侧轴向面上,N个第一电极231相互电性连接,N个第二电极232相互电性连接。在本申请实施例中,取N=9,为了消除定子板上线圈阵列可能对电极阵列的电荷流动产生影响,将第一电极和第二电极设置在圆形的电极盘250上,电极盘250由绝缘材料制作而成,电极盘250的中心设置有供中心轴穿过的第二通孔251,电极盘250的一端面与定子板210的内侧轴向面粘接,另一端面周向等间距交替设置第一电极231和第二电极232,第一电极231和第二电极232的形状大小相同,且均为扇形的金属镀层,全部第一电极231的内端通过设置在电极盘250中心的第一连接环233连接起来,实现相互电性连接,全部第二电极232的外端通过设置在电极盘外周的第二连接环234连接起来,实现相互电性连接,电极和连接环的材料相同,可通过镀铜、沉金、焊锡或3D打印等工艺制作在电极盘表面。电极盘设置电极阵列的这一端面还设置有一层第二介电薄膜,将电极阵列完全覆盖。介电薄膜由绝缘体材料或半导体材料制作而成,绝缘体材料可选用聚合物高分子材料,如聚甲醛、羊毛及其织物、蚕丝及其织物、棉及其织物、硬橡胶、人造纤维、聚乙烯、聚丙烯、聚酞亚胺、聚氯乙烯、聚三氟氯乙烯和聚四氟乙烯;半导体材料可选用无机半导体或者有机半导体材料,如可选硅、锗、第Ⅲ和第Ⅴ族化合物、第Ⅱ和第Ⅵ族化合物、有机半导体,以及非导电性氧化物和半导体氧化物中的一种或几种进行制作。但要保证第一介电薄膜和第二介电薄膜的制作材料不同,让第一介电薄膜具有电正性,第二介电薄膜具有电负性,在转子部转动过程中,第一介电薄膜和第二介电薄膜相互摩擦,第一电极和第二电极将感应出不等量的感应电荷,产生电势差驱动电子在外部负载电路定向移动产生交替变化的电流。为了确保中心轴300不影响电极的电性,第二通孔251的孔径要小于第一连接环233的内径。
优选地,当电极的数目增加时,第一电极和第二电极之间产生电势差所需的时间更短,电荷转移的速率更快,得到的电流幅值更高,频率更快,因此在电极阵列上引入更多的电极对提高积累的电荷量、电流以及电流频率具有一定的帮助,而扇形电极的数目受其圆心角的影响,圆心角越小, 可设置的扇形电极越多,但电极数量同时也受到制作工艺限制,在工艺的限制下扇形电极的圆心角的优选范围为10°~80°。同时,电极数量的增加,相应的线圈、磁铁和叶片的数量也增加,可以保证电磁发电和摩擦发电所产生的电流的相位相似,进一步可通过能量管理电路将输入电能有效地传递给用电器或存储起来。电极间的间距决定了摩擦发电的效率,对摩擦-电磁复合型发电装置的总体输出特性产生极其重要的影响,通过comsol模拟仿真结构确定第一电极和第二电极之间间距的最优取值范围为0.02L~L,L为第一电极或第二电极的最大宽度。
具体地,如图3所示,叶片阵列130由圆筒结构和N个叶片131组成,圆筒结构的中孔与第一通孔对齐,在本申请实施例中,9个叶片的内端均匀连接在一个圆筒结构132的外周,圆筒结构132的中孔供中心轴穿过。叶片131的轴向截面的形状与电极的形状大小相同,可以看成是由一个与电极的形状相同的扇形面拉伸一定高度而成的具有一定厚度的扇形结构,叶片与摩擦层相对的面上覆盖着一层第一介电薄膜。叶片可用ABS、PLA、尼龙、树脂或其他柔性材料通过3D打印机制备。
优选地,如图4所示,为了减小叶片与摩擦层之间的旋转摩擦力,使得发电装置拥有更小的启动扭矩,将叶片相对面上的第一介电薄膜133设置成拱形,即将第一介电薄膜133的两边缘从叶片131与摩擦层相对的面插入叶片中实现固定,使得第一介电薄膜的中间与叶片131之间形成镂空,让第一介电薄膜133拱起部分的顶部与摩擦层240接触摩擦,如此第一介电薄膜133和摩擦层240即可实现柔性接触,可以减小摩擦力。更优地,可先将第一介电薄膜133折弯成型,使其具有一个形状大小和电极相同的扇形面,再将其插入固定在叶片与摩擦层相对的面上。可通过调节定子部和转子部之间的配合间距,调节第一介电薄膜和摩擦层之间的摩擦力,再结合实施例三中的摩擦-电磁复合型发电装置性能测试方法所获得的不同摩擦力下的测试数据,选取最优的配合间距使得摩擦-电磁复合型发电装置同时具备良好的输出性能和低启动扭矩。
具体地,如图3所示,为了实现叶片阵列与转子板的固定连接,在本申请实施例中增设一个法兰联轴器400。在转子板110第一通孔的周围开设4 个与法兰联轴器上轴向螺纹孔410相适配的第一螺纹孔111,在第一叶片阵列130.1的圆筒端面开设4个与第一螺纹孔111相匹配的第二螺纹孔134,第二叶片阵列130.2的圆筒内壁设置有与法兰联轴器400上的外螺纹相匹配的内螺纹。螺栓依次旋进轴向螺纹孔410、第一螺纹孔111和第二螺纹孔134,将法兰联轴器400、转子板110和第一叶片阵列130.1固定连接。将第二叶片阵列130.2上的内螺纹旋进法兰联轴器400上的外螺纹,实现第二叶片阵列130.2与转子板110固定连接。通过将螺钉旋进法兰联轴器400上的径向螺纹孔420对中心轴300压紧,实现转子部100与中心轴300的固定连接。
具体地,磁铁阵列120包括9个圆柱状磁铁,线圈阵列220包括9个以相同缠绕方向串联连接的线圈,转子板110为圆形板,可用塑料、橡胶、树脂等轻质绝缘材料制备,转子板周向均匀开设有9个圆孔,圆柱状磁铁内嵌在转子板110的圆孔中并用环氧胶进行固定。定子板210为方形板,可用塑料、橡胶、树脂等轻质绝缘材料制备,在方形板的中心开设有第三通孔,第三通孔内嵌有轴承500,中心轴300穿过轴承500中心与定子板210转动连接,即中心轴300与轴承500的轴承内圈固定连接,定子板210与轴承500的轴承外圈固定连接,中心轴300旋转时,定子板210相对静止。同样的,线圈内嵌在定子板210的圆孔中并用环氧胶进行固定,定子板210的圆孔的位置和转子板的圆孔的位置相对应,保证旋转过程中线圈阵列220能对磁铁阵列120的磁感线做切割运动。
具体地,摩擦-电磁复合型发电装置还包括动力部1400和外壳1500,如图5所示,外壳1500将定子部和转子部完全包裹,并露出中心轴的一端与动力部的连接轴1410固定连接,动力部由三个风叶片1420组成,风叶片1420在风能的驱动下发生旋转,带动与其固定连接的中心轴转动,进而带动与中心轴固定连接的转子部发生旋转,转子部发生旋转,第一介电薄膜和第二介电薄膜发生摩擦,产生摩擦电流,线圈阵列切割磁铁阵列的磁感线,产生感应电流,从而将风能转换成电能。
实施例二
请参阅图6至7,图6为本发明实施例提供的一种摩擦-电磁复合型发电装置性能测试平台。
本发明提供的一种摩擦-电磁复合型发电装置性能测试平台,包括:
固定组件600、调速电机700和静电计800;固定组件600包括:底座610、平台620和支撑杆630,底座610的一端开设有电机容置槽611,另一端与平台620固定连接,支撑杆630设置在底座610的周边且支撑杆630的一端与平台620固定连接,另一端与实施例一中的摩擦-电磁复合型发电装置固定连接;静电计800与摩擦-电磁复合型发电装置的输出端电性连接;调速电机700固定在电机容置槽内,调速电机700的转动轴710与摩擦-电磁复合型发电装置的中心轴300连接。
具体地,平台620为一水平放置的方形板,方形板上固定着一个底座610,底座610整体呈现为一个长方体,其底面与方形板的上面贴合,上面开设有一个电机容置槽611,电机容置槽611的侧面开设有横向螺纹通孔614,调速电机700转动轴朝上地放置在电机容置槽611,从横向螺纹通孔614旋进螺栓锁紧调速电机700,在底座610的周边设置有至少两根支撑杆630,支撑杆630上设置有外螺纹,支撑杆630的一端旋进平台620上的第三螺纹孔621再配合螺母实现与平台620的固定连接,另一端旋进设置在摩擦-电磁复合型发电装置定子板四角处的第四螺纹孔211并配合螺母固定连接,保证中心轴300和转动轴710对齐,并通过联轴器将中心轴300和转动轴710连接起来。如此即可通过调节调速电机的转速控制摩擦-电磁复合型发电装置的转子部转速,再通过静电计的接线夹连接摩擦-电磁复合型发电装置的输出端,检测在该转速下摩擦-电磁复合型发电装置的电压、电流和电量等电性物理量,实现对摩擦-电磁复合型发电装置的性能测试。
本实施例的有益效果是:通过连续调节调速电机的转速以带动摩擦-电磁复合型发电装置的转子部以低频或高频转动,模拟了自然环境中随机且无规则的机械能对摩擦-电磁复合型发电装置的激励,可提高性能测试的准确性。
具体地,如图6所示,在本申请实施例中,摩擦-电磁复合型发电装置还设置有刚性联轴器900、柔性联轴器1000、扭矩传感器1100、数据采集卡1200和计算机1300;扭矩传感器1100采用动态扭矩传感器,刚性联轴器900的一端与转动轴710采用键槽配合连接,另一端通过键槽与扭矩传感器1100 的一端配合连接,扭矩传感器1100的另一端通过键槽与柔性联轴器1000的一端连接,柔性联轴器1000的另一端通过横向螺钉与中心轴300锁紧连接,如此即可实现中心轴300和转动轴710的连接,还可以通过动态扭矩传感器1100实时获取转动轴的启动扭矩和不同转速下的扭矩,在以摩擦-电磁复合型发电装置作为对象进行力学仿真时,通过测试得到的扭矩变化曲线,可以作为发电阻尼模块参数,增强仿真的可靠性,动态扭矩传感器1100与计算机1300通过数据传输线连接,将检测到的扭矩数据传输给计算机。静电计800通过数据采集卡1200与计算机1300连接,通过数据采集卡1200对静电计800检测到的电性物理量进行计算和信号滤波等处理转换成数字信号,然后将数字信号输入计算机1300上的Labview软件以获得摩擦-电磁复合型发电装置输出的电压、电流和转移电荷量等电性物理量随时间变化的曲线。
优化地,平台620为光学平台,平台上设置有规律排列的第三螺纹孔621,第三螺纹孔621的大小都与支撑杆630的大小相匹配,通过将支撑杆630旋进不同位置的第三螺纹孔621,即可固定不同大小的摩擦-电磁复合型发电装置,使得性能测试平台具有通用性。而为了增加性能测试平台的稳定性,在平台的四角处设置四个调平地脚622,调平地脚622与平台620通过螺纹连接,使用时,将调平水准器置于平台620上,然后旋转调平地脚622调节支撑高度,直至调平水准器气泡保持在水准器正中间,保证平台在测试过程中不会因地面的不平整而颤动而影响测试结果。为了增加性能测试平台的可调性,通过在底座610的两侧设置长方体状的支座612,支座612上开设有螺纹通孔613,螺栓依次旋进螺纹通孔613和第三螺纹孔621将支座612锁紧在平台620上,以将底座610固定在平台620上,通过选用平台620上不同位置的第三螺纹孔621锁紧支座612,即可移动底座610的位置。
实施例三
请参阅图8至13,图8为本发明实施例提供的一种摩擦-电磁复合型发电装置性能测试方法。
本发明提供的一种摩擦-电磁复合型发电装置性能测试方法,包括:
10:通过调速电机调节摩擦-电磁复合型发电装置的转速;20:通过静电计获取转速对应的电性物理量,电性物理量包括电压、电流和电量;30: 根据电性物理量计算性能指标值,性能指标值包括周期平均输出功率、功率密度、摩擦起电表面电荷密度或材料品质因数。
具体地,:1)将摩擦-电磁复合型发电装置固定在实施例二中所提供的摩擦-电磁复合型发电装置的性能测试平台上,2)打开计算机的数据处理与分析软件Labview,进行清零;3)打开静电计,选择需要测试的电性物理量(电压V、电流I、电量Q),选择合适的量程,调节Labview软件和静电计量程保持一致;4)按静电计“归零”按钮进行清零;5)打开调速电机开关,转动转速转盘;6)读取动态扭矩传感器实时扭矩M;7)点击Labview软件中启动按钮,再次按静电计“归零”按钮,进行测试,得到电压V、电流I以及电量Q随时间变化的曲线;8)改变调速电机的转速,再次重复2~7,得到不同转速下摩擦发电方式所产生的电压V、电流I、电量Q随时间变化的曲线如图9至11所示,以及电磁发电方式所产生的电压V、电流I随时间变化的曲线如图12和13所示;9)测试完毕,将调速电机转速转盘旋回“0”处,关闭调速电机,关闭静电计。最后进行数据处理:计算摩擦-电磁复合型发电装置周期平均输出功率
Figure PCTCN2021134276-appb-000001
功率密度P D,能量利用效率C p,摩擦起电表面电荷密度σ和材料品质因数FOM DM。计算公式如下所示:
Figure PCTCN2021134276-appb-000002
Figure PCTCN2021134276-appb-000003
Figure PCTCN2021134276-appb-000004
Figure PCTCN2021134276-appb-000005
Figure PCTCN2021134276-appb-000006
σ FEP/Ga=133.24μC/m 2
其中,电压V与电量Q可通过静电计测得,T为电信号输出周期,V o为摩擦-电磁复合型发电装置的体积,M为中心轴的扭矩,通过动态扭矩传感器测得,n为调速电机转动轴的转速,S为一个电极的面积,Material1和Material2分别为第一、第二介电薄膜。
本实施例的有益效果是:通过静电计和动态扭矩传感器检测摩擦-电磁复合型发电装置的电性物理量和扭矩,然后通过数据采集卡将电性物理量转换成数字信号,再通过Labview软件将数字信号转换成曲线图,可实现快速有效的测试并将摩擦-电磁复合型发电装置的性能更直观地进行呈现。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在 一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种摩擦-电磁复合型发电装置,其特征在于,包括:
    转子部、定子部和中心轴,所述转子部和所述定子部套设在所述中心轴上,所述转子部的两侧均套设一个所述定子部;
    所述转子部包括:转子板、磁铁阵列和叶片阵列,所述磁铁阵列设置在所述转子板上,所述转子板的两轴向端均固定连接一个所述叶片阵列,所述转子板设置有第一通孔,所述中心轴穿过所述第一通孔并与所述转子板固定连接,所述叶片阵列设置有第一介电薄膜;
    所述定子部包括:定子板、线圈阵列、电极阵列和摩擦层,所述线圈阵列设置在所述定子板上,所述电极阵列与所述定子板的内侧轴向面固定连接,所述摩擦层覆盖在所述电极阵列上,所述摩擦层由第二介电薄膜构成;
    所述摩擦层与所述第一介电薄膜接触,所述第一介电薄膜和所述第二介电薄膜存在电极序差异。
  2. 根据权利要求1所述的一种摩擦-电磁复合型发电装置,其特征在于:
    所述电极阵列包括N个第一电极和N个第二电极,所述N为大于3的整数;
    所述第一电极和所述第二电极周向交替排布,所述N个第一电极相互电性连接,所述N个第二电极相互电性连接。
  3. 根据权利要求2所述的一种摩擦-电磁复合型发电装置,其特征在于:
    所述定子部还包括圆形的电极盘,所述电极盘的中心设置有供所述中心轴穿过的第二通孔,所述电极盘的一端面与所述定子板的内侧轴向面粘接,另一端面设置所述电极阵列;
    所述第一电极和所述第二电极沿所述电极盘的周向等间距交替排布,所述第一电极和所述第二电极的形状相同且均为扇形的金属镀层,所述第一电极的内端与设置在所述电极盘中心的第一连接环连接,所述第二电极的外端与设置在所述电极盘外周的第二连接环连接;
    所述第二通孔的孔径小于所述第一连接环的内径。
  4. 根据权利要求3所述的一种摩擦-电磁复合型发电装置,其特征在于:
    所述第一电极和所述第二电极的圆心角的取值范围为10°~80°;
    所述第一电极和所述第二电极的间距的取值范围为0.02L~L,其中L为第一电极或第二电极的最大宽度。
  5. 根据权利要求3所述的一种摩擦-电磁复合型发电装置,其特征在于:
    所述叶片阵列包括圆筒结构和N个叶片,所述N个叶片均匀连接在圆筒结构的外周,所述圆筒结构的中孔与所述第一通孔对齐;
    所述叶片的轴向截面的形状与电极的形状相同,所述第一介电薄膜覆盖所述叶片与所述摩擦层相对的面。
  6. 根据权利要求3所述的一种摩擦-电磁复合型发电装置,其特征在于:
    所述叶片阵列包括圆筒结构和N个叶片,所述N个叶片均匀连接在圆筒结构的外周,所述圆筒结构的中孔与所述第一通孔对齐;
    所述第一介电薄膜包括N个拱形薄膜,所述拱形薄膜的顶部与所述摩擦层柔性接触,所述拱形薄膜与所述摩擦层的接触面积等于电极的轴向截面面积。
  7. 根据权利要求5所述的一种摩擦-电磁复合型发电装置,其特征在于,还包括法兰联轴器;
    所述转子板的两轴向端均固定连接一个所述叶片阵列具体为:所述转子板的一轴向端固定连接第一叶片阵列,另一轴向端固定连接第二叶片阵列;
    所述第一通孔的周围开设有4个第一螺纹孔,所述第一螺纹孔与所述法兰联轴器上的轴向螺纹孔相匹配;
    所述第一叶片阵列的圆筒端面开设有4个与所述第一螺纹孔相匹配的第二螺纹孔,所述第二叶片阵列的圆筒内壁设置有与所述法兰联轴器上的外螺纹相匹配的内螺纹;
    所述第一叶片阵列通过螺栓与轴向螺纹孔、第一螺纹孔以及第二螺纹孔的配合,与所述转子板的一轴向端固定连接,所述第二叶片阵列通过所述内螺纹和所述外螺纹的配合,与所述转子板的另一轴向端固定连接;
    所述法兰联轴器通过其上的径向螺纹孔与螺钉的配合,与所述中心轴固定连接。
  8. 根据权利要求2所述的一种摩擦-电磁复合型发电装置,其特征在于:
    所述磁铁阵列包括N个圆筒状磁铁,所述线圈阵列包括N个以相同缠绕方向串联连接的线圈;
    所述磁铁内嵌在所述转子板中,所述转子板为圆形板,所述磁铁沿所述转子板的周向均匀排布;
    所述线圈以与所述磁铁相同的排布方式内嵌在所述定子板中。
  9. 根据权利要求1所述的一种摩擦-电磁复合型发电装置,其特征在于:
    所述定子板的中心开设有第三通孔,所述第三通孔内嵌有轴承,所述中心轴穿过所述轴承与所述定子板转动连接。
  10. 一种摩擦-电磁复合型发电装置性能测试平台,其特征在于,包括:
    固定组件、调速电机和静电计;
    所述固定组件包括:底座、平台和支撑杆,所述底座的一端开设有电机容置槽,另一端与所述平台固定连接,所述支撑杆设置在所述底座的周边且所述支撑杆的一端与所述平台固定连接,另一端与如权利要求1至9任一项所述摩擦-电磁复合型发电装置固定连接;
    所述静电计与所述摩擦-电磁复合型发电装置的输出端电性连接;
    所述调速电机固定在所述电机容置槽内,所述调速电机的转动轴与所述摩擦-电磁复合型发电装置的中心轴连接。
  11. 根据权利要求10所述的一种摩擦-电磁复合型发电装置性能测试平台,其特征在于,还包括:刚性联轴器、柔性联轴器、扭矩传感器、数据采集卡和计算机;
    所述静电计通过所述数据采集卡与所述计算机连接;
    所述扭矩传感器与所述计算机连接;
    所述刚性联轴器的一端与所述转动轴连接,另一端通过所述扭矩传感器与所述柔性联轴器的一端连接,所述柔性联轴器的另一端与所述中心轴连接。
  12. 一种摩擦-电磁复合型发电装置性能测试方法,其特征在于,采用权利要求10或11所述的摩擦-电磁复合型发电装置性能测试平台进行测试,包括:
    通过调速电机调节摩擦-电磁复合型发电装置的转速;
    通过静电计获取所述转速对应的电性物理量,所述电性物理量包括电压、电流和电量;
    根据所述电性物理量计算性能指标值,所述性能指标值包括周期平均输出功率、功率密度、摩擦起电表面电荷密度或材料品质因数。
  13. 根据权利要求12所述的一种摩擦-电磁复合型发电装置性能测试方法,其特征在于,所述通过静电计获取所述转速对应的电性物理量之后,还包括:
    通过数据采集卡将所述电性物理量转换成数字信号;
    通过Labview软件将所述数字信号转换成变化曲线图;
    所述通过静电计获取所述转速对应的电性物理量包括:通过静电计获取所述转速对应的电性物理量,通过扭矩传感器获取所述转速对应的扭矩;
    根据所述电性物理量和所述扭矩计算能量利用效率。
PCT/CN2021/134276 2021-11-03 2021-11-30 一种摩擦-电磁复合型发电装置及其性能测试平台和方法 WO2023077586A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022513842A JP7487966B2 (ja) 2021-11-03 2021-11-30 摩擦電磁複合型発電装置とその性能テストプラットフォーム及び方法
GB2206179.0A GB2618120A (en) 2021-11-03 2021-11-30 Friction-electromagnetic composite power generation device and performance test platform and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111296190.2A CN114039503A (zh) 2021-11-03 2021-11-03 一种摩擦-电磁复合型发电装置及其性能测试平台和方法
CN202111296190.2 2021-11-03

Publications (1)

Publication Number Publication Date
WO2023077586A1 true WO2023077586A1 (zh) 2023-05-11

Family

ID=80136387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134276 WO2023077586A1 (zh) 2021-11-03 2021-11-30 一种摩擦-电磁复合型发电装置及其性能测试平台和方法

Country Status (3)

Country Link
CN (1) CN114039503A (zh)
TW (1) TWI803192B (zh)
WO (1) WO2023077586A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777211B (zh) * 2022-04-12 2023-06-23 浙江师范大学 一种基于摩擦纳米发电机的自供能空调用空气净化装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680892A (zh) * 2012-01-04 2012-09-19 河南科技大学 永磁发电机性能检测通用试验台
US20140246951A1 (en) * 2013-03-01 2014-09-04 Georgia Tech Research Corporation Segmentally structured disk triboelectric nanogenerator
CN105680716A (zh) * 2014-11-21 2016-06-15 北京纳米能源与系统研究所 一种旋转式复合型纳米发电机
CN109921678A (zh) * 2019-03-22 2019-06-21 安徽大学 一种旋转式电磁-摩擦复合纳米发电机
CN110138260A (zh) * 2019-06-12 2019-08-16 苏州大学 一种环境机械能复合收集转化装置
CN113241966A (zh) * 2021-05-24 2021-08-10 燕山大学 一种基于尖端放电的旋转式摩擦纳米发电装置及方法
CN113281380A (zh) * 2021-05-20 2021-08-20 重庆大学 一种摩擦纳米发电机驱动的电介质陷阱态测量和成像系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201234760A (en) * 2011-02-11 2012-08-16 Yi-Fen Zhang Power generation, power saving and/or convergent magnetic synchronous magnetic power generator for charge/discharge
FR2987708B1 (fr) * 2012-03-05 2023-11-24 Commissariat Energie Atomique Dispositif electrostatique de recuperation d'energie mecanique par effet triboelectrique
CN104124888B (zh) * 2013-04-28 2017-02-08 纳米新能源(唐山)有限责任公司 发电系统
JP6545280B2 (ja) * 2015-03-31 2019-07-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 摩擦発電機
JP2020511734A (ja) * 2017-02-12 2020-04-16 ブリリアント ライト パワー インコーポレーティド 電磁流体力学的電気パワー発生器
CN109120180A (zh) * 2017-06-22 2019-01-01 北京纳米能源与系统研究所 摩擦纳米发电装置和浮子
CN206962734U (zh) * 2017-06-22 2018-02-02 北京纳米能源与系统研究所 摩擦纳米发电装置和浮子
CN209516898U (zh) * 2018-12-12 2019-10-18 广州倬粤动力新能源有限公司 一种电动运输车辆用发电储能装置
CN110932591B (zh) * 2019-11-28 2021-02-05 北京纳米能源与系统研究所 摆式摩擦纳米发电机、供能器件及传感器
CN112461420B (zh) * 2020-11-23 2022-08-30 北京纳米能源与系统研究所 检测旋转式发电机能量转化效率的方法、装置及控制器
CN113364336A (zh) * 2021-05-18 2021-09-07 清华大学 摩擦发电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680892A (zh) * 2012-01-04 2012-09-19 河南科技大学 永磁发电机性能检测通用试验台
US20140246951A1 (en) * 2013-03-01 2014-09-04 Georgia Tech Research Corporation Segmentally structured disk triboelectric nanogenerator
CN105680716A (zh) * 2014-11-21 2016-06-15 北京纳米能源与系统研究所 一种旋转式复合型纳米发电机
CN109921678A (zh) * 2019-03-22 2019-06-21 安徽大学 一种旋转式电磁-摩擦复合纳米发电机
CN110138260A (zh) * 2019-06-12 2019-08-16 苏州大学 一种环境机械能复合收集转化装置
CN113281380A (zh) * 2021-05-20 2021-08-20 重庆大学 一种摩擦纳米发电机驱动的电介质陷阱态测量和成像系统及方法
CN113241966A (zh) * 2021-05-24 2021-08-10 燕山大学 一种基于尖端放电的旋转式摩擦纳米发电装置及方法

Also Published As

Publication number Publication date
TW202320474A (zh) 2023-05-16
TWI803192B (zh) 2023-05-21
CN114039503A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
Zhang et al. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy
Vidal et al. Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: A review
Yong et al. Auto‐switching self‐powered system for efficient broad‐band wind energy harvesting based on dual‐rotation shaft triboelectric nanogenerator
Qu et al. Spherical triboelectric nanogenerator based on eccentric structure for omnidirectional low frequency water wave energy harvesting
Wang et al. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low‐frequency water wave energy
Li et al. A highly efficient constant-voltage triboelectric nanogenerator
Wu et al. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy
CN105680716A (zh) 一种旋转式复合型纳米发电机
Yang et al. Barycenter self‐adapting triboelectric nanogenerator for sea water wave high‐entropy energy harvesting and self‐powered forecasting in marine meteorology
KR101112492B1 (ko) 압전소자를 이용한 발전기
Zhao et al. Hybridized triboelectric‐electromagnetic nanogenerator for wind energy harvesting to realize real‐time power supply of sensor nodes
WO2023077586A1 (zh) 一种摩擦-电磁复合型发电装置及其性能测试平台和方法
CN107425753B (zh) 增速式风力压电发电装置
CN105932899A (zh) 无基底电极驻极体静电发电机和制造该驻极体的方法
CN111641347B (zh) 一种捕获风能和声能的摩擦纳米发电机
Hu et al. Triboelectric nanogenerator with low crest factor via precise phase difference design realized by 3d printing
Li et al. Harvest of ocean energy by triboelectric generator technology
Li et al. A nanogenerator enabled by a perfect combination and synergetic utilization of triboelectrification, charge excitation and electromagnetic induction to reach efficient energy conversion
Zhao et al. A High Output Triboelectric–Electromagnetic Hybrid Generator Based on In‐Phase Parallel Connection
Fan et al. Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy
JP7487966B2 (ja) 摩擦電磁複合型発電装置とその性能テストプラットフォーム及び方法
CN113162460A (zh) 一种静电式旋转、直线往复运动耦合能量收集器
CN108768203B (zh) 一种三维环状摩擦发电装置
CN207459955U (zh) 复合式旋转能量收集器
Chen et al. A Magnetic-Multiplier-Enabled Hybrid Generator with Frequency Division Operation and High Energy Utilization Efficiency

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022513842

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 202206179

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211130

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963093

Country of ref document: EP

Kind code of ref document: A1